NASA Astrophysics Data System (ADS)
Mitterer-Hoinkes, Susanna; Lehning, Michael; Phillips, Marcia; Sailer, Rudolf
2013-04-01
The area-wide distribution of permafrost is sparsely known in mountainous terrain (e.g. Alps). Permafrost monitoring can only be based on point or small scale measurements such as boreholes, active rock glaciers, BTS measurements or geophysical measurements. To get a better understanding of permafrost distribution, it is necessary to focus on modeling permafrost temperatures and permafrost distribution patterns. A lot of effort on these topics has been already expended using different kinds of models. In this study, the evolution of subsurface temperatures over successive years has been modeled at the location Ritigraben borehole (Mattertal, Switzerland) by using the one-dimensional snow cover model SNOWPACK. The model needs meteorological input and in our case information on subsurface properties. We used meteorological input variables of the automatic weather station Ritigraben (2630 m) in combination with the automatic weather station Saas Seetal (2480 m). Meteorological data between 2006 and 2011 on an hourly basis were used to drive the model. As former studies showed, the snow amount and the snow cover duration have a great influence on the thermal regime. Low snow heights allow for deeper penetration of low winter temperatures into the ground, strong winters with a high amount of snow attenuate this effect. In addition, variations in subsurface conditions highly influence the temperature regime. Therefore, we conducted sensitivity runs by defining a series of different subsurface properties. The modeled subsurface temperature profiles of Ritigraben were then compared to the measured temperatures in the Ritigraben borehole. This allows a validation of the influence of subsurface properties on the temperature regime. As expected, the influence of the snow cover is stronger than the influence of sub-surface material properties, which are significant, however. The validation presented here serves to prepare a larger spatial simulation with the complex hydro-meteorological 3-dimensional model Alpine 3D, which is based on a distributed application of SNOWPACK.
Wang, Peiyu; Li, Zhencheng; Pei, Yongmao
2018-04-16
An in situ high temperature microwave microscope was built for detecting surface and sub-subsurface structures and defects. This system was heated with a self-designed quartz lamp radiation module, which is capable of heating to 800°C. A line scanning of a metal grating showed a super resolution of 0.5 mm (λ/600) at 1 GHz. In situ scanning detections of surface hole defects on an aluminium plate and a glass fiber reinforced plastic (GFRP) plate were conducted at different high temperatures. A post processing algorithm was proposed to remove the background noises induced by high temperatures and the 3.0 mm-spaced hole defects were clearly resolved. Besides, hexagonal honeycomb lattices were in situ detected and clearly resolved under a 1.0 mm-thick face panel at 20°C and 50°C, respectively. The core wall positions and bonding width were accurately detected and evaluated. In summary, this in situ microwave microscope is feasible and effective in sub-surface detection and super resolution imaging at different high temperatures.
Temperature and pressure adaptation of a sulfate reducer from the deep subsurface
Fichtel, Katja; Logemann, Jörn; Fichtel, Jörg; Rullkötter, Jürgen; Cypionka, Heribert; Engelen, Bert
2015-01-01
Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301). The organism was isolated at 20°C and atmospheric pressure from ~61°C-warm sediments approximately 5 m above the sediment–basement interface. In comparison to standard laboratory conditions (20°C and 0.1 MPa), faster growth was recorded when incubated at in situ pressure and high temperature (45°C), while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure. PMID:26500624
Using electrical resistance tomography to map subsurface temperatures
Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.
1994-09-13
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.
Using electrical resistance tomography to map subsurface temperatures
Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.
1994-01-01
A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.
2016-01-01
Sediments within the Okinawa back-arc basin overlay a subsurface hydrothermal network, creating intense temperature gradients with sediment depth and potential limits for microbial diversity. We investigated taxonomic changes across 45 m of recovered core with a temperature gradient of 3°C/m from the dynamic Iheya North Hydrothermal System. The interval transitions sharply from low-temperature marine mud to hydrothermally altered clay at 10 meters below seafloor (mbsf). Here, we present taxonomic results from an analysis of the 16S rRNA gene that support a conceptual model in which common marine subsurface taxa persist into the subsurface, while high temperature adapted archaeal taxa show localized peaks in abundances in the hydrothermal clay horizons. Specifically, the bacterial phylum Chloroflexi accounts for a major proportion of the total microbial community within the upper 10 mbsf, whereas high temperature archaea (Terrestrial Hot Spring Crenarchaeotic Group and methanotrophic archaea) appear in varying local abundances in deeper, hydrothermal clay horizons with higher in situ temperatures (up to 55°C, 15 mbsf). In addition, geochemical evidence suggests that methanotrophy may be occurring in various horizons. There is also relict DNA (i.e., DNA preserved after cell death) that persists in horizons where the conditions suitable for microbial communities have ceased. PMID:28096736
Vugrinovich, R.
1989-01-01
Linear regression of 405 bottomhole temperature (BHT) measurements vs. associated depths from Michigan's Lower Peninsula results in the following equation relating BHT and depth: BHT(??C) = 14.5 + 0.0192 ?? depth(m) Temperature residuals, defined as (BHT measured)-(BHT calculated), were determined for each of the 405 BHT's. Areas of positive temperature residuals correspond to areas of regional groundwater discharge (determined from maps of equipotential surface) while areas of negative temperature residuals correspond to areas of regional groundwater recharge. These relationships are observed in the principal aquifers in rocks of Devonian and Ordovician age and in a portion of the principal aquifer in rocks of Silurian age. There is a similar correspondence between high surface heat flow (determined using the silica geothermometer) and regional groundwater discharge areas and low surface heat flow and regional groundwater recharge areas. Post-Jurassic depositional and tectonic histories suggest that the observed coupling of subsurface temperature and groundwater flow systems may have persisted since Jurassic time. Thus the higher subsurface palaeotemperatures (and palaeogeothermal gradients) indicated by recent studies most likely pre-date the Jurassic. ?? 1989.
Estimation of subsurface thermal structure using sea surface height and sea surface temperature
NASA Technical Reports Server (NTRS)
Kang, Yong Q. (Inventor); Jo, Young-Heon (Inventor); Yan, Xiao-Hai (Inventor)
2012-01-01
A method of determining a subsurface temperature in a body of water is disclosed. The method includes obtaining surface temperature anomaly data and surface height anomaly data of the body of water for a region of interest, and also obtaining subsurface temperature anomaly data for the region of interest at a plurality of depths. The method further includes regressing the obtained surface temperature anomaly data and surface height anomaly data for the region of interest with the obtained subsurface temperature anomaly data for the plurality of depths to generate regression coefficients, estimating a subsurface temperature at one or more other depths for the region of interest based on the generated regression coefficients and outputting the estimated subsurface temperature at the one or more other depths. Using the estimated subsurface temperature, signal propagation times and trajectories of marine life in the body of water are determined.
Microbial Life in the Deep Subsurface: Deep, Hot and Radioactive
NASA Technical Reports Server (NTRS)
DeStefano, Andrea L.; Ford, Jill C.; Winsor, Seana K.; Allen, Carlton C.; Miller, Judith; McNamara, Karen M.; Gibson, Everett K., Jr.
2000-01-01
Recent studies, motivated in part by the search for extraterrestrial life, continue to expand the recognized limits of Earth's biosphere. This work explored evidence for life a high-temperature, radioactive environment in the deep subsurface.
The Limits of Life in the Deep Subsurface - Implications for the Origin of Life
NASA Astrophysics Data System (ADS)
Baross, John
2013-06-01
There are very few environments on Earth where life is absent. Microbial life has proliferated into habitats that span nearly every imaginable physico-chemical variable. Only the availability of liquid water and temperature are known to prevent the growth of organisms. The other extreme physical and chemical variables, such as pH, pressure, high concentrations of solutes, damaging radiation, and toxic metals, are life-prohibiting factors for most organisms but not for all. The deep subsurface environments span all of the extreme conditions encountered by life including habitat conditions not yet explored, such as those that combine high temperature, high and low pH and extreme pressures. Some of the ``extremophile'' microorganisms inhabiting the deep subsurface environments have been shown to be among the most ``ancient'' of extant life. Their genomes and physiologies have led to a broader understanding of the geological settings of early life, the most ancient energy pathways, and the importance of water/rock interactions and tectonics in the origin and early evolution of life. The case can now be made that deep subsurface environments contributed to life's origin and provided the habitat(s) for the earliest microbial communities. However, there is much more to be done to further our understanding on the role of moderate to high pressures and temperatures on the chemical and biochemical ``steps'' leading to life, and on the evolution and physiology of both ancient and present-day subsurface microbial communities.
Urban heat islands in the subsurface of German cities
NASA Astrophysics Data System (ADS)
Menberg, K.; Blum, P.; Zhu, K.; Bayer, P.
2012-04-01
In the subsurface of many cities there are widespread and persistent thermal anomalies (subsurface urban heat islands) that result in a warming of urban aquifers. The reasons for this heating are manifold. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several German cities, such as Berlin, Munich, Cologne and Karlsruhe, are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the superposition of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city centre. Regional groundwater temperature differences between the city centre and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20°C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1°C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in Karlsruhe, for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
Deming, D.; Sass, J.H.; Lachenbruch, A.H.; De Rito, R. F.
1992-01-01
Several high-resolution temperature logs were made in each of 21 drillholes and a total of 601 thermal conductivity measurements were made on drill cuttings and cores. Near-surface heat flow (??20%) is inversely correlated with elevation and ranges from a low of 27 mW/m2 in the foothills of the Brooks Range in the south, to a high of 90 mW/m2 near the north coast. Subsurface temperatures and thermal gradients estimated from corrected BHTs are similarly much higher on the coastal plain than in the foothills province to the south. Significant east-west variation in heat flow and subsurface temperature is also observed; higher heat flow and temperature coincide with higher basement topography. The observed thermal pattern is consistent with forced convection by a topographically driven ground-water flow system. Average ground-water (Darcy) velocity in the postulated flow system is estimated to be of the order of 0.1 m/yr; the effective basin-scale permeability is estimated to be of the order of 10-14 m2. -from Authors
NASA Astrophysics Data System (ADS)
Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu
2014-05-01
A comprehensive field study was conducted at a site contaminated with chlorinated solvents, mainly trichloroethylene (TCE), to investigate the influence of subsurface soil moisture and temperature on vapour intrusion (VI) into built structures. Existing approaches to predict the risk of VI intrusion into buildings assume homogeneous or discrete layers in the vadose zone through which TCE migrates from an underlying source zone. In reality, the subsurface of the majority of contaminated sites will be subject to significant variations in moisture and temperature. Detailed site-specific data were measured contemporaneously to evaluate the impact of spatial and temporal variability of subsurface soil properties on VI exposure assessment. The results revealed that indoor air vapour concentrations would be affected by spatial and temporal variability of subsurface soil moisture and temperature. The monthly monitoring of soil-gas concentrations over a period of one year at a depth of 3 m across the study site demonstrated significant variation in TCE vapour concentrations, which ranged from 480 to 629,308 μg/m3. Soil-gas wells at 1 m depth exhibited high seasonal variability in TCE vapour concentrations with a coefficient of variation 1.02 in comparison with values of 0.88 and 0.74 in 2 m and 3 m wells, respectively. Contour plots of the soil-gas TCE plume during wet and dry seasons showed that the plume moved across the site, hence locations of soil-gas monitoring wells for human risk assessment is a site specific decision. Subsurface soil-gas vapour plume characterisation at the study site demonstrates that assessment for VI is greatly influenced by subsurface soil properties such as temperature and moisture that fluctuate with the seasons of the year.
NASA Astrophysics Data System (ADS)
Oliver, G. C. M.; Cario, A.; Rogers, K. L.
2015-12-01
A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global-scale biogeochemical models.
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures
Schmidt, Matthew W.; Chang, Ping; Hertzberg, Jennifer E.; Them, Theodore R.; Ji, Link; Otto-Bliesner, Bette L.
2012-01-01
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition. PMID:22908256
Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures.
Schmidt, Matthew W; Chang, Ping; Hertzberg, Jennifer E; Them, Theodore R; Ji, Link; J, Link; Otto-Bliesner, Bette L
2012-09-04
Both instrumental data analyses and coupled ocean-atmosphere models indicate that Atlantic meridional overturning circulation (AMOC) variability is tightly linked to abrupt tropical North Atlantic (TNA) climate change through both atmospheric and oceanic processes. Although a slowdown of AMOC results in an atmospheric-induced surface cooling in the entire TNA, the subsurface experiences an even larger warming because of rapid reorganizations of ocean circulation patterns at intermediate water depths. Here, we reconstruct high-resolution temperature records using oxygen isotope values and Mg/Ca ratios in both surface- and subthermocline-dwelling planktonic foraminifera from a sediment core located in the TNA over the last 22 ky. Our results show significant changes in the vertical thermal gradient of the upper water column, with the warmest subsurface temperatures of the last deglacial transition corresponding to the onset of the Younger Dryas. Furthermore, we present new analyses of a climate model simulation forced with freshwater discharge into the North Atlantic under Last Glacial Maximum forcings and boundary conditions that reveal a maximum subsurface warming in the vicinity of the core site and a vertical thermal gradient change at the onset of AMOC weakening, consistent with the reconstructed record. Together, our proxy reconstructions and modeling results provide convincing evidence for a subsurface oceanic teleconnection linking high-latitude North Atlantic climate to the tropical Atlantic during periods of reduced AMOC across the last deglacial transition.
Imaging lateral groundwater flow in the shallow subsurface using stochastic temperature fields
NASA Astrophysics Data System (ADS)
Fairley, Jerry P.; Nicholson, Kirsten N.
2006-04-01
Although temperature has often been used as an indication of vertical groundwater movement, its usefulness for identifying horizontal fluid flow has been limited by the difficulty of obtaining sufficient data to draw defensible conclusions. Here we use stochastic simulation to develop a high-resolution image of fluid temperatures in the shallow subsurface at Borax Lake, Oregon. The temperature field inferred from the geostatistical simulations clearly shows geothermal fluids discharging from a group of fault-controlled hydrothermal springs, moving laterally through the subsurface, and mixing with shallow subsurface flow originating from nearby Borax Lake. This interpretation of the data is supported by independent geochemical and isotopic evidence, which show a simple mixing trend between Borax Lake water and discharge from the thermal springs. It is generally agreed that stochastic simulation can be a useful tool for extracting information from complex and/or noisy data and, although not appropriate in all situations, geostatistical analysis may provide good definition of flow paths in the shallow subsurface. Although stochastic imaging techniques are well known in problems involving transport of species, e.g. delineation of contaminant plumes from soil gas survey data, we are unaware of previous applications to the transport of thermal energy for the purpose of inferring shallow groundwater flow.
Percolation induced heat transfer in deep unsaturated zones
Lu, N.; LeCain, G.D.
2003-01-01
Subsurface temperature data from a borehole located in a desert wash were measured and used to delineate the conductive and advective heat transfer regimes, and to estimate the percolation quantity associated with the 1997-1998 El Ni??no precipitation. In an arid environment, conductive heat transfer dominates the variation of shallow subsurface temperature most of the time, except during sporadic precipitation periods. The subsurface time-varying temperature due to conductive heat transfer is highly correlated with the surface atmospheric temperature variation, whereas temperature variation due to advective heat transfer is strongly correlated with precipitation events. The advective heat transfer associated with precipitation and infiltration is the focus of this paper. Disruptions of the subsurface conductive temperature regime, associated with the 1997-1998 El Ni??no precipitation, were detected and used to quantify the percolation quantity. Modeling synthesis using a one-dimensional coupled heat and unsaturated flow model indicated that a percolation per unit area of 0.7 to 1.3 m height of water in two weeks during February 1998 was responsible for the observed temperature deviations down to a depth of 35.2 m. The reported study demonstrated quantitatively, for the first time, that the near surface temperature variation due to advective heat transfer can be significant at a depth greater than 10 m in unsaturated soils and can be used to infer the percolation amount in thick unsaturated soils.
NASA Astrophysics Data System (ADS)
Bayer, P.; Menberg, K.; Zhu, K.; Blum, P.
2012-12-01
In the subsurface of many cities there are widespread and persistent thermal anomalies. These so-called subsurface urban heat islands (UHIs), which also stimulate warming of urban aquifers, are triggered by various processes. Possible heat sources are basements of buildings, leakage of sewage systems, buried district heating networks, re-injection of cooling water and solar irradiation on paved surfaces. In the current study, the reported groundwater temperatures in several Central European cities, such as Berlin, Cologne (Germany) and Zurich (Switzerland) are compared. Available data sets are supplemented by temperature measurements and depth profiles in observation wells. Trend analyses are conducted with time series of groundwater temperatures, and three-dimensional groundwater temperature maps are provided. In all investigated cities, pronounced positive temperature anomalies are present. The distribution of groundwater temperatures appears to be spatially and temporally highly variable. Apparently, the increased heat input into the urban subsurface is controlled by very local and site-specific parameters. In the long-run, the combination of various heat sources results in an extensive temperature increase. In many cases, the maximum temperature elevation is found close to the city center. Regional groundwater temperature differences between the city center and the rural background are up to 5 °C, with local hot spots of even more pronounced anomalies. Particular heat sources, like cooling water injections or case-specific underground constructions, can cause local temperatures > 20 °C in the subsurface. Examination of the long-term variations in isotherm maps shows that temperatures have increased by about 1 °C in the city, as well as in the rural background areas over the last decades. This increase could be reproduced with trend analysis of temperature data gathered from several groundwater wells. Comparison between groundwater and air temperatures in the city of Karlsruhe (Germany), for example, also indicates a spatial correlation between the urban heat island effect in the subsurface and in the atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willems van Beveren, L. H., E-mail: laurensw@unimelb.edu.au; Bowers, H.; Ganesan, K.
2016-06-14
Boron implantation with in-situ dynamic annealing is used to produce highly conductive sub-surface layers in type IIa (100) diamond plates for the search of a superconducting phase transition. Here, we demonstrate that high-fluence MeV ion-implantation, at elevated temperatures avoids graphitization and can be used to achieve doping densities of 6 at. %. In order to quantify the diamond crystal damage associated with implantation Raman spectroscopy was performed, demonstrating high temperature annealing recovers the lattice. Additionally, low-temperature electronic transport measurements show evidence of charge carrier densities close to the metal-insulator-transition. After electronic characterization, secondary ion mass spectrometry was performed to mapmore » out the ion profile of the implanted plates. The analysis shows close agreement with the simulated ion-profile assuming scaling factors that take into account an average change in diamond density due to device fabrication. Finally, the data show that boron diffusion is negligible during the high temperature annealing process.« less
Estimating Surface and Subsurface Ice Abundance on Mercury Using a Thermophysical Model
NASA Astrophysics Data System (ADS)
Rubanenko, L.; Mazarico, E.; Neumann, G. A.; Paige, D. A.
2016-12-01
The small obliquity of the Moon and Mercury causes some topographic features near their poles to cast permanent shadows for geologic time periods. In the past, these permanently shadowed regions (PSRs) were found to have low enough temperatures to trap surface and subsurface water ice. On Mercury, high normal albedo is correlated with maximum temperatures <100 m and high radar backscatter, possibly indicating the presence of surface ice. Areas with slightly higher maximum temperatures were measured to have a decreased albedo, postulated to contain of organic materials overlaying buried ice. We evaluate this theory by employing a thermophysical model that considers insolation, scattering, thermal emissions and subsurface conduction. We model the area fraction of surface and subsurface cold-traps on realistic topography at scales of ˜500 m , recorded by the Mercury Laster Altimeter (MLA) on board the MErcury Surface, Space ENviroment, GEochemistry and Ranging (MESSENGER) spacecraft. At smaller scales, below the instrument threshold, we consider a statistical description of the surface assuming a Gaussian slope distribution. Using the modeled cold-trap area fraction we calculate the expected surface albedo and compare it to MESSENGER's near-infrared surface reflectance data. Last, we apply our model to other airless small-obliquity planetary bodies such as the Moon and Ceres in order to explain other correlations between the maximum temperature and normal albedo.
Code of Federal Regulations, 2014 CFR
2014-07-01
... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and... related equipment installed in high pressure high temperature (HPHT) environments. (a) If you plan to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production... installed in high pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and...
Nematoda from the terrestrial deep subsurface of South Africa.
Borgonie, G; García-Moyano, A; Litthauer, D; Bert, W; Bester, A; van Heerden, E; Möller, C; Erasmus, M; Onstott, T C
2011-06-02
Since its discovery over two decades ago, the deep subsurface biosphere has been considered to be the realm of single-cell organisms, extending over three kilometres into the Earth's crust and comprising a significant fraction of the global biosphere. The constraints of temperature, energy, dioxygen and space seemed to preclude the possibility of more-complex, multicellular organisms from surviving at these depths. Here we report species of the phylum Nematoda that have been detected in or recovered from 0.9-3.6-kilometre-deep fracture water in the deep mines of South Africa but have not been detected in the mining water. These subsurface nematodes, including a new species, Halicephalobus mephisto, tolerate high temperature, reproduce asexually and preferentially feed upon subsurface bacteria. Carbon-14 data indicate that the fracture water in which the nematodes reside is 3,000-12,000-year-old palaeometeoric water. Our data suggest that nematodes should be found in other deep hypoxic settings where temperature permits, and that they may control the microbial population density by grazing on fracture surface biofilm patches. Our results expand the known metazoan biosphere and demonstrate that deep ecosystems are more complex than previously accepted. The discovery of multicellular life in the deep subsurface of the Earth also has important implications for the search for subsurface life on other planets in our Solar System.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...
2016-04-25
Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme-which is based on a nonisothermal, multiphase hydrological model-provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of themore » subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less
NASA Astrophysics Data System (ADS)
Fang, Tuo; Fa, Wenzhe
2014-04-01
Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-04
... for subsurface related equipment installed in high safety valves (SSSVs) and pressure high temperature (HPHT) related equipment installed in environments. high pressure high temperature (HPHT) environments... flammable liquids (other than produced hydrocarbons) stored on the facility in containers other than bulk...
Code of Federal Regulations, 2010 CFR
2010-07-01
... valves and related equipment installed in high pressure high temperature (HPHT) environments. 250.807... pressure high temperature (HPHT) environments. (a) If you plan to install SSSVs and related equipment in an HPHT environment, you must submit detailed information with your Application for Permit to Drill (APD...
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK
NASA Astrophysics Data System (ADS)
Parnell, John; Baba, Mas'ud; Bowden, Stephen; Muirhead, David
2017-04-01
Subsurface Biodegradation in a Fractured Basement Reservoir, Shropshire, UK. John Parnell, Mas'ud Baba, Stephen Bowden, David Muirhead Subsurface biodegradation in current oil reservoirs is well established, but there are few examples of fossil subsurface degradation. Biomarker compositions of viscous and solid oil residues ('bitumen') in fractured Precambrian and other basement rocks below the Carboniferous cover in Shropshire, UK, show that they are variably biodegraded. High levels of 25-norhopanes imply that degradation occurred in the subsurface. Lower levels of 25-norhopanes occur in active seepages. Liquid oil trapped in fluid inclusions in mineral veins in the fractured basement confirm that the oil was emplaced fresh before subsurface degradation. A Triassic age for the veins implies a 200 million year history of hydrocarbon migration in the basement rocks. The data record microbial colonization of a fractured basement reservoir, and add to evidence in modern basement aquifers for microbial activity in deep fracture systems. Buried basement highs may be especially favourable to colonization, through channelling fluid flow to shallow depths and relatively low temperatures
Possible Habilability of Martian Regolity and Research of Ancient Life "Biomarkers"
NASA Astrophysics Data System (ADS)
Pavlov, A. K.
2017-05-01
We consider environments of modern subsurface martian regolith layer as possible habitats of the terrestrial like microorganisms. Recent experimental studies demonstrate that low atmospheric pressure, low temperature and high level of cosmic rays ionizing radiation are not able to sterilize the subsurface layer of Mars. Even nonextremofile microorganisms can reproduce in martian regolith using films of liquid water which are produced by absorption of water vapor of subsurface ice sublimation. Areas of possible seasonal subsurface water flow (recurring slope lineae, dark dune spots) and methane emission regions are discussed as perspective sites for discovering of modern life on Mars. Degradation of "biomarkers" (complex organic molecules and isotopic ratio 13C/12C) in martian soil under high level of cosmic rays radiation is analyzed. We show the ancient biomarkers are effectively destroyed within period 108 -109 years. As result, probability of its discovering in shallow subsurface martian layer is low.
Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda
2004-01-01
Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves considerable post-processing work. For these reasons it is very advantageous to develop analytical solution schemes for subsurface stresses, whenever possible.
Liebensteiner, Martin G.; Tsesmetzis, Nicolas; Stams, Alfons J. M.; Lomans, Bartholomeus P.
2014-01-01
The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron, or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese-, and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (per)chlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (per)chlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (per)chlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (meta)genome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (per)chlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (per)chlorate for bioremediation, souring control, and microbial enhanced oil recovery are addressed. PMID:25225493
NASA Astrophysics Data System (ADS)
Jiang, Zhenjiao; Xu, Tianfu; Mariethoz, Gregoire
2018-04-01
Geothermal springs are some of the most obvious indicators of the existence of high-temperature geothermal resources in the subsurface. However, geothermal springs can also occur in areas of low average subsurface temperatures, which makes it difficult to assess exploitable zones. To address this problem, this study quantitatively analyzes the conditions associated with the formation of geothermal springs in fault zones, and numerically investigates the implications that outflow temperature and discharge rate from geothermal springs have on the geothermal background in the subsurface. It is concluded that the temperature of geothermal springs in fault zones is mainly controlled by the recharge rate from the country rock and the hydraulic conductivity in the fault damage zone. Importantly, the topography of the fault trace on the land surface plays an important role in determining the thermal temperature. In fault zones with a permeability higher than 1 mD and a lateral recharge rate from the country rock higher than 1 m3/day, convection plays a dominant role in the heat transport rather than thermal conduction. The geothermal springs do not necessarily occur in the place having an abnormal geothermal background (with the temperature at certain depth exceeding the temperature inferred by the global average continental geothermal gradient of 30 °C/km). Assuming a constant temperature (90 °C here, to represent a normal geothermal background in the subsurface at a depth of 3,000 m), the conditions required for the occurrence of geothermal springs were quantitatively determined.
NASA Astrophysics Data System (ADS)
Sinha, Bablu; Blaker, Adam; Duchez, Aurelie; Grist, Jeremy; Hewitt, Helene; Hirschi, Joel; Hyder, Patrick; Josey, Simon; Maclachlan, Craig; New, Adrian
2017-04-01
A high-resolution coupled ocean atmosphere model is used to study the effects of seasonal re-emergence of North Atlantic subsurface ocean temperature anomalies on northern hemisphere winter climate. A 50-member control simulation is integrated from September 1 to 28 February and compared with a similar ensemble with perturbed ocean initial conditions. The perturbation consists of a density-compensated subsurface (deeper than 180m) temperature anomaly corresponding to the observed subsurface temperature anomaly for September 2010, which is known to have re-emerged at the ocean surface in subsequent months. The perturbation is confined to the North Atlantic Ocean between the Equator and 65 degrees North. The model has 1/4 degree horizontal resolution in the ocean and the experiment is repeated for two atmosphere horizontal resolutions ( 60km and 25km) in order to determine whether the sensitivity of the atmosphere to re-emerging temperature anomalies is dependent on resolution. The ensembles display a wide range of reemergence behaviour, in some cases re-emergence occurs by November, in others it is delayed or does not occur at all. A wide range of amplitudes of the re-emergent temperature anomalies is observed. In cases where re-emergence occurs, there is a marked effect on both the regional (North Atlantic and Europe) and hemispheric surface pressure and temperature patterns. The results highlight a potentially important process whereby ocean memory of conditions up to a year earlier can significantly enhance seasonal forecast skill.
NASA Astrophysics Data System (ADS)
Kim, Bong-Guk; Cho, Yang-Ki; Kim, Bong-Gwan; Kim, Young-Gi; Jung, Ji-Hoon
2015-04-01
Subsurface temperature plays an important role in determining heat contents in the upper ocean which are crucial in long-term and short-term weather systems. Furthermore, subsurface temperature affects significantly ocean ecology. In this study, a simple and practical algorithm has proposed. If we assume that subsurface temperature changes are proportional to surface heating or cooling, subsurface temperature at each depth (Sub_temp) can be estimated as follows PIC whereiis depth index, Clm_temp is temperature from climatology, dif0 is temperature difference between satellite and climatology in the surface, and ratio is ratio of temperature variability in each depth to surface temperature variability. Subsurface temperatures using this algorithm from climatology (WOA2013) and satellite SST (OSTIA) where calculated in the sea around Korean peninsula. Validation result with in-situ observation data show good agreement in the upper 50 m layer with RMSE (root mean square error) less than 2 K. The RMSE is smallest with less than 1 K in winter when surface mixed layer is thick, and largest with about 2~3 K in summer when surface mixed layer is shallow. The strong thermocline and large variability of the mixed layer depth might result in large RMSE in summer. Applying of mixed layer depth information for the algorithm may improve subsurface temperature estimation in summer. Spatial-temporal details on the improvement and its causes will be discussed.
Modelling deuterium release from tungsten after high flux high temperature deuterium plasma exposure
NASA Astrophysics Data System (ADS)
Grigorev, Petr; Matveev, Dmitry; Bakaeva, Anastasiia; Terentyev, Dmitry; Zhurkin, Evgeny E.; Van Oost, Guido; Noterdaeme, Jean-Marie
2016-12-01
Tungsten is a primary candidate for plasma facing materials for future fusion devices. An important safety concern in the design of plasma facing components is the retention of hydrogen isotopes. Available experimental data is vast and scattered, and a consistent physical model of retention of hydrogen isotopes in tungsten is still missing. In this work we propose a model of non-equilibrium hydrogen isotopes trapping under fusion relevant plasma exposure conditions. The model is coupled to a diffusion-trapping simulation tool and is used to interpret recent experiments involving high plasma flux exposures. From the computational analysis performed, it is concluded that high flux high temperature exposures (T = 1000 K, flux = 1024 D/m2/s and fluence of 1026 D/m2) result in generation of sub-surface damage and bulk diffusion, so that the retention is driven by both sub-surface plasma-induced defects (bubbles) and trapping at natural defects. On the basis of the non-equilibrium trapping model we have estimated the amount of H stored in the sub-surface region to be ∼10-5 at-1, while the bulk retention is about 4 × 10-7 at-1, calculated by assuming the sub-surface layer thickness of about 10 μm and adjusting the trap concentration to comply with the experimental results for the integral retention.
Thule Air Base Airfield White Painting and Permafrost Investigation. Phases I-IV
2013-06-01
Thaw settlement—fill thickness vs. box section .......................................................... 15 3.2.2 White Pavement ...33 Figure 29. Subsurface temperatures measured at the “White Pavement ” site ................................ 34 Figure 30. Subsurface...temperatures measured at “Black Pavement ” site. ...................................... 34 Figure 31. Subsurface temperatures at a permanent station in fill
Thule Air Base Airfield White Painting and Permafrost Investigation. Phases 1-4
2013-06-01
Thaw settlement—fill thickness vs. box section .......................................................... 15 3.2.2 White Pavement ...33 Figure 29. Subsurface temperatures measured at the “White Pavement ” site ................................ 34 Figure 30. Subsurface...temperatures measured at “Black Pavement ” site. ...................................... 34 Figure 31. Subsurface temperatures at a permanent station in fill
Climate reconstruction from borehole temperatures influenced by groundwater flow
NASA Astrophysics Data System (ADS)
Kurylyk, B.; Irvine, D. J.; Tang, W.; Carey, S. K.; Ferguson, G. A. G.; Beltrami, H.; Bense, V.; McKenzie, J. M.; Taniguchi, M.
2017-12-01
Borehole climatology offers advantages over other climate reconstruction methods because further calibration steps are not required and heat is a ubiquitous subsurface property that can be measured from terrestrial boreholes. The basic theory underlying borehole climatology is that past surface air temperature signals are reflected in the ground surface temperature history and archived in subsurface temperature-depth profiles. High frequency surface temperature signals are attenuated in the shallow subsurface, whereas low frequency signals can be propagated to great depths. A limitation of analytical techniques to reconstruct climate signals from temperature profiles is that they generally require that heat flow be limited to conduction. Advection due to groundwater flow can thermally `contaminate' boreholes and result in temperature profiles being rejected for regional climate reconstructions. Although groundwater flow and climate change can result in contrasting or superimposed thermal disturbances, groundwater flow will not typically remove climate change signals in a subsurface thermal profile. Thus, climate reconstruction is still possible in the presence of groundwater flow if heat advection is accommodated in the conceptual and mathematical models. In this study, we derive a new analytical solution for reconstructing surface temperature history from borehole thermal profiles influenced by vertical groundwater flow. The boundary condition for the solution is composed of any number of sequential `ramps', i.e. periods with linear warming or cooling rates, during the instrumented and pre-observational periods. The boundary condition generation and analytical temperature modeling is conducted in a simple computer program. The method is applied to reconstruct climate in Winnipeg, Canada and Tokyo, Japan using temperature profiles recorded in hydrogeologically active environments. The results demonstrate that thermal disturbances due to groundwater flow and climate change must be considered in a holistic manner as opposed to isolating either perturbation as was done in prior analytical studies.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semi-quantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, little effort has been expended to develop a quantitative framework connecting surface temperature observations with conditions in the subsurface. Here, we examine an area of shallow subsurface flow at Burgdorf Hot Springs, in the Payette National Forest, north of McCall, Idaho USA. We present a simple analytical model that uses easily-measured surface data to infer the temperatures of laterally-migrating shallow hydrothermal fluids. The model is calibrated using shallow ground temperature measurements and overburden thickness estimates from seismic refraction studies. The model predicts conditions in the shallow subsurface, and suggests that the Biot number may place a more important control on the expression of near-surface thermal perturbations than previously thought. In addition, our model may have application in inferring difficult-to-measure parameters, such as shallow subsurface discharge from hydrothermal springs.
Antarctic Mirabilite Mounds as Mars Analogs: The Lewis Cliffs Ice Tongue Revisited
NASA Technical Reports Server (NTRS)
Socki, Richard A.; Sun, Tao; Niles, Paul B.; Harvey, Ralph P.; Bish, David L.; Tonui, Eric
2012-01-01
It has been proposed, based on geomorphic and geochemical arguments, that subsurface water has played an important role in the history of water on the planet Mars [1]. Subsurface water, if present, could provide a protected and long lived environment for potential life. Discovery of gullies [2] and recurring slopes [3] on Mars suggest the potential for subsurface liquid water or brines. Recent attention has also focused on small (< approx. 1km dia.) mound-like geomorphic features discovered within the mid to high latitudes on the surface of Mars which may be caused by eruptions of subsurface fluids [4, 5]. We have identified massive but highly localized Na-sulfate deposits (mirabilite mounds, Na2SO4 .10H2O) that may be derived from subsurface fluids and may provide insight into the processes associated with subsurface fluids on Mars. The mounds are found on the end moraine of the Lewis Cliffs Ice Tongue (LCIT) [6] in the Transantarctic Mountains, Antarctica, and are potential terrestrial analogs for mounds observed on the martian surface. The following characteristics distinguish LCIT evaporite mounds from other evaporite mounds found in Antarctic coastal environments and/or the McMurdo Dry Valleys: (1) much greater distance from the open ocean (approx.500 km); (2) higher elevation (approx.2200 meters); and (3) colder average annual temperature (average annual temperature = -30 C for LCIT [7] vs. 20 C at sea level in the McMurdo region [8]. Furthermore, the recent detection of subsurface water ice (inferred as debris-covered glacial ice) by the Mars Reconnaissance Orbiter [9] supports the use of an Antarctic glacial environment, particularly with respect to the mirabilite deposits described in this work, as an ideal terrestrial analog for understanding the geochemistry associated with near-surface martian processes. S and O isotopic compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, B.; Mordensky, S.; Verba, Circe
Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO 2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO 2 levels is a goal for many nations and carbon sequestration which traps CO 2 in the Earth’s subsurface is one method to reduce atmospheric CO 2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role inmore » biogeochemistry and accordingly may determine how CO 2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO 2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO 2 sequestration could be most efficiently implemented.« less
Prediction of future subsurface temperatures in Korea
NASA Astrophysics Data System (ADS)
Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.
2017-12-01
The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.
Fournier, R.O.; Truesdell, A.H.
1970-01-01
Under favorable conditions the chemistry of hot springs may give reliable indications of subsurface temperatures and circulation patterns. These chemical indicators can be classified by the type of process involved: {A table is presented}. All these indicators have certain limitations. The silica geothermometer gives results independent of the local mineral suite and gas partial pressures, but may be affected by dilution. Alkali ratios are strongly affected by the local mineral suite and the formation of complex ions. Carbonate-chloride ratios are strongly affected by subsurface PCO2. The relative concentration of volatiles can be very misleading in high-pressure liquid systems. In Yellowstone National Park most thermal waters issue from hot, shallow aquifers with pressures in excess of hydrostatic by 2 to 6 bars and with large flows (the flow of hot spring water from the Park is greater than 4000 liters per second). These conditions should be ideal for the use of chemical indicators to estimate aquifer temperatures. In five drill holes aquifer temperatures were within 2??C of that predicted from the silica content of nearby hot springs; the temperature level off at a lower value than predicted in only one hole, and in four other holes drilling was terminated before the predicted aquifer temperature was reached. The temperature-Na/K ratio relationship does not follow any published experimental or empirical curve for water-feldspar or water-clay reactions. We suspect that ion exchange reactions involving zeolites in the Yellowstone rocks result in higher Na/K ratios at given temperatures than result from feldspar or clay reactions. Comparison of SiO2 and Cl/(HCO3 + CO3) suggest that because of higher subsurface PCO2 in Upper Geyser Basin a given Cl/(HCO3 + CO3) ratio there means a higher temperature than in Lower Geyser Basin. No correlation was found in Yellowstone Park between the subsurface regions of highest temperature and the relative concentration of volatile components such as boron and ammonia. ?? 1971.
Subsurface temperature distribution in a tropical alluvial fan
NASA Astrophysics Data System (ADS)
Chen, Wenfu; Chang, Minhsiang; Chen, Juier; Lu, Wanchung; Huang, Chihc; Wang, Yunshuen
2017-04-01
As a groundwater intensive use country, Taiwan's 1/3 water supplies are derived from groundwater. The major aquifers consist of sand and gravel formed in alluvial fans which border the fronts of central mountains. Thanks to high density of monitoring wells which provide a window to see the details of the subsurface temperature distribution and the thermal regime in an alluvial fan system. Our study area, the Choshui Alluvial Fan, is the largest groundwater basin in Taiwan and, located within an area of 2,000 km2, has a population of over 1.5 million. For this work, we investigated temperature-depth profiles using 70 groundwater monitoring wells during 2000 to 2015. Our results show that the distribution of subsurface temperature is influenced by various factors such as groundwater recharge, groundwater flow field, air temperature and land use. The groundwater recharge zone, hills to the upper fan, contains disturbed and smaller geothermal gradients. The lack of clay layers within the upper fan aquifers and fractures that developed in the hills should cause the convection and mixing of cooler recharge water to groundwater, resulting in smaller geothermal gradients. The groundwater temperatures at a depth to 300 m within the upper fan and hill were approximately only 23-24 °C while the current mean ground surface temperature is approximately 26 °C.
The Role of Surface Protection for High-Temperature Performance of TiAl Alloys
NASA Astrophysics Data System (ADS)
Schütze, Michael
2017-12-01
In the temperature range where TiAl alloys are currently being used in jet engine and automotive industries, surface reaction with the operating environment is not yet a critical issue. Surface treatment may, however, be needed in order to provide improved abrasion resistance. Development routes currently aim at a further increase in operation temperatures in gas turbines up to 800°C and higher, and in automotive applications for turbocharger rotors, even up to 1050°C. In this case, oxidation rates may reach levels where significant metal consumption of the load-bearing cross-section can occur. Another possibly even more critical issue can be high-temperature-induced oxygen and nitrogen up-take into the metal subsurface zone with subsequent massive ambient temperature embrittlement. Solutions for these problems are based on a deliberate phase change of the metal subsurface zone by diffusion treatments and by using effects such as the halogen effect to change the oxidation mechanism at high temperatures. Other topics of relevance for the use of TiAl alloys in high-temperature applications can be high-temperature abrasion resistance, thermal barrier coatings on TiAl and surface quality in additive manufacturing, in all these cases-focusing on the role of the operation environment. This paper addresses the recent developments in these areas and the requirements for future work.
Sumner, Andrew J; Plata, Desiree L
2018-02-21
Hydraulic fracturing coupled with horizontal drilling (HDHF) involves the deep-well injection of a fracturing fluid composed of diverse and numerous chemical additives designed to facilitate the release and collection of natural gas from shale plays. Analyses of flowback wastewaters have revealed organic contamination from both geogenic and anthropogenic sources. The additional detections of undisclosed halogenated chemicals suggest unintended in situ transformation of reactive additives, but the formation pathways for these are unclear in subsurface brines. To develop an efficient experimental framework for investigating the complex shale-well parameter space, we have reviewed and synthesized geospatial well data detailing temperature, pressure, pH, and halide ion values as well as industrial chemical disclosure and concentration data. Our findings showed subsurface conditions can reach pressures up to 4500 psi (310 bars) and temperatures up to 95 °C, while at least 588 unique chemicals have been disclosed by industry, including reactive oxidants and acids. Given the extreme conditions necessary to simulate the subsurface, we briefly highlighted existing geochemical reactor systems rated to the necessary pressures and temperatures, identifying throughput as a key limitation. In response, we designed and developed a custom reactor system capable of achieving 5000 psi (345 bars) and 90 °C at low cost with 15 individual reactors that are readily turned over. To demonstrate the system's throughput, we simultaneously tested 12 disclosed HDHF chemicals against a radical initiator compound in simulated subsurface conditions, ruling out a dozen potential transformation pathways in a single experiment. This review outlines the dynamic and diverse parameter range experienced by HDHF chemical additives and provides an optimized framework and novel reactor system for the methodical study of subsurface transformation pathways. Ultimately, enabling such studies will provide urgently needed clarity for water treatment downstream or releases to the environment.
Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency
2016-11-21
This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency... geothermal heat pump systems, undesirable heating of the ground may occur. This demonstration was performed at the MCAS, Beaufort, SC, where several...buildings with geothermal heat pump systems were exhibiting excessively high ground loop temperatures. These buildings were retrofitted with dry fluid
Reaction bonded silicon nitride prepared from wet attrition-milled silicon. [fractography
NASA Technical Reports Server (NTRS)
Herball, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 volume percent hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high strength specimens and both subsurface and surface flaws in low strength specimens.
Reaction bonded silicon nitride prepared from wet attrition-milled silicon
NASA Technical Reports Server (NTRS)
Herbell, T. P.; Glasgow, T. K.; Shaw, N. J.
1980-01-01
Silicon powder wet milled in heptane was dried, compacted into test bar shape, helium-sintered, and then reaction bonded in nitrogen-4 vol% hydrogen. As-nitrided bend strengths averaged approximately 290 MPa at both room temperature and 1400 C. Fracture initiation appeared to be associated with subsurface flaws in high-strength specimens and both subsurface and surface flaws in low-strength specimens.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2014-10-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used Mg / Ca-based temperatures of deep-dwelling (Neogloboquadrina pachyderma sinistral) planktonic foraminifera and paired Mg / Ca-δ18O measurements to estimate the subsurface temperatures and δ18O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and δ18O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to enhanced northward subsurface transport of subtropical waters during periods of AMOC reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Warm waters accumulated at subsurface would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the MIS3.
Aerobic microbial taxa dominate deep subsurface cores from the Alberta oil sands.
Ridley, Christina M; Voordouw, Gerrit
2018-06-01
Little is known about the microbial ecology of the subsurface oil sands in Northern Alberta, Canada. Biodegradation of low molecular weight hydrocarbons by indigenous microbes has enriched high molecular weight hydrocarbons, resulting in highly viscous bitumen. This extreme subsurface environment is further characterized by low nutrient availability and limited access to water, thus resulting in low microbial biomass. Improved DNA isolation protocols and increasingly sensitive sequencing methods have allowed an in-depth investigation of the microbial ecology of this unique subsurface environmental niche. Community analysis was performed on core samples (n = 62) that were retrieved from two adjacent sites located in the Athabasca Oil Sands at depths from 220 to 320 m below the surface. Microbial communities were dominated by aerobic taxa, including Pseudomonas and Acinetobacter. Only one core sample microbial community was dominated by anaerobic taxa, including the methanogen Methanoculleus, as well as Desulfomicrobium and Thauera. Although the temperature of the bitumen-containing subsurface is low (8°C), two core samples had high fractions of the potentially thermophilic taxon, Thermus. Predominance of aerobic taxa in the subsurface suggests the potential for in situ aerobic hydrocarbon degradation; however, more studies are required to determine the functional role of these taxa within this unique environment.
NASA Astrophysics Data System (ADS)
Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant
2018-03-01
In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily responsible for the strong subsurface warm bias over the EEIO. This study advocates the importance of understanding the ability of the models in representing the large scale air-sea interactions over the tropics and their impact on ocean biases for better monsoon forecast.
Collett, T.S.; Bird, K.J.; Kvenvolden, K.A.; Magoon, L.B.
1989-01-01
Because gas hydrates from within a limited temperature range, subsurface equilibrium temperature data are necessary to calculate the depth and thickness of the gas-hydrate stability field. Acquiring these data is difficult because drilling activity often disrupts equilibrium temperatures in the subsurface, and a well mush lie undisturbed until thermal equilibrium is reestablished (Lachenbruch and Brewer, 1959). On the North Slope if Akaska, a series of 46 oil and gas exploratory wells, which were considered to be near thermal equilibrium (Lachenbruch and others, 1982; 1987), were surveyed with high-resolution temperature devices (see table 1). However, several thousand other exploratory and production wells have been drilled on the North Slope, and although they do not include temperature profiles, their geophysical logs often allow descrimination between ice-bearing and non-ice-bearing strata. At the outset of this study, the coincidence of the base of ice-bearing strata being near the same depth as the 0°C isotherm at Prudhoe Bay (Lachenbruch and others, 1982) appeared to offer an opportunity to quickly and inexpensively expand the size of our subsurface temperature data base merely by using well logs to identify the base of the ice-bearing strata.
Japan's exploration of vertical holes and subsurface caverns on the Moon and Mars
NASA Astrophysics Data System (ADS)
Haruyama, J.; Kawano, I.; Kubota, T.; Yoshida, K.; Kawakatsu, Y.; Kato, H.; Otsuki, M.; Watanabe, K.; Nishibori, T.; Yamamoto, Y.; Iwata, T.; Ishigami, G.; Yamada, T. T.
2013-12-01
Recently, gigantic vertical holes exceeding several tens of meters in diameter and depth were discovered on the Moon and Mars. Based on high-resolution image data, lunar holes and some Martian pits (called 'holes' hereafter) are probably skylights of subsurface caverns such as lava tubes or magma chambers. We are starting preparations for exploring the caverns through the vertical holes. The holes and subsurface caverns have high potential as resources for scientific studies. Various important geological and mineralogical processes could be uniquely and effectively observed inside these holes and subsurface caverns. The exposed fresh lava layers on the vertical walls of the lunar and Martian holes would provide information on volcanic eruption histories. The lava layers may also provide information on past magnetic fields of the celestial bodies. The regolith layers may be sandwiched between lava layers and may preserve volatile elements including solar wind protons that could be a clue to understanding past solar activities. Water molecules from solar winds or cometary/meteorite impacts may be stored inside the caverns because of mild temperatures there. The fresh lava materials forming the walls and floors of caverns might trap endogenic volatiles from magma eruptions that will be key materials for revealing the formation and early evolution of the Moon and Mars. Furthermore, the Martian subsurface caverns are highly expected to be life cradles where the temperatures are probably stable and that are free from ultra-violet and other cosmic rays that break chemical bonds, thus avoiding polymerization of molecules. Discovering extraterrestrial life and its varieties is one of our ultimate scientific purposes for exploring the lunar and Martian subsurface caverns. In addition to scientific interests, lunar and Martian subsurface caverns are excellent candidates for future lunar bases. We expect such caverns to have high potential due to stable temperatures; absence of ultra-violet rays, cosmic rays, and meteorite impacts; spacious volumes based on analogues of terrestrial lava tubes; tight walls and floors possibly glass-coated by rapid cooling inside the caverns; and so on. Exploration of subsurface caverns of the Moon and Mars would provide answers to various basic and applied scientific questions fundamental to understanding the nature of the Moon, Mars, and life. Furthermore, it could provide knowledge to enable constructing lunar and Martian bases for robotic and/or manned activities there. However, Japan does not have the technology for soft-landing on gravitational celestial bodies. First, we should acquire that technology. Next, we should acquire the technology for approaching and descending into holes that could be skylights of caverns. We should also develop the technology to move on the floors where there are many boulders and/or a mound of dusts. We should also consider how to investigate the dark inside of the caverns. There are many engineering challenges for exploring the lunar and Martian subsurface caverns, but our team is prepared to meet them.
Estimate of subsurface formation temperature in the Tarim basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2015-04-01
Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.
NASA Astrophysics Data System (ADS)
Sinha, Navita; Nepal, Sudip; Kral, Timothy; Kumar, Pradeep
2017-02-01
Life as we know it requires liquid water and sufficient liquid water is highly unlikely on the surface of present-day Mars. However, according to thermal models there is a possibility of liquid water in the deep subsurface of Mars. Thus, the martian subsurface, where the pressure and temperature is higher, could potentially provide a hospitable environment for a biosphere. Also, methane has been detected in the Mars' atmosphere. Analogous to Earth's atmospheric methane, martian methane could also be biological in origin. The carbon and energy sources for methanogenesis in the subsurface of Mars could be available by downwelling of atmospheric CO2 into the regolith and water-rock reactions such as serpentinization, respectively. Corresponding analogs of the martian subsurface on Earth might be the active sites of serpentinization at depths where methanogenic thermophilic archaea are the dominant species. Methanogens residing in Earth's hydrothermal environments are usually exposed to a variety of physiological stresses including a wide range of pressures, temperatures, and pHs. Martian geochemical models imply that the pH of probable groundwater varies from 4.96 to 9.13. In this work, we used the thermophilic methanogen, Methanothermobacter wolfeii, which grows optimally at 55oC. Therefore, a temperature of 55oC was chosen for these experiments, possibly simulating Mars' subsurface temperature. A martian geophysical model suggests depth and pressure corresponding to a temperature of 55 °C would be between 1-30 km and 100-3,000 atm respectively. Here, we have simulated Mars deep subsurface pH, pressure, and temperature conditions and have investigated the survivability, growth rate, and morphology of M. wolfeii after exposure to a wide range of pH 5-9) and pressure (1-1200 atm) at a temperature of 55 °C. Interestingly, in this study we have found that M. wolfeii was able to survive at all the pressures and pHs tested at 55 °C. In order to understand the effect of different pHs and pressures on the metabolic activities of M. wolfeii, we also calculated their growth rate by measuring methane concentration in the headspace gas samples at regular intervals. In acidic conditions, the growth rate (γ) of M. wolfeii increased with the increase in pressure. In neutral and alkaline conditions, the growth rate (γ) of M. wolfeii initially increased with pressure, but decreased upon further increase of pressure. To investigate the effect of combined pH, pressure, and temperature on the morphology of M. wolfeii, we took phase contrast images of the cells. We did not find any obvious significant alteration in the morphology of M. wolfeii cells. Methanogens, chemolithoautotrophic anaerobic microorganisms, are considered as ideal model microorganisms for Mars. In light of research presented here, we suggest that at least one methanogen, M. wolfeii, could survive in the deep subsurface environment of Mars.
NASA Astrophysics Data System (ADS)
Oktem, R.; Wainwright, H. M.; Curtis, J. B.; Dafflon, B.; Peterson, J.; Ulrich, C.; Hubbard, S. S.; Torn, M. S.
2016-12-01
Predicting carbon cycling in Arctic requires quantifying tightly coupled surface and subsurface processes including permafrost, hydrology, vegetation and soil biogeochemistry. The challenge has been a lack of means to remotely sense key ecosystem properties in high resolution and over large areas. A particular challenge has been characterizing soil properties that are known to be highly heterogeneous. In this study, we exploit tightly-coupled above/belowground ecosystem functioning (e.g., the correlations among soil moisture, vegetation and carbon fluxes) to estimate subsurface and other key properties over large areas. To test this concept, we have installed a ground-based remote sensing platform - a track-mounted tram system - along a 70 m transect in the ice-wedge polygonal tundra near Barrow, Alaska. The tram carries a suite of near-surface remote sensing sensors, including sonic depth, thermal IR, NDVI and multispectral sensors. Joint analysis with multiple ground-based measurements (soil temperature, active layer soil moisture, and carbon fluxes) was performed to quantify correlations and the dynamics of above/belowground processes at unprecedented resolution, both temporally and spatially. We analyzed the datasets with particular focus on correlating key subsurface and ecosystem properties with surface properties that can be measured by satellite/airborne remote sensing over a large area. Our results provided several new insights about system behavior and also opens the door for new characterization approaches. We documented that: (1) soil temperature (at >5 cm depth; critical for permafrost thaw) was decoupled from soil surface temperature and was influenced strongly by soil moisture, (2) NDVI and greenness index were highly correlated with both soil moisture and gross primary productivity (based on chamber flux data), and (3) surface deformation (which can be measured by InSAR) was a good proxy for thaw depth dynamics at non-inundated locations.
Regional geothermal exploration in Egypt
NASA Technical Reports Server (NTRS)
Morgan, P.; Boulos, F. K.; Swanberg, C. A.
1983-01-01
A study is presented of the evaluation of the potential geothermal resources of Egypt using a thermal gradient/heat flow technique and a groundwater temperature/chemistry technique. Existing oil well bottom-hole temperature data, as well as subsurface temperature measurements in existing boreholes, were employed for the thermal gradient/heat flow investigation before special thermal gradient holes were drilled. The geographic range of the direct subsurface thermal measurements was extended by employing groundwater temperature and chemistry data. Results show the presence of a regional thermal high along the eastern margin of Egypt with a local thermal anomaly in this zone. It is suggested that the sandstones of the Nubian Formation may be a suitable reservoir for geothermal fluids. These findings indicate that temperatures of 150 C or higher may be found in this reservoir in the Gulf of Suez and Red Sea coastal zones where it lies at a depth of 4 km and deeper.
Role of subsurface ocean in decadal climate predictability over the South Atlantic.
Morioka, Yushi; Doi, Takeshi; Storto, Andrea; Masina, Simona; Behera, Swadhin K
2018-06-04
Decadal climate predictability in the South Atlantic is explored by performing reforecast experiments using a coupled general circulation model with two initialization schemes; one is assimilated with observed sea surface temperature (SST) only, and the other is additionally assimilated with observed subsurface ocean temperature and salinity. The South Atlantic is known to undergo decadal variability exhibiting a meridional dipole of SST anomalies through variations in the subtropical high and ocean heat transport. Decadal reforecast experiments in which only the model SST is initialized with the observation do not predict well the observed decadal SST variability in the South Atlantic, while the other experiments in which the model SST and subsurface ocean are initialized with the observation skillfully predict the observed decadal SST variability, particularly in the Southeast Atlantic. In-depth analysis of upper-ocean heat content reveals that a significant improvement of zonal heat transport in the Southeast Atlantic leads to skillful prediction of decadal SST variability there. These results demonstrate potential roles of subsurface ocean assimilation in the skillful prediction of decadal climate variability over the South Atlantic.
NASA Astrophysics Data System (ADS)
Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo
2008-02-01
Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.
Interpretation of Ground Temperature Anomalies in Hydrothermal Discharge Areas
NASA Astrophysics Data System (ADS)
Price, Adam N.; Lindsey, Cary R.; Fairley, Jerry P.
2017-12-01
Researchers have long noted the potential for shallow hydrothermal fluids to perturb near-surface temperatures. Several investigators have made qualitative or semiquantitative use of elevated surface temperatures; for example, in snowfall calorimetry, or for tracing subsurface flow paths. However, a quantitative framework connecting surface temperature observations with conditions in the subsurface is currently lacking. Here, we model an area of shallow subsurface flow at Burgdorf Hot Springs, a rustic commercial resort in the Payette National Forest, north of McCall, ID, USA. We calibrate the model using shallow (0.2 m depth) ground temperature measurements and overburden thickness estimates from seismic refraction studies. The calibrated model predicts negligible loss of heat energy from the laterally migrating fluids at the Burgdorf site, in spite of the fact that thermal anomalies are observed in the unconsolidated near-surface alluvium. Although elevated near-surface ground temperatures are commonly assumed to result from locally high heat flux, this conflicts with the small apparent heat loss during lateral flow inferred at the Burgdorf site. We hypothesize an alternative explanation for near-surface temperature anomalies that is only weakly dependent on heat flux, and more strongly controlled by the Biot number, a dimensionless parameter that compares the rate at which convection carries heat away from the land surface to the rate at which it is supplied by conduction to the interface.
NASA Technical Reports Server (NTRS)
Hofmann, Beda A.; Farmer, Jack; Chang, Sherwood (Technical Monitor)
1997-01-01
The recognition of biological signatures in ancient epithermal deposits has special relevance for studies of early blaspheme evolution and in exploring for past life on Mars. Recently, proposals for the existence of an extensive subsurface blaspheme on Earth, dominated by chemoautotrophic microbial life, has gained prominence. However, reports of fossilized microbial remains, or biosedimentary structures (e.g. stromatolites) from the deposits of ancient subsurface systems, are rare. Microbial preservation is favoured where high population densities co-exist with rapid mineral precipitation. Near-surface epithetical systems with strong gradients in temperature and redox are good candidates for the abundant growth and fossilization of microorganisms, and are also favorable environments for the precipitation of ore minerals. Therefore, we might expect microbial remain, to be particularly well preserved in various kinds of hydrothermal and diagenetic mineral precipitates that formed below the upper temperature limit for life (approx. 120 C).
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan
2011-01-01
Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.
Latitude Variation of the Subsurface Lunar Temperature: Lunar Prospector Thermal Neutrons
NASA Astrophysics Data System (ADS)
Little, R. C.; Feldman, W. C.; Maurice, S.; Genetay, I.; Lawrence, D. J.; Lawson, S. L.; Gasnault, O.; Barraclough, B. L.; Elphic, R. C.; Prettyman, T. H.; Binder, A. B.
2001-05-01
Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes, and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using MCNP. For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on D, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest D (which corresponds to the Apollo 17 high Ti basalt in our soil selection), and the largest dependence is for the lowest D (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is ~30 g/cm**2. These simulations were compared with the flux of thermal neutrons measured using the Lunar Prospector neutron spectrometer over the lunar highlands using a sub-surface temperature profile that varies with latitude, L, as (Cos L)**0.25. The fit is excellent. The best fitting equatorial temperature is determined to be, Teq=224+/-40 K. This temperature range brackets the average temperature measured below the thermal wave at the equator, Tmeas = 252+/-3K [Langseth and Keihm, 1977]. The present result represents the first measurement of subsurface temperature from orbit using neutrons.
Schmidt, Matthew W; Chang, Ping; Parker, Andrew O; Ji, Link; He, Feng
2017-11-13
Multiple lines of evidence show that cold stadials in the North Atlantic were accompanied by both reductions in Atlantic Meridional Overturning Circulation (AMOC) and collapses of the West African Monsoon (WAM). Although records of terrestrial change identify abrupt WAM variability across the deglaciation, few studies show how ocean temperatures evolved across the deglaciation. To identify the mechanism linking AMOC to the WAM, we generated a new record of subsurface temperature variability over the last 21 kyr based on Mg/Ca ratios in a sub-thermocline dwelling planktonic foraminifera in an Eastern Equatorial Atlantic (EEA) sediment core from the Niger Delta. Our subsurface temperature record shows abrupt subsurface warming during both the Younger Dryas (YD) and Heinrich Event 1. We also conducted a new transient coupled ocean-atmosphere model simulation across the YD that better resolves the western boundary current dynamics and find a strong negative correlation between AMOC strength and EEA subsurface temperatures caused by changes in ocean circulation and rainfall responses that are consistent with the observed WAM change. Our combined proxy and modeling results provide the first evidence that an oceanic teleconnection between AMOC strength and subsurface temperature in the EEA impacted the intensity of the WAM on millennial time scales.
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2016-07-01
Subsurface formation temperature in the Tarim Basin, northwest China, is vital for assessment of hydrocarbon generation and preservation, and of geothermal energy potential. However, it has not previously been well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data with drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime and estimate the subsurface formation temperature at depth in the range of 1000-5000 m, together with temperatures at the lower boundary of each of four major Lower Paleozoic marine source rocks buried in this basin. Results show that heat flow of the Tarim Basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5 ± 7.6 mW/m2; the geothermal gradient at depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7 ± 2.9 °C/km. Formation temperature estimated at the depth of 1000 m is between 29 and 41 °C, with a mean of 35 °C, while 63-100 °C is for the temperature at the depth of 3000 m with a mean of 82 °C. Temperature at 5000 m ranges from 97 to 160 °C, with a mean of 129 °C. Generally spatial patterns of the subsurface formation temperature at depth are basically similar, characterized by higher temperatures in the uplift areas and lower temperatures in the sags, which indicates the influence of basement structure and lateral variations in thermal properties on the geotemperature field. Using temperature to identify the oil window in the source rocks, most of the uplifted areas in the basin are under favorable condition for oil generation and/or preservation, whereas the sags with thick sediments are favorable for gas generation and/or preservation. We conclude that relatively low present-day geothermal regime and large burial depth of the source rocks in the Tarim Basin are favorable for hydrocarbon generation and preservation. In addition, it is found that the oil and gas fields discovered in the Tarim Basin are usually associated with relatively high-temperature anomalies, and the upward migration and accumulation of hot geofluids along faults as conduit from below could explain this coincidence. Accordingly, this thermal anomaly could be indicative of hydrocarbon exploration targets in the basin.
NASA Technical Reports Server (NTRS)
Halpern, David; Leetmaan, Ants; Reynolds, Richard W.; Ji, Ming
1997-01-01
Equatorial Pacific current and temperature fields were simulated with and without assimilation of subsurface temperature measurements for April 1992 - March 1995, and compared with moored bouy and research vessel current measurements.
Remote sensing of subsurface water temperature by Raman scattering.
Leonard, D A; Caputo, B; Hoge, F E
1979-06-01
The application of Raman scattering to remote sensing of subsurface water temperature and salinity is considered, and both theoretical and experimental aspects of the technique are discussed. Recent experimental field measurements obtained in coastal waters and on a trans-Atlantic/Mediterranean research cruise are correlated with theoretical expectations. It is concluded that the Raman technique for remote sensing of subsurface water temperature has been brought from theoretical and laboratory stages to the point where practical utilization can now be developed.
NASA Astrophysics Data System (ADS)
Ciani, Daniele; Carton, Xavier; Barbosa Aguiar, Ana Claudia; Peliz, Alvaro; Bashmachnikov, Igor; Ienna, Federico; Chapron, Bertrand
2017-04-01
Subsurface-intensified eddies are ubiquitous in the world ocean. They can be generated by exchanges of water masses between semi-enclosed evaporation basins and the open ocean or by deep convection. Past and recent studies have shown that these eddies are carriers of large amounts of heat and salt, that they are coherent over inter-annual timescales and that they can migrate for several thousands of miles from their origination areas towards the open ocean. Hence, subsurface-intensified eddies can influence the three-dimensional distribution of oceanic tracers at global scale. The synoptic knowledge of the eddies positions and mean pathways is then crucial for evaluating temperature and salinity budgets in the world ocean. At present day, satellite sensors constitute the ideal tool for the synoptic and global scale observations of the ocean. Since they only provide informations on the oceanic surface, we characterized the signatures that subsurface eddies generate at the sea-surface, to determine the extent to which they can be isolated from the surrounding surface turbulence and be considered as a trace of an underlying eddy. We studied the surface signature of subsurface-intensified anticyclones (Mediterranean Water Eddies - Meddies) in a realistic, long-term (20 years) and high resolution simulation (dx = 3 km) based on the ROMS model. The novelty and advantage of this approach is given by the simultaneous availability of the full 3D eddies characteristics, the ones of the background ocean and of the sea-surface (in terms of sea-surface height, temperature and salinity). This also allowed us to speculate on a synergy between different satellite observations for the automatic detection of subsurface eddies from space. The along trajectory properties and surface signatures of more than 90 long-lived Meddies were analyzed. We showed that the Meddies constantly generate positive anomalies in sea-surface height and that these anomalies are principally related to the Meddy potential vorticity structure at depth (around 1000 m below the sea-surface). Such anomalies were long-lived, mostly migrated exhibiting southwestward trajectories, their intensities were O(10 cm) and extended horizontally up to more than 300 km (around 1.5 times the Meddy diameter). On the other hand, the Meddies thermohaline surface signatures proved to be mostly dominated by the local surface conditions and their structure poorly correlated to the Meddy structure at depth (e.g. the Meddy volume-integrated salt and temperature content). These results point out that satellite altimetry is the most suitable approach to track subsurface-intensified eddies from observations of the sea-surface, also encouraging the use of future high-resolution altimetric observations (e.g. SWOT) to detect subsurface oceanic motions from satellite sensors.
NASA Astrophysics Data System (ADS)
Liu, S.; Hao, C.; Li, X.; Xu, M.
2015-12-01
Temperature is one key parameter for hydrocarbon generation and preservation, also playing important role in geothermal energy assessment;however, accurate regional temperature pattern is still challenging, owing to a lack of data coverage and data quality as well. The Yangtze area, located in the South China, is considered as the most favorable target for shale gas resource exploration in China, and attracts more and more attention recently. Here we used the newly acquired steady-state temperature loggings, reliable Drilling Stem Test temperature data available and thermal properties, estimated the subsurface temperature-at-depth for the Yangtze area. Results show that the geothermal gradient ranges between 17 K/m and 74K/m, mainly falling into 20~30K/m, with a mean of 24 K/m; heat flow varies from 25 mW/m2 to 92 mW/m2, with a mean of 65 mW/m2. For the estimated temperature-at-depth, it is about 20~50 ℃ at the depth of 1000m, 50~80℃ for that at 2000m; while the highest temperature can be up to 110℃ at 3000m depth. Generally, the present-day geothermal regime of the Yangtze area is characterized by high in the northeast, low in the middle and localized high again in the southwest, and this pattern is well consistent with the tectono-thermal processes occurred in the area. Due to Cenozoic crustal extension in the northeastern Yangtze area, magmatism is prevailed, accounting for the high heat flow observed. Precambrian basement exists in the middle Yangtze area, such as the Xuefeng and Wuling Mountains, heat flow and subsurface temperature accordingly show relatively low as well. While for the southwestern Yangtze area, especially Yunnan and western Sichuan provinces, localized Cenozoic magmatism and tectonic activities are available, which is attributed to the high geothermal regime there. Considering the Paleozoic intensive tectonic deformation in the Yangtze area, tectonically stable area is prerequisite for shale gas preservation. Geothermal regime analysis presented here, indicates that the middle and northwestern Yangtze areas are favorable for shale gas preservation. In addition, the localized high temperature within the generally low geothermal background is also suggested here as a possible beneficial condition for shale gas generation.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, I.; Sierro, F.-J.; Cacho, I.; Flores, J.-A.
2015-04-01
Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt ice-rafted detritus (IRD) events during cold periods of the early Pleistocene. We used paired Mg / Ca and δ18O measurements of Neogloboquadrina pachyderma (sinistral - sin.), deep-dwelling planktonic foraminifera, to estimate the subsurface temperatures and seawater δ18O from a sediment core from Gardar Drift, in the subpolar North Atlantic. Carbon isotopes of benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg / Ca-based temperatures and seawater δ18O suggest increased subsurface temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC). Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of IRD. Subsurface accumulation of warm waters would have resulted in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. The release of heat stored at the subsurface to the atmosphere would have helped to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during Marine Isotope Stage (MIS) 3.
High pressure-elevated temperature x-ray micro-computed tomography for subsurface applications.
Iglauer, Stefan; Lebedev, Maxim
2018-06-01
Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various applications, e.g. hydrocarbon recovery, CO 2 geo-sequestration, geophysical exploration, water production, geothermal energy production, or the prediction of the location of valuable hydrothermal deposits. Typical examples are multi-phase flow (e.g. oil and water) displacements driven by buoyancy, viscous or capillary forces, mineral-fluid interactions (e.g. mineral dissolution and/or precipitation over geological times), geo-mechanical rock behaviour (e.g. rock compaction during diagenesis) or fines migration during water production, which can dramatically reduce reservoir permeability (and thus reservoir performance). All above examples are 3D processes, and 2D experiments (as traditionally done for micro-scale investigations) will thus only provide qualitative information; for instance the percolation threshold is much lower in 3D than in 2D. However, with the advent of x-ray micro-computed tomography (μCT) - which is now routinely used - this limitation has been overcome, and such pore-scale processes can be observed in 3D at micrometer-scale. A serious complication is, however, the fact that in the subsurface high pressures and elevated temperatures (HPET) prevail, due to the hydrostatic and geothermal gradients imposed upon it. Such HPET-reservoir conditions significantly change the above mentioned physical and chemical processes, e.g. gas density is much higher at high pressure, which strongly affects buoyancy and wettability and thus gas distributions in the subsurface; or chemical reactions are significantly accelerated at increased temperature, strongly affecting fluid-rock interactions and thus diagenesis and deposition of valuable minerals. It is thus necessary to apply HPET conditions to the aforementioned μCT experiments, to be able to mimic subsurface conditions in a realistic way, and thus to obtain reliable results, which are vital input parameters required for building accurate larger-scale reservoir models which can predict the overall reservoir-scale (hectometer-scale) processes (e.g. oil production or diagenesis of a formation). We thus describe here the basic workflow of such HPET-μCT experiments, equipment requirements and apparatus design; and review the literature where such HPET-μCT experiments were used and which phenomena were investigated (these include: CO 2 geo-sequestration, oil recovery, gas hydrate formation, hydrothermal deposition/reactive flow). One aim of this paper is to give a guideline to users how to set-up a HPET-μCT experiment, and to provide a quick overview in terms of what is possible and what not, at least up to date. As a conclusion, HPET-μCT is a valuable tool when it comes to the investigation of subsurface micrometer-scaled processes, and we expect a rapidly expanding usage of HPET-μCT in subsurface engineering and the subsurface sciences. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian
2016-04-01
In urban regions, with high population densities and heat demand, seasonal high temperature heat storage in the shallow subsurface represents an attractive and efficient option for a sustainable heat supply. In fact, the major fraction of energy consumed in German households is used for room heating and hot water production. Especially in urbanized areas, however, the installation of high temperature heat storage systems is currently restricted due to concerns on negative influences on groundwater quality caused e.g. by possible interactions between heat storages and subsurface contaminants, which are a common problem in the urban subsurface. Detailed studies on the overall impact of the operation of high temperature heat storages on groundwater quality are scarce. Therefore, this work investigates possible interactions between groundwater temperature changes induced by heat storage via borehole heat exchangers and subsurface contaminations by numerical scenario analysis. For the simulation of non-isothermal groundwater flow, and reactive transport processes the OpenGeoSys code is used. A 2D horizontal cross section of a shallow groundwater aquifer is assumed in the simulated scenario, consisting of a sandy sediment typical for Northern Germany. Within the aquifer a residual trichloroethene (TCE) contaminant source zone is present. Temperature changes are induced by a seasonal heat storage placed within the aquifer with scenarios of maximum temperatures of 20°C, 40°C and 60°C, respectively, during heat injection and minimum temperatures of 2°C during heat extraction. In the scenario analysis also the location of the heat storage relative to the TCE source zone and plume was modified. Simulations were performed in a homogeneous aquifer as well as in a set of heterogeneous aquifers with hydraulic conductivity as spatially correlated random fields. In both cases, results show that the temperature increase in the heat plume and the consequential reduction of water viscosity lead to locally increased groundwater flow. Depending on the positioning of the heat storage relative to the TCE contamination, groundwater fluxes hence may be induced to increase within or partially bypass the TCE source zone. At the same time, TCE solubility decreases between 10 and 40 °C, which reduces TCE emission and almost compensates for the effects of a temperature induced increase of groundwater flow through the source zone. In total, the numerical simulations thus show only minor influences of the heat plume on the TCE emission compared to a thermally undisturbed aquifer. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
A multi-scale experimental and simulation approach for fractured subsurface systems
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.
2017-12-01
Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.
Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter
2017-10-15
Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow velocities are low, appropriate measures for assessing thermal impacts should specifically include a quantification of heat-loads into the subsurface which result in a more diffuse thermal contamination of urban groundwater resources. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, G.; Larson, B. I.; Bemis, K. G.; Lilley, Marvin D.
2017-01-01
Tidal oscillations of venting temperature and chlorinity have been observed in the long-term time series data recorded by the Benthic and Resistivity Sensors (BARS) at the Grotto mound on the Juan de Fuca Ridge. In this study, we use a one-dimensional two-layer poroelastic model to conduct a preliminary investigation of three hypothetical scenarios in which seafloor tidal loading can modulate the venting temperature and chlorinity at Grotto through the mechanisms of subsurface tidal mixing and/or subsurface tidal pumping. For the first scenario, our results demonstrate that it is unlikely for subsurface tidal mixing to cause coupled tidal oscillations in venting temperature and chlorinity of the observed amplitudes. For the second scenario, the model results suggest that it is plausible that the tidal oscillations in venting temperature and chlorinity are decoupled with the former caused by subsurface tidal pumping and the latter caused by subsurface tidal mixing, although the mixing depth is not well constrained. For the third scenario, our results suggest that it is plausible for subsurface tidal pumping to cause coupled tidal oscillations in venting temperature and chlorinity. In this case, the observed tidal phase lag between venting temperature and chlorinity is close to the poroelastic model prediction if brine storage occurs throughout the upflow zone under the premise that layers 2A and 2B have similar crustal permeabilities. However, the predicted phase lag is poorly constrained if brine storage is limited to layer 2B as would be expected when its crustal permeability is much smaller than that of layer 2A.
Diffusion and aggregation of subsurface radiation defects in lithium fluoride nanocrystals
NASA Astrophysics Data System (ADS)
Voitovich, A. P.; Kalinov, V. S.; Martynovich, E. F.; Stupak, A. P.; Runets, L. P.
2015-09-01
Lithium fluoride nanocrystals were irradiated by gamma rays at a temperature below the temperature corresponding to the mobility of anion vacancies. The kinetics of the aggregation of radiation-induced defects in subsurface layers of nanocrystals during annealing after irradiation was elucidated. The processes that could be used to determine the activation energy of the diffusion of anion vacancies were revealed. The value of this energy in subsurface layers was obtained. For subsurface layers, the concentrations ratio of vacancies and defects consisting of one vacancy and two electrons was found. The factors responsible for the differences in the values of the activation energies and concentration ratios in subsurface layers and in the bulk of the crystals were discussed.
Using basic metrics to analyze high-resolution temperature data in the subsurface
NASA Astrophysics Data System (ADS)
Shanafield, Margaret; McCallum, James L.; Cook, Peter G.; Noorduijn, Saskia
2017-08-01
Time-series temperature data can be summarized to provide valuable information on spatial variation in subsurface flow, using simple metrics. Such computationally light analysis is often discounted in favor of more complex models. However, this study demonstrates the merits of summarizing high-resolution temperature data, obtained from a fiber optic cable installation at several depths within a water delivery channel, into daily amplitudes and mean temperatures. These results are compared to fluid flux estimates from a one-dimensional (1D) advection-conduction model and to the results of a previous study that used a full three-dimensional (3D) model. At a depth of 0.1 m below the channel, plots of amplitude suggested areas of advective water movement (as confirmed by the 1D and 3D models). Due to lack of diurnal signal at depths below 0.1 m, mean temperature was better able to identify probable areas of water movement at depths of 0.25-0.5 m below the channel. The high density of measurements provided a 3D picture of temperature change over time within the study reach, and would be suitable for long-term monitoring in man-made environments such as constructed wetlands, recharge basins, and water-delivery channels, where a firm understanding of spatial and temporal variation in infiltration is imperative for optimal functioning.
Quantification of the effect of temperature gradients in soils on subsurface radon signal
NASA Astrophysics Data System (ADS)
Haquin, Gustavo; Ilzycer, Danielle; Kamai, Tamir; Zafrir, Hovav; Weisbrod, Noam
2017-04-01
Temperature gradients that develop in soils due to atmospheric temperature cycles are factors of primary importance in determining the rates and directions of subsurface gas flow. Models including mechanisms of thermal convection and thermal diffusion partially explain the impact of temperature gradients on subsurface radon transport. However, the overall impact of temperature gradients on subsurface radon transport is still not well understood. A laboratory setup was designed and built to experimentally investigate the influence of temperature gradients on radon transport under well controlled conditions. A 60 cm diameter and 120 cm tall column was thermally insulated except from the atmosphere-soil interface, such that it was constructed to simulate field conditions where temperature gradients in soils are developed following atmospheric temperature cycles. The column was filled with fine grinded phosphate rock which provided the porous media with radon source. Radon in soil-air was continuously monitored using NaI gamma detectors positioned at different heights along the column. Soil temperature, differential pressure, and relative humidity were monitored along the column. Experiments based on steep and gradual stepwise changes in ambient temperature were conducted. Absolute changes on radon levels in the order of 10-30% were measured at temperature gradients of up to ±20oC/m. Results showed a non-linear correlation between the temperature gradient and the subsurface radon concentration. An asymmetric relationship between the radon concentration and the temperature gradients for ΔT>0 and ΔT<0 was also observed. Laboratory simulations of the time- and depth-dependent temperature wave functions with frequencies ranged from a daily cycle to few days were performed. In response to the harmonic temperature behaviour radon oscillations at similar frequencies were detected correspondingly. In this work a quantitative relationship between radon and temperature gradients will be presented for cases beyond the classical conditions for thermal convection and thermal diffusion.
Combined Geothermal Potential of Subsurface Urban Heat Islands
NASA Astrophysics Data System (ADS)
Benz, Susanne; Bayer, Peter; Menberg, Kathrin; Blum, Philipp
2016-04-01
The subsurface urban heat island (SUHI) can be seen as a geothermal potential in form of elevated groundwater temperatures caused by anthropogenic heat fluxes into the subsurface. In this study, these fluxes are quantified for an annual timeframe in two German cities, Karlsruhe and Cologne. Our two-dimensional (2D) statistical analytical model determines the renewable and sustainable geothermal potential caused by six vertical anthropogenic heat fluxes into the subsurface: from (1) elevated ground surface temperatures, (2) basements, (3) sewage systems, (4) sewage leakage, (5) subway tunnels, and (6) district heating networks. The results show that at present 2.15 ± 1.42 PJ and 0.99 ± 0.32 PJ of heat are annually transported into the shallow groundwater of Karlsruhe and Cologne, respectively, due to anthropogenic heat fluxes into the subsurface. This is sufficient to sustainably cover 32% and 9% of the annual residential space heating demand of Karlsruhe and Cologne, respectively. However, most of the discussed anthropogenic fluxes into the subsurface are conductive heat fluxes and therefore dependent on the groundwater temperature itself. Accordingly, a decrease in groundwater temperature back to its natural (rural) state, achieved through the use of geothermal heat pumps, will increase these fluxes and with them the sustainable potential. Hence, we propose the introduction of a combined geothermal potential that maximizes the sustainability of urban shallow geothermal energy use and the efficiency of shallow geothermal systems by balancing groundwater temperature with anthropogenic heat fluxes into the subsurface. This will be a key element in the development of a demand-oriented, cost-efficient geothermal management tool with an additional focus on the sustainability of the urban heat sources.
NASA Astrophysics Data System (ADS)
Schwindt, Daniel; Kozák, Johanna-Luise; Kohlpaintner, Michael
2017-04-01
In the central European Alps, permafrost can be expected in altitudes above 2300 m a.s.l., where mean annual air temperatures are below -1°C. However, attributed to the thermally induced "chimney effect", isolated permafrost lenses can be found in scree slopes far below the timberline where mean annual air temperature is positive. Usually the supercooled subsurface appears as lenses at the foot of talus slopes, covered by a thick layer of organic material and a unique vegetation composition most obviously characterized by dwarf grown trees ("Hexenwäldli") and azonal plant species. The fact that mean annual air temperature is positive and therefore can be excluded as a driving factor makes these sites unique for studying interdependencies between a supercooled subsurface, plant adaptation and vegetation sociology as well as the soil development. Three study sites in the Swiss Alps, differing in altitude and substrate (granite, dolomite, limestone) were investigated. Studies covered the permafrost-affected central parts of the slope as well as the surrounding areas. For characterizing distribution and temporal variability of ground ice geophysical methods were applied (electrical resistivity- and seismic refraction tomography). Temperature data loggers were used for monitoring the thermal regime (air-, surface- and soil temperatures). Chemical parameters (pH, C/N ratio) and nutrient contents (N, P, Ca, Mg, Mn, K) were analyzed in different depth levels. Plant communities were analyzed with the Braun-Blanquet method. To characterize physiognomic adaptation of trees, transects have been determined parallel to slope, measuring tree height, diameter and age. Results show a strong spatial correlation between frozen ground, formation of a thick organic layer (Tangelhumus), azonal plant species distribution and pronounced dwarfing of trees. Surrounding areas with unfrozen subsurface show an - for the particular altitude - expected species and soil composition and normal forest growth. Ellenberg pointer values in central parts of the study sites showed a strong plant adaption to cold temperatures. However, plant sociological analysis did not indicate one clear azonal community, but two different permafrost-plant-communities, one adapted to acidic and the other to calcareous substrates. Dwarf grown trees (e.g. spruce, 63cm high, 122 years old) could be found in permafrost-affected areas of all study sites, while the same species developed normally in the surroundings. Main factor for the physiognomic adaptation seems to be the low temperature in the rooting zone and the correlated shorter vegetation period, as air temperatures and nutrient supplies between the permafrost affected area and its surroundings are comparable. Pronounced interdependencies between frozen ground distribution, vegetation cover and soil development could be verified for all sites. The supercooled subsurface causes reduced decomposition of organic material as well as dwarfing of trees. In return, Tangelhumus and dwarfed trees positively affect supercooling. Dry organic material thermally insulates the subsurface during summer and prevents/delays thawing, while the high thermal conductivity of the moist or frozen Tangelhumus enhances heat flow and supercooling in winter. In addition, dwarfed trees prevent the formation of a consistent insulating snow cover optimizing thermal fluxes between atmosphere and subsurface.
Flow pathways in the Slapton Wood catchment using temperature as a tracer
NASA Astrophysics Data System (ADS)
Birkinshaw, Stephen J.; Webb, Bruce
2010-03-01
SummaryThis study investigates the potential of temperature as a tracer to provide insights into flow pathways. The approach couples fieldwork and modelling experiments for the Eastergrounds Hollow within the Slapton Wood catchment, South Devon, UK. Measurements in the Eastergrounds Hollow were carried out for soil temperature, spring temperature, and the stream temperature and use was made of an existing 1989-1991 data set for the entire Slapton Wood catchment. The predominant flow in this hollow is a result of subsurface stormflow, and previous work has suggested that the water flows vertically down through the soil and then subsurface stormflow occurs at the soil/bedrock interface where the water is deflected laterally. The depth of the subsurface stormflow was previously thought to be around 2.2 m. However, analysis of the new spring, stream and soil temperature data suggests a deeper pathway for the subsurface stormflow. Modelling of water flow and heat transport was carried out using SHETRAN and this was calibrated to reproduce the water flow in the entire Slapton Wood catchment and soil temperatures in the Eastergrounds Hollow. The model was tested for the entire Eastergrounds Hollow with two different soil depths. A depth of 2.2 m, based on previous knowledge, was unable to reproduce the Eastergrounds spring temperature. A depth of 3.7 m produced an excellent comparison between measured and simulated stream and spring temperatures in the Eastergrounds Hollow. This work suggests that the depth of the flow pathways that produce the subsurface stormflow are deeper than previously thought. It also provides a demonstration on the use of temperature as a tracer to understand flow pathways.
Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency
2016-11-01
current cost liability is the potential for several significant structural changes at DoD facilities around the world. These challenges include... climate , with an average high temperature of 90 degrees in July, and an average low temperature of 39 in January. The annual average temperature is 65.6...in new systems. The first three steps are recommended for every geothermal system installed in cooling dominated areas ( climatically hot areas such
NASA Astrophysics Data System (ADS)
Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing
2017-11-01
The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.
Effects of Hydraulic Frac Fluids on Subsurface Microbial Communities in Gas Shales
NASA Astrophysics Data System (ADS)
Jiménez, Núria; Krüger, Martin
2014-05-01
Shale gas is being considered as a complementary energy resource to coal or other fossil fuels. The exploitation of unconventional gas reservoirs requires the use of advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemical additives) are injected at high pressures into the formations, to produce fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluids partly remain in the formation, while about 20 to 40% of the originally injected fluid flows back to the surface, together with formation waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The overall production operation will likely affect and be affected by subsurface microbial communities associated to the shale formations. On the one hand microbial activity (like growth, biofilm formation) can cause unwanted processes like corrosion, clogging, etc. On the other hand, the introduction of frac fluids could either enhance microbial growth or cause toxicity to the shale-associated microbial communities. To investigate the potential impacts of changing environmental reservoir conditions, like temperature, salinity, oxgen content and pH, as well as the introduction of frac or geogenic chemicals on subsurface microbial communities, laboratory experiments under in situ conditions (i.e. high temperatures and pressures) are being conducted. Enrichment cultures with samples from several subsurface environments (e.g. shale and coal deposits, gas reservoirs, geothermal fluids) have been set up using a variety of carbon sources, including hydrocarbons and typical frac chemicals. Classical microbiological and molecular analysis are used to determine changes in the microbial abundance, community structure and function after the exposure to different single frac chemicals, "artificial" frac fluids or production waters. On the other hand, potential transformation reactions of frac or geogenic chemicals by subsurface microbiota and their lifetime are investigated. In our "fracking simulation" experiments, an increasing number of hydrocarbon-degrading or halophilic microorganisms is to be expected after exposure of subsurface communities to artificial production waters. Whereas the introduction of freshwater and of easily biodegradable substrates might favor the proliferation of fast-growing generalistic heterotrophs in shale-associated communities. Nevertheless toxicity of some of the frac components cannot be excluded.
NASA Astrophysics Data System (ADS)
Scheuermann, P. P.; Seyfried, W. E.
2018-05-01
The subsurface pressure-temperature conditions at the Piccard hydrothermal field are constrained using the Si-Cl geothermobarometer. Ol-Mgt and Opx-Mgt are proposed as assemblages that buffer H2(aq) at Piccard.
Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim
1998-01-01
Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.
A Low-Cost, In Situ Resistivity and Temperature Monitoring System
We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...
NASA Astrophysics Data System (ADS)
Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas
2016-04-01
Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we compare over a range of parameters the net power and efficiencies of hybrid geothermal power plants that use brine or CO2 as the subsurface working fluid, that are then heated further with a secondary energy source that is unspecified here. Parameters varied include the subsurface working fluid (brine vs. CO2), geothermal reservoir depth (2.5-4.5 km), and turbine inlet temperature (200-600°C) after auxiliary heating. The hybrid power plant is numerically modeled using an iterative coupling approach of TOUGH2-ECO2N/ECO2H (Pruess, 2004) for simulation of the subsurface reservoir and Engineering Equation Solver for well bore fluid flow and surface power plant performance. We find that hybrid power plants that are CO2-based (subsurface) systems produce more net power than the sum of the power produced by individual power plants at low turbine inlet temperatures and brine based systems produce more power at high turbine inlet temperatures. Specifically, our results indicate that geothermal hybrid plants that are CO2-based are more efficient than brine-based systems when the contribution of the geothermal resource energy is higher than 48%.
Analysis of continuous multi-seasonal in-situ subsurface temperature measurements on Mars
NASA Astrophysics Data System (ADS)
Paton, M. D.; Harri, A.-M.; Mäkinen, T.; Savijärvi, H.; Kemppinen, O.; Hagermann, A.
2015-10-01
Our investigations reveal the local thermal properties on the Martian surface at the Viking Lander 1 (VL-1) site. We achieved this by using the VL-1 footpad temperature sensor which was buried, and due to its location, was under shadow for extensive periods of time during each sol. Reconstruction of the surface and subsurface temperature history of the regolith in the vicinity of the temperature sensor was made using a 1-D atmospheric column model (UH-FMI) together with a thermal model of the lander. The results have implications for the interpretation of subsurface thermal measurements made close to a spacecraft or rock, interpretation of remote sensing measurements of thermal inertia and understanding the micro-scale behavior of the Martian atmosphere.
Quantum chemical elucidation of the mechanism for hydrogenation of TiO2 anatase crystals
NASA Astrophysics Data System (ADS)
Raghunath, P.; Huang, W. F.; Lin, M. C.
2013-04-01
Hydrogenation of TiO2 is relevant to hydrogen storage and water splitting. We have carried out a detailed mechanistic study on TiO2 hydrogenation through H and/or H2 diffusion from the surface into subsurface layers of anatase TiO2 (101) by periodic density functional theory calculations implementing on-site Coulomb interactions (DFT + U). Both H atoms and H2 molecules can migrate from the crystal surface into TiO2 near subsurface layer with 27.8 and 46.2 kcal/mol energy barriers, respectively. The controlling step for the former process is the dissociative adsorption of H2 on the surface which requires 47.8 kcal/mol of energy barrier. Both hydrogen incorporation processes are expected to be equally favorable. The barrier energy for H2 migration from the first layer of the subsurface Osub1 to the 2nd layer of the subsurface oxygen Osub2 requires only 6.6 kcal. The presence of H atoms on the surface and inside the subsurface layer tends to promote both H and H2 penetration into the subsurface layer by reducing their energy barriers, as well as to prevent the escape of the H2 from the cage by increasing its escaping barrier energy. The H2 molecule inside a cage can readily dissociate and form 2HO-species exothermically (ΔH = -31.0 kcal/mol) with only 26.2 kcal/mol barrier. The 2HO-species within the cage may further transform into H2O with a 22.0 kcal/mol barrier and 19.3 kcal/mol exothermicity relative to the caged H2 molecule. H2O formation following the breaking of Ti-O bonds within the cage may result in the formation of O-vacancies and surface disordering as observed experimentally under a high pressure and moderately high temperature condition. According to density of states analysis, the projected density of states of the interstitial H, H2, and H2O appear prominently within the TiO2 band gap; in addition, the former induces a shift of the band gap position notably towards the conduction band. The thermochemistry for formation of the most stable sub-surface species (2HO and H2O) has been predicted. These results satisfactorily account for the photo-catalytic activity enhancement observed experimentally by hydrogenation at high temperatures and high pressures.
NASA Astrophysics Data System (ADS)
Larson, B. I.; Houghton, J. L.; Lowell, R. P.; Farough, A.; Meile, C. D.
2015-08-01
Chemical gradients in the subsurface of mid-ocean ridge hydrothermal systems create an environment where minerals precipitate and dissolve and where chemosynthetic organisms thrive. However, owing to the lack of easy access to the subsurface, robust knowledge of the nature and extent of chemical transformations remains elusive. Here, we combine measurements of vent fluid chemistry with geochemical and transport modeling to give new insights into the under-sampled subsurface. Temperature-composition relationships from a geochemical mixing model are superimposed on the subsurface temperature distribution determined using a heat flow model to estimate the spatial distribution of fluid composition. We then estimate the distribution of Gibb's free energies of reaction beneath mid oceanic ridges and by combining flow simulations with speciation calculations estimate anhydrite deposition rates. Applied to vent endmembers observed at the fast spreading ridge at the East Pacific Rise, our results suggest that sealing times due to anhydrite formation are longer than the typical time between tectonic and magmatic events. The chemical composition of the neighboring low temperature flow indicates relatively uniform energetically favorable conditions for commonly inferred microbial processes such as methanogenesis, sulfate reduction and numerous oxidation reactions, suggesting that factors other than energy availability may control subsurface microbial biomass distribution. Thus, these model simulations complement fluid-sample datasets from surface venting and help infer the chemical distribution and transformations in subsurface flow.
NASA Astrophysics Data System (ADS)
Vasterling, Margarete; Schloemer, Stefan; Fischer, Christian; Ehrler, Christoph
2010-05-01
Spontaneous combustion of coal and resulting coal fires lead to very high temperatures in the subsurface. To a large amount the heat is transferred to the surface by convective and conductive transport inducing a more or less pronounced thermal anomaly. During the past decade satellite-based infrared-imaging (ASTER, MODIS) was the method of choice for coal fire detection on a local and regional scale. However, the resolution is by far too low for a detailed analysis of single coal fires which is essential prerequisite for corrective measures (i.e. fire fighting) and calculation of carbon dioxide emission based on a complex correlation between energy release and CO2 generation. Consequently, within the framework of the Sino-German research project "Innovative Technologies for Exploration, Extinction and Monitoring of Coal Fires in Northern China", a new concept was developed and successfully tested. An unmanned aerial vehicle (UAV) was equipped with a lightweight camera for thermografic (resolution 160 by 120 pixel, dynamic range -20 to 250°C) and for visual imaging. The UAV designed as an octocopter is able to hover at GPS controlled waypoints during predefined flight missions. The application of a UAV has several advantages. Compared to point measurements on the ground the thermal imagery quickly provides the spatial distribution of the temperature anomaly with a much better resolution. Areas otherwise not accessible (due to topography, fire induced cracks, etc.) can easily be investigated. The results of areal surveys on two coal fires in Xinjiang are presented. Georeferenced thermal and visual images were mosaicked together and analyzed. UAV-born data do well compared to temperatures measured directly on the ground and cover large areas in detail. However, measuring surface temperature alone is not sufficient. Simultaneous measurements made at the surface and in roughly 15cm depth proved substantial temperature gradients in the upper soil. Thus the temperature measured at the surface underestimates the energy emitted by the subsurface coal fire. In addition, surface temperature is strongly influenced by solar radiation and the prevailing ambient conditions (wind, temperature, humidity). As a consequence there is no simple correlation between surface and subsurface soil temperature. Efforts have been made to set up a coupled energy transport and energy balance model for the near surface considering thermal conduction, solar irradiation, thermal radiative energy and ambient temperature so far. The model can help to validate space-born and UAV-born thermal imagery and link surface to subsurface temperature but depends on in-situ measurements for input parameter determination and calibration. Results obtained so far strongly necessitate the integration of different data sources (in-situ / remote; point / area; local / medium scale) to obtain a reliable energy release estimation which is then used for coal fire characterization.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Ajo Franklin, J. B.; Ekblaw, I.; Lindsey, N.; Wagner, A. M.; Saari, S.; Daley, T. M.; Freifeld, B. M.
2016-12-01
As global temperatures continue to rise, permafrost landscapes will experience more rapid changes than other global climate zones. Permafrost thaw is a result of increased temperatures in arctic settings resulting in surface deformation and subsurface hydrology changes. From an engineering perspective, surface deformation poses a threat to the stability of existing infrastructure such as roads, utility piping, and building structures. Preemptively detecting or monitoring subsurface thaw dynamics presents a difficult challenge due to the long time scales as deformation occurs. Increased subsurface moisture content results from permafrost thaw of which electrical resistivity tomography (ERT), soil temperature, and nuclear magnetic resonance (NMR) are directly sensitive. In this experiment we evaluate spatial and temporal changes in subsurface permafrost conditions (moisture content and temperature) at a experimental heating plot in Fairbanks, AK. This study focuses on monitoring thaw signatures using multiple collocated electrical resistivity (ERT), borehole temperature, and borehole nuclear magnetic resonance (NMR) measurements. Timelapse ERT (sensitive to changes in moisture content) was inverted using collocated temperature and NMR to constrain ERT inversions. Subsurface thermal state was monitored with timelapse thermistors, sensitive to soil ice content. NMR was collected in multiple boreholes and is sensitive to changes in moisture content and pore scale distribution. As permafrost thaws more hydrogen, in the form of water, is available resulting in a changing NMR response. NMR requires the availability of liquid water in order to induce spin of the hydrogen molecule, hence, if frozen water molecules will be undetectable. In this study, the permafrost is poised close to 0oC and is mainly silt with small pore dimensions; this combination makes NMR particularly useful due to the possibility of sub-zero thaw conditions within the soil column. Overall this experiment presents a complementary suite of methods that provides feedback on subsurface permafrost state even in cases where soil texture might control unfrozen water content.
Ultrasonic techniques for measuring physical properties of fluids in harsh environments
NASA Astrophysics Data System (ADS)
Pantea, Cristian
Ultrasonic-based measurement techniques, either in the time domain or in the frequency domain, include a wide range of experimental methods for investigating physical properties of materials. This discussion is specifically focused on ultrasonic methods and instrumentation development for the determination of liquid properties at conditions typically found in subsurface environments (in the U.S., more than 80% of total energy needs are provided by subsurface energy sources). Such sensors require materials that can withstand harsh conditions of high pressure, high temperature and corrosiveness. These include the piezoelectric material, electrically conductive adhesives, sensor housings/enclosures, and the signal carrying cables, to name a few. A complete sensor package was developed for operation at high temperatures and pressures characteristic to geothermal/oil-industry reservoirs. This package is designed to provide real-time, simultaneous measurements of multiple physical parameters, such as temperature, pressure, salinity and sound speed. The basic principle for this sensor's operation is an ultrasonic frequency domain technique, combined with transducer resonance tracking. This multipurpose acoustic sensor can be used at depths of several thousand meters, temperatures up to 250 °C, and in a very corrosive environment. In the context of high precision measurement of sound speed, the determination of acoustic nonlinearity of liquids will also be discussed, using two different approaches: (i) the thermodynamic method, in which precise and accurate frequency domain sound speed measurements are performed at high pressure and high temperature, and (ii) a modified finite amplitude method, requiring time domain measurements of the second harmonic at room temperature. Efforts toward the development of an acoustic source of collimated low-frequency (10-150 kHz) beam, with applications in imaging, will also be presented.
The global distribution of Martian permafrost
NASA Technical Reports Server (NTRS)
Paige, David A.
1991-01-01
Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.
In situ time-series measurements of subseafloor sediment properties
Wheatcroft, R.A.; Stevens, A.W.; Johnson, R.V.
2007-01-01
The capabilities and diversity of subsurface sediment sensors lags significantly from what is available for the water column, thereby limiting progress in understanding time-dependent seabed exchange and high-frequency acoustics. To help redress this imbalance, a new instrument, the autonomous sediment profiler (ASP), is described herein. ASP consists of a four-electrode, Wenner-type resistivity probe and a thermistor that log data at 0.1-cm vertical intervals over a 58-cm vertical profile. To avoid resampling the same spot on the seafloor, the probes are moved horizontally within a 20 times 100-cm-2 area in one of three preselected patterns. Memory and power capacities permit sampling at hourly intervals for up to 3-mo duration. The system was tested in a laboratory tank and shown to be able to resolve high-frequency sediment consolidation, as well as changes in sediment roughness. In a field test off the southern coast of France, the system collected resistivity and temperature data at hourly intervals for 16 d. Coupled with environmental data collected on waves, currents, and suspended sediment, the ASP is shown to be useful for understanding temporal evolution of subsurface sediment porosity, although no large depositional or erosional events occurred during the deployment. Following a rapid decrease in bottom-water temperature, the evolution of the subsurface temperature field was consistent with the 1-D thermal diffusion equation coupled with advection in the upper 3-4 cm. Collectively, the laboratory and field tests yielded promising results on time-dependent seabed change.
NASA Astrophysics Data System (ADS)
Stillman, D. E.; Grimm, R. E.
2013-12-01
Water ice is ubiquitous in our Solar System and is a probable target for planetary exploration. Mapping the lateral and vertical concentration of subsurface ice from or near the surface could determine the origin of lunar and martian ice and quantify a much-needed resource for human exploration. Determining subsurface ice concentration on Earth is not trivial and has been attempted previously with electrical resistivity tomography (ERT), ground penetrating radar (GPR), airborne EM (AEM), and nuclear magnetic resonance (NMR). These EM geophysical techniques do not actually detect ice, but rather the absence of unfrozen water. This causes a non-unique interpretation of frozen and dry subsurface sediments. This works well in the arctic because most locations are not dry. However, for planetary exploration, liquid water is exceedingly rare and subsurface mapping must discriminate between an ice-rich and a dry subsurface. Luckily, nature has provided a unique electrical signature of ice: its dielectric relaxation. The dielectric relaxation of ice creates a temperature and frequency dependence of the electrical properties and varies the relative dielectric permittivity from ~3.1 at radar frequencies to >100 at low frequencies. On Mars, sediments smaller than silt size can hold enough adsorbed unfrozen water to complicate the measurement. This is because the presence of absorbed water also creates frequency-dependent electrical properties. The dielectric relaxation of adsorbed water and ice can be separated as they have different shapes and frequency ranges as long as a spectrum spanning the two relaxations is measured. The volume concentration of ice and adsorbed water is a function of the strength of their relaxations. Therefore, we suggest that capacitively-coupled dielectric spectroscopy (a.k.a. spectral induced polarization or complex resistivity) can detect the concentration of both ice and adsorbed water in the subsurface. To prove this concept we have collected dielectric spectroscopy at the Cold Regions Research and Engineering Laboratory (CRREL) permafrost tunnel in Fox, AK. We were able to detect the ice relaxation in the subsurface despite the considerable amount of subsurface unfrozen water due to the presence of montmorillonite clay and much warmer temperatures than Mars or permanently shadowed regions of the Moon. While dielectric spectroscopy can be used to determine ice and adsorbed water content it does not possess the high resolution mapping capability of a GPR. Moreover, GPR cannot detect subsurface ice content in ice-sediment mixtures as evidenced in the interpretation of the Medusae Fossae Formation. Orbital radar surveys show this unit has a low attenuation and a dielectric permittivity near 4. This allows the formation to be interpreted as ice-rich or a dry high-porosity volcanic tuff unit. Therefore, combining GPR and dielectric spectroscopy will enable high-resolution structural and volatile mapping of the subsurface. Furthermore, the addition of neutron spectroscopy would add total hydrogen abundance in the top meter. This could lead to the determination of how much hydrogen resides in ice, adsorbed water, and minerals.
NASA Astrophysics Data System (ADS)
Sinha, Navita
Mars is one of the suitable bodies in our solar system that can accommodate extraterrestrial life. The detection of plumes of methane in the Martian atmosphere, geochemical evidence, indication of flow of intermittent liquid water on the Martian surface, and geomorphologies of Mars have bolstered the plausibility of finding extant or evidence of extinct life on its surface and/or subsurface. However, contemporary Mars has been considered as an inhospitable planet for several reasons, such as low atmospheric surface pressure, low surface temperature, and intense DNA damaging radiation. Despite the hostile conditions of Mars, a few strains of methanogenic archaea have shown survivability in limited surface and subsurface conditions of Mars. Methanogens, which are chemolithoautotrophic non-photosynthetic anaerobic archaea, have been considered ideal models for possible Martian life forms for a long time. The search for biosignatures in the Martian atmosphere and possibility of life on the Martian surface under UVC radiation and deep subsurface under high pressure, temperature, and various pHs are the motivations of this research. Analogous to Earth, Martian atmospheric methane could be biological in origin. Chapter 1 provides relevant information about Mars' habitability, methane on Mars, and different strains of methanogens used in this study. Chapter 2 describes the interpretation of the carbon isotopic data of biogenic methane produced by methanogens grown on various Mars analogs and the results provide clues to determine ambiguous sources of methane on Mars. Chapter 3 illustrates the sensitivity of hydrated and desiccated cultures of halophilic and non-halophilic methanogens to DNA-damaging ultraviolet radiations, and the results imply that UVC radiation may not be an enormous constraint for methanogenic life forms on the surface of Mars. Chapters 4, 5, and 6 discuss the data for the survivability, growth, and morphology of methanogens in presumed deep subsurface physicochemical conditions such as temperature, pressure, hydrogen concentration, and pH of Mars. Finally, chapter 7 provides conclusions, limitations of the experiments, and future perspective of the work. Overall, the quantitative measurements obtained in the various sections of this novel work provide insights to atmospheric biosignatures and survivability of methanogenic organisms on the surface and subsurface of Mars.
NASA Astrophysics Data System (ADS)
Riethdorf, Jan-Rainer; Max, Lars; Nürnberg, Dirk; Lembke-Jene, Lester; Tiedemann, Ralf
2013-01-01
Based on models and proxy data, it has been proposed that salinity-driven stratification weakened in the subarctic North Pacific during the last deglaciation, which potentially contributed to the deglacial rise in atmospheric carbon dioxide. We present high-resolution subsurface temperature (TMg/Ca) and subsurface salinity-approximating (δ18Oivc-sw) records across the last 20,000 years from the subarctic North Pacific and its marginal seas, derived from combined stable oxygen isotopes and Mg/Ca ratios of the planktonic foraminiferal species Neogloboquadrina pachyderma (sin.). Our results indicate regionally differing changes of subsurface conditions. During the Heinrich Stadial 1 and the Younger Dryas cold phases, our sites were subject to reduced thermal stratification, brine rejection due to sea-ice formation, and increased advection of low-salinity water from the Alaskan Stream. In contrast, the Bølling-Allerød warm phase was characterized by strengthened thermal stratification, stronger sea-ice melting, and influence of surface waters that were less diluted by the Alaskan Stream. From direct comparison with alkenone-based sea surface temperature estimates (SSTUk'37), we suggest deglacial thermocline changes that were closely related to changes in seasonal contrasts and stratification of the mixed layer. The modern upper-ocean conditions seem to have developed only since the early Holocene.
Subsurface urban heat islands in German cities.
Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp
2013-01-01
Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Popp, Steffi; Beyer, Christof; Dahmke, Andreas; Bauer, Sebastian
2015-04-01
The energy market in Germany currently faces a rapid transition from nuclear power and fossil fuels towards an increased production of energy from renewable resources like wind or solar power. In this context, seasonal heat storage in the shallow subsurface is becoming more and more important, particularly in urban regions with high population densities and thus high energy and heat demand. Besides the effects of increased or decreased groundwater and sediment temperatures on local and large-scale groundwater flow, transport, geochemistry and microbiology, an influence on subsurface contaminations, which may be present in the urban surbsurface, can be expected. Currently, concerns about negative impacts of temperature changes on groundwater quality are the main barrier for the approval of heat storage at or close to contaminated sites. The possible impacts of heat storage on subsurface contamination, however, have not been investigated in detail yet. Therefore, this work investigates the effects of a shallow seasonal heat storage on subsurface groundwater flow, transport and reaction processes in the presence of an organic contamination using numerical scenario simulations. A shallow groundwater aquifer is assumed, which consists of Pleistoscene sandy sediments typical for Northern Germany. The seasonal heat storage in these scenarios is performed through arrays of borehole heat exchangers (BHE), where different setups with 6 and 72 BHE, and temperatures during storage between 2°C and 70°C are analyzed. The developing heat plume in the aquifer interacts with a residual phase of a trichloroethene (TCE) contamination. The plume of dissolved TCE emitted from this source zone is degraded by reductive dechlorination through microbes present in the aquifer, which degrade TCE under anaerobic redox conditions to the degradation products dichloroethene, vinyl chloride and ethene. The temperature dependence of the microbial degradation activity of each degradation step is taken into account for the numerical simulations. Hence, the simulations are performed with the code OpenGeoSys, which is especially suited for simulating coupled thermal, hydraulic and geochemical processes. The scenario simulations show an increase in the source zone emission of TCE at higher temperatures, which is primarily due to the focusing of the groundwater flow in the area of higher temperatures within the source zone and to a lesser part to an increase in TCE solubility. On the other hand, a widening of the contaminant plume and enlargement of the area for TCE biodegradation is induced, which leads to an increase in biodegradation of the chlorinated hydrocarbons. In combination almost no change in the overall ratio of degraded to emitted TCE is found, which shows that the seasonal heat storage is not negatively influencing the present TCE contamination under these assumptions. The results of this work serve to support the risk assessment for the interaction between heat storage and contaminations in the shallow subsurface and show positive interactions as well as possible conflicts.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Walker, Sandra P.
2009-01-01
The objective of the present study was to determine whether infrared imaging (IR) surface temperature data obtained during arc-jet tests of Space Shuttle Orbiter s reinforced carbon-carbon (RCC) wing leading edge panel slip-side joggle region could be used to detect presence of subsurface material separation, and if so, to determine when separation occurs during the simulated entry profile. Recent thermostructural studies have indicated thermally induced interlaminar normal stress concentrations at the substrate/coating interface in the curved joggle region can result in local subsurface material separation, with the separation predicted to occur during approach to peak heating during reentry. The present study was an attempt to determine experimentally when subsurface material separations occur. A simplified thermal model of a flat RCC panel with subsurface material separation was developed and used to infer general surface temperature trends due to the presence of subsurface material separation. IR data from previously conducted arc-jet tests on three test specimens were analyzed: one without subsurface material separation either pre or post test, one with pre test separation, and one with separation developing during test. The simplified thermal model trend predictions along with comparison of experimental IR data of the three test specimens were used to successfully infer material separation from the arc-jet test data. Furthermore, for the test specimen that had developed subsurface material separation during the arc-jet tests, the initiation of separation appeared to occur during the ramp up to the peak heating condition, where test specimen temperature went from 2500 to 2800 F.
NASA Astrophysics Data System (ADS)
Tivey, M. K.; Evans, G. N.; Ferrini, V. L.; Spierer, H.
2016-12-01
High-resolution bathymetric mapping and recovery and study of samples from precisely known locations relative to local tectonic and volcanic features provide insight into the formation of seafloor massive sulfide deposits. Additional insight comes from repeat mapping efforts in 2005 and 2016 that provide details of relations and changes that may have occurred over time. Located 21 km apart on the Valu Fa Ridge, the Tui Malila and Mariner vent fields exhibit contrasting vent fluid chemistry, mineral deposit composition, deposit morphology, and seafloor morphology. At the Tui Malila vent field, near-neutral pH fluids with low metal contents vent from Zn- and Ba-rich, but Cu-poor deposits. The highest temperature fluids are found near the intersection of two faults and between volcanic domes. In contrast, acidic, metal-rich hydrothermal fluids at the Mariner vent field vent from Cu-rich, Zn-poor deposits. No discernable faults are present. At both the Tui Malila and Mariner vent fields, intermediate temperature fluids were sampled emanating from barite-rich deposits. At the Tui Malila vent field, intermediate fluids vent from flange-dominated edifices that are located on brecciated lava flow that overlays one of the two faults. Intermediate fluids at the Mariner vent field vent from squat terrace-like edifices located peripheral (10-15 m) to high-temperature chimney edifices, and seafloor morphology is dominated by brecciated lava flows. Thermodynamic models of mixing between high-temperature hydrothermal fluids and seawater that consider subsurface deposition of sulfide minerals and iron oxyhydroxide were used to reproduce the chemistry of intermediate fluids. This study suggests that the porous, brecciated lavas characteristic of these two vent fields provide sites for subsurface mixing and contribute to mineral deposition, with the faults at the Tui Malila vent field providing a pathway for subsurface fluid flow.
Measuring Subsurface Water Fluxes Using a Heat Pulse Sensor
NASA Astrophysics Data System (ADS)
Ochsner, T. E.; Wang, Q.; Horton, R.
2001-12-01
Subsurface water flux is an important parameter in studies of runoff, infiltration, groundwater recharge, and subsurface chemical transport. Heat pulse sensors have been proposed as promising tools for measuring subsurface water fluxes. Our heat pulse probe consists of three 4-cm stainless-steel needles embedded in a waterproof epoxy body. The needles contain resistance heaters and thermocouples. The probes are connected to an external datalogger and power supply and then installed in soil. To measure the water flux, a 15-s heat pulse is generated at the middle needle using the power supply and the resistance heater, and the temperature increases at the needles 6-mm upstream and downstream from the heater are recorded using the thermocouples and datalogger. To date, heat pulse methods have required cumbersome mathematical analysis to calculate soil water flux from this measured data. We present a new mathematical analysis showing that a simple relationship exists between water flux and the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the line heat source. The simplicity of this relationship makes heat pulse sensors a more attractive option for measuring subsurface water fluxes.
The Astrobiology of the Subsurface: Caves and Rock Fracture Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope J.
2017-01-01
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond. We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can fluorish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a Field Guide to Unknown Organisms for developing life detection space missions.
Daae, F L; Økland, I; Dahle, H; Jørgensen, S L; Thorseth, I H; Pedersen, R B
2013-07-01
Water-rock interactions in ultramafic lithosphere generate reduced chemical species such as hydrogen that can fuel subsurface microbial communities. Sampling of this environment is expensive and technically demanding. However, highly accessible, uplifted oceanic lithospheres emplaced onto continental margins (ophiolites) are potential model systems for studies of the subsurface biosphere in ultramafic rocks. Here, we describe a microbiological investigation of partially serpentinized dunite from the Leka ophiolite (Norway). We analysed samples of mineral coatings on subsurface fracture surfaces from different depths (10-160 cm) and groundwater from a 50-m-deep borehole that penetrates several major fracture zones in the rock. The samples are suggested to represent subsurface habitats ranging from highly anaerobic to aerobic conditions. Water from a surface pond was analysed for comparison. To explore the microbial diversity and to make assessments about potential metabolisms, the samples were analysed by microscopy, construction of small subunit ribosomal RNA gene clone libraries, culturing and quantitative-PCR. Different microbial communities were observed in the groundwater, the fracture-coating material and the surface water, indicating that distinct microbial ecosystems exist in the rock. Close relatives of hydrogen-oxidizing Hydrogenophaga dominated (30% of the bacterial clones) in the oxic groundwater, indicating that microbial communities in ultramafic rocks at Leka could partially be driven by H2 produced by low-temperature water-rock reactions. Heterotrophic organisms, including close relatives of hydrocarbon degraders possibly feeding on products from Fischer-Tropsch-type reactions, dominated in the fracture-coating material. Putative hydrogen-, ammonia-, manganese- and iron-oxidizers were also detected in fracture coatings and the groundwater. The microbial communities reflect the existence of different subsurface redox conditions generated by differences in fracture size and distribution, and mixing of fluids. The particularly dense microbial communities in the shallow fracture coatings seem to be fuelled by both photosynthesis and oxidation of reduced chemical species produced by water-rock reactions. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Pribulick, C. E.; Maxwell, R. M.; Williams, K. H.; Carroll, R. W. H.
2014-12-01
Prediction of environmental response to global climate change is paramount for regions that rely upon snowpack for their dominant water supply. Temperature increases are anticipated to be greater at higher elevations perturbing hydrologic systems that provide water to millions of downstream users. In this study, the relationships between large-scale climatic change and the corresponding small-scale hydrologic processes of mountainous terrain are investigated in the East River headwaters catchment near Gothic, CO. This catchment is emblematic of many others within the upper Colorado River Basin and covers an area of 250 square kilometers, has a topographic relief of 1420 meters, an average elevation of 3266 meters and has varying stream characteristics. This site allows for the examination of the varying effect of climate-induced changes on the hydrologic response of three different characteristic components of the catchment: a steep high-energy mountain system, a medium-grade lower-energy system and a low-grade low-energy meandering floodplain. To capture the surface and subsurface heterogeneity of this headwaters system the basin has been modeled at a 10-meter resolution using ParFlow, a parallel, integrated hydrologic model. Driven by meteorological forcing, ParFlow is able to capture land surface processes and represents surface and subsurface interactions through saturated and variably saturated heterogeneous flow. Data from Digital Elevation Models (DEMs), land cover, permeability, geologic and soil maps, and on-site meteorological stations, were prepared, analyzed and input into ParFlow as layers with a grid size comprised of 1403 by 1685 cells to best represent the small-scale, high resolution model domain. Water table depth, soil moisture, soil temperature, snowpack, runoff and local energy budget values provide useful insight into the catchments response to the Intergovernmental Panel on Climate Change (IPCC) temperature projections. In the near term, coupling this watershed model with one describing a diverse suite of subsurface elemental cycling pathways, including carbon and nitrogen, will provide an improved understanding of the response of the subsurface ecosystems to hydrologic transitions induced as a result of global climate change.
Urban heat fluxes in the subsurface of Cologne, Germany
NASA Astrophysics Data System (ADS)
Zhu, K.; Bayer, P.; Blum, P.
2012-04-01
Urbanization during the last hundred years has led to both environmental and thermal impacts on the subsurface. The urban heat island (UHI) effect is mostly described as an atmospheric phenomenon, where the measured aboveground temperatures in cities are elevated in comparison to undisturbed rural regions. However, UHIs can be found below, as well as above ground. A large amount of anthropogenic heat migrates into the urban subsurface, which also raises the ground temperature and permanently changes the thermal conditions in shallow aquifers. The main objective of our work is to study and determine the urban heat fluxes in Cologne, Germany, and to improve our understanding of the dynamics of subsurface energy fluxes in UHIs. Ideally, our findings will contribute to strategic and more sustainable geothermal use in cities. For a quantitative analysis of the energy fluxes within the subsurface and across the atmospheric boundary, two and three-dimensional coupled numerical flow and heat transport models were developed. The simulation results indicate that during the past hundred years, an average vertical urban heat flux that ranges between 80 and 375 mW m-2 can be deduced. Thermal anomalies have migrated into the local urban aquifer system and they reach a depth of about 150 m. In this context, the influence of the regional groundwater flow on the subsurface heat transport and temperature development is comprehensively discussed.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
1995-01-01
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
NASA Astrophysics Data System (ADS)
Kuo, Kenneth K.; Lu, Yeu-Cherng; Chiaverini, Martin J.; Harting, George C.; Johnson, David K.; Serin, Nadir
The experimental study on the fundamental processes involved in fuel decomposition and boundary-layer combustion in hybrid rocket motors is continuously being conducted at the High Pressure Combustion Laboratory of The Pennsylvania State University. This research will provide a useful engineering technology base in the development of hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high-pressure, 2-D slab motor has been designed, manufactured, and utilized for conducting seven test firings using HTPB fuel processed at PSU. A total of 20 fuel slabs have been received from the Mcdonnell Douglas Aerospace Corporation. Ten of these fuel slabs contain an array of fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. Diagnostic instrumentation used in the test include high-frequency pressure transducers for measuring static and dynamic motor pressures and fine-wire thermocouples for measuring solid fuel surface and subsurface temperatures. The ultrasonic pulse-echo technique as well as a real-time x-ray radiography system have been used to obtain independent measurements of instantaneous solid fuel regression rates.
Zones of life in the subsurface of hydrothermal vents: A synthesis
NASA Astrophysics Data System (ADS)
Larson, B. I.; Houghton, J.; Meile, C. D.
2011-12-01
Subsurface microbial communities in Mid-ocean Ridge (MOR) hydrothermal systems host a wide array of unique metabolic strategies, but the spatial distribution of biogeochemical transformations is poorly constrained. Here we present an approach that reexamines chemical measurements from diffuse fluids with models of convective transport to delineate likely reaction zones. Chemical data have been compiled from bare basalt surfaces at a wide array of mid-ocean ridge systems, including 9°N, East Pacific Rise, Axial Seamount, Juan de Fuca, and Lucky Strike, Mid-Atlantic Ridge. Co-sampled end-member fluid from Ty (EPR) was used to constrain reaction path models that define diffuse fluid compositions as a function of temperature. The degree of mixing between hot vent fluid (350 deg. C) and seawater (2 deg. C) governs fluid temperature, Fe-oxide mineral precipitation is suppressed, and aqueous redox reactions are prevented from equilibrating, consistent with sluggish kinetics. Quartz and pyrite are predicted to precipitate, consistent with field observations. Most reported samples of diffuse fluids from EPR and Axial Seamount fall along the same predicted mixing line only when pyrite precipitation is suppressed, but Lucky Strike fluids do not follow the same trend. The predicted fluid composition as a function of temperature is then used to calculate the free energy available to autotrophic microorganisms for a variety of catabolic strategies in the subsurface. Finally, the relationships between temperature and free energy is combined with modeled temperature fields (Lowell et al., 2007 Geochem. Geophys., Geosys.) over a 500 m x 500 m region extending downward from the seafloor and outward from the high temperature focused hydrothermal flow to define areas that are energetically most favorable for a given metabolic process as well as below the upper temperature limit for life (~120 deg. C). In this way, we can expand the relevance of geochemical model predictions of bioenergetics by predicting functionally-defined 'Zones of Life' and placing them spatially within the boundary of the 120 deg. C isotherm, estimating the extent of subsurface biosphere beneath mid-ocean ridge hydrothermal systems. Preliminary results indicate that methanogenesis yields the most energy per kg of vent fluid, consistent with the elevated CH4(aq) seen at all three sites, but may be constrained by temperatures too hot for microbial life while available energy from the oxidation of Fe(II) peaks near regions of the crust that are more hospitable.
NASA Astrophysics Data System (ADS)
Mueller, Matthias H.; Epting, Jannis; Köhler, Mandy; Händel, Falk; Huggenberger, Peter
2015-04-01
Increasing groundwater temperatures observed in many urban areas strongly interfere with the demand of thermal groundwater use. The groundwater temperatures in these urban areas are affected by numerous interacting factors: open and closed-loop geothermal systems for heating and cooling, sealed surfaces, constructions in the subsurface (infrastructure and buildings), artificial groundwater recharge, and interaction with rivers. On the one hand, these increasing groundwater temperatures will negatively affect the potential for its use in the future e.g. for cooling purposes. On the other hand, elevated subsurface temperatures can be considered as an energy source for shallow geothermal heating systems. Integrated thermal management concepts are therefore needed to coordinate the thermal use of groundwater in urban areas. These concepts should be based on knowledge of the driving processes which influence the thermal regime of the aquifer. We are currently investigating the processes influencing the groundwater temperature throughout the urban area of Basel City, Switzerland. This involves a three-dimensional numerical groundwater heat-transport model including geothermal use and interactions with the unsaturated zone such as subsurface constructions reaching into the aquifer. The cantonal groundwater monitoring system is an important part of the data base in our model, which will help to develop sustainable management strategies. However, single temperature measurements in conventional groundwater wells can be biased by vertical thermal convection. Therefore, multilevel observation wells are used in the urban areas of the city to monitor subsurface temperatures reaching from the unsaturated zone to the base of the aquifer. These multilevel wells are distributed in a pilot area in order to monitor the subsurface temperatures in the vicinity of deep buildings and to quantify the influence of the geothermal use of groundwater. Based on time series of the conventional groundwater wells, the multilevel observation wells and the different boundary conditions we characterize the groundwater temperature regimes using a regional groundwater heat-transport model. In the urban area of Basel, mean annual groundwater temperatures are significantly increasing with 0.05 K per year in the period of 1994 to 2014, which is most likely due to anthropogenic influences. Overall, mean annual groundwater temperatures of Basel are 3.0
The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta
NASA Astrophysics Data System (ADS)
Ivarsson, Magnus; Lindgren, Paula
2010-07-01
On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission's payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian subsurface contains a record of life, it is reasonable to assume that biosignatures derived from the Martian subsurface could also be preserved in the Martian impact ejecta.
Holocene evolution of the North Atlantic subsurface transport
NASA Astrophysics Data System (ADS)
Repschläger, Janne; Garbe-Schönberg, Dieter; Weinelt, Mara; Schneider, Ralph
2017-04-01
Previous studies suggested that short-term freshening events in the subpolar gyre can be counterbalanced by advection of saline waters from the subtropical gyre and thus stabilize the Atlantic Meridional Overturning Circulation (AMOC). However, little is known about the inter-gyre transport pathways. Here, we infer changes in surface and subsurface transport between the subtropical and polar North Atlantic during the last 11 000 years, by combining new temperature and salinity reconstructions obtained from combined δ18O and Mg / Ca measurements on surface and subsurface dwelling foraminifera with published foraminiferal abundance data from the subtropical North Atlantic, and with salinity and temperature data from the tropical and subpolar North Atlantic. This compilation implies an overall stable subtropical warm surface water transport since 10 ka BP. In contrast, subsurface warm water transport started at about 8 ka but still with subsurface heat storage in the subtropical gyre. The full strength of intergyre exchange was probably reached only after the onset of northward transport of warm saline subsurface waters at about 7 ka BP, associated with the onset of the modern AMOC mode. A critical evaluation of different potential forcing mechanisms leads to the assumption that freshwater supply from the Laurentide Ice Sheet was the main control on subtropical to subpolar ocean transport at surface and subsurface levels.
ALMA Thermal Mapping of Ceres – Search for Subsurface Water Ice
NASA Astrophysics Data System (ADS)
Moullet, Arielle; Li, Jian-Yang; Titus, Timothy N.; Sykes, Mark V.; Hsieh, Henry H.
2018-06-01
Spectroscopic observations of the surface of Ceres by Dawn have demonstrated that hydrated minerals are ubiquitous, but only few smaller sites are enriched with water ice. This is somewhat surprising as Ceres is believed to host a large amount a water in its interior.The possibility of inhomogeneous subsurface water distribution can be investigated by tracing thermal inertia distribution. To that effect, we mapped the temperature of Ceres using 1.3mm maps of the whole surface obtained with the Atacama Large Millimeter Array (ALMA) over three different epochs during one Ceres’ year. Assessing the thermal conditions at the depths probed by sub millimeter observations (a few cm below the surface, within the annual thermal skin depth) is critical to constrain the effective thermal inertia, and hence the status of subsurface water ice. We will present preliminary results in terms of temperature features and the corresponding thermal inertia derived based on comparisons from the KRC thermal model which has been extensively used for Mars. Initial analysis is consistent with the presence of near-surface high thermal inertia layer, presumably water ice, in the north polar region.This work is supported by the NASA Solar System Observations Program NNX15AE02G.
Small scale changes of geochemistry and flow field due to transient heat storage in aquifers
NASA Astrophysics Data System (ADS)
Bauer, S.; Boockmeyer, A.; Li, D.; Beyer, C.
2013-12-01
Heat exchangers in the subsurface are increasingly installed for transient heat storage due to the need of heating or cooling of buildings as well as the interim storage of heat to compensate for the temporally fluctuating energy production by wind or solar energy. For heat storage to be efficient, high temperatures must be achieved in the subsurface. Significant temporal changes of the soil and groundwater temperatures however effect both the local flow field by temperature dependent fluid parameters as well as reactive mass transport through temperature dependent diffusion coefficients, geochemical reaction rates and mineral equilibria. As the use of heat storage will be concentrated in urban areas, the use of the subsurface for (drinking) water supply and heat storage will typically coincide and a reliable prognosis of the processes occurring is needed. In the present work, the effects of a temporal variation of the groundwater temperature, as induced by a local heat exchanger introduced into a groundwater aquifer, are studied. For this purpose, the coupled non-isothermal groundwater flow, heat transport and reactive mass transport is simulated in the near filed of such a heat exchanger. By explicitly discretizing and incorporating the borehole, the borehole cementation and the heat exchanger tubes, a realistic geometrical and process representation is obtained. The numerical simulation code OpenGeoSys is used in this work, which incorporates the required processes of coupled groundwater flow, heat and mass transport as well as temperature dependent geochemistry. Due to the use of a Finite Element Method, a close representation of the geometric effects can be achieved. Synthetic scenario simulations for typical settings of salt water formations in northern Germany are used to investigate the geochemical effects arising from a high temperature heat storage by quantifying changes in groundwater chemistry and overall reaction rates. This work presents the simulation approach used and results obtained for the synthetic scenarios. The model simulations show that locally in the direct vicinity of the borehole heat exchanger the flow field is changed, causing a ground water convergence and thus a mixing of water in the case of high temperatures. Also, geochemical reactions are induced due to shifting of temperature dependent mineral equilibria. Due to the moving groundwater, the changes are not reversible, and small impacts remain downstream of the borehole heat exchanger. However, the changes depend strongly on the mineral composition of the formation and the formation water present.
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.; ...
2016-02-12
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO 2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe +2 and S -2 oxidation) to match locally-observed high CO 2 concentrations above reduced zones. Observed seasonal variations in CO 2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m -2 d -1, while including water table variations resulted in an overall decrease in the simulated fluxes. We thus conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, Bhavna; Spycher, Nicolas F.; Steefel, Carl I.
2016-02-01
Flood plains play a potentially important role in the global carbon cycle. The accumulation of organic matter in flood plains often induces the formation of chemically reduced groundwater and sediments along riverbanks. In this study, our objective is to evaluate the cumulative impact of such reduced zones, water table fluctuations, and temperature gradients on subsurface carbon fluxes in a flood plain at Rifle, Colorado located along the Colorado River. 2-D coupled variably-saturated, non-isothermal flow and biogeochemical reactive transport modeling was applied to improve our understanding of the abiotic and microbially mediated reactions controlling carbon dynamics at the Rifle site. Modelmore » simulations considering only abiotic reactions (thus ignoring microbial reactions) underestimated CO2 partial pressures observed in the unsaturated zone and severely underestimated inorganic (and overestimated organic) carbon fluxes to the river compared to simulations with biotic pathways. Both model simulations and field observations highlighted the need to include microbial contributions from chemolithoautotrophic processes (e.g., Fe?2 and S-2 oxidation) to match locally-observed high CO2 concentrations above reduced zones. Observed seasonal variations in CO2 concentrations in the unsaturated zone could not be reproduced without incorporating temperature gradients in the simulations. Incorporating temperature fluctuations resulted in an increase in the annual groundwater carbon fluxes to the river by 170 % to 3.3 g m-2 d-1, while including water table variations resulted in an overall decrease in the simulated fluxes. We conclude that spatial microbial and redox zonation as well as temporal fluctuations of temperature and water table depth contribute significantly to subsurface carbon fluxes in flood plains and need to be represented appropriately in model simulations.« less
Wireless sensors for measuring sub-surface processes in firn
NASA Astrophysics Data System (ADS)
Bagshaw, Elizabeth; Karlsson, Nanna; Lishman, Ben; Bun Lok, Lai; Burrow, Stephen; Wadham, Jemma; Clare, Lindsay; Nicholls, Keith; Corr, Hugh; Brennan, Paul; Eisen, Olaf; Dahl-Jensson, Dorthe
2017-04-01
Subsurface processes exert controls on meltwater storage and densification within firn, which are, by their nature, challenging to measure. We present the results of proof-of-concept tests of wireless ETracer sensors with the East Greenland Ice Core Project (EGRIP) at the Northeast Greenland Ice Stream. ETracers equipped with temperature, pressure and electrical conductivity sensors were deployed in firn boreholes at the centre and the shear margins of the ice stream. Data were returned from a 60m deep test borehole, and continuously for 4 weeks from two 14m deep boreholes, to autonomous receivers at the surface. Two receivers were tested: a station using software radio and PC, and the BAS/UCL ApRES radar system. The sensors were used to track high resolution changes in temperature with depth, changes in densification rates in response to accumulation events and snow redistribution, and the presence of liquid water within the firn.
Low temperature monitoring system for subsurface barriers
Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX
2009-08-18
A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.
Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer
NASA Astrophysics Data System (ADS)
Naranjo, R. C.; Morway, E. D.; Healy, R. W.
2016-12-01
Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.
Huang, Ping; Lin, I-I; Chou, Chia; Huang, Rong-Hui
2015-05-18
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas.
Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui
2015-01-01
Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028
NASA Astrophysics Data System (ADS)
Salem, Zenhom El-Said
2016-12-01
The purpose of this study was to understand the groundwater flow system in Al Kufra basin, Libya, as a case study of arid areas using subsurface temperature. The temperature-depth profiles and water levels were measured in eight boreholes in the area. Well 6 is considered a recharge type profile with low geothermal gradient (0.0068 °C/m) and an estimated paleo-temperature around 19.5 °C. The other profiles are of discharge type with higher geothermal gradient (0.0133 to 0.0166 °C/m). The constructed horizontal 2D distribution maps of the hydraulic heads and the subsurface temperature measurements reveal that the main recharge area is located to the south with low temperature while the main discharge area is located to the north with higher temperature. Vertical 2D distribution maps show that location of well 4 has low hydraulic heads and higher temperature indicating that the fault defined in the area may have affected the groundwater flow system. The estimated groundwater flux ranges from 0.001 to 0.1 mm/day for the recharge area and from -0.3 to -0.7 mm/day in average in the discharge area.
NASA Technical Reports Server (NTRS)
1975-01-01
Airborne or spaceborne electromagnetic systems used to detect subsurface features are discussed. Data are given as a function of resistivity of ground material, magnetic permeability of free space, and angular frequency. It was noted that resistivities vary with the water content and temperature.
Saito, Takeshi; Hamamoto, Shoichiro; Ueki, Takashi; Ohkubo, Satoshi; Moldrup, Per; Kawamoto, Ken; Komatsu, Toshiko
2016-05-01
Global warming and urbanization together with development of subsurface infrastructures (e.g. subways, shopping complexes, sewage systems, and Ground Source Heat Pump (GSHP) systems) will likely cause a rapid increase in the temperature of relatively shallow groundwater reservoirs (subsurface thermal pollution). However, potential effects of a subsurface temperature change on groundwater quality due to changed physical, chemical, and microbial processes have received little attention. We therefore investigated changes in 34 groundwater quality parameters during a 13-month enhanced-heating period, followed by 14 months of natural or enhanced cooling in a confined marine aquifer at around 17 m depth on the Saitama University campus, Japan. A full-scale GSHP test facility consisting of a 50 m deep U-tube for circulating the heat-carrying fluid and four monitoring wells at 1, 2, 5, and 10 m from the U-tube were installed, and groundwater quality was monitored every 1-2 weeks. Rapid changes in the groundwater level in the area, especially during the summer, prevented accurate analyses of temperature effects using a single-well time series. Instead, Dual-Well Analysis (DWA) was applied, comparing variations in subsurface temperature and groundwater chemical concentrations between the thermally-disturbed well and a non-affected reference well. Using the 1 m distant well (temperature increase up to 7 °C) and the 10 m distant well (non-temperature-affected), the DWA showed an approximately linear relationships for eight components (B, Si, Li, dissolved organic carbon (DOC), Mg(2+), NH4(+), Na(+), and K(+)) during the combined 27 months of heating and cooling, suggesting changes in concentration between 4% and 31% for a temperature change of 7 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site
NASA Astrophysics Data System (ADS)
Warren, Ean; Bekins, Barbara A.
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site.
Relative contributions of microbial and infrastructure heat at a crude oil-contaminated site.
Warren, Ean; Bekins, Barbara A
2018-04-01
Biodegradation of contaminants can increase the temperature in the subsurface due to heat generated from exothermic reactions, making temperature observations a potentially low-cost approach for determining microbial activity. For this technique to gain more widespread acceptance, it is necessary to better understand all the factors affecting the measured temperatures. Biodegradation has been occurring at a crude oil-contaminated site near Bemidji, Minnesota for 39 years, creating a quasi-steady-state plume of contaminants and degradation products. A model of subsurface heat generation and transport helps elucidate the contribution of microbial and infrastructure heating to observed temperature increases at this site. We created a steady-state, two-dimensional, heat transport model using previous-published parameter values for physical, chemical and biodegradation properties. Simulated temperature distributions closely match the observed average annual temperatures measured in the contaminated area at the site within less than 0.2 °C in the unsaturated zone and 0.4 °C in the saturated zone. The model results confirm that the observed subsurface heat from microbial activity is due primarily to methane oxidation in the unsaturated zone resulting in a 3.6 °C increase in average annual temperature. Another important source of subsurface heat is from the active, crude-oil pipelines crossing the site. The pipelines impact temperatures for a distance of 200 m and contribute half the heat. Model results show that not accounting for the heat from the pipelines leads to overestimating the degradation rates by a factor of 1.7, demonstrating the importance of identifying and quantifying all heat sources. The model results also highlighted a zone where previously unknown microbial activity is occurring at the site. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. In this study, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model predictions better agreed (higher R 2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~ 10 cm shallower and ~ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ~ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; ...
2018-01-08
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. We analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the ACME Earth System Model (ESM) to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ALMv0-3D). Three 10-years long simulations were performed for a transect across polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SRmore » and subsurface process representation. When SR was included, model results show a better agreement (higher R 2 with lower bias and RMSE) for the observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R 2 of 0.59°C, 1.82°C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ~10 cm shallower and ~5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on active layer depths was modest with mean absolute difference of ~3 cm. Finally, our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the ACME land model will facilitate a wide range of analyses heretofore impossible in an ESM context.« less
NASA Astrophysics Data System (ADS)
Bisht, Gautam; Riley, William J.; Wainwright, Haruko M.; Dafflon, Baptiste; Yuan, Fengming; Romanovsky, Vladimir E.
2018-01-01
Microtopographic features, such as polygonal ground, are characteristic sources of landscape heterogeneity in the Alaskan Arctic coastal plain. Here, we analyze the effects of snow redistribution (SR) and lateral subsurface processes on hydrologic and thermal states at a polygonal tundra site near Barrow, Alaska. We extended the land model integrated in the E3SM to redistribute incoming snow by accounting for microtopography and incorporated subsurface lateral transport of water and energy (ELM-3D v1.0). Multiple 10-year-long simulations were performed for a transect across a polygonal tundra landscape at the Barrow Environmental Observatory in Alaska to isolate the impact of SR and subsurface process representation. When SR was included, model predictions better agreed (higher R2, lower bias and RMSE) with observed differences in snow depth between polygonal rims and centers. The model was also able to accurately reproduce observed soil temperature vertical profiles in the polygon rims and centers (overall bias, RMSE, and R2 of 0.59 °C, 1.82 °C, and 0.99, respectively). The spatial heterogeneity of snow depth during the winter due to SR generated surface soil temperature heterogeneity that propagated in depth and time and led to ˜ 10 cm shallower and ˜ 5 cm deeper maximum annual thaw depths under the polygon rims and centers, respectively. Additionally, SR led to spatial heterogeneity in surface energy fluxes and soil moisture during the summer. Excluding lateral subsurface hydrologic and thermal processes led to small effects on mean states but an overestimation of spatial variability in soil moisture and soil temperature as subsurface liquid pressure and thermal gradients were artificially prevented from spatially dissipating over time. The effect of lateral subsurface processes on maximum thaw depths was modest, with mean absolute differences of ˜ 3 cm. Our integration of three-dimensional subsurface hydrologic and thermal subsurface dynamics in the E3SM land model will facilitate a wide range of analyses heretofore impossible in an ESM context.
NASA Astrophysics Data System (ADS)
Emmert, Adrian; Kneisel, Christof
2017-04-01
Uertsch rockglacier (46.61° N, 9.84°E, ca. 2500m asl.) is a tongue-shaped 300m x 100m landform at the head of a small high mountain valley in the Eastern Swiss Alps. Located at the lower end of possible permafrost existence, the rockglacier shows indications of permafrost decay although borehole temperature measurements exhibit an at least partly occurrence of permanently frozen subsurface conditions. To delimit the extent of the frozen area and to characterize subsurface structures, we performed three adjacent 3-D Electrical Resistivity Imaging (ERI) surveys consisting of data from altogether 138 merged 2-D profiles, covering nearly the entire rockglacier by an investigation area of more than 2.5 ha. More than 47000 data points of Wenner-Schlumberger and Dipol-Dipol electrode arrays grant sufficient data coverage. Ground-truthing was achieved through borehole temperature measurements and multiple comparative ground-penetrating radar (GPR) and seismic refraction tomography (SRT) surveys. Results show that the rockglacier today lacks a consistent permafrost table and only shows a patchy permafrost distribution. Several structures differing in geometry and electric resistivity show a complex pattern of ice-rich, ice-poor and ice-free areas. We could identify glacial influence in the root zone of the rockglacier, where a 3200m2 perennial surface ice field is visible. In a downslope direction, a shallow layer of high resistivity values, which is limited to the shallow subsurface, follows the ice field and indicates a genesis by refreezing meltwater. The central part of the rockglacier also shows traces of glacial interaction by the occurrence of a several meters thick buried ice patch in the shallow subsurface at a marginal position. Next to this position, in an area where longitudinal surface ridges are exposed, modelled resistivity values indicate frozen conditions with relatively low ice content, limited to the shallow subsurface. We assume that these structures are likely connected to permafrost creep processes. The frontal part of the rockglacier is affected by a strong ridge-and-furrow topography with arcuate ridge structures. Frozen conditions within these structures indicate an increase of ice content by thickening through compressive flow. Our study reflects the complexity of landform evolution for Uertsch rockglacier, where glacial and periglacial processes occur in close proximity. This emphasize the value of comprehensive 3-D investigations to assess the geometry and characteristics of larger subsurface structures.
NASA Astrophysics Data System (ADS)
Huisman, J. A.; Brogi, C.; Pätzold, S.; Weihermueller, L.; von Hebel, C.; Van Der Kruk, J.; Vereecken, H.
2017-12-01
Subsurface structures of the vadose zone can play a key role in crop yield potential, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI can provide information about dominant shallow subsurface features. However, previous studies with EMI have typically not reached beyond the field scale. We used high-resolution large-scale multi-configuration EMI measurements to characterize patterns of soil structural organization (layering and texture) and their impact on crop productivity at the km2 scale. We collected EMI data on an agricultural area of 1 km2 (102 ha) near Selhausen (NRW, Germany). The area consists of 51 agricultural fields cropped in rotation. Therefore, measurements were collected between April and December 2016, preferably within few days after the harvest. EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid of 1 m resolution. Inspecting the ECa maps, we identified three main sub-areas with different subsurface heterogeneity. We also identified small-scale geomorphological structures as well as anthropogenic activities such as soil management and buried drainage networks. To identify areas with similar subsurface structures, we applied image classification techniques. We fused ECa maps obtained with different coil distances in a multiband image and applied supervised and unsupervised classification methodologies. Both showed good results in reconstructing observed patterns in plant productivity and the subsurface structures associated with them. However, the supervised methodology proved more efficient in classifying the whole study area. In a second step, we selected hundred locations within the study area and obtained a soil profile description with type, depth, and thickness of the soil horizons. Using this ground truth data it was possible to assign a typical soil profile to each of the main classes obtained from the classification. The proposed methodology was effective in producing a high resolution subsurface model in a large and complex study area that extends well beyond the field scale.
Subsurface Temperature, Moisture, Thermal Conductivity and Heat Flux, Barrow, Area A, B, C, D
Cable, William; Romanovsky, Vladimir
2014-03-31
Subsurface temperature data are being collected along a transect from the center of the polygon through the trough (and to the center of the adjacent polygon for Area D). Each transect has five 1.5m vertical array thermistor probes with 16 thermistors each. This dataset also includes soil pits that have been instrumented for temperature, water content, thermal conductivity, and heat flux at the permafrost table. Area C has a shallow borehole of 2.5 meters depth is instrumented in the center of the polygon.
Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...
Trichloroethylene (TCE) is a contaminant commonly found in the subsurface at industrial and military installations in the United States. Oxidation of TCE (C2HCl3) to carbon dioxide (CO2) and chloride ions (Cl-) has been reported to occu...
NASA Astrophysics Data System (ADS)
Pompili, Sara; Silvio Marzano, Frank; Di Carlofelice, Alessandro; Montopoli, Mario; Talone, Marco; Crapolicchio, Raffaele; L'Abbate, Michelangelo; Varchetta, Silvio; Tognolatti, Piero
2013-04-01
The "Lunar Interferometric Radiometer by Aperture Synthesis" (LIRAS) mission is promoted by the Italian Space Agency and is currently in feasibility phase. LIRAS' satellite will orbit around the Moon at a height of 100 km, with a revisiting time period lower than 1 lunar month and will be equipped with: a synthetic aperture radiometer for subsurface sounding purposes, working at 1 and 3 GHz, and a real aperture radiometer for near-surface probing, working at 12 and 24 GHz. The L-band payload, representing a novel concept for lunar exploration, is designed as a Y-shaped thinned array with three arms less than 2.5 m long. The main LIRAS objectives are high-resolution mapping and vertical sounding of the Moon subsurface by applying the advantages of the antenna aperture synthesis technique to a multi-frequency microwave passive payload. The mission is specifically designed to achieve spatial resolutions less than 10 km at surface and to retrieve thermo-morphological properties of the Moon subsurface within 5 m of depth. Among LIRAS products are: lunar near-surface brightness temperature, subsurface brightness temperature gross profile, subsurface regolith thickness, density and average thermal conductivity, detection index of possible subsurface discontinuities (e.g. ice presence). The following study involves the preliminary design of the LIRAS payload and the electromagnetic and thermal characterization of the lunar subsoil through the implementation of a simulator for reproducing the LIRAS measurements in response to observations of the Moon surface and subsurface layers. Lunar physical data, collected after the Apollo missions, and LIRAS instrument parameters are taken as input for the abovementioned simulator, called "LIRAS End-to-end Performance Simulator" (LEPS) and obtained by adapting the SMOS End-to-end Performance Simulator to the different instrumental, orbital, and geophysical LIRAS characteristics. LEPS completely simulates the behavior of the satellite when it becomes operational providing the extrapolation of lunar brightness temperature maps in both Antenna frame (the cosine domain) and on the Moon surface and allowing an accurate analysis of the instrument performance. The Moon stratigraphy is reproduced in LEPS environment through three scenarios: a macro-layer of regolith; two subsequent macro-layers of regolith and rock; three subsequent macro-layers of regolith, ice and rock, respectively. These scenarios are studied using an incoherent approach, taking into account the interaction between the upwelling and downwelling radiation contributions from each layer to model the resulting brightness temperature at the surface level. It has been considered that the radiative behavior of the Moon varies over time, depending on solar illumination conditions, and it is also function of the material properties, layer thickness and specific position on the lunar crust; moreover it has been examined its variation with frequency, observation angle, and polarization. Using the proposed emission model it has been possible to derive a digital thermal model in the microwave frequency of the Moon, allowing in-depth analysis of the lunar soil consistency; this collected information could be related with a lunar digital elevation model in order to achieve global coverage information on topological aspects. The main results of the study will be presented at the conference.
Molten salt as a heat transfer fluid for heating a subsurface formation
Nguyen, Scott Vinh; Vinegar, Harold J.
2010-11-16
A heating system for a subsurface formation includes a conduit located in an opening in the subsurface formation. An insulated conductor is located in the conduit. A material is in the conduit between a portion of the insulated conductor and a portion of the conduit. The material may be a salt. The material is a fluid at operating temperature of the heating system. Heat transfers from the insulated conductor to the fluid, from the fluid to the conduit, and from the conduit to the subsurface formation.
NASA Astrophysics Data System (ADS)
Castaneda, I. S.; Urann, B.; Phu, V.
2013-12-01
Two organic geochemical temperature proxies widely applied to marine sediments are the Uk'37 Index, based on long-chain alkenones produced by haptophyte algae, and TEX86, based on isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs), produced by Thaumarchaeota. At some locations, temperature reconstructions based on Uk'37 and TEX86 are in agreement within the calibration errors of each proxy, while at other sites absolute Uk'37 and TEX86 reconstructed temperatures differ but both proxies reveal similar overall trends (e.g. Caley et al., 2011). In contrast, at other locations Uk'37 and TEX86 temperature reconstructions from the same samples yield dramatically different overall trends. Differences observed between Uk'37 and TEX86 temperature reconstructions have been attributed to a variety of factors including seasonal production biases, differences in preservation and lateral transport, and differences related to the depth habitat of the source organisms. An increasing number of studies have provided evidence that TEX86 likely reflects a subsurface water temperature in certain areas of the world's oceans and have used paired Uk'37 and TEX86 measurements to simultaneously examine sea surface and subsurface (in some cases thermocline) temperature variability (e.g. Lopes dos Santos et al., 2010; Rommerskirchen et al., 2011; Li et al., 2013). In the tropical N Atlantic, a distinctive signature of Atlantic Meridional Overturning Circulation (AMOC) slowdown is anticorrelated variation between surface and subsurface water temperatures (e.g. Chang et al., 2008; Zhang et al., 2007) where sea surface temperature (SST) cooling is accompanied by shallow subsurface warming (e.g. Chang et al., 2008). Lopes dos Santos et al. (2010) examined a site in the tropical NE Atlantic where they showed that in the modern Uk'37 reflects SST while TEXH86 likely reflects a thermocline temperature. The authors noted several periods during the past 200 kyr when surface cooling and subsurface warming occurred, which they attributed to AMOC slowdown. In this study, we examine sediments from ODP site 660 (NE Atlantic), located near the site studied by Lopes dos Santos et al. (2010), and use paired Uk'37-TEXH86 temperature measurements to investigate changes in sea surface and thermocline temperature variability over the past 4 Ma. We find that following Pliocene warmth, the Uk'37 record indicates an overall cooling trend since ~2.2 Ma, superimposed on glacial-interglacial temperature fluctuations. In contrast, the TEX86 record, which yields consistently cooler temperatures in comparison to Uk'37, does not exhibit an overall cooling trend during the Pleistocene nor elevated warmth during the Pliocene. In portions of the record, anticorrelated variability between Uk'37 and TEX86 temperatures is observed, likely reflecting differences in SST and thermocline temperatures related to AMOC variability. In addition, we examine the carbon (δ13C) and deuterium (δD) isotopic composition of plant leaf waxes, proxies for vegetation type (C3 vs. C4) and precipitation amount, respectively, as several studies have demonstrated close ties between AMOC variability and hydrological conditions in N Africa during the late Pleistocene and Holocene.
Past Performance analysis of HPOTP bearings
NASA Technical Reports Server (NTRS)
Bhat, B. N.; Dolan, F. J.
1982-01-01
The past performance analysis conducted on three High Pressure Oxygen Turbopump (HPOTP) bearings from the Space Shuttle Main Engine is presented. Metallurgical analysis of failed bearing balls and races, and wear track and crack configuration analyses were carried out. In addition, one bearing was tested in laboratory at very high axial loads. The results showed that the cracks were surface initiated and propagated into subsurface locations at relatively small angles. Subsurface cracks were much more extensive than was appeared on the surface. The location of major cracks in the races corresponded to high radial loads rather than high axial loads. There was evidence to suggest that the inner races were heated to elevated temperatures. A failure scenario was developed based on the above findings. According to this scenario the HPOTP bearings are heated by a combination of high loads and high coefficient of friction (poor lubrication). Different methods of extending the HPOTP bearing life are also discussed. These include reduction of axial loads, improvements in bearing design, lubrication and cooling, and use of improved bearing materials.
High and low torque handpieces: cutting dynamics, enamel cracking and tooth temperature.
Watson, T F; Flanagan, D; Stone, D G
2000-06-24
The aim of these experiments was to compare the cutting dynamics of high-speed high-torque (speed-increasing) and high-speed low-torque (air-turbine) handpieces and evaluate the effect of handpiece torque and bur type on sub-surface enamel cracking. Temperature changes were also recorded in teeth during cavity preparation with high and low torque handpieces with diamond and tungsten carbide (TC) burs. The null hypothesis of this study was that high torque handpieces cause more damage to tooth structure during cutting and lead to a rise in temperature within the pulp-chamber. Images of the dynamic interactions between burs and enamel were recorded at video rate using a confocal microscope. Central incisors were mounted on a specially made servomotor driven stage for cutting with a type 57 TC bur. The two handpiece types were used with simultaneous recording of cutting load and rate. Sub-surface enamel cracking caused by the use of diamond and TC burs with high and low torque was also examined. Lower third molars were sectioned horizontally to remove the cusp tips and then the two remaining crowns cemented together with cyanoacrylate adhesive, by their flat surfaces. Axial surfaces of the crowns were then prepared with the burs and handpieces. The teeth were then separated and the original sectioned surface examined for any cracks using a confocal microscope. Heat generation was measured using thermocouples placed into the pulp chambers of extracted premolars, with diamond and TC burs/high-low torque handpiece variables, when cutting occlusal and cervical cavities. When lightly loaded the two handpiece types performed similarly. However, marked differences in cutting mechanisms were noted when increased forces were applied to the handpieces with, generally, an increase in cutting rate. The air turbine could not cope with steady heavy loads, tending to stall. 'Rippling' was seen in the interface as this stall developed, coinciding with the bur 'clearing' itself. No differences were noted between different handpieces and burs, in terms of sub-surface enamel cracking. Similarly, no differences were recorded for temperature rise during cavity preparation. Differences in cutting mechanisms were seen between handpieces with high and low torque, especially when the loads and cutting rates were increased. The speed increasing handpiece was better able to cope with increased loading. Nevertheless, there was no evidence of increased tooth cracking or heating with this type handpiece, indicating that these do not have any deleterious effects on the tooth.
Thermal management of an unconsolidated shallow urban groundwater body
NASA Astrophysics Data System (ADS)
Epting, J.; Händel, F.; Huggenberger, P.
2013-05-01
This study presents the development of tools for the sustainable thermal management of a shallow unconsolidated urban groundwater body in the city of Basel (Switzerland). The concept of the investigations is based on (1) a characterization of the present thermal state of the urban groundwater body, and (2) the evaluation of potential mitigation measures for the future thermal management of specific regions within the groundwater body. The investigations focus on thermal processes down-gradient of thermal groundwater use, effects of heated buildings in the subsurface as well as the thermal influence of river-groundwater interaction. Investigation methods include (1) short- and long-term data analysis, (2) high-resolution multilevel groundwater temperature monitoring, as well as (3) 3-D numerical groundwater flow and heat transport modeling and scenario development. The combination of these methods allows for the quantifying of the thermal influences on the investigated urban groundwater body, including the influences of thermal groundwater use and heated subsurface constructions. Subsequently, first implications for management strategies are discussed, including minimizing further groundwater temperature increase, targeting "potential natural" groundwater temperatures for specific aquifer regions and exploiting the thermal potential.
Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge
NASA Astrophysics Data System (ADS)
Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang
2010-05-01
Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Zhi; Zhang, Mingli; Ma, Wei
Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-04-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Defining the Post-Machined Sub-surface in Austenitic Stainless Steels
NASA Astrophysics Data System (ADS)
Srinivasan, N.; Sunil Kumar, B.; Kain, V.; Birbilis, N.; Joshi, S. S.; Sivaprasad, P. V.; Chai, G.; Durgaprasad, A.; Bhattacharya, S.; Samajdar, I.
2018-06-01
Austenitic stainless steels grades, with differences in chemistry, stacking fault energy, and thermal conductivity, were subjected to vertical milling. Anodic potentiodynamic polarization was able to differentiate (with machining speed/strain rate) between different post-machined sub-surfaces in SS 316L and Alloy A (a Cu containing austenitic stainless steel: Sanicroe 28™), but not in SS 304L. However, such differences (in the post-machined sub-surfaces) were revealed in surface roughness, sub-surface residual stresses and misorientations, and in the relative presence of sub-surface Cr2O3 films. It was shown, quantitatively, that higher machining speed reduced surface roughness and also reduced the effective depths of the affected sub-surface layers. A qualitative explanation on the sub-surface microstructural developments was provided based on the temperature-dependent thermal conductivity values. The results herein represent a mechanistic understanding to rationalize the corrosion performance of widely adopted engineering alloys.
Kato, Shingo; Sakai, Sanae; Hirai, Miho; Tasumi, Eiji; Nishizawa, Manabu; Suzuki, Katsuhiko; Takai, Ken
2018-01-01
Many thermophiles thriving in a natural high-temperature environment remain uncultivated, and their ecophysiological functions in the biogeochemical cycle remain unclear. In the present study, we performed long-term continuous cultivation at 65°C and 70°C using a microbial mat sample, collected from a subsurface geothermal stream, as the inoculum, and reconstructed the whole genome of the maintained populations using metagenomics. Some metagenome-assembled genomes (MAGs), affiliated into phylum-level bacterial and archaeal clades without cultivated representatives, contained genes involved in nitrogen metabolism including nitrification and denitrification. Our results show genetic components and their potential interactions for the biogeochemical nitrogen cycle in a subsurface geothermal environment. PMID:29459499
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.; ...
2016-07-18
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
Simulating the role of surface forcing on observed multidecadal upper-ocean salinity changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lago, Veronique; Wijffels, Susan E.; Durack, Paul J.
The ocean’s surface salinity field has changed over the observed record, driven by an intensification of the water cycle in response to global warming. However, the origin and causes of the coincident subsurface salinity changes are not fully understood. The relationship between imposed surface salinity and temperature changes and their corresponding subsurface changes is investigated using idealized ocean model experiments. The ocean’s surface has warmed by about 0.5°C (50 yr) –1 while the surface salinity pattern has amplified by about 8% per 50 years. The idealized experiments are constructed for a 50-yr period, allowing a qualitative comparison to the observedmore » salinity and temperature changes previously reported. The comparison suggests that changes in both modeled surface salinity and temperature are required to replicate the three-dimensional pattern of observed salinity change. The results also show that the effects of surface changes in temperature and salinity act linearly on the changes in subsurface salinity. In addition, surface salinity pattern amplification appears to be the leading driver of subsurface salinity change on depth surfaces; however, surface warming is also required to replicate the observed patterns of change on density surfaces. This is the result of isopycnal migration modified by the ocean surface warming, which produces significant salinity changes on density surfaces.« less
Using noble gases to investigate mountain-front recharge
Manning, A.H.; Solomon, D.K.
2003-01-01
Mountain-front recharge is a major component of recharge to inter-mountain basin-fill aquifers. The two components of mountain-front recharge are (1) subsurface inflow from the mountain block (subsurface inflow), and (2) infiltration from perennial and ephemeral streams near the mountain front (stream seepage). The magnitude of subsurface inflow is of central importance in source protection planning for basin-fill aquifers and in some water rights disputes, yet existing estimates carry large uncertainties. Stable isotope ratios can indicate the magnitude of mountain-front recharge relative to other components, but are generally incapable of distinguishing subsurface inflow from stream seepage. Noble gases provide an effective tool for determining the relative significance of subsurface inflow, specifically. Dissolved noble gas concentrations allow for the determination of recharge temperature, which is correlated with recharge elevation. The nature of this correlation cannot be assumed, however, and must be derived for the study area. The method is applied to the Salt Lake Valley Principal Aquifer in northern Utah to demonstrate its utility. Samples from 16 springs and mine tunnels in the adjacent Wasatch Mountains indicate that recharge temperature decreases with elevation at about the same rate as the mean annual air temperature, but is on average about 2??C cooler. Samples from 27 valley production wells yield recharge elevations ranging from the valley elevation (about 1500 m) to mid-mountain elevation (about 2500 m). Only six of the wells have recharge elevations less than 1800 m. Recharge elevations consistently greater than 2000 m in the southeastern part of the basin indicate that subsurface inflow constitutes most of the total recharge in this area. ?? 2003 Published by Elsevier Science B.V.
Temperature Contours around Milford FORGE site
Joe Moore
2016-03-09
This submission contains several ArcGIS shapefiles, each with Temperature contour lines at different depths. Subsurface temperature were important for characterizing the geothermal system beneath the FORGE site in Milford, Utah.
A new temperature profiling probe for investigating groundwater-surface water interaction
Naranjo, Ramon C.; Robert Turcotte,
2015-01-01
Measuring vertically nested temperatures at the streambed interface poses practical challenges that are addressed here with a new discrete subsurface temperature profiling probe. We describe a new temperature probe and its application for heat as a tracer investigations to demonstrate the probe's utility. Accuracy and response time of temperature measurements made at 6 discrete depths in the probe were analyzed in the laboratory using temperature bath experiments. We find the temperature probe to be an accurate and robust instrument that allows for easily installation and long-term monitoring in highly variable environments. Because the probe is inexpensive and versatile, it is useful for many environmental applications that require temperature data collection for periods of several months in environments that are difficult to access or require minimal disturbance.
Is Europa's Subsurface Water Ocean Warm?
NASA Technical Reports Server (NTRS)
Melosh, H. J.; Ekholm, A. G.; Showman, A. P.; Lorenz, R. D.
2002-01-01
Europa's subsurface water ocean may be warm: that is, at the temperature of water's maximum density. This provides a natural explanation of chaos melt-through events and leads to a correct estimate of the age of its surface. Additional information is contained in the original extended abstract.
Main, C E; Yool, A; Holliday, N P; Popova, E E; Jones, D O B; Ruhl, H A
2017-01-15
Little is known about the fate of subsurface hydrocarbon plumes from deep-sea oil well blowouts and their effects on processes and communities. As deepwater drilling expands in the Faroe-Shetland Channel (FSC), oil well blowouts are a possibility, and the unusual ocean circulation of this region presents challenges to understanding possible subsurface oil pathways in the event of a spill. Here, an ocean general circulation model was used with a particle tracking algorithm to assess temporal variability of the oil-plume distribution from a deep-sea oil well blowout in the FSC. The drift of particles was first tracked for one year following release. Then, ambient model temperatures were used to simulate temperature-mediated biodegradation, truncating the trajectories of particles accordingly. Release depth of the modeled subsurface plumes affected both their direction of transport and distance travelled from their release location, and there was considerable interannual variability in transport. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Seasonal dynamics in colored dissolved organic matter in the Mediterranean Sea: Patterns and drivers
NASA Astrophysics Data System (ADS)
Xing, Xiaogang; Claustre, Hervé; Wang, Haili; Poteau, Antoine; D`Ortenzio, Fabrizio
2014-01-01
Two autonomous profiling “Bio-Argo” floats were deployed in the northwestern and eastern sub-basins of the Mediterranean Sea in 2008. They recorded at high vertical (1 m) and temporal (5 day) resolution, the vertical distribution and seasonal variation of colored dissolved organic matter (CDOM), as well as of chlorophyll-a concentration and hydrological variables. The CDOM standing stock presented a clear seasonal dynamics with the progressive summer formation and winter destruction of subsurface CDOM maxima (YSM, for Yellow Substance Maximum). It was argued that subsurface CDOM is a by-product of phytoplankton, based on two main characteristics, (1) the YSM was located at the same depth than the deep chlorophyll maximum (DCM) and (2) the CDOM increased in summer parallels the decline in chlorophyll-a. These observations suggested an indirect but tight coupling between subsurface CDOM and phytoplankton via microbial activity or planktonic foodweb interactions. Moreover, the surface CDOM variations observed both by floats and MODIS displayed different seasonal dynamics from what recorded at subsurface one. This implies that CDOM standing stock can be hardly detected by satellite. It is worthnoting that surface CDOM was found to be more related to the sea surface temperature (SST) than chlorophyll-a concentration, suggesting its physical origin, in contrast to the biological origin of YSM and subsurface standing stocks.
Thermal etching of silver: Influence of rolling defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ollivier, M., E-mail: o.maelig@imperial.ac.uk
2016-08-15
Silver is well known to be thermally etched in an oxygen-rich atmosphere and has been extensively studied in the laboratory to understand thermal etching and to limit its effect when this material is used as a catalyst. Yet, in many industrial applications the surface of rolled silver sheets is used without particular surface preparation. Here, it is shown by combining FIB-tomography, FIB-SIMS and analytical SEM that the kinetics of thermal etch pitting are significantly faster on rolled Ag surfaces than on polished surfaces. This occurs due to range of interacting phenomena including (i) the reaction of subsurface carbon-contamination with dissolvedmore » oxygen to form pores that grow to intersect the surface, (ii) surface reconstruction around corrosion pits and surface scratches, and (iii) sublimation at low pressure and high temperature. A method to identify subsurface pores is developed to show that the pores have (111) and (100) internal facets and may be filled with a gas coming from the chemical reaction of oxygen and carbon contamination. - Highlights: Thermal etching of industrial silver sheets vs. polished silver sheets Effect of annealing atmosphere on the thermal etching of silver: surface and subsurface characterization Link between etch pitting and defects induced by rolling. FIB-tomography coupled with EBSD for determining crystal planes of the facets of subsurface pores. FIB-SIMS characterization to probe the gas confined inside subsurface pores.« less
NASA Astrophysics Data System (ADS)
Agudelo-Vera, Claudia M.; Blokker, Mirjam; de Kater, Henk; Lafort, Rob
2017-09-01
The water temperature in the drinking water distribution system and at customers' taps approaches the surrounding soil temperature at a depth of 1 m. Water temperature is an important determinant of water quality. In the Netherlands drinking water is distributed without additional residual disinfectant and the temperature of drinking water at customers' taps is not allowed to exceed 25 °C. In recent decades, the urban (sub)surface has been getting more occupied by various types of infrastructures, and some of these can be heat sources. Only recently have the anthropogenic sources and their influence on the underground been studied on coarse spatial scales. Little is known about the urban shallow underground heat profile on small spatial scales, of the order of 10 m × 10 m. Routine water quality samples at the tap in urban areas have shown up locations - so-called hotspots - in the city, with relatively high soil temperatures - up to 7 °C warmer - compared to the soil temperatures in the surrounding rural areas. Yet the sources and the locations of these hotspots have not been identified. It is expected that with climate change during a warm summer the soil temperature in the hotspots can be above 25 °C. The objective of this paper is to find a method to identify heat sources and urban characteristics that locally influence the soil temperature. The proposed method combines mapping of urban anthropogenic heat sources, retrospective modelling of the soil temperature, analysis of water temperature measurements at the tap, and extensive soil temperature measurements. This approach provided insight into the typical range of the variation of the urban soil temperature, and it is a first step to identifying areas with potential underground heat stress towards thermal underground management in cities.
Method of high-density foil fabrication
Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.
2003-12-16
A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.
NASA Astrophysics Data System (ADS)
Mora, Sergio Mosquera
Numerous studies have tried to determine the survivability and proliferation of microorganisms under simulated Martian conditions. Furthermore, most of them have been focused on the ability of these microbes to cope with high brines' salt (NaCl) concentrations inherent of the Martian surface. However, there are not studies related to the ability of bacteria to survive on subsurface environments that have increasing concentrations of sulfate compounds. For this research, a group of microorganisms known as sulfate-reducing bacteria or simply sulfate reducers were chosen due to their ability to use sulfate compounds as terminal electron acceptors to produce metabolic energy, their tolerance to low temperatures (psychrophilic microbes) and their anaerobic metabolism. Moreover, the principal purpose of this study was to determine the ability of sulfate reducers to carry active metabolism under conditions similar to those present on Mars subsurface (low temperature, high concentration of sulfate compounds, anoxic atmosphere-95% carbon dioxide, low nutrients availability, among others). Furthermore, we cultivated strains of Desulfotalea psychrophila, Desulfuromusa ferrireducens and Desulfotomaculum arcticum using different concentrations of minerals. The latter (CaSO 4, MgSO4, FeSO4 and Fe2(SO4) 3) are normally found as part of the Martian subsurface components and they can act as terminal electron acceptors in sulfate respiration. Moreover, PCR amplifications of the 16S rDNA gene and the dsrAB genes were performed in order to determine the growth and survivability of the three microorganisms tested. Finally, we were able to determine that they were metabolically active at the different types and mineral concentrations under study.
NASA Astrophysics Data System (ADS)
Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.
2017-09-01
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface-subsurface hydrological-thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon-climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological-thermal processes associated with annual freeze-thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets - including soil liquid water content, temperature and electrical resistivity tomography (ERT) data - to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological-thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface-subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice-liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological-thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological-thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface-subsurface, deterministic-stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological-thermal dynamics.
NASA Astrophysics Data System (ADS)
Parker, Andrew O.; Schmidt, Matthew W.; Chang, Ping
2015-11-01
The role of Atlantic Meridional Overturning Circulation (AMOC) as the driver of Dansgaard-Oeschger (DO) variability that characterized Marine Isotope Stage 3 (MIS 3) has long been hypothesized. Although there is ample proxy evidence suggesting that DO events were robust features of glacial climate, there is little data supporting a link with AMOC. Recently, modeling studies and subsurface temperature reconstructions have suggested that subsurface warming across the tropical North Atlantic can be used to fingerprint a weakened AMOC during the deglacial because a reduction in the strength of the western boundary current allows warm salinity maximum water of the subtropical gyre to enter the deep tropics. To determine if AMOC variability played a role during the DO cycles of MIS 3, we present new, high-resolution Mg/Ca and δ18O records spanning 24-52 kyr from the near-surface dwelling planktonic foraminifera Globigerinoides ruber and the lower thermocline dwelling planktonic foraminifera Globorotalia truncatulinoides in Southern Caribbean core VM12-107 (11.33°N, 66.63°W, 1079 m depth). Our subsurface Mg/Ca record reveals abrupt increases in Mg/Ca ratios (the largest equal to a 4°C warming) during the interstadial-stadial transition of most DO events during this period. This change is consistent with reconstructions of subsurface warming events associated with cold events across the deglacial using the same core. Additionally, our data support the conclusion reached by a recently published study from the Florida Straits that AMOC did not undergo significant reductions during Heinrich events 2 and 3. This record presents some of the first high-resolution marine sediment derived evidence for variable AMOC during MIS 3.
NASA Astrophysics Data System (ADS)
Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan
2016-03-01
The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.
The structure and temperature of Pluto's Sputnik Planum using 4.2 cm radiometry
NASA Astrophysics Data System (ADS)
Linscott, Ivan; Protopapa, Silvia; Hinson, David P.; Bird, Mike; Tyler, G. Leonard; Grundy, William M.; McKinnon, William B.; Olkin, Catherine B.; Stern, S. Alan; Stansberry, John A.; Weaver, Harold A.; Pluto Composition Team, Pluto Geophysics and Geology Team, Pluto Atmospheres Team
2016-10-01
New Horizons measured the radiometric brightness temperature of Pluto at 4.2 cm, during the encounter with two scans of the spacecraft's high gain antenna shortly after closest approach. The Pluto mid-section scan included the region informally known as Sputnik Planum, now understood to be filled with nitrogen ice. The mean radiometric brightness temperature at 4.2 cm, obtained in this region is 25 K, for both Right Circular Polarization (RCP) and Left Circular Polarization (LCP), well below the sublimation temperature for nitrogen ice. Sputnik Planum was near the limb and the termination of the radiometric scan. Consequently, the thermal emission was measured obliquely over a wide range of emission angles. This geometry affords detailed modeling of the angular dependence of the thermal radiation, incorporating surface and subsurface electromagnetic scattering models as well as emissivity models of the nitrogen ice. In addition, a bistatic radar measurement detected the scattering of a 4.2 cm uplink transmitted from Earth. The bistatic specular point was within Sputnik Planum and the measurements are useful for constraining the dielectric constant as well as the surface and subsurface scattering functions of the nitrogen ice. The combination of the thermal emission's angular dependence, RCP and LCP polarization dependence, and the bistatic scattering, yields estimates of the radiometric thermal emissivity, nitrogen ice temperature and spatial correlation scales.This work is supported by the NASA New Horizons Mission.
Retrieving Temperature Anomaly in the Global Subsurface and Deeper Ocean From Satellite Observations
NASA Astrophysics Data System (ADS)
Su, Hua; Li, Wene; Yan, Xiao-Hai
2018-01-01
Retrieving the subsurface and deeper ocean (SDO) dynamic parameters from satellite observations is crucial for effectively understanding ocean interior anomalies and dynamic processes, but it is challenging to accurately estimate the subsurface thermal structure over the global scale from sea surface parameters. This study proposes a new approach based on Random Forest (RF) machine learning to retrieve subsurface temperature anomaly (STA) in the global ocean from multisource satellite observations including sea surface height anomaly (SSHA), sea surface temperature anomaly (SSTA), sea surface salinity anomaly (SSSA), and sea surface wind anomaly (SSWA) via in situ Argo data for RF training and testing. RF machine-learning approach can accurately retrieve the STA in the global ocean from satellite observations of sea surface parameters (SSHA, SSTA, SSSA, SSWA). The Argo STA data were used to validate the accuracy and reliability of the results from the RF model. The results indicated that SSHA, SSTA, SSSA, and SSWA together are useful parameters for detecting SDO thermal information and obtaining accurate STA estimations. The proposed method also outperformed support vector regression (SVR) in global STA estimation. It will be a useful technique for studying SDO thermal variability and its role in global climate system from global-scale satellite observations.
Zhang, Zhiyuan; Ren, Baohua; Zheng, Jianqiu
2017-02-17
Using empirical orthogonal function (EOF) analysis of the monthly tropical Pacific subsurface ocean temperature anomalies (SOTA) from 1979 to 2014, we detected three leading modes in the tropical Pacific subsurface temperature. The first mode has a dipole pattern, with warming in the eastern Pacific and cooling in the western Pacific, and is closely related to traditional El Niño. The second mode has a monopole pattern, with only warming in the central Pacific subsurface. The third mode has a zonal tripole pattern, with warming in the off-equatorial central Pacific and cooling in the far eastern Pacific and western Pacific. The second and third modes are both related to El Niño Modoki. Mode 1 is linked with a Kelvin wave that propagates from the central to the eastern Pacific and is induced by the anomalous westerlies that propagate from the western to the central Pacific. Mode 2 is also linked with a Kelvin wave that propagates from the western to the central Pacific induced by the enhancement of westerlies over the western Pacific. Mode 3 is linked with a Rossby wave that propagates from the central to the western Pacific driven by the anomalous easterlies over the eastern Pacific.
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...
Latitude variation of the subsurface lunar temperature: Lunar Prospector thermal neutrons
NASA Astrophysics Data System (ADS)
Little, R. C.; Feldman, W. C.; Maurice, S.; Genetay, I.; Lawrence, D. J.; Lawson, S. L.; Gasnault, O.; Barraclough, B. L.; Elphic, R. C.; Prettyman, T. H.; Binder, A. B.
2003-05-01
Planetary thermal neutron fluxes provide a sensitive proxy for mafic and feldspathic terranes and are also necessary for translating measured gamma-ray line strengths to elemental abundances. Both functions require a model for near-surface temperatures and a knowledge of the dependence of thermal neutron flux on temperature. We have explored this dependence for a representative sample of lunar soil compositions and surface temperatures using the Monte Carlo N-Particle Code (MCNP™)(MNCP is a trademark of the Regents of the University of California, Los Alamos National Laboratory). For all soil samples, the neutron density is found to be independent of temperature, in accord with neutron moderation theory. The thermal neutron flux, however, does vary with temperature in a way that depends on Δ, the ratio of macroscopic absorption to energy-loss cross sections of soil compositions. The weakest dependence is for the largest Δ (which corresponds to the Apollo 17 high-Ti basalt in our soil selection), and the largest dependence is for the lowest Δ (which corresponds to ferroan anorthosite, [FAN] in our selection). For the lunar model simulated, the depth at which the thermal neutron population is most sensitive to temperature is ~30 g cm-2. These simulations were compared with the flux of thermal neutrons measured using the Lunar Prospector neutron spectrometer over the lunar highlands using a subsurface temperature profile that varies with latitude, λ, as Cos1/4λ. Model results assuming equatorial temperatures of 200 and 250 K are in reasonable agreement with measured data. This range of equatorial temperatures is not inconsistent with the average temperature measured below the diurnal thermal wave at the equator, Tmeas = 252 +/- 3 K [Langseth and Keihm, 1977].
Survey of TES high albedo events in Mars' northern polar craters
Armstrong, J.C.; Nielson, S.K.; Titus, T.N.
2007-01-01
Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.
Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley
Mikucki, J. A.; Auken, E.; Tulaczyk, S.; Virginia, R. A.; Schamper, C.; Sørensen, K. I.; Doran, P. T.; Dugan, H.; Foley, N.
2015-01-01
The occurrence of groundwater in Antarctica, particularly in the ice-free regions and along the coastal margins is poorly understood. Here we use an airborne transient electromagnetic (AEM) sensor to produce extensive imagery of resistivity beneath Taylor Valley. Regional-scale zones of low subsurface resistivity were detected that are inconsistent with the high resistivity of glacier ice or dry permafrost in this region. We interpret these results as an indication that liquid, with sufficiently high solute content, exists at temperatures well below freezing and considered within the range suitable for microbial life. These inferred brines are widespread within permafrost and extend below glaciers and lakes. One system emanates from below Taylor Glacier into Lake Bonney and a second system connects the ocean with the eastern 18 km of the valley. A connection between these two basins was not detected to the depth limitation of the AEM survey (∼350 m). PMID:25919365
Induction heaters used to heat subsurface formations
Nguyen, Scott Vinh [Houston, TX; Bass, Ronald M [Houston, TX
2012-04-24
A heating system for a subsurface formation includes an elongated electrical conductor located in the subsurface formation. The electrical conductor extends between at least a first electrical contact and a second electrical contact. A ferromagnetic conductor at least partially surrounds and at least partially extends lengthwise around the electrical conductor. The electrical conductor, when energized with time-varying electrical current, induces sufficient electrical current flow in the ferromagnetic conductor such that the ferromagnetic conductor resistively heats to a temperature of at least about 300.degree. C.
Yang, Sheng-long; Jin, Shao-fei; Hua, Cheng-jun; Dai, Yang
2015-02-01
In order to analyze the correlation between spatial-temporal distribution of the bigeye tuna ( Thunnus obesus) and subsurface factors, the study explored the isothermal distribution of subsurface temperatures in the bigeye tuna fishing grounds in the tropical Atlantic Ocean, and built up the spatial overlay chart of the isothermal lines of 9, 12, 13 and 15 °C and monthly CPUE (catch per unit effort) from bigeye tuna long-lines. The results showed that the bigeye tuna mainly distributed in the water layer (150-450 m) below the lower boundary depth of thermocline. At the isothermal line of 12 °C, the bigeye tuna mainly lived in the water layer of 190-260 m, while few individuals were found at water depth more than 400 m. As to the 13 °C isothermal line, high CPUE often appeared at water depth less than 250 m, mainly between 150-230 m, while no CPUE appeared at water depth more than 300 m. The optimum range of subsurface factors calculated by frequency analysis and empirical cumulative distribution function (ECDF) exhibited that the optimum depth range of 12 °C isothermal depth was 190-260 m and the 13 °C isothermal depth was 160-240 m, while the optimum depth difference range of 12 °C isothermal depth was -10 to 100 m and the 13 °C isothermal depth was -40 to 60 m. The study explored the optimum range of subsurface factors (water temperature and depth) that drive horizontal and vertical distribution of bigeye tuna. The preliminary result would help to discover the central fishing ground, instruct fishing depth, and provide theoretical and practical references for the longline production and resource management of bigeye tuna in the Atlantic Ocean.
Cyclic high temperature heat storage using borehole heat exchangers
NASA Astrophysics Data System (ADS)
Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian
2016-04-01
The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for varying storage cycle times, operating conditions and storage set-ups. A sensitivity analysis shows that storage efficiency strongly depends on the number of BHEs composing the storage site and the cycle time. Using a half-yearly cycle of heat injection and extraction with the maximum possible rates shows that the fraction of recovered heat increases with the number of storage cycles used, as initial losses due to heat conduction become smaller. Also, overall recovery rates of 70 to 80% are possible in the set-ups investigated. Temperature distribution in the geological heat storage site is most sensitive to the thermal conductivity of both borehole grouting and storage formation, while storage efficiency is dominated by the thermal conductivity of the storage formation. For the large cycle times of 6 months each used, heat capacity is less sensitive than the heat conductivity. Acknowledgments: This work is part of the ANGUS+ project (www.angusplus.de) and funded by the German Federal Ministry of Education and Research (BMBF) as part of the energy storage initiative "Energiespeicher".
NASA Astrophysics Data System (ADS)
Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.
2014-12-01
Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.
Seasonal Variability in Vadose zone biodegradation at a crude oil pipeline rupture site
Sihota, Natasha J.; Trost, Jared J.; Bekins, Barbara; Berg, Andrew M.; Delin, Geoffrey N.; Mason, Brent E.; Warren, Ean; Mayer, K. Ulrich
2016-01-01
Understanding seasonal changes in natural attenuation processes is critical for evaluating source-zone longevity and informing management decisions. The seasonal variations of natural attenuation were investigated through measurements of surficial CO2 effluxes, shallow soil CO2 radiocarbon contents, subsurface gas concentrations, soil temperature, and volumetric water contents during a 2-yr period. Surficial CO2 effluxes varied seasonally, with peak values of total soil respiration (TSR) occurring in the late spring and summer. Efflux and radiocarbon data indicated that the fractional contributions of natural soil respiration (NSR) and contaminant soil respiration (CSR) to TSR varied seasonally. The NSR dominated in the spring and summer, and CSR dominated in the fall and winter. Subsurface gas concentrations also varied seasonally, with peak values of CO2 and CH4 occurring in the fall and winter. Vadose zone temperatures and subsurface CO2 concentrations revealed a correlation between contaminant respiration and temperature. A time lag of 5 to 7 mo between peak subsurface CO2 concentrations and peak surface efflux is consistent with travel-time estimates for subsurface gas migration. Periods of frozen soils coincided with depressed surface CO2 effluxes and elevated CO2 concentrations, pointing to the temporary presence of an ice layer that inhibited gas transport. Quantitative reactive transport simulations demonstrated aspects of the conceptual model developed from field measurements. Overall, results indicated that source-zone natural attenuation (SZNA) rates and gas transport processes varied seasonally and that the average annual SZNA rate estimated from periodic surface efflux measurements is 60% lower than rates determined from measurements during the summer.
Assessing the prospective resource base for enhanced geothermal systems in Europe
NASA Astrophysics Data System (ADS)
Limberger, J.; Calcagno, P.; Manzella, A.; Trumpy, E.; Boxem, T.; Pluymaekers, M. P. D.; van Wees, J.-D.
2014-12-01
In this study the resource base for EGS (enhanced geothermal systems) in Europe was quantified and economically constrained, applying a discounted cash-flow model to different techno-economic scenarios for future EGS in 2020, 2030, and 2050. Temperature is a critical parameter that controls the amount of thermal energy available in the subsurface. Therefore, the first step in assessing the European resource base for EGS is the construction of a subsurface temperature model of onshore Europe. Subsurface temperatures were computed to a depth of 10 km below ground level for a regular 3-D hexahedral grid with a horizontal resolution of 10 km and a vertical resolution of 250 m. Vertical conductive heat transport was considered as the main heat transfer mechanism. Surface temperature and basal heat flow were used as boundary conditions for the top and bottom of the model, respectively. If publicly available, the most recent and comprehensive regional temperature models, based on data from wells, were incorporated. With the modeled subsurface temperatures and future technical and economic scenarios, the technical potential and minimum levelized cost of energy (LCOE) were calculated for each grid cell of the temperature model. Calculations for a typical EGS scenario yield costs of EUR 215 MWh-1 in 2020, EUR 127 MWh-1 in 2030, and EUR 70 MWh-1 in 2050. Cutoff values of EUR 200 MWh-1 in 2020, EUR 150 MWh-1 in 2030, and EUR 100 MWh-1 in 2050 are imposed to the calculated LCOE values in each grid cell to limit the technical potential, resulting in an economic potential for Europe of 19 GWe in 2020, 22 GWe in 2030, and 522 GWe in 2050. The results of our approach do not only provide an indication of prospective areas for future EGS in Europe, but also show a more realistic cost determined and depth-dependent distribution of the technical potential by applying different well cost models for 2020, 2030, and 2050.
The Astrobiology of the Subsurface: Exploring Cave Habitats on Earth, Mars and Beyond
NASA Technical Reports Server (NTRS)
Boston, Penelope Jane
2016-01-01
We are using the spectacular underground landscapes of Earth caves as models for the subsurfaces of other planets. Caves have been detected on the Moon and Mars and are strongly suspected for other bodies in the Solar System including some of the ice covered Ocean Worlds that orbit gas giant planets. The caves we explore and study include many extreme conditions of relevance to planetary astrobiology exploration including high and low temperatures, gas atmospheres poisonous to humans but where exotic microbes can flourish, highly acidic or salty fluids, heavy metals, and high background radiation levels. Some cave microorganisms eat their way through bedrock, some live in battery acid conditions, some produce unusual biominerals and rare cave formations, and many produce compounds of potential pharmaceutical and industrial significance. We study these unique lifeforms and the physical and chemical biosignatures that they leave behind. Such traces can be used to provide a "Field Guide to Unknown Organisms" for developing life detection space missions.
NASA Astrophysics Data System (ADS)
Epting, Jannis; García-Gil, Alejandro; Huggenberger, Peter; Vázquez-Suñe, Enric; Mueller, Matthias H.
2017-05-01
The shallow subsurface in urban areas is increasingly used by shallow geothermal energy systems as a renewable energy resource and as a cheap cooling medium, e.g. for building air conditioning. In combination with further anthropogenic activities, this results in altered thermal regimes in the subsurface and the so-called subsurface urban heat island effect. Successful thermal management of urban groundwater resources requires understanding the relative contributions of the different thermal parameters and boundary conditions that result in the "present thermal state" of individual urban groundwater bodies. To evaluate the "present thermal state" of urban groundwater bodies, good quality data are required to characterize the hydraulic and thermal aquifer parameters. This process also involved adequate monitoring systems which provide consistent subsurface temperature measurements and are the basis for parameterizing numerical heat-transport models. This study is based on previous work already published for two urban groundwater bodies in Basel (CH) and Zaragoza (ES), where comprehensive monitoring networks (hydraulics and temperature) as well as calibrated high-resolution numerical flow- and heat-transport models have been analyzed. The "present thermal state" and how it developed according to the different hydraulic and thermal boundary conditions is compared to a "potential natural state" in order to assess the anthropogenic thermal changes that have already occurred in the urban groundwater bodies we investigated. This comparison allows us to describe the various processes concerning groundwater flow and thermal regimes for the different urban settings. Furthermore, the results facilitate defining goals for specific aquifer regions, including future aquifer use and urbanization, as well as evaluating the thermal use potential for these regions. As one example for a more sustainable thermal use of subsurface water resources, we introduce the thermal management concept of the "relaxation factor", which is a first approach to overcome the present policy of "first come, first served". Remediation measures to regenerate overheated urban aquifers are also introduced. The transferability of the applied methods to other urban areas is discussed. It is shown that an appropriate selection of locations for monitoring hydraulic and thermal boundary conditions make it possible to implement representative interpretations of groundwater flow and thermal regimes as well as to set up high-resolution numerical flow- and heat-transport models. Those models are the basis for the sustainable management of thermal resources.
DeMeo, Guy A.; Flint, Alan L.; Laczniak, Randell J.; Nylund, Walter E.
2006-01-01
Micrometeorological and soil-moisture data were collected at two instrumented sites on Rainier Mesa at the Nevada Test Site, January 1, 2002 - August 23, 2005. Data collected at each site include net radiation, air temperature, and relative humidity at two heights; wind speed and direction; subsurface soil heat flux; subsurface soil temperature; volumetric soil water; and matric water potential. These data were used to estimate 20-minute average and daily average evapotranspiration values. The data presented in this report are collected and calculated evapotranspiration rates.
Paul, Anup; Narasimhan, Arunn; Das, Sarit K; Sengupta, Soujit; Pradeep, Thalappil
2016-11-01
The purpose of this study was to understand the subsurface thermal behaviour of a tissue phantom embedded with large blood vessels (LBVs) when exposed to near-infrared (NIR) radiation. The effect of the addition of nanoparticles to irradiated tissue on the thermal sink behaviour of LBVs was also studied. Experiments were performed on a tissue phantom embedded with a simulated blood vessel of 2.2 mm outer diameter (OD)/1.6 mm inner diameter (ID) with a blood flow rate of 10 mL/min. Type I collagen from bovine tendon and agar gel were used as tissue. Two different nanoparticles, gold mesoflowers (AuMS) and graphene nanostructures, were synthesised and characterised. Energy equations incorporating a laser source term based on multiple scattering theories were solved using finite element-based commercial software. The rise in temperature upon NIR irradiation was seen to vary according to the position of the blood vessel and presence of nanoparticles. While the maximum rise in temperature was about 10 °C for bare tissue, it was 19 °C for tissue embedded with gold nanostructures and 38 °C for graphene-embedded tissues. The axial temperature distribution predicted by computational simulation matched the experimental observations. A different subsurface temperature distribution has been obtained for different tissue vascular network models. The position of LBVs must be known in order to achieve optimal tissue necrosis. The simulation described here helps in predicting subsurface temperature distributions within tissues during plasmonic photo-thermal therapy so that the risks of damage and complications associated with in vivo experiments and therapy may be avoided.
Dhar, Purbarun; Paul, Anup; Narasimhan, Arunn; Das, Sarit K
2016-12-01
Knowledge of thermal history and/or distribution in biological tissues during laser based hyperthermia is essential to achieve necrosis of tumour/carcinoma cells. A semi-analytical model to predict sub-surface thermal distribution in translucent, soft, tissue mimics has been proposed. The model can accurately predict the spatio-temporal temperature variations along depth and the anomalous thermal behaviour in such media, viz. occurrence of sub-surface temperature peaks. Based on optical and thermal properties, the augmented temperature and shift of the peak positions in case of gold nanostructure mediated tissue phantom hyperthermia can be predicted. Employing inverse approach, the absorption coefficient of nano-graphene infused tissue mimics is determined from the peak temperature and found to provide appreciably accurate predictions along depth. Furthermore, a simplistic, dimensionally consistent correlation to theoretically determine the position of the peak in such media is proposed and found to be consistent with experiments and computations. The model shows promise in predicting thermal distribution induced by lasers in tissues and deduction of therapeutic hyperthermia parameters, thereby assisting clinical procedures by providing a priori estimates. Copyright © 2016 Elsevier Ltd. All rights reserved.
Illuminating the Voluminous Subsurface Structures of Old Faithful Geyser, Yellowstone National Park
NASA Astrophysics Data System (ADS)
Hurwitz, Shaul; Shelly, David R.
2017-10-01
Old Faithful geyser in Yellowstone National Park has attracted scientific research for almost a century and a half. Temperature and pressure measurements and video recordings in the geyser's conduit led to proposals of many quantitative eruption models. Nevertheless, information on the processes that initiate the geyser's eruption in the subsurface remained limited. Two new studies, specifically Wu et al. (2017) and Ward and Lin (2017), take advantage of recent developments in seismic data acquisition technology and processing methods to illuminate subsurface structures. Using a dense array of three-component nodal geophones, these studies delineate subsurface structures on a scale larger than previously realized, which exert control on the spectacular eruptions of Old Faithful geyser.
Remote sensing based water-use efficiency evaluation in sub-surface irrigated wine grape vines
NASA Astrophysics Data System (ADS)
Zúñiga, Carlos Espinoza; Khot, Lav R.; Jacoby, Pete; Sankaran, Sindhuja
2016-05-01
Increased water demands have forced agriculture industry to investigate better irrigation management strategies in crop production. Efficient irrigation systems, improved irrigation scheduling, and selection of crop varieties with better water-use efficiencies can aid towards conserving water. In an ongoing experiment carried on in Red Mountain American Viticulture area near Benton City, Washington, subsurface drip irrigation treatments at 30, 60 and 90 cm depth, and 15, 30 and 60% irrigation were applied to satisfy evapotranspiration demand using pulse and continuous irrigation. These treatments were compared to continuous surface irrigation applied at 100% evapotranspiration demand. Thermal infrared and multispectral images were acquired using unmanned aerial vehicle during the growing season. Obtained results indicated no difference in yield among treatments (p<0.05), however there was statistical difference in leaf temperature comparing surface and subsurface irrigation (p<0.05). Normalized vegetation index obtained from the analysis of multispectral images showed statistical difference among treatments when surface and subsurface irrigation methods were compared. Similar differences in vegetation index values were observed, when irrigation rates were compared. Obtained results show the applicability of aerial thermal infrared and multispectral images to characterize plant responses to different irrigation treatments and use of such information in irrigation scheduling or high-throughput selection of water-use efficient crop varieties in plant breeding.
Novel approaches for an enhanced geothermal development of residential sites
NASA Astrophysics Data System (ADS)
Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas
2015-04-01
An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.
Practical SQUID Instrument for Nondestructive Testing
NASA Technical Reports Server (NTRS)
Tralshawala, N.; Claycomb, J. R.; Miller, John H., Jr.
1997-01-01
We report on the development of a scanning eddy-current imaging system designed to detect deep subsurface flaws in conducting materials. A high transition temperature (high-T c) superconducting quantum interference device (SQUID) magnetometer is employed to provide the required sensitivity at low frequencies, while a combination of small cylindrical high-Tc superconducting and A-metal shields enable the instrument to be scanned in a magnetically noisy environment, rather than the object under test. The shields are arranged to prevent unwanted excitation and ambient noise fields from reaching the SQUID, and to enhance spatial resolution and minimize undesirable edge effects. Thus far, the instrument has successfully detected cracks and pits through 10 layers of aluminum, with a combined thickness of 5 cm at room temperature.
Comparison of winter temperature profiles in asphalt and concrete pavements.
DOT National Transportation Integrated Search
2014-06-01
The objectives of this research were to 1) determine which pavement type, asphalt or concrete, has : higher surface temperatures in winter and 2) compare the subsurface temperatures under asphalt and : concrete pavements to determine the pavement typ...
The warming trend of ground surface temperature in the Choshui Alluvial Fan, western central Taiwan
NASA Astrophysics Data System (ADS)
Chen, W.; Chang, M.; Chen, J.; Lu, W.; Huang, C. C.; Wang, Y.
2013-12-01
Heat storage in subsurface of the continents forms a fundamental component of the global energy budget and plays an important role in the climate system. Several researches revealed that subsurface temperatures were being increased to 1.8-2.8°C higher in mean ground surface temperature (GST) for some Asian cities where are experiencing a rapid growth of population. Taiwan is a subtropic-tropic island with densely populated in the coastal plains surrounding its mountains. We investigate the subsurface temperature distribution and the borehole temperature-depth profiles by using groundwater monitoring wells in years 2000 and 2010. Our data show that the western central Taiwan plain also has been experiencing a warming trend but with a higher temperatures approximately 3-4 °C of GST during the last 250 yrs. We suggest that the warming were mostly due to the land change to urbanization and agriculture. The current GSTs from our wells are approximately 25.51-26.79 °C which are higher than the current surface air temperature (SAT) of 23.65 °C. Data from Taiwan's weather stations also show 1-1.5 °C higher for the GST than the SAT at neighboring stations. The earth surface heat balance data indicate that GST higher than SAT is reasonable. More researches are needed to evaluate the interaction of GST and SAT, and how a warming GST's impact to the SAT and the climate system of the Earth.
Lunar Polar Cold Traps: Spatial Distribution and Temperatures
NASA Astrophysics Data System (ADS)
Paige, David A.; Siegler, M.; Lawrence, D. J.
2006-09-01
We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.
NASA Technical Reports Server (NTRS)
Keppenne, Christian; Vernieres, Guillaume; Rienecker, Michele; Jacob, Jossy; Kovach, Robin
2011-01-01
Satellite altimetry measurements have provided global, evenly distributed observations of the ocean surface since 1993. However, the difficulties introduced by the presence of model biases and the requirement that data assimilation systems extrapolate the sea surface height (SSH) information to the subsurface in order to estimate the temperature, salinity and currents make it difficult to optimally exploit these measurements. This talk investigates the potential of the altimetry data assimilation once the biases are accounted for with an ad hoc bias estimation scheme. Either steady-state or state-dependent multivariate background-error covariances from an ensemble of model integrations are used to address the problem of extrapolating the information to the sub-surface. The GMAO ocean data assimilation system applied to an ensemble of coupled model instances using the GEOS-5 AGCM coupled to MOM4 is used in the investigation. To model the background error covariances, the system relies on a hybrid ensemble approach in which a small number of dynamically evolved model trajectories is augmented on the one hand with past instances of the state vector along each trajectory and, on the other, with a steady state ensemble of error estimates from a time series of short-term model forecasts. A state-dependent adaptive error-covariance localization and inflation algorithm controls how the SSH information is extrapolated to the sub-surface. A two-step predictor corrector approach is used to assimilate future information. Independent (not-assimilated) temperature and salinity observations from Argo floats are used to validate the assimilation. A two-step projection method in which the system first calculates a SSH increment and then projects this increment vertically onto the temperature, salt and current fields is found to be most effective in reconstructing the sub-surface information. The performance of the system in reconstructing the sub-surface fields is particularly impressive for temperature, but not as satisfactory for salt.
Subsurface temperatures and geothermal gradients on the North Slope, Alaska
Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.
1989-01-01
Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).
The snake geothermal drilling project. Innovative approaches to geothermal exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shervais, John W.; Evans, James P.; Liberty, Lee M.
2014-02-21
The goal of our project was to test innovative technologies using existing and new data, and to ground-truth these technologies using slim-hole core technology. The slim-hole core allowed us to understand subsurface stratigraphy and alteration in detail, and to correlate lithologies observed in core with surface based geophysical studies. Compiled data included geologic maps, volcanic vent distribution, structural maps, existing well logs and temperature gradient logs, groundwater temperatures, and geophysical surveys (resistivity, magnetics, gravity). New data included high-resolution gravity and magnetic surveys, high-resolution seismic surveys, three slimhole test wells, borehole wireline logs, lithology logs, water chemistry, alteration mineralogy, fracture distribution,more » and new thermal gradient measurements.« less
Method for formation of subsurface barriers using viscous colloids
Apps, J.A.; Persoff, P.; Moridis, G.; Pruess, K.
1998-11-17
A method is described for formation of subsurface barriers using viscous liquids where a viscous liquid solidifies at a controlled rate after injection into soil and forms impermeable isolation of the material enclosed within the subsurface barriers. The viscous liquid is selected from the group consisting of polybutenes, polysiloxanes, colloidal silica and modified colloidal silica of which solidification is controlled by gelling, cooling or cross-linking. Solidification timing is controlled by dilution, addition of brines, coating with alumina, stabilization with various agents and by temperature. 17 figs.
NASA Astrophysics Data System (ADS)
Bense, Victor; de Kleijn, Christian; van Daal, Jonathan
2017-04-01
Atmospheric warming, urbanisation, land-use changes, groundwater abstraction and aquifer thermal energy storage can induce significant changes in the subsurface thermal regime. These need to better understood and monitored in order for humanity to make efficient use of the subsurface as a thermal reservoir, but also to understand how this space acts as a heat sink during the current warming of the climate. This work aims to improve our understanding of the relative importance, spatiotemporal characteristics and mechanisms of how various environmental processes and anthropogenic activities control changes in subsurface thermal regimes. Such changes are poignantly illustrated by temperature-depth profiles recently obtained in 30 boreholes upto several hundreds of meters deep that are present in the unconsolidated sedimentary aquifer system of the Veluwe area, Netherlands. A comparison to similar data collected in 1978-1980 shows that since then across the entire study area subsurface warming has occurred to depths upto 250 m. The availability of historic land-use maps, hydrogeological and meteorological data for this area allow for a detailed analysis of the observed subsurface warming patterns, which is aided by numerical models of coupled groundwater and heat flow. On a regional scale and across the entire first 100-150 m into the subsurface, the classic thermal signatures of variations in land-use, groundwater recharge and discharge fluxes, are increasingly overprinted by those of regional atmospheric warming and urbanisation. In the topographically higher, forested groundwater recharge areas groundwater is significantly cooler (upto 6 K) than in the open agricultural lands where groundwater is discharging. The presence of a thick (upto 30-40 m) unsaturated zone in the recharge area probably enhances this striking contrast in groundwater temperature in addition to the effects of groundwater recharge and the presence of forest. Locally and at larger depths, however, aquifer thermal storage activities and groundwater abstraction have a strong and probably more immediate role in altering the subsurface thermal regime.
NASA Astrophysics Data System (ADS)
Gao, Wei; Wang, Zhenyan; Zhang, Kainan
2017-11-01
Based on the conductivity, temperature and depth (CTD) data collected at 93 hydrographic stations during a marine cruise and on contemporary satellite altimeter observations, a series of eddies have been observed passing over the stratified upper water of the Parece Vela Basin. The results from hydrographic measurements and in situ chlorophyll fluorescence measurements have revealed that these eddies exerted significant controlling effects on the thermohaline structure and chlorophyll distribution, especially on the prevalent subsurface chlorophyll maximum layer (SCML). Based on these observations and particulate beam attenuation coefficient (cp) data, the in situ phytoplankton bloom around the pycnocline can be largely attributable to the formation of a well-developed SCML in the studied system. The uplift of the cold subsurface water within the cyclone, shoaling the pycnocline to a shallower layer, resulted in a low-temperature anomaly and different salinity anomalies at different depths. This uplift in the cyclone further caused the SCML to appear at a shallower depth with a higher in situ chlorophyll concentration than that in the normal domain. Conversely, the sinking of the warm surface water to the subsurface layer within the anticyclone depressed the pycnocline to a deeper layer and generated a high-temperature anomaly and opposite salinity anomalies compared with the cyclone. The sinking of the pycnocline within the anticyclone considerably influenced the characteristics of the SCML, which had a deeper depth and a lower in situ chlorophyll concentration than that of the normal sea. This study contributes rare quasi-synchronous CTD observations capturing mesoscale eddies and provides valuable descriptions of the variations in the SCML under the influence of mesoscale eddies based on in situ optical measurements from the seldom-discussed western North Pacific.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna; Gregory, Kelvin B.; Lowry, Gregorgy V.
Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 22 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2 exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gulliver, Djuna M.; Gregory, Kelvin B.; Lowry, Gregory V.
Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO 2) emissions to the atmosphere. During this process, CO 2 is injected as super critical carbon dioxide (SC-CO 2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO 2 in subsurface geologic formations could unintentionally lead to CO 2 leakage into overlying freshwater aquifers. Introduction of CO 2 into these subsurface environments will greatly increase the CO 2 concentration and will create CO 2 concentration gradients that drivemore » changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO 2 gradients will impact these communities. The overarching goal of this project is to understand how CO 2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO 2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO 2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO 2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO 2 injection/leakage plume where CO 2 concentrations are highest. At CO 2 exposures expected downgradient from the CO 2 plume, selected microorganisms emerged as dominant in the CO 2 exposed conditions. Results suggest that the altered microbial community was site specific and highly dependent on pH. The site-dependent results suggest a limited ability to predict the emerging dominant species for other CO 2-exposed environments. This study improves the understanding of how a subsurface microbial community may respond to conditions expected from GCS and CO 2 leakage. This is the first step for understanding how a CO 2-altered microbial community may impact injectivity, permanence of stored CO 2, and subsurface water quality. Future work with microbial communities from new subsurface sites would increase the current understanding of this project. Additionally, incorporation of metagenomic methods would increase understanding of potential microbial processes that may be prevalent in CO 2 exposed environments.« less
Zerodur polishing process for high surface quality and high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesar, A.; Fuchs, B.
1992-08-01
Zerodur is a glass-ceramic composite importance in applications where temperature instabilities influence optical and mechanical performance, such as in earthbound and spaceborne telescope mirror substrates. Polished Zerodur surfaces of high quality have been required for laser gyro mirrors. Polished surface quality of substrates affects performance of high reflection coatings. Thus, the interest in improving Zerodur polished surface quality has become more general. Beyond eliminating subsurface damage, high quality surfaces are produced by reducing the amount of hydrated material redeposited on the surface during polishing. With the proper control of polishing parameters, such surfaces exhibit roughnesses of
Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow
NASA Astrophysics Data System (ADS)
Nunn, J. A.
2008-12-01
Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.
Yamano, Makoto; Goto, Shusaku; Miyakoshi, Akinobu; Hamamoto, Hideki; Lubis, Rachmat Fajar; Monyrath, Vuthy; Taniguchi, Makoto
2009-04-15
It is possible to estimate the ground surface temperature (GST) history of the past several hundred years from temperature profiles measured in boreholes because the temporal variation in GST propagates into the subsurface by thermal diffusion. This "geothermal method" of reconstructing GST histories can be applied to studies of thermal environment evolution in urban areas, including the development of "heat islands." Temperatures in boreholes were logged at 102 sites in Bangkok, Jakarta, Taipei, Seoul and their surrounding areas in 2004 to 2007. The effects of recent surface warming can be recognized in the shapes of most of the obtained temperature profiles. The preliminary results of reconstruction of GST histories through inversion analysis show that GST increased significantly in the last century. Existing temperature profile data for the areas in and around Tokyo and Osaka can also be used to reconstruct GST histories. Because most of these cities are located on alluvial plains in relatively humid areas, it is necessary to use a model with groundwater flow and a layered subsurface structure for reconstruction analysis. Long-term records of subsurface temperatures at multiple depths may demonstrate how the GST variation propagates downward through formations. Time series data provide information on the mechanism of heat transfer (conduction or advection) and the thermal diffusivity. Long-term temperature monitoring has been carried out in a borehole located on the coast of Lake Biwa, Japan. Temperatures at 30 and 40 m below the ground surface were measured for 4 years and 2 years, respectively, with a resolution of 1 mK. The obtained records indicate steady increases at both depths with different rates, which is probably the result of some recent thermal event(s) near the surface. Borehole temperatures have also been monitored at selected sites in Bangkok, Jakarta, and Taiwan.
This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...
Subsurface plasma in beam of continuous CO2-laser
NASA Astrophysics Data System (ADS)
Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.
1986-03-01
Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.
Liquid Water in the Extremely Shallow Martian Subsurface
NASA Technical Reports Server (NTRS)
Pavlov, A.; Shivak, J. N.
2012-01-01
Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.
Modeling Regolith Temperatures and Volatile Ice Processes (Invited)
NASA Astrophysics Data System (ADS)
Mellon, M. T.
2013-12-01
Surface and subsurface temperatures are an important tool for exploring the distribution and dynamics of volatile ices on and within planetary regoliths. I will review thermal-analysis approaches and recent applications in the studies of volatile ice processes. Numerical models of regolith temperatures allow us to examine the response of ices to periodic and secular changes in heat sources such as insolation. Used in conjunction with spatially and temporally distributed remotely-sensed temperatures, numerical models can: 1) constrain the stability and dynamics of volatile ices; 2) define the partitioning between phases of ice, gas, liquid, and adsorbate; and 3) in some instances be used to probe the distribution of ice hidden from view beneath the surface. The vapor pressure of volatile ices (such as water, carbon dioxide, and methane) depends exponentially on temperature. Small changes in temperature can result in transitions between stable phases. Cyclic temperatures and the propagation of thermal waves into the subsurface can produce a strong hysteresis in the population and partitioning of various phases (such as between ice, vapor, and adsorbate) and result in bulk transport. Condensation of ice will also have a pronounced effect on the thermal properties of otherwise loose particulate regolith. Cementing grains at their contacts through ice deposition will increase the thermal conductivity, and may enhance the stability of additional ice. Likewise sintering of grains within a predominantly icy regolith will increase the thermal conductivity. Subsurface layers that result from ice redistribution can be discriminated by remote sensing when combined with numerical modeling. Applications of these techniques include modeling of seasonal carbon dioxide frosts on Mars, predicting and interpreting the subsurface ice distribution on Mars and in Antarctica, and estimating the current depth of ice-rich permafrost on Mars. Additionally, understanding cold trapping ices in regions of the regolith of airless bodies, such as Mercury and the Moon, are aided by numerical modeling of regolith temperatures. Thermally driven sublimation of volatiles (water ice on Mars and more exotic species on icy moons in the outer solar system) can result in terrain degradation and collapse.
Stable carbon isotopes of HCO3- in oil-field waters-implications for the origin of CO2
Carothers, W.W.; Kharaka, Y.K.
1980-01-01
The ??13C values of dissolved HCO3- in 75 water samples from 15 oil and gas fields (San Joaquin Valley, Calif., and the Houston-Galveston and Corpus Christi areas of Texas) were determined to study the sources of CO2 of the dissolved species and carbonate cements that modify the porosity and permeability of many petroleum reservoir rocks. The reservoir rocks are sandstones which range in age from Eocene through Miocene. The ??13C values of total HCO3- indicate that the carbon in the dissolved carbonate species and carbonate cements is mainly of organic origin. The range of ??13C values for the HCO3- of these waters is -20-28 per mil relative to PDB. This wide range of ??13C values is explained by three mechanisms. Microbiological degradation of organic matter appears to be the dominant process controlling the extremely low and high ??13C values of HCO3- in the shallow production zones where the subsurface temperatures are less than 80??C. The extremely low ??13C values (< -10 per mil) are obtained in waters where concentrations of SO42- are more than 25 mg/l and probably result from the degradation of organic acid anions by sulfate-reducing bacteria (SO42- + CH3COO- ??? 2HCO3- + HS-). The high ??13C values probably result from the degradation of these anions by methanogenic bacteria (CH3COO- + H2O ai HCO3- + CH4). Thermal decarboxylation of short-chain aliphatic acid anions (principally acetate) to produce CO2 and CH4 is probably the major source of CO2 for production zones with subsurface temperatures greater than 80??C. The ??13C values of HCO3- for waters from zones with temperatures greater than 100??C result from isotopic equilibration between CO2 and CH4. At these high temperatures, ??13C values of HCO3- decrease with increasing temperatures and decreasing concentrations of these acid anions. ?? 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Bao, J; Huang, M
Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less
Fracture behaviour of the 14Cr ODS steel exposed to helium and liquid lead
NASA Astrophysics Data System (ADS)
Hojna, Anna; Di Gabriele, Fosca; Hadraba, Hynek; Husak, Roman; Kubena, Ivo; Rozumova, Lucia; Bublikova, Petra; Kalivodova, Jana; Matejicek, Jiri
2017-07-01
This work describes the fracture behaviour of the 14Cr ODS steel produced by mechanical alloying process, after high temperature exposures. Small specimens were exposed to helium gas in a furnace at 720 °C for 500 h. Another set of specimens was exposed to flowing liquid lead in the COLONRI II loop at 650 °C for 1000 h. All specimens were tested for the impact and tensile behaviour. The impact test results are compared to other sets of specimens in the as received state and after isothermal annealing at 650 °C for 1000 h. The impact curves of the exposed materials showed positive shifts on the transition temperature. While the upper shelf value did not change in the Pb exposed ODS steel, it significantly increased in the He exposed one. The differences are discussed in terms of surface and subsurface microscopy observation. The embrittlement can be explained as the effect of a slight change in the grain boundary and size distribution combined with the depletion of sub-surface region from alloying elements forming oxide scale on the surface.
The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment
NASA Astrophysics Data System (ADS)
Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman
2017-10-01
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.
The subsurface record for the Anthropocene based on the global analysis of deep wells
NASA Astrophysics Data System (ADS)
Rose, K.
2016-12-01
While challenges persist in the characterization of Earth's subsurface, over two centuries of exploration resulting in more than six million deep wellbores, offer insights into these systems. Characteristics of the subsurface vary and can be analyzed on a variety of spatial scales using geospatial tools and methods. Characterization and prediction of subsurface properties, such as depth, thickness, porosity, permeability, pressure and temperature, are important for models and interpretations of the subsurface. Subsurface studies contribute to insights and understanding of natural system but also enable predictions and assessments of subsurface resources and support environmental and geohazard assessments. As the geo-data science landscape shifts, becoming more open, there are increasing opportunities to fill knowledge gaps, mine large, interrelated datasets, and develop innovative methods to improve our understanding of the subsurface and the impacts of its exploration. In this study, a global dataset of more than 6,000,000 deep subsurface wells has been assembled using ArcGIS and Access, which reflects to a first order, the cumulative representation of over two centuries of drilling. Wellbore data, in general represent the only portal for direct measurement and characterization of deep subsurface properties. As human engineering of the subsurface evolves from a focus on hydrocarbon resource development to include subsurface waste product disposal (e.g. CO2, industrial waste, etc) and production of other deep subsurface resources, such as heat and water resources, there is the increasing need to improve characterization techniques and understand local and global ramifications of anthropogenic interaction with the subsurface. Data and geospatial analyses are reviewed to constrain the extent to which human interactions, not just with Earth's surface systems, atmospheric and geologic, but subsurface systems will result in an enduring signature of human influences on the planet. Specifically, the extent and enduring signature of subsurface interactions with the planet, utilizing the four-dimensional, spatial and temporal, record for known deep wellbores is utilized.
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.
2017-09-06
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid watermore » content, temperature and electrical resistivity tomography (ERT) data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological–thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface–subsurface, deterministic–stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological–thermal dynamics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.
Quantitative characterization of soil organic carbon (OC) content is essential due to its significant impacts on surface–subsurface hydrological–thermal processes and microbial decomposition of OC, which both in turn are important for predicting carbon–climate feedbacks. While such quantification is particularly important in the vulnerable organic-rich Arctic region, it is challenging to achieve due to the general limitations of conventional core sampling and analysis methods, and to the extremely dynamic nature of hydrological–thermal processes associated with annual freeze–thaw events. In this study, we develop and test an inversion scheme that can flexibly use single or multiple datasets – including soil liquid watermore » content, temperature and electrical resistivity tomography (ERT) data – to estimate the vertical distribution of OC content. Our approach relies on the fact that OC content strongly influences soil hydrological–thermal parameters and, therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. We employ the Community Land Model to simulate nonisothermal surface–subsurface hydrological dynamics from the bedrock to the top of canopy, with consideration of land surface processes (e.g., solar radiation balance, evapotranspiration, snow accumulation and melting) and ice–liquid water phase transitions. For inversion, we combine a deterministic and an adaptive Markov chain Monte Carlo (MCMC) optimization algorithm to estimate a posteriori distributions of desired model parameters. For hydrological–thermal-to-geophysical variable transformation, the simulated subsurface temperature, liquid water content and ice content are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using different numerical experiments and evaluate the influence of measurement errors and benefit of joint inversion on the estimation of OC and other parameters. We also quantify the propagation of uncertainty from the estimated parameters to prediction of hydrological–thermal responses. We find that, compared to inversion of single dataset (temperature, liquid water content or apparent resistivity), joint inversion of these datasets significantly reduces parameter uncertainty. We find that the joint inversion approach is able to estimate OC and sand content within the shallow active layer (top 0.3 m of soil) with high reliability. Due to the small variations of temperature and moisture within the shallow permafrost (here at about 0.6 m depth), the approach is unable to estimate OC with confidence. However, if the soil porosity is functionally related to the OC and mineral content, which is often observed in organic-rich Arctic soil, the uncertainty of OC estimate at this depth remarkably decreases. Our study documents the value of the new surface–subsurface, deterministic–stochastic inversion approach, as well as the benefit of including multiple types of data to estimate OC and associated hydrological–thermal dynamics.« less
Solid-state greenhouses and their implications for icy satellites
NASA Technical Reports Server (NTRS)
Matson, Dennis L.; Brown, Robert H.
1989-01-01
The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment.
NASA Astrophysics Data System (ADS)
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Sean W., E-mail: sean.king@intel.com; Davis, Robert F.; Carter, Richard J.
The desorption kinetics of molecular hydrogen (H{sub 2}) from silicon (001) surfaces exposed to aqueous hydrogen fluoride and remote hydrogen plasmas were examined using temperature programmed desorption. Multiple H{sub 2} desorption states were observed and attributed to surface monohydride (SiH), di/trihydride (SiH{sub 2/3}), and hydroxide (SiOH) species, subsurface hydrogen trapped at defects, and hydrogen evolved during the desorption of surface oxides. The observed surface hydride species were dependent on the surface temperature during hydrogen plasma exposure with mono, di, and trihydride species being observed after low temperature exposure (150 °C), while predominantly monohydride species were observed after higher temperature exposure (450 °C).more » The ratio of surface versus subsurface H{sub 2} desorption was also found to be dependent on the substrate temperature with 150 °C remote hydrogen plasma exposure generally leading to more H{sub 2} evolved from subsurface states and 450 °C exposure leading to more H{sub 2} desorption from surface SiH{sub x} species. Additional surface desorption states were observed, which were attributed to H{sub 2} desorption from Si (111) facets formed as a result of surface etching by the remote hydrogen plasma or aqueous hydrogen fluoride treatment. The kinetics of surface H{sub 2} desorption were found to be in excellent agreement with prior investigations of silicon surfaces exposed to thermally generated atomic hydrogen.« less
NASA Astrophysics Data System (ADS)
Piqueux, Sylvain Loic Lucien
The physical characterization of the upper few centimeters to meters of the Martian surface has greatly benefited from remote temperature measurements. Typical grain sizes, rock abundances, subsurface layering, soil cementation, bedrock exposures, and ice compositions have been derived and mapped using temperature data in conjunction with subsurface models of heat conduction. Yet, these models of heat conduction are simplistic, precluding significant advances in the characterization of the physical nature of the Martian surface. A new model of heat conduction for homogeneous particulated media accounting for the grain size, porosity, gas pressure and composition, temperature, and the effect of any cementing phase is presented. The incorporation of the temperature effect on the bulk conductivity results in a distortion of the predicted diurnal and seasonal temperatures when compared to temperatures predicted with a temperature-independent conductivity model. Such distortions have been observed and interpreted to result from subsurface heterogeneities, but they may simply be explained by a temperature-dependency of the thermal inertia, with additional implications on the derived grain sizes. Cements are shown to significantly increase the bulk conductivity of a particulated medium and bond fractions <5% per volume are consistent with Martian thermal inertia data previously hypothesized to correspond to a global duricrust. A laboratory setup has been designed, built, calibrated and used to measure the thermal conductivity of particulated samples in order to test and refine the models mentioned above. Preliminary results confirm the influence of the temperature on the bulk conductivity, as well as the effect of changing the gas composition. Cemented samples are shown to conduct heat more efficiently than their uncemented counterparts.
Habitability of enceladus: planetary conditions for life.
Parkinson, Christopher D; Liang, Mao-Chang; Yung, Yuk L; Kirschivnk, Joseph L
2008-08-01
The prolific activity and presence of a plume on Saturn's tiny moon Enceladus offers us a unique opportunity to sample the interior composition of an icy satellite, and to look for interesting chemistry and possible signs of life. Based on studies of the potential habitability of Jupiter's moon Europa, icy satellite oceans can be habitable if they are chemically mixed with the overlying ice shell on Myr time scales. We hypothesize that Enceladus' plume, tectonic processes, and possible liquid water ocean may create a complete and sustainable geochemical cycle that may allow it to support life. We discuss evidence for surface/ocean material exchange on Enceladus based on the amounts of silicate dust material present in the Enceladus' plume particles. Microphysical cloud modeling of Enceladus' plume shows that the particles originate from a region of Enceladus' near surface where the temperature exceeds 190 K. This could be consistent with a shear-heating origin of Enceladus' tiger stripes, which would indicate extremely high temperatures ( approximately 250-273 K) in the subsurface shear fault zone, leading to the generation of subsurface liquid water, chemical equilibration between surface and subsurface ices, and crustal recycling on a time scale of 1 to 5 Myr. Alternatively, if the tiger stripes form in a mid-ocean-ridge-type mechanism, a half-spreading rate of 1 m/year is consistent with the observed regional heat flux of 250 mW m(-2) and recycling of south polar terrain crust on a 1 to 5 Myr time scale as well.
Evidence for subsurface water ice in Korolev crater, Mars
Armstrong, J.C.; Titus, T.N.; Kieffer, H.H.
2005-01-01
Following the work of Kieffer and Titus (2001, Icarus 154, 162-180), we present results of thermal IR observations of Korolev crater, located at ???73?? latitude in the martian northern polar region. Similar to techniques employed by Titus et al. (2003, Science 299, 1048-1050), we use infrared images from the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey to identify several regions within the crater basin with distinct thermal properties that correlate with topography. The THEMIS results show these regions exhibit temperature variations, spatially within the crater and throughout the martian year. In addition to the variations identified in the THEMIS observations, Mars Global Surveyor Thermal Emission Spectrometer (TES) observations show differences in albedo and temperature of these regions on both daily and seasonal cycles. Modeling annual temperature variations of the surface, we use TES observations to examine the thermal properties of these regions. This analysis reveals the crater interior deposits are likely thick layers (several meters) of high thermal inertia material (water ice, or extremely ice-rich regolith). Spatial variations of the physical properties of these regions are likely due to topography and possibly variations in the subsurface material itself. The nature of these deposits may help constrain polar processes, as well as provide context for the polar lander mission, Phoenix. ?? 2004 Elsevier Inc. All rights reserved.
Halophilic Archaea determined from geothermal steam vent aerosols.
Ellis, Dean G; Bizzoco, Richard W; Kelley, Scott T
2008-06-01
Hydrothermal vents, known as 'fumaroles', are ubiquitous features of geothermal areas. Although their geology has been extensively characterized, little is known about the subsurface microbial ecology of fumaroles largely because of the difficulty in collecting sufficient numbers of cells from boiling steam water for DNA extraction and culture isolation. Here we describe the first collection, molecular analysis and isolation of microbes from fumarole steam waters in Russia (Kamchatka) and the USA (Hawaii, New Mexico, California and Wyoming). Surprisingly, the steam vent waters from all the fumaroles contained halophilic Archaea closely related to the Haloarcula spp. found in non-geothermal salt mats, saline soils, brine pools and salt lakes around the world. Microscopic cell counting estimated the cell dispersal rate at approximately 1.6 x 10(9) cells year(-1) from a single fumarole. We also managed to enrich microbes in high-salt media from every vent sample, and to isolate Haloarcula from a Yellowstone vent in a 20% salt medium after a month-long incubation, demonstrating both salt tolerance and viability of cells collected from high-temperature steam. Laboratory tests determined that microbes enriched in salt media survived temperatures greater than 75 degrees C for between 5 and 30 min during the collection process. Hawaiian fumaroles proved to contain the greatest diversity of halophilic Archaea with four new lineages that may belong to uncultured haloarchaeal genera. This high diversity may have resulted from the leaching of salts and minerals through the highly porous volcanic rock, creating a chemically complex saline subsurface.
NASA Astrophysics Data System (ADS)
Hernández-Almeida, Iván; Sierro, Francisco; Cacho, Isabel; Abel Flores, José
2014-05-01
A new high-resolution reconstruction of the temperature and salinity of the subsurface waters using paired Mg/Ca-δ18O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistrorsa (sin.) was conducted on a deep-sea sediment core in the subpolar North Atlantic (Site U1314). This study aims to reconstruct millennial-scale subsurface hydrography variations during the Early and Mid-Pleistocene (MIS 31-19). These rapid climate events are characterized by abrupt shifts between warm/cold conditions, and ice-sheet oscillations, as evidenced by major ice rafting events recorded in the North Atlantic sediments (Hernández-Almeida et al., 2012), similar to those found during the Last Glacial period (Marcott et al, 2011). The Mg/Ca derived paleotemperature and salinity oscillations prior and during IRD discharges at Site U1314 are related to changes in intermediate circulation. The increases in Mg/Ca paleotemperatures and salinities during the IRD event are preceded by short episodes of cooling and freshening of subsurface waters. The response of the AMOC to this perturbation is an increased of warm and salty water coming from the south, transported to high latitudes in the North Atlantic beneath the thermocline. This process is accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic and better ventilation of the North Atlantic at mid-depths. Poleward transport of warm and salty subsurface subtropical waters causes intense basal melting and thinning of marine ice-shelves, that culminates in large-scale instability of the ice sheets, retreat of the grounding line and iceberg discharge. The mechanism proposed involves the coupling of the AMOC with ice-sheet dynamics, and would explain the presence of these fluctuations before the establishment of high-amplitude 100-kyr glacial cycles. Hernández-Almeida, I., Sierro, F.J., Cacho, I., Flores, J.A., 2012. Impact of suborbital climate changes in the North Atlantic on ice sheet dynamics at the Mid-Pleistocene Transition. Paleoceanography 27, PA3214. Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J., Schmittner, A., 2011. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proceedings of the National Academy of Sciences 108, 13415-13419
NASA Astrophysics Data System (ADS)
Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong
2018-04-01
In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.
Wilkening, Jennifer L; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features.
Evaluating Ecotypes as a means of Scaling-up Permafrost Thermal Measurements in Western Alaska.
NASA Astrophysics Data System (ADS)
Cable, William; Romanovsky, Vladimir
2015-04-01
In many regions, permafrost temperatures are increasing due to climate change and in some cases permafrost is thawing and degrading. In areas where degradation has already occurred the effects can be dramatic, resulting in changing ecosystems, carbon release, and damage to infrastructure. Yet in many areas we lack baseline data, such as subsurface temperatures, needed to assess future changes and potential risk areas. Besides climate, the physical properties of the vegetation cover and subsurface material have a major influence on the thermal state of permafrost. These properties are often directly related to the type of ecosystem overlaying permafrost. Thus, classifying the landscape into general ecotypes might be an effective way to scale up permafrost thermal data. To evaluate using ecotypes as a way of scaling-up permafrost thermal data within a region we selected an area in Western Alaska, the Selawik National Wildlife Refuge, which is on the boundary between continuous and discontinuous permafrost. This region was selected because previously an ecological land classification had been conducted and a very high-resolution ecotype map was generated. Using this information we selected 18 spatially distributed sites covering the most abundant ecotypes, where we are collecting low vertical resolution soil temperature data to a depth of 1.5 meters at most sites. At three additional core sites, we are collecting air temperature, snow depth, and high vertical resolution soil temperature to a depth of 3 meters. The sites were installed in the summers of 2011 and 2012; consequently, we have at least two years of data from all sites. Mean monthly and mean annual air temperature and snow depth for all three core sites are similar within the 2012-2014 period. Additionally, the average air temperature and snow depth from our three cores sites compares well with that of a nearby meteorological station for which long-term data is available. During the study period snow depth was anomalously low during both winters, while mean monthly and annual air temperature was similar to the long-term average the first year and considerably warmer (warm winter) the second year. Our results indicate that it is possible to extract information about subsurface temperature, active layer thickness, and other permafrost characteristics based on these ecotype classifications. Additionally, we find that within some ecotypes the absence of a moss layer is indicative of the absence of near surface permafrost. As a proof of concept, we used this information to translate the ecotype landcover map into a map of mean annual ground temperature ranges at 1 m depth. While this map is preliminary and would benefit from additional data and modeling exercises (both ongoing), we believe it provides useful information for decision making with respect to land use and understanding how the landscape might change under future climate scenarios.
NASA Astrophysics Data System (ADS)
Ekici, A.; Chadburn, S.; Chaudhary, N.; Hajdu, L. H.; Marmy, A.; Peng, S.; Boike, J.; Burke, E.; Friend, A. D.; Hauck, C.; Krinner, G.; Langer, M.; Miller, P. A.; Beer, C.
2015-07-01
Modeling soil thermal dynamics at high latitudes and altitudes requires representations of physical processes such as snow insulation, soil freezing and thawing and subsurface conditions like soil water/ice content and soil texture. We have compared six different land models: JSBACH, ORCHIDEE, JULES, COUP, HYBRID8 and LPJ-GUESS, at four different sites with distinct cold region landscape types, to identify the importance of physical processes in capturing observed temperature dynamics in soils. The sites include alpine, high Arctic, wet polygonal tundra and non-permafrost Arctic, thus showing how a range of models can represent distinct soil temperature regimes. For all sites, snow insulation is of major importance for estimating topsoil conditions. However, soil physics is essential for the subsoil temperature dynamics and thus the active layer thicknesses. This analysis shows that land models need more realistic surface processes, such as detailed snow dynamics and moss cover with changing thickness and wetness, along with better representations of subsoil thermal dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hodge, D.S.
The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should havemore » temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.« less
Evolution of light hydrocarbon gases in subsurface processes: Constraints from chemical equilibrium
NASA Astrophysics Data System (ADS)
Sugisaki, Ryuichi; Nagamine, Koichiro
1995-06-01
The behaviour of CH 4, C 2H 6 and C 3H 8 in subsurface processes such as magma intrusion, volcanic gas discharge and natural gas generation have been examined from the viewpoint of chemical equilibrium. It seems that equilibrium among these three hydrocarbons is attainable at about 200°C. When a system at high temperatures is cooled, re-equilibration is continued until a low temperature is reached. The rate at which re-equilibration is achieved, however, steadily diminishes and, below 200°C, the reaction between the hydrocarbons stops and the gas composition at this time is frozen in, and it remains unchanged in a metastable state for a long period of geological time. Natural gas compositions from various fields have shown that, when a hydrocarbon system out of chemical equilibrium is heated, it gradually approaches equilibrium above 150°C. On the way towards equilibration, compositions of thermogenic gases apparently temporarily show a thermodynamic equilibrium constant at a temperature that is higher than the real equilibrium temperature expected from the ambient temperature of the samples; in contrast, biogenic gases indicate a lower temperature. In lower temperature regions, kinetic effects probably control the gas composition; the compositions are essentially subjected to genetic processes operating on the gases (such as pyrolysis of organic material and bacterial activity) and they fluctuate substantially. Examination of volcanic gases and pyrolysis experimental data, however, have suggested that the equilibration rate of these hydrocarbons is sluggish in comparison with that of reactive inorganic species such as H 2S and SO 2. The view presented in this study will be helpful in understanding the genetic processes that create oil and gas and the migration of these hydrocarbons and in interpreting the origins of magmatic gases.
NASA Astrophysics Data System (ADS)
Silva, Nelson; Rojas, Nora; Fedele, Aldo
2009-07-01
Three sections are used to analyze the physical and chemical characteristics of the water masses in the eastern South Pacific and their distributions. Oceanographic data were taken from the SCORPIO (May-June 1967), PIQUERO (May-June 1969), and KRILL (June 1974) cruises. Vertical sections of temperature, salinity, σ θ, dissolved oxygen, nitrate, nitrite, phosphate, and silicate were used to analyze the water column structure. Five water masses were identified in the zone through T- S diagrams: Subantarctic Water, Subtropical Water, Equatorial Subsurface Water, Antarctic Intermediate Water, and Pacific Deep Water. Their proportions in the sea water mixture are calculated using the mixing triangle method. Vertical sections were used to describe the geographical distributions of the water mass cores in the upper 1500 m. Several characteristic oceanographic features in the study area were analyzed: the shallow salinity minimum displacement towards the equator, the equatorial subsurface salinity maximum associated with a dissolved oxygen minimum zone and a high nutrient content displacement towards the south, and the equatorward intermediate Antarctic salinity minimum associated with a dissolved oxygen maximum. The nitrate deficit generated in the denitrification area off Peru and northern Chile is proposed as a conservative chemical tracer for the Equatorial Subsurface Waters off the coast of Chile, south of 25°S.
Subsurface temperatures and geothermal gradients on the north slope of Alaska
Collett, T.S.; Bird, K.J.; Magoon, L.B.
1993-01-01
On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.
Taniguchi, Makoto; Shimada, Jun; Fukuda, Yoichi; Yamano, Makoto; Onodera, Shin-ichi; Kaneko, Shinji; Yoshikoshi, Akihisa
2009-04-15
Anthropogenic effects in both Osaka and Bangkok were evaluated to compare the relationships between subsurface environment and the development stage of both cities. Subsurface thermal anomalies due to heat island effects were found in both cities. The Surface Warming Index (SWI), the departure depth from the steady geothermal gradient, was used as an indicator of the heat island effect. SWI increases (deeper) with the magnitude of heat island effect and the elapsed time starting from the surface warming. Distributions of subsurface thermal anomalies due to the heat island effect agreed well with the distribution of changes in air temperature due to the same process, which is described by the distribution of population density in both Osaka and Bangkok. Different time lags between groundwater depression and subsidence in the two cities was found. This is attributed to differences in hydrogeologic characters, such as porosity and hydraulic conductivity. We find that differences in subsurface degradations in Osaka and Bangkok, including subsurface thermal anomalies, groundwater depression, and land subsidence, depends on the difference of the development stage of urbanization and hydrogeological characters.
A conceptual geochemical model of the geothermal system at Surprise Valley, CA
NASA Astrophysics Data System (ADS)
Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick
2018-03-01
Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and groundwater samples collected in proximity to structures that transmit thermal fluids, suggesting the brine may be thermal in nature. On the western side of the valley at the Lake City mud volcano, the deep brine-meteoric water mixture subsequently boils in the shallow subsurface, precipitates calcite, and re-equilibrates at about 130 °C. On the eastern side of the valley, meteoric fluid mixes to a greater extent with the deep brine, cools conductively without boiling, and the composition is modified as dissolved elements are sequestered by secondary minerals that form along the cooling and outflow path at temperatures <130 °C. Re-equilibration of geothermal fluids at lower temperatures during outflow explains why subsurface temperature estimates based on classical geothermometry methods are highly variable, and fail to agree with temperature estimates based on dissolved sulfate-oxygen isotopes and results of classical and multicomponent geothermometry applied to reconstructed deep well fluids. The proposed model is compatible with the idea suggested by others that thermal fluids on the western and eastern side of the valley have a common source, and supports the hypothesis that low temperature re-equilibration during west to east flow is the major control on hot spring fluid compositions, rather than dilution, evaporation, or differences in rock type.
Development of a direct push based in-situ thermal conductivity measurement system
NASA Astrophysics Data System (ADS)
Chirla, Marian Andrei; Vienken, Thomas; Dietrich, Peter; Bumberger, Jan
2016-04-01
Heat pump systems are commonly utilized in Europe, for the exploitation of the shallow geothermal potential. To guarantee a sustainable use of the geothermal heat pump systems by saving resources and minimizing potential negative impacts induced by temperature changes within soil and groundwater, new geothermal exploration methods and tools are required. The knowledge of the underground thermal properties is a necessity for a correct and optimum design of borehole heat exchangers. The most important parameter that indicates the performance of the systems is thermal conductivity of the ground. Mapping the spatial variability of thermal conductivity, with high resolution in the shallow subsurface for geothermal purposes, requires a high degree of technical effort to procure adequate samples for thermal analysis. A collection of such samples from the soil can disturb sample structure, so great care must be taken during collection to avoid this. Factors such as transportation and sample storage can also influence measurement results. The use of technologies like Thermal Response Test (TRT) require complex mechanical and electrical systems for convective heat transport in the subsurface and longer monitoring times, often three days. Finally, by using thermal response tests, often only one integral value is obtained for the entire coupled subsurface with the borehole heat exchanger. The common thermal conductivity measurement systems (thermal analyzers) can perform vertical thermal conductivity logs only with the aid of sample procurement, or by integration into a drilling system. However, thermal conductivity measurements using direct push with this type of probes are not possible, due to physical and mechanical limitations. Applying vertical forces using direct push technology, in order to penetrate the shallow subsurface, can damage the probe and the sensors systems. The aim of this study is to develop a new, robust thermal conductivity measurement probe, for direct push based approaches, called Thermal Conductivity Profiler (TCP), that operates based on the principles of a hollow cylindrical geometry heat source. To determinate thermal conductivity in situ, the transient temperature at the middle of the probe and electrical power dissipation is measured. At the same time, this work presents laboratory results obtained when this novel hollow cylindrical probe system was tested on different materials for calibration. By using the hollow cylindrical probe, the thermal conductivity results have an error of less than 2.5% error for solid samples (Teflon, Agar jelly, and Nylatron). These findings are useful to achieve a proper thermal energy balance in the shallow subsurface by using direct push technology and TCP. By providing information of layers with high thermal conductivity, suitable for thermal storage capability, can be used determine borehole heat exchanger design and, therefore, determine geothermal heat pump architecture.
NASA Astrophysics Data System (ADS)
Li, Jia; Fang, Qihong; Liu, Youwen; Zhang, Liangchi
2014-06-01
This paper investigates the mechanisms of subsurface damage and material removal of monocrystalline copper when it is under a nanoscale high speed grinding of a diamond tip. The analysis was carried out with the aid of three-dimensional molecular dynamics simulations. The key factors that would influence the deformation of the material were carefully explored by analyzing the chip, dislocation movement, and workpiece deformation, which include grinding speed, depth of cut, grid tip radius, crystal orientation and machining angle of copper. An analytical model was also established to predict the emission of partial dislocations during the nanoscale high speed grinding. The investigation showed that a higher grinding velocity, a larger tip radius or a larger depth of cut would result in a larger chipping volume and a greater temperature rise in the copper workpiece. A lower grinding velocity would produce more intrinsic stacking faults. It was also found that the transition of deformation mechanisms depends on the competition between the dislocations and deformation twinning. There is a critical machining angle, at which a higher velocity, a smaller tip radius, or a smaller depth of cut will reduce the subsurface damage and improve the smoothness of a ground surface. The established analytical model showed that the Shockley dislocation emission is most likely to occur with the crystal orientations of (0 0 1)[1 0 0] at 45° angle.
Microwave radiometer for subsurface temperature measurement
NASA Technical Reports Server (NTRS)
Porter, R. A.; Bechis, K. P.
1976-01-01
A UHF radiometer, operating at a frequency of 800 MHz, was modified to provide an integral, three frequency voltage standing wave ratio (VSWR) circuit in the radio frequency (RF) head. The VSWR circuit provides readings of power transmission at the antenna-material interface with an accuracy of plus or minus 5 percent. The power transmission readings are numerically equal to the emissivity of the material under observation. Knowledge of material emissivity is useful in the interpretation of subsurface apparent temperatures obtained on phantom models of biological tissue. The emissivities of phantom models consisting of lean beefsteak were found to lie in the range 0.623 to 0.779, depending on moisture content. Radiometric measurements performed on instrumented phantoms showed that the radiometer was capable of sensing small temperature changes occurring at depths of at least 19 to 30 mm. This is consistent with previously generated data which showed that the radiometer could sense temperatures at a depth of 38 mm.
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks.
El Mekki-Azouzi, Mouna; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-08-28
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing "proxies". Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations.
Brillouin spectroscopy of fluid inclusions proposed as a paleothermometer for subsurface rocks
Mekki-Azouzi, Mouna El; Tripathi, Chandra Shekhar Pati; Pallares, Gaël; Gardien, Véronique; Caupin, Frédéric
2015-01-01
As widespread, continuous instrumental Earth surface air temperature records are available only for the last hundred fifty years, indirect reconstructions of past temperatures are obtained by analyzing “proxies”. Fluid inclusions (FIs) present in virtually all rock minerals including exogenous rocks are routinely used to constrain formation temperature of crystals. The method relies on the presence of a vapour bubble in the FI. However, measurements are sometimes biased by surface tension effects. They are even impossible when the bubble is absent (monophasic FI) for kinetic or thermodynamic reasons. These limitations are common for surface or subsurface rocks. Here we use FIs in hydrothermal or geodic quartz crystals to demonstrate the potential of Brillouin spectroscopy in determining the formation temperature of monophasic FIs without the need for a bubble. Hence, this novel method offers a promising way to overcome the above limitations. PMID:26316328
Western Arctic Ocean temperature variability during the last 8000 years
Farmer, Jesse R.; Cronin, Thomas M.; De Vernal, Anne; Dwyer, Gary S.; Keigwin, Loyd D.; Thunell, Robert C.
2011-01-01
We reconstructed subsurface (∼200–400 m) ocean temperature and sea-ice cover in the Canada Basin, western Arctic Ocean from foraminiferal δ18O, ostracode Mg/Ca ratios, and dinocyst assemblages from two sediment core records covering the last 8000 years. Results show mean temperature varied from −1 to 0.5°C and −0.5 to 1.5°C at 203 and 369 m water depths, respectively. Centennial-scale warm periods in subsurface temperature records correspond to reductions in summer sea-ice cover inferred from dinocyst assemblages around 6.5 ka, 3.5 ka, 1.8 ka and during the 15th century Common Era. These changes may reflect centennial changes in the temperature and/or strength of inflowing Atlantic Layer water originating in the eastern Arctic Ocean. By comparison, the 0.5 to 0.7°C warm temperature anomaly identified in oceanographic records from the Atlantic Layer of the Canada Basin exceeded reconstructed Atlantic Layer temperatures for the last 1200 years by about 0.5°C.
Fiber Optic Thermal Health Monitoring of Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Moore, Jason P.
2010-01-01
A recently developed technique is presented for thermographic detection of flaws in composite materials by performing temperature measurements with fiber optic Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of composites with subsurface defects. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The data obtained from grating sensors were analyzed with thermal modeling techniques of conventional thermography to reveal particular characteristics of the interested areas. Results were compared with the calculations using numerical simulation techniques. Methods and limitations for performing in-situ structural health monitoring are discussed.
Inverse geothermal modelling applied to Danish sedimentary basins
NASA Astrophysics Data System (ADS)
Poulsen, Søren E.; Balling, Niels; Bording, Thue S.; Mathiesen, Anders; Nielsen, Søren B.
2017-10-01
This paper presents a numerical procedure for predicting subsurface temperatures and heat-flow distribution in 3-D using inverse calibration methodology. The procedure is based on a modified version of the groundwater code MODFLOW by taking advantage of the mathematical similarity between confined groundwater flow (Darcy's law) and heat conduction (Fourier's law). Thermal conductivity, heat production and exponential porosity-depth relations are specified separately for the individual geological units of the model domain. The steady-state temperature model includes a model-based transient correction for the long-term palaeoclimatic thermal disturbance of the subsurface temperature regime. Variable model parameters are estimated by inversion of measured borehole temperatures with uncertainties reflecting their quality. The procedure facilitates uncertainty estimation for temperature predictions. The modelling procedure is applied to Danish onshore areas containing deep sedimentary basins. A 3-D voxel-based model, with 14 lithological units from surface to 5000 m depth, was built from digital geological maps derived from combined analyses of reflection seismic lines and borehole information. Matrix thermal conductivity of model lithologies was estimated by inversion of all available deep borehole temperature data and applied together with prescribed background heat flow to derive the 3-D subsurface temperature distribution. Modelled temperatures are found to agree very well with observations. The numerical model was utilized for predicting and contouring temperatures at 2000 and 3000 m depths and for two main geothermal reservoir units, the Gassum (Lower Jurassic-Upper Triassic) and Bunter/Skagerrak (Triassic) reservoirs, both currently utilized for geothermal energy production. Temperature gradients to depths of 2000-3000 m are generally around 25-30 °C km-1, locally up to about 35 °C km-1. Large regions have geothermal reservoirs with characteristic temperatures ranging from ca. 40-50 °C, at 1000-1500 m depth, to ca. 80-110 °C, at 2500-3500 m, however, at the deeper parts, most likely, with too low permeability for non-stimulated production.
Gerbl, Friedrich W; Weidler, Gerhard W; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6-47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with (15)NH4Cl or ((15)NH4)2SO4as sole energy sources revealed incorporation of (15)N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH(+) 4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ.
Gerbl, Friedrich W.; Weidler, Gerhard W.; Wanek, Wolfgang; Erhardt, Angelika; Stan-Lotter, Helga
2014-01-01
Previous studies had suggested the presence of ammonium oxidizing Thaumarchaeota as well as nitrite oxidizing Bacteria in the subsurface spring called Franz Josef Quelle (FJQ), a slightly radioactive thermal mineral spring with a temperature of 43.6–47°C near the alpine village of Bad Gastein, Austria. The microbiological consortium of the FJQ was investigated for its utilization of nitrogen compounds and the putative presence of a subsurface nitrogen cycle. Microcosm experiments made with samples from the spring water, containing planktonic microorganisms, or from biofilms, were used in this study. Three slightly different media, enriched with vitamins and trace elements, and two incubation temperatures (30 and 40°C, respectively) were employed. Under aerobic conditions, high rates of conversion of ammonium to nitrite, as well as nitrite to nitrate were measured. Under oxygen-limited conditions nitrate was converted to gaseous compounds. Stable isotope probing with 15NH4Cl or (15NH4)2SO4as sole energy sources revealed incorporation of 15N into community DNA. Genomic DNA as well as RNA were extracted from all microcosms. The following genes or fragments of genes were successfully amplified, cloned and sequenced by standard PCR from DNA extracts: Ammonia monooxygenase subunit A (amoA), nitrite oxidoreductase subunits A and B (nxrA and nxrB), nitrate reductase (narG), nitrite reductase (nirS), nitric oxide reductases (cnorB and qnorB), nitrous oxide reductase (nosZ). Reverse transcription of extracted total RNA and real-time PCR suggested the expression of each of those genes. Nitrogen fixation (as probed with nifH and nifD) was not detected. However, a geological origin of NH+4 in the water of the FJQ cannot be excluded, considering the silicate, granite and gneiss containing environment. The data suggested the operation of a nitrogen cycle in the subsurface environment of the FJQ. PMID:24904540
Wilkening, Jennifer L.; Ray, Chris; Varner, Johanna
2015-01-01
The American pika (Ochotona princeps) is considered a sentinel species for detecting ecological effects of climate change. Pikas are declining within a large portion of their range, and ongoing research suggests loss of sub-surface ice as a mechanism. However, no studies have demonstrated physiological responses of pikas to sub-surface ice features. Here we present the first analysis of physiological stress in pikas living in and adjacent to habitats underlain by ice. Fresh fecal samples were collected non-invasively from two adjacent sites in the Rocky Mountains (one with sub-surface ice and one without) and analyzed for glucocorticoid metabolites (GCM). We also measured sub-surface microclimates in each habitat. Results indicate lower GCM concentration in sites with sub-surface ice, suggesting that pikas are less stressed in favorable microclimates resulting from sub-surface ice features. GCM response was well predicted by habitat characteristics associated with sub-surface ice features, such as lower mean summer temperatures. These results suggest that pikas inhabiting areas without sub-surface ice features are experiencing higher levels of physiological stress and may be more susceptible to changing climates. Although post-deposition environmental effects can confound analyses based on fecal GCM, we found no evidence for such effects in this study. Sub-surface ice features are key to water cycling and storage and will likely represent an increasingly important component of water resources in a warming climate. Fecal samples collected from additional watersheds as part of current pika monitoring programs could be used to further characterize relationships between pika stress and sub-surface ice features. PMID:25803587
NASA Astrophysics Data System (ADS)
Zaady, E.; Yizhaq, H.; Ashkenazy, Y.
2012-04-01
Biological soil crusts produce mucilage sheets of polysaccharides that cover the soil surface. This hydrophobic coating can seal the soil micro-pores and thus cause reduction of water permeability and may influence soil temperature. This study evaluates the impact of crust composition on sub-surface water and temperature over time. We hypothesized that the successional stages of biological soil crusts, affect soil moisture and temperature differently along a rainfall gradient throughout the year. Four experimental sites were established along a rainfall gradient in the western Negev Desert. At each site three treatments; crust removal, pure sand (moving dune) and natural crusted were monitored. Crust successional stage was measured by biophysiological and physical measurements, soil water permeability by field mini-Infiltrometer, soil moisture by neutron scattering probe and temperature by sensors, at different depths. Our main interim conclusions from the ongoing study along the rainfall gradient are: 1. the biogenic crust controls water infiltration into the soil in sand dunes, 2. infiltration was dependent on the composition of the biogenic crust. It was low for higher successional stage crusts composed of lichens and mosses and high with cyanobacterial crust. Thus, infiltration rate controlled by the crust is inverse to the rainfall gradient. Continuous disturbances to the crust increase infiltration rates, 3. despite the different rainfall amounts at the sites, soil moisture content below 50 cm is almost the same. We therefore predict that climate change in areas that are becoming dryer (desertification) will have a positive effect on soil water content and vice versa.
The Development of 3d Sub-Surface Mapping Scheme and its Application to Martian Lobate Debris Aprons
NASA Astrophysics Data System (ADS)
Baik, H.; Kim, J.
2017-07-01
The Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO), has produced highly valuable information about the Martian subsurface. In particular, the complicated substructures of Mars such as polar deposit, pedestal crater and the other geomorphic features involving possible subsurface ice body has been successfully investigated by SHARAD. In this study, we established a 3D subsurface mapping strategy employing the multiple SHARAD profiles. A number of interpretation components of SHARAD signals were integrated into a subsurface mapping scheme using radargram information and topographic data, then applied over a few mid latitude Lobate Debris Aprons (LDAs). From the identified subsurface layers of LDA, and the GIS data base incorporating the other interpretation outcomes, we are expecting to trace the origin of LDAs. Also, the subsurface mapping scheme developed in this study will be further applied to other interesting Martian geological features such as inter crater structures, aeolian deposits and fluvial sediments. To achieve higher precision sub-surface mapping, the clutter simulation employing the high resolution topographic data and the upgraded clustering algorithms assuming multiple sub-surface layers will be also developed.
Localized rapid warming of West Antarctic subsurface waters by remote winds
NASA Astrophysics Data System (ADS)
Spence, Paul; Holmes, Ryan M.; Hogg, Andrew Mcc.; Griffies, Stephen M.; Stewart, Kial D.; England, Matthew H.
2017-08-01
The highest rates of Antarctic glacial ice mass loss are occurring to the west of the Antarctica Peninsula in regions where warming of subsurface continental shelf waters is also largest. However, the physical mechanisms responsible for this warming remain unknown. Here we show how localized changes in coastal winds off East Antarctica can produce significant subsurface temperature anomalies (>2 °C) around much of the continent. We demonstrate how coastal-trapped barotropic Kelvin waves communicate the wind disturbance around the Antarctic coastline. The warming is focused on the western flank of the Antarctic Peninsula because the circulation induced by the coastal-trapped waves is intensified by the steep continental slope there, and because of the presence of pre-existing warm subsurface water offshore. The adjustment to the coastal-trapped waves shoals the subsurface isotherms and brings warm deep water upwards onto the continental shelf and closer to the coast. This result demonstrates the vulnerability of the West Antarctic region to a changing climate.
Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy
NASA Astrophysics Data System (ADS)
Liang, C.; Li, C.; An, J.; Yu, M.; Hu, Y. C.; Lin, W. H.; Liu, F.; Ding, Y. H.
2013-12-01
Dry sliding tests were performed on as-cast AZ31 alloy using a pin-on-disc configuration. Coefficient of friction and wear rate were measured within a load range of 5-360 N at a sliding velocity of 0.785 m/s. Worn surface morphologies were examined using scanning electron microscopy. Five wear mechanisms, namely abrasion, oxidation, delamination, thermal softening, and melting, have been observed. Surface hardness, subsurface plastic strain, worn surface temperature, and cross-sectional optical microscopy were used to characterize hardness change, plastic deformation, and the microstructure evolution in subsurface. The results illustrate the correlation between the wear behavior and evolution of microstructure and hardness in subsurface, and reveal that in the load range of 5-120 N, surface oxidation and hardening originating from large plastic deformation play an important role in maintaining the mild wear, and softening originating from dynamic recrystallization in subsurface and surface melting are responsible for the severe wear in the load range of 120-360 N.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco-Rey, M.; Donostia International Physics Center; Tremblay, J. C.
2015-04-21
Past scanning tunneling microscopy (STM) experiments of H manipulation on Pd(111), at low temperature, have shown that it is possible to induce diffusion of surface species as well as of those deeply buried under the surface. Several questions remain open regarding the role of subsurface site occupancies. In the present work, the interaction potential of H atoms with Pd(111) under various H coverage conditions is determined by means of density functional theory calculations in order to provide an answer to two of these questions: (i) whether subsurface sites are the final locations for the H impurities that attempt to emergemore » from bulk regions, and (ii) whether penetration of the surface is a competing route of on-surface diffusion during depletion of surface H on densely covered Pd(111). We find that a high H coverage has the effect of blocking resurfacing of H atoms travelling from below, which would otherwise reach the surface fcc sites, but it hardly alters deeper diffusion energy barriers. Penetration is unlikely and restricted to high occupancies of hcp hollows. In agreement with experiments, the Pd lattice expands vertically as a consequence of H atoms being blocked at subsurface sites, and surface H enhances this expansion. STM tip effects are included in the calculations self-consistently as an external static electric field. The main contribution to the induced surface electric dipoles originates from the Pd substrate polarisability. We find that the electric field has a non-negligible effect on the H-Pd potential in the vicinity of the topmost Pd atomic layer, yet typical STM intensities of 1-2 VÅ{sup −1} are insufficient to invert the stabilities of the surface and subsurface equilibrium sites.« less
Climate change for the last 1,000 years inferred from borehole temperatures
NASA Astrophysics Data System (ADS)
Kitaoka, K.; Arimoto, H.; Hamamoto, H.; Taniguchi, M.; Takeuchi, T.
2013-12-01
Subsurface temperatures are an archive of temperature changes occurred at the ground surface in the recent past (Lachenbruch and Marshall, 1986; Pollack, 1993). In order to investigate the local surface temperature histories in Osaka Plane, Japan, we observed subsurface temperatures in existing boreholes, using a thermometer logger. Many temperature-depth profiles within 200 m depth from the ground surface have been obtained, but they show considerable variability. The geological formations in the area consist of horizontally stratified sedimentary layers of about 1,000 m in thickness overlaid on bedrock of granite. There exists a vertical disordered structure in the formations, which may be relating to an active fault (Uemachi fault) in the bedrock (Takemura, et al, 2013). It is considered that groundwater in the horizontal layers cannot move vertically, but can move vertically along the vertical disordered zone. Various temperature profiles might be related to occurrence of vertical groundwater flow in the zone. Analytical models of subsurface temperature which include heat conduction and convection due to vertical groundwater flow in the zone have been constructed under the boundary conditions of prescribing time dependent surface temperature and uniform geothermal flux from greater depths. To solve as one-dimensional problem, heat transfer between the vertical zone and the surrounding medium of no groundwater flow is assumed. Prescribing surface temperatures were given as exponential and periodic functions of the time. Climate change can be considered to comprise both natural and artificial changes. Artificial change, which occurs by the increasing combustion of fossil fuels, is considered roughly to be an exponential increase of the ground surface temperature during the last 150 years. Natural change, which can correlate to solar activity (Lassen and Friis-Christensen, 1995), is assumed roughly to be periodic with the period of about 1200 y at the minimum time of 1620 AD for the last 2,000 years, based on the proxy data in literature (Kitagawa, 1995; Moberg, et al, 2005). Analytical solutions have been obtained by applying a superimpose method. Optimum values of parameters included in the model have been obtained by fitting the solutions to the data of temperature-depth profiles by a least-square method. As a result, the amplitude of natural oscillation in the area is about 0.8 degree in average, which is in agreement with the result of tree ring analysis of Yakushima cedar (Kitagawa, 1995). Greater upward groundwater flow rates (up to 1.0 m/y, Darcy flux) are seen along the vertical disordered structure. However, the increasing rate of ground surface temperature is greater than that in atmospheric temperature during the last 140 years at Osaka Meteorological Observatory, Japan Meteorological Agency. The high increasing rate of the ground surface temperature suggests that the change in atmospheric temperature is influenced by the change in long wave radiation from the ground surface.
NASA Astrophysics Data System (ADS)
Wang, Z. B.; Lu, K.; Wilde, G.; Divinski, S.
2008-09-01
Room temperature diffusion of Ni63 in Cu with a gradient microstructure prepared by surface mechanical attrition treatment (SMAT) was investigated by applying the radiotracer technique. The results reveal significant penetration of Ni into the nanostructured layer. The relevant diffusivity is higher than that along the conventional high-angle grain boundaries by about six orders of magnitude. This behavior is associated with a higher energy state of internal interfaces produced via plastic deformation. The diffusivity in the top surface layer is somewhat smaller than that in the subsurface layer. This fact is related to nanotwin formation in the former during SMAT.
Assessing the applicability of organic SST proxies in an upwelling region (Arabian Sea)
NASA Astrophysics Data System (ADS)
Lattaud, J.; van Erk, M. R.; Reichart, G. J.; Schulz, H.; S Sinninghe Damsté, J.; Schouten, S.
2017-12-01
Multiple organic proxies have the potential to reconstruct sea surface temperature (SST), but their behaviour is not completely understood within upwelling areas. This holds in particular for the recently developed Long chain Diol Index1 (LDI), based on the ratio of 1,15-diols over 1,13-diols, both likely produced by Eustigmatophytes. We tested the applicability of the LDI by comparing it to the more established temperature proxies TEX86 and Uk¢37 in a sediment core (spanning the last 76 ky) from the northern Arabian Sea and in surface sediments (Pakistan margin). In the surface sediments, Uk¢37- and LDI-SSTs agree well with annual mean SST, but the TEX86-SST substantially overestimates SST. A better agreement is observed, when the 0-200 m TEX86 calibration is used, suggesting TEX86 reflects subsurface temperatures. The results from the sediment core reveal that the SST records differ in absolute reconstructed temperature and show different patterns. TEX86 subsurface temperatures show a continuous increase toward the Holocene and no stadial/interstadial differences, while the LDI-SST is constant around 26°C with the exception of some short-term cooling events during periods of intensified upwelling. The Uk¢37-SST varies between 22 and 26°C and follows the global δ18Obenthic foram curve and thus is representing mean annual SST in this region3. During stadials, the reduced monsoon and low upwelling intensity resulted in warming of the subsurface waters2, as indicated by higher TEX86 temperatures, while global cooling led to colder surface waters as reflected in lower Uk¢37-SSTs, thus reducing the thermal gradient in the water column2. During the interstadials, which are periods of strong upwelling3, there is a high proportion of 1,14-diols (>40%). This probably disturbs the LDI-SST signal because the diatoms that produce the 1,14-diols are also generating small amounts of the 1,13-diols4. This suggests that care has to be taken in applying the LDI in upwelling regions. References 1Rampen et al., 2012 2Tierney et al., 2015 3Emeis et al., 1995 4Rampen et al., 2007
Ice-shelf collapse from subsurface warming as a trigger for Heinrich events
Marcott, Shaun A.; Clark, Peter U.; Padman, Laurie; Klinkhammer, Gary P.; Springer, Scott R.; Liu, Zhengyu; Otto-Bliesner, Bette L.; Carlson, Anders E.; Ungerer, Andy; Padman, June; He, Feng; Cheng, Jun; Schmittner, Andreas
2011-01-01
Episodic iceberg-discharge events from the Hudson Strait Ice Stream (HSIS) of the Laurentide Ice Sheet, referred to as Heinrich events, are commonly attributed to internal ice-sheet instabilities, but their systematic occurrence at the culmination of a large reduction in the Atlantic meridional overturning circulation (AMOC) indicates a climate control. We report Mg/Ca data on benthic foraminifera from an intermediate-depth site in the northwest Atlantic and results from a climate-model simulation that reveal basin-wide subsurface warming at the same time as large reductions in the AMOC, with temperature increasing by approximately 2 °C over a 1–2 kyr interval prior to a Heinrich event. In simulations with an ocean model coupled to a thermodynamically active ice shelf, the increase in subsurface temperature increases basal melt rate under an ice shelf fronting the HSIS by a factor of approximately 6. By analogy with recent observations in Antarctica, the resulting ice-shelf loss and attendant HSIS acceleration would produce a Heinrich event. PMID:21808034
Fiber Optic Bragg Grating Sensors for Thermographic Detection of Subsurface Anomalies
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Winfree, William P.; Wu, Meng-Chou
2009-01-01
Conventional thermography with an infrared imager has been shown to be an extremely viable technique for nondestructively detecting subsurface anomalies such as thickness variations due to corrosion. A recently developed technique using fiber optic sensors to measure temperature holds potential for performing similar inspections without requiring an infrared imager. The structure is heated using a heat source such as a quartz lamp with fiber Bragg grating (FBG) sensors at the surface of the structure to detect temperature. Investigated structures include a stainless steel plate with thickness variations simulated by small platelets attached to the back side using thermal grease. A relationship is shown between the FBG sensor thermal response and variations in material thickness. For comparison, finite element modeling was performed and found to agree closely with the fiber optic thermography results. This technique shows potential for applications where FBG sensors are already bonded to structures for Integrated Vehicle Health Monitoring (IVHM) strain measurements and can serve dual-use by also performing thermographic detection of subsurface anomalies.
NASA Astrophysics Data System (ADS)
Yang, Minghong; Qi, Hongji; Zhao, Yuanan; Yi, Kui
2012-01-01
The 355 nm laser-induced damage thresholds (LIDTs) of polished fused silica with and without the residual subsurface cracks were explored. HF based wet etching and magnetorheological finishing was used to remove the subsurface cracks. To isolate the effect of subsurface cracks, chemical leaching was used to eliminate the photoactive impurities in the polishing layer. Results show that the crack number density decreased from~103 to <1cm-2, and the LIDT was improved as high as 2.8-fold with both the subsurface cracks and the polishing layer being removed. Subsurface cracks play a significant role in laser damage at fluencies between 15~31 J/cm2 (355nm, 8ns). HF Etching of the cracks was shown to increase the damage performance as nearly high as that of the samples in which subsurface cracks are well controlled.
Total Internal Reflection Microscopy (TIRM) as a nondestructive surface damage assessment tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Z.M.; Cohen, S.J.; Taylor, J.R.
1994-10-01
An easy to use, nondestructive, method for evaluating subsurface damage in polished substrates has been established at LLNL. Subsurface damage has been related to laser damage in coated optical components used in high power, high repetition rate laser systems. Total Internal Reflection Microscopy (TIRM) has been shown to be a viable nondestructive technique in analyzing subsurface damage in optical components. A successful TIRM system has been established for evaluating subsurface damage on fused silica components. Laser light scattering from subsurface damage sites is collected through a Nomarski microscope. These images are then captured by a CCD camera for analysis onmore » a computer. A variety of optics, including components with intentional subsurface damage due to grinding and polishing, have been analyzed and their TIRM images compared to an existing destructive etching method. Methods for quantitative measurement of subsurface damage are also discussed.« less
Physical forcing of late summer chlorophyll a blooms in the oligotrophic eastern North Pacific
NASA Astrophysics Data System (ADS)
Toyoda, Takahiro; Okamoto, Suguru
2017-03-01
We investigated physical forcing of late summer chlorophyll a (chl a) blooms in the oligotrophic eastern North Pacific Ocean by using ocean reanalysis and satellite data. Relatively large chl a blooms as defined in this study occurred in August-October following sea surface temperature (SST) anomaly (SSTA) decreases, mixed layer deepening, and temperature and salinity increases at the bottom of the mixed layer. These physical conditions were apparently induced by the entrainment of subsurface water resulting from the destabilization of the surface layer caused by anomalous northward Ekman transport of subtropical waters of higher salinity. Salinity-normalized total alkalinity data provide supporting evidence for nutrient supply by the entrainment process. We next investigated the impact of including information about the entrainment on bloom identification. The results of analyses using reanalysis data and of those using only satellite data showed large SSTA decreases when the northward Ekman salinity transports were large, implying that the entrainment of subsurface water is well represented in both types of data. After surface-destabilizing conditions were established, relatively high surface chl a concentrations were observed. The use of SST information can further improve the detection of high chl a concentrations. Although the detection of high chl a concentrations would be enhanced by finer data resolution and the inclusion of biogeochemical parameters in the ocean reanalysis, our results obtained by using existing reanalysis data as well as recent satellite data are valuable for better understanding and prediction of lower trophic ecosystem variability.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications.
Porter, Mark L; Jiménez-Martínez, Joaquín; Martinez, Ricardo; McCulloch, Quinn; Carey, J William; Viswanathan, Hari S
2015-10-21
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. We have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works in both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. The experiments include fracture-matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO2 (scCO2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO2-brine-oil.
Fault zone hydrogeologic properties and processes revealed by borehole temperature monitoring
NASA Astrophysics Data System (ADS)
Fulton, P. M.; Brodsky, E. E.
2015-12-01
High-resolution borehole temperature monitoring can provide valuable insight into the hydrogeologic structure of fault zones and transient processes that affect fault zone stability. Here we report on results from a subseafloor temperature observatory within the Japan Trench plate boundary fault. In our efforts to interpret this unusual dataset, we have developed several new methods for probing hydrogeologic properties and processes. We illustrate how spatial variations in the thermal recovery of the borehole after drilling and other spectral characteristics provide a measure of the subsurface permeability architecture. More permeable zones allow for greater infiltration of cool drilling fluids, are more greatly thermally disturbed, and take longer to recover. The results from the JFAST (Japan Trench Fast Drilling Project) observatory are consistent with geophysical logs, core data, and other hydrologic observations and suggest a permeable damage zone consisting of steeply dipping faults and fractures overlays a low-permeability clay-rich plate boundary fault. Using high-resolution time series data, we have also developed methods to map out when and where fluid advection occurs in the subsurface over time. In the JFAST data, these techniques reveal dozens of transient earthquake-driven fluid pulses that are spatially correlated and consistently located around inferred permeable areas of the fault damage zone. These observations are suspected to reflect transient fluid flow driven by pore pressure changes in response to dynamic and/or static stresses associated with nearby earthquakes. This newly recognized hydrologic phenomenon has implications for understanding subduction zone heat and chemical transport as well as the redistribution of pore fluid pressure which influences fault stability and can trigger other earthquakes.
The effects of orbital and climatic variations on Martian surface heat flow
NASA Technical Reports Server (NTRS)
Mellon, Michael T.; Jakosky, Bruce M.
1993-01-01
Large changes in the orbital elements of Mars on timescales of 10(exp 4) to 10(exp 6) years will cause widely varying climate, specifically surface temperatures, as a result of varying insolation. These surface temperature oscillations will produce subsurface thermal gradients which contribute to the total surface heat flux. We investigate the thermal behavior of the Martian regolith on orbital timescales and show that this climatological surface heat flux is spatially variable and contributes significantly to the total surface heat flux at many locations. We model the thermal behavior of the Martian regolith by calculating the mean annual surface temperatures for each epoch (spaced 1000 years apart to resolve orbital variations) for the past 200,000 years at a chosen location on the surface. These temperatures are used as a boundary condition for the deeper regolith and subsurface temperature oscillation are then computed. The surface climatological heat flux due to past climate changes can then be found from the temperature gradient between the surface and about 150 m depth (a fraction of the thermal skin depth on these timescales). This method provides a fairly accurate determination of the climatological heat flow component at a point; however, this method is computationally time consuming and cannot be applied to all points on the globe. To map the spatial variations in the surface heat flow we recognize that the subsurface temperature structure will be largely dominated by the most recent surface temperature oscillations. In fact, the climate component of the surface heat flow will be approximately proportional to the magnitude of the most recent surface temperature change. By calculating surface temperatures at all points globally for the present epoch and an appropriate past epoch, and combining these results with a series of more precise calculations described above, we estimate the global distribution of climatological surface heat flow.
Luna, Gian Marco; Corinaldesi, Cinzia; Rastelli, Eugenio; Danovaro, Roberto
2013-10-01
We investigated the patterns and drivers of bacterial α- and β-diversity, along with viral and prokaryotic abundance and the carbon production rates, in marine surface and subsurface sediments (down to 1 m depth) in two habitats: vegetated sediments (seagrass meadow) and non-vegetated sediments. Prokaryotic abundance and production decreased with depth in the sediment, but cell-specific production rates and the virus-to-prokaryote ratio increased, highlighting unexpectedly high activity in the subsurface. The highest diversity was observed in vegetated sediments. Bacterial β-diversity between sediment horizons was high, and only a minor number of taxa was shared between surface and subsurface layers. Viruses significantly contributed to explain α- and β-diversity patterns. Despite potential limitations due to the only use of fingerprinting techniques, this study indicates that the coastal subsurface host highly active and diversified bacterial assemblages, that subsurface cells are more active than expected and that viruses promote β-diversity and stimulate bacterial metabolism in subsurface layers. The limited number of taxa shared between habitats, and between surface and subsurface sediment horizons, suggests that future investigations of the shallow subsurface will provide insights into the census of bacterial diversity, and the comprehension of the patterns and drivers of prokaryotic diversity in marine ecosystems. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
An in vivo Investigation into Temperature-Controlled Stratification of Sub-Seafloor Populations
NASA Astrophysics Data System (ADS)
McClelland, H. L. O.; Morono, Y.; Fike, D. A.; Bradley, A. S.
2017-12-01
The deep subsurface is characterized by a paucity of carbon substrates and biologically exploitable chemical potential energy. These metabolic challenges can be exacerbated by high temperatures, due to increased costs of cellular maintenance. Though sparse, microbial life persists in such environments, however, the degree to which temperature gradients result in the stratification extremophilic sub-seafloor populations is poorly understood. During Expedition 370, we established a matrix of incubation experiments with sediment samples taken from 8 depths corresponding to in situ temperatures of approximately 37, 50, 60, 70, 80, 90, 100 and 110°C, which were incubated in oxygen-free, acetate- and sulfate- supplemented, artificial seawater at temperatures of 37, 50, 60, 70 and 80°C. Substrates include large isotopic labels. Following separation from the sediment, cells were analyzed using SIMS, allowing estimates of biomass synthesis rates. We are interested in discussing potential future experiments and collaborations using this resource.
Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K.; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti
2015-01-01
It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life. PMID:26506464
In Situ Guided Wave Structural Health Monitoring System
NASA Technical Reports Server (NTRS)
Zhao, George; Tittmann, Bernhard R.
2011-01-01
Aircraft engine rotating equipment operates at high temperatures and stresses. Noninvasive inspection of microcracks in those components poses a challenge for nondestructive evaluation. A low-cost, low-profile, high-temperature ultrasonic guided wave sensor was developed that detects cracks in situ. The transducer design provides nondestructive evaluation of structures and materials. A key feature of the sensor is that it withstands high temperatures and excites strong surface wave energy to inspect surface and subsurface cracks. The sol-gel bismuth titanate-based surface acoustic wave (SAW) sensor can generate efficient SAWs for crack inspection. The sensor is very thin (submillimeter) and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. The sensor can be implemented on structures of various shapes. With a spray-coating process, the sensor can be applied to the surface of large curvatures. It has minimal effect on airflow or rotating equipment imbalance, and provides good sensitivity.
Sekine, Yasuhito; Shibuya, Takazo; Postberg, Frank; Hsu, Hsiang-Wen; Suzuki, Katsuhiko; Masaki, Yuka; Kuwatani, Tatsu; Mori, Megumi; Hong, Peng K; Yoshizaki, Motoko; Tachibana, Shogo; Sirono, Sin-iti
2015-10-27
It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life.
Subsurface Controls on Stream Intermittency in a Semi-Arid Landscape
NASA Astrophysics Data System (ADS)
Dohman, J.; Godsey, S.; Thackray, G. D.; Hale, R. L.; Wright, K.; Martinez, D.
2017-12-01
Intermittent streams currently constitute 30% to greater than 50% of the global river network. In addition, the number of intermittent streams is expected to increase due to changes in land use and climate. These streams provide important ecosystem services, such as water for irrigation, increased biodiversity, and high rates of nutrient cycling. Many hydrological studies have focused on mapping current intermittent flow regimes or evaluating long-term flow records, but very few have investigated the underlying causes of stream intermittency. The disconnection and reconnection of surface flow reflects the capacity of the subsurface to accommodate flow, so characterizing subsurface flow is key to understanding stream drying. We assess how subsurface flow paths control local surface flows during low-flow periods, including intermittency. Water table dynamics were monitored in an intermittent reach of Gibson Jack Creek in southeastern Idaho. Four transects were delineated with a groundwater well located in the hillslope, riparian zone, and in the stream, for a total of 12 groundwater wells. The presence or absence of surface flow was determined by frequent visual observations as well as in situ loggers every 30m along the 200m study reach. The rate of surface water drying was measured in conjunction with temperature, precipitation, subsurface hydraulic conductivity, hillslope-riparian-stream connectivity and subsurface travel time. Initial results during an unusually wet year suggest different responses in reaches that were previously observed to occasionally cease flowing. Flows in the intermittent reaches had less coherent and lower amplitude diel variations during base flow periods than reaches that had never been observed to dry out. Our findings will help contribute to our understanding of mechanisms driving expansion and contraction cycles in intermittent streams, increase our ability to predict how land use and climate change will affect flow regimes, and improve management of our critical water resources.
NASA Astrophysics Data System (ADS)
Yao, C.; Mantegazzi, D.; Deschamps, F.; Sanchez-Valle, C.
2013-12-01
Methanol, CH3OH, has been recently observed in several comets and at the surface of Saturn's icy moon Enceladus, [Hodyss et al., 2009]. Its plausible presence in the subsurface ocean could significantly affect the thermal and structural evolution of the satellite [Deschamps et al., 2010]. Methanol lowers the melting temperature of water ice [Vuillard & Sanchez, 1961; Miller & Carpenter, 1964], hence decreasing the efficiency of convective heat transfer through the outer ice Ih shell, and affects the subsurface ocean density and thermo-chemical evolution. However, the phase diagram and the fluid density of the H2O - CH3OH system remains largely unknown at the high pressures and low temperature conditions relevant for the icy moon interiors. In this study, we determined experimentally the liquidus temperature of Ice Ih and Ice VI and the fluid density in the binary water-methanol system (5, 10 and 20 w% CH3OH) from sound velocity measurments by Brillouin scattering spectroscopy over the P-T range 230 - 300 K and 10-4 - 1.2 GPa. The experiments were conducted using a membrane-type diamond anvil cell (mDAC) and an in-house designed Peltier cooling system to achieve the low temperatures of interest. Melting and crystallization in the system was visually monitored and confirmed from changes in the Brillouin spectra and in the pressure dependence of the measured sound velocities. The density of fluids ρ(P, T,x) in the binary system weas determined from the inversion of sound velocities measured in the fluids as a function of pressure along isotherms from 230 to 300 K. The results are used to propose a thermodynamic model for the CH3OH-H2O system over the investigated P-T range and further used to examine the effect of the methanol on the crystallization and thermo-chemical evolution of the subsurface ocean. The implications of these results for the thermal and structural evolution of icy moons, with particular applications to Titan, will be further discussed. References : Deschamps, F., Mousis, O., Sanchez-Valle, C., and Lunine, J.I., Astrophys. J., 2010. Hodyss, R., Parkinson, C.D. Johnson, V.D., Stern, J.V., Goguen, J.D, Yung, Y.L., and Kanik, I., Geophys. Res. Lett., 1992. Miller, G.A., and Carpenter, D.A., J. Chem. Eng. Data, 1964. Vuillard, G., and Sanchez, M., Bull. Soc. Chim. France, 1961.
Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland.
Nivala, J; Hoos, M B; Cross, C; Wallace, S; Parkin, G
2007-07-15
A pilot-scale subsurface-flow constructed wetland was installed at the Jones County Municipal Landfill, near Anamosa, Iowa, in August 1999 to demonstrate the use of constructed wetlands as a viable low-cost treatment option for leachate generated at small landfills. The system was equipped with a patented wetland aeration process to aid in removal of organic matter and ammonia nitrogen. The high iron content of the leachate caused the aeration system to cease 2 years into operation. Upon the installation of a pretreatment chamber for iron removal and a new aeration system, treatment efficiencies dramatically improved. Seasonal performance with and without aeration is reported for 5-day biochemical oxygen demand (BOD(5)), chemical oxygen demand (COD), ammonia nitrogen (NH(4)-N), and nitrate nitrogen (NO(3)-N). Since winter air temperatures in Iowa can be very cold, a layer of mulch insulation was installed on top of the wetland bed to keep the system from freezing. When the insulation layer was properly maintained (either through sufficient litterfall or replenishing the mulch layer), the wetland sustained air temperatures of as low as -26 degrees C without freezing problems.
Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface
NASA Technical Reports Server (NTRS)
Burt, D. M.; Knauth, L. P.
2003-01-01
If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.
Earth Sciences Division annual report 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1991-06-01
This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriatemore » chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.« less
Rowan, E.L.; De Marsily, G.
2001-01-01
Salinities and homogenization temperatures of fluid inclusions in Mississippi Valley-type (MVT) deposits provide important insights into the regional hydrology of the Illinois basin/Reelfoot rift system in late Palaeozoic time. Although the thermal regime of this basin system has been plausibly explained, the origin of high salinities in the basin fluids remains enigmatic. Topographically driven flow appears to have been essential in forming these MVT districts, as well as many other districts worldwide. However, this type of flow is recharged by fresh water making it difficult to account for the high salinities of the mineralizing fluids over extended time periods. Results of numerical experiments carried out in this study provide a possible solution to the salinity problem presented by the MVT zinc-lead and fluorite districts at the margins of the basin system. Evaporative concentration of surface water and subsequent infiltration into the subsurface are proposed to account for large volumes of brine that are ultimately responsible for mineralization of these districts. This study demonstrates that under a range of geologically reasonable conditions, brine infiltration into an aquifer in the deep subsurface can coexist with topographically driven flow. Infiltration combined with regional flow and local magmatic heat sources in the Reelfoot rift explain the brine concentrations as well as the temperatures observed in the Southern Illinois and Upper Mississippi Valley districts.
NASA Astrophysics Data System (ADS)
Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung
2012-11-01
Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.
Recent variability in the Atlantic water intrusion and water masses in Kongsfjorden, an Arctic fjord
NASA Astrophysics Data System (ADS)
Divya, David T.; Krishnan, K. P.
2017-03-01
The present study reports high inter-annual variability in the water masses and in the intrusion of Atlantic origin waters in Kongsfjorden from 2000 to 2013 using both the historical (2000-2010 summers) and recent CTD measurements (2011-2013 summer/fall). An earlier intrusion of Atlantic Water (AW) into Kongsfjorden was observed in the contemporary years. An overall summertime subsurface warming is evident from the maximum September AW temperature in 2011 (4.8 °C), 2012 (5.8 °C) and 2013 (7 °C). The combination of a compensating surface flow to the subsurface intrusion of AW and the strong southeasterly surface winds during the peak summer, resulted in a corresponding net outflow of the surface fresh water layer from Kongsfjorden. This led to the decreased freshwater volume inside the fjord during 2013 (1 km3) compared to 2011 (3.1 km3) and 2012 (2.3 km3).
NASA Astrophysics Data System (ADS)
Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.
2012-12-01
Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of experiments. Water saturation, capillary pressure, air and soil temperature, and relative humidity were continuously monitored. Aqueous TCE was injected into the tank below the water table and allowed to volatilize. TCE concentration exiting the tank head space was measured through interval sampling by direct injection into a gas chromatograph. To quantify the transient concentration of TCE vapor in the soil pore space a novel use of Solid Phase Micro-Extraction (SPME) was developed. Results from our numerical simulations were compared with the experimental data, which demonstrated the importance of considering the interaction of the atmosphere with the subsurface in conceptualization and numerical model development. Results also emphasize that soil saturation and transient sorption have a significant effect on vapor transport through the vadose zone. Follow-up tests and detailed analyses are still underway. Additional applications of this work include carbon sequestration leakage, methane contamination in the shallow subsurface and environmental impact of hydraulic fracturing.
Deep thermal disturbances related to the sub-surface groundwater flow (Western Alps, France)
NASA Astrophysics Data System (ADS)
Mommessin, Grégoire; Dzikowski, Marc; Menard, Gilles; Monin, Nathalie
2013-04-01
In mountain area, the bedrock of the valley side is affected by a thickness of decompressed rock in subsurface (decompressed zone). Groundwater flowing in this zone disrupts the depth geothermal gradients. The evolution of thermal gradients under the decompressed zone depends of groundwater temperature changes into the decompressed zone. In this study, the phenomenon is studied from data acquired in exploration drilling prior to the construction of the France - Italy transalpine tunnel (High Speed Line project between Lyon and Turin). The study area is located in the Vanoise siliceous series between Modane and Avrieux (Western Alps, France). Of 31 boreholes, we selected 14 wells showing a natural thermal disturbance (not due to the drilling) linked to the groundwater flow in decompressed zone. The drill holes have a length between 200 and 1380m and well logs were carried out (gamma log, acoustic log, temperature log, flowmeter log). The rocks are constituted mainly by quartzite with high thermal conductivity or by schist and gneiss with low thermal conductivity. The decompressed zone concerns the quartzite with thicknesses ranging from 50m to 750m where groundwater flow imposes a constant temperature throughout the rock thickness. In the very low permeability rocks under the decompressed zone, the thermal gradient shows variations with depth. These variations suggest a water temperature change in the decompressed zone probably due to a paleoclimate event. We used the derived of the equation describing the propagation of a temperature in a 1D semi-infinite, in response to a sudden temperature disturbance at the boundary of the medium, to estimate the age and the amplitude of temperature change in the decompressed zone. The medium under the decompressed zone is supposed to be initially in a steady state and only conductive. Numerical tests assess that the 1D model is applicable in the slope context. The results obtained from 13 wells data show a few warming degrees (1 to 4°K) of the decompressed zone occurring about two to four centuries BP. The latest high altitude drilling shows about two degrees cooling of the decompressed zone two centuries ago. The groundwater temperature warming can be due to a type of recharge change with a reduction of the snowmelt contribution or it can be provided by an increase of atmospheric and rainfall temperature. The observed cooling in the latest drilling can be interpreted as a groundwater flow change caused by the permafrost melting. The temperature change occurs during the end of Little Ice Age.
Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species
NASA Astrophysics Data System (ADS)
Wei, Wei; Meng, Jie; Meng, Caixia; Ning, Yanxiao; Li, Qunxiang; Fu, Qiang; Bao, Xinhe
2018-04-01
Growth kinetics of epitaxial films often follows the diffusion-limited aggregation mechanism, which shows a "fractal-to-compact" morphological transition with increasing growth temperature or decreasing deposition flux. Here, we observe an abnormal "compact-to-fractal" morphological transition with increasing growth temperature for hexagonal boron nitride growth on the Ru(0001) surface. The unusual growth process can be explained by a reaction-limited aggregation (RLA) mechanism. Moreover, introduction of the subsurface Ar atoms has enhanced this RLA growth behavior by decreasing both reaction and diffusion barriers. Our work may shed light on the epitaxial growth of two-dimensional atomic crystals and help to control their morphology.
Numerical Simulation of Illumination and Thermal Conditions at the Lunar Poles Using LOLA DTMs
NASA Technical Reports Server (NTRS)
Glaser, P.; Glaser, D.; Oberst, J.; Neumann, G. A.; Mazarico, E.; Siegler, M. A.
2017-01-01
We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales.
1997-04-30
Currently there are no systems available which allow for economical and accurate subsurface imaging of remediation sites. In some cases, high...system to address this need. This project has been very successful in showing a promising new direction for high resolution subsurface imaging . Our
Luminescence-Based Diagnostics of Thermal Barrier Coating Health and Performance
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.
2013-01-01
Thermal barrier coatings (TBCs) are typically composed of translucent ceramic oxides that provide thermal protection for metallic components exposed to high-temperature environments in both air- and land-based turbine engines. For advanced turbine engines designed for higher temperature operation, a diagnostic capability for the health and performance of TBCs will be essential to indicate when a mitigating action needs to be taken before premature TBC failure threatens engine performance or safety. In particular, it is shown that rare-earth-doped luminescent sublayers can be integrated into the TBC structure to produce luminescence emission that can be monitored to assess TBC erosion and delamination progression, and to map surface and subsurface temperatures as a measure of TBC performance. The design and implementation of these TBCs with integrated luminescent sublayers are presented.
NASA Technical Reports Server (NTRS)
Troccoli, Alberto; Rienecker, Michele M.; Keppenne, Christian L.; Johnson, Gregory C.
2003-01-01
The NASA Seasonal-to-Interannual Prediction Project (NSIPP) has developed an Ocean data assimilation system to initialize the quasi-isopycnal ocean model used in our experimental coupled-model forecast system. Initial tests of the system have focused on the assimilation of temperature profiles in an optimal interpolation framework. It is now recognized that correction of temperature only often introduces spurious water masses. The resulting density distribution can be statically unstable and also have a detrimental impact on the velocity distribution. Several simple schemes have been developed to try to correct these deficiencies. Here the salinity field is corrected by using a scheme which assumes that the temperature-salinity relationship of the model background is preserved during the assimilation. The scheme was first introduced for a zlevel model by Troccoli and Haines (1999). A large set of subsurface observations of salinity and temperature is used to cross-validate two data assimilation experiments run for the 6-year period 1993-1998. In these two experiments only subsurface temperature observations are used, but in one case the salinity field is also updated whenever temperature observations are available.
Terrestrial Subsurface Ecosystem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Fredrickson, Jim K.
2015-10-15
The Earth’s crust is a solid cool layer that overlays the mantle, with a varying thickness of between 30-50 km on continental plates, and 5-10 km on oceanic plates. Continental crust is composed of a variety of igneous, metamorphic, and sedimentary rocks that weather and re-form over geologic cycles lasting millions to billions of years. At the crust surface, these weathered minerals and organic material combine to produce a variety of soils types that provide suitable habitats and niches for abundant microbial diversity (see Chapter 4). Beneath this soil zone is the subsurface. Once thought to be relatively free ofmore » microorganisms, recent estimates have calculated that between 1016-1017 g C biomass (2-19% of Earth’s total biomass) may be present in this environment (Whitman et al., 1998;McMahon and Parnell, 2014). Microbial life in the subsurface exists across a wide range of habitats: in pores associated with relatively shallow unconsolidated aquifer sediments to fractures in bedrock formations that are more than a kilometer deep, where extreme lithostatic pressures and temperatures are encountered. While these different environments contain varying physical and chemical conditions, the absence of light is a constant. Despite this, diverse physiologies and metabolisms enable microorganisms to harness energy and carbon for growth in water-filled pore spaces and fractures. Carbon and other element cycles are driven by microbial activity, which has implications for both natural processes and human activities in the subsurface, e.g., bacteria play key roles in both hydrocarbon formation and degradation. Hydrocarbons are a major focus for human utilization of the subsurface, via oil and gas extraction and potential geologic CO2 sequestration. The subsurface is also utilized or being considered for sequestered storage of high-level radioactive waste from nuclear power generation and residual waste from past production of weapons grade nuclear materials. While our understanding of the subsurface is continually improving, it is clear that only a small fraction of microbial habitats have been sampled and studied. In this chapter, we will discuss these studies in the context of the distribution of microbial life in the subsurface, the stresses that microorganisms must overcome to survive in these environments, and the metabolic strategies that are employed to harness energy in a region of the planet far-removed from sunlight. Finally, we will consider both beneficial and deleterious effects of microbial activity in the subsurface on human activities in this environment.« less
Temperature-Dependent Friction and Wear Behavior of PTFE and MoS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babuska, T. F.; Pitenis, A. A.; Jones, M. R.
2016-06-16
We present an investigation of the temperature-dependent friction behavior of PTFE, MoS 2, and PTFE-on- MoS 2. Friction behavior was measured while continuously varying contact temperature in the range -150 to 175°C while sliding in dry nitrogen, as well as for self-mated PTFE immersed in liquid nitrogen. These results contrast with previous reports of monotonic inverse temperature dependent friction behavior, as well as reported high-friction transitions and plateaus at temperatures below about -20°C that were not observed, providing new insights about the molecular mechanisms of macro-scale friction. The temperature-dependent friction behavior characteristic of self-mated PTFE was found also on themore » PTFE-on-MoS 2 sliding contact, suggesting that PTFE friction was defined by sub-surface deformation mechanisms and internal friction even when sliding against a lamellar lubricant with extremely low friction coefficient (μ ~ 0.02). The various relaxation temperatures of PTFE were found in the temperature-dependent friction behavior, showing excellent agreement with reported values acquired using torsional techniques measuring internal friction. Additionally, hysteresis in friction behavior suggests an increase in near-surface crystallinity at upon exceeding the high temperature relaxation, T α~ 116°C.« less
Efficient numerical simulation of heat storage in subsurface georeservoirs
NASA Astrophysics Data System (ADS)
Boockmeyer, A.; Bauer, S.
2015-12-01
The transition of the German energy market towards renewable energy sources, e.g. wind or solar power, requires energy storage technologies to compensate for their fluctuating production. Large amounts of energy could be stored in georeservoirs such as porous formations in the subsurface. One possibility here is to store heat with high temperatures of up to 90°C through borehole heat exchangers (BHEs) since more than 80 % of the total energy consumption in German households are used for heating and hot water supply. Within the ANGUS+ project potential environmental impacts of such heat storages are assessed and quantified. Numerical simulations are performed to predict storage capacities, storage cycle times, and induced effects. For simulation of these highly dynamic storage sites, detailed high-resolution models are required. We set up a model that accounts for all components of the BHE and verified it using experimental data. The model ensures accurate simulation results but also leads to large numerical meshes and thus high simulation times. In this work, we therefore present a numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly for use in larger scale simulations. The numerical model includes all BHE components and represents the temporal and spatial temperature distribution with an accuracy of less than 2% deviation from the fully discretized model. By changing the BHE geometry and using equivalent parameters, the simulation time is reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. Results of a sensitivity study that quantify the effects of different design and storage formation parameters on temperature distribution and storage efficiency for heat storage using multiple BHEs are then shown. It is found that storage efficiency strongly depends on the number of BHEs composing the storage site, their distance and the cycle time. The temperature distribution is most sensitive to thermal conductivity of both borehole grouting and storage formation while storage efficiency is mainly controlled by the thermal conductivity of the storage formation.
NASA Astrophysics Data System (ADS)
Lawrence, K. T.; Pearson, A.; Castañeda, I. S.; Peterson, L.
2017-12-01
Key features of late Neogene climate remain uncertain due to conflicting records derived from different sea surface temperature (SST) proxies. To resolve these disputes, it is necessary to explore both the consistencies and differences between paleotemperature estimates from critical oceanographic regimes. Here, we report orbital-scale climate variability at ODP Site 846 in the Eastern Equatorial Pacific (EEP) in the interval from 5-6 Ma using alkenone and TEX86 temperature estimates. Results from both proxies are very similar in their secular trends and magnitude of long-term temperature change; and spectral analysis demonstrates that the records are coherent and in-phase or nearly in-phase in both the obliquity and precession bands. However, we find that the temperatures reconstructed by TEX86 are consistently offset towards colder values by 2ºC with orbital-scale variations approximately twice the amplitude of the Uk'37 derived estimates. Both temperature records are antiphased - i.e. "colder" - at higher sediment alkenone concentrations, a qualitative indicator of increased glacial productivity. Temperature differences between the proxies are accentuated during glacial intervals in contrasts to modern observations of EEP surface and subsurface temperatures, which show that thermocline temperatures are fairly stable, and thus by analogy, glacial cooling and/or enhanced upwelling should have reduced rather than accentuated temperature gradients in the upper water column. Therefore, arguments that Uk'37 corresponds to temperature variability in the surface, while TEX86 responds to the subsurface, may be too simplistic. Instead, it appears generally true that high-productivity environments, including the EEP, tend to have negative TEX86 anomalies. This may reflect a dual dependence of TEX86 records on both water column temperature and local productivity. Overall, our data suggest that in the EEP and likely in other upwelling zones, paleotemperature data derived from these proxies should not necessarily be used interchangeably and only Uk'37 is suitable for determining absolute SSTs. However, our data also suggest that TEX86 may be suitable for estimating long-term trends in SST and for spectral and phase analysis in upwelling regimes.
NASA Astrophysics Data System (ADS)
Chen, L.; Fortier, D.; Sliger, M.; McKenzie, J. M.; Murchison, P.
2017-12-01
The Alaska Highway extends over 2200 km between central Alaska, U.S.A. and northern British-Columbia, Canada. This transportation corridor is crucial for the economy of Alaska as it is the only terrestrial link between mainland Alaska and the contiguous United States. Northern British Columbia and southwestern Yukon also greatly benefit from this highway for the transportation of goods and people across this remote corner of Canada. About a quarter of the Alaska Highway is built on permafrost, which is typically ice-rich and at a temperature near the point of thawing. Degradation of the permafrost under the embankment has led to severe structural damages to the highway such as deep longitudinal cracks, extended depressions, potholes and sinkholes. Here we present thermal data from the Beaver Creek experimental road test section in southwestern Yukon. Our study investigates convective heat transfers linked to subsurface water flow under the road embankment based on seven years (2009 to 2016) of thermal monitoring. Observation results demonstrate that snowmelt water infiltration in the spring causes rapid temperature increase of the upper portion of the embankment. Later in the summer, subsurface flow under the highway embankment can lead to step temperature-increase rates, which can be 200 times larger than those via conductive heat transfers. In the fall water trapped under the road significantly delays freeze back of the active layer and contributes to higher permafrost temperature. During the monitoring period, we observed the initiation and growth of taliks along sub-surface flow paths. Positive feedback mechanisms related to water flow through the taliks significantly increased permafrost degradation. Such taliks represent an un-precedent and presumably irreversible thermal state of the highway. Similar terrain conditions which severely threaten the structural integrity of the infrastructure on the short term are numerous along the Alaska Highway corridor.
A wind comparison study using an ocean general circulation model for the 1997-1998 El Niño
NASA Astrophysics Data System (ADS)
Hackert, Eric C.; Busalacchi, Antonio J.; Murtugudde, Ragu
2001-02-01
Predictions of the 1997-1998 El Niño exhibited a wide range of forecast skill that were dependent, in part, on the wind-driven initial conditions for the ocean. In this study the results of a reduced gravity, primitive equation, sigma coordinate ocean general circulation model are compared and contrasted when forced by several different wind products for the 1997-1998 El Niño/La Niña. The different wind products include atmospheric model winds, satellite wind products, and a subjective analysis of ship and in situ winds. The model results are verified against fields of observed sea level anomalies from TOPEX/Poseidon data, sea surface temperature analyses, and subsurface temperature from the Tropical Atmosphere-Ocean buoy array. Depending on which validation data type one chooses, different wind products provide the best forcing fields for simulating the observed signal. In general, the model results forced by satellite winds provide the best simulations of the spatial and temporal signal of the observed sea level. This is due to the accuracy of the meridional gradient of the zonal wind stress component that these products provide. Differences in wind forcing also affect subsurface dynamics and thermodynamics. For example, the wind products with the weakest magnitude best reproduce the sea surface temperature (SST) signal in the eastern Pacific. For these products the mixed layer is shallower, and the thermocline is closer to the surface. For such simulations the subsurface thermocline variability influences the variation in SST more than in reality. The products with the greatest wind magnitude have a strong cold bias of >1.5°C in the eastern Pacific because of increased mixing. The satellite winds along with the analysis winds correctly reproduce the depth of the thermocline and the general subsurface temperature structure.
Mickol, Rebecca L; Laird, Sarah K; Kral, Timothy A
2018-04-23
Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii , were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.
Compensated geothermal gradient: new map of old data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, M.W.
1986-05-01
Bottom-hole temperature measurement is one of the oldest forms of downhole information acquired by the oil industry. Old and new geothermal maps that are based on these measurements have invariably been drawn with an assumed constant or average ground surface temperature over the mapped areas. However, near ground-surface equilibrium temperature is a variable rather than a constant over any region; therefore, old and current geothermal gradient mapping methods give a false impression of the true thermal level of subsurface strata, and may lead to erroneous results of temperature-based calculations, such as the TTI. In this paper, a geothermal mapping methodmore » is presented in which extrapolated surface temperature is coupled with the corresponding geothermal gradient over the mapped area. The method was tested on areas in the Middle East and Africa. Results indicate that it is especially effective in delineating loci of vertical geothermal heat flux carried upwards by ascending subsurface fluids; such areas are preferential sites for hydrocarbon entrapment, especially in young sedimentary basins where migration is still in progress.« less
Diviner lunar radiometer observations of cold traps in the moon's south polar region
Paige, D.A.; Siegler, M.A.; Zhang, J.A.; Hayne, P.O.; Foote, E.J.; Bennett, K.A.; Vasavada, A.R.; Greenhagen, B.T.; Schofield, J.T.; McCleese, D.J.; Foote, M.C.; DeJong, E.; Bills, B.G.; Hartford, W.; Murray, B.C.; Allen, C.C.; Snook, K.; Soderblom, L.A.; Calcutt, S.; Taylor, F.W.; Bowles, N.E.; Bandfield, J.L.; Elphic, R.; Ghent, R.; Glotch, T.D.; Wyatt, M.B.; Lucey, P.G.
2010-01-01
Diviner Lunar Radiometer Experiment surface-temperature maps reveal the existence of widespread surface and near-surface cryogenic regions that extend beyond the boundaries of persistent shadow. The Lunar Crater Observation and Sensing Satellite (LCROSS) struck one of the coldest of these regions, where subsurface temperatures are estimated to be 38 kelvin. Large areas of the lunar polar regions are currently cold enough to cold-trap water ice as well as a range of both more volatile and less volatile species. The diverse mixture of water and high-volatility compounds detected in the LCROSS ejecta plume is strong evidence for the impact delivery and cold-trapping of volatiles derived from primitive outer solar system bodies.
Law, B.E.; Spencer, C.W.; Bostick, N.H.
1980-01-01
The onset of overpressuring occurs at c.3,500 m, near the base of the U. Cretaceous Lance Formation. The development of overpressuring may involve several processes; however, interpretation of the available information indicates that active generation of large amounts of wet gas is one of the more important processes. The present minimum temperature at the top of overpressuring is at least 88oC. The preservation of abnormally high pressures is due to presently active generation of gas in a thick interval of discontinuous, very low-permeability shales, siltstones, and sandstones. - from Authors
Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.
2009-01-01
A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.
NASA Astrophysics Data System (ADS)
Kapser, Stefan; Balden, Martin; Fiorini da Silva, Tiago; Elgeti, Stefan; Manhard, Armin; Schmid, Klaus; Schwarz-Selinger, Thomas; von Toussaint, Udo
2018-05-01
Low-energy-plasma-driven deuterium permeation through tungsten at 300 K and 450 K has been investigated. Microstructural analysis by scanning electron microscopy, assisted by focused ion beam, revealed sub-surface damage evolution only at 300 K. This damage evolution was correlated with a significant evolution of the deuterium amount retained below the plasma-exposed surface. Although both of these phenomena were observed for 300 K exposure temperature only, the deuterium permeation flux at both exposure temperatures was indistinguishable within the experimental uncertainty. The permeation flux was used to estimate the maximum ratio of solute-deuterium to tungsten atoms during deuterium-plasma exposure at both temperatures and thus in the presence and absence of damage evolution. Diffusion-trapping simulations revealed the proximity of damage evolution to the implantation surface as the reason for an only insignificant decrease of the permeation flux.
NASA Astrophysics Data System (ADS)
Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.
2010-12-01
The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.
Li, Gang; Liu, Jiaxing; Diao, Zenghui; Jiang, Xin; Li, Jiajun; Ke, Zhixin; Shen, Pingping; Ren, Lijuan; Huang, Liangmin; Tan, Yehui
2018-01-01
Estuarine oxygen depletion is one of the worldwide problems, which is caused by the freshwater-input-derived severe stratification and high nutrients loading. In this study we presented the horizontal and vertical distributions of dissolved oxygen (DO) in the Pearl River estuary, together with temperature, salinity, chlorophyll a concentration and heterotrophic bacteria abundance obtained from two cruises during the summer (wet) and winter (dry) periods of 2015. In surface water, the DO level in the summer period was lower and varied greater, as compared to the winter period. The DO remained unsaturated in the summer period if salinity is <12 and saturated if salinity is >12; while in the winter period it remained saturated throughout the estuary. In subsurface (>5m) water, the DO level varied from 0.71 to 6.65mgL -1 and from 6.58 to 8.20mgL -1 in the summer and winter periods, respectively. Particularly, we observed an area of ~1500km 2 low DO zone in the subsurface water with a threshold of 4mgDOL -1 during this summer period, that located at the fresh- and saline-water intersection where is characterized with severe stratification and high heterotrophic bacteria abundance. In addition, our results indicate that spatial DO variability in surface water was contributed differently by biological and physio-chemical variables in the summer and winter periods, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Simunek, Jiri; Brunetti, Giuseppe; Saito, Hirotaka; Bristow, Keith
2017-04-01
Mass and energy fluxes in the subsurface are closely coupled and cannot be evaluated without considering their mutual interactions. However, only a few numerical models consider coupled water, vapor and energy transport in both the subsurface and at the soil-atmosphere interface. While hydrological and thermal processes in the subsurface are commonly implemented in existing models, which often consider both isothermally and thermally induced water and vapor flow, the interactions at the soil-atmosphere interface are often simplified, and the effects of slope inclination, slope azimuth, variable surface albedo and plant shading on incoming radiation and spatially variable surface mass and energy balance, and consequently on soil moisture and temperature distributions, are rarely considered. In this presentation we discuss these missing elements and our attempts to implement them into the HYDRUS model. We demonstrate implications of some of these interactions and their impact on the spatial distributions of soil temperature and water content, and their effect on soil evaporation. Additionally, we will demonstrate the use of the HYDRUS model to simulate processes relevant to the ground source heat pump systems.
NASA Astrophysics Data System (ADS)
Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker
2016-09-01
Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and re-circulation of meteoric waters within this structurally controlled hydrothermal circulation system. This paper illustrates how AMT may be useful in a multi-disciplinary investigation of an intermediate-depth (100-1000 m), low-enthalpy, geothermal target, and shows how the different strands of inquiry from a multi-disciplinary investigation may be woven together to gain a deeper understanding of a complex hydrothermal system.
Distribution of near-surface permafrost in Alaska: estimates of present and future conditions
Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.
2015-01-01
High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.
A field comparison of multiple techniques to quantify groundwater - surface-water interactions
González-Pinzón, Ricardo; Ward, Adam S; Hatch, Christine E; Wlostowski, Adam N; Singha, Kamini; Gooseff, Michael N.; Haggerty, Roy; Harvey, Judson; Cirpka, Olaf A; Brock, James T
2015-01-01
Groundwater–surface-water (GW-SW) interactions in streams are difficult to quantify because of heterogeneity in hydraulic and reactive processes across a range of spatial and temporal scales. The challenge of quantifying these interactions has led to the development of several techniques, from centimeter-scale probes to whole-system tracers, including chemical, thermal, and electrical methods. We co-applied conservative and smart reactive solute-tracer tests, measurement of hydraulic heads, distributed temperature sensing, vertical profiles of solute tracer and temperature in the stream bed, and electrical resistivity imaging in a 450-m reach of a 3rd-order stream. GW-SW interactions were not spatially expansive, but were high in flux through a shallow hyporheic zone surrounding the reach. NaCl and resazurin tracers suggested different surface–subsurface exchange patterns in the upper ⅔ and lower ⅓ of the reach. Subsurface sampling of tracers and vertical thermal profiles quantified relatively high fluxes through a 10- to 20-cm deep hyporheic zone with chemical reactivity of the resazurin tracer indicated at 3-, 6-, and 9-cm sampling depths. Monitoring of hydraulic gradients along transects with MINIPOINT streambed samplers starting ∼40 m from the stream indicated that groundwater discharge prevented development of a larger hyporheic zone, which progressively decreased from the stream thalweg toward the banks. Distributed temperature sensing did not detect extensive inflow of ground water to the stream, and electrical resistivity imaging showed limited large-scale hyporheic exchange. We recommend choosing technique(s) based on: 1) clear definition of the questions to be addressed (physical, biological, or chemical processes), 2) explicit identification of the spatial and temporal scales to be covered and those required to provide an appropriate context for interpretation, and 3) maximizing generation of mechanistic understanding and reducing costs of implementing multiple techniques through collaborative research.
Does Aspartic Acid Racemization Constrain the Depth Limit of the Subsurface Biosphere?
NASA Technical Reports Server (NTRS)
Onstott, T C.; Magnabosco, C.; Aubrey, A. D.; Burton, A. S.; Dworkin, J. P.; Elsila, J. E.; Grunsfeld, S.; Cao, B. H.; Hein, J. E.; Glavin, D. P.;
2013-01-01
Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of approximately 89 years for 1 km depth and 27 C and 1-2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.
NASA Astrophysics Data System (ADS)
Oberheuser, Gert; Kathrein, Hendrik; Demortier, Guy; Gonska, Horst; Freund, Friedemann
1983-06-01
Carbon subsurface concentration profiles in olivine single crystals from San Carlos, Arizona, and the Sergebet Island. Red Sea, containing total carbon between 60-180 wt.-ppm, were analyzed by means of the 12C(d. p) 13C nuclear reaction and by x-ray induced photoelectron spectroscopy (XPS) in combination with acid etching and with Ar + ion sputtering respectively, between 200-930 K. The (d, p) analysis reveals equilibrium subsurface C profiles extending 1-2 μm or more into the bulk. Their steepness is a function of temperature. Typical mean C concentrations at 300 K in the resolvable layers, 0-0.6, 0.6-1.2, and 1.2-1.8 μm. are 1.8, and 0.6 wt.-%, corresponding to enrichment factors over the mean bulk C concentration of the order of 100, 40 and 30 respectively. In the topmost atomic layers analyzed by XPS the carbon is enriched by a factor of the order of 1000, decreasing with increasing temperature. The results suggest that the carbon is in a truly dissolved state and highly mobile, subject to a reversible subsurface segregation. Most probably local lattice strain associated with the solute C species provide the driving force for this diffusional process. The C diffusion coefficient was determined from the (d, p) data below 300 K: D= 10 -13 exp(-7.8/RT) [m 2· sec -1; KJ · mole -1] and from XPS data between 450-925 K: D = 10 -14 exp(-6/RT) [m 2 · sec -1; KJ · mole -1] The estimated error of the preexponential factors is ± one order of magnitude, that of the activation energies ±3.5 and ±2 KJ mole -1 respectively.
Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?
Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L
2014-01-01
Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. © 2013 John Wiley & Sons Ltd.
Soil Carbon Dioxide Production and Surface Fluxes: Subsurface Physical Controls
NASA Astrophysics Data System (ADS)
Risk, D.; Kellman, L.; Beltrami, H.
Soil respiration is a critical determinant of landscape carbon balance. Variations in soil temperature and moisture patterns are important physical processes controlling soil respiration which need to be better understood. Relationships between soil respi- ration and physical controls are typically addressed using only surface flux data but other methods also exist which permit more rigorous interpretation of soil respira- tion processes. Here we use a combination of subsurface CO_{2} concentrations, surface CO_{2} fluxes and detailed physical monitoring of the subsurface envi- ronment to examine physical controls on soil CO_{2} production at four climate observatories in Eastern Canada. Results indicate that subsurface CO_{2} produc- tion is more strongly correlated to the subsurface thermal environment than the surface CO_{2} flux. Soil moisture was also found to have an important influence on sub- surface CO_{2} production, particularly in relation to the soil moisture - soil profile diffusivity relationship. Non-diffusive profile CO_{2} transport appears to be im- portant at these sites, resulting in a de-coupling of summertime surface fluxes from subsurface processes and violating assumptions that surface CO_{2} emissions are the result solely of diffusion. These results have implications for the study of soil respiration across a broad range of terrestrial environments.
Deep Boreholes Seals Subjected to High P, T conditions – Preliminary Experimental Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caporuscio, Florie Andre; Norskog, Katherine Elizabeth; Maner, James Lavada
The objective of this planned experimental work is to evaluate physio-chemical processes for ‘seal’ components and materials relevant to deep borehole disposal. These evaluations will encompass multi-laboratory efforts for the development of seals concepts and application of Thermal-Mechanical-Chemical (TMC) modeling work to assess barrier material interactions with subsurface fluids, their stability at high temperatures, and the implications of these processes to the evaluation of thermal limits. Deep borehole experimental work will constrain the Pressure, Temperature (P, T) conditions which “seal” material will experience in deep borehole crystalline rock repositories. The rocks of interest to this study include the silicic (graniticmore » gneiss) end members. The experiments will systematically add components to capture discrete changes in both water and EBS component chemistries.« less
Evaluating the spatial distribution of water balance in a small watershed, Pennsylvania
NASA Astrophysics Data System (ADS)
Yu, Zhongbo; Gburek, W. J.; Schwartz, F. W.
2000-04-01
A conceptual water-balance model was modified from a point application to be distributed for evaluating the spatial distribution of watershed water balance based on daily precipitation, temperature and other hydrological parameters. The model was calibrated by comparing simulated daily variation in soil moisture with field observed data and results of another model that simulates the vertical soil moisture flow by numerically solving Richards' equation. The impacts of soil and land use on the hydrological components of the water balance, such as evapotranspiration, soil moisture deficit, runoff and subsurface drainage, were evaluated with the calibrated model in this study. Given the same meteorological conditions and land use, the soil moisture deficit, evapotranspiration and surface runoff increase, and subsurface drainage decreases, as the available water capacity of soil increases. Among various land uses, alfalfa produced high soil moisture deficit and evapotranspiration and lower surface runoff and subsurface drainage, whereas soybeans produced an opposite trend. The simulated distribution of various hydrological components shows the combined effect of soil and land use. Simulated hydrological components compare well with observed data. The study demonstrated that the distributed water balance approach is efficient and has advantages over the use of single average value of hydrological variables and the application at a single point in the traditional practice.
Geo-material microfluidics at reservoir conditions for subsurface energy resource applications
Porter, Mark L.; Jiménez-Martínez, Joaquín; Martinez, Ricardo Martin; ...
2015-08-20
Microfluidic investigations of flow and transport in porous and fractured media have the potential to play a significant role in the development of future subsurface energy resource technologies. However, the majority of experimental systems to date are limited in applicability due to operating conditions and/or the use of engineered material micromodels. In this paper, we have developed a high pressure and temperature microfluidic experimental system that allows for direct observations of flow and transport within geo-material micromodels (e.g. rock, cement) at reservoir conditions. In this manuscript, we describe the experimental system, including our novel micromodel fabrication method that works inmore » both geo- and engineered materials and utilizes 3-D tomography images of real fractures as micromodel templates to better represent the pore space and fracture geometries expected in subsurface formations. We present experimental results that highlight the advantages of using real-rock micromodels and discuss potential areas of research that could benefit from geo-material microfluidic investigations. Finally, the experiments include fracture–matrix interaction in which water imbibes into the shale rock matrix from etched fractures, supercritical CO 2 (scCO 2) displacing brine in idealized and realistic fracture patterns, and three-phase flow involving scCO 2–brine–oil.« less
Impact of glider data assimilation on the Monterey Bay model
NASA Astrophysics Data System (ADS)
Shulman, Igor; Rowley, Clark; Anderson, Stephanie; DeRada, Sergio; Kindle, John; Martin, Paul; Doyle, James; Cummings, James; Ramp, Steve; Chavez, Francisco; Fratantoni, David; Davis, Russ
2009-02-01
Glider observations were essential components of the observational program in the Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay area during summer of 2003. This paper is focused on the impact of the assimilation of glider temperature and salinity observations on the Navy Coastal Ocean Model (NCOM) predictions of surface and subsurface properties. The modeling system consists of an implementation of the NCOM model using a curvilinear, orthogonal grid with 1-4 km resolution, with finest resolution around the bay. The model receives open boundary conditions from a regional (9 km resolution) NCOM implementation for the California Current System, and surface fluxes from the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) atmospheric model at 3 km resolution. The data assimilation component of the system is a version of the Navy Coupled Ocean Data Assimilation (NCODA) system, which is used for assimilation of the glider data into the NCOM model of the Monterey Bay area. The NCODA is a fully 3D multivariate optimum interpolation system that produces simultaneous analyses of temperature, salinity, geopotential, and vector velocity. Assimilation of glider data improves the surface temperature at the mooring locations for the NCOM model hindcast and nowcasts, and for the short-range (1-1.5 days) forecasts. It is shown that it is critical to have accurate atmospheric forcing for more extended forecasts. Assimilation of glider data provided better agreement with independent observations (for example, with aircraft measured SSTs) of the model-predicted and observed spatial distributions of surface temperature and salinity. Mooring observations of subsurface temperature and salinity show sharp changes in the thermocline and halocline depths during transitions from upwelling to relaxation and vice versa. The non-assimilative run also shows these transitions in subsurface temperature; but they are not as well defined. For salinity, the non-assimilative run significantly differs from the observations. However, the glider data assimilating run is able to show comparable results with observations of thermocline as well as halocline depths during upwelling and relaxation events in the Monterey Bay area. It is also shown that during the relaxation of wind, the data assimilative run has higher value of subsurface velocity complex correlation with observations than the non-assimilative run.
UBIQUITOUS SOLAR ERUPTIONS DRIVEN BY MAGNETIZED VORTEX TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, I. N.; Kosovichev, A. G.; Lele, S. K.
2013-06-10
The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruption events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push the surrounding material up, generating shocks. Our simulations reveal complicated high-speed flow patterns andmore » thermodynamic and magnetic structure in the erupting vortex tubes. The main new results are: (1) the eruptions are initiated in the subsurface layers and are driven by high-pressure gradients in the subphotosphere and photosphere and by the Lorentz force in the higher atmosphere layers; (2) the fluctuations in the vortex tubes penetrating into the chromosphere are quasi-periodic with a characteristic period of 2-5 minutes; and (3) the eruptions are highly non-uniform: the flows are predominantly downward in the vortex tube cores and upward in their surroundings; the plasma density and temperature vary significantly across the eruptions.« less
Geothermal Gradient impact on Induced Seismicity in Raton Basin, Colorado and New Mexico
NASA Astrophysics Data System (ADS)
Pfeiffer, K.; Ge, S.
2017-12-01
Since 1999, Raton Basin, located in southeastern Colorado and northern New Mexico, is the site of wastewater injection for disposing a byproduct of coal bed methane production. During 1999-2016, 29 wastewater injection wells were active in Raton Basin. Induced seismicity began in 2001 and the largest recorded earthquake, an M5.3, occurred in August 2011. Although most injection occurs in the Dakota Formation, the majority of the seismicity has been located in the crystalline basement. Previous studies involving Raton Basin focused on high injection rates and high volume wells to determine their effect on increased pore pressure. However, the geothermal gradient has yet to be studied as a potential catalyst of seismicity. Enhanced Geothermal Systems throughout the world have experienced similar seismicity problems due to water injection. Raton's geothermal gradient, which averages 49± 12°C/km, is much higher then other areas experiencing seismicity. Thermal differences between the hot subsurface and cooler wastewater injection have the potential to affect the strength of the rock and allow for failure. Therefore, we hypothesis that wells in high geothermal gradient areas will produce more frequent earthquakes due to thermal contrast from relatively cold wastewater injection. We model the geothermal gradient in the surrounding areas of the injection sites in Raton Basin to assess potential spatial relationship between high geothermal gradient and earthquakes. Preliminary results show that the fluid pressure increase from injecting cool water is above the threshold of 0.1MPa, which has been shown to induce earthquakes. In addition, temperatures in the subsurface could decrease up to 2°C at approximately 80 m from the injection well, with a temperature effect reaching up to 100 m away from the injection well.
Large-scale fluid-deposited mineralization in Margaritifer Terra, Mars
NASA Astrophysics Data System (ADS)
Thomas, Rebecca J.; Potter-McIntyre, Sally L.; Hynek, Brian M.
2017-07-01
Mineral deposits precipitated from subsurface-sourced fluids are a key astrobiological detection target on Mars, due to the long-term viability of the subsurface as a habitat for life and the ability of precipitated minerals to preserve biosignatures. We report morphological and stratigraphic evidence for ridges along fractures in impact crater floors in Margaritifer Terra. Parallels with terrestrial analog environments and the regional context indicate that two observed ridge types are best explained by groundwater-emplaced cementation in the shallow subsurface and higher-temperature hydrothermal deposition at the surface, respectively. Both mechanisms have considerable astrobiological significance. Finally, we propose that morphologically similar ridges previously documented at the Mars 2020 landing site in NE Syrtis Major may have formed by similar mechanisms.
NASA Astrophysics Data System (ADS)
Leinov, E.; Jackson, M. D.
2014-09-01
Exclusion-diffusion potentials arising from temperature gradients are widely neglected in self-potential (SP) surveys, despite the ubiquitous presence of temperature gradients in subsurface settings such as volcanoes and hot springs, geothermal fields, and oil reservoirs during production via water or steam injection. Likewise, with the exception of borehole SP logging, exclusion-diffusion potentials arising from concentration gradients are also neglected or, at best, it is assumed that the diffusion potential dominates. To better interpret these SP sources requires well-constrained measurements of the various coupling terms. We report measurements of thermoelectric and electrochemical exclusion-diffusion potentials across sandstones saturated with NaCl brine and find that electrode effects can dominate the measured voltage. After correcting for these, we find that Hittorf transport numbers are the same within experimental error regardless of whether ion transport occurs in response to temperature or concentration gradients over the range of NaCl concentration investigated that is typical of natural systems. Diffusion potentials dominate only if the pore throat radius is more than approximately 4000 times larger than the diffuse layer thickness. In fine-grained sandstones with small pore throat diameter, this condition is likely to be met only if the saturating brine is of relatively high salinity; thus, in many cases of interest to earth scientists, exclusion-diffusion potentials will comprise significant contributions from both ionic diffusion through, and ionic exclusion from, the pore space of the rock. However, in coarse-grained sandstones, or sandstones saturated with high-salinity brine, exclusion-diffusion potentials can be described using end-member models in which ionic exclusion is neglected. Exclusion-diffusion potentials in sandstones depend upon pore size and salinity in a complex way: they may be positive, negative, or zero depending upon sandstone rock texture (expressed here by the pore radius r) and salinity.
NASA Astrophysics Data System (ADS)
Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang
1981-01-01
Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then several experimental power stations using thermal water have been set up in Fengshun (Fungshun),
NASA Technical Reports Server (NTRS)
Frank, H.; Kindler, A.; Deligiannis, F.; Davies, E.; Blankevoort, J.; Ratnakumar, B. V.; Surampudi, S.
1999-01-01
In January of 1999 the NM DS-2 Mars microprobe will be launched to impact on Mars in December. The technical objectives of the missions are to demonstrate: key technologies, a passive atmospheric entry, highly integrated microelectronics which can withstand both low temperatures and high decelerations, and the capability to conduct in-situ, surface and subsurface science data acquisition. The scientific objectives are to determine if ice is present below the Martian surface, measure the local atmospheric pressure, characterize the thermal properties of the martian subsurface soil, and to estimate the vertical temperature gradient of the Martian soil. The battery requirements are 2-4 cell batteries, with voltage of 6-14 volts, capacity of 550 mAh at 80C, and 2Ah at 25C, shelf life of 2.5 years, an operating temperature of 60C and below, and the ability to withstand shock impact of 80,000 g's. The technical challenges and the approach is reviewed. The Li-SOCL2 system is reviewed, and graphs showing the current and voltage is displayed, along with the voltage over discharge time. The problems encountered during the testing were: (1) impact sensitivity, (2) cracking of the seals, and (3) delay in voltage. A new design resulted in no problems in the impact testing phase. The corrective actions for the seal problems involved: (1) pre weld fill tube, (2) an improved heat sink during case to cover weld and (3) change the seal dimensions to reduce stress. To correct the voltage delay problem the solutions involved: (1) drying the electrodes to reduce contamination by water, (2) assemblage of the cells within a week of electrode manufacture, (3) ensure electrolyte purity, and (4) provide second depassivation pulse after landing. The conclusions on further testing were that the battery can: (1) withstand anticipated shock of up to 80,000 g, (2) meet the discharge profile post shock at Mars temperatures, (3) meet the required self discharge rate and (4) meet environmental requirements.
NASA Astrophysics Data System (ADS)
Perner, Kerstin; Moros, Matthias; Simon, Margit; Berben, Sarah; Griem, Lisa; Dokken, Trond; Wacker, Lukas; Jansen, Eystein
2017-04-01
The region offshore North Iceland is known to be sensitive to broad scale climatic and oceanographic changes in the North Atlantic Ocean. Changes in surface and subsurface water conditions link to the varying influence of Polar-sourced East Icelandic Current (EIC) and Atlantic-sourced North Irminger Icelandic Current (NIIC). Cold/fresh Polar waters from the East Greenland Current feed the surface flowing EIC, while warm/saline Subpolar Mode Waters (SPMW) from the Irminger Current (IC) feed the subsurface flowing NIIC. Here, we present a new and well-dated multi-proxy record that allows high-resolution reconstruction of surface and subsurface water mass changes on the western North Iceland shelf. An age-depth model for the last Millennium has been developed based on the combined information from radionuclide measurements (137Cs, 210Pb) dating, 25 AMS 14C radiocarbon dates, and identified Tephra horizons. Our dating results provide further support to previous assumptions that North of Iceland a conventional reservoir age correction application of 400 years (ΔR=0) is inadequate (e.g., Eikíksson et al., 2000; Wanamaker Jr. et al., 2012). The combined evidence from radionuclide dating and the identified Tephra horizons point to a ΔR of c. 360 years during the last Millennium. Our benthic and planktic foraminiferal assemblage and stable oxygen isotope (18O) record of Neogloboquadrina pachyderma s. (NPS) resolve the last Millennium at a centennial to multi-decadal resolution. Comparison of abundance changes of the Atlantic Water related species Cassidulina neoteretis and NPS, as well as the 18O record agree well with the instrumental data time series from the monitoring station Hunafloi nearby. This provides further support that our data is representative of relative temperature and salinity changes in surface and subsurface waters. Hence, this new record allows a more detailed investigation on the timing of Polar (EIC) and Atlantic (NIIC, IC) Water contribution to the North Iceland shelf that links to large-scale atmospheric and oceanic changes in the North Atlantic region. We find, during the time of the Medieval Climate Anomaly (MCA), an increased influence of Atlantic waters on surface water conditions, suggesting a stronger inflow of the NIIC, and thus of SPMW from the IC. This influence decreases markedly at the transition from the MCA to the Little Ice Age (LIA) and remains weak during the 20th Century, which likely relates to an enhanced inflow of cold/fresh Polar surface waters to the North Iceland shelf. During the MCA and LIA subsurface water conditions remain predominantly influenced by SPMW from the IC. However, from c. 1950 AD towards the present, this influence and thus likely subsurface water temperatures, decrease on the western North Iceland shelf.
Influence of surface nudging on climatological mean and ENSO feedbacks in a coupled model
NASA Astrophysics Data System (ADS)
Zhu, Jieshun; Kumar, Arun
2018-01-01
Studies have suggested that surface nudging could be an efficient way to reconstruct the subsurface ocean variability, and thus a useful method for initializing climate predictions (e.g., seasonal and decadal predictions). Surface nudging is also the basis for climate models with flux adjustments. In this study, however, some negative aspects of surface nudging on climate simulations in a coupled model are identified. Specifically, a low-resolution version of the NCEP Climate Forecast System, version 2 (CFSv2L) is used to examine the influence of nudging on simulations of climatological mean and on the coupled feedbacks during ENSO. The effect on ENSO feedbacks is diagnosed following a heat budget analysis of mixed layer temperature anomalies. Diagnostics of the climatological mean state indicates that, even though SST biases in all ocean basins, as expected, are eliminated, the fidelity of climatological precipitation, surface winds and subsurface temperature (or the thermocline depth) could be highly ocean basin dependent. This is exemplified by improvements in the climatology of these variables in the tropical Atlantic, but degradations in the tropical Pacific. Furthermore, surface nudging also distorts the dynamical feedbacks during ENSO. For example, while the thermocline feedback played a critical role during the evolution of ENSO in a free simulation, it only played a minor role in the nudged simulation. These results imply that, even though the simulation of surface temperature could be improved in a climate model with surface nudging, the physics behind might be unrealistic.
Adjusting alloy compositions for selected properties in temperature limited heaters
Brady; Michael Patrick , Horton, Jr.; Joseph Arno , Vitek; John Michael
2010-03-23
Heaters for treating a subsurface formation are described herein. Such heaters can be obtained by using the systems and methods described herein. The heater includes a heater section including iron, cobalt, and carbon. The heater section has a Curie temperature less than a phase transformation temperature. The Curie temperature is at least 740.degree. C. The heater section provides, when time varying current is applied to the heater section, an electrical resistance.
Tecuamburro Volcano, Guatemala: exploration geothermal gradient drilling and results
Goff, S.J.; Goff, F.; Janik, C.J.
1992-01-01
Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro geothermal site, Guatemala, indicate that there is a substantial shallow heat source beneath the area of youngest volcanism. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 300??C. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, fracturing, hydrothermal alteration, and hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro Volcano complex. The hole is located 300 m south of a 300m-diameter phreatic crater. Laguna Ixpaco, dated at 2910 years. TCB-1 temperature logs do not indicate isothermal conditions at depth and the calculated thermal gradient from 500-800 m is 230??C/km. Bottom hole temperature is close to 240??C. Calculated heat flow values are around 350-400 mW/m2. Fluid-inclusion and secondary-alteration studies indicate that veins and secondary minerals were formed at temperatures equal to or slightly less than present temperatures; thus, the Tecuamburro geothermal system may still be heating up. The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for geothermal resource development. ?? 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, Patrick; Fercho, Steven; Perkin, Doug
2015-06-01
The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations atmore » the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.« less
Predictability of Subsurface Temperature and the AMOC
NASA Astrophysics Data System (ADS)
Chang, Y.; Schubert, S. D.
2013-12-01
GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.
Biofilm-induced calcium carbonate precipitation: application in the subsurface
NASA Astrophysics Data System (ADS)
Phillips, A. J.; Eldring, J.; Lauchnor, E.; Hiebert, R.; Gerlach, R.; Mitchell, A. C.; Esposito, R.; Cunningham, A. B.; Spangler, L.
2012-12-01
We have investigated mitigation strategies for sealing high permeability regions, like fractures, in the subsurface. This technology has the potential to, for example, improve the long-term security of geologically-stored carbon dioxide (CO2) by sealing fractures in cap rocks or to mitigate leakage pathways to prevent contamination of overlying aquifers from hydraulic fracturing fluids. Sealing technologies using low-viscosity fluids are advantageous since they potentially reduce the necessary injection pressures and increase the radius of influence around injection wells. In this technology, aqueous solutions and suspensions are used to promote microbially-induced mineral precipitation which can be applied in subsurface environments. To this end, a strategy was developed to twice seal a hydraulically fractured, 74 cm (2.4') diameter Boyles Sandstone core, collected in North-Central Alabama, with biofilm-induced calcium carbonate (CaCO3) precipitates under ambient pressures. Sporosarcina pasteurii biofilms were established and calcium and urea containing reagents were injected to promote saturation conditions favorable for CaCO3 precipitation followed by growth reagents to resuscitate the biofilm's ureolytic activity. Then, in order to evaluate this process at relevant deep subsurface pressures, a novel high pressure test vessel was developed to house the 74 cm diameter core under pressures as high as 96 bar (1,400 psi). After determining that no impact to the fracture permeability occurred due to increasing overburden pressure, the fractured core was sealed under subsurface relevant pressures relating to 457 meters (1,500 feet) below ground surface (44 bar (650 psi) overburden pressure). After fracture sealing under both ambient and subsurface relevant pressure conditions, the sandstone core withstood three times higher well bore pressure than during the initial fracturing event, which occurred prior to biofilm-induced CaCO3 mineralization. These studies suggest biofilm-induced CaCO3 precipitation technologies may potentially seal and strengthen high permeability regions or fractures (either natural or induced) in the subsurface. Novel high pressure test vessel to investigate biogeochemical processes under relevant subsurface scales and pressures.
New temperature model of the Netherlands from new data and novel modelling methodology
NASA Astrophysics Data System (ADS)
Bonté, Damien; Struijk, Maartje; Békési, Eszter; Cloetingh, Sierd; van Wees, Jan-Diederik
2017-04-01
Deep geothermal energy has grown in interest in Western Europe in the last decades, for direct use but also, as the knowledge of the subsurface improves, for electricity generation. In the Netherlands, where the sector took off with the first system in 2005, geothermal energy is seen has a key player for a sustainable future. The knowledge of the temperature subsurface, together with the available flow from the reservoir, is an important factor that can determine the success of a geothermal energy project. To support the development of deep geothermal energy system in the Netherlands, we have made a first assessment of the subsurface temperature based on thermal data but also on geological elements (Bonté et al, 2012). An outcome of this work was ThermoGIS that uses the temperature model. This work is a revision of the model that is used in ThermoGIS. The improvement from the first model are multiple, we have been improving not only the dataset used for the calibration and structural model, but also the methodology trough an improved software (called b3t). The temperature dataset has been updated by integrating temperature on the newly accessible wells. The sedimentary description in the basin has been improved by using an updated and refined structural model and an improved lithological definition. A major improvement in from the methodology used to perform the modelling, with b3t the calibration is made not only using the lithospheric parameters but also using the thermal conductivity of the sediments. The result is a much more accurate definition of the parameters for the model and a perfected handling of the calibration process. The result obtain is a precise and improved temperature model of the Netherlands. The thermal conductivity variation in the sediments associated with geometry of the layers is an important factor of temperature variations and the influence of the Zechtein salt in the north of the country is important. In addition, the radiogenic heat production in the crust shows a significant impact. From the temperature values, also identify in the lower part of the basin, deep convective systems that could be major geothermal energy target in the future.
NASA Astrophysics Data System (ADS)
Lethuillier, Anthony; von Allmen, Paul; Hofstadter, Mark; Beaudin, Gerard; Biver, Nicolas; Bockelee-Morvan, Dominique; Choukroun, Mathieu; Crovisier, Jacques; Davidsson, Bjorn; Encrenaz, Pierre; Encrenaz, Therese; Frerking, Margaret; Gulkis, Samuel; Hartogh, Paul; Ip, Wing-Huen; Janssen, Michael A.; Jarchow, Christopher; Lee, Seungwon; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Schloerb, Peter; Spilker, Thomas R.; MIRO/Rosetta
2017-10-01
After the arrival of the Rosetta spacecraft at the 67P/ Churyumov-Gerasimenko comet in August 2014, and continuing until the end of mission in September 2016, the MIRO (Microwave Instrument for Rosetta Orbiter, Gulkis et al. [2007]) performed broadband, continuum measurements at 188 GHz (1.6 mm wavelength) and 562 GHz (0.5 mm wavelength) of the nucleus and coma. The instrument measured the thermal emission from the close subsurface over a wide range of spatial resolutions (20 - 500 m) and emission angles. The measurements revealed a seasonal and diurnal variation of the subsurface temperatures indicating that the submillimeter radiation originates from depths comparable to the diurnal thermal skin depth [Gulkis et al. 2015]. The observations were found to be consistent with very low thermal inertia values over most of the surface (between 10-60 J K-1 m-2 s-1/2, consistent with a thermally insulating powdered surface), and they suggest vertical heterogeneities and the possible presence of ice within the upper few centimeters of the surface (Schloerb et al. [2015]; Choukroun et al. [2015]). In addition to these global observations many studies are being done on specific parts of the nucleus, in this context we will present the work performed on high spatial resolutions observations of the Imhotep region. The Imhotep region, located on the main lobe of the nucleus, presents a smooth surface with no obvious impacts or depressions. This region was observed at least twice at high spatial resolution (approximately 18 m at submm wavelengths, 45 m in the millimeter), the first time on October 27th 2014 as a single swath observation then again on July 9th 2016 as a raster scan. Using a thermo-physical model developed at JPL to fit the observed thermal emission we will present the constraints we managed to obtain on the subsurface properties and their evolution over time.
Lunar and Martian Sub-surface Habitat Structure Technology Development and Application
NASA Technical Reports Server (NTRS)
Boston, Penelope J.; Strong, Janet D.
2005-01-01
NASA's human exploration initiative poses great opportunity and great risk for manned missions to the Moon and Mars. Subsidace structures such as caves and lava tubes offer readily available and existing in-situ habitat options. Sub-surface dwellings can provide complete radiation, micro-meteorite and exhaust plume shielding and a moderate and constant temperature environment; they are, therefore, excellent pre-existing habitat risk mitigation elements. Technical challenges to subsurface habitat structure development include surface penetration (digging and mining equipment), environmental pressurization, and psychological environment enhancement requirements. Lunar and Martian environments and elements have many beneficial similarities. This will allow for lunar testing and design development of subsurface habitat structures for Martian application; however, significant differences between lunar and Martian environments and resource elements will mandate unique application development. Mars is NASA's ultimate exploration goal and is known to have many very large lava tubes. Other cave types are plausible. The Moon has unroofed rilles and lava tubes, but further research will, in the near future, define the extent of Lunar and Martian differences and similarities. This paper will discuss Lunar and Martian subsurface habitation technology development challenges and opportunities.
Temperature calibration of amino acid racemization: age implications for the Yuha skeleton
Bischoff, J.L.; Childers, W.M.
1979-01-01
D/L of aspartic acid ranged from 0.52 to 0.56 for femur samples of the Yuha skeleton. Subsurface temperature measurements made at the burial site indicate average annual temperature is 18??C and diagenetic temperature is 21.6??C. These data and a relation derived for the dependence of the aspartic acid rate constant on diagenetic temperature indicate an age of 23,600. The result is consistent with 14C and 230Th dating of calcrete found coating the bones. ?? 1979.
High resolution subsurface imaging using resonance-enhanced detection in 2nd-harmonic KPFM.
Cadena, Maria Jose; Reifenberger, Ronald G; Raman, Arvind
2018-06-28
Second harmonic Kelvin probe force microscopy is a robust mechanism for subsurface imaging at the nanoscale. Here we exploit resonance-enhanced detection as a way to boost the subsurface contrast with higher force sensitivity using lower bias voltages, in comparison to the traditional off-resonance case. In this mode, the second harmonic signal of the electrostatic force is acquired at one of the eigenmode frequencies of the microcantilever. As a result, high-resolution subsurface images are obtained in a variety of nanocomposites. To further understand the subsurface imaging detection upon electrostatic forces, we use a finite element model that approximates the geometry of the probe and sample. This allows the investigation of the contrast mechanism, the depth sensitivity and lateral resolution depending on tip-sample properties. © 2018 IOP Publishing Ltd.
NASA Astrophysics Data System (ADS)
Rao, A.; Onderdonk, N.
2016-12-01
The Davis-Schrimpf Seep Field (DSSF) is a group of approximately 50 geothermal mud seeps (gryphons) in the Salton Trough of southeastern California. Its location puts it in line with the mapped San Andreas Fault, if extended further south, as well as within the poorly-understood Brawley Seismic Zone. Much of the geomorphology, geochemistry, and other characteristics of the DSSF have been analyzed, but its subsurface structure remains unknown. Here we present data and interpretations from five new temperature timeseries from four separate gryphons at the DSSF, and compare them both amongst themselves, and within the context of all previously collected data to identify possible patterns constraining the subsurface dynamics. Simultaneously collected time-series from different seeps were cross-correlated to quantify similarity. All years' time-series were checked against the record of local seismicity to identify any seismic influence on temperature excursions. Time-series captured from the same feature in different years were statistically summarized and the results plotted to examine their evolution over time. We found that adjacent vents often alternate in temperature, suggesting a switching of flow path of the erupted mud at the scale of a few meters or less. Noticeable warming over time was observed in most of the features with time-series covering multiple years. No synchronicity was observed between DSSF features' temperature excursions, and seismic events within a 24 kilometer radius covering most of the width of the surrounding Salton Trough.
Compatibility of Surfactants and Thermally Activated Persulfate for Enhanced Subsurface Remediation.
Wang, Li; Peng, Libin; Xie, Liling; Deng, Peiyan; Deng, Dayi
2017-06-20
Limited aqueous availability of hydrophobic organic contaminants and nonaqueous phase liquids in subsurface environment may seriously impair the effectiveness of traditional in situ chemical oxidation (ISCO). To tackle the issue, a combination of surfactants and thermally activated persulfate was proposed to enhance the aqueous availability and consequent oxidation of organic contaminants. The compatibility of eight representative nonionic, monovalent anionic, and divalent anionic surfactants with persulfate at various temperatures was first studied, to identify suitable surfactants that have high aqueous stability and low oxidant demands to couple with thermally activated persulfate. C 12 -MADS (sodium dodecyl diphenyl ether disulfonate, a representative divalent anionic surfactant) stands out as the most compatible surfactant. Batch treatability study with coal tar, an example of challenging scenarios for traditional ISCO, was then conducted. The results show that C 12 -MADS can significantly enhance not only the oxidation of polyaromatic hydrocarbons contained in coal tar but also oxidant utilization efficiency, indicating the potential of the proposed coupling process for the treatment of organic contaminants with low aqueous availability.
NASA Astrophysics Data System (ADS)
Mohamed, Haby S.; Abdel Zaher, Mohamed; Senosy, Mahmoud M.; Saibi, Hakim; El Nouby, Mohamed; Fairhead, J. Derek
2015-06-01
The northern part of the Western Desert of Egypt represents the second most promising area of hydrocarbon potential after the Gulf of Suez province. An artificial neural network (ANN) approach was used to develop a new predictive model for calculation of the geothermal gradients in this region based on gravity and corrected bottom-hole temperature (BHT) data. The best training data set was obtained with an ANN architecture composed of seven neurons in the hidden layer, which made it possible to predict the geothermal gradient with satisfactory efficiency. The BHT records of 116 deep oil wells (2,000-4,500 m) were used to evaluate the geothermal resources in the northern Western Desert. Corrections were applied to the BHT data to obtain the true formation equilibrium temperatures, which can provide useful constraints on the subsurface thermal regime. On the basis of these corrected data, the thermal gradient was computed for the linear sections of the temperature-versus-depth data at each well. The calculated geothermal gradient using temperature log data was generally 30 °C/km, with a few local high geothermal gradients in the northwestern parts of the study area explained by potential local geothermal fields. The Bouguer gravity values from the study area ranged from -60 mGal in the southern parts to 120 mGal in the northern areas, and exhibited NE-SW and E-W trends associated with geological structures. Although the northern Western Desert of Egypt has low regional temperature gradients (30 °C/km), several potential local geothermal fields were found (>40 °C/km). The heat flow at each well was also computed by combining sets of temperature gradients and thermal conductivity data. Aerogravity data were used to delineate the subsurface structures and tectonic framework of the region. The result of this study is a new geothermal gradient map of the northern Western Desert developed from gravity and BHT log data.
Optimal doping control of magnetic semiconductors via subsurfactant epitaxy.
Zeng, Changgan; Zhang, Zhenyu; van Benthem, Klaus; Chisholm, Matthew F; Weitering, Hanno H
2008-02-15
"Subsurfactant epitaxy" is established as a conceptually new approach for introducing manganese as a magnetic dopant into germanium. A kinetic pathway is devised in which the subsurface interstitial sites on Ge(100) are first selectively populated with Mn, while lateral diffusion and clustering on or underneath the surface are effectively suppressed. Subsequent Ge deposition as a capping layer produces a novel surfactantlike phenomenon as the interstitial Mn atoms float towards newly defined subsurface sites at the growth front. Furthermore, the Mn atoms that failed to float upwards are uniformly distributed within the Ge capping layer. The resulting doping levels of order 0.25 at. % would normally be considered too low for ferromagnetic ordering, but the Curie temperature exceeds room temperature by a comfortable margin. Subsurfactant epitaxy thus enables superior dopant control in magnetic semiconductors.
Energy Requirements of Hydrogen-utilizing Microbes: A Boundary Condition for Subsurface Life
NASA Technical Reports Server (NTRS)
Hoehler, Tori M.; Alperin, Marc J.; Albert, Daniel B.; Martens, Christopher S.
2003-01-01
Microbial ecosystems based on the energy supplied by water-rock chemistry carry particular significance in the context of geo- and astrobiology. With no direct dependence on solar energy, lithotrophic microbes could conceivably penetrate a planetary crust to a depth limited only by temperature or pressure constraints (several kilometers or more). The deep lithospheric habitat is thereby potentially much greater in volume than its surface counterpart, and in addition offers a stable refuge against inhospitable surface conditions related to climatic or atmospheric evolution (e.g., Mars) or even high-energy impacts (e.g., early in Earth's history). The possibilities for a deep microbial biosphere are, however, greatly constrained by life s need to obtain energy at a certain minimum rate (the maintenance energy requirement) and of a certain minimum magnitude (the energy quantum requirement). The mere existence of these requirements implies that a significant fraction of the chemical free energy available in the subsurface environment cannot be exploited by life. Similar limits may also apply to the usefulness of light energy at very low intensities or long wavelengths. Quantification of these minimum energy requirements in terrestrial microbial ecosystems will help to establish a criterion of energetic habitability that can significantly constrain the prospects for life in Earth's subsurface, or on other bodies in the solar system. Our early work has focused on quantifying the biological energy quantum requirement for methanogenic archaea, as representatives of a plausible subsurface metabolism, in anoxic sediments (where energy availability is among the most limiting factors in microbial population growth). In both field and laboratory experiments utilizing these sediments, methanogens retain a remarkably consistent free energy intake, in the face of fluctuating environmental conditions that affect energy availability. The energy yields apparently required by methanogens in these sediment systems for sustained metabolism are about half that previously thought necessary. Lowered energy requirements would imply that a correspondingly greater proportion of the planetary subsurface could represent viable habitat for microorganisms.
Equatorial Indian Ocean subsurface current variability in an Ocean General Circulation Model
NASA Astrophysics Data System (ADS)
Gnanaseelan, C.; Deshpande, Aditi
2018-03-01
The variability of subsurface currents in the equatorial Indian Ocean is studied using high resolution Ocean General Circulation Model (OGCM) simulations during 1958-2009. February-March eastward equatorial subsurface current (ESC) shows weak variability whereas strong variability is observed in northern summer and fall ESC. An eastward subsurface current with maximum amplitude in the pycnocline is prominent right from summer to winter during strong Indian Ocean Dipole (IOD) years when air-sea coupling is significant. On the other hand during weak IOD years, both the air-sea coupling and the ESC are weak. This strongly suggests the role of ESC on the strength of IOD. The extension of the ESC to the summer months during the strong IOD years strengthens the oceanic response and supports intensification and maintenance of IODs through modulation of air sea coupling. Although the ESC is triggered by equatorial winds, the coupled air-sea interaction associated with IODs strengthens the ESC to persist for several seasons thereby establishing a positive feedback cycle with the surface. This suggests that the ESC plays a significant role in the coupled processes associated with the evolution and intensification of IOD events by cooling the eastern basin and strengthening thermocline-SST (sea surface temperature) interaction. As the impact of IOD events on Indian summer monsoon is significant only during strong IOD years, understanding and monitoring the evolution of ESC during these years is important for summer monsoon forecasting purposes. There is a westward phase propagation of anomalous subsurface currents which persists for a year during strong IOD years, whereas such persistence or phase propagation is not seen during weak IOD years, supporting the close association between ESC and strength of air sea coupling during strong IOD years. In this study we report the processes which strengthen the IOD events and the air sea coupling associated with IOD. It also unravels the connection between equatorial Indian Ocean circulation and evolution and strengthening of IOD.
Cutting Zone Temperature Identification During Machining of Nickel Alloy Inconel 718
NASA Astrophysics Data System (ADS)
Czán, Andrej; Daniš, Igor; Holubják, Jozef; Zaušková, Lucia; Czánová, Tatiana; Mikloš, Matej; Martikáň, Pavol
2017-12-01
Quality of machined surface is affected by quality of cutting process. There are many parameters, which influence on the quality of the cutting process. The cutting temperature is one of most important parameters that influence the tool life and the quality of machined surfaces. Its identification and determination is key objective in specialized machining processes such as dry machining of hard-to-machine materials. It is well known that maximum temperature is obtained in the tool rake face at the vicinity of the cutting edge. A moderate level of cutting edge temperature and a low thermal shock reduce the tool wear phenomena, and a low temperature gradient in the machined sublayer reduces the risk of high tensile residual stresses. The thermocouple method was used to measure the temperature directly in the cutting zone. An original thermocouple was specially developed for measuring of temperature in the cutting zone, surface and subsurface layers of machined surface. This paper deals with identification of temperature and temperature gradient during dry peripheral milling of Inconel 718. The measurements were used to identification the temperature gradients and to reconstruct the thermal distribution in cutting zone with various cutting conditions.
NASA Astrophysics Data System (ADS)
CUI, W.; Chui, T. F. M.
2016-12-01
Subsurface lateral water and energy exchanges are often ignored in methods involving a surface energy balance under the homogeneity assumption, which may affect the estimation of evapotranspiration over a heterogeneous surface. Wetlands, however, are heterogeneous with vegetated areas and open water, making it difficult to accurately measure and estimate evapotranspiration. This study estimated the subsurface lateral energy exchange between the reed bed and shallow open water of a wetland within Mai Po Nature Reserve in Hong Kong, and further discussed its relative importance to the ground heat flux and energy balance over the wetland surface. An array of water level and temperature sensors were installed in the reed bed and the adjacent water, together with an eddy covariance system. The results suggested that the lateral energy exchange was over 30% of ground heat flux for half of the monitoring period, and should therefore be accounted for during the measurement of ground heat flux. However, the lateral energy exchange could not explain the energy balance disclosure at the site, as the variation was in phase with the residual of energy budget during the summer but was out of phase during the winter. Furthermore, this study developed a convolution model to estimate the lateral energy exchange based on air temperature which is readily available at many sites worldwide. This study overall enhanced our understanding of the subsurface lateral energy exchange, and possibly our estimation of evapotranspiration in heterogeneous environment.
Thermal Impact of Medium Deep Borehole Thermal Energy Storage on the Shallow Subsurface
NASA Astrophysics Data System (ADS)
Welsch, Bastian; Schulte, Daniel O.; Rühaak, Wolfram; Bär, Kristian; Sass, Ingo
2017-04-01
Borehole heat exchanger arrays are a well-suited and already widely applied method for exploiting the shallow subsurface as seasonal heat storage. However, in most of the populated regions the shallow subsurface also comprises an important aquifer system used for drinking water production. Thus, the operation of shallow geothermal heat storage systems leads to a significant increase in groundwater temperatures in the proximity of the borehole heat exchanger array. The magnitude of the impact on groundwater quality and microbiology associated with this temperature rise is controversially discussed. Nevertheless, the protection of shallow groundwater resources has priority. Accordingly, water authorities often follow restrictive permission policies for building such storage systems. An alternative approach to avoid this issue is the application of medium deep borehole heat exchanger arrays instead of shallow ones. The thermal impact on shallow aquifers can be significantly reduced as heat is stored at larger depth. Moreover, it can be further diminished by the installation of a thermally insulating materials in the upper section of the borehole heat exchangers. Based on a numerical simulation study, the advantageous effects of medium deep borehole thermal energy storage are demonstrated and quantified. A finite element software is used to model the heat transport in the subsurface in 3D, while the heat transport in the borehole heat exchangers is solved analytically in 1D. For this purpose, an extended analytical solution is implemented, which also allows for the consideration of a thermally insulating borehole section.
Study of blood flow sensing with microwave radiometry
NASA Technical Reports Server (NTRS)
Porter, R. A.; Wentz, F. J., III
1973-01-01
A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.
Triaxial thermopile array geo-heat-flow sensor
Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.
1990-01-01
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.
Curtis, J.B.; Vaughn, L.S.; Torn, M.S.; Conrad, M.S.; Chafe, O.; Bill, M.
2015-12-31
In August-October 2012 and June-October 2013, co-located measurements were made of surface CH4 and CO2 flux, soil pore space concentrations and stable isotope compositions of CH4 and CO2, and subsurface temperature and soil moisture. Measurements were made in intensive study site 1 areas A, B, and C, and from the site 0 and AB transects, from high-centered, flat-centered, and low-centered polygons, from the center, edge, and trough of each polygon.
NASA Astrophysics Data System (ADS)
Painter, S.; Moulton, J. D.; Berndt, M.; Coon, E.; Garimella, R.; Lewis, K. C.; Manzini, G.; Mishra, P.; Travis, B. J.; Wilson, C. J.
2012-12-01
The frozen soils of the Arctic and subarctic regions contain vast amounts of stored organic carbon. This carbon is vulnerable to release to the atmosphere as temperatures warm and permafrost degrades. Understanding the response of the subsurface and surface hydrologic system to degrading permafrost is key to understanding the rate, timing, and chemical form of potential carbon releases to the atmosphere. Simulating the hydrologic system in degrading permafrost regions is challenging because of the potential for topographic evolution and associated drainage network reorganization as permafrost thaws and massive ground ice melts. The critical process models required for simulating hydrology include subsurface thermal hydrology of freezing/thawing soils, thermal processes within ice wedges, mechanical deformation processes, overland flow, and surface energy balances including snow dynamics. A new simulation tool, the Arctic Terrestrial Simulator (ATS), is being developed to simulate these coupled processes. The computational infrastructure must accommodate fully unstructured grids that track evolving topography, allow accurate solutions on distorted grids, provide robust and efficient solutions on highly parallel computer architectures, and enable flexibility in the strategies for coupling among the various processes. The ATS is based on Amanzi (Moulton et al. 2012), an object-oriented multi-process simulator written in C++ that provides much of the necessary computational infrastructure. Status and plans for the ATS including major hydrologic process models and validation strategies will be presented. Highly parallel simulations of overland flow using high-resolution digital elevation maps of polygonal patterned ground landscapes demonstrate the feasibility of the approach. Simulations coupling three-phase subsurface thermal hydrology with a simple thaw-induced subsidence model illustrate the strong feedbacks among the processes. D. Moulton, M. Berndt, M. Day, J. Meza, et al., High-Level Design of Amanzi, the Multi-Process High Performance Computing Simulator, Technical Report ASCEM-HPC-2011-03-1, DOE Environmental Management, 2012.
Water, gravity and trees: Relationship of tree-ring widths and total water storage dynamics
NASA Astrophysics Data System (ADS)
Creutzfeldt, B.; Heinrich, I.; Merz, B.; Blume, T.; Güntner, A.
2012-04-01
Water stored in the subsurface as groundwater or soil moisture is the main fresh water source not only for drinking water and food production but also for the natural vegetation. In a changing environment water availability becomes a critical issue in many different regions. Long-term observations of the past are needed to improve the understanding of the hydrological system and the prediction of future developments. Tree ring data have repeatedly proved to be valuable sources for reconstructing long-term climate dynamics, e.g. temperature, precipitation and different hydrological variables. In water-limited environments, tree growth is primarily influenced by total water stored in the subsurface and hence, tree-ring records usually contain information about subsurface water storage. The challenge is to retrieve the information on total water storage from tree rings, because a training dataset of water stored in the sub-surface is required for calibration against the tree-ring series. However, measuring water stored in the subsurface is notoriously difficult. We here present high-precision temporal gravimeter measurements which allow for the depth-integrated quantification of total water storage dynamics at the field scale. In this study, we evaluate the relationship of total water storage change and tree ring growth also in the context of the complex interactions of other meteorological forcing factors. A tree-ring chronology was derived from a Norway spruce stand in the Bavarian Forest, Germany. Total water storage dynamics were measured directly by the superconducting gravimeter of the Geodetic Observatory Wettzell for a 9-years period. Time series were extended to 63-years period by a hydrological model using gravity data as the only calibration constrain. Finally, water storage changes were reconstructed based on the relationship between the hydrological model and the tree-ring chronology. Measurement results indicate that tree-ring growth is primarily controlled by total water storage in the subsurface. But high uncertainties intervals of the correlation coefficient urges for the extension of the measurement period. This multi-disciplinary study, combining hydrology, dendrochronology and geodesy shows that temporal gravimeter measurements may give us the unique opportunity to retrieve the information of total water storage contained in tree-ring records to reconstruct total water storage dynamics. Knowing the relationship of water storage and tree-ring growth can also support the reconstruction of other climate records based on tree-ring series, help with hydrological model testing and can improve our knowledge of long-term variations of water storage in the past.
Is the genetic landscape of the deep subsurface biosphere affected by viruses?
Anderson, Rika E; Brazelton, William J; Baross, John A
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.
Is the Genetic Landscape of the Deep Subsurface Biosphere Affected by Viruses?
Anderson, Rika E.; Brazelton, William J.; Baross, John A.
2011-01-01
Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host–virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus–host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems. PMID:22084639
NASA Technical Reports Server (NTRS)
Keihm, S. J.
1983-01-01
When high resolution measurements of the phase variation of the lunar disk center brightness temperature revealed that in situ regolith electrical losses were larger than those measured on returned samples by a factor of 1.5 to 2.0 at centimeter wavelengths, the need for a refinement of the regolith model to include realistic treatment of scattering effects was identified. Two distinct scattering regimes are considered: vertial variations in dielectric constant and volume scattering due to subsurface rock fragments. Models of lunar regolith energy transport processes are now at the state for which a maximum scientific return could be realized from a lunar orbiter microwave mapping experiment. A detailed analysis, including the effects of scattering produced a set of nominal brightness temperature spectra for lunar equatorial regions, which can be used for mapping as a calibration reference for mapping variations in mineralogy and heat flow.
Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, D.
1977-10-01
Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Datamore » from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)« less
Stability of ice on the Moon with rough topography
NASA Astrophysics Data System (ADS)
Rubanenko, Lior; Aharonson, Oded
2017-11-01
The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer to a few decimeters.
Oceanic Precondition and Evolution of the Indian Ocean Dipole Events
NASA Astrophysics Data System (ADS)
Horii, T.; Masumoto, Y.; Ueki, I.; Hase, H.; Mizuno, K.
2008-12-01
Indian Ocean Dipole (IOD) is one of the interannual climate variability in the Indian Ocean, associated with the negative (positive) SST anomaly in the eastern (western) equatorial region developing during boreal summer/autumn seasons. Japan Agency for Marine-Earth Science and Technology (JAMSTEC) has been deploying TRITON buoys in the eastern equatorial Indian Ocean since October 2001. Details of subsurface ocean conditions associated with IOD events were observed by the mooring buoys in the eastern equatorial Indian Ocean in 2006, 2007, and 2008. In the 2006 IOD event, large-scale sea surface signals in the tropical Indian Ocean associated with the positive IOD started in August 2006, and the anomalous conditions continued until December 2006. Data from the mooring buoys, however, captured the first appearance of the negative temperature anomaly at the thermocline depth with strong westward current anomalies in May 2006, about three months earlier than the development of the surface signatures. Similar appearance of negative temperature anomalies in the subsurface were also observed in 2007 and 2008, while the amplitude, the timing, and the relation to the surface layer were different among the events. The implications of the subsurface conditions for the occurrences of these IOD events are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Simonovis, Juan Pablo; Hunt, Adrian; Palomino, Robert M.; ...
2018-02-05
The interaction between a catalyst and reactants often induce changes in the surface structure and composition of the catalyst, which, in turn, affect its reactivity. Therefore, it is important to study such changes using in situ techniques under well-controlled conditions. We have used ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to study the surface stability of a Pt/Cu(111) single atom alloy (SAA) in an ambient pressure of CO. By directly probing the Pt atoms, we found that CO causes a slight surface segregation of Pt atoms at room temperature. In addition, while the Pt/Cu(111) surface demonstrates poor thermal stability in UHV,more » where surface Pt starts to diffuse to the subsurface layer above 400 K, the presence of adsorbed CO enhances the thermal stability of surface Pt atoms. Furthermore, we also found that temperatures above 450 K cause a restructuring of the subsurface layer, which consequently strengthens the CO binding to the surface Pt sites, likely due to the presence of neighboring subsurface Pt atoms.« less
Prospect of life on cold planets with low atmospheric pressures
NASA Astrophysics Data System (ADS)
Pavlov, A. A.; Vdovina, M.
2009-12-01
Stable liquid water on the surface of a planet has been viewed as the major requirement for a habitable planet. Such approach would exclude planets with low atmospheric pressures and cold mean surface temperatures (like present Mars) as potential candidates for extraterrestrial life search. Here we explore a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low average surface temperatures (~-30 C). During brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor can diffuse through the porous surface layer of soil temporarily producing supersaturated conditions in the soil, which lead to the formation of liquid films. We show that non-extremophile terrestrial microorganisms (Vibrio sp.) can grow and reproduce under such conditions. The necessary conditions for metabolism and reproduction are the sublimation of ground ice through a thin layer of soil and short episodes of warm temperatures at the planetary surface.
NASA Technical Reports Server (NTRS)
Kim, Seung-Bum; Lee, Tong; Fukumori, Ichiro
2007-01-01
The present study examines processes governing the interannual variation of MLT in the eastern equatorial Pacific.Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the Nino-3 domain (5 deg N-5 deg S, 150 deg-90 deg W) are studied using an ocean data assimilation product that covers the period of 1993-2003. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. This allows the authors to characterize external advective processes that warm or cool the water within the domain as a whole. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed to mostly by Ekman current advecting large-scale temperature anomalies through the southern boundary of the domain. Unlike many previous studies, the subsurface processes that consist of vertical mixing and entrainment are explicitly evaluated. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to the temporal change in ML depth is negligible compared to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in upwelling and the temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Nina cooling events. However, such a warming tendency is overwhelmed by the cooling tendency associated with the large-scale upwelling by a factor of 2. In summary, all the balance terms are important in the MLT budget except the entrainment due to lateral induction and temporal variation in ML depth. All three advective tendencies are primarily caused by large-scale and low-frequency processes, and they assist the Nino-3 MLT change.
Lithosphere temperature model and resource assessment for deep geothermal exploration in Hungary
NASA Astrophysics Data System (ADS)
Bekesi, Eszter; van Wees, Jan-Diederik; Vrijlandt, Mark; Lenkey, Laszlo; Horvath, Ferenc
2017-04-01
The demand for deep geothermal energy has increased considerably over the past years. To reveal potential areas for geothermal exploration, it is crucial to have an insight into the subsurface temperature distribution. Hungary is one of the most suitable countries in Europe for geothermal development, as a result of Early and Middle Miocene extension and subsequent thinning of the lithosphere. Hereby we present the results of a new thermal model of Hungary extending from the surface down to the lithosphere-astenosphere boundary (LAB). Subsurface temperatures were calculated through a regular 3D grid with a horizontal resolution of 2.5 km, a vertical resolution of 200 m for the uppermost 7 km, and 3 km down to the depth of the LAB The model solves the heat equation in steady-state, assuming conduction as the main heat transfer mechanism. At the base, it adopts a constant basal temperature or heat flow condition. For the calibration of the model, more than 5000 temperature measurements were collected from the Geothermal Database of Hungary. The model is built up by five sedimentary layers, upper crust, lower crust, and lithospheric mantle, where each layer has its own thermal properties. The prior thermal properties and basal condition of the model is updated through the ensemble smoother with multiple data assimilation technique. The conductive model shows misfits with the observed temperatures, which cannot be explained by neglected transient effects related to lithosphere extension. These anomalies are explained mostly by groundwater flow in Mesozoic carbonates and other porous sedimentary rocks. To account for the effect of heat convection, we use a pseudo-conductive approach by adjusting the thermal conductivity of the layers where fluid flow may occur. After constructing the subsurface temperature model of Hungary, the resource base for EGS (Enhanced Geothermal Systems) is quantified. To this end, we applied a cash-flow model to translate the geological potential into economical potential for different scenarios in Hungary. The calculations were made for each grid cell of the model. Results of the temperature modeling together with the economical resource assessment provide an indication on the potential sites for future EGS in Hungary.
Active subsurface cellular function in the Baltic Sea Basin, IODP Exp 347
NASA Astrophysics Data System (ADS)
Reese, B. K.; Zinke, L. A.; Bird, J. T.; Lloyd, K. G.; Marshall, I.; Amend, J.; Jørgensen, B. B.
2016-12-01
The Baltic Sea Basin is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of global temperature fluctuations over the course of several hundred thousand years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates (100-500 cm/1000 y) make this an ideal setting to understand the microbial structure of a deep biosphere community in a high-organic matter environment. The responses of deep sediment microbial communities to variations in conditions during and after deposition are poorly understood. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further define the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.
An Historical Search for Unfrozen Water at the Phoenix Landing Site
NASA Technical Reports Server (NTRS)
Zent, Aaron
2004-01-01
The goal of this work is to explore the history of the high-latitude subsurface in the latitude range of the Phoenix landing site (65-75 deg. N). The approach is to use time-marching climate models to search for times, locations, and depths where thick films of unfrozen water might periodically occur. Thick films of unfrozen water (as distinct from ubiquitous monolayer water) are interesting for two reasons. First, multi-layer films of water may be bio-available. Second, patterned ground may require the occurrence of thick films of unfrozen water to facilitate the migration of particles and the development of excess pore ice, as reported by the Odyssey Gamma Ray Spectrometer (GRS) results. For the purposes of this work, we define conditions adequate to establish thick films of unfrozen water to be T greater than 268 K, and RH greater than 0.5. We start with the need to understand the atmospheric pressure. Because of the fact that we're looking at high latitudes, the seasonal cap buffers surface temperature for some part of the year. That directly affects the subsurface thermal regime, at least in the uppermost meter where we will be
NASA Astrophysics Data System (ADS)
Batir, Joseph F.; Hornbach, Matthew J.; Blackwell, David D.
2017-01-01
Multiple studies demonstrate Northwest Alaska and the Alaskan North Slope are warming. Melting permafrost causes surface destabilization and ecological changes. Here, we use thermistors permanently installed in 1996 in a borehole in northwestern Alaska to study past, present, and future ground and subsurface temperature change, and from this, forecast future permafrost degradation in the region. We measure and model Ground Surface Temperature (GST) warming trends for a 10 year period using equilibrium Temperature-Depth (TD) measurements from borehole T96-012, located near the Red Dog Mine in northwestern Alaska-part of the Arctic ecosystem where a continuous permafrost layer exists. Temperature measurements from 1996 to 2006 indicate the subsurface has clearly warmed at depths shallower than 70 m. Seasonal climate effects are visible in the data to a depth of 30 m based on a visible sinusoidal pattern in the TD plots that correlate with season patterns. Using numerical models constrained by thermal conductivity and temperature measurements at the site, we show that steady warming at depths of 30 to 70 m is most likely the direct result of longer term (decadal-scale) surface warming. The analysis indicates the GST in the region is warming at 0.44 ± 0.05 °C/decade, a value consistent with Surface Air Temperature (SAT) warming of 1.0 ± 0.8 °C/decade observed at Red Dog Mine, but with much lower uncertainty. The high annual variability in the SAT signal produces significant uncertainty in SAT trends. The high annual variability is filtered out of the GST signal by the low thermal diffusivity of the subsurface. Comparison of our results to recent permafrost monitoring studies suggests changes in latitude in the polar regions significantly impacts warming rates. North Slope average GST warming is 0.9 ± 0.5 °C/decade, double our observations at RDM, but within error. The RDM warming rate is within the warming variation observed in eastern Alaska, 0.36-0.71 °C/decade, which suggests changes in longitude produce a smaller impact but have warming variability likely related to ecosystem, elevation, microclimates, etc. changes. We also forward model future warming by assuming a 1D diffusive heat flow model and incorporating latent heat effects for permafrost melting. Our analysis indicates 1 to 4 m of loss at the upper permafrost boundary, a 145 ± 100% increase in the active layer thickness by 2055. If warming continues at a constant rate of 0.44 ± 0.05 °C/decade, we estimate the 125 m thick zone of permafrost at this site will completely melt by 2150. Permafrost is expected to melt by 2200, 2110, or 2080, if the rate of warming is altered to 0.25, 0.90, or 2.0 °C/decade, respectively, as an array of different climate models suggest. Since our model assumes no advection of heat (a more efficient heat transport mechanism), and no accelerated warming, our current prediction of complete permafrost loss by 2150 may overestimate the residence time of permafrost in this region of Northwest Alaska.
Sampling Soil CO2 for Isotopic Flux Partitioning: Non Steady State Effects and Methodological Biases
NASA Astrophysics Data System (ADS)
Snell, H. S. K.; Robinson, D.; Midwood, A. J.
2014-12-01
Measurements of δ13C of soil CO2 are used to partition the surface flux into autotrophic and heterotrophic components. Models predict that the δ13CO2 of the soil efflux is perturbed by non-steady state (NSS) diffusive conditions. These could be large enough to render δ13CO2 unsuitable for accurate flux partitioning. Field studies sometimes find correlations between efflux δ13CO2 and flux or temperature, or that efflux δ13CO2 is not correlated as expected with biological drivers. We tested whether NSS effects in semi-natural soil were comparable with those predicted. We compared chamber designs and their sensitivity to changes in efflux δ13CO2. In a natural soil mesocosm, we controlled temperature to generate NSS conditions of CO2 production. We measured the δ13C of soil CO2 using in situ probes to sample the subsurface, and dynamic and forced-diffusion chambers to sample the surface efflux. Over eight hours we raised soil temperature by 4.5 OC to increase microbial respiration. Subsurface CO2 concentration doubled, surface efflux became 13C-depleted by 1 ‰ and subsurface CO2 became 13C-enriched by around 2 ‰. Opposite changes occurred when temperature was lowered and CO2 production was decreasing. Different chamber designs had inherent biases but all detected similar changes in efflux δ13CO2, which were comparable to those predicted. Measurements using dynamic chambers were more 13C-enriched than expected, probably due to advection of CO2 into the chamber. In the mesocosm soil, δ13CO2 of both efflux and subsurface was determined by physical processes of CO2 production and diffusion. Steady state conditions are unlikely to prevail in the field, so spot measurements of δ13CO2 and assumptions based on the theoretical 4.4 ‰ diffusive fractionation will not be accurate for estimating source δ13CO2. Continuous measurements could be integrated over a period suitable to reduce the influence of transient NSS conditions. It will be difficult to disentangle biologically driven changes in soil δ13CO2 from physical controls, particularly as they occur on similar timescales and are driven by the same environmental variables, such as temperature, moisture and daylight.
NASA Astrophysics Data System (ADS)
Nagihara, S.; Kiefer, W. S.; Taylor, P. T.; Williams, D. R.; Nakamura, Y.; Krell, J. W.
2017-12-01
The Apollo Heat Flow Experiment (HFE) was conducted at landing sites 15 and 17 as part of the Apollo Lunar Surface Experiment Package (ALSEP) program. At each site, the astronauts drilled 2 holes, 10-m apart, and installed a probe in each. The probes monitored surface and subsurface temperatures. The Apollo 15 probes operated from July 1971 to January 1977. The Apollo 17 probes operated from December 1972 to September 1977. For both sites, only data from the beginning to December 1974 were archived previously. We have restored major portions of the 1975-1977 HFE data for both sites from two sets of sources recently recovered. One was the original ALSEP archival data tapes, from which raw HFE data were extracted and processed according to the procedure and the calibration data specified by the original investigators. The other was the ALSEP Performance Summary Reports, which included weekly logs of temperature readings from the deepest sensor of each of the probes. The original HFE investigators noted that temperature of the regolith well below the thermal skin depth ( 1 m) rose gradually through December 1974 at both sites. Possible causes of the warming have been debated since. The restored 1975-1977 HFE data allow more detailed characterization of this phenomenon, especially for the Apollo 17 site, for which the duration of data availability has more than doubled. For both sites, the subsurface warming continued till the end of observations. Simultaneously, thermal gradient decreased. Such behavior is consistent with one of the hypotheses proposed by the original investigators; temperature of the lunar surface around the probe increased by 2 to 4 K at the time of deployment. Consequently, the subsurface thermal regime gradually adjusted to the new boundary condition. The Lunar Reconnaissance Orbiter Camera images taken over the Apollo landing sites suggest that astronaut-induced surface disturbance resulted in lower albedo, and that should have raised average surface temperature. Other explanations may also be possible. For example, at the Apollo 15 site, it is known that radiation down the hole affected the upper section of the probe. In contrast, the Apollo 17 probes were installed with radiation shields at the top of the hole and at 0.3-m depth. Therefore, warming there is more likely to be conductive in nature.
NASA Astrophysics Data System (ADS)
Tran, A. P.; Dafflon, B.; Hubbard, S.
2017-12-01
Soil organic carbon (SOC) is crucial for predicting carbon climate feedbacks in the vulnerable organic-rich Arctic region. However, it is challenging to achieve this property due to the general limitations of conventional core sampling and analysis methods. In this study, we develop an inversion scheme that uses single or multiple datasets, including soil liquid water content, temperature and ERT data, to estimate the vertical profile of SOC content. Our approach relies on the fact that SOC content strongly influences soil hydrological-thermal parameters, and therefore, indirectly controls the spatiotemporal dynamics of soil liquid water content, temperature and their correlated electrical resistivity. The scheme includes several advantages. First, this is the first time SOC content is estimated by using a coupled hydrogeophysical inversion. Second, by using the Community Land Model, we can account for the land surface dynamics (evapotranspiration, snow accumulation and melting) and ice/liquid phase transition. Third, we combine a deterministic and an adaptive Markov chain Monte Carlo optimization algorithm to better estimate the posterior distributions of desired model parameters. Finally, the simulated subsurface variables are explicitly linked to soil electrical resistivity via petrophysical and geophysical models. We validate the developed scheme using synthetic experiments. The results show that compared to inversion of single dataset, joint inversion of these datasets significantly reduces parameter uncertainty. The joint inversion approach is able to estimate SOC content within the shallow active layer with high reliability. Next, we apply the scheme to estimate OC content along an intensive ERT transect in Barrow, Alaska using multiple datasets acquired in the 2013-2015 period. The preliminary results show a good agreement between modeled and measured soil temperature, thaw layer thickness and electrical resistivity. The accuracy of estimated SOC content will be evaluated by comparison with measurements from soil samples along the transect. Our study presents a new surface-subsurface, deterministic-stochastic hydrogeophysical inversion approach, as well as the benefit of including multiple types of data to estimate SOC and associated hydrological-thermal dynamics.
Stonestrom, David A.; Blasch, Kyle W.; Stonestrom, David A.; Constantz, Jim
2003-01-01
Advances in electronics leading to improved sensor technologies, large-scale circuit integration, and attendant miniaturization have created new opportunities to use heat as a tracer of subsurface flow. Because nature provides abundant thermal forcing at the land surface, heat is particularly useful in studying stream-groundwater interactions. This appendix describes methods for obtaining the thermal data needed in heat-based investigations of shallow subsurface flow.
Fiber Optic Thermographic Detection of Flaws in Composites
NASA Technical Reports Server (NTRS)
Wu, Meng-Chou; Winfree, William P.
2009-01-01
Optical fibers with multiple Bragg gratings bonded to surfaces of structures were used for thermographic detection of subsurface defects in structures. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The obtained data were analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with the simulation results.
Hobza, Christopher M.
2008-01-01
The water supply in parts of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or over appropriated by the Nebraska Department of Natural Resources. Recent legislation (LB 962) requires the North Platte Natural Resources District and the Nebraska Department of Natural Resources to develop an Integrated Management Plan to balance ground- and surface-water supply and demand within the North Platte Natural Resources District. For a ground-water-flow model to accurately simulate existing or future ground-water and surface-water conditions, accurate estimates of specific input variables such as streambed conductance or canal-seepage rates are required. As of 2008, the values input into ground-water models were estimated on the basis of interpreted lithology from test holes and geophysical surveys. Often, contrasts of several orders of magnitude exist for streambed conductance among the various sediment textures present locally, and thin, near-surface layers of fine sediment can clog the streambed, substantially reducing conductance. To accurately quantify the rates of leakage from irrigation canals and estimate ground-water recharge, the U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, collected continuous temperature and water-level data to use heat as a tracer for a selected reach of Tri-State Canal west of Scottsbluff, Nebraska. Continuous records of subsurface temperature, ground-water level, canal stage, and water temperature, and sediment core data are presented in this report. Subsurface temperature was monitored at four vertical sensor arrays of thermocouples installed at various depths beneath the canal bed from March through September 2007. Canal stage and water temperature were measured from June to September 2007. Ground-water level was recorded continuously in an observation well drilled near the subsurface temperature monitoring site. These data sets were collected for use as inputs for a computer model to estimate the vertical hydraulic conductivity. Before the initiation of flow, diurnal variations in subsurface temperature occurred because of daytime heating and nighttime cooling of bed sediment. Flow in Tri-State Canal was first detected on June 16 at the monitoring site as a disruption in the temperature signal in the shallowest thermocouple in all four vertical sensor arrays. This disruption in the temperature pattern occurred in deeper thermocouples at slightly later times during the rapid infiltration of canal water. The ground-water level began to rise approximately 23 hours after flow was first detected at the monitoring site. Canal stage rose for 7 days until the maximum flow capacity of the canal was approached on June 23, 2007. Measured water temperatures ranged from 18 to 25 degrees Celsius (C) while the canal was flowing near maximum capacity. Small diurnal variations of 1.0 to 1.5 degrees C in water temperature were recorded during this time. Measured ground-water levels rose constantly during the entire irrigation season until levels peaked on September 3, 2007, 3 days after diversions to Tri-State Canal ceased.
Kimura, Hiroyuki; Ishibashi, Jun-Ichiro; Masuda, Harue; Kato, Kenji; Hanada, Satoshi
2007-04-01
International drilling projects for the study of microbial communities in the deep-subsurface hot biosphere have been expanded. Core samples obtained by deep drilling are commonly contaminated with mesophilic microorganisms in the drilling fluid, making it difficult to examine the microbial community by 16S rRNA gene clone library analysis. To eliminate mesophilic organism contamination, we previously developed a new method (selective phylogenetic analysis [SePA]) based on the strong correlation between the guanine-plus-cytosine (G+C) contents of the 16S rRNA genes and the optimal growth temperatures of prokaryotes, and we verified the method's effectiveness (H. Kimura, M. Sugihara, K. Kato, and S. Hanada, Appl. Environ. Microbiol. 72:21-27, 2006). In the present study we ascertained SePA's ability to eliminate contamination by archaeal rRNA genes, using deep-sea hydrothermal fluid (117 degrees C) and surface seawater (29.9 degrees C) as substitutes for deep-subsurface geothermal samples and drilling fluid, respectively. Archaeal 16S rRNA gene fragments, PCR amplified from the surface seawater, were denatured at 82 degrees C and completely digested with exonuclease I (Exo I), while gene fragments from the deep-sea hydrothermal fluid remained intact after denaturation at 84 degrees C because of their high G+C contents. An examination using mixtures of DNAs from the two environmental samples showed that denaturation at 84 degrees C and digestion with Exo I completely eliminated archaeal 16S rRNA genes from the surface seawater. Our method was quite useful for culture-independent community analysis of hyperthermophilic archaea in core samples recovered from deep-subsurface geothermal environments.
NASA Astrophysics Data System (ADS)
Olins, H. C.; Rogers, D.; Scholin, C. A.; Preston, C. J.; Vidoudez, C.; Ussler, W.; Pargett, D.; Jensen, S.; Roman, B.; Birch, J. M.; Girguis, P. R.
2014-12-01
Hydrothermal vents are hotspots of microbial primary productivity often described as "windows into the subsurface biosphere." High temperature vents have received the majority of research attention, but cooler diffuse flows are as, if not more, important a source of heat and chemicals to the overlying ocean. We studied patterns of in situ gene expression and co-registered geochemistry in order to 1) describe the diversity and physiological poise of active microbial communities that span thermal and geochemical gradients from active diffuse flow to background vent field seawater, and 2) determine to what extent seawater or subsurface microbes were active throughout this environment. Analyses of multiple metatranscriptomes from 5 geochemically distinct sites (some from samples preserved in situ) show that proximate diffuse flows showed strikingly different transcription profiles. Specifically, caldera background and some diffuse flows were similar, both dominated by seawater-derived Gammaproteobacteria despite having distinct geochemistries. Intra-field community shows evidence of increased primary productivity throughout the entire vent field and not just at individual diffuse flows. In contrast, a more spatially limited, Epsilonproteobacteria-dominated transcription profile from the most hydrothermally-influenced diffuse flow appeared to be driven by the activity of vent-endemic microbes, likely reflecting subsurface microbial activity. We suggest that the microbial activity within many diffuse flow vents is primarily attributable to seawater derived Gammaproteobacterial sulfur oxidizers, while in certain other flows vent-endemic Epsilonproteobactiera are most active. These data reveal a diversity in microbial activity at diffuse flows that has not previously been recognized, and reshapes our thinking about the relative influence that different microbial communities may have on local processes (such as primary production) and potentially global biogeochemical cycles.
High-Temperature Surface-Acoustic-Wave Transducer
NASA Technical Reports Server (NTRS)
Zhao, Xiaoliang; Tittmann, Bernhard R.
2010-01-01
Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.
Habitable periglacial landscapes in martian mid-latitudes
NASA Astrophysics Data System (ADS)
Ulrich, M.; Wagner, D.; Hauber, E.; de Vera, J.-P.; Schirrmeister, L.
2012-05-01
Subsurface permafrost environments on Mars are considered to be zones where extant life could have survived. For the identification of possible habitats it is important to understand periglacial landscape evolution and related subsurface and environmental conditions. Many landforms that are interpreted to be related to ground ice are located in the martian mid-latitudinal belts. This paper summarizes the insights gained from studies of terrestrial analogs to permafrost landforms on Mars. The potential habitability of martian mid-latitude periglacial landscapes is exemplarily deduced for one such landscape, that of Utopia Planitia, by a review and discussion of environmental conditions influencing periglacial landscape evolution. Based on recent calculations of the astronomical forcing of climate changes, specific climate periods are identified within the last 10 Ma when thaw processes and liquid water were probably important for the development of permafrost geomorphology. No periods could be identified within the last 4 Ma which met the suggested threshold criteria for liquid water and habitable conditions. Implications of past and present environmental conditions such as temperature variations, ground-ice conditions, and liquid water activity are discussed with respect to the potential survival of highly-specialized microorganisms known from terrestrial permafrost. We conclude that possible habitable subsurface niches might have been developed in close relation to specific permafrost landform morphology on Mars. These would have probably been dominated by lithoautotrophic microorganisms (i.e. methanogenic archaea).
NASA Astrophysics Data System (ADS)
Schmittner, Andreas; Galbraith, Eric D.; Hostetler, Steven W.; Pedersen, Thomas F.; Zhang, Rong
2007-09-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas.
Columnar and subsurface silicide growth with novel molecular beam epitaxy techniques
NASA Technical Reports Server (NTRS)
Fathauer, R. W.; George, T.; Pike, W. T.
1992-01-01
We have found novel growth modes for epitaxial CoSi2 at high temperatures coupled with Si-rich flux ratios or low deposition rates. In the first of these modes, codeposition of metal and Si at 600-800 C with excess Si leads to the formation of epitaxial silicide columns surrounded by single-crystal Si. During the initial stages of the deposition, the excess Si grows homoepitaxially in between the silicide, which forms islands, so that the lateral growth of the islands is confined. Once a template layer is established by this process, columns of silicide form as a result of selective epitaxy of silicide on silicide and Si on Si. This growth process allows nanometer control over silicide particles in three dimensions. In the second of these modes, a columnar silicide seed layer is used as a template to nucleate subsurface growth of CoSi2. With a 100 nm Si layer covering CoSi2 seeds, Co deposited at 800C and 0.01 nm/s diffuses down to grow on the buried seeds rather than nucleating surface silicide islands. For thicker Si caps or higher deposition rates, the surface concentration of Co exceeds the critical concentration for nucleation of islands, preventing this subsurface growth mode from occurring. Using this technique, single-crystal layers of CoSi2 buried under single-crystal Si caps have been grown.
Limits on the Abundance and Burial Depth of Lunar Polar Ice
NASA Technical Reports Server (NTRS)
Elphic, Richard C.; Paige, David A.; Siegler, Matthew A.; Vasavada, Ashwin R.; Teodoro, Luis A.; Eke, Vincent R.
2012-01-01
The Diviner imaging radiometer experiment aboard the Lunar Reconnaissance Orbiter has revealed that surface temperatures in parts of the lunar polar regions are among the lowest in the solar system. Moreover, modeling of these Diviner data using realistic thermal conductivity profiles for lunar regolith and topography-based illumination has been done, with surprising results. Large expanses of circum-polar terrain appear to have near-subsurface temperatures well below 110K, despite receiving episodic low-angle solar illumination [Paige et al., 2010]. These subsurface cold traps could provide areally extensive reservoirs of volatiles. Here we examine the limits to abundance and burial depth of putative volatiles, based on the signature they would create for orbital thermal and epithermal neutrons. Epithermals alone are not sufficient to break the abundance-depth ambiguity, while thermal neutrons provide an independent constraint on the problem. The subsurface cold traps are so large that even modest abundances, well below that inferred from LCROSS observations, would produce readily detectable signatures in the Lunar Prospector neutron spectrometer data [Colaprete et al., 2010]. Specifically, we forward-model the thermal and epithermal neutron leakage flux that would be observed for various ice concentrations, given the depth at which ice stability begins. The LCROSS results point to a water-equivalent hydrogen abundance (WEH) in excess of 10 wt%, when all hydrogenous species are added together (except for H2, detected by LAMP on LRO [Gladstone et al., 2010]). When such an ice abundance is placed in a layer below the stability depth of Paige et al., the epithermal and thermal neutron leakage fluxes are vastly reduced and very much at odds with orbital observations. So clearly an environment that is conducive to cold trapping is necessary but not sufficient for the presence of volatiles such as water. We present the limits on the abundances that are indeed consistent with orbital data. At the LCROSS impact site itself, the data are consistent with very high ice abundances at 50-100 cm depth. However, radar results rule out these high abundances.
Integrating Geohydrological Models In ATES-Systems Control
NASA Astrophysics Data System (ADS)
Bloemendal, Martin
2015-04-01
1) Purpose. Accomplish optimal and sustainable use of subsurface for Aquifer Thermal Energy Storage (ATES). 2) Scope. A heat pump in combination with an ATES system can efficiently and sustainably provide heating and cooling for user comfort within buildings. ATES systems are popular in moderate climate in which ATES systems are exploited as they are able to save primary energy. While storing warm and cold groundwater, ATES systems occupy a significant amount of the subsurface space, making that the space in the aquifers below cities is becoming scarce [1]. With the rapid growth of the number of ATES systems, the use of the subsurface intensifies, which raises additional questions regarding its sustainability and the long term profitability of the individual systems. In practice considerable difficulties regarding A) the performance of these installations and B) optimal and sustainable use of the subsurface are met. 3) Approach. Recently it was confirmed [2] that ATES systems can be placed closer to each other with limited effect on their energy efficiency. By placing them closer together we introduce the risk of a tragedy of the commons [3]. Therefore it is of importance to know where the warm and cold zones are over time and enable ATES-controllers to use the subsurface optimal and sustainably. From the field of multi agent systems and complex adaptive systems we use approaches and techniques to make an operation and control system that enables to adapt their control not only based on current demand, but also on current aquifer status and expected future demand. We are developing a numerical groundwater model structure which is fed with operational data of different ATES-systems. While doing this we run into challenges and opportunities like; spatial and temporal scale issues, sustaining the storage with balancing thermal storage and extraction at area level, dynamics and relation between hydrological and thermal influence and consequences for spreading of contaminants, using thermal energy storage for "peak-shaving" of wind/solar power production etc.. I will address the following two topics; - Balancing of stored heating and cooling capacity. To sustain an ATES-system heating and cooling capacity storage must more or less balance. Buildings often do not have a similar heating and cooling demand. Placing ATES-well closer to each other offers the opportunity to exchange energy between different buildings in the subsurface to balance heating and cooling capacity. To be able to do so, thorough understanding of the interaction between thermal influence area resulting from highly dynamic and uncertain energy demand from buildings is required. - The hydrological influence area of ATES wells is much bigger than the thermal influence area. Placing wells closer to each other therefor has a significant effect on the mixing of water and spreading of contaminants (which are often present in shallow aquifers under (old) city centers). We use both analytical and numerical approaches to gain insight in patterns of thermal and contaminant spreading and to find solutions in managing these effects. 4) Results and conclusions The subsurface is of crucial importance for intended energy savings. A control system working towards a global optimum for both the subsurface and buildings, instead of a local optimum for an individual building and local ATES will increase the overall efficiency. What is needed for that is insight in the spatial temperature distribution in the subsurface, in combination with adaptive and robust operational rules. We want to prove that a groundwater model simulating active ATES-systems can provide insight in the subsurface temperature distribution to adjust their control strategy in accordance with up-to-date information. Step by step we are solving the problems on this path, I would like to share and discuss my results, solutions and challenges. References [1] Bloemendal, M., Olsthoorn, T., Boons, F., How to achieve optimal and sustainable use of the subsurface for Aquifer Thermal Energy Storage, Energy Policy 66(2014) 104-114 [2] Sommer, W., Valstar, J., Leusbrock, I., Grotenhuis, T., Rijnaarts, H., Optimization and spatial pattern of large-scale aquifer thermal energy storage, Applied Energy 137 (2015) 322-337 [3] Hardin, G., The tragedy of the commons, Science162 (168) 12-13.
Thermal sensing of cryogenic wind tunnel model surfaces Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, K.; Ash, R. L.; Dillon-Townes, L. A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
Thermal sensing of cryogenic wind tunnel model surfaces - Evaluation of silicon diodes
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Ash, Robert L.; Dillon-Townes, Lawrence A.
1986-01-01
Different sensors and installation techniques for surface temperature measurement of cryogenic wind tunnel models were investigated. Silicon diodes were selected for further consideration because of their good inherent accuracy. Their average absolute temperature deviation in comparison tests with standard platinum resistance thermometers was found to be 0.2 K in the range from 125 to 273 K. Subsurface temperature measurement was selected as the installation technique in order to minimize aerodynamic interference. Temperature distortion caused by an embedded silicon diode was studied numerically.
NASA Astrophysics Data System (ADS)
Brogi, Cosimo; Huisman, Johan Alexander; Kaufmann, Manuela Sarah; von Hebel, Christian; van der Kruk, Jan; Vereecken, Harry
2017-04-01
Soil subsurface structures can play a key role in crop performance, especially during water stress periods. Geophysical techniques like electromagnetic induction EMI have been shown to be able of providing information about dominant shallow subsurface features. However, previous work with EMI has typically not reached beyond the field scale. The objective of this study is to use large-scale multi-configuration EMI to characterize patterns of soil structural organization (layering and texture) and the associated impact on crop vegetation at the km2 scale. For this, we carried out an intensive measurement campaign and collected high spatial resolution multi-configuration EMI data on an agricultural area of approx. 1 km2 (102 ha) near Selhausen (North Rhine-Westphalia, Germany) with a maximum depth of investigation of around 2.5 m. We measured using two EMI instruments simultaneously with a total of nine coil configurations. The instruments were placed inside polyethylene sleds that were pulled by an all-terrain-vehicle along parallel lines with a spacing of 2 to 2.5 m. The driving speed was between 5 and 7 km h-1 and we used a 0.2 Hz sampling frequency to obtain an in-line resolution of approximately 0.3 m. The survey area consists of almost 50 different fields managed in different way. The EMI measurements were collected between April and December 2016 within a few days after the harvest of each field. After data acquisition, EMI data were automatically filtered, temperature corrected, and interpolated onto a common grid. The resulting EMI maps allowed us to identify three main areas with different subsurface heterogeneities. The differences between these areas are likely related to the late quaternary geological history (Pleistocene and Holocene) of the area that resulted in spatially variable soil texture and layering, which has a strong impact on spatio-temporal soil water content variability. The high resolution surveys also allowed us to identify small scale geomorphological structures as well as anthropogenic activities such as soil management and drainage networks carried out in the last 150 years. To identify areas with similar subsurface structures with high spatial resolution, we applied multiband image classification using the nine coil configurations as bands of a single image. We compared both supervised and unsupervised classification and obtained promising preliminary results showing a good degree of conformity between EMI supervised classification maps and observed patterns in plant productivity.
Fu, Qian; Fukushima, Naoya; Maeda, Haruo; Sato, Kozo; Kobayashi, Hajime
2015-01-01
We examined whether a hyperthermophilic microbial fuel cell (MFC) would be technically feasible. Two-chamber MFC reactors were inoculated with subsurface microorganisms indigenous to formation water from a petroleum reservoir and were started up at operating temperature 80 °C. The MFC generated a maximum current of 1.3 mA 45 h after the inoculation. Performance of the MFC improved with an increase in the operating temperature; the best performance was achieved at 95 °C with the maximum power density of 165 mWm(-2), which was approximately fourfold higher than that at 75 °C. Thus, to our knowledge, our study is the first to demonstrate generation of electricity in a hyperthermophilic MFC (operating temperature as high as 95 °C). Scanning electron microscopy showed that filamentous microbial cells were attached on the anode surface. The anodic microbial consortium showed limited phylogenetic diversity and primarily consisted of hyperthermophilic bacteria closely related to Caldanaerobacter subterraneus and Thermodesulfobacterium commune.
Limitations of microbial hydrocarbon degradation at the Amon mud volcano (Nile deep-sea fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-05-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile deep-sea fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulfate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition, and microbial activities over 3 yr, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulfide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. The low microbial activity in the hydrocarbon-vented areas of Amon MV is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer MV area is limited by hydrocarbon transport.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-10-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-11-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan
NASA Astrophysics Data System (ADS)
Fang, H. T.
2015-12-01
The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface to input parameter. The simulation of water level and chloride concentration already showed the real situation, and the result can be applied to the future study of the Chi-Ken subsurface reservoir salinity problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming
2015-02-15
The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factorsmore » that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.« less
Nonlinearities in the Evolutional Distinctions Between El Niño and La Niña Types
NASA Astrophysics Data System (ADS)
Ashok, K.; Shamal, M.; Sahai, A. K.; Swapna, P.
2017-12-01
Using the HadISST, SODA reanalysis, and various other observed and reanalyzed data sets for the period 1950-2010, we explore nonlinearities in the subsurface evolutional distinctions between El Niño types and La Niña types from a few seasons before the onset. Cluster analysis carried out over both summer and winter suggests that while the warm-phased events of both types are distinguishable, several cold phased events are clustered together. Further, we apply a joint Self-Organizing Map (SOM) analysis using the monthly sea surface temperature anomaly (SSTA) and thermocline-depth anomalies in tropical Pacific (TP). Results reveal that the evolutionary paths of El Niño Modoki (EM) and El Niño (EL) are, broadly, different. Subsurface temperature composites of EL and EM show different onset characteristics. During an EL, warm anomaly in the west spreads eastward along the thermocline and reaches the surface in the east in March-May of year(0). During an EM, warm anomaly already exists in the central tropical Pacific and then reaches the surface in the east in September-November of year(0). Composited SSTAs during La Niña (LN) and La Niña Modoki (LM) are distinguishable only at 80% confidence level, but the composited subsurface temperature anomalies show differences in the location of the coldest anomaly as well as evolution at 90% confidence level. Thus, the El Niño flavor distinction is potentially predictable at longer leads.
The Lusi eruption site: insights from surface and subsurface investigations
NASA Astrophysics Data System (ADS)
Mazzini, A.
2017-12-01
The Indonesian Lusi eruption has been spewing boiling water, gas, and sediments since the 29th of May 2006. Initially, numerous aligned eruptions sites appeared along the Watukosek fault system (WFS) that was reactivated after the Yogyakarta earthquake occurring the 27th of May in the Java Island. Within weeks several villages were submerged by boiling mud. The most prominent eruption site was named Lusi. To date Lusi is still active and an area of 7 km2is covered by mud. Since its birth Lusi erupted with a pulsating behaviour. In the framework of the ERC grant "Lusi Lab" we conducted several years of monitoring and regional investigations coupling surface sampling and subsurface imaging in the region around Lusi. Ambient noise tomography studies, obtained with a local network of 31 stations, revealed for the first time subsurface images of the Lusi region and the adjacent Arjuno-Welirang (AW) volcanic complex. Results show that below the AW volcanic complex are present 5km deep magma chambers that are connected, through a defined corridor, with the roots of the Lusi eruption site. The Lusi subsurface shows the presence of a defined vertical hydrothermal plume that extends to at least 5km. Chemical analyses of the seeping fluids sampled from 1) the Lusi plume (using a specifically designed drone), 2) the region around Lusi, and 3) the fumaroles and the hydro thermal springs of AW, revealed striking similarities. More specifically a mantellic signature of the Lusi fluids confirms the scenario that Lusi represents a magmatic-driven hydrothermal system hosted in sedimentary basin. Seismic profiles interpretation, surface mapping, and fluid sampling show that the WFS, connecting AW and extending towards the NE of Java, acted as a preferential pathway for the igneous intrusion and fluids migration towards the subsurface. Petrography and dating of the clasts erupted at Lusi record high temperatures and indicate that the roots of the active conduit extend to at least 5km at depth, matching the observations and images obtained with geophysical investigations. Converging results support a scenario where igneous intrusions and hydrothermal fluid migrating from the AW complex moved towards the NE of Java. The triggered metamorphic reaction resulted in high overpressures that initiated the Lusi eruption site.
Subfreezing activity of microorganisms and the potential habitability of Mars' polar regions.
Jakosky, Bruce M; Nealson, Kenneth H; Bakermans, Corien; Ley, Ruth E; Mellon, Michael T
2003-01-01
The availability of water-ice at the surface in the Mars polar cap and within the top meter of the high-latitude regolith raises the question of whether liquid water can exist there under some circumstances and possibly support the existence of biota. We examine the minimum temperatures at which liquid water can exist at ice grain-dust grain and ice grain-ice grain contacts, the minimum subfreezing temperatures at which terrestrial organisms can grow or multiply, and the maximum temperatures that can occur in martian high-latitude and polar regions, to see if there is overlap. Liquid water can exist at grain contacts above about -20 degrees C. Measurements of growth in organisms isolated from Siberian permafrost indicate growth at -10 degrees C and metabolism at -20 degrees C. Mars polar and high-latitude temperatures rise above -20 degrees C at obliquities greater than ~40 degrees, and under some conditions rise above 0 degrees C. Thus, the environment in the Mars polar regions has overlapped habitable conditions within relatively recent epochs, and Mars appears to be on the edge of being habitable at present. The easy accessibility of the polar surface layer relative to the deep subsurface make these viable locations to search for evidence of life.
Impact of Land Model Depth on Long Term Climate Variability and Change.
NASA Astrophysics Data System (ADS)
Gonzalez-Rouco, J. F.; García-Bustamante, E.; Hagemann, S.; Lorentz, S.; Jungclaus, J.; de Vrese, P.; Melo, C.; Navarro, J.; Steinert, N.
2017-12-01
The available evidence indicates that the simulation of subsurface thermodynamics in current General Circulation Models (GCMs) is not accurate enough due to the land-surface model imposing a zero heat flux boundary condition that is too close to the surface. Shallow land model components distort the amplitude and phase of the heat propagation in the subsurface with implications for energy storage and land-air interactions. Off line land surface model experiments forced with GCM climate change simulations and comparison with borehole temperature profiles indicate there is a large reduction of the energy storage of the soil using the typical shallow land models included in most GCMs. However, the impact of increasing the depth of the soil model in `on-line' GCM simulations of climate variability or climate change has not yet been systematically explored. The JSBACH land surface model has been used in stand alone mode, driven by outputs of the MPIESM to assess the impacts of progressively increasing the depth of the soil model. In a first stage, preindustrial control simulations are developed increasing the lower depth of the zero flux bottom boundary condition placed for temperature at the base of the fifth model layer (9.83 m) down to 294.6 m (layer 9), thus allowing for the bottom layers to reach equilibrium. Starting from piControl conditions, historical and scenario simulations have been performed since 1850 yr. The impact of increasing depths on the subsurface layer temperatures is analysed as well as the amounts of energy involved. This is done also considering permafrost processes (freezing and thawing). An evaluation on the influence of deepening the bottom boundary on the simulation of low frequency variability and temperature trends is provided.
Kurylyk, Barret L.; Irvine, Dylan J.; Carey, Sean K.; Briggs, Martin A.; Werkema, Dale D.; Bonham, Mariah
2017-01-01
Groundwater flow advects heat, and thus, the deviation of subsurface temperatures from an expected conduction‐dominated regime can be analysed to estimate vertical water fluxes. A number of analytical approaches have been proposed for using heat as a groundwater tracer, and these have typically assumed a homogeneous medium. However, heterogeneous thermal properties are ubiquitous in subsurface environments, both at the scale of geologic strata and at finer scales in streambeds. Herein, we apply the analytical solution of Shan and Bodvarsson (2004), developed for estimating vertical water fluxes in layered systems, in 2 new environments distinct from previous vadose zone applications. The utility of the solution for studying groundwater‐surface water exchange is demonstrated using temperature data collected from an upwelling streambed with sediment layers, and a simple sensitivity analysis using these data indicates the solution is relatively robust. Also, a deeper temperature profile recorded in a borehole in South Australia is analysed to estimate deeper water fluxes. The analytical solution is able to match observed thermal gradients, including the change in slope at sediment interfaces. Results indicate that not accounting for layering can yield errors in the magnitude and even direction of the inferred Darcy fluxes. A simple automated spreadsheet tool (Flux‐LM) is presented to allow users to input temperature and layer data and solve the inverse problem to estimate groundwater flux rates from shallow (e.g., <1 m) or deep (e.g., up to 100 m) profiles. The solution is not transient, and thus, it should be cautiously applied where diel signals propagate or in deeper zones where multi‐decadal surface signals have disturbed subsurface thermal regimes.
Baquiran, Jean-Paul M.; Ramírez, Gustavo A.; Haddad, Amanda G.; Toner, Brandy M.; Hulme, Samuel; Wheat, Charles G.; Edwards, Katrina J.; Orcutt, Beth N.
2016-01-01
To examine microbe-mineral interactions in subsurface oceanic crust, we evaluated microbial colonization on crustal minerals that were incubated in borehole fluids for 1 year at the seafloor wellhead of a crustal borehole observatory (IODP Hole U1301A, Juan de Fuca Ridge flank) as compared to an experiment that was not exposed to subsurface crustal fluids (at nearby IODP Hole U1301B). In comparison to previous studies at these same sites, this approach allowed assessment of the effects of temperature, fluid chemistry, and/or mineralogy on colonization patterns of different mineral substrates, and an opportunity to verify the approach of deploying colonization experiments at an observatory wellhead at the seafloor instead of within the borehole. The Hole U1301B deployment did not have biofilm growth, based on microscopy and DNA extraction, thereby confirming the integrity of the colonization design against bottom seawater intrusion. In contrast, the Hole U1301A deployment supported biofilms dominated by Epsilonproteobacteria (43.5% of 370 16S rRNA gene clone sequences) and Gammaproteobacteria (29.3%). Sequence analysis revealed overlap in microbial communities between different minerals incubated at the Hole U1301A wellhead, indicating that mineralogy did not separate biofilm structure within the 1-year colonization experiment. Differences in the Hole U1301A wellhead biofilm community composition relative to previous studies from within the borehole using similar mineral substrates suggest that temperature and the diffusion of dissolved oxygen through plastic components influenced the mineral colonization experiments positioned at the wellhead. This highlights the capacity of low abundance crustal fluid taxa to rapidly establish communities on diverse mineral substrates under changing environmental conditions such as from temperature and oxygen. PMID:27064928
NASA Astrophysics Data System (ADS)
Cordier, Y.; Azize, M.; Baron, N.; Chenot, S.; Tottereau, O.; Massies, J.
2007-11-01
In this work, we show that, by carefully designing the subsurface Fe doping profile in SI-GaN templates grown by MOVPE and by optimizing the MBE regrowth conditions, a highly resistive GaN buffer can be achieved on these epi-ready GaN-on-sapphire templates without any addition of acceptors during the regrowth. As a result, high-quality high electron mobility transistors can be fabricated. Furthermore, we report on the excellent properties of two-dimensional electron gas and device performances with electron mobility greater than 2000 cm 2/V s at room temperature and off-state buffer leakage currents as low as 5 μA/mm at 100 V.
Efficient photoconductive terahertz detector with all-dielectric optical metasurface
NASA Astrophysics Data System (ADS)
Mitrofanov, Oleg; Siday, Thomas; Thompson, Robert J.; Luk, Ting Shan; Brener, Igal; Reno, John L.
2018-05-01
We designed an optically thin photoconductive channel as an all-dielectric metasurface comprising an array of low-temperature grown GaAs nanobeams and a sub-surface distributed Bragg reflector. The metasurface exhibited enhanced optical absorption, and it was integrated into a photoconductive THz detector, which showed high efficiency and sensitivity as a result. The detector produced photocurrents over one order of magnitude higher compared to a similar detector with an unstructured surface with only 0.5 mW of optical excitation while exhibiting high dark resistance required for low-noise detection in THz time-domain spectroscopy and imaging. At that level of optical excitation, the metasurface detector showed a high signal to noise ratio of 106. The detector showed saturation above that level.
Triaxial thermopile array geo-heat-flow sensor
Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.
1992-01-01
A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.
Vinegar, Harold J.; Sandberg, Chester Ledlie
2010-11-09
A heating system for a subsurface formation is described. The heating system includes a first heater, a second heater, and a third heater placed in an opening in the subsurface formation. Each heater includes: an electrical conductor; an insulation layer at least partially surrounding the electrical conductor; and an electrically conductive sheath at least partially surrounding the insulation layer. The electrical conductor is electrically coupled to the sheath at a lower end portion of the heater. The lower end portion is the portion of the heater distal from a surface of the opening. The first heater, the second heater, and the third heater are electrically coupled at the lower end portions of the heaters. The first heater, the second heater, and the third heater are configured to be electrically coupled in a three-phase wye configuration.
Characterizing preferential groundwater discharge through boils using temperature
NASA Astrophysics Data System (ADS)
Vandenbohede, A.; de Louw, P. G. B.; Doornenbal, P. J.
2014-03-01
In The Netherlands, preferential groundwater discharge trough boils is a key process in the salinization of deep polders. Previous work showed that boils also influence the temperature in the subsurface and of surface water. This paper elaborates on this process combining field observations with numerical modeling. As is the case for salinity, a distinct anomaly in the subsurface and surface water temperature can be attributed to boils. Lines of equal temperature are distorted towards the boil, which can be considered as an upconing of the temperature profile by analogy of the upconing of a fresh-saltwater interface. The zone of this distortion is limited to the immediate vicinity of the boil, being about 5 m in the aquitard which holds the boil's conduit, or maximum a few dozens of meters in the underlying aquifer. In the aquitard, heat transport is conduction dominated whereas this is convection dominated in the aquifer. The temperature anomaly differs from the salinity anomaly by the smaller radius of influence and faster time to reach a new steady-state of the former. Boils discharge water with a temperature equal to the mean groundwater temperature. This influences the yearly and diurnal variation of ditch water temperature in the immediate vicinity of the boil importantly but also the temperature in the downstream direction. Temporary nature of the boil (e.g. stability of the conduit, discharge rate), uncertainty on the 3D construction of the conduit and heterogeneity of the subsoil make it unlikely that temperature measurements can be interpreted further than a qualitative level.
NASA Astrophysics Data System (ADS)
Chiu, C.; Bowling, L. C.; Podest, E.; Bohn, T. J.; Lettenmaier, D. P.; Schroeder, R.; McDonald, K. C.
2009-04-01
In recent years, there has been increasing evidence of significant alteration in the extent of lakes and wetlands in high latitude regions due in part to thawing permafrost, as well as other changes governing surface and subsurface hydrology. Methane is a 23 times more efficient greenhouse gas than carbon dioxide; changes in surface water extent, and the associated subsurface anaerobic conditions, are important controls on methane emissions in high latitude regions. Methane emissions from wetlands vary substantially in both time and space, and are influenced by plant growth, soil organic matter decomposition, methanogenesis, and methane oxidation controlled by soil temperature, water table level and net primary productivity (NPP). The understanding of spatial and temporal heterogeneity of surface saturation, thermal regime and carbon substrate in northern Eurasian wetlands from point measurements are limited. In order to better estimate the magnitude and variability of methane emissions from northern lakes and wetlands, we present an integrated assessment approach based on remote sensing image classification, land surface modeling and process-based ecosystem modeling. Wetlands classifications based on L-band JERS-1 SAR (100m) and ALOS PALSAR (~30m) are used together with topographic information to parameterize a lake and wetland algorithm in the Variable Infiltration Capacity (VIC) land surface model at 25 km resolution. The enhanced VIC algorithm allows subsurface moisture exchange between surface water and wetlands and includes a sub-grid parameterization of water table position within the wetland area using a generalized topographic index. Average methane emissions are simulated by using the Walter and Heimann methane emission model based on temporally and spatially varying soil temperature, net primary productivity and water table generated from the modified VIC model. Our five preliminary study areas include the Z. Dvina, Upper Volga, Yeloguy, Syum, and Chaya river basins. The temporally-variable inundation extent simulated by the VIC model is compared to 25 km resolution inundation products developed from combined QuikSCAT, AMSR-E and MODIS data sets covering the time period from 2002 onward. The seasonal variation in methane emissions associated with sub-grid variability in water table extent is explored between 1948 and 2006. This work was carried out at Purdue University, at the University of Washington, and at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the NASA.
NASA Astrophysics Data System (ADS)
Gerakines, Perry A.; Hudson, R. L.
2012-10-01
Amino acids and other organic molecules are thought to be easily destroyed on the surface of Mars by the high flux of incident ultraviolet rays or by chemical interactions with oxidizing substances in the soil. However, organic molecules may survive in the subsurface, where chemical processes are driven by penetrating galactic cosmic rays such as MeV protons. Models of the radiation dose as a function of depth on Mars have shown that the contribution of galactic cosmic rays dominates from about one centimeter to a few meters [1]. Theoretical models have also been published to aid in understanding molecular destruction at these depths, but these usually are based on room-temperature laboratory data, studies of single-component samples, and ex-situ methods of chemical analysis. Recent studies of amino-acid survivability include those involving UV photolysis [2, 3] and gamma radiolysis [4], but nearly all chemical and kinetic analyses from such experiments involved room-temperature measurements on samples irradiated and then removed from sealed containers. We report new laboratory studies of the radiation-induced destruction of glycine-containing ices. In-situ infrared spectroscopy was used to study decay rates as a function of temperature and initial glycine concentrations. Our results indicate that glycine's destruction rate depends on temperature, the presence of H2O-ice, and the initial relative abundance of glycine. These trends are not obvious in previous work, suggesting that room-temperature measurements on pure glycine's radiation stability are not directly applicable to Mars and other environments. This work has been supported by the Goddard Center for Astrobiology. [1] Dartnell, L. R., et al., 2007. Geophys. Res. Letters 34:L02207. [2] ten Kate, I. L., et al., 2006. Planet. Space Sci. 54, 296-302. [3] Orzechowska, G. E., et al., 2007. Icarus 187, 584-591. [4] Kminek, G., Bada, J. L., 2006. Earth Planet. Sci. Lett. 245, 1-5.
NASA Astrophysics Data System (ADS)
McClymont, Alastair F.; Hayashi, Masaki; Bentley, Laurence R.; Christensen, Brendan S.
2013-09-01
our current understanding of permafrost thaw in subarctic regions in response to rising air temperatures, little is known about the subsurface geometry and distribution of discontinuous permafrost bodies in peat-covered, wetland-dominated terrains and their responses to rising temperature. Using electrical resistivity tomography, ground-penetrating radar profiling, and thermal-conduction modeling, we show how the land cover distributions influence thawing of discontinuous permafrost at a study site in the Northwest Territories, Canada. Permafrost bodies in this region occur under forested peat plateaus and have thicknesses of 5-13 m. Our geophysical data reveal different stages of thaw resulting from disturbances within the active layer: from widening and deepening of differential thaw features under small frost-table depressions to complete thaw of permafrost under an isolated bog. By using two-dimensional geometric constraints derived from our geophysics profiles and meteorological data, we model seasonal and interannual changes to permafrost distribution in response to contemporary climatic conditions and changes in land cover. Modeling results show that in this environment (1) differences in land cover have a strong influence on subsurface thermal gradients such that lateral thaw dominates over vertical thaw and (2) in accordance with field observations, thaw-induced subsidence and flooding at the lateral margins of peat plateaus represents a positive feedback that leads to enhanced warming along the margins of peat plateaus and subsequent lateral heat conduction. Based on our analysis, we suggest that subsurface energy transfer processes (and feedbacks) at scales of 1-100 m have a strong influence on overall permafrost degradation rates at much larger scales.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.
2011-05-01
Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.
Characterization of Magma-Driven Hydrothermal Systems at Oceanic Spreading Centers
NASA Astrophysics Data System (ADS)
Farough, A.; Lowell, R. P.; Corrigan, R.
2012-12-01
Fluid circulation in high-temperature hydrothermal systems involves complex water-rock chemical reactions and phase separation. Numerical modeling of reactive transport in multi-component, multiphase systems is required to obtain a full understanding of the characteristics and evolution of hydrothermal vent systems. We use a single-pass parameterized model of high-temperature hydrothermal circulation at oceanic spreading centers constrained by observational parameters such as vent temperature, heat output, and vent field area, together with surface area and depth of the sub-axial magma chamber, to deduce fundamental hydrothermal parameters such as mass flow rate, bulk permeability, conductive boundary layer thickness at the base of the system, magma replenishment rate, and residence time in the discharge zone. All of these key subsurface characteristics are known for fewer than 10 sites out of 300 known hydrothermal systems. The principal limitations of this approach stem from the uncertainty in heat output and vent field area. For systems where data are available on partitioning of heat and chemical output between focused and diffuse flow, we determined the fraction of high-temperature vent fluid incorporated into diffuse flow using a two-limb single pass model. For EPR 9°50` N and ASHES, the diffuse flow temperatures calculated assuming conservative mixing are nearly equal to the observed temperatures indicating that approximately 80%-90% of the hydrothermal heat output occurs as high-temperature flow derived from magmatic heat even though most of the heat output appears as low-temperature diffuse discharge. For the Main Endeavour Field and Lucky Strike, diffuse flow fluids show significant conductive cooling and heating respectively. Finally, we calculate the transport of various geochemical constituents in focused and diffuse flow at the vent field scale and compare the results with estimates of geochemical transports from the Rainbow hydrothermal field where diffuse flow is absent.
Importance of solar subsurface heating in ocean general circulation models
NASA Astrophysics Data System (ADS)
Rochford, Peter A.; Kara, A. Birol; Wallcraft, Alan J.; Arnone, Robert A.
2001-12-01
The importance of subsurface heating on surface mixed layer properties in an ocean general circulation model (OGCM) is examined using attenuation of solar irradiance with depth below the ocean surface. The depth-dependent attenuation of subsurface heating is given by global monthly mean fields for the attenuation of photosynthetically available radiation (PAR), kPAR. These global fields of kPAR are derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data on the spectral diffuse attenuation coefficient at 490 nm (k490), and have been processed to have the smoothly varying and continuous coverage necessary for use in OGCM applications. These monthly fields provide the first complete global data sets of subsurface optical fields that can be used for OGCM applications of subsurface heating and bio-optical processes. The effect on global OGCM prediction of sea surface temperature (SST) and surface mixed layer depth (MLD) is examined when solar heating, as given by monthly mean kPAR and PAR fields, is included in the model. It is found that subsurface heating yields a marked increase in the SST predictive skill of the OGCM at low latitudes. No significant improvement in MLD predictive skill is obtained when including subsurface heating. Use of the monthly mean kPAR produces an SST decrease of up to 0.8°C and a MLD increase of up to only 4-5 m for climatological surface forcing, with this primarily confined to the equatorial regions. Remarkably, a constant kPAR value of 0.06 m-1, which is indicative of optically clear open ocean conditions, is found to serve very well for OGCM prediction of SST and MLD over most of the global ocean.
NASA Astrophysics Data System (ADS)
Hein, A. E.; Condon, L. E.; Maxwell, R. M.
2017-12-01
Large scale droughts can disrupt the water supply for agriculture, municipalities and industrial use worldwide. For example, the Dustbowl drought of the 1930s severely damaged agriculture on the North American High Plains. The Dustbowl is generally attributed to three major factors: increased temperature, decreased precipitation, and a change from native grasses that might have tolerated these climate perturbations to dryland wheat farming, which did not. This study explores the individual importance of each of these factors and the feedbacks between them. Previous modeling studies have explored how the High Plains system responds to changes in precipitation or temperature, but these models often depend on simplified or lumped parameter approaches. These approaches may not fully represent all the relevant physical processes, especially those related to energy balance changes due to increased temperature. For this study, we built a high-resolution model of the High Plains using ParFlow-CLM, an integrated hydrologic model that solves both energy and water balances from the subsurface to the top of vegetation. Model inputs including geology and climate forcing, together with representative precipitation and temperature changes for a major drought were assembled from public data. Numerical experiments were run to perturb vegetation, precipitation and temperature separately, as well as a baseline scenario with no changes and a worst-case scenario with all three simultaneously. The impact of each factor on High Plains hydrology and water resources was examined by comparing soil moisture, stream flow and water table levels between the runs. The one-factor experiments were used to show which of these outputs was the most sensitive and responded most quickly to each change. The worst-case scenario revealed interactions between the three factors.
Estimation of streambed groundwater fluxes associated with coaster brook trout spawning habitat.
Van Grinsven, Matthew; Mayer, Alex; Huckins, Casey
2012-01-01
We hypothesized that the spatial distribution of groundwater inflows through river bottom sediments is a critical factor associated with the distribution of coaster brook trout (a life history variant of Salvelinus fontinalis) spawning redds. An 80-m reach of the Salmon Trout River, in the Huron Mountains of the upper peninsula of Michigan, was selected to test the hypothesis based on long-term documentation of coaster brook trout spawning at this site. A monitoring well system consisting of 22 wells was installed in the riverbed to measure surface and subsurface temperatures over a 13-month period. The array of monitoring wells was positioned to span areas where spawning has and has not been observed. Over 200,000 total temperature measurements were collected from five depths within each monitoring well. Temperatures in the substrate beneath the spawning area were generally less variable than river temperatures, whereas temperatures under the nonspawning area were generally more variable and closely tracked temporal variations in river temperatures. Temperature data were inverted to obtain subsurface groundwater velocities using a numerical approximation of the heat transfer equation. Approximately 45,000 estimates of groundwater velocities were obtained. Estimated groundwater velocities in the spawning area were primarily in the upward direction and were generally greater in magnitude than velocities in the nonspawning area. Both the temperature and velocity results confirm the hypothesis that spawning sites correspond to areas of significant groundwater flux into the river bed. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.
Heat and mass transport during a groundwater replenishment trial in a highly heterogeneous aquifer
NASA Astrophysics Data System (ADS)
Seibert, Simone; Prommer, Henning; Siade, Adam; Harris, Brett; Trefry, Mike; Martin, Michael
2014-12-01
Changes in subsurface temperature distribution resulting from the injection of fluids into aquifers may impact physiochemical and microbial processes as well as basin resource management strategies. We have completed a 2 year field trial in a hydrogeologically and geochemically heterogeneous aquifer below Perth, Western Australia in which highly treated wastewater was injected for large-scale groundwater replenishment. During the trial, chloride and temperature data were collected from conventional monitoring wells and by time-lapse temperature logging. We used a joint inversion of these solute tracer and temperature data to parameterize a numerical flow and multispecies transport model and to analyze the solute and heat propagation characteristics that prevailed during the trial. The simulation results illustrate that while solute transport is largely confined to the most permeable lithological units, heat transport was also affected by heat exchange with lithological units that have a much lower hydraulic conductivity. Heat transfer by heat conduction was found to significantly influence the complex temporal and spatial temperature distribution, especially with growing radial distance and in aquifer sequences with a heterogeneous hydraulic conductivity distribution. We attempted to estimate spatially varying thermal transport parameters during the data inversion to illustrate the anticipated correlations of these parameters with lithological heterogeneities, but estimates could not be uniquely determined on the basis of the collected data.
Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.
NASA Technical Reports Server (NTRS)
Des Marais, D. J.; Stallard, M. L.; Nehring, N. L.; Truesdell, A. H.
1988-01-01
Hydrocarbon abundances and stable-isotopic compositions were measured in wells M5, M26, M35 and M102, which represent a range of depths (1270-2000 m) and temperatures (275-330 degrees C) in the field. In order to simulate the production of the geothermal hydrocarbons, gases were collected from the pyrolysis of lignite in the laboratory. This lignite was obtained from a well which sampled rock strata which are identical to those occurring in the field, but which have experienced much lower subsurface temperatures. In both the well and the laboratory observations, high-temperature environments favored higher relative concentrations of methane, ethane and benzene and generally higher delta 13C-values in the individual hydrocarbons. The best correlation between the laboratory and well data is obtained when laboratory-produced gases from experiments conducted at lower (400 degrees C) and higher (600 degrees C) temperatures are mixed. This improved correlation suggests that the wells are sampling hydrocarbons produced from a spectrum of depths and temperatures in the sediments.
Geothermal-energy files in computer storage: sites, cities, and industries
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Dea, P.L.
1981-12-01
The site, city, and industrial files are described. The data presented are from the hydrothermal site file containing about three thousand records which describe some of the principal physical features of hydrothermal resources in the United States. Data elements include: latitude, longitude, township, range, section, surface temperature, subsurface temperature, the field potential, and well depth for commercialization. (MHR)
Subsurface heaters with low sulfidation rates
John, Randy Carl; Vinegar, Harold J
2013-12-10
A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Framgos, William
1999-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach. Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2002-11-20
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex
2000-06-01
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data can bemore » mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately imaging the electrical conductivity and dielectric permittivity of the shallow subsurface using the plane wave impedance approach (Song et al., 1997). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2001-06-10
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001). Electric and magnetic sensors are being tested in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
A high frequency electromagnetic impedance imaging system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex
2003-01-15
Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less
NASA Technical Reports Server (NTRS)
Battler, M.; Stoker, C.
2005-01-01
Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].
Hydrothermal deformation of granular quartz sand
NASA Astrophysics Data System (ADS)
Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew
2008-05-01
Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.
Scenario simulation based assessment of subsurface energy storage
NASA Astrophysics Data System (ADS)
Beyer, C.; Bauer, S.; Dahmke, A.
2014-12-01
Energy production from renewable sources such as solar or wind power is characterized by temporally varying power supply. The politically intended transition towards renewable energies in Germany („Energiewende") hence requires the installation of energy storage technologies to compensate for the fluctuating production. In this context, subsurface energy storage represents a viable option due to large potential storage capacities and the wide prevalence of suited geological formations. Technologies for subsurface energy storage comprise cavern or deep porous media storage of synthetic hydrogen or methane from electrolysis and methanization, or compressed air, as well as heat storage in shallow or moderately deep porous formations. Pressure build-up, fluid displacement or temperature changes induced by such operations may affect local and regional groundwater flow, geomechanical behavior, groundwater geochemistry and microbiology. Moreover, subsurface energy storage may interact and possibly be in conflict with other "uses" like drinking water abstraction or ecological goods and functions. An utilization of the subsurface for energy storage therefore requires an adequate system and process understanding for the evaluation and assessment of possible impacts of specific storage operations on other types of subsurface use, the affected environment and protected entities. This contribution presents the framework of the ANGUS+ project, in which tools and methods are developed for these types of assessments. Synthetic but still realistic scenarios of geological energy storage are derived and parameterized for representative North German storage sites by data acquisition and evaluation, and experimental work. Coupled numerical hydraulic, thermal, mechanical and reactive transport (THMC) simulation tools are developed and applied to simulate the energy storage and subsurface usage scenarios, which are analyzed for an assessment and generalization of the imposed THMC-processes, mutual effects and influences on protected entities. The scenario analyses allow the deduction of monitoring concepts as well as a first methodology for large scale spatial planning of the geological subsurface. This concept is illustrated for different storage options and their impacts in space and time.
High temperature methods for forming oxidizer fuel
Bravo, Jose Luis [Houston, TX
2011-01-11
A method of treating a formation fluid includes providing formation fluid from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes carbon dioxide, hydrogen sulfide, hydrocarbons, hydrogen or mixtures thereof. Molecular oxygen is separated from air to form a molecular oxygen stream comprising molecular oxygen. The first gas stream is combined with the molecular oxygen stream to form a combined stream comprising molecular oxygen and the first gas stream. The combined stream is provided to one or more downhole burners.
Precipitation-runoff and streamflow-routing models for the Willamette River basin, Oregon
Laenen, Antonius; Risley, John C.
1997-01-01
With an input of current streamflow, precipitation, and air temperature data the combined runoff and routing models can provide current estimates of streamflow at almost 500 locations on the main stem and major tributaries of the Willamette River with a high degree of accuracy. Relative contributions of surface runoff, subsurface flow, and ground-water flow can be assessed for 1 to 10 HRU classes in each of 253 subbasins identified for precipitation-runoff modeling. Model outputs were used with a water-quality model to simulate the movement of dye in the Pudding River as an example
Field and Lab-Based Microbiological Investigations of the Marcellus Shale
NASA Astrophysics Data System (ADS)
Wishart, J. R.; Neumann, K.; Edenborn, H. M.; Hakala, A.; Yang, J.; Torres, M. E.; Colwell, F. S.
2013-12-01
The recent exploration of shales for natural gas resources has provided the opportunity to study their subsurface geochemistry and microbiology. Evidence indicates that shale environments are marked by extreme conditions such as high temperature and pressure, low porosity, permeability and connectivity, and the presence of heavy metals and radionuclides. It has been postulated that many of these shales are naturally sterile due to the high pressure and temperature conditions under which they were formed. However, it has been shown in the Antrim and New Albany shales that microbial communities do exist in these environments. Here we review geochemical and microbiological evidence for the possible habitation of the Marcellus shale by microorganisms and compare these conditions to other shales in the U.S. Furthermore, we describe the development of sampling and analysis techniques used to evaluate microbial communities present in the Marcellus shale and associated hydraulic fracturing fluid. Sampling techniques thus far have consisted of collecting flowback fluids from wells and water impoundments and collecting core material from previous drilling expeditions. Furthermore, DNA extraction was performed on Marcellus shale sub-core with a MoBio PowerSoil kit to determine its efficiency. Assessment of the Marcellus shale indicates that it has low porosity and permeability that are not conducive to dense microbial populations; however, moderate temperatures and a natural fracture network may support a microbial community especially in zones where the Marcellus intersects more porous geologic formations. Also, hydraulic fracturing extends this fracture network providing more environments where microbial communities can exist. Previous research which collected flowback fluids has revealed a diverse microbial community that may be derived from hydrofrac fluid production or from the subsurface. DNA extraction from 10 g samples of Marcellus shale sub-core were unsuccessful even when samples were spiked with 8x108 cells/g of shale. This indicated that constituents of shale such as high levels of carbonates, humic acids and metals likely inhibited components of the PowerSoil kit. Future research is focused on refining sample collection and analyses to gain a full understanding of the microbiology of the Marcellus shale and associated flowback fluids. This includes the development of an in situ osmosampler, which will collect temporally relevant fluid and colonized substrate samples. The design of the osmosampler for hydraulic fracturing wells is being adapted from those used to sample marine environments. Furthermore, incubation experiments are underway to study interactions between microbial communities associated with hydraulic fracturing fluid and Marcellus shale samples. In conclusion, evidence suggests that the Marcellus shale is a possible component of the subsurface biosphere. Future studies will be valuable in determining the microbial community structure and function in relation to the geochemistry of the Marcellus shale and its future development as a natural gas resource.
NASA Astrophysics Data System (ADS)
An, J.; Xuan, X. H.; Zhao, J.; Sun, W.; Liang, C.
2016-12-01
The wear properties of Mg97Zn1Y2 alloy were investigated using the pin-on-disk wear machine within a load range of 20-380 N and a sliding speed range of 0.2-4.0 m/s. Analysis of worn surfaces using scanning electron microscope and energy-dispersive x-ray spectrometer revealed that wear mechanisms including abrasion + oxidation, delamination accompanied by heavy surface oxidation and delamination operated in mild wear regime, while wear mechanisms such as severe plastic deformation, severe plastic deformation accompanied by spallation of oxidation layer and surface melting prevailed in severe wear regime. The microstructural evolution and hardness change in subsurfaces were examined by optical microscopy and hardness tester. The transformation of surface material from the deformed into dynamic recrystallization (DRX) microstructure was observed before and after mild-to-severe transition. The reason for mild-to-severe wear transition was identified as the transformation of strain hardening to DRX softening in subsurface. Mg97Zn1Y2 alloy has a superior mild-to-severe wear transition resistance to AZ alloys because of its higher recrystallization temperature. A novel model for evaluating the critical surface temperature of mild-to-severe wear transition was established using DRX kinetics.
The Influence of Runoff and Surface Hydrology on Titan's Weather and Climate
NASA Astrophysics Data System (ADS)
Faulk, S.; Lora, J. M.; Mitchell, J.; Moon, S.
2017-12-01
Titan's surface liquid distribution has been shown by general circulation models (GCMs) to greatly influence the hydrological cycle, producing characteristic weather and seasonal climate patterns. Simulations from the Titan Atmospheric Model (TAM) with imposed polar methane "wetlands" reservoirs realistically produce observed cloud features and temperature profiles of Titan's atmosphere, whereas "aquaplanet" simulations with a global methane ocean are not as successful. In addition, wetlands simulations, unlike aquaplanet simulations, demonstrate strong correlations between extreme rainfall behavior and observed geomorphic features, indicating the influential role of precipitation in shaping Titan's surface. The wetlands configuration is, in part, motivated by Titan's large-scale topography featuring low-latitude highlands and high-latitude lowlands, with the implication being that methane may concentrate in the high-latitude lowlands by way of runoff and subsurface flow of a global or regional methane table. However, the extent to which topography controls the surface liquid distribution and thus impacts the global hydrological cycle by driving surface and subsurface flow is unclear. Here we present TAM simulations wherein the imposed wetlands reservoirs are replaced by a surface runoff scheme that allows surface liquid to self-consistently redistribute under the influence of topography. We discuss the impact of surface runoff on the surface liquid distribution over seasonal timescales and compare the resulting hydrological cycle to observed cloud and surface features, as well as to the hydrological cycles of the TAM wetlands and aquaplanet simulations. While still idealized, this more realistic representation of Titan's hydrology provides new insight into the complex interaction between Titan's atmosphere and surface, demonstrates the influence of surface runoff on Titan's global climate, and lays the groundwork for further surface hydrology developments in Titan GCMs, including infiltration and subsurface flow.
NASA Astrophysics Data System (ADS)
Premaratne, Pavithra Dhanuka
Disruption and fragmentation of an asteroid using nuclear explosive devices (NEDs) is a highly complex yet a practical solution to mitigating the impact threat of asteroids with short warning time. A Hypervelocity Asteroid Intercept Vehicle (HAIV) concept, developed at the Asteroid Deflection Research Center (ADRC), consists of a primary vehicle that acts as kinetic impactor and a secondary vehicle that houses NEDs. The kinetic impactor (lead vehicle) strikes the asteroid creating a crater. The secondary vehicle will immediately enter the crater and detonate its nuclear payload creating a blast wave powerful enough to fragment the asteroid. The nuclear subsurface explosion modeling and hydrodynamic simulation has been a challenging research goal that paves the way an array of mission critical information. A mesh-free hydrodynamic simulation method, Smoothed Particle Hydrodynamics (SPH) was utilized to obtain both qualitative and quantitative solutions for explosion efficiency. Commercial fluid dynamics packages such as AUTODYN along with the in-house GPU accelerated SPH algorithms were used to validate and optimize high-energy explosion dynamics for a variety of test cases. Energy coupling from the NED to the target body was also examined to determine the effectiveness of nuclear subsurface explosions. Success of a disruption mission also depends on the survivability of the nuclear payload when the secondary vehicle approaches the newly formed crater at a velocity of 10 km/s or higher. The vehicle may come into contact with debris ejecting the crater which required the conceptual development of a Whipple shield. As the vehicle closes on the crater, its skin may also experience extreme temperatures due to heat radiated from the crater bottom. In order to address this thermal problem, a simple metallic thermal shield design was implemented utilizing a radiative heat transfer algorithm and nodal solutions obtained from hydrodynamic simulations.
Continual in situ monitoring of pore water stable isotopes in the subsurface
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Weiler, M.
2014-05-01
Stable isotope signatures provide an integral fingerprint of origin, flow paths, transport processes, and residence times of water in the environment. However, the full potential of stable isotopes to quantitatively characterize subsurface water dynamics is yet unfolded due to the difficulty in obtaining extensive, detailed, and repeated measurements of pore water in the unsaturated and saturated zone. This paper presents a functional and cost-efficient system for non-destructive continual in situ monitoring of pore water stable isotope signatures with high resolution. Automatic controllable valve arrays are used to continuously extract diluted water vapor in soil air via a branching network of small microporous probes into a commercial laser-based isotope analyzer. Normalized liquid-phase isotope signatures are then obtained based on a specific on-site calibration approach along with basic corrections for instrument bias and temperature dependent isotopic fractionation. The system was applied to sample depth profiles on three experimental plots with varied vegetation cover in southwest Germany. Two methods (i.e., based on advective versus diffusive vapor extraction) and two modes of sampling (i.e., using multiple permanently installed probes versus a single repeatedly inserted probe) were tested and compared. The results show that the isotope distribution along natural profiles could be resolved with sufficiently high accuracy and precision at sampling intervals of less than four minutes. The presented in situ approaches may thereby be used interchangeably with each other and with concurrent laboratory-based direct equilibration measurements of destructively collected samples. It is thus found that the introduced sampling techniques provide powerful tools towards a detailed quantitative understanding of dynamic and heterogeneous shallow subsurface and vadose zone processes.
NASA Astrophysics Data System (ADS)
Viswanathan, H.; Carey, J. W.; Karra, S.; Porter, M. L.; Rougier, E.; Zhang, D.; Makedonska, N.; Middleton, R. S.; Currier, R.; Gupta, R.; Lei, Z.; Kang, Q.; O'Malley, D.; Hyman, J.
2014-12-01
Shale gas is an unconventional fossil energy resource that is already having a profound impact on US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydrofracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. This project uses innovative high-pressure microfluidic and triaxial core flood experiments on shale to explore fracture-permeability relations and the extraction of hydrocarbon. These data are integrated with simulations including lattice Boltzmann modeling of pore-scale processes, finite-element/discrete element models of fracture development in the near-well environment, discrete-fracture modeling of the reservoir, and system-scale models to assess the economics of alternative fracturing fluids. The ultimate goal is to make the necessary measurements to develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
Application of the Quadrupole Method for Simulation of Passive Thermography
NASA Technical Reports Server (NTRS)
Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.
2017-01-01
Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.
Possible Mars brines - Equilibrium and kinetic considerations
NASA Technical Reports Server (NTRS)
Zent, A. P.; Fanale, F. P.
1986-01-01
To determine the fate of postulated near surface brines on Mars, the rate of H2O mass loss from subsurface brines was calculated as a function of latitude, depth, regolith porosity, eutectic temperature, and pore size. A model for a chemically reasonable brine that could reproduce Martian radar results was developed, and the escape rate of H2O molecules from such a brine was estimated. It is suggested that the presence of a low-permeability duricrust may be required to preserve such a brine for reasonable periods, and to prevent detection of an extensive subsurface system by the Viking MAWD instrument.
Needs, opportunities and strategies for a long-term oceanic sciences satellite program
NASA Technical Reports Server (NTRS)
Ruttenberg, S. (Editor)
1981-01-01
Several areas of the National Oceanic Satellite System are addressed including Satellite-borne communication systems, subsurface remote sensing, data coordination, color scanners, formatting important historical data sets, and sea surface temperature observations.
NASA Astrophysics Data System (ADS)
Kemna, A.; Weigand, M.; Wagner, F.; Hilbich, C.; Hauck, C.
2016-12-01
Flow of (liquid) water plays a crucial role in the dynamics of coupled thermo-hydro-mechanical processes in terrestrial permafrost systems. To better understand these processes in the active layer of permafrost regions, with the ultimate goal of adequately incorporating them in numerical models for improved scenario prediction, monitoring approaches offering high spatial and temporal resolution, areal coverage, and especially sensitivity to subsurface water flow, are highly desired. This particularly holds for high-mountain slopes, where strong variability in topography, precipitation, and snow cover, along with significant subsurface soil/rock heterogeneity, gives rise to complex spatio-temporal patterns of water flow during seasonal thawing and freezing periods. The electrical self-potential (SP) method is well known to, in theory, meeting the above monitoring demands by measuring the electrical streaming potential which is generated at the microscopic scale when water flows along electrically non-neutral interfaces. Despite its inherent sensitivity to subsurface water flow, the SP method has not yet been used for the monitoring of high-mountain permafrost sites. We here present first results from an SP monitoring survey conducted at the Schilthorn (2970 m asl) in the Bernese Alps, Switzerland, where SP data have been collected since September 2013 at a sampling rate of 10 min on a permanently installed array of 12 non-polarizing electrodes covering an area of 35 m by 15 m. While the SP time series exhibit systematic daily variations, with part of the signal clearly correlated with temperature, in particular in the snow-free periods, the largest temporal changes in the SP signal occur in spring, when the snow cover melts and thawing sets on in the active layer. The period of higher temporal SP variations continues until autumn, when the signal gradually returns to relatively low variations, coinciding with the freezing of the ground. Our results suggest that the SP method is a suitable tool for the monitoring of seasonal water flow dynamics at high-mountain permafrost sites. Current work is directed towards an improved field setup, as well as the quantitative analysis of the SP data based on laboratory calibration measurements.
Localized Rapid Warming of West Antarctic Subsurface Waters by Remote Winds
NASA Astrophysics Data System (ADS)
Griffies, S. M.; Spence, P.; Holmes, R.; Hogg, A. M.; Stewart, K. D.; England, M. H.
2017-12-01
The largest rates of Antarctic glacial ice mass loss are occurring tothe west of the Antarctica Peninsula in regions where warming ofsubsurface continental shelf waters is also largest. However, thephysical mechanisms responsible for this warming remain unknown. Herewe show how localized changes in coastal winds off East Antarctica canproduce significant subsurface temperature anomalies (>2C) around theentire continent. We demonstrate how coastal-trapped Kelvin wavescommunicate the wind disturbance around the Antarctic coastline. Thewarming is focused on the western flank of the Antarctic Peninsulabecause the anomalous circulation induced by the coastal-trapped wavesis intensified by the steep continental slope there, and because ofthe presence of pre-existing warm subsurface water. Thecoastal-trapped waves leads to an adjustment of the flow that shoalsisotherms and brings warm deep water upwards onto the continentalshelf and closer to the coast. This result demonstrates the uniquevulnerability of the West Antarctic region to a changing climate.
Deep Subsurface Microbial Communities Shaped by the Chicxulub Impactor
NASA Astrophysics Data System (ADS)
Cockell, C. S.; Coolen, M.; Schaefer, B.; Grice, K.; Gulick, S. P. S.; Morgan, J. V.; Kring, D. A.; Osinski, G.
2017-12-01
Fresh core material was obtained by drilling of the Chicxulub impact crater during IODP-ICDP Expedition 364 to assess the present-day biosphere in the crater structure. Cell enumerations through the core show that beneath the post-impact sedimentary rock there is a region of enhanced cell abundance that corresponds to the upper impact suevite layer (Units 1G/2A). We also observed a peak in cell numbers in samples at the bottom of suevite Unit 2C and between the suevitic and grainitoid interface (Unit 3/4). These patterns may reflect preferential movement of fluid and/or availability of nutrients and energy at interfaces. 16S rDNA analysis allows us to rule out contamination of the suevite material since no taxa associated with the drilling mud were observed. Two hundred and fifty microbial enrichments were established using diverse culture media for heterotrophs, autotrophs and chemolithotrophs at temperatures consistent with measured core temperatures. Six yielded growth in the breccia, lower breccia and upper granitoid layer and they affiliated with Acidiphilium, Thermoanaerobacteracea and Desulfohalbiaceae. The latter exhibited visible microbial sulfate-reduction. By contrast, the granitoid material exhibited low cell abundances, most samples were below direct cell detection. DNA extraction revealed pervasive low level contamination by drilling mud taxa, consistent with the highly fractured, high porosity of the impact-shocked granitoids. Few taxa can be attributed to an indigenous biota and no enrichments (at 60 and 70°C) yielded growth. These data show that even with a porosity approximately an order of magnitude greater than most unshocked granites, the uplifted granites have not experienced sufficient fluid flow to establish a significant deep biosphere. Paleosterilisation of the material during impact may have re-set colonisation and the material may have originally been below the depth at which temperatures exceeded the upper temperature limit for life. These data show that the deep biosphere can preserve the imprint of catastrophe long after these events. In this case, the distribution of deep subsurface microbial communities reflects the lithological sequence established during the substantial impact-induced geological rearrangements that occurred in the first hours of the Cenozoic.
Electrical Resistivity Tomography monitoring reveals groundwater storage in a karst vadose zone
NASA Astrophysics Data System (ADS)
Watlet, A.; Kaufmann, O.; Van Camp, M. J.; Triantafyllou, A.; Cisse, M. F.; Quinif, Y.; Meldrum, P.; Wilkinson, P. B.; Chambers, J. E.
2016-12-01
Karst systems are among the most difficult aquifers to characterize, due to their high heterogeneity. In particular, temporary groundwater storage that occurs in the unsaturated zone and the discharge to deeper layers are difficult processes to identify and estimate with in-situ measurements. Electrical Resistivity Tomography (ERT) monitoring is meant to track changes in the electrical properties of the subsurface and has proved to be applicable to evidence and quantify hydrological processes in several types of environments. Applied to karst systems, it has particularly highlighted the challenges in linking electrical resistivity changes to groundwater content with usual approaches of petrophysical relationships, given the high heterogeneity of the subsurface. However, taking up the challenge, we undertook an ERT monitoring at the Rochefort Cave Laboratory (Belgium) lasting from Spring 2014 to Winter 2016. This includes 3 main periods of several months with daily measurements, from which seasonal groundwater content changes in the first meters of the vadose zone were successfully imaged. The monitoring concentrates on a 48 electrodes profile that goes from a limestone plateau to the bottom of a sinkhole. 3D UAV photoscans of the surveyed sinkhole and of the main chamber of the nearby cave were performed. Combined with lithological observations from a borehole drilled next to the ERT profile, the 3D information made it possible to project karstified layers visible in the cave to the surface and assess their potential locations along the ERT profile. Overall, this helped determining more realistic local petrophysical properties in the surveyed area, and improving the ERT data inversion by adding structural constraints. Given a strong air temperature gradient in the sinkhole, we also developed a new approach of temperature correction of the raw ERT data. This goes through the solving (using pyGIMLI package) of the 2D ground temperature field and its temporal evolution, calibrated with data from in-situ temperature probes installed along the ERT profile. Results from a 3D ERT monitoring of a sprinkling experiment, those of a gravimetric monitoring and an in-cave flow discharges monitoring were also of interest to verify interpretations of the permanent ERT monitoring in terms of groundwater content changes.
Temperature limited heaters using phase transformation of ferromagnetic material
Vitek, John Michael [Oak Ridge, TN; Brady, Michael Patrick [Oak Ridge, TN
2009-10-06
Systems, methods, and heaters for treating a subsurface formation are described herein. Systems and methods for making heaters are described herein. At least one heater includes a ferromagnetic conductor and an electrical conductor. The electrical conductor is electrically coupled to the ferromagnetic conductor. The heater provides a first amount of heat at a lower temperature. The heater may provide a second reduced amount of heat when the heater reaches a selected temperature, or enters a selected temperature range, at which the ferromagnetic conductor undergoes a phase transformation.
Feeding a subsurface biosphere: radiolysis and abiogenic energy sources
NASA Astrophysics Data System (ADS)
Onstott, T.
Noble gas analyses of ground water collected from the deep, fractured, basaltic andesite and quartzite Archean strata in South Africa suggest subsurface residence times ranging from tens to hundreds of millions of years. Hydraulically isolated compartments of highly saline water contain hundreds of μM concentrations of gas comprised primarily of C1-4 hydrocarbons, H2 and He, with minor Ar and N .2 Carbon and hydrogen isotopic analyses of the hydrocarbons suggest an abiogenic origin com atible with surface catalysed reductive assimilation (i.e. Fischer-Tropschp synthesis). H2 and He data suggest that the H2 is generated by subsurface radiolysis of water. One sample of a saline, isolated water/gas pocket agrees exactly with that predicted by radioactive decay of U, Th, K in the host rock and indicates a subsurface H2 production rate of 0.1 to 1 nM/yr. Other samples yielded less H2 than predicted and require a sink for this H2 . Possible sinks include microbial H2 oxidation and abiotic formation of hydrocarbons at rates slightly less than the H2 production rate. Highly diffusive H2 is essential for life in deep subsurface environments where only trace amounts of organic carbon exist. Lithoautotrophic microbes can acquire energy from the redox reactions involving H2 with other electron acceptors (Fe3 +, SO4 2 - or CO2 ), to synthesis organic carbon and can be fully independent of solar-driven photosynthesis. The microbial abundance in many of these ground water samples, however, is below our detection limit (<5000 cells/ml). This contrasts with shallow sedimentary aquifers where H2 levels of tens of nM are regulated by the coexistence of autotrophs/lithotrophs and heterotrophs for maximum efficiency of H2 utilization. The excessive H2 found in deep crustal environments implies that these microbial ecosystems are electron-acceptor and or substrate limited. The oxidants generated by water radiolysis interact with the reduced solid phases in the rock matrix, e.g. pyrite, producing potential electron acceptors, e.g. Fe3 +, that may be readily available for consumption by microbial communities than H . Nitrogen doesn't appear to be2 limited, because ammonia concentrations range upwards to tens of μM, but its origin remains a mystery. The unused H2 , CH4 and He continue to migrate upward to shallow aquifers. Microbial H2 oxidation may dominate over Fischer-Tropsch reactions in crustal environments where formation temperatures are <120o C; and vice versa for deeper crustal environments. This H2 cycle should be present on extraterrestrial bodies, producing potential chemical energy and crustal scale diffusive fluxes from the interaction subsurface ice/water and radiogenic decay.
Modeling soil temperature change in Seward Peninsula, Alaska
NASA Astrophysics Data System (ADS)
Debolskiy, M. V.; Nicolsky, D.; Romanovsky, V. E.; Muskett, R. R.; Panda, S. K.
2017-12-01
Increasing demand for assessment of climate change-induced permafrost degradation and its consequences promotes creation of high-resolution modeling products of soil temperature changes. This is especially relevant for areas with highly vulnerable warm discontinuous permafrost in the Western Alaska. In this study, we apply ecotype-based modeling approach to simulate high-resolution permafrost distribution and its temporal dynamics in Seward Peninsula, Alaska. To model soil temperature dynamics, we use a transient soil heat transfer model developed at the Geophysical Institute Permafrost Laboratory (GIPL-2). The model solves one dimensional nonlinear heat equation with phase change. The developed model is forced with combination of historical climate and different future scenarios for 1900-2100 with 2x2 km resolution prepared by Scenarios Network for Alaska and Arctic Planning (2017). Vegetation, snow and soil properties are calibrated by ecotype and up-scaled by using Alaska Existing Vegetation Type map for Western Alaska (Flemming, 2015) with 30x30 m resolution provided by Geographic Information Network of Alaska (UAF). The calibrated ecotypes cover over 75% of the study area. We calibrate the model using a data assimilation technique utilizing available observations of air, surface and sub-surface temperatures and snow cover collected by various agencies and research groups (USGS, Geophysical Institute, USDA). The calibration approach takes into account a natural variability between stations in the same ecotype and finds an optimal set of model parameters (snow and soil properties) within the study area. This approach allows reduction in microscale heterogeneity and aggregated soil temperature data from shallow boreholes which is highly dependent on local conditions. As a result of this study we present a series of preliminary high resolution maps for the Seward Peninsula showing changes in the active layer depth and ground temperatures for the current climate and future climate change scenarios.
Masbruch, Melissa D.; Gardner, Philip M.; Brooks, Lynette E.
2014-01-01
Snake Valley and surrounding areas, along the Utah-Nevada state border, are part of the Great Basin carbonate and alluvial aquifer system. The groundwater system in the study area consists of water in unconsolidated deposits in basins and water in consolidated rock underlying the basins and in the adjacent mountain blocks. Most recharge occurs from precipitation on the mountain blocks and most discharge occurs from the lower altitude basin-fill deposits mainly as evapotranspiration, springflow, and well withdrawals.The Snake Valley area regional groundwater system was simulated using a three-dimensional model incorporating both groundwater flow and heat transport. The model was constructed with MODFLOW-2000, a version of the U.S. Geological Survey’s groundwater flow model, and MT3DMS, a transport model that simulates advection, dispersion, and chemical reactions of solutes or heat in groundwater systems. Observations of groundwater discharge by evapotranspiration, springflow, mountain stream base flow, and well withdrawals; groundwater-level altitudes; and groundwater temperatures were used to calibrate the model. Parameter values estimated by regression analyses were reasonable and within the range of expected values.This study represents one of the first regional modeling efforts to include calibration to groundwater temperature data. The inclusion of temperature observations reduced parameter uncertainty, in some cases quite significantly, over using just water-level altitude and discharge observations. Of the 39 parameters used to simulate horizontal hydraulic conductivity, uncertainty on 11 of these parameters was reduced to one order of magnitude or less. Other significant reductions in parameter uncertainty occurred in parameters representing the vertical anisotropy ratio, drain and river conductance, recharge rates, and well withdrawal rates.The model provides a good representation of the groundwater system. Simulated water-level altitudes range over almost 2,000 meters (m); 98 percent of the simulated values of water-level altitudes in wells are within 30 m of observed water-level altitudes, and 58 percent of them are within 12 m. Nineteen of 20 simulated discharges are within 30 percent of observed discharge. Eighty-one percent of the simulated values of groundwater temperatures in wells are within 2 degrees Celsius (°C) of the observed values, and 55 percent of them are within 0.75 °C. The numerical model represents a more robust quantification of groundwater budget components than previous studies because the model integrates all components of the groundwater budget. The model also incorporates new data including (1) a detailed hydrogeologic framework, and (2) more observations, including several new water-level altitudes throughout the study area, several new measurements of spring discharge within Snake Valley which had not previously been monitored, and groundwater temperature data. Uncertainty in the estimates of subsurface flow are less than those of previous studies because the model balanced recharge and discharge across the entire simulated area, not just in each hydrographic area, and because of the large dataset of observations (water-level altitudes, discharge, and temperatures) used to calibrate the model and the resulting transmissivity distribution.Groundwater recharge from precipitation and unconsumed irrigation in Snake Valley is 160,000 acre-feet per year (acre-ft/yr), which is within the range of previous estimates. Subsurface inflow from southern Spring Valley to southern Snake Valley is 13,000 acre-ft/yr and is within the range of previous estimates; subsurface inflow from Spring Valley to Snake Valley north of the Snake Range, however, is only 2,200 acre-ft/yr, which is much less than has been previously estimated. Groundwater discharge from groundwater evapotranspiration and springs is 100,000 acre-ft/yr, and discharge to mountain streams is 3,300 acre-ft/yr; these are within the range of previous estimates. Current well withdrawals are 28,000 acre-ft/yr. Subsurface outflow from Snake Valley moves into Pine Valley (2,000 acre-ft/yr), Wah Wah Valley (23 acre-ft/yr), Tule Valley (33,000 acre-ft/yr), Fish Springs Flat (790 acre-ft/yr), and outside of the study area towards Great Salt Lake Desert (8,400 acre-ft/yr); these outflows, totaling about 44,000 acre-ft/yr, are within the range of previous estimates.The subsurface flow amounts indicate the degree of connectivity between hydrographic areas within the study area. The simulated transmissivity and locations of natural discharge, however, provide a better estimate of the effect of groundwater withdrawals on groundwater resources than does the amount and direction of subsurface flow between hydrographic areas. The distribution of simulated transmissivity throughout the study area includes many areas of high transmissivity within and between hydrographic areas. Increased well withdrawals within these high transmissivity areas will likely affect a large part of the study area, resulting in declining groundwater levels, as well as leading to a decrease in natural discharge to springs and evapotranspiration.
Colangelo-Lillis, J; Eicken, H; Carpenter, S D; Deming, J W
2016-05-01
Cryopegs are sub-surface hypersaline brines at sub-zero temperatures within permafrost; their global extent and distribution are unknown. The permafrost barrier to surface and groundwater advection maintains these brines as semi-isolated systems over geological time. A cryopeg 7 m below ground near Barrow, Alaska, was sampled for geochemical and microbiological analysis. Sub-surface brines (in situtemperature of -6 °C, salinity of 115 ppt), and an associated sediment-infused ice wedge (melt salinity of 0.04 ppt) were sampled using sterile technique. Major ionic concentrations in the brine corresponded more closely to other (Siberian) cryopegs than to Standard seawater or the ice wedge. Ionic ratios and stable isotope analysis of water conformed to a marine or brackish origin with subsequent Rayleigh fractionation. The brine contained ∼1000× more bacteria than surrounding ice, relatively high viral numbers suggestive of infection and reproduction, and an unusually high ratio of particulate to dissolved extracellular polysaccharide substances. A viral metagenome indicated a high frequency of temperate viruses and limited viral diversity compared to surface environments, with closest similarity to low water activity environments. Interpretations of the results underscore the isolation of these underexplored microbial ecosystems from past and present oceans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tromp-van, Meerveld; James, A.L.; McDonnell, Jeffery J.; Peters, N.E.
2008-01-01
Although many hillslope hydrologic investigations have been conducted in different climate, topographic, and geologic settings, subsurface stormflow remains a poorly characterized runoff process. Few, if any, of the existing data sets from these hillslope investigations are available for use by the scientific community for model development and validation or conceptualization of subsurface stormflow. We present a high-resolution spatial and temporal rainfall-runoff data set generated from the Panola Mountain Research Watershed trenched experimental hillslope. The data set includes surface and subsurface (bedrock surface) topographic information and time series of lateral subsurface flow at the trench, rainfall, and subsurface moisture content (distributed soil moisture content and groundwater levels) from January to June 2002. Copyright 2008 by the American Geophysical Union.
Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide
NASA Astrophysics Data System (ADS)
Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan
2006-01-01
Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.
Thermal conductivity of lunar regolith simulant JSC-1A under vacuum
NASA Astrophysics Data System (ADS)
Sakatani, Naoya; Ogawa, Kazunori; Arakawa, Masahiko; Tanaka, Satoshi
2018-07-01
Many air-less planetary bodies, including the Moon, asteroids, and comets, are covered by regolith. The thermal conductivity of the regolith is an essential parameter controlling the surface temperature variation. A thermal conductivity model applicable to natural soils as well as planetary surface regolith is required to analyze infrared remote sensing data. In this study, we investigated the temperature and compressional stress dependence of the thermal conductivity of the lunar regolith simulant JSC-1A, and the temperature dependence of sieved JSC-1A samples under vacuum conditions. We confirmed that a series of the experimental data for JSC-1A are fitted well by our analytical model of the thermal conductivity (Sakatani et al., 2017). Comparison with the calibration data of the sieved samples with those for original JSC-1A indicates that the thermal conductivity of natural samples with a wide grain size distribution can be modeled as mono-sized grains with a volumetric median size. The calibrated model can be used to estimate the volumetric median grain size from infrared remote sensing data. Our experiments and the calibrated model indicates that uncompressed JSC-1A has similar thermal conductivity to lunar top-surface materials, but the lunar subsurface thermal conductivity cannot be explained only by the effects of the density and self-weighted compressional stress. We infer that the nature of the lunar subsurface regolith grains is much different from JSC-1A and lunar top-surface regolith, and/or the lunar subsurface regolith is over-consolidated and the compressional stress higher than the hydrostatic pressure is stored in the lunar regolith layer.
NASA Astrophysics Data System (ADS)
Nelson, M.; Alling, A.; Dempster, W. F.; van Thillo, M.; Allen, John
Research and design of subsurface flow wetland wastewater treatment systems for a ground-based experimental prototype Mars Base facility has been carried out, using a subsurface flow approach. These systems have distinct advantages in planetary exploration scenarios: they are odorless, relatively low-labor and low-energy, assist in purification of water and recycling of atmospheric CO2, and will support some food crops. An area of 6-8 m2 may be sufficient for integration of wetland wastewater treatment with a prototype Mars Base supporting 4-5 people. Discharge water from the wetland system will be used as irrigation water for the agricultural crop area, thus ensuring complete recycling and utilization of nutrients. Since the primary requirements for wetland treatment systems are warm temperatures and lighting, such bioregenerative systems may be integrated into early Mars base habitats, since waste heat from the lights may be used for temperature maintenance in the human living environment. "Wastewater gardens ™" can be modified for space habitats to lower space and mass requirements. Many of its construction requirements can eventually be met with use of in-situ materials, such as gravel from the Mars surface. Because the technology requires little machinery and no chemicals, and relies more on natural ecological mechanisms (microbial and plant metabolism), maintenance requirements are minimized, and systems can be expected to have long operating lifetimes. Research needs include suitability of Martian soil and gravel for wetland systems, system sealing and liner options in a Mars Base, and wetland water quality efficiency under varying temperature and light regimes.
NASA Astrophysics Data System (ADS)
Ling, Zhen; Li, Jie
2018-03-01
Subsurface Flow Constructed Wetland Plant 5 kinds of perennial herbs, there are Canna, Water onion, Iris, Calamus, Reed. Foucs on Subsurface Flow Constructed Wetlands on agricultural wastewater nitrogen and phosphorus removal effect. Research results: Different plants TP removal efficiency from high to low is Iris> reed> calamus> water onion> canna.And TN removal efficiency from high to low is reed> water onion> iris> calamus> canna. Compared with the blank test land, Wetland plants improves TN removal and TP removal is higher than TN. Wetland plants can reduce the PH of experimental water.
Observation to Theory in Deep Subsurface Microbiology Research: Can We Piece It Together?
NASA Astrophysics Data System (ADS)
Colwell, F. S.; Thurber, A. R.
2016-12-01
Three decades of observations of microbes in deep environments have led to startling discoveries of life in the subsurface. Now, a few theoretical frameworks exist that help to define Stygian life. Temperature, redox gradients, productivity (e.g., in the overlying ocean), and microbial power requirements are thought to determine the distribution of microbes in the subsurface. Still, we struggle to comprehend the spatial and temporal spectra of Earth processes that define how deep microbe communities survive. Stommel diagrams, originally used to guide oceanographic sampling, may be useful in depicting the subsurface where microbial communities are impacted by co-occurring spatial and temporal phenomena that range across exponential scales. Spatially, the geological settings that influence the activity and distribution of microbes range from individual molecules or minerals all the way up to the planetary-scale where geological formations, occupying up to 105 km3, dictate the bio- and functional geography of microbial communities. Temporally, life in the subsurface may respond in time units familiar to humans (e.g., seconds to days) or to events that unfold over hundred millennial time periods. While surface community dynamics are underpinned by solar and lunar cycles, these cycles only fractionally dictate survival underground where phenomena like tectonic activity, isostatic rebound, and radioactive decay are plausible drivers of microbial life. Geological or planetary processes that occur on thousand or million year cycles could be uniquely important to microbial viability in the subsurface. Such an approach aims at a holistic comprehension of the interaction of Earth system dynamics with microbial ecology.
Who’s on top? SST proxy comparison from the Peru Margin Upwelling System
NASA Astrophysics Data System (ADS)
Chazen, C.; Herbert, T.; Altabet, M. A.
2009-12-01
The Peru Margin upwelling region is situated at the interface between the poleward Peru Undercurrent and the equatorward Peru Coastal current. Strong coastal winds force cold, nutrient-rich thermocline waters to the surface. Sea surface temperatures in this region fluctuate sub-annually with changes in the position of the Intertropical convergence zone (ITCZ) and sub-decadally with modifications in the strength of Walker Circulation. In contrast, the temperature of the Peru Margin thermocline is stable, isolated from surface winds and slow to respond to major perturbations in surface temperature. Using high resolution sampling (6-7 year) across an annually laminated sediment core from the heart of the Peru Margin upwelling system (15°S) we explore how Uk’37 temperatures compare with TEX86 temperatures across a 200-year interval in the Mid-late Holocene. Mean late Holocene Uk’37 temperatures, extracted from a high sedimentation rate core from the Peru Margin are similar to modern mean annual sea surface temperatures at 15°S. Multi-decadal-scale (50-100 year) Uk’37 temperature fluctuations oscillate about the mean by 1.5°C. These rapid temperature changes are coherent with fluctuations in surface productivity (C37total and Biogenic Silica) in addition to sub-surface denitrification (δ15N). In contrast, TEX86 temperatures derived from identical samples exhibit colder temperatures than modern mean annual conditions and virtually no temperature fluctuation. We posit that TEX86 values are recording temperatures below the photic zone near the mix-layer-thermocline boundary and may, on longer timescales provide invaluable information about thermocline temperature. With this interpretation in mind, we present a TEX86-based long-term thermocline reconstruction over the Holocene.
PUBLICATIONS (SUBSURFACE PROTECTION AND REMEDIATION DIVISION
SPRD's Subsurface Remediation Information Center (SRIC) provides publication distribution of highly specialized scientific and technical information developed by and through SPRD relating to groundwater protection and remediation and ecosystem restoration. The SRIC maintains a b...
Liu, Liangliang; Li, Chongyang; Jiang, Man; Li, Xiaodong; Huang, Xiaowei; Wang, Zhu; Jia, Yu
2018-06-05
First principles calculations were performed to cast insight into the mechanism of the improvement of O2 reduction reaction (ORR) activity by Zn and H interstitials on the anatase TiO2 (101) surface. For the Zn-modified anatase TiO2 (101) surface, both surface and subsurface Zn interstitials could contribute to O2 adsorption and dissociation, but the dissociation barriers of O2 molecules are still too high, which limits the ORR activity. After a H adatom is introduced onto the Zn-modified anatase TiO2 (101) surface, the highest energy barriers are greatly reduced compared with those of the Zn-modified surface. Meanwhile, it is observed that the dissociation barriers decrease almost linearly with the increase of the charge difference of adsorption O2 between initial and transition state configurations. Specifically, subsurface Zn and surface H interstitials facilitate O2 dissociation and subsequent oxidation reactions, and further frequency analysis shows that these dissociation processes are frequent even at the room temperature of 300 K. In a word, this work provides a theoretical support to design a high ORR activity catalyst of the TiO2 nanocrystal comparable to precious Pt catalysts.
Ground-atmosphere interactions at Gale
NASA Astrophysics Data System (ADS)
Renno, N. O.; Martinez, G.; Ramos, M.; Hallet, B.; Gómez, F. G.; Jun, I.; Fisk, M. R.; Gomez-Elvira, J.; Hamilton, V. E.; Mischna, M. A.; Sletten, R. S.; Martin-Torres, J.; De La Torre Juarez, M.; Vasavada, A. R.; Zorzano, M.
2013-12-01
We analyze variations in environmental parameters and regolith properties along Curiosity's track to determine the possible causes of an abrupt change in the thermal properties of the ground and the atmosphere observed around Sol 120, as the rover transitioned from an area of sandy soil (Rocknest) to an area of fractured bedrock terrain (Yellowknife). Curiosity is instrumented with the Rover Environmental Monitoring Station (REMS) and the Dynamic Albedo of Neutrons (DAN) sensors to measure the air temperature, the ground temperature, and the hydrogen content of the shallow subsurface along Curiosity's track. Analysis of the REMS data is used to estimate the regolith's heat budget. This analysis suggests that the abrupt decrease in the ground and atmosphere temperature and the difference between ground and air temperatures observed around Sol 120 is likely caused by an increase in the soil thermal inertia. The changes in thermal inertia have been known for some time so confirming this by the REMS package provides ground truthing. A new unexpected finding is that the regolith water content, as indicated by DAN's detection of hydrogen content, is higher in the Yellowknife soil. Another interesting finding at this site are the holes and other signs of recent geological activity in the area of fractured terrain that may reflect large volumetric variations and facilitate gas exchange between the ground and atmosphere. Near-surface volumetric changes in soil and bedrock could reflect changes in the volume of subsurface H2O, or in the partitioning of H2O among its three phases. Volume increases could also result from salt crystal growth in rock pores and soil pores associated with the adsorption of water vapor. Crystallization in pores is a significant weathering process on Earth; it could well be active on Mars. Salts also inhibits the exchange of moisture between the ground and the atmosphere, and cements the soils of arid places such as in the McMurdo Dry Valleys in Antarctica. Indeed, salts might be responsible for the ubiquitous martian duricrust. More importantly, salt crusts have the potential to create pockets of wet regolith in the shallow martian subsurface that could be habitable. A better understanding of ground-atmosphere interactions has the potential to shed new light into aqueous processes in the shallow martian subsurface.
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Levchenko, A. O.; Nguyen, L. V.; Saraeva, I. N.; Rudenko, A. A.; Ageev, E. I.; Potorochin, D. V.; Veiko, V. P.; Borisov, E. V.; Pankin, D. V.; Kirilenko, D. A.; Brunkov, P. N.
2017-09-01
High-pressure Si-XII and Si-III nanocrystalline polymorphs, as well as amorphous Si phase, appear consequently during multi-shot femtosecond-laser exposure of crystalline Si wafer surface above its spallation threshold along with permanently developing quasi-regular surface texture (ripples, microcones), residual hydrostatic stresses and subsurface damage, which are characterized by scanning and transmission electron microscopy, as well as by Raman micro-spectroscopy. The consequent yields of these structural Si phases indicate not only their spatially different appearance, but also potentially enable to track nanoscale, transient laser-induced high-pressure, high-temperature physical processes - local variation of ablation mechanism and rate, pressurization/pressure release, melting/resolidification, amorphization, annealing - versus cumulative laser exposure and the related development of the surface topography.
Targeted Control of Permeability Using Carbonate Dissolution/Precipitation Reactions
NASA Astrophysics Data System (ADS)
Clarens, A. F.; Tao, Z.; Plattenberger, D.
2016-12-01
Targeted mineral precipitation reactions are a promising approach for controlling fluid flow in the deep subsurface. Here we studied the potential to use calcium and magnesium bearing silicates as cation donors that would react with aqueous phase CO2 under reservoir conditions to form solid carbonate precipitates. Preliminary experiments in high pressure and temperature columns suggest that these reactions can effectively lower the permeability of a porous media. Wollastonite (CaSiO3) was used as the model silicate, injected as solid particles into the pore space of a packed column, which was then subsequently flooded with CO2(aq). The reactions occur spontaneously, leveraging the favorable kinetics that occur at the high temperature and pressure conditions characteristic of the deep subsurface, to form solid phase calcium carbonate (CaCO3) and amorphous silica (SiO2) within the pore space. Both x-ray tomography imaging of reacted columns and electron microscopy imaging of thin sections were used to characterize where dissolution/precipitation occurred within the porous media. The spatial distribution of the products was closely tied to the flow rate and the duration of the experiment. The SiO2 product precipitated in close spatial proximity to the CaSiO3 reactant. The CaCO3 product, which is sensitive to the low pH and high pCO2 brine, precipitated out of solution further down the column as Ca2+ ions moved with the brine. The permeability of the columns decreased by several orders of magnitude after injecting the CaSiO3 particles. Following carbonation, the permeability decreased even further as precipitates filled flow paths within the pore network. A pore network model was developed to help understand the interplay between precipitation kinetics and flow in altering the permeability of the porous media. The effect of particle concentration and size, pore size, reaction time, and pCO2, are explored on pore/fracture aperture and reaction extent. To provide better control of these dynamics and ultimately devise a mechanism to deliver carbonation seed particles into leakage pathways, we are exploring the potential to functionalize the silicate particles using temperature sensitive polymer coatings.
Hydrological and Climate Controls on Hyporheic Contributions to River Net Ecosystem Productivity
NASA Astrophysics Data System (ADS)
Newcomer, M. E.; Hubbard, S. S.; Fleckenstein, J. H.; Maier, U.; Schmidt, C.; Laube, G.; Chen, N.; Ulrich, C.; Dwivedi, D.; Steefel, C. I.; Rubin, Y.
2016-12-01
Hyporheic zone contributions to river net ecosystem productivity (NEP) can represent a substantial source or sink for organic and inorganic carbon (C). Hyporheic zone processes are estimated to vary with network location as a function of river-aquifer interactions as well as with climatic factors supporting riverbed gross primary productivity (GPP) and ecosystem respiration. Even though hyporheic zone NEP is hypothesized to be a significant budgetary component to river-aquifer biogeochemical cycling, models of river NEP often parameterize hyporheic zone contributions as a space-time constant input of CO2 to rivers, leading to overestimation of hyporheic zone NEP and underestimation of C storage. This assumption is problematic during the summer growing season, when GPP is largest and C is stored in surface and subsurface biomass. We investigated the dynamic role of hyporheic zone NEP using the MIN3P flow and reactive transport model with surface water GPP and ecosystem respiration simulated as a function of light, depth, temperature, pH, and atmospheric CO2. We simulated hyporheic zone NEP for low-order and high-order streams, which collectively represent a range of characteristic flow paths and subsurface residence times. Downscaled climate predictions of temperature and atmospheric CO2 representing carbon emission futures were used to force the models and to compare future and current hyporheic zone NEP. Our results show that river-aquifer flow conditions determine the relative role of the river as either a store or sink of C through direct contributions of O2 and dissolved organic content from river GPP. Modeled results show that high discharge, high order rivers are net stores of CO2 from the atmosphere; however this is dependent on perturbation events that allow stored C from summer GPP to be released (i.e. rising water tables during winter storms). Lacking a perturbation event, C remains in pore-water storage as dissolved CO2 and biomass. Conversely, low-discharge mountainous streams with continuous hyporheic zone flow represent a net source of CO2, with future temperature rises stimulating additional heterotrophic activity. Our work contributes to a better understanding of how river and hyporheic zone processes significantly influence biogeochemical cycling under changing climate conditions.
1983-06-01
DE ERMIuIATIC1N OF SUBSUEFACZE THERMAL STRUCTURE * The study of the oceans by satellites has become a sajc: *arena for sc-intific scrutiny and...between *satellite- de ~ived sea surface temperatu-res and vsrt.-cal *temperature profiles, then the areas of acoust-ical oceanicg- raphy and naval...based on dynamical principles and will ulti-mately provide the basis for pred-icting ocear,-c processes. Emp rical mq4thods have been de -termined i n the
2015-10-01
Subsurface temperature maps of 67P/Churyumov-Gerasimenko, showing the southern hemisphere of the comet. The maps are based on observations obtained with ESA MIRO instrument. The maps are based on observations obtained with the Microwave Instrument for the Rosetta Obiter (MIRO) at millimeter (left) and sub-millimeter (right) wavelengths between September and October 2014. The MIRO data are projected on a digital shape model of the comet. A temperature bar (in degrees Kelvin), is to the right. http://photojournal.jpl.nasa.gov/catalog/PIA19970
Asymmetric Signature of Glacial Antarctic Intermediate Water in the Central South Pacific
NASA Astrophysics Data System (ADS)
Tapia, R.; Nuernberg, D.; Ho, S. L.; Lamy, F.; Ullermann, J.; Gersonde, R.; Tiedemann, R.
2017-12-01
Southern Ocean Intermediate Waters (SOIWs) play a key role in modulating the global climate on glacial-interglacial time scales as they connect the Southern Ocean and the tropics. Despite their importance, the past evolution of the SOIWs in the central South Pacific is largely unknown due to a dearth of sedimentary archives. Here we compare Mg/Ca-temperature, stable carbon and oxygen isotope records from surface-dwelling (G. bulloides) and deep-dwelling (G. inflata) planktic foraminifera at site PS75/059-2 (54°12.9' S, 125°25.53' W; recovery 13.98 m; 3.613 m water depth), located north of the modern Subantarctic Front. Our study focuses on the temperature and salinity variability controlled by SOIWs, which were subducted at the Subantarctic Front during the Last Glacial Maximum (LGM; 29-17ka BP) and the Penultimate Glacial Maximum (PGM; 180-150ka BP). During both glacial periods conditions at the subsurface ocean were colder and fresher relative to the Holocene (<10ka) suggesting an enhanced presence of SOIWs. In spite of the comparable subsurface cooling during both glacial, the subsurface ocean during the PGM was saltier and 0.35‰ more depleted in δ13C in comparison to the LGM. Interestingly, the mean δ13C value of the PGM is comparable to the Carbon Isotope Minimum Events, which might suggests a larger contribution of "old" low δ13C deep waters to the study site during the PGM. A Latitudinal comparison of subsurface proxies suggests glacial asymmetries in the advection of SOIWs into the central Pacific, plausibly related to glacial changes in the convection depth of SOIWs at the South Antarctic Front area rather than changes in production of the SOIWs.
Increasing the production efficiency and reducing the environmental impacts of hydraulic fracturing
NASA Astrophysics Data System (ADS)
Viswanathan, H. S.
2016-12-01
Shale gas is an unconventional fossil energy resource profoundly impacting US energy independence and is projected to last for at least 100 years. Production of methane and other hydrocarbons from low permeability shale involves hydraulic fracturing of rock, establishing fracture connectivity, and multiphase fluid-flow and reaction processes all of which are poorly understood. The result is inefficient extraction with many environmental concerns. A science-based capability is required to quantify the governing mesoscale fluid-solid interactions, including microstructural control of fracture patterns and the interaction of engineered fluids with hydrocarbon flow. These interactions depend on coupled thermo-hydro-mechanical-chemical (THMC) processes over scales from microns to tens of meters. Determining the key mechanisms in subsurface THMC systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and prototyped the microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. The goal is transformation of hydraulic fracturing from present ad hoc approaches to science-based strategies while safely enhancing production. Specifically, we have demonstrated an integrated experimental/modeling approach that allows for a comprehensive characterization of fluid-solid interactions and develop models that can be used to determine the reservoir operating conditions necessary to gain a degree of control over fracture generation, fluid flow, and interfacial processes over a range of subsurface conditions.
NASA Astrophysics Data System (ADS)
Lei, Hongwu; Xu, Tianfu; Jin, Guangrong
2015-04-01
Coupled thermal-hydrodynamic-mechanical processes have become increasingly important in studying the issues affecting subsurface flow systems, such as CO2 sequestration in deep saline aquifers and geothermal development. In this study, a mechanical module based on the extended Biot consolidation model was developed and incorporated into the well-established thermal-hydrodynamic simulator TOUGH2, resulting in an integrated numerical THM simulation program TOUGH2Biot. A finite element method was employed to discretize space for rock mechanical calculation and the Mohr-Coulomb failure criterion was used to determine if the rock undergoes shear-slip failure. Mechanics is partly coupled with the thermal-hydrodynamic processes and gives feedback to flow through stress-dependent porosity and permeability. TOUGH2Biot was verified against analytical solutions for the 1D Terzaghi consolidation and cooling-induced subsidence. TOUGH2Biot was applied to evaluate the thermal, hydrodynamic, and mechanical responses of CO2 geological sequestration at the Ordos CCS Demonstration Project, China and geothermal exploitation at the Geysers geothermal field, California. The results demonstrate that TOUGH2Biot is capable of analyzing change in pressure and temperature, displacement, stress, and potential shear-slip failure caused by large scale underground man-made activity in subsurface flow systems. TOUGH2Biot can also be easily extended for complex coupled process problems in fractured media and be conveniently updated to parallel versions on different platforms to take advantage of high-performance computing.
Schmittner, A.; Galbraith, E.D.; Hostetler, S.W.; Pedersen, Thomas F.; Zhang, R.
2007-01-01
Paleoclimate records from glacial Indian and Pacific oceans sediments document millennial-scale fluctuations of subsurface dissolved oxygen levels and denitrification coherent with North Atlantic temperature oscillations. Yet the mechanism of this teleconnection between the remote ocean basins remains elusive. Here we present model simulations of the oxygen and nitrogen cycles that explain how changes in deepwater subduction in the North Atlantic can cause large and synchronous variations of oxygen minimum zones, throughout the Northern Hemisphere of the Indian and Pacific oceans, consistent with the paleoclimate records. Cold periods in the North Atlantic are associated with reduced nutrient delivery to the upper Indo-Pacific oceans, thereby decreasing productivity. Reduced export production diminishes subsurface respiration of organic matter leading to higher oxygen concentrations and less denitrification. This effect of reduced oxygen consumption dominates at low latitudes. At high latitudes in the Southern Ocean and North Pacific, increased mixed layer depths and steepening of isopycnals improve ocean ventilation and oxygen supply to the subsurface. Atmospheric teleconnections through changes in wind-driven ocean circulation modify this basin-scale pattern regionally. These results suggest that changes in the Atlantic Ocean circulation, similar to those projected by climate models to possibly occur in the centuries to come because of anthropogenic climate warming, can have large effects on marine ecosystems and biogeochemical cycles even in remote areas. Copyright 2007 by the American Geophysical Union.
Zheng, Yucong; Wang, Xiaochang; Xiong, Jiaqing; Liu, Yongjun; Zhao, Yaqian
2014-04-01
A series of large pilot constructed wetland (CW) systems were constructed near the confluence of an urban stream to a larger river in Xi'an, a northwestern megacity in China, for treating polluted stream water before it entered the receiving water body. Each CW system is a combination of surface-and subsurface-flow cells with local gravel, sand or slag as substrates and Phragmites australis and Typha orientalis as plants. During a one-year operation with an average surface loading of 0.053 m(3)/(m(2)·day), the overall COD, BOD, NH3-N, total nitrogen (TN) and total phosphorus (TP) removals were 72.7% ± 4.5%, 93.4% ± 2.1%, 54.0% ± 6.3%, 53.9% ± 6.0% and 69.4% ± 4.6%, respectively, which brought about an effective improvement of the river water quality. Surface-flow cells showed better NH3-N removal than their TN removal while subsurface-flow cells showed better TN removal than their NH3-N removal. Using local slag as the substrate, the organic and phosphorus removal could be much improved. Seasonal variation was also found in the removal of all the pollutants and autumn seemed to be the best season for pollutant removal due to the moderate water temperature and well grown plants in the CWs. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Song, H. S.; Stegen, J.; Graham, E.; Bao, J.; Goldman, A.; Zhou, T.; Crump, A.; Hou, Z.; Hammond, G. E.; Chen, X.; Huang, M.; Zhang, X.; Nelson, W. C.; Garayburu-Caruso, V. A.
2017-12-01
The exchange of water between rivers and surrounding subsurface environments (hydrologic exchange flows or HEFs) is a vital aspect of river ecology and watershed function. HEFs play a key role in water quality, nutrient cycling, and ecosystem health, and they modulate water temperatures and enhance exchange of terrestrial and aquatic nutrients, which lead to elevated biogeochemical activity. However, these coupled hydrologic and microbiological processes are not well understood, particularly in the context of large managed river systems with highly variable discharge, and are poorly represented in system-scale quantitative models. Using the 75 km Hanford Reach of the Columbia River as the research domain, we apply high-resolution flow simulations supported by field observations to understand how variable river discharge interacts with hydromorphic and hydrogeologic structures to generate HEFs and distributions of subsurface residence times. We combine this understanding of hydrologic processes with microbiological activity measurements and reactive transport models to elucidate the holistic impacts of variable discharge on river corridor (surface and subsurface) ecosystems. In particular, our project seeks to develop and test new conceptual and numerical models that explicitly incorporate i) the character (chemical speciation and thermodynamics) of natural organic matter as it varies along flow paths and through mixing of groundwater and surface water, and ii) the history-dependent response of microbial communities to varying time scales of inundation associated with fluctuations in river discharge. The results of these high-resolution mechanistic models are guiding formulation and parameterization of reduced-order models applicable at reach to watershed scales. New understanding of coupled hydrology and microbiology in the river corridor will play a key role in reduction of uncertainties associated with major Earth system biogeochemical fluxes, improving predictions of environmental and human impacts on water quality and riverine ecosystems, and supporting environmentally responsible management of linked energy-water systems.
NASA Astrophysics Data System (ADS)
Cheptsov, V. S.; Vorobyova, E. A.
2017-05-01
Currently, astrobiology is focused on Mars as one of the most perspective objects in the Solar System to search for microbial life. It was assumed that the putative biosphere of Mars could be cryopreserved and had been stored for billions of years in anabiotic state like microbial communities of Arctic and Antarctic permafrost deposits have been preserved till now for millions of years. In this case microbial cells should be not able to repair the damages or these processes have to be significantly depressed, and the main factor causing cell's death should be ionizing radiation. In a series of experiments we simulated the effects of combination of physical factors known as characteristics of the Martian regolith (and close to the space environment) on the natural microbial communities inhabiting xerophytic harsh habitats with extreme temperature conditions: polar permafrost and desert soils. The aim of the study was to examine the cumulative effect of factors (gamma radiation, low temperature, low pressure) to assess the possibility of metabolic reactions, and to find limits of the viability of natural microbial communities after exposure to the given conditions. It was found that microbial biomarkers could be reliably detected in soil samples after radiation dose accumulation up to 1 MGy (not further investigated) in combination with exposure to low temperature and low pressure. Resistance to extremely high doses of radiation in simulated conditions proves that if there was an Earth-like biosphere on the early Mars microorganisms could survive in the surface or subsurface layers of the Martian regolith for more than tens of millions of years after climate change. The study gives also some new grounds for the approval of transfer of viable microorganisms in space.
NASA Technical Reports Server (NTRS)
Kuo, Kenneth K.; Lu, Y. C.; Chiaverini, Martin J.; Harting, George C.
1994-01-01
An experimental study on the fundamental processes involved in fuel decomposition and boundary layer combustion in hybrid rocket motors is being conducted at the High Pressure Combustion Laboratory of the Pennsylvania State University. This research should provide an engineering technology base for development of large scale hybrid rocket motors as well as a fundamental understanding of the complex processes involved in hybrid propulsion. A high pressure slab motor has been designed for conducting experimental investigations. Oxidizer (LOX or GOX) is injected through the head-end over a solid fuel (HTPB) surface. Experiments using fuels supplied by NASA designated industrial companies will also be conducted. The study focuses on the following areas: measurement and observation of solid fuel burning with LOX or GOX, correlation of solid fuel regression rate with operating conditions, measurement of flame temperature and radical species concentrations, determination of the solid fuel subsurface temperature profile, and utilization of experimental data for validation of a companion theoretical study also being conducted at PSU.
Ghislain, Thierry; Faure, Pierre; Biache, Coralie; Michels, Raymond
2010-11-15
Reactivity of polycyclic aromatic hydrocarbons (PAHs) in the subsurface is of importance to environmental assessment, as they constitute a highly toxic hazard. Understanding their reactivity in the long term in natural recovering systems is thus a key issue. This article describes an experimental investigation on the air oxidation of fluoranthene (a PAH abundant in natural systems polluted by industrial coal use) at 100°C on different mineral substrates commonly found in soils and sediments (quartz sand, limestone, and clay). Results demonstrate that fluoranthene is readily oxidized in the presence of limestone and clay, leading to the formation of high molecular weight compounds and a carbonaceous residue as end product especially for clay experiments. As demonstrated elsewhere, the experimental conditions used permitted the reproduction of the geochemical pathway of organic matter observed under natural conditions. It is therefore suggested that low-temperature, mineral-catalyzed air oxidation is a mechanism relevant to the stabilization of PAHs in sediments and soils.
Relative Impacts of Low Permeability Subsurface Deposits on Recharge Basin Infiltration Rates
NASA Astrophysics Data System (ADS)
Oconnell, P.; Becker, M.; Pham, C.; Rodriguez, G.; Hutchinson, A.; Plumlee, M.
2017-12-01
Artificial recharge of aquifers through spreading basins has become an important component of water management in semi-arid climates. The rate at which water can be recharged in these basins is limited by the natural vertical permeability of the underlying deposits which may be highly variable both laterally and vertically. To help understand hydrostratigraphic controls on recharge, a newly constructed basin was surveyed and instrumented. Prior to flooding the basin, lithology was characterized by shallow hand coring, direct push coring, ground penetrating radar, and electrical resistivity. After flooding, recharge was monitored through piezometers, electrical resistivity, and a network of fiber optic distributed temperature sensing (DTS). The DTS network used temperature as a tracer to measure infiltration rate on 25 cm intervals both laterally and vertically. Several hundred paired DTS time series datasets (from fiber optic cables located at 0 and 0.5 meters below ground surface) were processed with the cross-wavelet transform (XWT) to calculate spatially and temporally continuous infiltration rates, which can be interpolated and animated to visualize heterogeneity. Time series data from 8-meter deep, vertically oriented DTS cables reveal depth intervals where infiltration rates vary. Inverted resistivity sections from repeated dipole-dipole surveys along the sidewall of a spreading basin exhibit a positive correlation with the distribution of relatively high and low infiltration rates, indicating zones of preferential downward (efficient) and lateral (inefficient) flow, respectively. In contrast to other monitored basins, no perching was observed in the vertically oriented DTS cables. The variation in recharge across the basin and the appearance of subsurface lateral flow can be explained in context of the alluvial depositional environment.
Limitations of microbial hydrocarbon degradation at the Amon Mud Volcano (Nile Deep Sea Fan)
NASA Astrophysics Data System (ADS)
Felden, J.; Lichtschlag, A.; Wenzhöfer, F.; de Beer, D.; Feseker, T.; Pop Ristova, P.; de Lange, G.; Boetius, A.
2013-01-01
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Ki Ha; Becker, Alex; Tseng, Hung-Wen
2004-06-16
Non-invasive, high-resolution imaging of the shallow subsurface is needed for delineation of buried waste, detection of unexploded ordinance, verification and monitoring of containment structures, and other environmental applications. Electromagnetic (EM) measurements at frequencies between 0.1 and 100 MHz are important for such applications, because the induction number of many targets is small and the ability to determine the dielectric permittivity in addition to electrical conductivity of the subsurface is possible. Earlier workers were successful in developing systems for detecting anomalous areas, but no quantifiable information was accurately determined. For high-resolution imaging, accurate measurements are necessary so the field data canmore » be mapped into the space of the subsurface parameters. We are developing a non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using the EM impedance approach (Frangos, 2001; Lee and Becker, 2001; Song et al., 2002, Tseng et al., 2003). Electric and magnetic sensors are being tested and calibrated on sea water and in a known area against theoretical predictions, thereby insuring that the data collected with the high-frequency impedance (HFI) system will support high-resolution, multi-dimensional imaging techniques.« less
NASA Astrophysics Data System (ADS)
Yin, Jianjun; Overpeck, Jonathan; Peyser, Cheryl; Stouffer, Ronald
2018-01-01
A 0.24°C jump of record warm global mean surface temperature (GMST) over the past three consecutive record-breaking years (2014-2016) was highly unusual and largely a consequence of an El Niño that released unusually large amounts of ocean heat from the subsurface layer of the northwestern tropical Pacific. This heat had built up since the 1990s mainly due to greenhouse-gas (GHG) forcing and possible remote oceanic effects. Model simulations and projections suggest that the fundamental cause, and robust predictor of large record-breaking events of GMST in the 21st century, is GHG forcing rather than internal climate variability alone. Such events will increase in frequency, magnitude, and duration, as well as impact, in the future unless GHG forcing is reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
Pd surface and Pt subsurface segregation in Pt1-c Pd c nanoalloys
NASA Astrophysics Data System (ADS)
De Clercq, A.; Giorgio, S.; Mottet, C.
2016-02-01
The structure and chemical arrangement of Pt1-c Pd c nanoalloys with the icosahedral and face centered cubic symmetry are studied using Monte Carlo simulations with a tight binding interatomic potential fitted to density-functional theory calculations. Pd surface segregation from the lowest to the highest coordinated sites is predicted by the theory together with a Pt enrichment at the subsurface, whatever the structure and the size of the nanoparticles, and which subsists when increasing the temperature. The onion-shell chemical configuration is found for both symmetries and is initiated from the Pd surface segregation. It is amplified in the icosahedral symmetry and small sizes but when considering larger sizes, the oscillating segregation profile occurs near the surface on about three to four shells whatever the structure. Pd segregation results from the significant lower cohesive energy of Pd as compared to Pt and the weak ordering tendency leads to the Pt subsurface segregation. The very weak size mismatch does not prevent the bigger atoms (Pt) from occupying subsurface sites which are in compression whereas the smaller ones (Pd) occupy the central site of the icosahedra where the compression is an order of magnitude higher.
Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke
2017-11-16
Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.
2014-01-01
Shallow-sea (5 m depth) hydrothermal venting off Milos Island provides an ideal opportunity to target transitions between igneous abiogenic sulfide inputs and biogenic sulfide production during microbial sulfate reduction. Seafloor vent features include large (>1 m2) white patches containing hydrothermal minerals (elemental sulfur and orange/yellow patches of arsenic-sulfides) and cells of sulfur oxidizing and reducing microorganisms. Sulfide-sensitive film deployed in the vent and non-vent sediments captured strong geochemical spatial patterns that varied from advective to diffusive sulfide transport from the subsurface. Despite clear visual evidence for the close association of vent organisms and hydrothermalism, the sulfur and oxygen isotope composition of pore fluids did not permit delineation of a biotic signal separate from an abiotic signal. Hydrogen sulfide (H2S) in the free gas had uniform δ34S values (2.5 ± 0.28‰, n = 4) that were nearly identical to pore water H2S (2.7 ± 0.36‰, n = 21). In pore water sulfate, there were no paired increases in δ34SSO4 and δ18OSO4 as expected of microbial sulfate reduction. Instead, pore water δ34SSO4 values decreased (from approximately 21‰ to 17‰) as temperature increased (up to 97.4°C) across each hydrothermal feature. We interpret the inverse relationship between temperature and δ34SSO4 as a mixing process between oxic seawater and 34S-depleted hydrothermal inputs that are oxidized during seawater entrainment. An isotope mass balance model suggests secondary sulfate from sulfide oxidation provides at least 15% of the bulk sulfate pool. Coincident with this trend in δ34SSO4, the oxygen isotope composition of sulfate tended to be 18O-enriched in low pH (<5), high temperature (>75°C) pore waters. The shift toward high δ18OSO4 is consistent with equilibrium isotope exchange under acidic and high temperature conditions. The source of H2S contained in hydrothermal fluids could not be determined with the present dataset; however, the end-member δ34S value of H2S discharged to the seafloor is consistent with equilibrium isotope exchange with subsurface anhydrite veins at a temperature of ~300°C. Any biological sulfur cycling within these hydrothermal systems is masked by abiotic chemical reactions driven by mixing between low-sulfate, H2S-rich hydrothermal fluids and oxic, sulfate-rich seawater. PMID:25183951
Heterogeneity in stream water temperatures created by local influx of cooler subsurface waters into geomorphically complex stream channels was associated with increased abundance of rainbow trout (Oncorhynchus mykiss) and chinook salmon (O. tshawytscha) in northeastern Oregon. Th...
Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Maeda, Susumu; Sudo, Haruo; Okamura, Hideyuki; Nakamura, Kozo; Sueoka, Koji; Izunome, Koji
2018-04-01
A new control technique for achieving compatibility between crystal quality and gettering ability for heavy metal impurities was demonstrated for a nitrogen-doped Czochralski silicon wafer with a diameter of 300 mm via ultra-high temperature rapid thermal oxidation (UHT-RTO) processing. We have found that the DZ-IG structure with surface denuded zone and the wafer bulk with dense oxygen precipitates were formed by the control of vacancies in UHT-RTO process at temperature exceeding 1300 °C. It was also confirmed that most of the void defects were annihilated from the sub-surface of the wafer due to the interstitial Si atoms that were generated at the SiO2/Si interface. These results indicated that vacancies corresponded to dominant species, despite numerous interstitial silicon injections. We have explained these prominent features by the degree of super-saturation for the interstitial silicon due to oxidation and the precise thermal properties of the vacancy and interstitial silicon.
Impeding 99Tc(IV) mobility in novel waste forms
Lee, Mal-Soon; Um, Wooyong; Wang, Guohui; Kruger, Albert A.; Lukens, Wayne W.; Rousseau, Roger; Glezakou, Vassiliki-Alexandra
2016-01-01
Technetium (99Tc) is an abundant, long-lived radioactive fission product whose mobility in the subsurface is largely governed by its oxidation state. Tc immobilization is crucial for radioactive waste management and environmental remediation. Tc(IV) incorporation in spinels has been proposed as a novel method to increase Tc retention in glass waste forms during vitrification. However, experiments under high-temperature and oxic conditions show reoxidation of Tc(IV) to volatile pertechnetate, Tc(VII). Here we examine this problem with ab initio molecular dynamics simulations and propose that, at elevated temperatures, doping with first row transition metal can significantly enhance Tc retention in magnetite in the order Co>Zn>Ni. Experiments with doped spinels at 700 °C provide quantitative confirmation of the theoretical predictions in the same order. This work highlights the power of modern, state-of-the-art simulations to provide essential insights and generate theory-inspired design criteria of complex materials at elevated temperatures. PMID:27357121
Advanced analysis of thermal data observed in subsurface wells unmasks the ancient climate
NASA Astrophysics Data System (ADS)
Eppelbaum, Lev; Kutasov, Izzy
2014-05-01
Conventional methods of studying the ancient climate history are associated with statistical processing of accomplished meteorological data. These investigations have focused attention on meteorological records of air temperature, which can provide information on the only last 100-200 years. Number of the records is absolutely insufficient and their areal coverage is limited, some oldest meteorological stations may have been affected by local warming connected with urban and industrial growth. At the same time significant climate changes are accompanied by the corresponding variations in the Earth's surface (soil) temperature. This effect is based on the known physical law that temperature waves at the surface propagate downward into the subsurface with an amplitude attenuation and time delay increasing with depth. Earth's temperature profiles, measured by precise temperature logging T(z) in boreholes to depth of about 80-300 meters, have a 'memory' on what has happened on the surface during approximately several last centuries. Knowledge of the past climate in archaeology is necessary not only for tracing some ancient events and more deep understanding some historical facts, but also for estimation of past harvests, analysis of some physical conditions of different constructions built in the past, and in many other fields (Eppelbaum, 2010; Eppelbaum et al., 2010). The first attempts to recover the past ground surface temperature history (GSTH) from measured T(z) profiles date back to the mid-1960s, however only after Lachenbruch et al. (1988) pointed out that the magnitude and timing of the ground surface warming in Alaska is consistent with models of the recent warming, the method became popular (Cermak et al., 1996). Let us assume that tx years ago from now the ground surface temperature started to increase (warming) or reduce (cooling). Prior to this moment the subsurface temperature is: Ta(z,t = 0) = T0a + Γ z, (1) where T0a is the mean ground surface temperature at the moment of time t = 0 years; z is the vertical depth and Γ is the geothermal gradient. It is also assumed that the host medium is homogeneous with constant thermal properties. Now the current (t = tx) subsurface temperature is (in case of warming): Tc(z,t = tx) = T0c +f (z), (2) where T0c is the current (at the time (date) of temperature logging) mean ground surface temperature; and f(z) is a function of depth that could be obtained from the field data. In some cases the value of T0c can be obtained by extrapolation of the function Tc to z = 0. However, in most cases, the value T0c can be estimated by trial and error method: Assuming an interval of values for T0c, calculating for each T0c value of the temperature profiles Tcfor various models of change in the ground surface temperature (GST) with time and, finally, finding a best match between calculated and field measured Tc profiles. In our study we found that a quadratic regression can be utilized to estimate the value of T0c = a0 (Kutasov et al., 2000): Tc(z,t = tx) = a0 + a1z +a2z2, (3) where a0, a1, and a2 are the coefficients. We will consider four different models (Eppelbaum et al., 2006). Apparently each of these models is more suitable (applicable) under concrete physical-geological conditions. In the first model we assumed that txC years ago the GSTvalue suddenly changed from T0 to T0c. The current temperature anomaly (the reduced temperature) is TR (z) = T0c + f(z) - T0 - Γ z (4) and the solution is ( ) TRC = TR = ΔT0Φ *(x) -;z- ,t = txC, 2 at (5) ΔT0 = T0c - T0, (6)
O'Sullivan, Louise A; Roussel, Erwan G; Weightman, Andrew J; Webster, Gordon; Hubert, Casey RJ; Bell, Emma; Head, Ian; Sass, Henrik; Parkes, R John
2015-01-01
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs. PMID:25325382
Dune advance into a coastal forest, equatorial Brazil: A subsurface perspective
NASA Astrophysics Data System (ADS)
Buynevich, Ilya V.; Filho, Pedro Walfir M. Souza; Asp, Nils E.
2010-06-01
A large active parabolic dune along the coast of Pará State, northern Brazil, was analyzed using aerial photography and imaged with high-resolution ground-penetrating radar (GPR) to map the subsurface facies architecture and point-source anomalies. Most high-amplitude (8-10 dB) subsurface anomalies are correlated with partially buried mangrove trees along the leading edge (slipface) of the advancing dune. Profiles along a 200-m long basal stoss side of the dune reveal 66 targets, most of which lie below the water table and are thus inaccessible by other methods. Signal amplitudes of point-source anomalies are substantially higher than those associated with the reflections from continuous subsurface features (water table, sedimentary layers). When complemented with exposures and excavations, GPR provides the best means of rapid continuous imaging of the geological record of complex interactions between vegetation and aeolian deposition.
NASA Astrophysics Data System (ADS)
Strehlow, Karen; Gottsmann, Jo
2014-05-01
Aquifers respond to and modify the surface expressions of magmatic activity, and they can also become agents of unrest themselves. Therefore, monitoring the hydrology can provide a valuable window into subsurface processes in volcanic areas. Interpretations of unrest signals as groundwater responses to changes in the magmatic system can be found for many volcanoes. Changes in temperature and strain conditions, seismic excitation or the injection of magmatic fluids into hydrothermal systems are just a few of the proposed processes induced by magmatic activity that affect the local hydrology. Aquifer responses are described to include changes in water table levels, changes in temperature or composition of hydrothermal waters and pore pressure-induced ground deformation. We can observe these effects at the surface via geophysical and geochemical signals. To fully to utilise these indicators as monitoring and forecasting tools, however, it is necessary to improve our still poor understanding of the ongoing mechanisms in the interactions of hydrological and magmatic systems. An extensive literature research provided an overview on reported effects, which we investigate in detail using numerical modelling. The hydrogeophysical study uses finite element analysis to quantitatively test proposed mechanisms of aquifer excitation and the resultant geophysical signals. We present a set of generic models for two typical volcanic landforms - a stratovolcano and a caldera - that simulate the interaction between deeper magmatic systems with shallow-seated aquifers, focusing on strain and temperature effects. They predict pore pressure induced hydraulic head changes in the aquifer as well as changing groundwater temperatures and strain induced fluid migration. Volcano observatories can track these hydrological effects for example with potential field investigations or the monitoring of wells. The models allow us to explore the parameter space, contributing to a better understanding of the coupling of these two highly complex systems. Our results provide further insight into the subsurface processes at volcanic systems and will aid the evaluation of unrest signals with potential for improved eruption forecasting.
NASA Astrophysics Data System (ADS)
Li, X.; Gille, S. T.; shang-Ping, X.; Xie, S. P.; Holland, D. M.; Holland, M. M.
2016-12-01
The climate change observed around Antarctica in recent decades is characterized by distinct zonally asymmetric patterns, with the strongest changes over West Antarctica. These changes are marked by strong land ice melting and sea ice redistribution around West Antarctica. This is associated with temperature and circulation anomalies in the ocean and atmosphere around the same area. In this study, we comprehensively examine the coherency between these changes using a combination of observations and numerical simulations. Results show that the atmospheric circulation changes distinctly drive the changes in ocean circulation and sea ice distribution. In addition, the atmospheric circulation induced sea ice changes play an important role in lifting the subsurface ocean temperature and salinity around the West Antarctica. During recent decades, the Amundsen Sea Low (ASL) has deepened, especially in austral autumn and winter. This deepened ASL has intensified the offshore wind near the coastal regions of the Ross Sea. Driven by these atmospheric changes, more sea ice has formed near West Antarctica in winter. In contrast, more sea ice melts during the summer. This strengthened sea ice seasonality has been observed and successfully reproduced in the model simulation. The wind-driven sea ice changes causes a surface freshening over the Ross and Amundsen Seas, with a subsurface salinity increase over the Ross Sea. The additional fresh/salt water fluxes thus further change the vertical distribution of salinity and strengthen the stratification in the Ross and Amundsen Seas. As a result of the above ice-ocean process, the mixed-layer depth around the Ross and Amundsen Seas shallows. By weakening the vertical heat transport near the surface layer, and inducing an upward movement of the circumpolar deep water (CDW), this process freshened and cooled the surface layer, while the salinity and temperature in the sub-surface ocean are increased, extending from 150 meters to >700 meters. Around the Amundsen Sea, warm water touches the continent, which could potentially contribute to the accelerated land ice melting over this area.
NASA Astrophysics Data System (ADS)
Kuroyanagi, Azumi; Kawahata, Hodaka; Narita, Hisashi; Ohkushi, Ken'ichi; Aramaki, Takafumi
2006-08-01
Planktonic foraminifera live in the upper ocean, and their assemblages can record the surrounding environment. To reconstruct changes in water masses and the timing of flow of the Oyashio and Tsugaru currents through the Tsugaru Strait after the Last Glacial Maximum, when the Japan Sea had been almost isolated from the surrounding seas, we investigated at high resolution the planktonic foraminiferal fauna in seafloor sediments off the Shimokita (core MD01-2409: 41°33.9'N, 141°52.1'E), in the northwestern North Pacific, over the last 26,900 years. Factor analysis of the foraminiferal assemblage suggests that the water mass changed significantly as a result of the deglacial sea-level rise and opening of the straits into the Japan Sea. Mass accumulation rates of some selected foraminiferal species that inhabit characteristic environments (e.g., warm stratified water, Oyashio Current, Tsushima Current) corroborate these changes in water mass and water column structure. We also used the ratio of the dextral form to total Neogloboquadrina pachyderma as an indicator of subsurface (below the pycnocline) water temperature. We recognized five distinct periods of oceanographic change at the study site, which is just east of the Tsugaru Strait: (1) Oyashio Current affecting both surface and subsurface waters (26.9-15.7 thousand calendar years before present (cal. kyr BP)); (2) vertical mixing and subsurface warming as the Oyashio Current began to flow into the Japan Sea through the Tsugaru Strait (15.7-10.6 cal. kyr BP); (3) outflow of the Tsugaru Current from the Japan Sea into the Pacific, leading to baroclinic conditions, with the surface layer under the influence of the Tsugaru and the subsurface layers of the Oyashio Current (10.6-9.0 cal. kyr BP); (4) stratification of the water column developed as the flow of the Tsugaru Current increased (9.0-6.2 cal. kyr BP); and (5) warming of the subsurface layer, disruption of the stratification, and dominance of the Tsugaru Current in both surface and subsurface layers, similar to the present situation (6.2-1.5 cal. kyr BP). The timing of flow of the Oyashio and Tsugaru currents through the strait at the study site off Shimokita is generally compatible with the results of studies in the Japan Sea. The flow of the Tsugaru Current led to progressive warming of the waters, from the surface to the subsurface layers and from the Japan Sea side to the Pacific side of the Tsugaru Strait, beginning in 8.3-6.8 cal. kyr BP on the western side, and in 6.2 cal. kyr BP on the eastern side of the strait. By 4.8 cal. kyr BP on the western side, and by ˜ 3.4 cal. kyr BP on the eastern side of the strait, warm water prevailed in both surface and subsurface layers.
Tran, Quang Huy; Han, Dongyeob; Kang, Choonghyun; Haldar, Achintya; Huh, Jungwon
2017-07-26
Active thermal imaging is an effective nondestructive technique in the structural health monitoring field, especially for concrete structures not exposed directly to the sun. However, the impact of meteorological factors on the testing results is considerable and should be studied in detail. In this study, the impulse thermography technique with halogen lamps heat sources is used to detect defects in concrete structural components that are not exposed directly to sunlight and not significantly affected by the wind, such as interior bridge box-girders and buildings. To consider the effect of environment, ambient temperature and relative humidity, these factors are investigated in twelve cases of testing on a concrete slab in the laboratory, to minimize the influence of wind. The results showed that the absolute contrast between the defective and sound areas becomes more apparent with an increase of ambient temperature, and it increases at a faster rate with large and shallow delaminations than small and deep delaminations. In addition, the absolute contrast of delamination near the surface might be greater under a highly humid atmosphere. This study indicated that the results obtained from the active thermography technique will be more apparent if the inspection is conducted on a day with high ambient temperature and humidity.
Supercritical CO2 uptake by nonswelling phyllosilicates
Tokunaga, Tetsu K.; Ashby, Paul D.; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J.
2018-01-01
Interactions between supercritical (sc) CO2 and minerals are important when CO2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO2), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO2, can increase CO2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO2 uptake constitutes a previously unrecognized potential trapping mechanism. PMID:29339499
Supercritical CO2 uptake by nonswelling phyllosilicates.
Wan, Jiamin; Tokunaga, Tetsu K; Ashby, Paul D; Kim, Yongman; Voltolini, Marco; Gilbert, Benjamin; DePaolo, Donald J
2018-01-30
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubation with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2 , can increase CO 2 storage capacity by up to ∼30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism. Copyright © 2018 the Author(s). Published by PNAS.
Volatile Emissions from Hot Spring Basin, Yellowstone National Park, USA
NASA Astrophysics Data System (ADS)
Werner, C.; Hurwitz, S.; Bergfeld, D.; Evans, W. C.; Lowenstern, J. B.; Jaworowski, C.; Heasler, H.
2007-12-01
The flux and composition of magmatic volatiles were characterized for Hot Spring Basin (HSB), Yellowstone National Park, in August 2006. Diffuse fluxes of CO2 (228 sites) from thermal soil were elevated, with a population distribution similar to that of other acid-sulfate areas in Yellowstone. Thus the estimated diffuse emission rate at HSB is proportionately larger than other areas due to its large area, and could be as high as 1000 td-1 CO2. The diffuse flux of H2S was only above detection limits at 20 of the 31 sites measured. The estimated diffuse H2S emission rate was ~ 4 td-1. Good correlation exists between the log of CO2 flux and shallow soil temperatures, indicating linked steam and gas upflow in the subsurface. The correlation between CO2 and H2S fluxes is weak, and the CO2 / H2S diffuse flux ratio was higher than in fumarolic ratios of CO2 to H2S. This suggests that various reactions, e.g., native sulfur deposition, act to remove H2S from the original gas stream in the diffuse low- temperature environment. Dissolved sulfate flux through Shallow Creek, which drains part of HSB, was ~ 4 td-1. Comparing dissolved sulfate flux to estimates of primary emission of H2S based on fumarolic gas geochemistry gives first order estimates of the sulfur consumed in surficial or subsurface mineral deposition. Total C and S outputs from HSB are comparable to other active volcanic systems.
Supercritical CO 2 uptake by nonswelling phyllosilicates
Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.; ...
2018-01-16
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less
Heat transfer of ascending cryomagma on Europa
NASA Astrophysics Data System (ADS)
Quick, Lynnae C.; Marsh, Bruce D.
2016-06-01
Jupiter's moon Europa has a relatively young surface (60-90 Myr on average), which may be due in part to cryovolcanic processes. Current models for both effusive and explosive cryovolcanism on Europa may be expanded and enhanced by linking the potential for cryovolcanism at the surface to subsurface cryomagmatism. The success of cryomagma transport through Europa's crust depends critically on the rate of ascent relative to the rate of solidification. The final transport distance of cryomagma is thus governed by initial melt volume, ascent rate, overall ascent distance, transport mechanism (i.e., diapirism, diking, or ascent in cylindrical conduits), and melt temperature and composition. The last two factors are especially critical in determining the budget of expendable energy before complete solidification. Here we use these factors as constraints to explore conditions under which cryomagma may arrive at Europa's surface to facilitate cryovolcanism. We find that 1-5 km radius warm ice diapirs ascending from the base of a 10 km thick stagnant lid can reach the shallow subsurface in a partially molten state. Cryomagma transport may be further facilitated if diapirs travel along pre-heated ascent paths. Under certain conditions, cryolava transported from 10 km depths in tabular dikes or pipe-like conduits may reach the surface at temperatures exceeding 250 K. Ascent rates for these geometries may be high enough that isothermal transport is approached. Cryomagmas containing significant amounts of low eutectic impurities can also be delivered to Europa's surface by propagating dikes or pipe-like conduits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, Jiamin; Tokunaga, Tetsu K.; Ashby, Paul D.
Interactions between supercritical (sc) CO 2 and minerals are important when CO 2 is injected into geologic formations for storage and as working fluids for enhanced oil recovery, hydraulic fracturing, and geothermal energy extraction. It has previously been shown that at the elevated pressures and temperatures of the deep subsurface, scCO 2 alters smectites (typical swelling phyllosilicates). However, less is known about the effects of scCO 2 on nonswelling phyllosilicates (illite and muscovite), despite the fact that the latter are the dominant clay minerals in deep subsurface shales and mudstones. Our studies conducted by using single crystals, combining reaction (incubationmore » with scCO 2 ), visualization [atomic force microscopy (AFM)], and quantifications (AFM, X-ray photoelectron spectroscopy, X-ray diffraction, and off-gassing measurements) revealed unexpectedly high CO 2 uptake that far exceeded its macroscopic surface area. Results from different methods collectively suggest that CO 2 partially entered the muscovite interlayers, although the pathways remain to be determined. We hypothesize that preferential dissolution at weaker surface defects and frayed edges allows CO 2 to enter the interlayers under elevated pressure and temperature, rather than by diffusing solely from edges deeply into interlayers. This unexpected uptake of CO 2, can increase CO 2 storage capacity by up to ~30% relative to the capacity associated with residual trapping in a 0.2-porosity sandstone reservoir containing up to 18 mass % of illite/muscovite. This excess CO 2 uptake constitutes a previously unrecognized potential trapping mechanism.« less
A System for Incubations at High Gas Partial Pressure
Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens
2012-01-01
High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could detect an increase in sulfate reduction rate upon the addition of methane to the sample. PMID:22347218
Robador, Alberto; Jungbluth, Sean P.; LaRowe, Douglas E.; Bowers, Robert M.; Rappé, Michael S.; Amend, Jan P.; Cowen, James P.
2015-01-01
The basaltic ocean crust is the largest aquifer system on Earth, yet the rates of biological activity in this environment are unknown. Low-temperature (<100°C) fluid samples were investigated from two borehole observatories in the Juan de Fuca Ridge (JFR) flank, representing a range of upper oceanic basement thermal and geochemical properties. Microbial sulfate reduction rates (SRR) were measured in laboratory incubations with 35S-sulfate over a range of temperatures and the identity of the corresponding sulfate-reducing microorganisms (SRM) was studied by analyzing the sequence diversity of the functional marker dissimilatory (bi)sulfite reductase (dsrAB) gene. We found that microbial sulfate reduction was limited by the decreasing availability of organic electron donors in higher temperature, more altered fluids. Thermodynamic calculations indicate energetic constraints for metabolism, which together with relatively higher cell-specific SRR reveal increased maintenance requirements, consistent with novel species-level dsrAB phylotypes of thermophilic SRM. Our estimates suggest that microbially-mediated sulfate reduction may account for the removal of organic matter in fluids within the upper oceanic crust and underscore the potential quantitative impact of microbial processes in deep subsurface marine crustal fluids on marine and global biogeochemical carbon cycling. PMID:25642212
El Nino and the Global Ocean Observing System
NASA Technical Reports Server (NTRS)
Halpern, David
1999-01-01
Until a decade ago, an often-quoted expression in oceanography is that very few observations are recorded throughout the ocean. Now, the sentiment is no longer valid in the uppermost 10% of the tropical Pacific Ocean nor at the surface of the global ocean. One of the remarkable legacies of the 1985-1994 Tropical Oceans Global Atmosphere (TOGA) Program is an in situ marine meteorological and upper oceanographic measurement array throughout the equatorial Pacific to monitor the development and maintenance of El Nino episodes. The TOGA Observing System, which initially consisted of moored- and drifting-buoy arrays, a network of commercial ships, and coastal and island stations, now includes a constellation of satellites and data-assimilating models to simulate subsurface oceanographic conditions. The El Nino and La Nina tropical Pacific Ocean observing system represents the initial phase of an integrated global ocean observing system. Remarkable improvements have been made in ocean model simulation of subsurface currents, but some problems persist. For example, the simulation of the South Equatorial Current (SEC) remains an important challenge in the 2S-2N Pacific equatorial wave guide. During El Nino the SEC at the equator is reduced and sometimes the direction is reversed, becoming eastward. Both conditions allow warm water stored in the western Pacific to invade the eastern region, creating an El Nino episode. Assimilation of data is a tenet of faith to correct simulation errors caused by deficiencies in surface fluxes (especially wind stress) and parameterizations of subgrid-scale physical processes. In the first of two numerical experiments, the Pacific SEC was simulated with and without assimilation of subsurface temperature data. Along the equator, a very weak SEC occurred throughout the eastern Pacific, independent of assimilation of data. However, as displayed in the diagram, in the western Pacific there was no satisfactory agreement between the two simulations. To help determine reliability of the simulated SEC in the western Pacific, current measurements recorded during the 9-19 October 1994 voyage of the French research vessel L'Atalante are also shown in the diagram. With data assimilation, the simulated SEC was in much better agreement with L'Atalante observations. The simulated SEC with data assimilation was far from perfect, in part because of the sparsity of subsurface temperature observations. In the next experiment, TOPEX/POSEIDON sea surface height data in combination with subsurface temperatures will be assimilated to assess further improvement of the simulation of the SEC.
Sheik, Cody S.; Reese, Brandi Kiel; Twing, Katrina I.; Sylvan, Jason B.; Grim, Sharon L.; Schrenk, Matthew O.; Sogin, Mitchell L.; Colwell, Frederick S.
2018-01-01
Earth’s subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium, Aquabacterium, Ralstonia, and Acinetobacter. While the top five most frequently observed genera were Pseudomonas, Propionibacterium, Acinetobacter, Ralstonia, and Sphingomonas. The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth’s deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset. PMID:29780369
Sheik, Cody S; Reese, Brandi Kiel; Twing, Katrina I; Sylvan, Jason B; Grim, Sharon L; Schrenk, Matthew O; Sogin, Mitchell L; Colwell, Frederick S
2018-01-01
Earth's subsurface environment is one of the largest, yet least studied, biomes on Earth, and many questions remain regarding what microorganisms are indigenous to the subsurface. Through the activity of the Census of Deep Life (CoDL) and the Deep Carbon Observatory, an open access 16S ribosomal RNA gene sequence database from diverse subsurface environments has been compiled. However, due to low quantities of biomass in the deep subsurface, the potential for incorporation of contaminants from reagents used during sample collection, processing, and/or sequencing is high. Thus, to understand the ecology of subsurface microorganisms (i.e., the distribution, richness, or survival), it is necessary to minimize, identify, and remove contaminant sequences that will skew the relative abundances of all taxa in the sample. In this meta-analysis, we identify putative contaminants associated with the CoDL dataset, recommend best practices for removing contaminants from samples, and propose a series of best practices for subsurface microbiology sampling. The most abundant putative contaminant genera observed, independent of evenness across samples, were Propionibacterium , Aquabacterium , Ralstonia , and Acinetobacter . While the top five most frequently observed genera were Pseudomonas , Propionibacterium , Acinetobacter , Ralstonia , and Sphingomonas . The majority of the most frequently observed genera (high evenness) were associated with reagent or potential human contamination. Additionally, in DNA extraction blanks, we observed potential archaeal contaminants, including methanogens, which have not been discussed in previous contamination studies. Such contaminants would directly affect the interpretation of subsurface molecular studies, as methanogenesis is an important subsurface biogeochemical process. Utilizing previously identified contaminant genera, we found that ∼27% of the total dataset were identified as contaminant sequences that likely originate from DNA extraction and DNA cleanup methods. Thus, controls must be taken at every step of the collection and processing procedure when working with low biomass environments such as, but not limited to, portions of Earth's deep subsurface. Taken together, we stress that the CoDL dataset is an incredible resource for the broader research community interested in subsurface life, and steps to remove contamination derived sequences must be taken prior to using this dataset.
Simultaneous flow of water and solutes through geological membranes-I. Experimental investigation
Kharaka, Y.K.; Berry, F.A.P.
1973-01-01
The relative retardation by geological membranes of cations and anions generally present in subsurface waters was investigated using a high pressure and high temperature 'filtration cell'. The solutions were forced through different clays and a disaggregated shale subjected to compaction pressures up to 9500 psi and to temperatures from 20 to 70??C. The overall efficiences measured increased with increase of exchange capacity of the material used and with decrease in concentration of the input solution. The efficiency of a given membrane increased with increasing compaction pressure but decreased slightly at higher temperatures for solutions of the same ionic concentration. The results further show that geological membranes are specific for different dissolved species. The retardation sequences varied depending on the material used and on experimental conditions. The sequences for monovalent and divalent cations at laboratory temperatures were generally as follows: Li < Na < NH3 < K < Rb < Cs Mg < Ca < Sr < Ba. The sequences for anions at room temperature were variable, but at 70??C, the sequence was: HCO3 < I < B < SO4 < Cl < Br. Monovalent cations contrary to some field data were generally retarded with respect to divalent cations. The differences in the filtration ratios among the divalent cations were smaller than those between the monovalent cations. The passage rate of B, HCO3, I and NH3 was greatly increased at 70??C. ?? 1973.
Green, Stefan J.; Prakash, Om; Jasrotia, Puja; Overholt, Will A.; Cardenas, Erick; Hubbard, Daniela; Tiedje, James M.; Watson, David B.; Schadt, Christopher W.; Brooks, Scott C.
2012-01-01
The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of rRNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure and that denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower-pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as the concentration of nitrogen species, oxygen level, and sampling season, did not appear to strongly influence the distribution of Rhodanobacter bacteria. The results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment. PMID:22179233
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin
2011-06-15
The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less
DAS Microseismic and Strain Monitoring During Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Kahn, D.; Karrenbach, M. H.; Cole, S.; Boone, K.; Ridge, A.; Rich, J.; Langton, D.; Silver, K.
2017-12-01
Hydraulic fracturing operations in unconventional subsurface reservoirs are typically monitored using geophones located either at the surface or in adjacent wellbores. A novel approach to record hydraulic stimulations utilizes fiber-optic Distributed Acoustic Sensing (DAS). A fiber-optic cable was installed in a treatment well in a subsurface reservoir (Meramec formation). DAS data were recorded during fluid injection of same fibered well and also during injection into a nearby treatment well at a distance of 350m. For both scenarios the DAS sensing array consisted of approximately 1000 channels at a fine spatial and temporal sampling and with a large sensing aperture. Thus, the full strain wave field is measured along the borehole over its entire length. A variety of physical effects, such as temperature, low-frequency strain and microseismicity were measured and correlated with the treatment program during hydraulic fracturing of the wells. These physical effects occur at various frequency scales and produce complementary measurements. Microseismic events in the magnitude range of -0.5 and -2.0 at a maximum distance of 500m were observed and analyzed for recordings from the fiber-equipped treatment well and also neighboring treatment well. The analysis of this DAS data set demonstrates that current fiber-optic sensing technology can provide enough sensitivity to detect a significant number of microseismic events and that these events can be integrated with temperature and strain measurements for an improved subsurface reservoir description.
NASA Astrophysics Data System (ADS)
Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian
2017-04-01
The application of heat as a hydrological tracer has become a standard method for quantifying water fluxes between groundwater and surface water. Typically, time series of temperatures in the surface water and in the sediment are observed and are subsequently evaluated by a vertical 1D representation of heat transport by advection and dispersion. Several analytical solutions as well as their implementation into user-friendly software exist in order to estimate water fluxes from the observed temperatures. The underlying assumption of a stationary, one-dimensional vertical flow field is frequently violated in natural systems. Here subsurface water flow often has a significant horizontal component. We developed a methodology for identifying the geometry of the subsurface flow field based on the variations of diurnal temperature amplitudes with depths. For instance: Purely vertical heat transport is characterized by an exponential decline of temperature amplitudes with increasing depth. Pure horizontal flow would be indicated by a constant, depth independent vertical amplitude profile. The decline of temperature amplitudes with depths could be fitted by polynomials of different order whereby the best fit was defined by the highest Akaike Information Criterion. The stepwise model optimization and selection, evaluating the shape of vertical amplitude ratio profiles was used to determine the predominant subsurface flow field, which could be systematically categorized in purely vertical and horizontal (hyporheic, parafluvial) components. Analytical solutions to estimate water fluxes from the observed temperatures are restricted to specific boundary conditions such as a sinusoidal upper temperature boundary. In contrast numerical solutions offer higher flexibility and can handle temperature data which is characterized by irregular variations such as storm-event induced temperature changes and thus cannot readily be incorporated in analytical solutions. There are several numerical models that simulate heat transport in porous media (e.g. VS2DH, HydroGeoSphere, FEFLOW) but there can be a steep learning curve to the modelling frameworks and may therefore not readily accessible to routinely infer water fluxes between groundwater and surface water. We developed a user-friendly, straightforeward to use software to estimate water FLUXes Based On Temperatures- FLUX-BOT. FLUX-BOT is a numerical code written in MATLAB that calculates time variable vertical water fluxes in saturated sediments based on the inversion of measured temperature time series observed at multiple depths. It applies a cell-centered Crank-Nicolson implicit finite difference scheme to solve the one-dimensional heat advection-conduction equation (FLUX-BOT can be downloaded from the following web site: https://bitbucket.org/flux-bot/flux-bot). We provide applications of FLUX-BOT to generic as well as to measured temperature data to demonstrate its performance. Both, the empirical analysis of temperature amplitudes as well as the numerical inversion of measured temperature time series to estimate the vertical magnitude of water fluxes extent the suite of current heat tracing methods and may provide insight into temperature data from an additional perspective.
NASA Astrophysics Data System (ADS)
Teoh, YJ; Bruka, MA; Idris, NM; Ismail, NA; Muztaza, NM
2018-04-01
Ground penetrating radar (GPR) are non-invasive geophysical techniques that enhance studies of the shallow subsurface. The purposes of this work are to study the subsurface composition of Balik Pulau area in Penang Island and to identify shallow subsurface geology features. Data acquisition for GPR is by using 250 MHz antenna to cover 200m survey line at Jalan Tun Sardon, Balik Pulau. GPR survey was divided into ten sections at 20 m each. Results from GPR shows that there is low EM reflection along the first 40 m of the survey line. Intense EM reflections were recorded along the distance 40 m to 100 m. Less noticeable radar reflections recorded along 100 m to 200 m distance of the survey line. As a conclusion, clear signal of radar wave reflection indicates dry region of the subsurface. Meanwhile, low signal of radar wave reflection indicates highly weathered granitic soil or clay of the subsurface.
DOT National Transportation Integrated Search
2011-07-01
This report presents the results of an evaluation of the demonstration of an experimental seasonal load restriction decision support tool. This system offers state DOTs subsurface condition forecasts (such as moisture, temperature, and freeze-thaw tr...
Scuffing of aluminum/steel contacts under dry sliding conditions
NASA Astrophysics Data System (ADS)
Sheiretov, Todor Konstantinov
Some typical applications where scuffing may occur are gear teeth, piston rings and cylinder pairs, cams and followers, splines, sleeve bearings, and parts of swash and wobble plate compressors. Unlike other tribology-related failures, scuffing occurs very fast, without any warning, and usually leads to the complete destruction of the sliding pair. Practical experience with steel has helped to outline safe ranges of operation for some components. Very little, however, is known about aluminum, which is the second most commonly used engineering metal. The aim of this study is to obtain a better understanding scuffing and seizure of aluminum/steel contacts. The research includes an experimental study of scuffing of aluminum/steel contacts under dry sliding conditions, a study of the physics of the scuffing process, evaluation of various hypotheses for scuffing, and modeling of scuffing. The experiments are conducted in a custom-designed tribometer, which provides accurate control of the environmental conditions. Special instrumentation, experimental procedures and software are developed as a part of the experimental program. These provide a reliable reproduction and identification of scuffing under laboratory conditions. The scuffing characteristics of five materials are obtained in air and refrigerant (R134a) environments. The effects of load, sliding velocity, mechanical strength, environmental temperature, specimen geometry, time, loading history, and type of environment are evaluated. The mechanisms leading to scuffing are studied by examination of surfaces, subsurfaces and wear debris of specimens in the process of scuffing. Quantitative measurements of subsurface plastic strain are also obtained. The theoretical part of the study includes the development of a finite element model for the contact of runned-in rough surfaces and several other models for subsurface stresses, temperatures, and strains. These models provide information about the local conditions in the subsurface. Based on the experimental observations and the scuffing models a new hypothesis for scuffing is proposed. According to this hypothesis, scuffing involves initiation of cracks due to subsurface plastic deformation, propagation of these cracks leading to the removal of the existing protective surface layers, and finally cold welding due to adhesion between bare metal surfaces.
NASA Astrophysics Data System (ADS)
Frampton, Andrew
2017-04-01
There is a need for improved understanding of the mechanisms controlling subsurface solute transport in the active layer in order to better understand permafrost-hydrological-carbon feedbacks, in particular with regards to how dissolved carbon is transported in coupled surface and subsurface terrestrial arctic water systems under climate change. Studying solute transport in arctic systems is also relevant in the context of anthropogenic pollution which may increase due to increased activity in cold region environments. In this contribution subsurface solute transport subject to ground surface warming causing permafrost thaw and active layer change is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. These travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles. The impact these change mechanisms have on solute and dissolved substance transport is further analysed by integrating pathway analysis with a Lagrangian approach, incorporating considerations for both dissolved organic and inorganic carbon releases. Further model development challenges are also highlighted and discussed, including coupling between subsurface and surface runoff, soil deformations, as well as site applications and larger system scales.
NASA Astrophysics Data System (ADS)
Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten
2017-04-01
Karst aquifers in Europe are an important source of fresh water contributing up to half of the total drinking water supply in some countries. Karstic groundwater recharge is one of the most important components of the water balance of karst systems as it feeds the karst aquifers. Presently available large-scale hydrological models do not consider karst heterogeneity adequately. Projections of current and potential future groundwater recharge of Europe's karst aquifers are therefore unclear. In this study we compare simulations of present (1991-2010) and future (2080-2099) recharge using two different models to simulate groundwater recharge processes. One model includes karst processes (subsurface heterogeneity, lateral flow and concentrated recharge), while the other is based on the conceptual understanding of common hydrological systems (homogeneous subsurface, saturation excess overland flow). Both models are driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). To further assess sensitivity of groundwater recharge to climate variability, we calculate the elasticity of recharge rates to annual precipitation, temperature and average intensity of rainfall events, which is the median change of recharge that corresponds to the median change of these climate variables within the present and future time period, respectively. Our model comparison shows that karst regions over Europe have enhanced recharge rates with greater inter-annual variability compared to those with more homogenous subsurface properties. Furthermore, the heterogeneous representation shows stronger elasticity concerning climate variability than the homogeneous subsurface representation. This difference tends to increase towards the future. Our results suggest that water management in regions with heterogeneous subsurface can expect a higher water availability than estimated by most of the current large-scale simulations, while measures should be taken to prepare for increasingly variable groundwater recharge rates.
viral abundance distribution in deep waters of the Northern of South China Sea
NASA Astrophysics Data System (ADS)
He, Lei; Yin, Kedong
2017-04-01
Little is known about the vertical distribution and interaction of viruses and bacteria in the deep ocean water column. The vertical distribution of viral-like particles and bacterial abundance was investigated in the deep water column in the South China Sea during September 2005 along with salinity, temperature and dissolved oxygen. There were double maxima in the ratio of viral to bacterial abundance (VBR) in the water column: the subsurface maximum located at 50-100 m near the pycnocline layer, and the deep maximum at 800-1000 m. At the subsurface maximum of VBR, both viral and bacterial abundance were maximal in the water column, and at the deep maximum of VBR, both viral and bacterial abundance were low, but bacterial abundance was relatively lower than viral abundance. The subsurface VBR maximum coincided with the subsurface chlorophyll maximum while the deep VBR maximum coincided with the minimum in dissolved oxygen (2.91mg L-1). Therefore, we hypothesize that the two maxima were formed by different mechanisms. The subsurface VBR maximum was formed due to an increase in bacterial abundance resulting from the stimulation of abundant organic supply at the subsurface chlorophyll maximum, whereas the deep VBR maximum was formed due to a decrease in bacterial abundance caused by more limitation of organic matter at the oxygen minimum. The evidence suggests that viruses play an important role in controlling bacterial abundance in the deep water column due to the limitation of organic matter supply. In turn, this slows down the formation of the oxygen minimum in which oxygen may be otherwise lower. The mechanism has a great implication that viruses could control bacterial decomposition of organic matter, oxygen consumption and nutrient remineralization in the deep oceans.
NASA Astrophysics Data System (ADS)
Santos, F.; Bird, J. A.; Berhe, A. A.
2017-12-01
Pyrogenic organic carbon (PyC) is a heterogenous mixture of thermally altered residues, ranging from slightly charred plant biomass to soot. Despite its apparent stability in soils, PyC has been reported to either increase or decrease (priming effect, PE), or have no effect on the mineralization rates of native soil organic matter (SOM), highlighting our limited knowledge on the mechanisms driving PyC-induced PE. Little is known about how PyC's pyrolysis temperature, and soil depth (surface versus subsurface) affect the direction of PE. To address this gap knowledge, we conducted from a 1-year laboratory incubation study aimed to investigate the interactive effects of pyrolysis temperature and soil depth on the mineralization rates of native SOM in fine-loamy, temperate forest soil that received additions of dual-labeled 13C and 15N jack pine pyrogenic organic matter produced at 300oC (PyC300) and 450oC (PyC450). Soil and PyC mixture were incubated in surface (0-10 cm) and subsurface (50-70 cm) forest soils in the dark at 55% soil field capacity and 25oC. Losses of native SOM as 13CO2 were measured periodically from the 13C-labeled PyC, and native (unlabeled) SOM during the incubation study using a Thermo Scientific GasBench interfaced to a Delta V Plus isotope ratio mass spectrometer. In surface soils, the addition of PyC300 decreased the turnover rates of native C relative to control treatments, whereas PyC400 had no effect on native C turnover rates. In subsurface soils, neither PyC300 nor PyC400 additions affected native C turnover rates. Our preliminary findings suggest that pyrolysis temperature is an important factor driving the persistence of soil C in Sierra Nevada forest soils.
NASA Astrophysics Data System (ADS)
Parsons, Reid A.; Nimmo, Francis; Miyamoto, Hideaki
2011-07-01
Radar observations in the Deuteronilus Mensae region by Mars Reconnaissance Orbiter have constrained the thickness and dust concentration found within mid-latitude ice deposits, providing an opportunity to more accurately estimate the rheology of ice responsible for the formation of lobate debris aprons based on their apparent age of ˜100 Myr. We developed a numerical model simulating ice flow under martian conditions using results from ice deformation experiments, theory of ice grain growth based on terrestrial ice cores, and observational constraints from radar profiles and laser altimetry. By varying the ice grain size, the ice temperature, the subsurface slope, and the initial ice volume we determine the combination of parameters that best reproduce the observed LDA lengths and thicknesses over a period of time comparable to the apparent ages of LDA surfaces (90-300 Myr). We find that an ice temperature of 205 K, an ice grain size of 5 mm, and a flat subsurface slope give reasonable ages for many LDAs in the northern mid-latitudes of Mars. Assuming that the ice grain size is limited by the grain boundary pinning effect of incorporated dust, these results limit the dust volume concentration to less than 4%. However, assuming all LDAs were emplaced by a single event, we find that there is no single combination of grain size, temperature, and subsurface slope which can give realistic ages for all LDAs, suggesting that some or all of these variables are spatially heterogeneous. Based on our model we conclude that the majority of northern mid-latitude LDAs are composed of clean (⩽4 vol%), coarse (⩾1 mm) grained ice, but regional differences in either the amount of dust mixed in with the ice, or in the presence of a basal slope below the LDA ice must be invoked. Alternatively, the ice temperature and/or timing of ice deposition may vary significantly between different mid-latitude regions. Either eventuality can be tested with future observations.
NASA Astrophysics Data System (ADS)
Parker, A. O.; Schmidt, M. W.; Chang, P.
2013-12-01
A common mechanism often proposed to explain the abrupt climate events of Marine Isotope Stage 3 (MIS 3), known as Dansgaard-Oscheger (D-O) cycles, invokes variability in the strength of the Atlantic Meridional Overturning Circulation (AMOC). Although proxy evidence shows that D-O cycles resulted in large-scale changes in atmospheric circulation patterns around the planet, an understanding of how the AMOC varied across these events remains unclear. Coupled ocean-atmosphere models demonstrate that AMOC variability is linked to abrupt change in the tropical North Atlantic (TNA) through both oceanic and atmospheric processes. A reduction in AMOC causes a subsurface oceanic warming in the TNA as the western boundary current slows, allowing the warm salinity maximum waters to enter the deep tropics. Recently, Schmidt et al. (2012) identified an abrupt subsurface warming at the onset of AMOC slow down during both Heinrich 1 and the Younger Dryas, suggesting this signal may be a robust feature of AMOC variability in the TNA. In order to determine if AMOC variability was the driver of D-O cycles during MIS 3, we present new, high-resolution Mg/Ca and δ18O records from the near-surface dwelling planktonic foraminifera G. ruber and the lower-thermocline dwelling planktonic foraminifera G. crassaformis from 22 - 52 ka BP in southern Caribbean core VM12-107 (11.33oN, 66.63oW, 1079m depth). Sedimentation rates in VM12-107 average 24cm/kyr, providing high temporal resolution able to resolve millennial-scale events. The G. ruber δ18O record shows abrupt oscillations up to 1‰ as well as Mg/Ca-based SST changes of 1.5 - 2oC that are synchronous with some D-O cycles recorded in the Greenland ice cores. Given our ability to resolve D-O cycles in the planktonic record, we find that Mg/Ca ratios from G. crassaformis were, on average, 0.13 × 0.04 mmol/mol higher during stadials. This equates to a temperature increase during stadials of up to 1.5oC. These results imply that AMOC variability played an important role in at least some millennial-scale D-O cycles during MIS 3.
Dong, Zhichao; Cheng, Haobo
2016-11-10
Fixed-abrasive grinding by cup wheels plays an important role in the production of precision optics. During cup wheel grinding, we strive for a large removal rate while maintaining fine integrity on the surface and subsurface layers (academically recognized as surface roughness and subsurface damage, respectively). This study develops a theoretical model used to predict the trend of subsurface damage of optics (with respect to various grinding parameters) in fixed-abrasive grinding by cup wheels. It is derived from the maximum undeformed chip thickness model, and it successfully correlates the pivotal parameters of cup wheel grinding with the subsurface damage depth. The efficiency of this model is then demonstrated by a set of experiments performed on a cup wheel grinding machine. In these experiments, the characteristics of subsurface damage are inspected by a wedge-polishing plus microscopic inspection method, revealing that the subsurface damage induced in cup wheel grinding is composed of craterlike morphologies and slender cracks, with depth ranging from ∼6.2 to ∼13.2 μm under the specified grinding parameters. With the help of the proposed model, an optimized grinding strategy is suggested for realizing fine subsurface integrity as well as high removal rate, which can alleviate the workload of subsequent lapping and polishing.
Void formation in INCONEL MA-754 by high temperature oxidation
NASA Astrophysics Data System (ADS)
Rosenstein, Alan H.; Tien, John K.; Nix, William D.
1986-01-01
Subsurface void formation in oxide dispersion strengthened MA-754 caused by high temperature oxidation was investigated at temperatures of 1100, 1150, and 1200 °C for times of 1, 10, 50, and 100 hours. Material exposed at 1200 °C was examined using microprobe, SEM, and optical microscopy techniques. After exposure in air at 1200 °C for 100 hours, chromium depletion by as much as 10 wt pct was observed near the surface, and voids of various sizes up to 15 µm in diameter were found to depths of 300 µm. The fraction of voids increases with exposure time and, with the exception of anomalous values near the surface, decreases with depth. The maximum area fraction of voids observed was approximately 8 pct. Correlation of the void area fraction profile with the measured chromium depletion through a diffusion analysis shows that void formation is due to vacancy injection. Similar void formation in Ni-Cr alloys without oxide dispersions suggests that void formation is not dependent upon the presence of oxide dispersions. The diffusion coefficient for chromium in MA-754 at 1200 °C was computed from microprobe data to be 4 × 10-10 cm2 per second.
Landing Site and Traverse Plan Development for Resource Prospector
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.; Siegler, M. A.
2017-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high [1,2,3]. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.
Resource Prospector Landing Site and Traverse Plan Development
NASA Technical Reports Server (NTRS)
Elphic, R. C.; Colaprete, A.; Shirley, M.; McGovern, A.; Beyer, R.
2016-01-01
Resource Prospector (RP) will be the first lunar surface robotic expedition to explore the character and feasibility of in situ resource utilization at the lunar poles. It is aimed at determining where, and how much, hydrogen-bearing and other volatiles are sequestered in polar cold traps. To meet its goals, the mission should land where the likelihood of finding polar volatiles is high. The operational environment is challenging: very low sun elevations, long shadows cast by even moderate relief, cryogenic subsurface temperatures, unknown regolith properties, and very dynamic sun and Earth communications geometries force a unique approach to landing, traverse design and mission operations.