Do Low Surface Brightness Galaxies Host Stellar Bars?
NASA Astrophysics Data System (ADS)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo
2017-09-01
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness is mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.
Do Low Surface Brightness Galaxies Host Stellar Bars?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cervantes Sodi, Bernardo; Sánchez García, Osbaldo, E-mail: b.cervantes@irya.unam.mx, E-mail: o.sanchez@irya.unam.mx
With the aim of assessing if low surface brightness galaxies host stellar bars and by studying the dependence of the occurrence of bars as a function of surface brightness, we use the Galaxy Zoo 2 data set to construct a large volume-limited sample of galaxies and then segregate these galaxies as having low or high surface brightness in terms of their central surface brightness. We find that the fraction of low surface brightness galaxies hosting strong bars is systematically lower than that found for high surface brightness galaxies. The dependence of the bar fraction on the central surface brightness ismore » mostly driven by a correlation of the surface brightness with the spin and the gas richness of the galaxies, showing only a minor dependence on the surface brightness. We also find that the length of the bars is strongly dependent on the surface brightness, and although some of this dependence is attributed to the gas content, even at a fixed gas-to-stellar mass ratio, high surface brightness galaxies host longer bars than their low surface brightness counterparts, which we attribute to an anticorrelation of the surface brightness with the spin.« less
KECK/LRIS SPECTROSCOPIC CONFIRMATION OF COMA CLUSTER DWARF GALAXY MEMBERSHIP ASSIGNMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiboucas, Kristin; Tully, R. Brent; Marzke, Ronald O.
2010-11-01
Keck/LRIS multi-object spectroscopy has been carried out on 140 of some of the lowest and highest surface brightness faint (19 < R < 22) dwarf galaxy candidates in the core region of the Coma Cluster. These spectra are used to measure redshifts and establish membership for these faint dwarf populations. The primary goal of the low surface brightness sample is to test our ability to use morphological and surface brightness criteria to distinguish between Coma Cluster members and background galaxies using high resolution Hubble Space Telescope/Advanced Camera for Surveys images. Candidates were rated as expected members, uncertain, or expected background.more » From 93 spectra, 51 dwarf galaxy members and 20 background galaxies are identified. Our morphological membership estimation success rate is {approx}100% for objects expected to be members and better than {approx}90% for galaxies expected to be in the background. We confirm that low surface brightness is a very good indicator of cluster membership. High surface brightness galaxies are almost always background with confusion arising only from the cases of the rare compact elliptical (cE) galaxies. The more problematic cases occur at intermediate surface brightness. Many of these galaxies are given uncertain membership ratings, and these were found to be members about half of the time. Including color information will improve membership determination but will fail for some of the same objects that are already misidentified when using only surface brightness and morphology criteria. cE galaxies with B-V colors {approx}0.2 mag redward of the red sequence in particular require spectroscopic follow up. In a sample of 47 high surface brightness, ultracompact dwarf candidates, 19 objects have redshifts which place them in the Coma Cluster, while another 6 have questionable redshift measurements but may also prove to be members. Redshift measurements are presented and the use of indirect means for establishing cluster membership is discussed.« less
Titan's surface from Cassini RADAR SAR and high resolution radiometry data of the first five flybys
Paganelli, F.; Janssen, M.A.; Stiles, B.; West, R.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Callahan, P.; Lopes, R.M.; Stofan, E.; Kirk, R.L.; Johnson, W.T.K.; Roth, L.; Elachi, C.; ,
2007-01-01
The first five Titan flybys with Cassini's Synthetic Aperture RADAR (SAR) and radiometer are examined with emphasis on the calibration and interpretation of the high-resolution radiometry data acquired during the SAR mode (SAR-radiometry). Maps of the 2-cm wavelength brightness temperature are obtained coincident with the SAR swath imaging, with spatial resolution approaching 6 km. A preliminary calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, finding differing signatures that characterize various terrains and surface features. Implications for the physical and compositional properties of these features are discussed. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007 Elsevier Inc.
Stellar populations of bulges in galaxies with a low surface-brightness disc
NASA Astrophysics Data System (ADS)
Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.
2015-03-01
The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.
Titan's surface from the Cassini RADAR radiometry data during SAR mode
Paganelli, F.; Janssen, M.A.; Lopes, R.M.; Stofan, E.; Wall, S.D.; Lorenz, R.D.; Lunine, J.I.; Kirk, R.L.; Roth, L.; Elachi, C.
2008-01-01
We present initial results on the calibration and interpretation of the high-resolution radiometry data acquired during the Synthetic Aperture Radar (SAR) mode (SAR-radiometry) of the Cassini Radar Mapper during its first five flybys of Saturn's moon Titan. We construct maps of the brightness temperature at the 2-cm wavelength coincident with SAR swath imaging. A preliminary radiometry calibration shows that brightness temperature in these maps varies from 64 to 89 K. Surface features and physical properties derived from the SAR-radiometry maps and SAR imaging are strongly correlated; in general, we find that surface features with high radar reflectivity are associated with radiometrically cold regions, while surface features with low radar reflectivity correlate with radiometrically warm regions. We examined scatterplots of the normalized radar cross-section ??0 versus brightness temperature, outlining signatures that characterize various terrains and surface features. The results indicate that volume scattering is important in many areas of Titan's surface, particularly Xanadu, while other areas exhibit complex brightness temperature variations consistent with variable slopes or surface material and compositional properties. ?? 2007.
Comparative study of icy patches on comet nuclei
NASA Astrophysics Data System (ADS)
Oklay, Nilda; Pommerol, Antoine; Barucci, Maria Antonietta; Sunshine, Jessica; Sierks, Holger; Pajola, Maurizio
2016-07-01
Cometary missions Deep Impact, EPOXI and Rosetta investigated the nuclei of comets 9P/Tempel 1, 103P/Hartley 2 and 67P/Churyumov-Gerasimenko respectively. Bright patches were observed on the surfaces of each of these three comets [1-5]. Of these, the surface of 67P is mapped at the highest spatial resolution via narrow angle camera (NAC) of the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS, [6]) on board the Rosetta spacecraft. OSIRIS NAC is equipped with twelve filters covering the wavelength range of 250 nm to 1000 nm. Various filters combinations are used during surface mapping. With high spatial resolution data of comet 67P, three types of bright features were detected on the comet surface: Clustered, isolated and bright boulders [2]. In the visible spectral range, clustered bright features on comet 67P display bluer spectral slopes than the average surface [2, 4] while isolated bright features on comet 67P have flat spectra [4]. Icy patches observed on the surface of comets 9P and 103P display bluer spectral slopes than the average surface [1, 5]. Clustered and isolated bright features are blue in the RGB composites generated by using the images taken in NIR, visible and NUV wavelengths [2, 4]. This is valid for the icy patches observed on comets 9P and 103P [1, 5]. Spectroscopic observations of bright patches on comets 9P and 103P confirmed the existence of water [1, 5]. There were more than a hundred of bright features detected on the northern hemisphere of comet 67P [2]. Analysis of those features from both multispectral data and spectroscopic data is an ongoing work. Water ice is detected in eight of the bright features so far [7]. Additionally, spectroscopic observations of two clustered bright features on the surface of comet 67P revealed the existence of water ice [3]. The spectral properties of one of the icy patches were studied by [4] using OSIRIS NAC images and compared with the spectral properties of the active regions observed on comet 67P. Additionally jets rising from the same clustered bright feature were detected visually [4]. We analyzed bright patches on the surface of comets 9P, 103P and 67P using multispectral data obtained by the high-resolution instrument (HRI), medium- resolution instrument (MRI) and OSIRIS NAC using various spectral analysis techniques. Clustered bright features on comet 67P have similar visible spectra to the bright patches on comets 9P and 103P. The comparison of the bright patches includes the published results of the IR spectra. References: [1] Sunshine et al., 2006, Science, 311, 1453 [2] Pommerol et al., 2015, A&A, 583, A25 [3] Filacchione et al., 2016, Nature, 529, 368-372 [4] Oklay et al., 2016, A&A, 586, A80 [5] Sunshine et al. 2012, ACM [6] Keller et al., 2007, Space Sci. Rev., 128, 433 [7] Barucci et al., 2016, COSPAR, B04
Classification of sea ice types with single-band (33.6 GHz) airborne passive microwave imagery
NASA Astrophysics Data System (ADS)
Eppler, Duane T.; Farmer, L. Dennis; Lohanick, Alan W.; Hoover, Mervyn
1986-09-01
During March 1983 extensive high-quality airborne passive Ka band (33.6 GHz) microwave imagery and coincident high-resolution aerial photography were obtained of ice along a 378-km flight line in the Beaufort Sea. Analysis of these data suggests that four classes of winter surfaces can be distinguished solely on the basis of 33.6-GHz brightness temperature: open water, frazil, old ice, and young/first-year ice. New ice (excluding frazil) and nilas display brightness temperatures that overlap the range of temperatures characteristic of old ice and, to a lesser extent, young/first-year ice. Scenes in which a new ice or nilas are present in appreciable amounts are subject to substantial errors in classification if static measures of Ka band radiometric brightness temperature alone are considered. Textural characteristics of nilas and new ice, however, differ significantly from textural features characteristic of other ice types and probably can be used with brightness temperature data to classify ice type in high-resolution single-band microwave images. In any case, open water is radiometrically the coldest surface observed in any scene. Lack of overlap between brightness temperatures characteristic of other surfaces indicates that estimates of the areal extent of open water based on only 33.6-GHz brightness temperatures are accurate.
High-Resolution Radar Imagery of Mars
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, M. C.
2009-09-01
We present high-resolution radar images of Mars obtained during the 2005 and 2007 oppositions. The images were constructed from long-code delay-Doppler observations made with the Arecibo S-band (13-cm) radar. The average image resolution of 3 km represented a better than order-of-magnitude improvement over pre-upgrade Arecibo imagery of the planet. Images of depolarized reflectivity (an indicator primarily of wavelength-scale surface roughness) show the same bright volcanic flow features seen in earlier imagery, but with much finer detail. A new image of the Elysium region shows fine detail in the radar-bright channels of Athabasca Vallis, Marte Vallis, and Grjota Vallis. The new images of Tharsis and Olympus Mons also show a complex array of radar-bright and radar-dark features. Southern Amazonis exhibits some of the most complex and puzzling radar-bright structure on the planet. Another curiosity is the Chryse/Xanthe/Channels region, where we find some radar-bright features in or adjacent to fluvial chaos structures. Chryse/Xanthe is also the only region of Mars showing radar-bright craters (which are rare on Mars but common on the Moon and Mercury). We also obtained the first delay-Doppler image showing the enhanced backscatter from the residual south polar ice cap. In addition to the depolarized imagery, we were able to make the first delay-Doppler images of the circular polarization ratio (an important diagnostic for surface roughness texture). We find that vast areas of the radar-bright volcanic regions have polarization ratios close to unity. Such high ratios are rare for terrestrial lava flows and only seen for extremely blocky surfaces giving high levels of multiple scattering.
Visible Color and Photometry of Bright Materials on Vesta
NASA Technical Reports Server (NTRS)
Schroder, S. E.; Li, J. Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.
2012-01-01
The Dawn Framing Camera (FC) collected images of the surface of Vesta at a pixel scale of 70 m in the High Altitude Mapping Orbit (HAMO) phase through its clear and seven color filters spanning from 430 nm to 980 nm. The surface of Vesta displays a large diversity in its brightness and colors, evidently related to the diverse geology [1] and mineralogy [2]. Here we report a detailed investigation of the visible colors and photometric properties of the apparently bright materials on Vesta in order to study their origin. The global distribution and the spectroscopy of bright materials are discussed in companion papers [3, 4], and the synthesis results about the origin of Vestan bright materials are reported in [5].
Mao, Hsiaoyin C.; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana
2010-01-01
Human CD56bright natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-γ (IFN-γ) production, but little cytotoxicity. CD56dim NK cells have high KIR expression, produce little IFN-γ, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56bright to a CD56dim phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94highCD56dim NK cells express CD62L, CD2, and KIR at levels between CD56bright and CD94lowCD56dim NK cells. CD94highCD56dim NK cells produce less monokine-induced IFN-γ than CD56bright NK cells but much more than CD94lowCD56dim NK cells because of differential interleukin-12–mediated STAT4 phosphorylation. CD94highCD56dim NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56bright NK cells but lower than CD94lowCD56dim NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56dim NK cells identifies a functional and likely developmental intermediary between CD56bright and CD94lowCD56dim NK cells. This supports the notion that, in vivo, human CD56bright NK cells progress through a continuum of differentiation that ends with a CD94lowCD56dim phenotype. PMID:19897577
Yu, Jianhua; Mao, Hsiaoyin C; Wei, Min; Hughes, Tiffany; Zhang, Jianying; Park, Il-kyoo; Liu, Shujun; McClory, Susan; Marcucci, Guido; Trotta, Rossana; Caligiuri, Michael A
2010-01-14
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs), high interferon-gamma (IFN-gamma) production, but little cytotoxicity. CD56(dim) NK cells have high KIR expression, produce little IFN-gamma, yet display high cytotoxicity. We hypothesized that, if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype, an intermediary NK cell must exist, which demonstrates more functional overlap than these 2 subsets, and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L, CD2, and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively, our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that, in vivo, human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR
Tosi, Federico; Capria, Maria Teresa; De Sanctis, M.C.; Combe, J.-Ph.; Zambon, F.; Nathues, A.; Schröder, S.E.; Li, J.-Y.; Palomba, E.; Longobardo, A.; Blewett, D.T.; Denevi, B.W.; Palmer, E.; Capaccioni, F.; Ammannito, E.; Titus, Timothy N.; Mittlefehldt, D.W.; Sunshine, J.M.; Russell, C.T.; Raymond, C.A.; Dawn/VIR Team,
2014-01-01
Remote sensing data acquired during Dawn’s orbital mission at Vesta showed several local concentrations of high-albedo (bright) and low-albedo (dark) material units, in addition to spectrally distinct meteorite impact ejecta. The thermal behavior of such areas seen at local scale (1-10 km) is related to physical properties that can provide information about the origin of those materials. We use Dawn’s Visible and InfraRed (VIR) mapping spectrometer hyperspectral data to retrieve surface temperatures and emissivities, with high accuracy as long as temperatures are greater than 220 K. Some of the dark and bright features were observed multiple times by VIR in the various mission phases at variable spatial resolution, illumination and observation angles, local solar time, and heliocentric distance. This work presents the first temperature maps and spectral emissivities of several kilometer-scale dark and bright material units on Vesta. Results retrieved from the infrared data acquired by VIR show that bright regions generally correspond to regions with lower temperature, while dark regions correspond to areas with higher temperature. During maximum daily insolation and in the range of heliocentric distances explored by Dawn, i.e. 2.23-2.54 AU, the warmest dark unit found on Vesta rises to a temperature of 273 K, while bright units observed under comparable conditions do not exceed 266 K. Similarly, dark units appear to have higher emissivity on average compared to bright units. Dark-material units show a weak anticorrelation between temperature and albedo, whereas the relation is stronger for bright material units observed under the same conditions. Individual features may show either evanescent or distinct margins in the thermal images, as a consequence of the cohesion of the surface material. Finally, for the two categories of dark and bright materials, we were able to highlight the influence of heliocentric distance on surface temperatures, and estimate an average temperature rate change of 1% following a variation of 0.04 AU in the solar distance.
Li, R K; To, H; Andonian, G; Feng, J; Polyakov, A; Scoby, C M; Thompson, K; Wan, W; Padmore, H A; Musumeci, P
2013-02-15
We experimentally investigate surface-plasmon assisted photoemission to enhance the efficiency of metallic photocathodes for high-brightness electron sources. A nanohole array-based copper surface was designed to exhibit a plasmonic response at 800 nm, fabricated using the focused ion beam milling technique, optically characterized and tested as a photocathode in a high power radio frequency photoinjector. Because of the larger absorption and localization of the optical field intensity, the charge yield observed under ultrashort laser pulse illumination is increased by more than 100 times compared to a flat surface. We also present the first beam characterization results (intrinsic emittance and bunch length) from a nanostructured photocathode.
Giant Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Mishra, Alka; Kantharia, Nimisha G.; Das, Mousumi
2018-04-01
In this paper, we present radio observations of the giant low surface brightness (LSB) galaxies made using the Giant Metrewave Radio Telescope (GMRT). LSB galaxies are generally large, dark matter dominated spirals that have low star formation efficiencies and large HI gas disks. Their properties suggest that they are less evolved compared to high surface brightness galaxies. We present GMRT emission maps of LSB galaxies with an optically-identified active nucleus. Using our radio data and archival near-infrared (2MASS) and near-ultraviolet (GALEX) data, we studied morphology and star formation efficiencies in these galaxies. All the galaxies show radio continuum emission mostly associated with the centre of the galaxy.
Luminosity and surface brightness distribution of K-band galaxies from the UKIDSS Large Area Survey
NASA Astrophysics Data System (ADS)
Smith, Anthony J.; Loveday, Jon; Cross, Nicholas J. G.
2009-08-01
We present luminosity and surface-brightness distributions of 40111 galaxies with K-band photometry from the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS), Data Release 3 and optical photometry from Data Release 5 of the Sloan Digital Sky Survey (SDSS). Various features and limitations of the new UKIDSS data are examined, such as a problem affecting Petrosian magnitudes of extended sources. Selection limits in K- and r-band magnitude, K-band surface brightness and K-band radius are included explicitly in the 1/Vmax estimate of the space density and luminosity function. The bivariate brightness distribution in K-band absolute magnitude and surface brightness is presented and found to display a clear luminosity-surface brightness correlation that flattens at high luminosity and broadens at low luminosity, consistent with similar analyses at optical wavelengths. Best-fitting Schechter function parameters for the K-band luminosity function are found to be M* - 5 logh = -23.19 +/- 0.04,α = -0.81 +/- 0.04 and φ* = (0.0166 +/- 0.0008)h3Mpc-3, although the Schechter function provides a poor fit to the data at high and low luminosity, while the luminosity density in the K band is found to be j = (6.305 +/- 0.067) × 108LsolarhMpc-3. However, we caution that there are various known sources of incompleteness and uncertainty in our results. Using mass-to-light ratios determined from the optical colours, we estimate the stellar mass function, finding good agreement with previous results. Possible improvements are discussed that could be implemented when extending this analysis to the full LAS.
Spot distribution and fast surface evolution on Vega
NASA Astrophysics Data System (ADS)
Petit, P.; Hébrard, E. M.; Böhm, T.; Folsom, C. P.; Lignières, F.
2017-11-01
Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities and investigating a possible short-term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low- and high-latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.
Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination
NASA Astrophysics Data System (ADS)
Li, Xiyan; Zhao, Yong-Biao; Fan, Fengjia; Levina, Larissa; Liu, Min; Quintero-Bermudez, Rafael; Gong, Xiwen; Quan, Li Na; Fan, James; Yang, Zhenyu; Hoogland, Sjoerd; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.
2018-03-01
The external quantum efficiencies of state-of-the-art colloidal quantum dot light-emitting diodes (QLEDs) are now approaching the limit set by the out-coupling efficiency. However, the brightness of these devices is constrained by the use of poorly conducting emitting layers, a consequence of the present-day reliance on long-chain organic capping ligands. Here, we report how conductive and passivating halides can be implemented in Zn chalcogenide-shelled colloidal quantum dots to enable high-brightness green QLEDs. We use a surface management reagent, thionyl chloride (SOCl2), to chlorinate the carboxylic group of oleic acid and graft the surfaces of the colloidal quantum dots with passivating chloride anions. This results in devices with an improved mobility that retain high external quantum efficiencies in the high-injection-current region and also feature a reduced turn-on voltage of 2.5 V. The treated QLEDs operate with a brightness of 460,000 cd m-2, significantly exceeding that of all previously reported solution-processed LEDs.
A catalog of low surface brightness galaxies - List II
NASA Technical Reports Server (NTRS)
Schombert, James M.; Bothun, Gregory D.; Schneider, Stephen E.; Mcgaugh, Stacy S.
1992-01-01
A list of galaxies characterized by low surface brightness (LSB) is presented which facilitates the recognition of galaxies with brightnesses close to that of the sky. A total of 198 objects and 140 objects are listed in the primary and secondary catalogs respectively, and LSB galaxies are examined by means of H I redshift distributions. LSB disk galaxies are shown to have similar sizes and masses as the high-surface-brightness counterparts, and ellipticals and SOs are rarely encountered. Many LSB spirals have stellarlike nuclei, and most of the galaxies in the present catalog are late-type galaxies in the Sc, Sm, and Im classes. The LSB region of observational parameter space is shown to encompass a spectrum of types as full as that of the Hubble sequence. It is suggested that studies of LSB galaxies can provide important data regarding the formation and star-formation history of all galaxies.
SPARC: MASS MODELS FOR 175 DISK GALAXIES WITH SPITZER PHOTOMETRY AND ACCURATE ROTATION CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lelli, Federico; McGaugh, Stacy S.; Schombert, James M., E-mail: federico.lelli@case.edu
2016-12-01
We introduce SPARC ( Spitzer Photometry and Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 μ m and high-quality rotation curves from previous H i/H α studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (∼5 dex), and surface brightnesses (∼4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass–H i mass relation and the stellar radius–H i radius relation have significant intrinsic scatter, while the H i mass–radius relation is extremely tight. We build detailedmore » mass models and quantify the ratio of baryonic to observed velocity ( V {sub bar}/ V {sub obs}) for different characteristic radii and values of the stellar mass-to-light ratio (ϒ{sub ⋆}) at [3.6]. Assuming ϒ{sub ⋆} ≃ 0.5 M {sub ⊙}/ L {sub ⊙} (as suggested by stellar population models), we find that (i) the gas fraction linearly correlates with total luminosity; (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars, in line with density wave theory; and (iii) V {sub bar}/ V {sub obs} varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of ϒ{sub ⋆} ≃ 0.2 M {sub ⊙}/ L {sub ⊙} as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is ϒ{sub ⋆} ≃ 0.7 M {sub ⊙}/ L {sub ⊙} at [3.6]. The SPARC data are publicly available and represent an ideal test bed for models of galaxy formation.« less
Pinacate-gran Desierto Region, Mexico: SIR-A Data Analysis
NASA Technical Reports Server (NTRS)
Christensen, P.; Greeley, R.; Mchone, J.; Asmerom, Y.; Barnett, S.
1984-01-01
Radar images (SIR-A) from the Columbia space shuttle were used to assess the radar returns of terrain shaped by volcanic, aeolian, and fluvial processes in northwest Sonora. Field studies and photointerpretation show that sand dunes are poorly imaged by SIR-A, in contrast to SEASAT, evidently a consequence of the greater SIR-A incidence angle; star dunes are visible only as small bright spots representing merging arms at dune apices which may act as corner reflectors. Desert grasses and bushes (approx. 2 m high) have little effect on radar brightness. Only larger trees with woody trunks approx. 0.5 m across are effective radar reflectors; their presence contributes to radar bright zones along some arroyos. The radar brightness of lava flows decreases with surface roughness and presence of mantling windblown sediments and weathering products; however, old uplifted (faulted) flows are of equal brightness to fresh, unmantled aa flows. Maar craters display circular patterns of varying radar brightness which represent a combination of geometry, slope, and distribution of surface materials. Some radar bright rings in the Pinacates resemble craters on radar but are observed to be playas encircled by trees.
Determination of cloud liquid water content using the SSM/I
NASA Technical Reports Server (NTRS)
Alishouse, John C.; Snider, Jack B.; Westwater, Ed R.; Swift, Calvin T.; Ruf, Christopher S.
1990-01-01
As part of a calibration/validation effort for the special sensor microwave/imager (SSM/I), coincident observations of SSM/I brightness temperatures and surface-based observations of cloud liquid water were obtained. These observations were used to validate initial algorithms and to derive an improved algorithm. The initial algorithms were divided into latitudinal-, seasonal-, and surface-type zones. It was found that these initial algorithms, which were of the D-matrix type, did not yield sufficiently accurate results. The surface-based measurements of channels were investigated; however, the 85V channel was excluded because of excessive noise. It was found that there is no significant correlation between the SSM/I brightness temperatures and the surface-based cloud liquid water determination when the background surface is land or snow. A high correlation was found between brightness temperatures and ground-based measurements over the ocean.
The spatial distribution of dwarf galaxies in the CfA slice of the universe
NASA Technical Reports Server (NTRS)
Thuan, Trinh X.; Gott, J. Richard, III; Schneider, Stephen E.
1987-01-01
A complete (with the the exception of one) redshift sample of 58 galaxies in the Nilson catalog classified as dwarf, irregular, or Magellanic irregular is used to investigate the large-scale clustering properties of these low-surface brightness galaxies in the CfA slice of the universe (alpha in the range of 8-17 h, delta in the range of 26.5-32.5 deg). It is found that the low-surface brightness dwarf galaxies also lie on the structures delineated by the high-surface brightness normal galaxies and that they do not fill in the voids. This is inconsistent with a class of biased galaxy formation theories which predict that dwarf galaxies should be present everywhere, including the voids.
NASA Astrophysics Data System (ADS)
Carilli, C. L.; Chluba, J.; Decarli, R.; Walter, F.; Aravena, M.; Wagg, J.; Popping, G.; Cortes, P.; Hodge, J.; Weiss, A.; Bertoldi, F.; Riechers, D.
2016-12-01
We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C II] 158 μm line emission from very high redshift galaxies (z ˜ 6-7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T B = 0.94 ± 0.09 μK. In the 242 GHz band, the mean brightness is: T B = 0.55 ± 0.033 μK. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.
NASA Technical Reports Server (NTRS)
Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.
1992-01-01
The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.
The distribution of star formation and metals in the low surface brightness galaxy UGC 628
NASA Astrophysics Data System (ADS)
Young, J. E.; Kuzio de Naray, Rachel; Wang, Sharon X.
2015-09-01
We introduce the MUSCEL Programme (MUltiwavelength observations of the Structure, Chemistry and Evolution of LSB galaxies), a project aimed at determining the star-formation histories of low surface brightness galaxies. MUSCEL utilizes ground-based optical spectra and space-based UV and IR photometry to fully constrain the star-formation histories of our targets with the aim of shedding light on the processes that led low surface brightness galaxies down a different evolutionary path from that followed by high surface brightness galaxies, such as our Milky Way. Here we present the spatially resolved optical spectra of UGC 628, observed with the VIRUS-P IFU at the 2.7-m Harlen J. Smith Telescope at the McDonald Observatory, and utilize emission-line diagnostics to determine the rate and distribution of star formation as well as the gas-phase metallicity and metallicity gradient. We find highly clustered star formation throughout UGC 628, excluding the core regions, and a log(O/H) metallicity around -4.2, with more metal-rich regions near the edges of the galactic disc. Based on the emission-line diagnostics alone, the current mode of star formation, slow and concentrated in the outer disc, appears to have dominated for quite some time, although there are clear signs of a much older stellar population formed in a more standard inside-out fashion.
Colors and Photometry of Bright Materials on Vesta as Seen by the Dawn Framing Camera
NASA Technical Reports Server (NTRS)
Schroeder, S. E.; Li, J.-Y.; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.;
2012-01-01
The Dawn spacecraft has been in orbit around the asteroid Vesta since July, 2011. The on-board Framing Camera has acquired thousands of high-resolution images of the regolith-covered surface through one clear and seven narrow-band filters in the visible and near-IR wavelength range. It has observed bright and dark materials that have a range of reflectance that is unusually wide for an asteroid. Material brighter than average is predominantly found on crater walls, and in ejecta surrounding caters in the southern hemisphere. Most likely, the brightest material identified on the Vesta surface so far is located on the inside of a crater at 64.27deg S, 1.54deg . The apparent brightness of a regolith is influenced by factors such as particle size, mineralogical composition, and viewing geometry. As such, the presence of bright material can indicate differences in lithology and/or degree of space weathering. We retrieve the spectral and photometric properties of various bright terrains from false-color images acquired in the High Altitude Mapping Orbit (HAMO). We find that most bright material has a deeper 1-m pyroxene band than average. However, the aforementioned brightest material appears to have a 1-m band that is actually less deep, a result that awaits confirmation by the on-board VIR spectrometer. This site may harbor a class of material unique for Vesta. We discuss the implications of our spectral findings for the origin of bright materials.
NASA Astrophysics Data System (ADS)
Costa, Manuel F.; Almeida, Jose B.
1989-02-01
We will describe in this communication a noncont act method of measuring surface profile, it does not require any surface preparation, and it can be used with a very large range of surfaces from highly reflecting to non reflecting ones and as complex as textile surfaces. This method is reasonably immune to dispersion and diffraction, which usually make very difficult the application of non contact profilometry methods to a wide range of materials and situations, namely on quality control systems in industrial production lines. The method is based on the horizontal shift of the bright spot on a horizontal surface when this is illuminated with an oblique beam and moved vertically. in order to make the profilometry the sample is swept by an oblique light beam and the bright spot position is compared with a reference position. The bright spot must be as small as possible, particularly in very irregular surfaces; so the light beam diameter must be as small as possible and the incidence angle must not be too small. The sensivity of a system based on this method will be given, mostly, by the reception optical system.
Multipass holographic interferometer improves image resolution
NASA Technical Reports Server (NTRS)
Brooks, R. E.; Heflinger, L. O.
1970-01-01
Multipass holographic interferometer forms a hologram of high diffraction efficiency, and hence provides a bright and high contrast interferogram. It is used to study any effect which changes the index of refraction and to study surface deformations of a flat reflecting surface.
Geologic Structures in Crater Walls on Vesta
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Beck, A. W.; Ammannito, E.; Carsenty, U.; DeSanctis, M. C.; LeCorre, L.; McCoy, T. J.; Reddy, V.; Schroeder, S. E.
2012-01-01
The Framing Camera (FC) on the Dawn spacecraft has imaged most of the illuminated surface of Vesta with a resolution of apporpx. 20 m/pixel through different wavelength filters that allow for identification of lithologic units. The Visible and Infrared Mapping Spectrometer (VIR) has imaged the surface at lower spatial resolution but high spectral resolution from 0.25 to 5 micron that allows for detailed mineralogical interpretation. The FC has imaged geologic structures in the walls of fresh craters and on scarps on the margin of the Rheasilvia basin that consist of cliff-forming, competent units, either as blocks or semi-continuous layers, hundreds of m to km below the rims. Different units have different albedos, FC color ratios and VIR spectral characteristics, and different units can be juxtaposed in individual craters. We will describe different examples of these competent units and present preliminary interpretations of the structures. A common occurrence is of blocks several hundred m in size of high albedo (bright) and low albedo (dark) materials protruding from crater walls. In many examples, dark material deposits lie below coherent bright material blocks. In FC Clementine color ratios, bright material is green indicating deeper 1 m pyroxene absorption band. VIR spectra show these to have deeper and wider 1 and 2 micron pyroxene absorption bands than the average vestan surface. The associated dark material has subdued pyroxene absorption features compared to the average vestan surface. Some dark material deposits are consistent with mixtures of HED materials with carbonaceous chondrites. This would indicate that some dark material deposits in crater walls are megabreccia blocks. The same would hold for bright material blocks found above them. Thus, these are not intact crustal units. Marcia crater is atypical in that the dark material forms a semi-continuous, thin layer immediately below bright material. Bright material occurs as one or more layers. In one region, there is an apparent angular unconformity between the bright material and the dark material where bright material layers appear to be truncated against the underlying dark layer. One crater within the Rheasilvia basin contains two distinct types of bright materials outcropping on its walls, one like that found elsewhere on Vesta and the other an anomalous block 200 m across. This material has the highest albedo; almost twice that of the vestan average. Unlike all other bright materials, this block has a subdued 1 micron pyroxene absorption band in FC color ratios. These data indicate that this block represents a distinct vestan lithology that is rarely exposed.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang-Condell, Hannah; Wilner, David; Andrews, Sean; Kraus, Adam; Dahm, Scott;
2012-01-01
We present Keck/NIRC2 Ks band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3-2.5 arcse (approx 35-280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model for a single dust belt including a phase function with two components and a 5-10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry. Although there may be alternate explanations, agreement between the SW disk brightness peak and disk's peak mm emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1-1 mm-sized grains at approx 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
Keck/NIRC2 Imaging of the Warped, Asymmetric Debris Disk Around HD 32297
NASA Technical Reports Server (NTRS)
Currie, Thayne; Rodigas, Timothy J.; Debes, John; Plavchan, Peter; Kuchner, Marc; Jang, Condell, Hannah; Wilner, David; Andrews, Sean; Dahm, Scott; Robitaille,Thomas
2012-01-01
We present Keck/NIRC2 K(sub s) band high-contrast coronagraphic imaging of the luminous debris disk around the nearby, young A star HD 32297 resolved at a projected separation of r = 0.3 - 2.5" (approx equals 35 - 280 AU). The disk is highly warped to the north and exhibits a complex, "wavy" surface brightness profile interior to r approx equals 110 AU, where the peaks/plateaus in the profiles are shifted between the NE and SW disk lobes. The SW side of the disk is 50 - 100% brighter at r = 35 - 80 AU, and the location of its peak brightness roughly coincides with the disk's mm emission peak. Spectral energy distribution modeling suggests that HD 32297 has at least two dust populations that may originate from two separate belts likely at different locations, possibly at distances coinciding with the surface brightness peaks. A disk model fur a single dust belt including a phase function with two components and a 5 - 10 AU pericenter offset explains the disk's warped structure and reproduces some of the surface brightness profile's shape (e.g. the overall "wavy" profile, the SB peak/plateau shifts) but more poorly reproduces the disk's brightness asymmetry and the profile at wider separations (r > 110 AU). Although there may be a1ternate explanations, agreement between the SW disk brightness peak and disk's peak rom emission is consistent with an overdensity of very small, sub-blowout-sized dust and large, 0.1 - 1 mm-sized grains at approx equal 45 AU tracing the same parent population of planetesimals. New near-IR and submm observations may be able to clarify whether even more complex grain scattering properties or dynamical sculpting by an unseen planet are required to explain HD 32297's disk structure.
The nucleus of Comet Borrelly: A study of morphology and surface brightness
Oberst, J.; Howington-Kraus, E.; Kirk, R.; Soderblom, L.; Buratti, B.; Hicks, M.; Nelson, R.; Britt, D.
2004-01-01
Stereo images obtained during the DS1 flyby were analyzed to derive a topographic model for the nucleus of Comet 19P/Borrelly for morphologic and photometric studies. The elongated nucleus has an overall concave shape, resembling a peanut, with the lower end tilted towards the camera. The bimodal character of surface-slopes and curvatures support the idea that the nucleus is a gravitational aggregate, consisting of two fragments in contact. Our photometric modeling suggests that topographic shading effects on Borrelly's surface are very minor (<10%) at the given resolution of the terrain model. Instead, albedo effects are thought to dominate Borrelly's large variations in surface brightness. With 90% of the visible surface having single scattering albedos between 0.008 and 0.024, Borrelly is confirmed to be among the darkest of the known Solar System objects. Photometrically corrected images emphasize that the nucleus has distinct, contiguous terrains covered with either bright or dark, smooth or mottled materials. Also, mapping of the changes in surface brightness with phase angle suggests that terrain roughness at subpixel scale is not uniform over the nucleus. High surface roughness is noted in particular near the transition between the upper and lower end of the nucleus, as well as near the presumed source region of Borrelly's main jets. Borrelly's surface is complex and characterized by distinct types of materials that have different compositional and/or physical properties. ?? 2003 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, C. L.; Walter, F.; Chluba, J.
We present direct estimates of the mean sky brightness temperature in observing bands around 99 and 242 GHz due to line emission from distant galaxies. These values are calculated from the summed line emission observed in a blind, deep survey for spectral line emission from high redshift galaxies using ALMA (the ALMA spectral deep field observations “ASPECS” survey). In the 99 GHz band, the mean brightness will be dominated by rotational transitions of CO from intermediate and high redshift galaxies. In the 242 GHz band, the emission could be a combination of higher order CO lines, and possibly [C ii]more » 158 μ m line emission from very high redshift galaxies ( z ∼ 6–7). The mean line surface brightness is a quantity that is relevant to measurements of spectral distortions of the cosmic microwave background, and as a potential tool for studying large-scale structures in the early universe using intensity mapping. While the cosmic volume and the number of detections are admittedly small, this pilot survey provides a direct measure of the mean line surface brightness, independent of conversion factors, excitation, or other galaxy formation model assumptions. The mean surface brightness in the 99 GHZ band is: T{sub B} = 0.94 ± 0.09 μ K. In the 242 GHz band, the mean brightness is: T{sub B} = 0.55 ± 0.033 μ K. These should be interpreted as lower limits on the average sky signal, since we only include lines detected individually in the blind survey, while in a low resolution intensity mapping experiment, there will also be the summed contribution from lower luminosity galaxies that cannot be detected individually in the current blind survey.« less
NASA Astrophysics Data System (ADS)
Lubin, Lori M.; Sandage, Allan
2001-09-01
Photometric data for 34 early-type galaxies in the three high-redshift clusters Cl 1324+3011 (z=0.76), Cl 1604+4304 (z=0.90), and Cl 1604+4321 (z=0.92), observed with the Hubble Space Telescope (HST) and with the Keck 10 m telescopes by Oke, Postman, & Lubin, are analyzed to obtain the photometric parameters of mean surface brightness, magnitudes for the growth curves, and angular radii at various Petrosian η radii. The angular radii at η=1.3 mag for the program galaxies are all larger than 0.24". All the galaxies are well resolved at this angular size using HST, whose point-spread function is 0.05", half-width at half-maximum. The data for each of the program galaxies are listed at η=1.0, 1.3, 1.5, 1.7, and 2.0 mag. They are corrected by color equations and K-terms for the effects of redshift to the rest-frame Cape/Cousins I for Cl 1324+3011 and Cl 1604+4304 and R for Cl 1604+4321. The K-corrections are calculated from synthetic spectral energy distributions derived from evolving stellar population models of Bruzual & Charlot, that have been fitted to the observed broadband (BVRI) AB magnitudes of each program galaxy. The listed photometric data are independent of all cosmological parameters. They are the source data for the Tolman surface brightness test made in Paper IV.
NASA Technical Reports Server (NTRS)
Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan
2010-01-01
In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.
Galaxy Selection and the Surface Brightness Distribution
NASA Astrophysics Data System (ADS)
McGaugh, Stacy S.; Bothun, Gregory D.; Schombert, James M.
1995-08-01
Optical surveys for galaxies are biased against the inclusion of low surface brightness (LSB) galaxies. Disney [Nature, 263,573(1976)] suggested that the constancy of disk central surface brightness noticed by Freeman [ApJ, 160,811(1970)] was not a physical result, but instead was an artifact of sample selection. Since LSB galaxies do exist, the pertinent and still controversial issue is if these newly discovered galaxies constitute a significant percentage of the general galaxy population. In this paper, we address this issue by determining the space density of galaxies as a function of disk central surface brightness. Using the physically reasonable assumption (which is motivated by the data) that central surface brightness is independent of disk scale length, we arrive at a distribution which is roughly flat (i.e., approximately equal numbers of galaxies at each surface brightness) faintwards of the Freeman (1970) value. Brightwards of this, we find a sharp decline in the distribution which is analogous to the turn down in the luminosity function at L^*^. An intrinsically sharply peaked "Freeman law" distribution can be completely ruled out, and no Gaussian distribution can fit the data. Low surface brightness galaxies (those with central surface brightness fainter than 22 B mag arcsec^-2^) comprise >~ 1/2 the general galaxy population, so a representative sample of galaxies at z = 0 does not really exist at present since past surveys have been insensitive to this component of the general galaxy population.
Proposal for Research on High-Brightness Cathodes for High-Power Free-Electron Lasers (FEL)
2013-05-09
recent experiments involving single crystal diamond amplifier cathodes (DAC) at Brookhaven National Laboratory ( BNL ). While the emission surface of our...diamond grain in the entire structure, both surface and interior, is passivated with hydrogen. The aforementioned studies at BNL found that
Discovery of Diffuse Dwarf Galaxy Candidates around M101
NASA Astrophysics Data System (ADS)
Bennet, P.; Sand, D. J.; Crnojević, D.; Spekkens, K.; Zaritsky, D.; Karunakaran, A.
2017-11-01
We have conducted a search of a 9 deg2 region of the Canada-France-Hawaii-Telescope Legacy Survey around the Milky Way analog M101 (D ˜ 7 Mpc), in order to look for previously unknown low-surface-brightness galaxies. This search has uncovered 38 new low-surface-brightness dwarf candidates, and confirmed 11 previously reported galaxies, all with central surface brightness μ(g, 0) > 23 mag arcsec-2, potentially extending the satellite luminosity function for the M101 group by ˜1.2 mag. The search was conducted using an algorithm that nearly automates the detection of diffuse dwarf galaxies. The candidates’ small sizes and low surface brightnesses mean that the faintest of these objects would likely be missed by traditional visual or computer detection techniques. The dwarf galaxy candidates span a range of -7.1 ≥ M g ≥ -10.2 and half-light radii of 118-540 pc at the distance of M101, and they are well fit by simple Sérsic surface brightness profiles. These properties are consistent with dwarfs in the Local Group, and to match the Local Group luminosity function, ˜10-20 of these candidates should be satellites of M101. Association with a massive host is supported by the lack of detected star formation and the overdensity of candidates around M101 compared to the field. The spatial distribution of the dwarf candidates is highly asymmetric, and concentrated to the northeast of M101, therefore distance measurements will be required to determine if these are genuine members of the M101 group.
NASA Astrophysics Data System (ADS)
Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.
2018-01-01
Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Jenkins, Thomas P.; Allison, Stephen W.; Wolfe, Douglas E.; Howard, Robert P.
2013-01-01
Luminescence-based surface temperature measurements from an ultra-bright Cr-doped GdAlO3 perovskite (GAP:Cr) coating were successfully conducted on an air-film-cooled stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing at UTSI was to demonstrate that reliable thermal barrier coating (TBC) surface temperatures based on luminescence decay of a thermographic phosphor could be obtained from the surface of an actual engine component in an aggressive afterburner flame environment and to address the challenges of a highly radiant background and high velocity gases. A high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine was coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick GAP:Cr thermographic phosphor layer was deposited by EB-PVD. The ultra-bright broadband luminescence from the GAP:Cr thermographic phosphor is shown to offer the advantage of over an order-of-magnitude greater emission intensity compared to rare-earth-doped phosphors in the engine test environment. This higher emission intensity was shown to be very desirable for overcoming the necessarily restricted probe light collection solid angle and for achieving high signal-to-background levels. Luminescence-decay-based surface temperature measurements varied from 500 to over 1000C depending on engine operating conditions and level of air film cooling.
Brightness and transparency in the early visual cortex.
Salmela, Viljami R; Vanni, Simo
2013-06-24
Several psychophysical studies have shown that transparency can have drastic effects on brightness and lightness. However, the neural processes generating these effects have remained unresolved. Several lines of evidence suggest that the early visual cortex is important for brightness perception. While single cell recordings suggest that surface brightness is represented in the primary visual cortex, the results of functional magnetic resonance imaging (fMRI) studies have been discrepant. In addition, the location of the neural representation of transparency is not yet known. We investigated whether the fMRI responses in areas V1, V2, and V3 correlate with brightness and transparency. To dissociate the blood oxygen level-dependent (BOLD) response to brightness from the response to local border contrast and mean luminance, we used variants of White's brightness illusion, both opaque and transparent, in which luminance increments and decrements cancel each other out. The stimuli consisted of a target surface and a surround. The surround luminance was always sinusoidally modulated at 0.5 Hz to induce brightness modulation to the target. The target luminance was constant or modulated in counterphase to null brightness modulation. The mean signal changes were calculated from the voxels in V1, V2, and V3 corresponding to the retinotopic location of the target surface. The BOLD responses were significantly stronger for modulating brightness than for stimuli with constant brightness. In addition, the responses were stronger for transparent than for opaque stimuli, but there was more individual variation. No interaction between brightness and transparency was found. The results show that the early visual areas V1-V3 are sensitive to surface brightness and transparency and suggest that brightness and transparency are represented separately.
Development of Yellow Sand Image Products Using Infrared Brightness Temperature Difference Method
NASA Astrophysics Data System (ADS)
Ha, J.; Kim, J.; Kwak, M.; Ha, K.
2007-12-01
A technique for detection of airborne yellow sand dust using meteorological satellite has been developed from various bands from ultraviolet to infrared channels. Among them, Infrared (IR) channels have an advantage of detecting aerosols over high reflecting surface as well as during nighttime. There had been suggestion of using brightness temperature difference (BTD) between 11 and 12¥ìm. We have found that the technique is highly depends on surface temperature, emissivity, and zenith angle, which results in changing the threshold of BTD. In order to overcome these problems, we have constructed the background brightness temperature threshold of BTD and then aerosol index (AI) has been determined from subtracting the background threshold from BTD of our interested scene. Along with this, we utilized high temporal coverage of geostationary satellite, MTSAT, to improve the reliability of the determined AI signal. The products have been evaluated by comparing the forecasted wind field with the movement fiend of AI. The statistical score test illustrates that this newly developed algorithm produces a promising result for detecting mineral dust by reducing the errors with respect to the current BTD method.
The Origin of Regional Dust Deposits on Mars
NASA Technical Reports Server (NTRS)
Christensen, P. R.
1985-01-01
Recently, additional evidence was derived from the Viking Infrared Thermal Mapper observations that allows a more complete model for the formation of Low Thermal inertia-high Albedo regions to be proposed. The first observation is that dust appears to be currently accumulating in the low thermal inertia regions. Following each global dust storm a thin layer of dust is deposited globally, as evidenced by an increase in surface albedo seen from orbit and from the Viking Lander sites. During the period following the storm, the bright dust fallout is subsequently removed from low albedo regions, as indicated by the post-storm darkening of these surfaces and by an increase in the atmospheric dust content over dark regions relative to the bright, low thermal inertia regions. Thus, the fine dust storm material is removed from dark regions but not from the bright regions, resulting in a net accumulation within the bright, low thermal inertia regions. Once deposition has begun, the covering of exposed rocks and sand and the accumulation of fine material on the surface make removal of material increasingly difficult, thereby enhancing the likelihood that material will accumulate within the low thermal inertia regions.
NASA Technical Reports Server (NTRS)
White, Raymond E., III
1998-01-01
This final report uses ROSAT observations to analyze two different studies. These studies are: Analysis of Mass Profiles and Cooling Flows of Bright, Early-Type Galaxies; and Surface Brightness Profiles and Energetics of Intracluster Gas in Cool Galaxy Clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Thomas; Girichidis, Philipp; Gatto, Andrea
2015-11-10
The halo of the Milky Way contains a hot plasma with a surface brightness in soft X-rays of the order 10{sup −12} erg cm{sup −2} s{sup −1} deg{sup −2}. The origin of this gas is unclear, but so far numerical models of galactic star formation have failed to reproduce such a large surface brightness by several orders of magnitude. In this paper, we analyze simulations of the turbulent, magnetized, multi-phase interstellar medium including thermal feedback by supernova explosions as well as cosmic-ray feedback. We include a time-dependent chemical network, self-shielding by gas and dust, and self-gravity. Pure thermal feedback alonemore » is sufficient to produce the observed surface brightness, although it is very sensitive to the supernova rate. Cosmic rays suppress this sensitivity and reduce the surface brightness because they drive cooler outflows. Self-gravity has by far the largest effect because it accumulates the diffuse gas in the disk in dense clumps and filaments, so that supernovae exploding in voids can eject a large amount of hot gas into the halo. This can boost the surface brightness by several orders of magnitude. Although our simulations do not reach a steady state, all simulations produce surface brightness values of the same order of magnitude as the observations, with the exact value depending sensitively on the simulation parameters. We conclude that star formation feedback alone is sufficient to explain the origin of the hot halo gas, but measurements of the surface brightness alone do not provide useful diagnostics for the study of galactic star formation.« less
Low-Surface-Brightness Galaxies: Hidden Galaxies Revealed
NASA Astrophysics Data System (ADS)
Bothun, G.; Impey, C.; McGaugh, S.
1997-07-01
In twenty years, low surface brightness (LSB) galaxies have evolved from being an idiosyncratic notion to being one of the major baryonic repositories in the Universe. The story of their discovery and the characterization of their properties is told here. Their recovery from the noise of the night sky background is a strong testament to the severity of surface brightness selection effects. LSB galaxies have a number of remarkable properties which distinguish them from the more familiar Hubble Sequence of spirals. The two most important are 1) they evolve at a significantly slower rate and may well experience star formation outside of the molecular cloud environment, 2) they are embedded in dark matter halos which are of lower density and more extended than the halos around high surface brightness (HSB) disk galaxies. Compared to HSB disks, LSB disks are strongly dark matter dominated at all radii and show a systematic increase in $M/L$ with decreasing central surface brightness. In addition, the recognition that large numbers of LSB galaxies actually exist has changed the form of the galaxy luminosity function and has clearly increased the space density of galaxies at z =0. Recent CCD surveys have uncovered a population of red LSB disks that may be related to the excess of faint blue galaxies detected at moderate redshifts. LSB galaxies offer us a new window into galaxy evolution and formation which is every bit as important as those processes which have produced easy to detect galaxies. Indeed, the apparent youth of some LSB galaxies suggest that galaxy formation is a greatly extended process. While the discovery of LSB galaxies have lead to new insights, it remains unwise to presume that we now have a representative sample which encompasses all galaxy types and forms. (SECTION: Invited Review Paper)
NASA Astrophysics Data System (ADS)
Abramov, D. V.; Arakelyan, S. M.; Galkin, A. F.; Klimovskii, Ivan I.; Kucherik, A. O.; Prokoshev, V. G.
2006-06-01
The video image of the graphite surface exposed to focused laser radiation is obtained with the help of a laser monitor. A bright ring moving over the heated surface was observed. A method for reconstructing the surface relief from the video image is proposed and realised. The method is based on the measurement of the angular distribution of the light intensity scattered by the graphite sample surface. The surface relief of the graphite sample changing in time is reconstructed. The relative change in the relief height during laser excitation is measured. The statistical characteristics of the reconstructed graphite surface shape and their variation during laser irradiation are studied. It is found that a circular convexity appears within the bright ring. The formation mechanism of this convexity requires further investigations.
Forward-Looking Infrared Cameras for Micrometeorological Applications within Vineyards
Katurji, Marwan; Zawar-Reza, Peyman
2016-01-01
We apply the principles of atmospheric surface layer dynamics within a vineyard canopy to demonstrate the use of forward-looking infrared cameras measuring surface brightness temperature (spectrum bandwidth of 7.5 to 14 μm) at a relatively high temporal rate of 10 s. The temporal surface brightness signal over a few hours of the stable nighttime boundary layer, intermittently interrupted by periods of turbulent heat flux surges, was shown to be related to the observed meteorological measurements by an in situ eddy-covariance system, and reflected the above-canopy wind variability. The infrared raster images were collected and the resultant self-organized spatial cluster provided the meteorological context when compared to in situ data. The spatial brightness temperature pattern was explained in terms of the presence or absence of nighttime cloud cover and down-welling of long-wave radiation and the canopy turbulent heat flux. Time sequential thermography as demonstrated in this research provides positive evidence behind the application of thermal infrared cameras in the domain of micrometeorology, and to enhance our spatial understanding of turbulent eddy interactions with the surface. PMID:27649208
NASA Astrophysics Data System (ADS)
van Dokkum, Pieter
2016-10-01
We are obtaining deep, wide field images of nearby galaxies with the Dragonfly Telephoto Array. This telescope is optimized for low surface brightness imaging, and we are finding many low surface brightness objects in the Dragonfly fields. In Cycle 22 we obtained ACS imaging for 7 galaxies that we had discovered in a Dragonfly image of the galaxy M101. Unexpectedly, the ACS data show that only 3 of the galaxies are members of the M101 group, and the other 4 are very large Ultra Diffuse Galaxies (UDGs) at much greater distance. Building on our Cycle 22 program, here we request ACS imaging for 23 newly discovered low surface brightness objects in four Dragonfly fields centered on the galaxies NGC 1052, NGC 1084, NGC 3384, and NGC 4258. The immediate goals are to construct the satellite luminosity functions in these four fields and to constrain the number density of UDGs that are not in rich clusters. More generally, this complete sample of extremely low surface brightness objects provides the first systematic insight into galaxies whose brightness peaks at >25 mag/arcsec^2.
Unveiling the Low Surface Brightness Stellar Peripheries of Galaxies
NASA Astrophysics Data System (ADS)
Ferguson, Annette M. N.
2018-01-01
The low surface brightness peripheral regions of galaxies contain a gold mine of information about how minor mergers and accretions have influenced their evolution over cosmic time. Enormous stellar envelopes and copious amounts of faint tidal debris are natural outcomes of the hierarchical assembly process and the search for and study of these features, albeit highly challenging, offers the potential for unrivalled insight into the mechanisms of galaxy growth. Over the last two decades, there has been burgeoning interest in probing galaxy outskirts using resolved stellar populations. Wide-field surveys have uncovered vast tidal debris features and new populations of very remote globular clusters, while deep Hubble Space Telescope photometry has provided exquisite star formation histories back to the earliest epochs. I will highlight some recent results from studies within and beyond the Local Group and conclude by briefly discussing the great potential of future facilities, such as JWST, Euclid, LSST and WFIRST, for major breakthroughs in low surface brightness galaxy periphery science.
The Barnes-Evans color-surface brightness relation: A preliminary theoretical interpretation
NASA Technical Reports Server (NTRS)
Shipman, H. L.
1980-01-01
Model atmosphere calculations are used to assess whether an empirically derived relation between V-R and surface brightness is independent of a variety of stellar paramters, including surface gravity. This relationship is used in a variety of applications, including the determination of the distances of Cepheid variables using a method based on the Beade-Wesselink method. It is concluded that the use of a main sequence relation between V-R color and surface brightness in determining radii of giant stars is subject to systematic errors that are smaller than 10% in the determination of a radius or distance for temperature cooler than 12,000 K. The error in white dwarf radii determined from a main sequence color surface brightness relation is roughly 10%.
Triton - Scattering models and surface/atmosphere constraints
NASA Technical Reports Server (NTRS)
Thompson, W. Reid
1989-01-01
Modeling of Triton's spectrum indicates a bright scattering layer of optical depth tau about 3 overlying an optically deep layer of CH4 with high absorption and little scattering. UV absorption in the spectrum indicates tau about 0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p = 0.62 + 0.18 or - 0.12 radius r = 1480 + or - 180 km, and temperature T = 48 + or - 6 K. With scattering optical depths of 0.3-3 and about 1-10 mb of N2, a Mars-like atmospheric density and surface visibility pertain.
Simulating a slow bar in the low surface brightness galaxy UGC 628
NASA Astrophysics Data System (ADS)
Chequers, Matthew H.; Spekkens, Kristine; Widrow, Lawrence M.; Gilhuly, Colleen
2016-12-01
We present a disc-halo N-body model of the low surface brightness galaxy UGC 628, one of the few systems that harbours a `slow' bar with a ratio of corotation radius to bar length of R ≡ R_c/a_b ˜ 2. We select our initial conditions using SDSS DR10 photometry, a physically motivated radially variable mass-to-light ratio profile, and rotation curve data from the literature. A global bar instability grows in our submaximal disc model, and the disc morphology and dynamics agree broadly with the photometry and kinematics of UGC 628 at times between peak bar strength and the onset of buckling. Prior to bar formation, the disc and halo contribute roughly equally to the potential in the galaxy's inner region, giving the disc enough self-gravity for bar modes to grow. After bar formation, there is significant mass redistribution, creating a baryon-dominated inner and dark matter-dominated outer disc. This implies that, unlike most other low surface brightness galaxies, UGC 628 is not dark matter dominated everywhere. Our model nonetheless implies that UGC 628 falls on the same relationship between dark matter fraction and rotation velocity found for high surface brightness galaxies, and lends credence to the argument that the disc mass fraction measured at the location where its contribution to the potential peaks is not a reliable indicator of its dynamical importance at all radii.
Nagoshi, Masayasu; Aoyama, Tomohiro; Sato, Kaoru
2013-01-01
Secondary electron microscope (SEM) images have been obtained for practical materials using low primary electron energies and an in-lens type annular detector with changing negative bias voltage supplied to a grid placed in front of the detector. The kinetic-energy distribution of the detected electrons was evaluated by the gradient of the bias-energy dependence of the brightness of the images. This is divided into mainly two parts at about 500 V, high and low brightness in the low- and high-energy regions, respectively and shows difference among the surface regions having different composition and topography. The combination of the negative grid bias and the pixel-by-pixel image subtraction provides the band-pass filtered images and extracts the material and topographic information of the specimen surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mattila, K.; Lehtinen, K.; Väisänen, P.; von Appen-Schnur, G.; Leinert, Ch.
2017-09-01
We present the method and observations for the measurement of the Extragalactic Background Light (EBL) utilizing the shadowing effect of a dark cloud. We measure the surface brightness difference between the opaque cloud core and its unobscured surroundings. In the difference the large atmospheric and Zodiacal light components are eliminated and the only remaining foreground component is the scattered starlight from the cloud itself. Although much smaller, its separation is the key problem in the method. For its separation we use spectroscopy. While the scattered starlight has the characteristic Fraunhofer lines and 400 nm discontinuity, the EBL spectrum is smooth and without these features. Medium resolution spectrophotometry at λ = 380-580 nm was performed with VLT/FORS at ESO of the surface brightness in and around the high-galactic-latitude dark cloud Lynds 1642. Besides the spectrum for the core with AV ≳ 15 mag, further spectra were obtained for intermediate-opacity cloud positions. They are used as proxy for the spectrum of the impinging starlight spectrum and to facilitate the separation of the scattered starlight (cf. Paper II; Mattila et al.). Our spectra reach a precision of ≲ 0.5 × 10-9 erg cm-2 s-1 sr-1 Å-1 as required to measure an EBL intensity in range of ˜1 to a few times 10-9 erg cm-2 s-1 sr-1 Å-1. Because all surface brightness components are measured using the same equipment, the method does not require unusually high absolute calibration accuracy, a condition that has been a problem for some previous EBL projects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, Allison; Van Dokkum, Pieter; Abraham, Roberto, E-mail: allison.merritt@yale.edu
2014-06-01
Dwarf satellite galaxies are a key probe of dark matter and of galaxy formation on small scales and of the dark matter halo masses of their central galaxies. They have very low surface brightness, which makes it difficult to identify and study them outside of the Local Group. We used a low surface brightness-optimized telescope, the Dragonfly Telephoto Array, to search for dwarf galaxies in the field of the massive spiral galaxy M101. We identify seven large, low surface brightness objects in this field, with effective radii of 10-30 arcseconds and central surface brightnesses of μ {sub g} ∼ 25.5-27.5 magmore » arcsec{sup –2}. Given their large apparent sizes and low surface brightnesses, these objects would likely be missed by standard galaxy searches in deep fields. Assuming the galaxies are dwarf satellites of M101, their absolute magnitudes are in the range –11.6 ≲ M{sub V} ≲ –9.3 and their effective radii are 350 pc-1.3 kpc. Their radial surface brightness profiles are well fit by Sersic profiles with a very low Sersic index (n ∼ 0.3-0.7). The properties of the sample are similar to those of well-studied dwarf galaxies in the Local Group, such as Sextans I and Phoenix. Distance measurements are required to determine whether these galaxies are in fact associated with M101 or are in its foreground or background.« less
GLOBAL PROPERTIES OF M31'S STELLAR HALO FROM THE SPLASH SURVEY. I. SURFACE BRIGHTNESS PROFILE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.
2012-11-20
We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 {+-} 0.2 and extends to amore » projected distance of at least {approx}175 kpc ({approx}2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects.« less
Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres
NASA Astrophysics Data System (ADS)
de Sanctis, M. C.; Raponi, A.; Ammannito, E.; Ciarniello, M.; Toplis, M. J.; McSween, H. Y.; Castillo-Rogez, J. C.; Ehlmann, B. L.; Carrozzo, F. G.; Marchi, S.; Tosi, F.; Zambon, F.; Capaccioni, F.; Capria, M. T.; Fonte, S.; Formisano, M.; Frigeri, A.; Giardino, M.; Longobardo, A.; Magni, G.; Palomba, E.; McFadden, L. A.; Pieters, C. M.; Jaumann, R.; Schenk, P.; Mugnuolo, R.; Raymond, C. A.; Russell, C. T.
2016-08-01
The typically dark surface of the dwarf planet Ceres is punctuated by areas of much higher albedo, most prominently in the Occator crater. These small bright areas have been tentatively interpreted as containing a large amount of hydrated magnesium sulfate, in contrast to the average surface, which is a mixture of low-albedo materials and magnesium phyllosilicates, ammoniated phyllosilicates and carbonates. Here we report high spatial and spectral resolution near-infrared observations of the bright areas in the Occator crater on Ceres. Spectra of these bright areas are consistent with a large amount of sodium carbonate, constituting the most concentrated known extraterrestrial occurrence of carbonate on kilometre-wide scales in the Solar System. The carbonates are mixed with a dark component and small amounts of phyllosilicates, as well as ammonium carbonate or ammonium chloride. Some of these compounds have also been detected in the plume of Saturn’s sixth-largest moon Enceladus. The compounds are endogenous and we propose that they are the solid residue of crystallization of brines and entrained altered solids that reached the surface from below. The heat source may have been transient (triggered by impact heating). Alternatively, internal temperatures may be above the eutectic temperature of subsurface brines, in which case fluids may exist at depth on Ceres today.
Local stability of galactic discs in modified dynamics
NASA Astrophysics Data System (ADS)
Shenavar, Hossein; Ghafourian, Neda
2018-04-01
The local stability of stellar and fluid discs, under a new modified dynamical model, is surveyed by using WKB approximation. The exact form of the modified Toomre criterion is derived for both types of systems and it is shown that the new model is, in all situations, more locally stable than Newtonian model. In addition, it has been proved that the central surface density of the galaxies plays an important role in the local stability in the sense that low surface brightness (LSB) galaxies are more stable than high surface brightness (HSBs). Furthermore, the growth rate in the new model is found to be lower than the Newtonian one. We found that, according to this model, the local instability is related to the ratio of surface density of the disc to a critical surface density Σcrit. We provide observational evidence to support this result based on star formation rate in HSBs and LSBs.
NASA Astrophysics Data System (ADS)
Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.
2015-12-01
We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.
Planetary camera observations of the double nucleus of M31
NASA Technical Reports Server (NTRS)
Lauer, Tod R.; Faber, S. M.; Groth, Edward J.; Shaya, Edward J.; Campbell, Bel; Code, Arthur; Currie, Douglas G.; Baum, William A.; Ewald, S. P.; Hester, J. J.
1993-01-01
HST Planetary Camera images obtained in the V and I band for M31 show its inner nucleus to consist of two components that are separated by 0.49 arcsec. The nuclear component with lower surface brightness closely coincides with the bulge photocenter and is argued to be at the kinematic center of the galaxy. It is surmised that, if dust absorption generates the asymmetric nuclear morphology observed, the dust grain size must either be exceptionally large, or the dust optical depth must be extremely high; the higher surface-brightness and off-center nuclear component may alternatively be a separate stellar system.
Soderblom, L.A.; Kirk, R.L.; Lunine, J.I.; Anderson, J.A.; Baines, K.H.; Barnes, J.W.; Barrett, J.M.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Cruikshank, D.P.; Elachi, C.; Janssen, M.A.; Jaumann, R.; Karkoschka, E.; Le Mouélic, Stéphane; Lopes, R.M.; Lorenz, R.D.; McCord, T.B.; Nicholson, P.D.; Radebaugh, J.; Rizk, B.; Sotin, Christophe; Stofan, E.R.; Sucharski, T.L.; Tomasko, M.G.; Wall, S.D.
2007-01-01
Titan's vast equatorial fields of RADAR-dark longitudinal dunes seen in Cassini RADAR synthetic aperture images correlate with one of two dark surface units discriminated as "brown" and "blue" in Visible and Infrared Mapping Spectrometer (VIMS) color composites of short-wavelength infrared spectral cubes (RGB as 2.0, 1.6, 1.3 ??m). In such composites bluer materials exhibit higher reflectance at 1.3 ??m and lower at 1.6 and 2.0 ??m. The dark brown unit is highly correlated with the RADAR-dark dunes. The dark brown unit shows less evidence of water ice suggesting that the saltating grains of the dunes are largely composed of hydrocarbons and/or nitriles. In general, the bright units also show less evidence of absorption due to water ice and are inferred to consist of deposits of bright fine precipitating tholin aerosol dust. Some set of chemical/mechanical processes may be converting the bright fine-grained aerosol deposits into the dark saltating hydrocarbon and/or nitrile grains. Alternatively the dark dune materials may be derived from a different type of air aerosol photochemical product than are the bright materials. In our model, both the bright aerosol and dark hydrocarbon dune deposits mantle the VIMS dark blue water ice-rich substrate. We postulate that the bright mantles are effectively invisible (transparent) in RADAR synthetic aperture radar (SAR) images leading to lack of correlation in the RADAR images with optically bright mantling units. RADAR images mostly show only dark dunes and the water ice substrate that varies in roughness, fracturing, and porosity. If the rate of deposition of bright aerosol is 0.001-0.01 ??m/yr, the surface would be coated (to optical instruments) in hundreds-to-thousands of years unless cleansing processes are active. The dark dunes must be mobile on this very short timescale to prevent the accumulation of bright coatings. Huygens landed in a region of the VIMS bright and dark blue materials and about 30 km south of the nearest occurrence of dunes visible in the RADAR SAR images. Fluvial/pluvial processes, every few centuries or millennia, must be cleansing the dark floors of the incised channels and scouring the dark plains at the Huygens landing site both imaged by Descent Imager/Spectral Radiometer (DISR). ?? 2007 Elsevier Ltd. All rights reserved.
Brightness checkerboard lattice method for the calibration of the coaxial reverse Hartmann test
NASA Astrophysics Data System (ADS)
Li, Xinji; Hui, Mei; Li, Ning; Hu, Shinan; Liu, Ming; Kong, Lingqin; Dong, Liquan; Zhao, Yuejin
2018-01-01
The coaxial reverse Hartmann test (RHT) is widely used in the measurement of large aspheric surfaces as an auxiliary method for interference measurement, because of its large dynamic range, highly flexible test with low frequency of surface errors, and low cost. And the accuracy of the coaxial RHT depends on the calibration. However, the calibration process remains inefficient, and the signal-to-noise ratio limits the accuracy of the calibration. In this paper, brightness checkerboard lattices were used to replace the traditional dot matrix. The brightness checkerboard method can reduce the number of dot matrix projections in the calibration process, thus improving efficiency. An LCD screen displayed a brightness checkerboard lattice, in which the brighter checkerboard and the darker checkerboard alternately arranged. Based on the image on the detector, the relationship between the rays at certain angles and the photosensitive positions of the detector coordinates can be obtained. And a differential de-noising method can effectively reduce the impact of noise on the measurement results. Simulation and experimentation proved the feasibility of the method. Theoretical analysis and experimental results show that the efficiency of the brightness checkerboard lattices is about four times that of the traditional dot matrix, and the signal-to-noise ratio of the calibration is significantly improved.
Iapetus: Major discoveries from the Cassini imaging experiment
NASA Astrophysics Data System (ADS)
Denk, T.; Neukum, G.; Schmedemann, N.; Roatsch, Th.; Thomas, P. C.; Helfenstein, P.; Turtle, E. P.; Porco, C. C.
2008-09-01
Over the course of more than three years orbiting Saturn, the Imaging Subsystem (ISS) [1] of the Cassini spacecraft has acquired high-resolution images of the Saturnian moon Iapetus during a number of flybys. The most recent and only targeted Iapetus flyby occured on 10 September 2007, and allowed a >50x closer look at the surface than any previous observation. The surface of Iapetus is heavily cratered down to the resolution limit of ~10 meters per pixel. The crater size-frequency distribution shows no measurable difference between the leading and the trailing hemisphere, arguing for planetocentric projectiles as the main impactor source. The equatorial ridge can now be clearly tracked along half of Iapetus's circumference, from ~50°W to ~245°W; it is mainly absent on the other hemisphere. However, we argue that it presumably spanned the full globe shortly after formation. Very small bright-ray and bright-rim craters have been detected deep within the dark hemisphere, suggestive for a dark blanket with a thickness in the order of decimeters to meters only. On the trailing side at low and mid-latitudes, very dark terrain is located immediately adjacent to bright terrain, with almost no gray shading in between. In many cases, crater walls facing towards the equator are dark, while poleward-facing walls and slopes are bright. This effect vanishes at both north and south high latitudes. We interpret these observations to indicate that thermal segregation of water ice is responsible for these complex small-scale dark-bright patterns. On the trailing side, a bright polar cap has been observed at high latitudes on both hemispheres (north and south). A global color dichotomy has been detected in addition to the long-known global brightness dichotomy, with the leading side showing a significantly redder color than the trailing side. Unlike the more ellipsoidal-shaped brightness dichotomy, the color dichotomy is quite well separated into two different hemispheres, with the sub-Saturn (~0°W) and anti-Saturn (~180°W) meridians as the approximate boundaries [2]. This global pattern indicates an exogenic origin. Earlier hypotheses for the origin of the brightness dichotomy, like the infall of dust from retrograde outer moons, might actually offer a better explanation for the color dichotomy than for the brightness dichotomy. We propose that this so far unknown process forming the color dichotomy has also reddened and somewhat darkened Hyperion, another moon of Saturn. The color dichotomy also provides a key element to the explanation of the brightness dichotomy in the model of Spencer et al. [3]. References [1] Porco, C.C. et al. (2004) Space Sci. Rev.115, 363. [2] Denk, T. et al. (2006) EGU06-A-08352. [3] Spencer, J.R. et al. (2005) 37th DPS, abstract 39.08.
Chemical abundances in low surface brightness galaxies: Implications for their evolution
NASA Technical Reports Server (NTRS)
Mcgaugh, S. S.; Bothun, G. D.
1993-01-01
Low Surface Brightness (LSB) galaxies are an important but often neglected part of the galaxy content of the universe. Their importance stems both from the selection effects which cause them to be under-represented in galaxy catalogs, and from what they can tell us about the physical processes of galaxy evolution that has resulted in something other than the traditional Hubble sequence of spirals. An important constraint for any evolutionary model is the present day chemical abundances of LSB disks. Towards this end, spectra for a sample of 75 H 2 regions distributed in 20 LSB disks galaxies were obtained. Structurally, this sample is defined as having B(0) fainter than 23.0 mag arcsec(sup -2) and scale lengths that cluster either around 3 kpc or 10 kpc. In fact, structurally, these galaxies are very similar to the high surface brightness spirals which define the Hubble sequence. Thus, our sample galaxies are not dwarf galaxies but instead have masses comparable to or in excess of the Milky Way. The basic results from these observations are summarized.
Modeling of Diamond Field-Emitter-Arrays for high brightness photocathode applications
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Piryatinski, Andrei; Lewellen, John; Nichols, Kimberly; Choi, Bo; Pavlenko, Vitaly; Shchegolkov, Dmitry; Nguyen, Dinh; Andrews, Heather; Simakov, Evgenya
2017-10-01
We propose to employ Diamond Field-Emitter-Arrays (DFEAs) as high-current-density ultra-low-emittance photocathodes for compact laser-driven dielectric accelerators capable of generating ultra-high brightness electron beams for advanced applications. We develop a semi-classical Monte-Carlo photoemission model for DFEAs that includes carriers' transport to the emitter surface and tunneling through the surface under external fields. The model accounts for the electronic structure size quantization affecting the transport and tunneling process within the sharp diamond tips. We compare this first principle model with other field emission models, such as the Child-Langmuir and Murphy-Good models. By further including effects of carrier photoexcitation, we perform simulations of the DFEAs' photoemission quantum yield and the emitted electron beam. Details of the theoretical model and validation against preliminary experimental data will be presented. Work ssupported by LDRD program at LANL.
Performance of the K+ ion diode in the 2 MV injector for heavy ion fusion
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.
2002-02-01
Heavy ion beam inertial fusion driver concepts depend on the availability and performance of high-brightness high-current ion sources. Surface ionization sources have relatively low current density but high brightness because of the low temperature of the emitted ions. We have measured the beam profiles at the exit of the injector diode, and compared the measured profiles with EGUN and WARP-3D predictions. Spherical aberrations are significant in this large aspect ratio diode. We discuss the measured and calculated beam size and beam profiles, the effect of aberrations, quality of vacuum, and secondary electron distributions on the beam profile.
Surface temperatures and retention of H2O frost on Ganymede and Callisto
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1980-01-01
Surface temperatures and ice evaporation rates are calculated for Ganymede and Callisto as functions of latitude, time of day, and albedo, according to a model that uses surface thermal properties determined by eclipse radiometry and albedos determined from photometrically decalibrated Voyager images. The difference in temperature between Ganymede and Callisto is not great enough to account for the lack of bright polar caps on Callisto, which seems instead to reflect a real deficiency in the amount of available water frost relative to Ganymede. The temperature difference between Ganymede's grooved and cratered terrains also cannot account for the high concentration of bright ray craters in the former, suggesting that an internal geologic process has enriched the grooved terrain in ice content relative to the cratered terrain.
Global Monitoring of Martian Surface Albedo Changes from Orbital Observations
NASA Astrophysics Data System (ADS)
Geissler, P.; Enga, M.; Mukherjee, P.
2013-12-01
Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place relentlessly in all seasons as bright dust and dark sand battle to dominate the landscape. Elsewhere, gradual processes steadily shift albedo boundaries between bright and dark terrain. Dark terrain near the Spirit rover landing site is gradually spreading to the north, driven by seasonal southerly winds. A bright fringe of newly deposited dust appears ahead of the moving boundary, populated by wind streaks and dust avalanches. Dark terrain at higher latitudes gradually creeps towards the equator by the dust cleaning action of dust devils, for example at Nilosytis (43°N, 85°E). Much less obvious is the deposition and erosion of dust on already bright, dust-covered terrain. Changes in the distribution of fresh dust take place frequently in the region surrounding the Tharsis Montes. Dust in this high altitude zone is constantly on the move as faint dark streaks mark the removal of recently deposited dust that is only slightly brighter than the dust already settled on the surface. Dramatic deposition of dust onto dusty terrain took place at much lower elevations in northwestern Amazonis between 2002 and 2005. Since then, the dust has been energetically eroded by towering dust devils that cluster here each summer.
Erratum - the Lowest Surface Brightness Disc Galaxy Known
NASA Astrophysics Data System (ADS)
Davies, J. I.; Phillipps, S.; Disney, M. J.
1988-11-01
The paper "The lowest surface brightness disc galaxy known' by J.I. Davies, S. Phillipps and M.J. Disney was published in Mon. Not. R. astr. Soc. (1988), 231, 69p. The declination of the object given in section 2 of the paper is incorrect and should be changed to +19^deg^48'23". Thus the object cannot be identified with GP 1444 as in the original paper. To minimize confusion we propose to refer to the low surface brightness galaxy as GP 1444A.
Autofluorescence-Free Live-Cell Imaging Using Terbium Nanoparticles.
Cardoso Dos Santos, M; Goetz, J; Bartenlian, H; Wong, K-L; Charbonnière, L J; Hildebrandt, N
2018-04-18
Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and subcellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. The combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (∼10 μm 2 ) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.
Cassini radar views the surface of Titan.
Elachi, C; Wall, S; Allison, M; Anderson, Y; Boehmer, R; Callahan, P; Encrenaz, P; Flamini, E; Franceschetti, G; Gim, Y; Hamilton, G; Hensley, S; Janssen, M; Johnson, W; Kelleher, K; Kirk, R; Lopes, R; Lorenz, R; Lunine, J; Muhleman, D; Ostro, S; Paganelli, F; Picardi, G; Posa, F; Roth, L; Seu, R; Shaffer, S; Soderblom, L; Stiles, B; Stofan, E; Vetrella, S; West, R; Wood, C; Wye, L; Zebker, H
2005-05-13
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of approximately 0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.
Cassini radar views the surface of Titan
Elachi, C.; Wall, S.; Allison, M.; Anderson, Y.; Boehmer, R.; Callahan, P.; Encrenaz, P.; Flamini, E.; Franceschetti, G.; Gim, Y.; Hamilton, G.; Hensley, S.; Janssen, M.; Johnson, W.; Kelleher, K.; Kirk, R.; Lopes, R.; Lorenz, R.; Lunine, J.; Muhleman, D.; Ostro, S.; Paganelli, F.; Picardi, G.; Posa, F.; Roth, L.; Seu, R.; Shaffer, S.; Soderblom, L.; Stiles, B.; Stofan, E.; Vetrella, S.; West, R.; Wood, C.; Wye, L.; Zebker, H.
2005-01-01
The Cassini Titan Radar Mapper imaged about 1% of Titan's surface at a resolution of ???0.5 kilometer, and larger areas of the globe in lower resolution modes. The images reveal a complex surface, with areas of low relief and a variety of geologic features suggestive of dome-like volcanic constructs, flows, and sinuous channels. The surface appears to be young, with few impact craters. Scattering and dielectric properties are consistent with porous ice or organics. Dark patches in the radar images show high brightness temperatures and high emissivity and are consistent with frozen hydrocarbons.
Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.
2016-03-01
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.
High β effects on cosmic ray streaming in galaxy clusters
NASA Astrophysics Data System (ADS)
Wiener, Joshua; Zweibel, Ellen G.; Oh, S. Peng
2018-01-01
Diffuse, extended radio emission in galaxy clusters, commonly referred to as radio haloes, indicate the presence of high energy cosmic ray (CR) electrons and cluster-wide magnetic fields. We can predict from theory the expected surface brightness of a radio halo, given magnetic field and CR density profiles. Previous studies have shown that the nature of CR transport can radically effect the expected radio halo emission from clusters (Wiener, Oh & Guo 2013). Reasonable levels of magnetohydrodynamic (MHD) wave damping can lead to significant CR streaming speeds. But a careful treatment of MHD waves in a high β plasma, as expected in cluster environments, reveals damping rates may be enhanced by a factor of β1/2. This leads to faster CR streaming and lower surface brightnesses than without this effect. In this work, we re-examine the simplified, 1D Coma cluster simulations (with radial magnetic fields) of Wiener et al. (2013) and discuss observable consequences of this high β damping. Future work is required to study this effect in more realistic simulations.
Modeling Illumination Conditions on the Moon: Applications to LRO-LAMP
NASA Astrophysics Data System (ADS)
Byron, B. D.; Mazarico, E. M.; Retherford, K. D.; Mandt, K. E.; Greathouse, T.; Gladstone, R.
2017-12-01
LRO-LAMP is a UV spectrograph which uses illumination from Lyman-α sky glow along with UV light from bright stars to image the dark, permanently shadowed regions (PSRs) of the lunar surface. Accurate modeling of this UV illumination is essential to creating albedo maps of the lunar surface, which can shed light on lunar regolith processes and help to constrain the distribution of water ice in polar PSRs. In this study, the variation in reflected intensity received by the LAMP detector was modeled for South Pole crater Amundsen using the illumination program IllumNG. Amundsen was chosen for study due to the PSR in its Northern side and its highly illuminated equator-facing slopes on the Southern wall. The model works by tracing a ray from each LAMP detector pixel along its boresight until the point where it intersects the lunar surface, and calculating the percentage of the total source flux visible above the horizon. In this study, the three main illumination sources used are the Sun, Interplanetary Lyman-α sky glow, and bright UV starlight in the On Band (130-155 nm) and Off Band (155-190 nm) wavelength ranges. The model also has the capability to calculate incident flux received at the surface, as well as intensity reflected from the surface and received by the LAMP detector along each boresight. The study found a noticeable variation in received intensity between six month stretches for the year of 2010. Over the period of January through July, about 6% more IPM Lyman-α flux was reflected from the surface of Amundsen than for July through December. For stellar flux in the On Band, a 13% difference in flux was reflected between the six month periods. In comparing the monthly intensity maps created by the model with LAMP measured monthly brightness maps, similar crater features are apparent. Though the model brightness is generally higher than the LAMP brightness, after accounting for albedo ( 0.05 for the South Pole region) the values are in closer agreement. In the future, inclusion of the model results during pipeline processing could enable better calibration and analysis of LAMP data.
A high brightness source for nano-probe secondary ion mass spectrometry
NASA Astrophysics Data System (ADS)
Smith, N. S.; Tesch, P. P.; Martin, N. P.; Kinion, D. E.
2008-12-01
The two most prevalent ion source technologies in the field of surface analysis and surface machining are the Duoplasmatron and the liquid metal ion source (LMIS). There have been many efforts in this area of research to develop an alternative source [ S.K. Guharay, J. Orloff, M. Wada, IEEE Trans. Plasma Sci. 33 (6) (2005) 1911; N.S. Smith, W.P. Skoczylas, S.M. Kellogg, D.E. Kinion, P.P. Tesch, O. Sutherland, A. Aanesland, R.W. Boswell, J. Vac. Sci. Technol. B 24 (6) (2006) 2902-2906] with the brightness of a LMIS and yet the ability to produce secondary ion yield enhancing species such as oxygen. However, to date a viable alternative has not been realized. The high brightness and small virtual source size of the LMIS are advantageous for forming high resolution probes but a significant disadvantage when beam currents in excess of 100 nA are required, due to the effects of spherical aberration from the optical column. At these higher currents a source with a high angular intensity is optimal and in fact the relatively moderate brightness of today's plasma ion sources prevail in this operating regime. Both the LMIS and Duoplasmatron suffer from a large axial energy spread resulting in further limitations when forming focused beams at the chromatic limit where the figure-of-merit is inversely proportional to the square of the energy spread. Also, both of these ion sources operate with a very limited range of ion species. This article reviews some of the latest developments and some future potential in this area of instrument development. Here we present an approach to source development that could lead to oxygen ion beam SIMS imaging with 10 nm resolution, using a 'broad area' RF gas phase ion source.
Planetary science: A 5-micron-bright spot on Titan: Evidence for surface diversity
Barnes, J.W.; Brown, R.H.; Turtle, E.P.; McEwen, A.S.; Lorenz, R.D.; Janssen, M.; Schaller, E.L.; Brown, M.E.; Buratti, B.J.; Sotin, Christophe; Griffith, C.; Clark, R.; Perry, J.; Fussner, S.; Barbara, J.; West, R.; Elachi, C.; Bouchez, A.H.; Roe, H.G.; Baines, K.H.; Bellucci, G.; Bibring, J.-P.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D.L.; McCord, T.B.; Nicholson, P.D.; Sicardy, B.
2005-01-01
Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80??W and 20??S. This area is bright in reflected tight at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.
A 5-micron-bright spot on Titan: evidence for surface diversity.
Barnes, Jason W; Brown, Robert H; Turtle, Elizabeth P; McEwen, Alfred S; Lorenz, Ralph D; Janssen, Michael; Schaller, Emily L; Brown, Michael E; Buratti, Bonnie J; Sotin, Christophe; Griffith, Caitlin; Clark, Roger; Perry, Jason; Fussner, Stephanie; Barbara, John; West, Richard; Elachi, Charles; Bouchez, Antonin H; Roe, Henry G; Baines, Kevin H; Bellucci, Giancarlo; Bibring, Jean-Pierre; Capaccioni, Fabrizio; Cerroni, Priscilla; Combes, Michel; Coradini, Angioletta; Cruikshank, Dale P; Drossart, Pierre; Formisano, Vittorio; Jaumann, Ralf; Langevin, Yves; Matson, Dennis L; McCord, Thomas B; Nicholson, Phillip D; Sicardy, Bruno
2005-10-07
Observations from the Cassini Visual and Infrared Mapping Spectrometer show an anomalously bright spot on Titan located at 80 degrees W and 20 degrees S. This area is bright in reflected light at all observed wavelengths, but is most noticeable at 5 microns. The spot is associated with a surface albedo feature identified in images taken by the Cassini Imaging Science Subsystem. We discuss various hypotheses about the source of the spot, reaching the conclusion that the spot is probably due to variation in surface composition, perhaps associated with recent geophysical phenomena.
A Search for Low Surface Brightness Galaxies in the Ultraviolet with GALEX
NASA Astrophysics Data System (ADS)
Wyder, Ted K.; GALEX Science Team
2006-12-01
Low surface brightness (LSB) galaxies have traditionally been difficult to detect at visible wavelengths due to their low contrast with the night sky and their low numbers per deg2. We describe a new search for LSB galaxies using UV images from the Galaxy Evolution Explorer (GALEX) satellite. The images are from the GALEX Medium Imaging Survey targeting mainly areas of the sky within the Sloan Digital Sky Survey (SDSS) footprint. Due to the UV sky background at high Galactic latitudes reaching levels of only approximately 28 mag arcsec-2 as well as the relatively large sky coverage from GALEX, we can potentially search for LSB galaxies that would be difficult to detect optically.After first convolving the images with a suitable kernel, we select a diameter limited set of objects which we then inspect manually in order to remove image artifacts and other spurious detections. Red galaxies that have high optical surface brightness can be identified using either the ratio of far-UV to near-UV flux or via comparison to SDSS images. We quantify our selection limits using a set of artificial galaxy tests. Our goal is to find blue, ultra-LSB galaxies that would be virtually undetectable in large optical imaging surveys. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission.
NASA Technical Reports Server (NTRS)
Owe, Manfred; deJeu, Richard; Walker, Jeffrey; Zukor, Dorothy J. (Technical Monitor)
2001-01-01
A methodology for retrieving surface soil moisture and vegetation optical depth from satellite microwave radiometer data is presented. The procedure is tested with historical 6.6 GHz brightness temperature observations from the Scanning Multichannel Microwave Radiometer over several test sites in Illinois. Results using only nighttime data are presented at this time, due to the greater stability of nighttime surface temperature estimation. The methodology uses a radiative transfer model to solve for surface soil moisture and vegetation optical depth simultaneously using a non-linear iterative optimization procedure. It assumes known constant values for the scattering albedo and roughness. Surface temperature is derived by a procedure using high frequency vertically polarized brightness temperatures. The methodology does not require any field observations of soil moisture or canopy biophysical properties for calibration purposes and is totally independent of wavelength. Results compare well with field observations of soil moisture and satellite-derived vegetation index data from optical sensors.
NASA Astrophysics Data System (ADS)
Bouquin, Alexandre Y. K.; Gil de Paz, Armando; Muñoz-Mateos, Juan Carlos; Boissier, Samuel; Sheth, Kartik; Zaritsky, Dennis; Peletier, Reynier F.; Knapen, Johan H.; Gallego, Jesús
2018-02-01
We present new spatially resolved surface photometry in the far-ultraviolet (FUV) and near-ultraviolet (NUV) from images obtained by the Galaxy Evolution Explorer (GALEX) and IRAC1 (3.6 μm) photometry from the Spitzer Survey of Stellar Structure in Galaxies (S4G). We analyze the radial surface brightness profiles μ FUV, μ NUV, and μ [3.6], as well as the radial profiles of (FUV ‑ NUV), (NUV ‑ [3.6]), and (FUV ‑ [3.6]) colors in 1931 nearby galaxies (z < 0.01). The analysis of the 3.6 μm surface brightness profiles also allows us to separate the bulge and disk components in a quasi-automatic way and to compare their light and color distribution with those predicted by the chemo-spectrophotometric models for the evolution of galaxy disks of Boissier & Prantzos. The exponential disk component is best isolated by setting an inner radial cutoff and an upper surface brightness limit in stellar mass surface density. The best-fitting models to the measured scale length and central surface brightness values yield distributions of spin and circular velocity within a factor of two of those obtained via direct kinematic measurements. We find that at a surface brightness fainter than μ [3.6] = 20.89 mag arcsec‑2, or below 3 × 108 M ⊙ kpc‑2 in stellar mass surface density, the average specific star formation rate (sSFR) for star-forming and quiescent galaxies remains relatively flat with radius. However, a large fraction of GALEX Green Valley galaxies show a radial decrease in sSFR. This behavior suggests that an outside-in damping mechanism, possibly related to environmental effects, could be testimony of an early evolution of galaxies from the blue sequence of star-forming galaxies toward the red sequence of quiescent galaxies.
The Influence of a Sandy Substrate, Seagrass, or Highly Turbid Water on Albedo and Surface Heat Flux
NASA Astrophysics Data System (ADS)
Fogarty, M. C.; Fewings, M. R.; Paget, A. C.; Dierssen, H. M.
2018-01-01
Sea-surface albedo is a combination of surface-reflected and water-leaving irradiance, but water-leaving irradiance typically contributes less than 15% of the total albedo in open-ocean conditions. In coastal systems, however, the bottom substrate or suspended particulate matter can increase the amount of backscattered light, thereby increasing albedo and decreasing net shortwave surface heat flux. Here a sensitivity analysis using observations and models predicts the effect of light scattering on albedo and the net shortwave heat flux for three test cases: a bright sand bottom, a seagrass canopy, and turbid water. After scaling to the full solar shortwave spectrum, daytime average albedo for the test cases is up to 0.20 and exceeds the value of 0.05 predicted using a commonly applied parameterization. Daytime net shortwave heat flux into the water is significantly reduced, particularly for waters with bright sediments, dense horizontal seagrass canopies < 0.25 m from the sea surface, or highly turbid waters with suspended particulate matter concentration ≥ 50 g m-3. Observations of a more vertical seagrass canopy within 0.2 and 1 m of the surface indicate the increase in albedo compared to the common parameterization is negligible. Therefore, we suggest that the commonly applied albedo lookup table can be used in coastal heat flux estimates in water as shallow as 1 m unless the bottom substrate is highly reflective or the water is highly turbid. Our model results provide guidance to researchers who need to determine albedo in highly reflective or highly turbid conditions but have no direct observations.
The X-ray surface brightness distribution and spectral properties of six early-type galaxies
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Canizares, C. R.
1986-01-01
Detailed analysis is presented of the Einstein X-ray observations of six early-type galaxies. The results show that effective cooling is probably present in these systems, at least in the innermost regions. Interaction with the surrounding medium has a major effect on the X-ray surface brightness distribution at large radii, at least for galaxies in clusters. The data do not warrant the general assumptions of isothermality and gravitational hydrostatic equilibrium at large radii. Comparison of the X-ray surface brightness profiles with model predictions indicate that 1/r-squared halos with masses of the order of 10 times the stellar masses are required to match the data. The physical model of White and Chevalier (1984) for steady cooling flows in a King law potential with no heavy halo gives a surface brightness distribution that resembles the data if supernovae heating is present.
The nature of solar brightness variations
NASA Astrophysics Data System (ADS)
Shapiro, A. I.; Solanki, S. K.; Krivova, N. A.; Cameron, R. H.; Yeo, K. L.; Schmutz, W. K.
2017-09-01
Determining the sources of solar brightness variations1,2, often referred to as solar noise3, is important because solar noise limits the detection of solar oscillations3, is one of the drivers of the Earth's climate system4,5 and is a prototype of stellar variability6,7—an important limiting factor for the detection of extrasolar planets. Here, we model the magnetic contribution to solar brightness variability using high-cadence8,9 observations from the Solar Dynamics Observatory (SDO) and the Spectral And Total Irradiance REconstruction (SATIRE)10,11 model. The brightness variations caused by the constantly evolving cellular granulation pattern on the solar surface were computed with the Max Planck Institute for Solar System Research (MPS)/University of Chicago Radiative Magnetohydrodynamics (MURaM)12 code. We found that the surface magnetic field and granulation can together precisely explain solar noise (that is, solar variability excluding oscillations) on timescales from minutes to decades, accounting for all timescales that have so far been resolved or covered by irradiance measurements. We demonstrate that no other sources of variability are required to explain the data. Recent measurements of Sun-like stars by the COnvection ROtation and planetary Transits (CoRoT)13 and Kepler14 missions uncovered brightness variations similar to that of the Sun, but with a much wider variety of patterns15. Our finding that solar brightness variations can be replicated in detail with just two well-known sources will greatly simplify future modelling of existing CoRoT and Kepler as well as anticipated Transiting Exoplanet Survey Satellite16 and PLAnetary Transits and Oscillations of stars (PLATO)17 data.
Stellar systems in the direction of the Hickson Compact Group 44. I. Low surface brightness galaxies
NASA Astrophysics Data System (ADS)
Smith Castelli, A. V.; Faifer, F. R.; Escudero, C. G.
2016-11-01
Context. In spite of the numerous studies of low-luminosity galaxies in different environments, there is still no consensus about their formation scenario. In particular, a large number of galaxies displaying extremely low-surface brightnesses have been detected in the last year, and the nature of these objects is under discussion. Aims: In this paper we report the detection of two extended low-surface brightness (LSB) objects (μeffg' ≃ 27 mag) found, in projection, next to NGC 3193 and in the zone of the Hickson Compact Group (HCG) 44, respectively. Methods: We analyzed deep, high-quality, GEMINI-GMOS images with ELLIPSE within IRAF in order to obtain their brightness profiles and structural parameters. We also searched for the presence of globular clusters (GC) in these fields. Results: We have found that, if these LSB galaxies were at the distances of NGC 3193 and HCG 44, they would show sizes and luminosities similar to those of the ultra-diffuse galaxies (UDGs) found in the Coma cluster and other associations. In that case, their sizes would be rather larger than those displayed by the Local Group dwarf spheroidal (dSph) galaxies. We have detected a few unresolved sources in the sky zone occupied by these galaxies showing colors and brightnesses typical of blue globular clusters. Conclusions: From the comparison of the properties of the galaxies presented in this work with those of similar objects reported in the literature, we have found that LSB galaxies display sizes covering a quite extended continous range (reff 0.3-4.5 kpc), in contrast to "normal" early-type galaxies, which show reff 1.0 kpc with a low dispersion. This fact might point to different formation processes for both types of galaxies.
Compact Groups analysis using weak gravitational lensing II: CFHT Stripe 82 data
NASA Astrophysics Data System (ADS)
Chalela, Martín; Gonzalez, Elizabeth Johana; Makler, Martín; Lambas, Diego García; Pereira, Maria E. S.; O'mill, Ana; Shan, HuanYuan
2018-06-01
In this work we present a lensing study of Compact Groups (CGs) using data obtained from the high quality Canada-France-Hawaii Telescope Stripe 82 Survey. Using stacking techniques we obtain the average density contrast profile. We analyse the lensing signal dependence on the groups surface brightness and morphological content, for CGs in the redshift range z = 0.2 - 0.4. We obtain a larger lensing signal for CGs with higher surface brightness, probably due to their lower contamination by interlopers. Also, we find a strong dependence of the lensing signal on the group concentration parameter, with the most concentrated quintile showing a significant lensing signal, consistent with an isothermal sphere with σV = 336 ± 28 km/s and a NFW profile with R200 = 0.60 ± 0.05 h_{70}^{-1}Mpc. We also compare lensing results with dynamical estimates finding a good agreement with lensing determinations for CGs with higher surface brightness and higher concentration indexes. On the other hand, CGs that are more contaminated by interlopers show larger dynamical dispersions, since interlopers bias dynamical estimates to larger values, although the lensing signal is weakened.
The effect of monomolecular surface films on the microwave brightness temperature of the sea surface
NASA Technical Reports Server (NTRS)
Alpers, W.; Blume, H.-J. C.; Garrett, W. D.; Huehnerfuss, H.
1982-01-01
It is pointed out that monomolecular surface films of biological origin are often encountered on the ocean surface, especially in coastal regions. The thicknesses of the monomolecular films are of the order of 3 x 10 to the -9th m. Huehnerfuss et al. (1978, 1981) have shown that monomolecular surface films damp surface waves quite strongly in the centimeter to decimeter wavelength regime. Other effects caused by films are related to the reduction of the gas exchange at the air-sea interface and the decrease of the wind stress. The present investigation is concerned with experiments which reveal an unexpectedly large response of the microwave brightness temperature to a monomolecular oleyl alcohol slick at 1.43 GHz. Brightness temperature is a function of the complex dielectric constant of thy upper layer of the ocean. During six overflights over an ocean area covered with an artificial monomolecular alcohol film, a large decrease of the brightness temperature at the L-band was measured, while at the S-band almost no decrease was observed.
Li, Han-Zhen; Yu, Tong-Pu; Hu, Li-Xiang; Yin, Yan; Zou, De-Bin; Liu, Jian-Xun; Wang, Wei-Quan; Hu, Shun; Shao, Fu-Qiu
2017-09-04
We propose a novel scheme to generate ultra-bright ultra-short γ-ray flashes and high-energy-density attosecond positron bunches by using multi-dimensional particle-in-cell simulations with quantum electrodynamics effects incorporated. By irradiating a 10 PW laser pulse with an intensity of 10 23 W/cm 2 onto a micro-wire target, surface electrons are dragged-out of the micro-wire and are effectively accelerated to several GeV energies by the laser ponderomotive force, forming relativistic attosecond electron bunches. When these electrons interact with the probe pulse from the other side, ultra-short γ-ray flashes are emitted with an ultra-high peak brightness of 1.8 × 10 24 photons s -1 mm -2 mrad -2 per 0.1%BW at 24 MeV. These photons propagate with a low divergence and collide with the probe pulse, triggering the Breit-Wheeler process. Dense attosecond e - e + pair bunches are produced with the positron energy density as high as 10 17 J/m 3 and number of 10 9 . Such ultra-bright ultra-short γ-ray flashes and secondary positron beams may have potential applications in fundamental physics, high-energy-density physics, applied science and laboratory astrophysics.
Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile
NASA Astrophysics Data System (ADS)
Gilbert, Karoline M.; Guhathakurta, Puragra; Beaton, Rachael L.; Bullock, James; Geha, Marla C.; Kalirai, Jason S.; Kirby, Evan N.; Majewski, Steven R.; Ostheimer, James C.; Patterson, Richard J.; Tollerud, Erik J.; Tanaka, Mikito; Chiba, Masashi
2012-11-01
We present the surface brightness profile of M31's stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31's halo follows a power law with index -2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31's virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31's disk, consistent with a prolate halo, although the data are also consistent with M31's halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31's stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31's halo is also comprised to a significant degree of stars stripped from accreted objects. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Focusing metasurface quantum-cascade laser with a near diffraction-limited beam
Xu, Luyao; Chen, Daguan; Itoh, Tatsuo; ...
2016-10-17
A terahertz vertical-external-cavity surface-emitting-laser (VECSEL) is demonstrated using an active focusing reflectarray metasurface based on quantum-cascade gain material. The focusing effect enables a hemispherical cavity with flat optics, which exhibits higher geometric stability than a plano-plano cavity and a directive and circular near-diffraction limited Gaussian beam with M 2 beam parameter as low as 1.3 and brightness of 1.86 × 10 6 Wsr –1m –2. As a result, this work initiates the potential of leveraging inhomogeneous metasurface and reflectarray designs to achieve high-power and high-brightness terahertz quantum-cascade VECSELs.
2015-01-07
and anisotropic quadrilateral meshes, which can be used as the control mesh for high-order T- spline surface modeling. Archival publications (published...anisotropic T-meshes for the further T- spline surface construction. Finally, a gradient flow-based method is developed to improve the T-mesh quality...shade-off. Halos are bright or dark thin regions around the boundary of the sample. These false edges around the object make many segmentation
Chen, Zi-Yu; Pukhov, Alexander
2016-01-01
Ultrafast extreme ultraviolet (XUV) sources with a controllable polarization state are powerful tools for investigating the structural and electronic as well as the magnetic properties of materials. However, such light sources are still limited to only a few free-electron laser facilities and, very recently, to high-order harmonic generation from noble gases. Here we propose and numerically demonstrate a laser–plasma scheme to generate bright XUV pulses with fully controlled polarization. In this scheme, an elliptically polarized laser pulse is obliquely incident on a plasma surface, and the reflected radiation contains pulse trains and isolated circularly or highly elliptically polarized attosecond XUV pulses. The harmonic polarization state is fully controlled by the laser–plasma parameters. The mechanism can be explained within the relativistically oscillating mirror model. This scheme opens a practical and promising route to generate bright attosecond XUV pulses with desirable ellipticities in a straightforward and efficient way for a number of applications. PMID:27531047
The critical density for star formation in HII galaxies
NASA Technical Reports Server (NTRS)
Taylor, Christopher L.; Brinks, Elias; Skillman, Evan D.
1993-01-01
The star formation rate (SFR) in galaxies is believed to obey a power law relation with local gas density, first proposed by Schmidt (1959). Kennicutt (1989) has shown that there is a threshold density above which star formation occurs, and for densities at or near the threshold density, the DFR is highly non-linear, leading to bursts of star formation. Skillman (1987) empirically determined this threshold for dwarf galaxies to be approximately 1 x 10(exp 21) cm(exp -2), at a linear resolution of 500pc. During the course of our survey for HI companion clouds to HII galaxies, we obtained high resolution HI observations of five nearby HII galaxies. HII galaxies are low surface brightness, rich in HI, and contain one or a few high surface brightness knots whose optical spectra resemble those of HII regions. These knots are currently experiencing a burst of star formation. After Kennicutt (1989) we determine the critical density for star formation in the galaxies, and compare the predictions with radio and optical data.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1994-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrowbands at 8, 11, and 12 microns has been proposed by Ackerman et al. In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria, it is found that the brightness temperature differences between the 8- and 11-microns bands for soils, rocks, and minerals, and dry vegetation can vary between approximately -8 and +8 K due solely to surface emissivity variations. The large brightness temperature differences are sufficient to cause false detection of cirrus clouds from remote sensing data acquired over certain surface targets using the 8-11-12-microns method directly. It is suggested that the 8-11-12-microns method should be improved to include the surface emissivity effects. In addition, it is recommended that in the future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
Refinement in black chrome for use as a solar selective coating
NASA Technical Reports Server (NTRS)
Mcdonald, G. E.
1974-01-01
Black chrome is significant as a solar selective coating because the current extensive use of black chrome in the electroplating industry as a durable decorative finish makes black chrome widely available on a commercial scale and potentially low in cost as a solar selective coating. Black-chrome deposits were modified by underplating with dull nickel or by being plated on rough surfaces. Both of these procedures increased the visible absorptance. There was no change in the infrared reflectance for the dull-nickel - black-chrome combination from that reported for the bright-nickel - black-chrome combination. However, the bright-nickel - black-chrome coating plated on rough surfaces indicated a slight decrease in infrared reflectance. As integrated over the solar spectrum for air mass 2, the reflectance of the dull-nickel - black-chrome coating was 0.077, of the bright-nickel - black-chrome coating plated on a 0.75-micron (30-microinch) surface was 0.070, of the bright-nickel - black-chrome coating plated on a 2.5 micron (100-microinch) surface was 0.064. The corresponding values for the bright-nickel - black-chrome coating on a 0.0125-micron (0.5-microinch) surface, two samples of black nickel, and two samples of Nextrel black paint were 0.132, 0.123, 0.133, and 0.033, respectively.
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
Apparent Brightness and Topography Images of Vibidia Crater
2012-03-09
The left-hand image from NASA Dawn spacecraft shows the apparent brightness of asteroid Vesta surface. The right-hand image is based on this apparent brightness image, with a color-coded height representation of the topography overlain onto it.
Topographic Ceres Map With Crater Names
2015-07-28
This color-coded map from NASA Dawn mission shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. Occator, the mysterious crater containing Ceres' mysterious bright spots, is named after the Roman agriculture deity of harrowing, a method of leveling soil. They retain their bright appearance in this map, although they are color-coded in the same green elevation of the crater floor in which they sit. The color scale extends about 5 miles (7.5 kilometers) below the surface in indigo to 5 miles (7.5 kilometers) above the surface in white. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected as an simple cylindrical projection. http://photojournal.jpl.nasa.gov/catalog/PIA19606
VEGAS-SSS: A VST Programme to Study the Satellite Stellar Systems around Bright Early-type Galaxies
NASA Astrophysics Data System (ADS)
Cantiello, M.; Capaccioli, M.; Napolitano, N.; Grado, A.; Limatola, L.; Paolillo, M.; Iodice, E.; Romanowsky, A. J.; Forbes, D. A.; Raimondo, G.; Spavone, M.; La Barbera, F.; Puzia, T. H.; Schipani, P.
2015-03-01
The VEGAS-SSS programme is devoted to studying the properties of small stellar systems (SSSs) in and around bright galaxies, built on the VLT Survey Telescope early-type galaxy survey (VEGAS), an ongoing guaranteed time imaging survey distributed over many semesters (Principal Investigator: Capaccioli). On completion, the VEGAS survey will have collected detailed photometric information of ~ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, surface brightness fluctuations, etc.) and the distribution of clustered light (compact ''small'' stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, Karoline M.; Font, Andreea S.; Johnston, Kathryn V.
2009-08-10
Extensive photometric and spectroscopic surveys of the Andromeda galaxy (M31) have discovered tidal debris features throughout M31's stellar halo. We present stellar kinematics and metallicities in fields with identified substructure from our on-going SPLASH survey of M31 red giant branch stars with the DEIMOS spectrograph on the Keck II 10 m telescope. Radial velocity criteria are used to isolate members of the kinematically cold substructures. The substructures are shown to be metal-rich relative to the rest of the dynamically hot stellar population in the fields in which they are found. We calculate the mean metallicity and average surface brightness ofmore » the various kinematical components in each field, and show that, on average, higher surface brightness features tend to be more metal-rich than lower surface brightness features. Simulations of stellar halo formation via accretion in a cosmological context are used to illustrate that the observed trend can be explained as a natural consequence of the observed dwarf galaxy mass-metallicity relation. A significant spread in metallicity at a given surface brightness is seen in the data; we show that this is due to time effects, namely, the variation in the time since accretion of the tidal streams' progenitor onto the host halo. We show that in this theoretical framework a relationship between the alpha-enhancement and surface brightness of tidal streams is expected, which arises from the varying times of accretion of the progenitor satellites onto the host halo. Thus, measurements of the alpha-enrichment, metallicity, and surface brightness of tidal debris can be used to reconstruct the luminosity and time of accretion onto the host halo of the progenitors of tidal streams.« less
NASA Astrophysics Data System (ADS)
Kawahara, Hajime; Reese, Erik D.; Kitayama, Tetsu; Sasaki, Shin; Suto, Yasushi
2008-11-01
Our previous analysis indicates that small-scale fluctuations in the intracluster medium (ICM) from cosmological hydrodynamic simulations follow the lognormal probability density function. In order to test the lognormal nature of the ICM directly against X-ray observations of galaxy clusters, we develop a method of extracting statistical information about the three-dimensional properties of the fluctuations from the two-dimensional X-ray surface brightness. We first create a set of synthetic clusters with lognormal fluctuations around their mean profile given by spherical isothermal β-models, later considering polytropic temperature profiles as well. Performing mock observations of these synthetic clusters, we find that the resulting X-ray surface brightness fluctuations also follow the lognormal distribution fairly well. Systematic analysis of the synthetic clusters provides an empirical relation between the three-dimensional density fluctuations and the two-dimensional X-ray surface brightness. We analyze Chandra observations of the galaxy cluster Abell 3667, and find that its X-ray surface brightness fluctuations follow the lognormal distribution. While the lognormal model was originally motivated by cosmological hydrodynamic simulations, this is the first observational confirmation of the lognormal signature in a real cluster. Finally we check the synthetic cluster results against clusters from cosmological hydrodynamic simulations. As a result of the complex structure exhibited by simulated clusters, the empirical relation between the two- and three-dimensional fluctuation properties calibrated with synthetic clusters when applied to simulated clusters shows large scatter. Nevertheless we are able to reproduce the true value of the fluctuation amplitude of simulated clusters within a factor of 2 from their two-dimensional X-ray surface brightness alone. Our current methodology combined with existing observational data is useful in describing and inferring the statistical properties of the three-dimensional inhomogeneity in galaxy clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, Lea M. Z.; Hagen, Alex; Seibert, Mark
We provide evidence that UGC 1382, long believed to be a passive elliptical galaxy, is actually a giant low surface brightness (GLSB) galaxy that rivals the archetypical GLSB Malin 1 in size. Like other GLSB galaxies, it has two components: a high surface brightness disk galaxy surrounded by an extended low surface brightness (LSB) disk. For UGC 1382, the central component is a lenticular system with an effective radius of 6 kpc. Beyond this, the LSB disk has an effective radius of ∼38 kpc and an extrapolated central surface brightness of ∼26 mag arcsec{sup 2}. Both components have a combinedmore » stellar mass of ∼8 × 10{sup 10} M {sub ⊙}, and are embedded in a massive (10{sup 10} M {sub ⊙}) low-density (<3 M {sub ⊙} pc{sup 2}) HI disk with a radius of 110 kpc, making this one of the largest isolated disk galaxies known. The system resides in a massive dark matter halo of at least 2 × 10{sup 12} M {sub ⊙}. Although possibly part of a small group, its low-density environment likely plays a role in the formation and retention of the giant LSB and HI disks. We model the spectral energy distributions and find that the LSB disk is likely older than the lenticular component. UGC 1382 has UV–optical colors typical of galaxies transitioning through the green valley. Within the LSB disk are spiral arms forming stars at extremely low efficiencies. The gas depletion timescale of ∼10{sup 11} years suggests that UGC 1382 may be a very-long-term resident of the green valley. We find that the formation and evolution of the LSB disk in UGC 1382 is best explained by the accretion of gas-rich LSB dwarf galaxies.« less
High resolution telescope and spectrograph observations of solar fine structure in the 1600 A region
NASA Technical Reports Server (NTRS)
Cook, J. W.; Brueckner, G. E.; Bartoe, J.-D. F.
1983-01-01
High spatial resolution spectroheliograms of the 1600 A region obtained during the HRTS rocket flight of 1978 February 13 are presented. The morphology, fine structure, and temporal behavior of emission bright points (BPs) in active and quiet regions are illustrated. In quiet regions, network elements persist as morphological units, although individual BPs may vary in intensity while usually lasting the flight duration. In cell centers, the BPs are highly variable on a 1 minute time scale. BPs in plages remain more constant in brightness over the observing sequence. BPs cover less than 4 percent of the quiet surface. The lifetime and degree of packing of BPs vary with the local strength of the magnetic field.
2015-01-12
A bright spot can be seen on the left side of Rhea in this image. The spot is the crater Inktomi, named for a Lakota spider spirit. Inktomi is believed to be the youngest feature on Rhea (949 miles or 1527 kilometers across). The relative youth of the feature is evident by its brightness. Material that is newly excavated from below the moon's surface and tossed across the surface by a cratering event, appears bright. But as the newly exposed surface is subjected to the harsh space environment, it darkens. This is one technique scientists use to date features on surfaces. This view looks toward the trailing hemisphere of Rhea. North on Rhea is up and rotated 21 degrees to the left. The image was taken in visible light with the Cassini spacecraft narrow-angle camera on July 29, 2013. The view was obtained at a distance of approximately 1.0 million miles (1.6 million kilometers) fro http://photojournal.jpl.nasa.gov/catalog/PIA18300
NASA Technical Reports Server (NTRS)
Jackson, R. D.; Slater, P. N.; Pinter, P. J. (Principal Investigator)
1982-01-01
A radiative transfer model was used to convert ground measured reflectances into the radiance at the top of the atmosphere, for several levels of atmospheric path radiance. The radiance in MSS7 (0.8 to 1.1 m) was multiplied by the transmission fraction for atmospheres having different levels of precipitable water. The radiance values were converted to simulated LANDSAT digital counts for four path radiance levels and four levels of precipitable water. These values were used to calculate the Kauth-Thomas brightness, greenness, yellowness, and nonsuch factors. Brightness was affected by surface conditions and path radiance. Greenness was affected by surface conditions, path radiance, and precipitable water. Yellowness was affected by path radiance and nonsuch by precipitable water, and both factors changed only slightly with surface conditions. Yellowness and nonsuch were used to adjust brightness and greenness to produce factors that were affected only by surface conditions such as soils and vegetation, and not by path radiance and precipitable water.
Shrestha, Ravi; Mohammed, Shahed K; Hasan, Md Mehedi; Zhang, Xuechao; Wahid, Khan A
2016-08-01
Wireless capsule endoscopy (WCE) plays an important role in the diagnosis of gastrointestinal (GI) diseases by capturing images of human small intestine. Accurate diagnosis of endoscopic images depends heavily on the quality of captured images. Along with image and frame rate, brightness of the image is an important parameter that influences the image quality which leads to the design of an efficient illumination system. Such design involves the choice and placement of proper light source and its ability to illuminate GI surface with proper brightness. Light emitting diodes (LEDs) are normally used as sources where modulated pulses are used to control LED's brightness. In practice, instances like under- and over-illumination are very common in WCE, where the former provides dark images and the later provides bright images with high power consumption. In this paper, we propose a low-power and efficient illumination system that is based on an automated brightness algorithm. The scheme is adaptive in nature, i.e., the brightness level is controlled automatically in real-time while the images are being captured. The captured images are segmented into four equal regions and the brightness level of each region is calculated. Then an adaptive sigmoid function is used to find the optimized brightness level and accordingly a new value of duty cycle of the modulated pulse is generated to capture future images. The algorithm is fully implemented in a capsule prototype and tested with endoscopic images. Commercial capsules like Pillcam and Mirocam were also used in the experiment. The results show that the proposed algorithm works well in controlling the brightness level accordingly to the environmental condition, and as a result, good quality images are captured with an average of 40% brightness level that saves power consumption of the capsule.
Jovian ultraviolet auroral activity, 1981-1991
NASA Technical Reports Server (NTRS)
Livengood, T. A.; Moos, H. W.; Ballester, G. E.; Prange, R. M.
1992-01-01
IUE observations of H2 UV emissions for the 1981-1991 period are presently used to investigate the auroral brightness distribution on the surface of Jupiter. The brightness, which is diagnostic of energy input to the atmosphere as well as of magnetospheric processes, is determined by comparing model-predicted brightnesses against empirical ones. The north and south aurorae appear to be correlated in brightness and in variations of the longitude of peak brightness. There are strong fluctuations in all the parameters of the brightness distribution on much shorter time scales than those of solar maximum-minimum.
Manikandan, N; Radhakrishnan, R; Aravinthan, K
2014-08-01
We have constructed a dark-bright N-soliton solution with 4N+3 real parameters for the physically interesting system of mixed coupled nonlinear Schrödinger equations. Using this as well as an asymptotic analysis we have investigated the interaction between dark-bright vector solitons. Each colliding dark-bright one-soliton at the asymptotic limits includes more coupling parameters not only in the polarization vector but also in the amplitude part. Our present solution generalizes the dark-bright soliton in the literature with parametric constraints. By exploiting the role of such coupling parameters we are able to control certain interaction effects, namely beating, breathing, bouncing, attraction, jumping, etc., without affecting other soliton parameters. Particularly, the results of the interactions between the bound state dark-bright vector solitons reveal oscillations in their amplitudes under certain parametric choices. A similar kind of effect was also observed experimentally in the BECs. We have also characterized the solutions with complicated structure and nonobvious wrinkle to define polarization vector, envelope speed, envelope width, envelope amplitude, grayness, and complex modulation. It is interesting to identify that the polarization vector of the dark-bright one-soliton evolves on a spherical surface instead of a hyperboloid surface as in the bright-bright case of the mixed coupled nonlinear Schrödinger equations.
Descartes region - Evidence for Copernican-age volcanism.
NASA Technical Reports Server (NTRS)
Head, J. W., III; Goetz, A. F. H.
1972-01-01
A model that suggests that the high-albedo central region of the Descartes Formation was formed by Copernican-age volcanism was developed from Orbiter photography, Apollo 12 multispectral photography, earth-based spectrophotometry, and thermal IR and radar data. The bright surface either is abundant in centimeter-sized rocks or is formed from an insulating debris layer overlying a surface with an abundance of rocks in the 1- to 20-cm size range. On the basis of these data, the bright unit is thought to be a young pyroclastic deposit mantling older volcanic units of the Descartes Formation. Since the Apollo 16 target point is only 50 km NW of the central part of this unit, evidence for material associated with this unique highland formation should be searched for in returned soil and rock samples.
Numerical simulations of novel high-power high-brightness diode laser structures
NASA Astrophysics Data System (ADS)
Boucke, Konstantin; Rogg, Joseph; Kelemen, Marc T.; Poprawe, Reinhart; Weimann, Guenter
2001-07-01
One of the key topics in today's semiconductor laser development activities is to increase the brightness of high-power diode lasers. Although structures showing an increased brightness have been developed specific draw-backs of these structures lead to a still strong demand for investigation of alternative concepts. Especially for the investigation of basically novel structures easy-to-use and fast simulation tools are essential to avoid unnecessary, cost and time consuming experiments. A diode laser simulation tool based on finite difference representations of the Helmholtz equation in 'wide-angle' approximation and the carrier diffusion equation has been developed. An optimized numerical algorithm leads to short execution times of a few seconds per resonator round-trip on a standard PC. After each round-trip characteristics like optical output power, beam profile and beam parameters are calculated. A graphical user interface allows online monitoring of the simulation results. The simulation tool is used to investigate a novel high-power, high-brightness diode laser structure, the so-called 'Z-Structure'. In this structure an increased brightness is achieved by reducing the divergency angle of the beam by angular filtering: The round trip path of the beam is two times folded using internal total reflection at surfaces defined by a small index step in the semiconductor material, forming a stretched 'Z'. The sharp decrease of the reflectivity for angles of incidence above the angle of total reflection leads to a narrowing of the angular spectrum of the beam. The simulations of the 'Z-Structure' indicate an increase of the beam quality by a factor of five to ten compared to standard broad-area lasers.
NASA Astrophysics Data System (ADS)
Combe, J.; Adams, J. B.; McCord, T. B.
2006-12-01
Geological units at the surface of Mars can be investigated through the analysis of spatial changes of both its composition and its superficial structural properties. The color images provided by the High Resolution Stereo Camera (HRSC) are a multispectral dataset with an unprecedented high spatial resolution. We focused this study on the western chasmas of Valles Marineris with the neighboring plateau. Using the four-wavelength spectra of HRSC, the two types of surface color units (bright red and dark bluish material) plus a shade/shadow component can explain most of the variations [1]. An objective is to provide maps of the relative abundances that are independent of shade [2]. The spectral shape of the shade spectrum is calculated from the data. Then, Spectral Mixture Analysis of the two main materials and shade is performed. The shade gives us indications about variations in the surface roughness in the context of the mixtures of spectral/mineralogical materials. For mapping the different geological units at the surface at high spatial resolution, a correspondence between the color and the mineralogy is needed, aided by direct and more precise identifications of the composition of Mars. The joint analysis of HRSC and results from the OMEGA imaging spectrometer makes the most of their respective abilities [1]. Ferric oxides are present in bright red materials both in the chasmas and on the plateau [1] and they are often mixed with dark materials identified as basalts containing pyroxenes [4]. In Valles Marineris, salt deposits (bright) have been reported by using OMEGA [3], along with ferric oxides [4, 5] that appear relatively dark. The detailed spatial distribution of these materials is a key to understand the geology. Examples will be presented. [1] McCord T. B., et al. 2006, JGR, submitted. [2] Adams J. B. And Gillespie A. R., 2006, Cambridge University Press, 362 pp. [3] Le Mouelic S. et al., 2006, LPSC #1409. [4] Gendrin et al. (2005), LPSC #1858. [5] Gendrin A. et al., 2005, Science, 307, 1587-1591. [6] Le Deit et al., 2006, LPSC #2115.
A population of faint low surface brightness galaxies in the Perseus cluster core
NASA Astrophysics Data System (ADS)
Wittmann, Carolin; Lisker, Thorsten; Ambachew Tilahun, Liyualem; Grebel, Eva K.; Conselice, Christopher J.; Penny, Samantha; Janz, Joachim; Gallagher, John S.; Kotulla, Ralf; McCormac, James
2017-09-01
We present the detection of 89 low surface brightness (LSB), and thus low stellar density galaxy candidates in the Perseus cluster core, of the kind named 'ultra-diffuse galaxies', with mean effective V-band surface brightnesses 24.8-27.1 mag arcsec-2, total V-band magnitudes -11.8 to -15.5 mag, and half-light radii 0.7-4.1 kpc. The candidates have been identified in a deep mosaic covering 0.3 deg2, based on wide-field imaging data obtained with the William Herschel Telescope. We find that the LSB galaxy population is depleted in the cluster centre and only very few LSB candidates have half-light radii larger than 3 kpc. This appears consistent with an estimate of their tidal radius, which does not reach beyond the stellar extent even if we assume a high dark matter content (M/L = 100). In fact, three of our candidates seem to be associated with tidal streams, which points to their current disruption. Given that published data on faint LSB candidates in the Coma cluster - with its comparable central density to Perseus - show the same dearth of large objects in the core region, we conclude that these cannot survive the strong tides in the centres of massive clusters.
Investigating the Origin of Bright Materials on Vesta: Synthesis, Conclusions, and Implications
NASA Technical Reports Server (NTRS)
Li, Jian-Yang; Mittlefehldt, D. W.; Pieters, C. M.; De Sanctis, M. C.; Schroder, S. E.; Hiesinger, H.; Blewett, D. T.; Russell, C. T.; Raymond, C. A.; Keller, H. U.
2012-01-01
The Dawn spacecraft started orbiting the second largest asteroid (4) Vesta in August 2011, revealing the details of its surface at an unprecedented pixel scale as small as approx.70 m in Framing Camera (FC) clear and color filter images and approx.180 m in the Visible and Infrared Spectrometer (VIR) data in its first two science orbits, the Survey Orbit and the High Altitude Mapping Orbit (HAMO) [1]. The surface of Vesta displays the greatest diversity in terms of geology and mineralogy of all asteroids studied in detail [2, 3]. While the albedo of Vesta of approx.0.38 in the visible wavelengths [4, 5] is one of the highest among all asteroids, the surface of Vesta shows the largest variation of albedos found on a single asteroid, with geometric albedos ranging at least from approx.0.10 to approx.0.67 in HAMO images [5]. There are many distinctively bright and dark areas observed on Vesta, associated with various geological features and showing remarkably different forms. Here we report our initial attempt to understand the origin of the areas that are distinctively brighter than their surroundings. The dark materials on Vesta clearly are different in origin from bright materials and are reported in a companion paper [6].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinet, P.; Chevrel, S.
1990-08-30
During the September 1988 Mars opposition, the authors obtained new high spatial (100-150 km) and spectral ({Delta}{lambda}/{lambda} = 1%) resolution near-IR telescopic charge-coupled device images of Mars from Pic-du-Midi Observatory. These images allow the association of spectral units with morphologic surface units on Mars, especially within the dark regions which exhibit much greater variability than the bright regions. Mineralogical interpretation of the data leads to a global description of the surface state of alteration consistent with the spatial distribution of bright and dark regions, with the bright regions being more altered than the dark. Within the less altered regions, Fe{supmore » 2+} crystal field absorption bands are detected, indicative of the presence of mafic minerals (Opx, Cpx, O1) in agreement with a likely crustal basaltic composition. The most conspicuous Fe{sup 2+} absorption features are clearly related to the volcanic regions of the Syrtis Major Shield and Hesperia Planum unit. The strongest observed absorptions due to olivine and clinopyroxene are spatially associated with the restricted central caldera complex of Nili-Meroe Paterae (within Syrtis Major) and the Tyrrhena Patera unit (within Hesperia Planum) and indicate an ultramafic composition.« less
High contrast imaging through adaptive transmittance control in the focal plane
NASA Astrophysics Data System (ADS)
Dhadwal, Harbans S.; Rastegar, Jahangir; Feng, Dake
2016-05-01
High contrast imaging, in the presence of a bright background, is a challenging problem encountered in diverse applications ranging from the daily chore of driving into a sun-drenched scene to in vivo use of biomedical imaging in various types of keyhole surgeries. Imaging in the presence of bright sources saturates the vision system, resulting in loss of scene fidelity, corresponding to low image contrast and reduced resolution. The problem is exacerbated in retro-reflective imaging systems where the light sources illuminating the object are unavoidably strong, typically masking the object features. This manuscript presents a novel theoretical framework, based on nonlinear analysis and adaptive focal plane transmittance, to selectively remove object domain sources of background light from the image plane, resulting in local and global increases in image contrast. The background signal can either be of a global specular nature, giving rise to parallel illumination from the entire object surface or can be represented by a mosaic of randomly orientated, small specular surfaces. The latter is more representative of real world practical imaging systems. Thus, the background signal comprises of groups of oblique rays corresponding to distributions of the mosaic surfaces. Through the imaging system, light from group of like surfaces, converges to a localized spot in the focal plane of the lens and then diverges to cast a localized bright spot in the image plane. Thus, transmittance of a spatial light modulator, positioned in the focal plane, can be adaptively controlled to block a particular source of background light. Consequently, the image plane intensity is entirely due to the object features. Experimental image data is presented to verify the efficacy of the methodology.
NASA Astrophysics Data System (ADS)
Pommerol, Antoine; Thomas, Nicolas; Antonella Barucci, M.; Bertaux, Jean-Loup; Davidsson, Björn; Ramy El-Maarry, Mohamed; La Forgia, Fiorengela; Fornasier, Sonia; Gracia, Antonio; Groussin, Olivier; Jost, Bernhard; Keller, Horst Uwe; Kuehrt, Ekkehard; Marschall, Raphael; Massironi, Matteo; Motolla, Stefano; Naletto, Giampiero; Oklay, Nilda; Pajola, Maurizio; Poch, Olivier
2015-04-01
Since the beginning of Rosetta's orbital observations, over a hundred small bright spots have been identified in images returned by its OSIRIS NAC camera, in all types of morphological regions on the nucleus. Bright spots are found as clusters of several tens of individuals in the vicinity of cliffs, or isolated without clear structural relation to the surrounding terrain. They are however mostly observed in the areas of the nucleus currently receiving the lowest amount of insolation and some of the best examples appear completely surrounded by shadows. Their typical sizes are of the order of a few metres and they are often observed at the surfaces of boulders of larger dimension. The brightness of these spots is up to ten times the average brightness of the surrounding terrain and multi-spectral analyses show a significantly bluer spectrum over the 0.3-1µm range. Comparisons of images taken in September and November 2014 under similar illumination conditions do not show any significant change of these features. Analysis of the results of past and present laboratory experiments with H2O-ice/dust mixtures provide interesting insights about the nature and origin of the bright spots. In particular, recent sublimation experiments conducted at the University of Bern reproduce the spectro-photometric variability observed at the surface of the nucleus by sequences of formation and ejection of a mantle of refractory organic-rich dust at the surface of the icy material. The formation of hardened layers of ice by sintering/re-condensation below the uppermost dust layer can also have strong implications for both the photometric and mechanical properties of the subsurface layer. Based on the comparison between OSIRIS observations and laboratory results, our favoured interpretation of the observed features is that the bright spots are exposures of water ice, resulting from the removal of the uppermost layer of refractory dust that covers the rest of the nucleus. Some of the observations of clusters of bright spots are very indicative of a formation process, which involves the breakage and collapse of brittle layers of ice to form fields of large boulders, some of them showing bright spots on part of their surface. Some of the isolated spots observed elsewhere on the nucleus might as well have been formed by similar processes and then have been transported over large distances by multiple bounces. These surface exposures of water ice must be more recent than the last passage at perihelion, as they would rapidly sublimate at short heliocentric distance. The hypothesis formulated here will thus easily be tested as the comet approaches the Sun, by checking if and how fast the bright spots vanish and disappear.
NASA Astrophysics Data System (ADS)
Jha, Ambuj K.; Kalapureddy, M. C. R.; Devisetty, Hari Krishna; Deshpande, Sachin M.; Pandithurai, G.
2018-02-01
The present study is a first of its kind attempt in exploring the physical features (e.g., height, width, intensity, duration) of tropical Indian bright band using a Ka-band cloud radar under the influence of large-scale cyclonic circulation and attempts to explain the abrupt changes in bright band features, viz., rise in the bright band height by 430 m and deepening of the bright band by about 300 m observed at around 14:00 UTC on Sep 14, 2016, synoptically as well as locally. The study extends the utility of cloud radar to understand how the bright band features are associated with light precipitation, ranging from 0 to 1.5 mm/h. Our analysis of the precipitation event of Sep 14-15, 2016 shows that the bright band above (below) 3.7 km, thickness less (more) than 300 m can potentially lead to light drizzle of 0-0.25 mm/h (drizzle/light rain) at the surface. It is also seen that the cloud radar may be suitable for bright band study within light drizzle limits than under higher rain conditions. Further, the study illustrates that the bright band features can be determined using the polarimetric capability of the cloud radar. It is shown that an LDR value of - 22 dB can be associated with the top height of bright band in the Ka-band observations which is useful in the extraction of the bright band top height and its width. This study is useful for understanding the bright band phenomenon and could be potentially useful in establishing the bright band-surface rain relationship through the perspective of a cloud radar, which would be helpful to enhance the cloud radar-based quantitative estimates of precipitation.
Three-dimensional spatial grouping affects estimates of the illuminant
NASA Astrophysics Data System (ADS)
Perkins, Kenneth R.; Schirillo, James A.
2003-12-01
The brightnesses (i.e., perceived luminance) of surfaces within a three-dimensional scene are contingent on both the luminances and the spatial arrangement of the surfaces. Observers viewed a CRT through a haploscope that presented simulated achromatic surfaces in three dimensions. They set a test patch to be ~33% more intense than a comparison patch to match the comparison patch in brightness, which is consistent with viewing a real scene with a simple lightning interpretation from which to estimate a different level of illumination in each depth plane. Randomly positioning each surface in either depth plane minimized any simple lighting interpretation, concomitantly reducing brightness differences to ~8.5%, although the immediate surrounds of the test and comparison patches continued to differ by a 5:1 luminance ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bastien, Fabienne A.; Stassun, Keivan G.; Pepper, Joshua
2014-06-10
Most extrasolar planets have been detected by their influence on their parent star, typically either gravitationally (the Doppler method) or by the small dip in brightness as the planet blocks a portion of the star (the transit method). Therefore, the accuracy with which we know the masses and radii of extrasolar planets depends directly on how well we know those of the stars, the latter usually determined from the measured stellar surface gravity, log g. Recent work has demonstrated that the short-timescale brightness variations ({sup f}licker{sup )} of stars can be used to measure log g to a high accuracymore » of ∼0.1-0.2 dex. Here, we use flicker measurements of 289 bright (Kepmag < 13) candidate planet-hosting stars with T {sub eff} = 4500-6650 K to re-assess the stellar parameters and determine the resulting impact on derived planet properties. This re-assessment reveals that for the brightest planet-host stars, Malmquist bias contaminates the stellar sample with evolved stars: nearly 50% of the bright planet-host stars are subgiants. As a result, the stellar radii, and hence the radii of the planets orbiting these stars, are on average 20%-30% larger than previous measurements had suggested.« less
Evaluations of carbon nanotube field emitters for electron microscopy
NASA Astrophysics Data System (ADS)
Nakahara, Hitoshi; Kusano, Yoshikazu; Kono, Takumi; Saito, Yahachi
2009-11-01
Brightness of carbon nanotube (CNT) emitters was already reported elsewhere. However, brightness of electron emitter is affected by a virtual source size of the emitter, which strongly depends on electron optical configuration around the emitter. In this work, I- V characteristics and brightness of a CNT emitter are measured under a practical field emission electron gun (e-gun) configuration to investigate availability of CNT for electron microscopy. As a result, it is obtained that an emission area of MWNT is smaller than its tip surface area, and the emission area corresponds to a five-membered-ring with 2nd nearest six-membered-rings on the MWNT cap surface. Reduced brightness of MWNT is measured as at least 2.6×109 A/m 2 sr V. It is concluded that even a thick MWNT has enough brightness under a practical e-gun electrode configuration and suitable for electron microscopy.
High brightness electron accelerator
Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.
1994-01-01
A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.
Microwave emission characteristics of sea ice
NASA Technical Reports Server (NTRS)
Edgerton, A. T.; Poe, G.
1972-01-01
A general classification is presented for sea ice brightness temperatures with categories of high and low emission, corresponding to young and weathered sea ice, respectively. A sea ice emission model was developed which allows variations of ice salinity and temperature in directions perpendicular to the ice surface.
Quintana, Elisabet; Valls, Cristina; Barneto, Agustín G; Vidal, Teresa; Ariza, José; Roncero, M Blanca
2015-03-30
An enzymatic biobleaching sequence (LVAQPO) using a laccase from Trametes villosa in combination with violuric acid (VA) and then followed by a pressurized hydrogen peroxide treatment (PO) was developed and found to give high bleaching properties and meet dissolving pulp requirements: high brightness, low content of hemicellulose, satisfactory pulp reactivity, no significant cellulose degradation manifested by α-cellulose and HPLC, and brightness stability against moist heat ageing. The incorporation of a laccase-mediator system (LMS) to bleach sulphite pulps can be a good alternative to traditional bleaching processes since thermogravimetric analysis (TGA) showed that the laccase treatment prevented the adverse effect of hydrogen peroxide on fibre surface as observed during a conventional hydrogen peroxide bleaching treatment (PO). Although VA exhibited the best results in terms of bleaching properties, the performance of natural mediators, such as p-coumaric acid and syringaldehyde, was discussed in relation to changes in cellulose surface detected by TGA. Copyright © 2014 Elsevier Ltd. All rights reserved.
Calculations of microwave brightness temperature of rough soil surfaces: Bare field
NASA Technical Reports Server (NTRS)
Mo, T.; Schmugge, T. J.; Wang, J. R.
1985-01-01
A model for simulating the brightness temperatures of soils with rough surfaces is developed. The surface emissivity of the soil media is obtained by the integration of the bistatic scattering coefficients for rough surfaces. The roughness of a soil surface is characterized by two parameters, the surface height standard deviation sigma and its horizontal correlation length l. The model calculations are compared to the measured angular variations of the polarized brightness temperatures at both 1.4 GHz and 5 GHz frequences. A nonlinear least-squares fitting method is used to obtain the values of delta and l that best characterize the surface roughness. The effect of shadowing is incorporated by introducing a function S(theta), which represents the probability that a point on a rough surface is not shadowed by other parts of the surface. The model results for the horizontal polarization are in excellent agreement with the data. However, for the vertical polarization, some discrepancies exist between the calculations and data, particularly at the 1.4 GHz frequency. Possible causes of the discrepancy are discussed.
Optical observations of NGC 2915: A nearby blue compact dwarf galaxy
NASA Technical Reports Server (NTRS)
Meurer, G. R.; Mackie, G.; Carignan, C.
1994-01-01
This paper presents B and R band Charge Coupled Device (CCD) images and medium resolution spectroscopy of NGC 2915, a relatively isolated BCD (blue compact dwarf) galaxy at a distance of approximately 5 Mpc. NGC 2915 contains two stellar populations: a high surface brightness blue core population and a red diffuse population. The core population contains all of the H II, and numerous embedded objects. It is the locus of current high mass star formation. The brightest embedded objects are likely to be young ionizing clusters, while many of the fainter objects are likely to be individual supergiant stars with masses up to approximately 25 solar mass, or blends of a few such stars. Curious aligned structures on the SE side of the galaxy are seen and their nature discussed. The spectrum of the core is dominated by bright narrow emission lines like that of a high excitation and low metallicity (less than half solar) H II region. The continuum is flat, with Balmer and Ca II features seen in absorption. The velocity of the Ca II features suggest contamination by galactic interstellar absorption. There is a significant velocity gradient in the spectra, probably indicative of rotation. Outside of its core, NGC 2915 resembles a dE (dwarf elliptical) galaxy, in that it has an exponential surface brightness profile, is red ((B-R)(sub 0) = 1.65), and has a low extrapolated central surface brightness (B(0)(sub c) = 22.44). NGC 2915's properties are compared with other BCDs, concentrating on two morphologically similar BCDs that are near enough to resolve into stars: NGC 1705 and NGC 5253. It is noted that the presence of winds in BCDs invalidates closed box chemical evolution models and the remaining constraints on star formation duration are relatively weak. Some BCDs, including NGC 2915, may be able to maintain their present star formation rate for Gyr time scales. This suggests that the overall evolution of these BCDs may be much slower than the approximately 10 Myr burst time scales commonly quoted. However, shortly after the formation of a massive (10(exp 6) solar mass) cluster a BCD will have all the properties of strong starburst galaxy).
Thermal inertia mapping of Mars from 60°S to 60°N
Palluconi, Frank Don; Kieffer, Hugh H.
1981-01-01
Twenty-micrometer brightness temperatures are used to derive the thermal inertia for 81% of the Martian surface between latitudes ±60°. These data were acquired by the two Viking Infrared Thermal Mappers in 1977 and 1978 following the two global dust storms of 1977. The spatial resolution used is 2° in latitude by 2° in longitude and the total range in derived inertia is . The distribution of thermal inertia is strongly bimodal with all values of thermal inertia less than being associated with three disjoint bright regions mostly in the northern hemisphere. Sufficient dust is raised in global storms to provide fine material adequate to produce these low-inertia areas but the specific deposition mechanism has not been defined. At the low resolution used, no complete exposures of clean rock were found. There is some tendency for darker material to be associated with higher thermal inertia, although the trend is far from one to one. The distribution of high- and low-inertia areas is sufficiently nonrandom to produce a variation in whole-disk brightness temperature with central meridian longitude. This variation and the change in surface kinetic temperature associated with dust storms are factors in establishing the whole-disk brightness temperature at radio and infrared wavelengths and will be important for those who use Mars as a calibration source.
NASA Astrophysics Data System (ADS)
Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.
2017-12-01
This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER algorithm more, particularly retrieval for the dust particle over the bright surface in East Asia.
NASA Astrophysics Data System (ADS)
Fang, Tuo; Fa, Wenzhe
2014-04-01
Near surface temperature of the Moon and thermal behaviors of the lunar regolith can provide important information for constraining thermal and magmatic evolution models of the Moon and engineering constrains for in situ lunar exploration system. In this study, China’s Chang’E-2 (CE-2) microwave radiometer (MRM) data at high frequency channels are used to investigate near surface temperature of the Moon given the penetration ability of microwave into the desiccated and porous lunar regolith. Factors that affect high frequency brightness temperature (TB), such as surface slope, solar albedo and dielectric constant, are analyzed first using a revised Racca’s temperature model. Radiative transfer theory is then used to model thermal emission from a semi-infinite regolith medium, with considering dielectric constant and temperature profiles within the regolith layer. To decouple the effect of diurnal temperature variation in the uppermost lunar surface, diurnal averaged brightness temperatures at high frequency channels are used to invert mean diurnal surface and subsurface temperatures based on their bilinear profiles within the regolith layer. Our results show that, at the scale of the spatial resolution of CE-2 MRM, surface slope of crater wall varies typically from about 20° to 30°, and this causes a variation in TB about 10-15 K. Solar albedo can give rise to a TB difference of about 5-10 K between maria and highlands, whereas a ∼2-8 K difference can be compensated by the dielectric constant on the other hand. Inversion results indicate that latitude (ϕ) variations of the mean diurnal surface and subsurface temperatures follow simple rules as cos0.30ϕ and cos0.36ϕ, respectively. The inverted mean diurnal temperature profiles at the Apollo 15 and 17 landing sites are also compared with the Apollo heat flow experiment data, showing an inversion uncertainty <4 K for surface temperature and <1 K for subsurface temperature.
Brightness masking is modulated by disparity structure.
Pelekanos, Vassilis; Ban, Hiroshi; Welchman, Andrew E
2015-05-01
The luminance contrast at the borders of a surface strongly influences surface's apparent brightness, as demonstrated by a number of classic visual illusions. Such phenomena are compatible with a propagation mechanism believed to spread contrast information from borders to the interior. This process is disrupted by masking, where the perceived brightness of a target is reduced by the brief presentation of a mask (Paradiso & Nakayama, 1991), but the exact visual stage that this happens remains unclear. In the present study, we examined whether brightness masking occurs at a monocular-, or a binocular-level of the visual hierarchy. We used backward masking, whereby a briefly presented target stimulus is disrupted by a mask coming soon afterwards, to show that brightness masking is affected by binocular stages of the visual processing. We manipulated the 3-D configurations (slant direction) of the target and mask and measured the differential disruption that masking causes on brightness estimation. We found that the masking effect was weaker when stimuli had a different slant. We suggest that brightness masking is partly mediated by mid-level neuronal mechanisms, at a stage where binocular disparity edge structure has been extracted. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Roncarelli, M.; Ettori, S.; Dolag, K.; Moscardini, L.; Borgani, S.; Murante, G.
2006-12-01
Using a set of hydrodynamical simulations of nine galaxy clusters with masses in the range 1.5 × 1014 < Mvir < 3.4 × 1015Msolar, we have studied the density, temperature and X-ray surface brightness profiles of the intracluster medium in the regions around the virial radius. We have analysed the profiles in the radial range well above the cluster core, the physics of which are still unclear and matter of tension between simulated and observed properties, and up to the virial radius and beyond, where present observations are unable to provide any constraints. We have modelled the radial profiles between 0.3R200 and 3R200 with power laws with one index, two indexes and a rolling index. The simulated temperature and [0.5-2] keV surface brightness profiles well reproduce the observed behaviours outside the core. The shape of all these profiles in the radial range considered depends mainly on the activity of the gravitational collapse, with no significant difference among models including extraphysics. The profiles steepen in the outskirts, with the slope of the power-law fit that changes from -2.5 to -3.4 in the gas density, from -0.5 to -1.8 in the gas temperature and from -3.5 to -5.0 in the X-ray soft surface brightness. We predict that the gas density, temperature and [0.5-2] keV surface brightness values at R200 are, on average, 0.05, 0.60, 0.008 times the measured values at 0.3R200. At 2R200, these values decrease by an order of magnitude in the gas density and surface brightness, by a factor of 2 in the temperature, putting stringent limits on the detectable properties of the intracluster-medium (ICM) in the virial regions.
Modelling the ArH+ emission from the Crab nebula
NASA Astrophysics Data System (ADS)
Priestley, F. D.; Barlow, M. J.; Viti, S.
2017-12-01
We have performed combined photoionization and photodissociation region (PDR) modelling of a Crab nebula filament subjected to the synchrotron radiation from the central pulsar wind nebula, and to a high flux of charged particles; a greatly enhanced cosmic-ray ionization rate over the standard interstellar value, ζ0, is required to account for the lack of detected [C I] emission in published Herschel SPIRE FTS observations of the Crab nebula. The observed line surface brightness ratios of the OH+ and ArH+ transitions seen in the SPIRE FTS frequency range can only be explained with both a high cosmic-ray ionization rate and a reduced ArH+ dissociative recombination rate compared to that used by previous authors, although consistent with experimental upper limits. We find that the ArH+/OH+ line strengths and the observed H2 vibration-rotation emission can be reproduced by model filaments with nH = 2 × 104 cm-3, ζ = 107ζ0 and visual extinctions within the range found for dusty globules in the Crab nebula, although far-infrared emission from [O I] and [C II] is higher than the observational constraints. Models with nH = 1900 cm-3 underpredict the H2 surface brightness, but agree with the ArH+ and OH+ surface brightnesses and predict [O I] and [C II] line ratios consistent with observations. These models predict HeH+ rotational emission above detection thresholds, but consideration of the formation time-scale suggests that the abundance of this molecule in the Crab nebula should be lower than the equilibrium values obtained in our analysis.
Micromilled optical elements for edge-lit illumination panels
NASA Astrophysics Data System (ADS)
Ronny, Rahima Afrose; Knopf, George K.; Bordatchev, Evgueni; Nikumb, Suwas
2013-04-01
Edge-lit light guide panels (LGPs) with micropatterned surfaces represent a new technology for developing small- and medium-sized illumination sources for application such as automotive, residential lighting, and advertising displays. The shape, density, and spatial distribution of the micro-optical structures (MOSs) imprinted on the transparent LGP must be selected to achieve high brightness and uniform luminance over the active surface. We examine how round-tip cylindrical MOSs fabricated by precision micromilling can be used to create patterned surfaces on low-cost transparent polymethyl-methacrylate substrates for high-intensity illumination applications. The impact of varying the number, pitch, spatial distribution, and depth of the optical microstructures on lighting performance is initially investigated using LightTools™ simulation software. To illustrate the microfabrication process, several 100×100×6 mm3 LGP prototypes are constructed and tested. The prototypes include an "optimized" array of MOSs that exhibit near-uniform illumination (approximately 89%) across its active light-emitting surface. Although the average illumination was 7.3% less than the value predicted from numerical simulation, it demonstrates how LGPs can be created using micromilling operations. Customized MOS arrays with a bright rectangular pattern near the center of the panel and a sequence of MOSs that illuminate a predefined logo are also presented.
Rosette globulettes and shells in the infrared
NASA Astrophysics Data System (ADS)
Mäkelä, M. M.; Haikala, L. K.; Gahm, G. F.
2014-07-01
Context. Giant galactic H ii regions surrounding central young clusters show compressed molecular shells, which have broken up into clumps, filaments, and elephant trunks interacting with UV light from central OB stars. Tiny, dense clumps of subsolar mass, called globulettes, form in this environment. Aims: We observe and explore the nature and origin of the infrared emission and extinction in these cool, dusty shell features and globulettes in one H ii region, the Rosette nebula, and search for associated newborn stars. Methods: We imaged the northwestern quadrant of the Rosette nebula in the near-infrared (NIR) through wideband JHKs filters and narrowband H2 1-0 S(1) and Pβ plus continuum filters using the Son of Isaac (SOFI) instrument at the New Technology Telescope (NTT) at European Southern Observatory (ESO). We used the NIR images to study the surface brightness of the globulettes and associated bright rims. We used the NIR JHKs photometry to create a visual extinction map and to search for objects with NIR excess emission. In addition, archival images from Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) 24 μm and Herschel Photoconductor Array Camera and Spectrometer (PACS) observations, covering several bands in the mid-infrared and far-infrared, were used to further analyze the stellar population, to examine the structure of the trunks and other shell structures and to study this Rosette nebula photon-dominated region in more detail. Results: The globulettes and elephant trunks have bright rims in the Ks band, which are unresolved in our images, on the sides facing the central cluster. An analysis of 21 globulettes, where surface brightness in the H2 1-0 S(1) line at 2.12 μm is detected, shows that approximately a third of the surface brightness observed in the Ks filter is due to this line: the observed average of the H2/Ks surface brightness is 0.26 ± 0.02 in the globulettes' cores and 0.30 ± 0.01 in the rims. The estimated H2 1-0 S(1) surface brightness of the rims is ˜3-8 × 10-8 Wm-2 sr-1μm-1. The ratio of the surface brightnesses support fluorescence instead of shocks as the H2 excitation mechanism. The globulettes have number densities of n(H2) ˜ 10-4 cm-3 or higher. We estimated masses of individual globulettes and compared them to the results from previous optical and radio molecular line surveys. We confirm that the larger globulettes contain very dense cores, that the density is also high farther out from the core, and that their mass is subsolar. Two NIR protostellar objects were found in an elephant trunk and one was found in the most massive globulette in our study. Based on observations done at the European Southern Observatory, La Silla, Chile (ESO programmes 084.C-0299 and 088.C-0630).Appendix A is only available in electronic form at http://www.aanda.orgTables 5 and 6 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/567/A108
NASA Astrophysics Data System (ADS)
Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.
2009-03-01
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.
NASA Astrophysics Data System (ADS)
Fanelli, Michael N.; Waller, William W.; Smith, Denise A.; Freedman, Wendy L.; Madore, Barry; Neff, Susan G.; O'Connell, Robert W.; Roberts, Morton S.; Bohlin, Ralph; Smith, Andrew M.; Stecher, Theodore P.
1997-05-01
During the Astro-2 Spacelab mission in 1995 March, the Ultraviolet Imaging Telescope (UIT) obtained far-UV (λ = 1500 Å) imagery of the nearby Sm/Im galaxy NGC 4214. The UIT images have a spatial resolution of ~3" and a limiting surface brightness, μ1500 > 25 mag arcsec-2, permitting detailed investigation of the intensity and spatial distribution of the young, high-mass stellar component. These data provide the first far-UV imagery covering the full spatial extent of NGC 4214. Comparison with a corresponding I-band image reveals the presence of a starbursting core embedded in an extensive low surface brightness disk. In the far-UV (FUV), NGC 4214 is resolved into several components: a luminous, central knot; an inner region (r <~ 2.5 kpc) with ~15 resolved sources embedded in bright, diffuse emission; and a population of fainter knots extending to the edge of the optically defined disk (r ~ 5 kpc). The FUV light, which traces recent massive star formation, is observed to be more centrally concentrated than the I-band light, which traces the global stellar population. The FUV radial light profile is remarkably well represented by an R1/4 law, providing evidence that the centrally concentrated massive star formation in NGC 4214 is the result of an interaction, possibly a tidal encounter, with a dwarf companion(s). The brightest FUV source produces ~8% of the global FUV luminosity. This unresolved source, corresponding to the Wolf-Rayet knot described by Sargent & Filippenko, is located at the center of the FUV light distribution, giving NGC 4214 an active galactic nucleus-like morphology. Another strong source is present in the I band, located 19" west, 10" north of the central starburst knot, with no FUV counterpart. The I-band source may be the previously unrecognized nucleus of NGC 4214 or an evolved star cluster with an age greater than ~200 Myr. The global star formation rate derived from the total FUV flux is consistent with rates derived using data at other wavelengths and lends support to the scenario of roughly constant star formation during the last few hundred million years at a level significantly enhanced relative to the lifetime averaged star formation rate. The hybrid disk/starburst-irregular morphology evident in NGC 4214 emphasizes the danger of classifying galaxies based on their high surface brightness components at any particular wavelength.
Photometric functions for photoclinometry and other applications
McEwen, A.S.
1991-01-01
Least-squared fits to the brightness profiles across a disk or "limb darkening" described by Hapke's photometric function are found for the simpler Minnaert and lunar-Lambert functions. The simpler functions are needed to reduce the number of unknown parameters in photoclinometry, especially to distinguish the brightness variations of the surface materials from that due to the resolved topography. The limb darkening varies with the Hapke parameters for macroscopic roughness (??), the single-scattering albedo (w), and the asymmetry factor of the particle phase function (g). Both of the simpler functions generally provide good matches to the limb darkening described by Hapke's function, but the lunar-Lambert function is superior when viewing angles are high and when (??) is less than 30??. Although a nonunique solution for the Minnaert function at high phase angles has been described for smooth surfaces, the discrepancy decreases with increasing (??) and virtually disappears when (??) reaches 30?? to 40??. The variation in limb darkening with w and g, pronounced for smooth surfaces, is reduced or eliminated when the Hapke parameters are in the range typical of most planetary surfaces; this result simplifies the problem of photoclinometry across terrains with variable surface materials. The Minnaert or lunar-Lambert fits to published Hapke models will give photoclinometric solutions that are very similar (>1?? slope discrepancy) to the Hapke-function solutions for nearly all of the bodies and terrains thus far modeled by Hapke's function. ?? 1991.
Thin Sea-Ice Thickness as Inferred from Passive Microwave and In Situ Observations
NASA Technical Reports Server (NTRS)
Naoki, Kazuhiro; Ukita, Jinro; Nishio, Fumihiko; Nakayama, Masashige; Comiso, Josefino C.; Gasiewski, Al
2007-01-01
Since microwave radiometric signals from sea-ice strongly reflect physical conditions of a layer near the ice surface, a relationship of brightness temperature with thickness is possible especially during the early stages of ice growth. Sea ice is most saline during formation stage and as the salinity decreases with time while at the same time the thickness of the sea ice increases, a corresponding change in the dielectric properties and hence the brightness temperature may occur. This study examines the extent to which the relationships of thickness with brightness temperature (and with emissivity) hold for thin sea-ice, approximately less than 0.2 -0.3 m, using near concurrent measurements of sea-ice thickness in the Sea of Okhotsk from a ship and passive microwave brightness temperature data from an over-flying aircraft. The results show that the brightness temperature and emissivity increase with ice thickness for the frequency range of 10-37 GHz. The relationship is more pronounced at lower frequencies and at the horizontal polarization. We also established an empirical relationship between ice thickness and salinity in the layer near the ice surface from a field experiment, which qualitatively support the idea that changes in the near-surface brine characteristics contribute to the observed thickness-brightness temperature/emissivity relationship. Our results suggest that for thin ice, passive microwave radiometric signals contain, ice thickness information which can be utilized in polar process studies.
49 CFR 213.113 - Defective rails.
Code of Federal Regulations, 2010 CFR
2010-10-01
... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...
49 CFR 213.113 - Defective rails.
Code of Federal Regulations, 2011 CFR
2011-10-01
... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...
49 CFR 213.113 - Defective rails.
Code of Federal Regulations, 2012 CFR
2012-10-01
... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...
49 CFR 213.113 - Defective rails.
Code of Federal Regulations, 2013 CFR
2013-10-01
... smooth, bright, or dark, round or oval surface substantially at a right angle to the length of the rail... in the head of the rail as a smooth, bright, or dark surface progressing until substantially at a... head, and extending into or through it. A crack or rust streak may show under the head close to the web...
ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwai, Kazumasa; Loukitcheva, Maria; Shimojo, Masumi
We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300″ × 300″ field of view and 4.″9 × 2.″2 spatial resolution, which is the highest spatialmore » resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph ( IRIS ), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.« less
ALMA Discovery of Solar Umbral Brightness Enhancement at λ = 3 mm
NASA Astrophysics Data System (ADS)
Iwai, K.; Loukitcheva, M.; Shimojo, M.; Solanki, S. K.; White, S. M.
2017-12-01
We report the discovery of a brightness enhancement in the center of a large sunspot umbra at a wavelength of 3 mm using the Atacama Large Millimeter/sub-millimeter Array (ALMA). Sunspots are among the most prominent features on the solar surface, but many of their aspects are surprisingly poorly understood. We analyzed a λ = 3 mm (100 GHz) mosaic image obtained by ALMA that includes a large sunspot within the active region AR12470, on 2015 December 16. The 3 mm map has a 300''×300'' field of view and 4.9''×2.2'' spatial resolution, which is the highest spatial resolution map of an entire sunspot in this frequency range. We find a gradient of 3 mm brightness from a high value in the outer penumbra to a low value in the inner penumbra/outer umbra. Within the inner umbra, there is a marked increase in 3 mm brightness temperature, which we call an umbral brightness enhancement. This enhanced emission corresponds to a temperature excess of 800 K relative to the surrounding inner penumbral region and coincides with excess brightness in the 1330 and 1400 Å slit-jaw images of the Interface Region Imaging Spectrograph (IRIS), adjacent to a partial lightbridge. This λ = 3 mm brightness enhancement may be an intrinsic feature of the sunspot umbra at chromospheric heights, such as a manifestation of umbral flashes, or it could be related to a coronal plume, since the brightness enhancement was coincident with the footpoint of a coronal loop observed at 171 Å.
Fluvial channels on Titan: Initial Cassini RADAR observations
Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.
2008-01-01
Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.
Gain Coupling VECSELs (POSTPRINT)
2013-01-01
International Conference on Molecular Beam Epitaxy (MBE-XV). 10. A. Siegman , Lasers , University Sciences Books, 1986. 11. C. Hessenius, N. Terry, M...Clearance Date 28 December 2012. Report contains color. 14. ABSTRACT Vertical external cavity surface emitting lasers (VECSELs) provide a flexible...platform in order to explore curious laser designs and systems as their high-power, high-brightness make them attractive for many applications, and their
Rutgers zodiacal light experiment on OSO-6
NASA Technical Reports Server (NTRS)
Carroll, B.
1975-01-01
A detector was placed in a slowly spinning wheel on OSO-6 whose axis was perpendicular to the line drawn to the sun, to measure the surface brightness and polarization at all elongations from the immediate neighborhood of the sun to the anti-solar point. Different wavelength settings and polarizations were calculated from the known order of magnitude brightness of the zodiacal light. The measuring sequence was arranged to give longer integration times for the regions of lower surface brightness. Three types of analysis to which the data on OSO-6 were subjected are outlined; (1) photometry, (2) colorimetry and (3) polarimetry.
NASA Astrophysics Data System (ADS)
Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Harmon, Robert; Ignace, Richard; St-Louis, Nicole; Vanbeveren, Dany; Shenar, Tomer; Pablo, Herbert; Richardson, Noel D.; Howarth, Ian D.; Stevens, Ian R.; Piaulet, Caroline; St-Jean, Lucas; Eversberg, Thomas; Pigulski, Andrzej; Popowicz, Adam; Kuschnig, Rainer; Zocłońska, Elżbieta; Buysschaert, Bram; Handler, Gerald; Weiss, Werner W.; Wade, Gregg A.; Rucinski, Slavek M.; Zwintz, Konstanze; Luckas, Paul; Heathcote, Bernard; Cacella, Paulo; Powles, Jonathan; Locke, Malcolm; Bohlsen, Terry; Chené, André-Nicolas; Miszalski, Brent; Waldron, Wayne L.; Kotze, Marissa M.; Kotze, Enrico J.; Böhm, Torsten
2018-02-01
From 5.5 months of dual-band optical photometric monitoring at the 1 mmag level, BRITE-Constellation has revealed two simultaneous types of variability in the O4I(n)fp star ζ Puppis: one single periodic non-sinusoidal component superimposed on a stochastic component. The monoperiodic component is the 1.78-d signal previously detected by Coriolis/Solar Mass Ejection Imager, but this time along with a prominent first harmonic. The shape of this signal changes over time, a behaviour that is incompatible with stellar oscillations but consistent with rotational modulation arising from evolving bright surface inhomogeneities. By means of a constrained non-linear light-curve inversion algorithm, we mapped the locations of the bright surface spots and traced their evolution. Our simultaneous ground-based multisite spectroscopic monitoring of the star unveiled cyclical modulation of its He II λ4686 wind emission line with the 1.78-d rotation period, showing signatures of corotating interaction regions that turn out to be driven by the bright photospheric spots observed by BRITE. Traces of wind clumps are also observed in the He II λ4686 line and are correlated with the amplitudes of the stochastic component of the light variations probed by BRITE at the photosphere, suggesting that the BRITE observations additionally unveiled the photospheric drivers of wind clumps in ζ Pup and that the clumping phenomenon starts at the very base of the wind. The origins of both the bright surface inhomogeneities and the stochastic light variations remain unknown, but a subsurface convective zone might play an important role in the generation of these two types of photospheric variability.
Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes
NASA Astrophysics Data System (ADS)
Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew
2018-06-01
We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.
NASA Astrophysics Data System (ADS)
Yang, Jian; He, Yuhong
2017-02-01
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.
Perennial water ice identified in the south polar cap of Mars
NASA Astrophysics Data System (ADS)
Bibring, Jean-Pierre; Langevin, Yves; Poulet, François; Gendrin, Aline; Gondet, Brigitte; Berthé, Michel; Soufflot, Alain; Drossart, Pierre; Combes, Michel; Bellucci, Giancarlo; Moroz, Vassili; Mangold, Nicolas; Schmitt, Bernard; OMEGA Team; Erard, S.; Forni, O.; Manaud, N.; Poulleau, G.; Encrenaz, T.; Fouchet, T.; Melchiorri, R.; Altieri, F.; Formisano, V.; Bonello, G.; Fonti, S.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Kottsov, V.; Ignatiev, N.; Titov, D.; Zasova, L.; Pinet, P.; Sotin, C.; Hauber, E.; Hoffman, H.; Jaumann, R.; Keller, U.; Arvidson, R.; Mustard, J.; Duxbury, T.; Forget, F.
2004-04-01
The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.
Flooding of Ganymede's bright terrains by low-viscosity water-ice lavas.
Schenk, P M; McKinnon, W B; Gwynn, D; Moore, J M
2001-03-01
Large regions of the jovian moon Ganymede have been resurfaced, but the means has been unclear. Suggestions have ranged from volcanic eruptions of liquid water or solid ice to tectonic deformation, but definitive high-resolution morphological evidence has been lacking. Here we report digital elevation models of parts of the surface of Ganymede, derived from stereo pairs combining data from the Voyager and Galileo spacecraft, which reveal bright, smooth terrains that lie at roughly constant elevations 100 to 1,000 metres below the surrounding rougher terrains. These topographic data, together with new images that show fine-scale embayment and burial of older features, indicate that the smooth terrains were formed by flooding of shallow structural troughs by low-viscosity water-ice lavas. The oldest and most deformed areas (the 'reticulate' terrains) in general have the highest relative elevations, whereas units of the most common resurfaced type--the grooved terrain--lie at elevations between those of the smooth and reticulate terrains. Bright terrain, which accounts for some two-thirds of the surface, probably results from a continuum of processes, including crustal rifting, shallow flooding and groove formation. Volcanism plays an integral role in these processes, and is consistent with partial melting of Ganymede's interior.
The outbursts of the comet 29P/Schwassmann-Wachmann 1: A new approach to the old problem
NASA Astrophysics Data System (ADS)
Gronkowski, P.
2014-02-01
As far as outbursts activity is concerned, the 29P/Schwassmann-Wachmann 1 is the exceptional comet. This Centaur object shows quasi-regular flares with periodicities of 50 days eriodicity (Trigo-Rodriguez et al. 2010). In the introductory part of the presented paper the most well-known hypotheses which try to explain this cometary behaviour are reviewed. The second, actual part of this paper presents the new model for the outburst activity of this comet. The model is based on the idea of Ipatov (2012), according to which there are large cavities %%in comets %%with material under gas pressure, below a considerable fraction of the comet's surface containing material under high gas pressure. In favourite conditions the surface layers over the cavities are thrown away and the interior of these cavities is exposed. Consequently, an outburst of the comet's brightness may be observed. The main characteristics of an outburst of this comet, the brightness jump, %%in its brightness is calculated. Numerical simulations were carried out for wide range of possible cometary parameters. The obtained results are in good agreement with the real observations.
Pupil size reflects the focus of feature-based attention.
Binda, Paola; Pereverzeva, Maria; Murray, Scott O
2014-12-15
We measured pupil size in adult human subjects while they selectively attended to one of two surfaces, bright and dark, defined by coherently moving dots. The two surfaces were presented at the same location; therefore, subjects could select the cued surface only on the basis of its features. With no luminance change in the stimulus, we find that pupil size was smaller when the bright surface was attended and larger when the dark surface was attended: an effect of feature-based (or surface-based) attention. With the same surfaces at nonoverlapping locations, we find a similar effect of spatial attention. The pupil size modulation cannot be accounted for by differences in eye position and by other variables known to affect pupil size such as task difficulty, accommodation, or the mere anticipation (imagery) of bright/dark stimuli. We conclude that pupil size reflects not just luminance or cognitive state, but the interaction between the two: it reflects which luminance level in the visual scene is relevant for the task at hand. Copyright © 2014 the American Physiological Society.
Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures
NASA Technical Reports Server (NTRS)
Jackson, Gail Skofronick; Johnson, Benjamin T.
2010-01-01
Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.
Camino, Fernando E.; Nam, Chang-Yong; Pang, Yutong T.; ...
2014-05-15
Here we present a methodology for probing light-matter interactions in prototype photovoltaic devices consisting of an organic semiconductor active layer with a semitransparent metal electrical contact exhibiting surface plasmon-based enhanced optical transmission. We achieve high-spectral irradiance in a spot size of less than 100 μm using a high-brightness laser-driven light source and appropriate coupling optics. Spatially resolved Fourier transform photocurrent spectroscopy in the visible and near-infrared spectral regions allows us to measure external quantum efficiency with high sensitivity in small-area devices (<1 mm 2). Lastly, this allows for rapid fabrication of variable-pitch sub-wavelength hole arrays in metal films for usemore » as transparent electrical contacts, and evaluation of the evanescent and propagating mode coupling to resonances in the active layer.« less
LRO Diviner Nonlinear Response and Opposition Effect Corrections
NASA Astrophysics Data System (ADS)
Gyalay, S.; Aye, K. M.; Paige, D. A.
2016-12-01
Aboard the Lunar Reconnaissance Orbiter, the Diviner Lunar Radiometer Experiment measures thermal radiation to determine the brightness temperature of the lunar surface. As with the Mars Climate Sounder (upon which Diviner is based), we use pre-flight calibration data to correct for the nonlinear response in Diviner's detectors, which in-turn accounts for much of the detector non-uniformity within channels. Furthermore, channels 8 and 9 exhibit unexpectedly high brightness temperatures close to the equator around midday, with even higher brightness temperatures when observing lunar highlands as opposed to maria. Unexpectedly high brightness temperatures around midday at the equator is reminiscent of the opposition effect known to exist on the Moon at low phase angles in Visual to Near Infra-Red (VNIR) wavelengths. Diviner channel 2 data (which detects solar radiation reflected by the Moon) shows this opposition effect, which is more pronounced in the highlands than the maria. We interpret a correlation we observe between channel 2 detected radiance and channel 8 and 9 brightness temperature as due to incomplete blocking of reflected solar radiation. This leads us to an opposition effect correction for Diviner channels 8 and 9 dependent on Diviner's solar channel data. Whether this is a direct leak of VNIR light upon the detectors, or solar heating of blocking filters, which then radiate infrared radiation upon the detectors, is yet to be determined. We can use the nonlinearity and opposition effect corrections to recharacterize the spectral emissivity of the lunar regolith, which we can then compare to laboratory spectra.
Evidence for a basalt-free surface on Mercury and implications for internal heat.
Jeanloz, R; Mitchell, D L; Sprague, A L; de Pater, I
1995-06-09
Microwave and mid-infrared observations reveal that Mercury's surface contains less FeO + TiO2 and at least as much feldspar as the lunar highlands. The results are compatible with the high albedo (brightness) of Mercury's surface at visible wavelengths in suggesting a rock and soil composition that is devoid of basalt, the primary differentiate of terrestrial mantles. The occurrence of a basalt-free, highly differentiated crust is in accord with recent models of the planet's thermal evolution and suggests that Mercury has retained a hot interior as a result of a combination of inefficient mantle convection and minimal volcanic heat loss.
Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism.
Otterman, J
1974-11-08
Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed "thermal depression" eflect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.
Baring high-albedo soils by overgrazing - A hypothesized desertification mechanism
NASA Technical Reports Server (NTRS)
Otterman, J.
1974-01-01
Observations are reported of high-albedo soils denuded by overgrazing which appear bright, in high contrast to regions covered by natural vegetation. Measurements and modeling show that the denuded surfaces are cooler, when compared under sunlit conditions. This observed 'thermal depression' effect should, on theoretical grounds, result in a decreased lifting of air necessary for cloud formation and precipitation, and thus lead to regional climatic desertification.
The local metallicity-surface brightness relationship in galactic disks
NASA Technical Reports Server (NTRS)
Ryder, Stuart D.
1995-01-01
We present the results of a first attempt to employ multiaperture masks to obtain spectrophotometry of H II regions in nearby galaxies. A total of 97 H II regions in six southern spiral galaxies were observed using a combination of multiaperture masks and conventional long-slit spectrophotometry. The oxygen abundances derived from the multiaperture mask observations using the empirical abundance diagnostic R(sub 23) are shown to be consistent with those from long-slit spectra and generally show better reproducibility and object definition. Although the number of objects that can be observed simultaneously with this particular system is still quite limited compared with either imaging spectrophotometry or fiber-fed spectrographs, the spectral resolution offered and high throughput in the blue help make multiaperture spectrophotometry a competitive technique for increasing the sampling of H II regions in both radial distance and luminosity. There is still no clear trend of abundance gradient with either the galaxy's luminosity or its Hubble type, although the extrapolated central abundance does appear to correlate with galaxy luminosity/mass. In order to avoid difficulty in choosing an appropriate normalizing radius, we instead plot the oxygen abundance against the underlying I-band surface brightness at the radial distance of the H II region and confirm the existence of a local metallicity-surface brightness reltaionship within the disks of spiral galaxies. Although the simple closed-boc model of galaxy evolution predicts almost the right form of this relationship, a more realistic multizone model employing expnentially decreasing gas infall provides a more satisfactory fit to the observational data, provided the expected enriched gas return from dying low-mass stars shedding their envelopes at late epochs is properly taken into account. This same model, with a star formation law based upon self-regulating star formation in a three-dimensional disk (Dopita & Ryder 1994), is equally capable of accounting for the observed relationship between recent massive star formation and stellar surface brightness (Ryder & Dopita 1994).
Properties of an H I-selected galaxy sample
NASA Technical Reports Server (NTRS)
Szomoru, Arpad; Guhathakurta, Puragra; Van Gorkom, Jacqueline H.; Knapen, Johan H.; Weinberg, David H.; Fruchter, Andrew S.
1994-01-01
We analyze the properties of a sample of galaxies identified in a 21cm, H I-line survey of selected areas in the Perseus-Pisces supercluster and its foreground void. Twelve fields were observed in the supercluster, five of them (target fields) centered on optically bright galaxies, and the other seven (blank fields) selected to contain no bright galaxies within 45 min. of their centers. We detected nine previously uncatalogued, gas-rich galaxies, six of them in the target fields. We also detected H I from seven previously catalogued galaxies in these fields. Observations in the void covered the same volume as the 12 supercluster fields at the same H I-mass sensitivity, but no objects were detected. Combining out H I data with optical broadband and H alpha imaging, we conclude that the properties of H I-selected galaxies do not differ substantially from those of late-type galaxies found in optical surveys. In particular, the galaxies in our sample do not appear to be unusually faint for their H I mass, or for their circular velocity. We find tentative evidence for a connection between optical surface brightness and degree of isolation, in the sense that low surface brightness galaxies tend to be more isolated. The previously catalogued, optically bright galaxies in our survey volume dominate the total H I mass density and cross section; the uncatalogued galaxies contribute only approximately 19 percent of the mass and approximately 12 percent of the cross section. Thus, existing estimates of the density and cross section of neutral hydrogen, most of which are based on optically selected galaxy samples, are probably accurate. Such estimates can be used to compare the nearby universe to the high-redshift universe probed by quasar absorption lines.
Topography and geomorphology of the Huygens landing site on Titan
Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.
2007-01-01
The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.
Modeling Self-subtraction in Angular Differential Imaging: Application to the HD 32297 Debris Disk
NASA Astrophysics Data System (ADS)
Esposito, Thomas M.; Fitzgerald, Michael P.; Graham, James R.; Kalas, Paul
2014-01-01
We present a new technique for forward-modeling self-subtraction of spatially extended emission in observations processed with angular differential imaging (ADI) algorithms. High-contrast direct imaging of circumstellar disks is limited by quasi-static speckle noise, and ADI is commonly used to suppress those speckles. However, the application of ADI can result in self-subtraction of the disk signal due to the disk's finite spatial extent. This signal attenuation varies with radial separation and biases measurements of the disk's surface brightness, thereby compromising inferences regarding the physical processes responsible for the dust distribution. To compensate for this attenuation, we forward model the disk structure and compute the form of the self-subtraction function at each separation. As a proof of concept, we apply our method to 1.6 and 2.2 μm Keck adaptive optics NIRC2 scattered-light observations of the HD 32297 debris disk reduced using a variant of the "locally optimized combination of images" algorithm. We are able to recover disk surface brightness that was otherwise lost to self-subtraction and produce simplified models of the brightness distribution as it appears with and without self-subtraction. From the latter models, we extract radial profiles for the disk's brightness, width, midplane position, and color that are unbiased by self-subtraction. Our analysis of these measurements indicates a break in the brightness profile power law at r ≈ 110 AU and a disk width that increases with separation from the star. We also verify disk curvature that displaces the midplane by up to 30 AU toward the northwest relative to a straight fiducial midplane.
Evidence of Titan's climate history from evaporite distribution
NASA Astrophysics Data System (ADS)
MacKenzie, Shannon M.; Barnes, Jason W.; Sotin, Christophe; Soderblom, Jason M.; Le Mouélic, Stéphane; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie J.; Clark, Roger N.; Nicholson, Phillip D.; McCord, Thomas B.
2014-11-01
Water-ice-poor, 5-μm-bright material on Saturn's moon Titan has previously been geomorphologically identified as evaporitic. Here we present a global distribution of the occurrences of the 5-μm-bright spectral unit, identified with Cassini's Visual Infrared Mapping Spectrometer (VIMS) and examined with RADAR when possible. We explore the possibility that each of these occurrences are evaporite deposits. The 5-μm-bright material covers 1% of Titan's surface and is not limited to the poles (the only regions with extensive, long-lived surface liquid). We find the greatest areal concentration to be in the equatorial basins Tui Regio and Hotei Regio. Our interpretations, based on the correlation between 5-μm-bright material and lakebeds, imply that there was enough liquid present at some time to create the observed 5-μm-bright material. We address the climate implications surrounding a lack of evaporitic material at the south polar basins: if the south pole basins were filled at some point in the past, then where is the evaporite?
The night sky brightness at McDonald Observatory
NASA Technical Reports Server (NTRS)
Kalinowski, J. K.; Roosen, R. G.; Brandt, J. C.
1975-01-01
Baseline observations of the night sky brightness in B and V are presented for McDonald Observatory. In agreement with earlier work by Elvey and Rudnick (1937) and Elvey (1943), significant night-to-night and same-night variations in sky brightness are found. Possible causes for these variations are discussed. The largest variation in sky brightness found during a single night is approximately a factor of two, a value which corresponds to a factor-of-four variation in airglow brightness. The data are used to comment on the accuracy of previously published surface photometry of M 81.
Pyrite Stability Under Venus Surface Conditions
NASA Astrophysics Data System (ADS)
Kohler, E.; Craig, P.; Port, S.; Chevrier, V.; Johnson, N.
2015-12-01
Radar mapping of the surface of Venus shows areas of high reflectivity in the Venusian highlands, increasing to 0.35 ± 0.04 to 0.43 ± 0.05 in the highlands from the planetary average of 0.14 ± 0.03. Iron sulfides, specifically pyrite (FeS2), can explain the observed high reflectivity. However, several studies suggest that pyrite is not stable under Venusian conditions and is destroyed on geologic timescales. To test the stability of pyrite on the Venusian surface, pyrite was heated in the Venus simulation chamber at NASA Goddard Space Flight Center to average Venusian surface conditions, and separately to highland conditions under an atmosphere of pure CO2 and separately under an atmosphere of 96.5% CO2, 3.5% N2 and 150 ppm SO2. After each run, the samples were weighed and analyzed using X-Ray Diffraction (XRD) to identify possible phase changes and determine the stability of pyrite under Venusian surface conditions. Under a pure CO2 atmosphere, the Fe in pyrite oxidizes to form hematite which is more stable at higher temperatures corresponding to the Venusian lowlands. Magnetite is the primary iron oxide that forms at lower temperatures corresponding to the radar-bright highlands. Our experiments also showed that the presence of atmospheric SO2 inhibits the oxidation of pyrite, increasing its stability under Venusian conditions, especially those corresponding to the highlands. This indicates that the relatively high level of SO2 in the Venusian atmosphere is key to the stability of pyrite, making it a possible candidate for the bright radar signal in the Venusian highlands.
Semi-volatiles at Mercury: Sodium (Na) and potassium (K)
NASA Technical Reports Server (NTRS)
Sprague, A.
1994-01-01
Several lines of evidence now suggest that Mercury is a planet rich in moderately-volatile elements such as Na and K. Recent mid-infrared spectral observations of Mercury's equatorial and mid-latitude region near 120 degrees mercurian longitude indicate the presence of plagioclase feldspar. Spectra of Mercury's surface exhibit spectral activity similar to labradorite (plagioclase feldspar with NaAlSi3O8: 30-50 percent) and bytownite (NaAlSi3O8: 10-30 percent). These surface studies were stimulated by the relatively large abundance of Na and K observed in Mercury's atmosphere. An enhanced column of K is observed at the longitudes of Caloris Basin and of the antipodal terrain. Extreme heating at these 'hot' longitudes and severe fracturing suffered from the large impact event could lead to enhanced outgassing from surface or subsurface materials. Alternatively, sputtering from a surface enriched in K could be the source of the observed enhancement. Recent microwave measurements of Mercury also give indirect evidence of a mercurian regolith less FeO-rich than the Moon. An anomalously high index of refraction derived from the whole-disk integrated phase curve of Danjon may also be indicative of surface sulfides contributing to a regolith that is moderately volatile-rich. The recent exciting observations of radar-bright spots at high latitudes also indicate that a substance of high volume scattering, like ice, is present in shadowed regions. Other radar-bright spots have been seen at locations of Na enhancements on the atmosphere. All combined, these pieces of evidence point to a planet that is not severely depleted in volatiles or semi-volatiles.
NASA Technical Reports Server (NTRS)
Thompson, W. Reid; Sagan, Carl
1990-01-01
The surface of Triton is very bright but shows subtle yellow to peach hues which probably arise from the production of colored organic compounds from CH4 + N2 and other simple species. In order to investigate possible relationships between chemical processes and the observed surface distribution of chromophores, the surface units are classified according to color/albedo properties, the rates of production of organic chromophores by the action of ultraviolet light and high-energy charged particles is estimated, and rates, spectral properties, and expected seasonal redistribution processes are compared to suggest possible origins of the colors seen on Triton's surface.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 6 June 2002) The Science This image, located near the equator and 288W (72E), is near the southern edge of a low, broad volcanic feature called Syrtis Major. A close look at this image reveals a wrinkly texture that indicates a very rough surface that is associated with the lava flows that cover this region. On a larger scale, there are numerous bright streaks that trail topographic features such as craters. These bright streaks are in the wind shadows of the craters where dust that settles onto the surface is not as easily scoured away. It is important to note that these streaks are only bright in a relative sense to the surrounding image. Syrtis Major is one of the darkest regions on Mars and it is as dark as fresh basalt flows or dunes are on Earth. The Story Cool! It almost looks as if nature has 'painted' comets on the surface of Mars, using craters as comet cores and dust as streaky tails. Of course, that's just an illusion. As in many areas of Mars, the wind is behind the creation of such fantastic landforms. The natural phenomenon seen here gives this particular surface of Mars a very dynamic, fast-moving, almost luminous 'cosmic personality.' The bright, powdery-looking streaks of dust are in the 'wind shadows' of craters, where dust that settles onto the surface is not as easily scoured away. That's because the wind moves across the land in a particular direction, and a raised surface like the rim of a crater 'protects' dust from being completely blown away on the other side. The raised landforms basically act as a buffer. From the streaks seen above, you can tell the wind was blowing in a northeast to southwest direction. Why are the streaks so bright? Because they contrast with the really dark underlying terrain in this volcanic area of Mars. Syrtis Major is one of the darkest regions on Mars because it is made of basalt. Basalt is typically dark gray or black, and forms when a certain type of molten lava cools. The meaning of the word basalt has been traced back to an ancient Ethiopian word 'basal,' which means 'a rock from which you can obtain iron.' That must have made it a very desired material with ancient Earth civilizations long ago. Basalt is actually one of the most abundant types of rock found on Earth. Most of the volcanic islands in the ocean are made of basalt, including the large shield volcano of Mauna Loa, Hawaii, which is often compared to Martian shield volcanoes. Shield volcanoes don't have high, steep, mountain-like sides, but are instead low and broad humps upon the surface. They're created when highly fluid, molten-basalt flows spread out over wide areas. Over several millennia of basaltic layering upon layering, these volcanoes can reach massive sizes like the ones seen on Mars. You can see the wrinkly texture of dark lava flows (now hard and cool) in the above image beneath the brighter dust.
Dark Lakes on a Bright Landscape
2013-10-23
Ultracold hydrocarbon lakes and seas dark shapes near the north pole of Saturn moon Titan can be seen embedded in some kind of bright surface material in this infrared mosaic from NASA Cassini mission.
NASA Technical Reports Server (NTRS)
Golub, L.; Krieger, A. S.; Vaiana, G. S.
1976-01-01
Observations of X-ray bright points (XBP) over a six-month interval in 1973 show significant variations in both the number density of XBP as a function of heliographic longitude and in the full-sun average number of XBP from one rotation to the next. The observed increases in XBP emergence are estimated to be equivalent to several large active regions emerging per day for several months. The number of XBP emerging at high latitudes varies in phase with the low-latitude variation and reaches a maximum approximately simultaneous with a major outbreak of active regions. The quantity of magnetic flux emerging in the form of XBP at high latitudes alone is estimated to be as large as the contribution from all active regions.
NASA Technical Reports Server (NTRS)
Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.
1982-01-01
Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.
Titan Surface Temperatures as Measured by Cassini CIRS
NASA Technical Reports Server (NTRS)
Jennings, Donald E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Romani, P.N.; Samuelson, R.E.; Coustenis, A.; Courtin, R.
2009-01-01
Thermal radiation from the surface of Titan reaches space through a spectral window of low opacity at 19-microns wavelength. This radiance gives a measure of the brightness temperature of the surface. Composite Infrared Spectrometer' (CIRS) observations from Cassini during its first four years at Saturn have permitted latitude mapping of zonally averaged surface temperatures. The measurements are corrected for atmospheric opacity using the dependence of radiance on emission angle. With the more complete latitude coverage and much larger dataset of CIRS we have improved upon the original results from Voyager IRIS. CIRS measures the equatorial surface brightness temperature to be 93.7+/-0.6 K, the same as the temperature measured at the Huygens landing site. The surface brightness temperature decreases by 2 K toward the south pole and by 3 K toward the north pole. The drop in surface temperature between equator and north pole implies a 50% decrease in methane saturation vapor pressure and relative humidity; this may help explain the large northern lakes. The H2 mole fraction is derived as a by-product of our analysis and agrees with previous results. Evidence of seasonal variation in surface and atmospheric temperatures is emerging from CIRS measurements over the Cassini mission.
Long-slit Spectroscopy of Edge-on Low Surface Brightness Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Wei; Wu, Hong; Zhu, Yinan
2017-03-10
We present long-slit optical spectra of 12 edge-on low surface brightness galaxies (LSBGs) positioned along their major axes. After performing reddening corrections for the emission-line fluxes measured from the extracted integrated spectra, we measured the gas-phase metallicities of our LSBG sample using both the [N ii]/H α and the R {sub 23} diagnostics. Both sets of oxygen abundances show good agreement with each other, giving a median value of 12 + log(O/H) = 8.26 dex. In the luminosity–metallicity plot, our LSBG sample is consistent with the behavior of normal galaxies. In the mass–metallicity diagram, our LSBG sample has lower metallicitiesmore » for lower stellar mass, similar to normal galaxies. The stellar masses estimated from z -band luminosities are comparable to those of prominent spirals. In a plot of the gas mass fraction versus metallicity, our LSBG sample generally agrees with other samples in the high gas mass fraction space. Additionally, we have studied stellar populations of three LSBGs, which have relatively reliable spectral continua and high signal-to-noise ratios, and qualitatively conclude that they have a potential dearth of stars with ages <1 Gyr instead of being dominated by stellar populations with ages >1 Gyr. Regarding the chemical evolution of our sample, the LSBG data appear to allow for up to 30% metal loss, but we cannot completely rule out the closed-box model. Additionally, we find evidence that our galaxies retain up to about three times as much of their metals compared with dwarfs, consistent with metal retention being related to galaxy mass. In conclusion, our data support the view that LSBGs are probably just normal disk galaxies continuously extending to the low end of surface brightness.« less
NASA Astrophysics Data System (ADS)
George, Koshy
2017-02-01
Context. Star-forming blue early-type galaxies at low redshift can give insight to the stellar mass growth of L⋆ elliptical galaxies in the local Universe. Aims: We wish to understand the reason for star formation in these otherwise passively evolving red and dead stellar systems. The fuel for star formation can be acquired through recent accretion events such as mergers or flyby. The signatures of such events should be evident from a structural analysis of the galaxy image. Methods: We carried out structural analysis on SDSS r-band imaging data of 55 star-forming blue elliptical galaxies, derived the structural parameters, analysed the residuals from best-fit to surface brightness distribution, and constructed the galaxy scaling relations. Results: We found that star-forming blue early-type galaxies are bulge-dominated systems with axial ratio >0.5 and surface brightness profiles fitted by Sérsic profiles with index (n) mostly >2. Twenty-three galaxies are found to have n< 2; these could be hosting a disc component. The residual images of the 32 galaxy surface brightness profile fits show structural features indicative of recent interactions. The star-forming blue elliptical galaxies follow the Kormendy relation and show the characteristics of normal elliptical galaxies as far as structural analysis is concerned. There is a general trend for high-luminosity galaxies to display interaction signatures and high star formation rates. Conclusions: The star-forming population of blue early-type galaxies at low redshifts could be normal ellipticals that might have undergone a recent gas-rich minor merger event. The star formation in these galaxies will shut down once the recently acquired fuel is consumed, following which the galaxy will evolve to a normal early-type galaxy.
Optical image of a cometary nucleus: 1980 flyby of Comet Encke
NASA Technical Reports Server (NTRS)
Wells, W. C.; Benson, R. S.; Anderson, A. D.; Gal, G.
1974-01-01
The feasibility was investigated of obtaining optical images of a cometary nucleus via a flyby of Comet Encke. A physical model of the dust cloud surrounding the nucleus was developed by using available physical data and theoretical knowledge of cometary physics. Using this model and a Mie scattering code, calculations were made of the absolute surface brightness of the dust in the line of sight of the on-board camera and the relative surface brightness of the dust compared to the nucleus. The brightness was calculated as a function of heliocentric distance and for different phase angles (sun-comet-spacecraft angle).
NASA Technical Reports Server (NTRS)
Brown, Shannon; Misra, Sidharth
2013-01-01
The Aquarius/SAC-D mission was launched on June 10, 2011 from Vandenberg Air Force Base. Aquarius consists of an L-band radiometer and scatterometer intended to provide global maps of sea surface salinity. One of the main mission objectives is to provide monthly global salinity maps for climate studies of ocean circulation, surface evaporation and precipitation, air/sea interactions and other processes. Therefore, it is critical that any spatial or temporal systematic biases be characterized and corrected. One of the main mission requirements is to measure salinity with an accuracy of 0.2 psu on montly time scales which requires a brightness temperature stability of about 0.1K, which is a challenging requirement for the radiometer. A secondary use of the Aquarius data is for soil moisture applications, which requires brightness temperature stability at the warmer end of the brightness temperature dynamic range. Soon after launch, time variable drifts were observed in the Aquarius data compared to in-situ data from ARGO and models for the ocean surface salinity. These drifts could arise from a number of sources, including the various components of the retrieval algorithm, such as the correction for direct and reflected galactic emission, or from the instrument brightness temperature calibration. If arising from the brightness temperature calibration, they could have gain and offset components. It is critical that the nature of the drifts be understood before a suitable correction can be implemented. This paper describes the approach that was used to detect and characterize the components of the drift that were in the brightness temperature calibration using on-Earth reference targets that were independent of the ocean model.
Modeling the non-grey-body thermal emission from the full moon
NASA Technical Reports Server (NTRS)
Vogler, Karl J.; Johnson, Paul E.; Shorthill, Richard W.
1991-01-01
The present series of thermophysical computer models for solid-surfaced planetary bodies whose surface roughness is modeled as paraboloidal craters of specified depth/diameter ratio attempts to characterize the nongrey-body brightness temperature spectra of the moon and of the Galilean satellites. This modeling, in which nondiffuse radiation properties and surface roughness are included for rigorous analysis of scattered and reemitted radiation within a crater, explains to first order the behavior of both limb-scans and disk-integrated IR brightness temperature spectra for the full moon. Only negative surface relief can explain lunar thermal emissions' deviation from smooth Lambert-surface expectations.
MOLA 1064nm Radiometry Measurements: Status and Prospects in Extended Mission
NASA Technical Reports Server (NTRS)
Neumann, G. A.; Abshire, J. B.; Smith, D. E.; Sun, X.; Zuber, M. T.
2002-01-01
The Mars Orbiting Laser Altimeter (MOLA) instrument has measured the brightness of the Mars surface at 1064 nm in a passive mode, from background noise counts, since 1997. After ceasing altimetry collection July 2001, MOLA has taken >50 million high-resolution radiometer observations. Additional information is contained in the original extended abstract.
Present and future experiments using bright low-energy positron beams
NASA Astrophysics Data System (ADS)
Hugenschmidt, Christoph
2017-01-01
Bright slow positron beams enable not only experiments with drastically reduced measurement time and improved signal-to-noise ratio but also the realization of novel experimental techniques. In solid state physics and materials science positron beams are usually applied for the depth dependent analysis of vacancy-like defects and their chemical surrounding using positron lifetime and (coincident) Doppler broadening spectroscopy. For surface studies, annihilation induced Auger-electron spectroscopy allows the analysis of the elemental composition in the topmost atomic layer, and the atomic positions at the surface can be determined by positron diffraction with outstanding accuracy. In fundamental research low-energy positron beams are used for the production of e.g. cold positronium or positronium negative ions. All the aforementioned experiments benefit from the high intensity of present positron beam facilities. In this paper, we scrutinize the technical constraints limiting the achievable positron intensity and the available kinetic energy at the sample position. Current efforts and future developments towards the generation of high intensity spin-polarized slow positron beams paving the way for new positron experiments are discussed.
Next generation diode lasers with enhanced brightness
NASA Astrophysics Data System (ADS)
Ried, S.; Rauch, S.; Irmler, L.; Rikels, J.; Killi, A.; Papastathopoulos, E.; Sarailou, E.; Zimer, H.
2018-02-01
High-power diode lasers are nowadays well established manufacturing tools in high power materials processing, mainly for tactile welding, surface treatment and cladding applications. Typical beam parameter products (BPP) of such lasers range from 30 to 50 mm·mrad at several kilowatts of output power. TRUMPF offers a product line of diode lasers to its customers ranging from 150 W up to 6 kW of output power. These diode lasers combine high reliability with small footprint and high efficiency. However, up to now these lasers are limited in brightness due to the commonly used spatial and coarse spectral beam combining techniques. Recently diode lasers with enhanced brightness have been presented by use of dense wavelength multiplexing (DWM). In this paper we report on TRUMPF's diode lasers utilizing DWM. We demonstrate a 2 kW and a 4 kW system ideally suited for fine welding and scanner welding applications. The typical laser efficiency is in the range of 50%. The system offers plug and play exchange of the fiber beam delivery cable, multiple optical outputs and integrated cooling in a very compact package. An advanced control system offers flexible integration in any customer's shop floor environment and includes industry 4.0 capabilities (e.g. condition monitoring and predictive maintenance).
The effect of precipitation on measuring sea surface salinity from space
NASA Astrophysics Data System (ADS)
Jin, Xuchen; Pan, Delu; He, Xianqiang; Wang, Difeng; Zhu, Qiankun; Gong, Fang
2017-10-01
The sea surface salinity (SSS) can be measured from space by using L-band (1.4 GHz) microwave radiometers. The L-band has been chosen for its sensitivity of brightness temperature to the change of salinity. However, SSS remote sensing is still challenging due to the low sensitivity of brightness temperature to SSS variation: for the vertical polarization, the sensitivity is about 0.4 to 0.8 K/psu with different incident angles and sea surface temperature; for horizontal polarization, the sensitivity is about 0.2 to 0.6 K/psu. It means that we have to make radiometric measurements with accuracy better than 1K even for the best sensitivity of brightness temperature to SSS. Therefore, in order to retrieve SSS, the measured brightness temperature at the top of atmosphere (TOA) needs to be corrected for many sources of error. One main geophysical source of error comes from atmosphere. Currently, the atmospheric effect at L-band is usually corrected by absorption and emission model, which estimate the radiation absorbed and emitted by atmosphere. However, the radiation scattered by precipitation is neglected in absorption and emission models, which might be significant under heavy precipitation. In this paper, a vector radiative transfer model for coupled atmosphere and ocean systems with a rough surface is developed to simulate the brightness temperature at the TOA under different precipitations. The model is based on the adding-doubling method, which includes oceanic emission and reflection, atmospheric absorption and scattering. For the ocean system with a rough surface, an empirical emission model established by Gabarro and the isotropic Cox-Munk wave model considering shadowing effect are used to simulate the emission and reflection of sea surface. For the atmospheric attenuation, it is divided into two parts: For the rain layer, a Marshall-Palmer distribution is used and the scattering properties of the hydrometeors are calculated by Mie theory (the scattering hydrometeors are assumed to be spherical). For the other atmosphere layers, which are assumed to be clear sky, Liebe's millimeter wave propagation model (MPM93) is used to calculate the absorption coefficients of oxygen, water vapor, and cloud droplets. To simulate the change of brightness temperature caused by different rain rate (0-50 mm/h), we assume a 26-layer precipitation structure corresponding to NCEP FNL data. Our radiative transfer simulations showed that the brightness temperature at TOA can be influenced significantly by the heavy precipitation, the results indicate that the atmospheric attenuation of L-band at incidence angle of 42.5° should be a positive bias, and when rain rate rise up to 50 mm/h, the brightness temperature increases are close to 0.6 K and 0.8 K for horizontally and vertically polarized brightness temperature, respectively. Thus, in the case of heavy precipitation, the current absorption and emission model is not accurate enough to correct atmospheric effect, and a radiative transfer model which considers the effect of radiation scattering should be used.
Space Radar Image of Altona, Manitoba, Canada
1999-05-01
This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of the magenta indicate differences in the degree of soil moisture change and differences in surface roughness. This seasonal composite demonstrates the sensitivity of radar to changes in agricultural surface conditions such as soil moisture, tillage, cropping and harvesting. http://photojournal.jpl.nasa.gov/catalog/PIA01742
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribeiro, T.; Baptista, R.; Kafka, S.
We present a multi-epoch time-resolved high-resolution optical spectroscopy study of the short-period (P{sub orb} = 11.2 hr) eclipsing M0V+M5V RS CVn binary V405 Andromeda. By means of indirect imaging techniques, namely Doppler imaging, we study the surface activity features of the M0V component of the system. A modified version of a Doppler imaging code, which takes into account the tidal distortion of the surface of the star, is applied to the multi-epoch data set in order to provide indirect images of the stellar surface. The multi-epoch surface brightness distributions show a low intensity 'belt' of spots at latitudes {+-}40{sup 0}more » and a noticeable absence of high latitude features or polar spots on the primary star of V405 Andromeda. They also reveal slow evolution of the spot distribution over {approx}4 yr. An entropy landscape procedure is used in order to find the set of binary parameters that lead to the smoothest surface brightness distributions. As a result, we find M{sub 1} = 0.51 {+-} 0.03 M{sub sun}, M{sub 2} = 0.21 {+-} 0.01 M{sub sun}, R{sub 1} = 0.71 {+-} 0.01 R{sub sun}, and an inclination i = 65{sup 0} {+-} 1{sup 0}. The resulting systemic velocity is distinct for different epochs, raising the possibility of the existence of a third body in the system.« less
Effect of Surface Chemistry on the Fluorescence of Detonation Nanodiamonds.
Reineck, Philipp; Lau, Desmond W M; Wilson, Emma R; Fox, Kate; Field, Matthew R; Deeleepojananan, Cholaphan; Mochalin, Vadym N; Gibson, Brant C
2017-11-28
Detonation nanodiamonds (DNDs) have unique physical and chemical properties that make them invaluable in many applications. However, DNDs are generally assumed to show weak fluorescence, if any, unless chemically modified with organic molecules. We demonstrate that detonation nanodiamonds exhibit significant and excitation-wavelength-dependent fluorescence from the visible to the near-infrared spectral region above 800 nm, even without the engraftment of organic molecules to their surfaces. We show that this fluorescence depends on the surface functionality of the DND particles. The investigated functionalized DNDs, produced from the same purified DND as well as the as-received polyfunctional starting material, are hydrogen, hydroxyl, carboxyl, ethylenediamine, and octadecylamine-terminated. All DNDs are investigated in solution and on a silicon wafer substrate and compared to fluorescent high-pressure high-temperature nanodiamonds. The brightest fluorescence is observed from octadecylamine-functionalized particles and is more than 100 times brighter than the least fluorescent particles, carboxylated DNDs. The majority of photons emitted by all particle types likely originates from non-diamond carbon. However, we locally find bright and photostable fluorescence from nitrogen-vacancy centers in diamond in hydrogenated, hydroxylated, and carboxylated detonation nanodiamonds. Our results contribute to understanding the effects of surface chemistry on the fluorescence of DNDs and enable the exploration of the fluorescent properties of DNDs for applications in theranostics as nontoxic fluorescent labels, sensors, nanoscale tracers, and many others where chemically stable and brightly fluorescent nanoparticles with tailorable surface chemistry are needed.
Illuminating Low Surface Brightness Galaxies with the Hyper Suprime-Cam Survey
NASA Astrophysics Data System (ADS)
Greco, Johnny P.; Greene, Jenny E.; Strauss, Michael A.; Macarthur, Lauren A.; Flowers, Xzavier; Goulding, Andy D.; Huang, Song; Kim, Ji Hoon; Komiyama, Yutaka; Leauthaud, Alexie; Leisman, Lukas; Lupton, Robert H.; Sifón, Cristóbal; Wang, Shiang-Yu
2018-04-01
We present a catalog of extended low surface brightness galaxies (LSBGs) identified in the Wide layer of the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). Using the first ∼200 deg2 of the survey, we have uncovered 781 LSBGs, spanning red (g ‑ i ≥ 0.64) and blue (g ‑ i < 0.64) colors and a wide range of morphologies. Since we focus on extended galaxies (r eff = 2.″5–14″), our sample is likely dominated by low-redshift objects. We define LSBGs to have mean surface brightnesses {\\bar{μ }}eff}(g)> 24.3 mag arcsec‑2, which allows nucleated galaxies into our sample. As a result, the central surface brightness distribution spans a wide range of μ 0(g) = 18–27.4 mag arcsec‑2, with 50% and 95% of galaxies fainter than 24.3 and 22 mag arcsec‑2, respectively. Furthermore, the surface brightness distribution is a strong function of color, with the red distribution being much broader and generally fainter than that of the blue LSBGs, and this trend shows a clear correlation with galaxy morphology. Red LSBGs typically have smooth light profiles that are well characterized by single-component Sérsic functions. In contrast, blue LSBGs tend to have irregular morphologies and show evidence for ongoing star formation. We cross-match our sample with existing optical, H I, and ultraviolet catalogs to gain insight into the physical nature of the LSBGs. We find that our sample is diverse, ranging from dwarf spheroidals and ultradiffuse galaxies in nearby groups to gas-rich irregulars to giant LSB spirals, demonstrating the potential of the HSC-SSP to provide a truly unprecedented view of the LSBG population.
First Characterization of the Neutral ISM in Two Local Volume Dwarf Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bralts-Kelly, Lilly; Bulatek, Alyssa M.; Chinski, Sarah
We present the first H i spectral-line images of the nearby, star-forming dwarf galaxies UGC 11411 and UGC 8245, acquired as part of the “Observing for University Classes” program with the Karl G. Jansky Very Large Array (VLA). These low-resolution images localize the H i gas and reveal the bulk kinematics of each system. Comparing with Hubble Space Telescope ( HST ) broadband and ground-based H α imaging, we find that the ongoing star formation in each galaxy is associated with the highest H i mass surface density regions. UGC 8245 has a much lower current star formation rate thanmore » UGC 11411, which harbors very high surface brightness H α emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST . We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the H i and stellar masses of the sources are similar. We show that UGC 8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC 11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.« less
Nanoscopy reveals surface-metallic black phosphorus
Abate, Yohannes; Gamage, Sampath; Li, Zhen; ...
2016-10-21
Black phosphorus (BP) is an emerging two-dimensional material with intriguing physical properties. It is highly anisotropic and highly tunable by means of both the number of monolayers and surface doping. Here, we experimentally investigate and theoretically interpret the near-field properties of a-few-atomic-monolayer nanoflakes of BP. We discover near-field patterns of bright outside fringes and a high surface polarizability of nanofilm BP consistent with its surface-metallic, plasmonic behavior at mid-infrared frequencies <1176 cm -1. We conclude that these fringes are caused by the formation of a highly polarizable layer at the BP surface. This layer has a thickness of ~1 nmmore » and exhibits plasmonic behavior. We estimate that it contains free carriers in a concentration of n≈1.1 × 10 20 cm -3. Surface plasmonic behavior is observed for 10–40 nm BP thicknesses but absent for a 4-nm BP thickness. This discovery opens up a new field of research and potential applications in nanoelectronics, plasmonics and optoelectronics.« less
A Physical Model to Determine Snowfall over Land by Microwave Radiometry
NASA Technical Reports Server (NTRS)
Skofronick-Jackson, G.; Kim, M.-J.; Weinman, J. A.; Chang, D.-E.
2003-01-01
Because microwave brightness temperatures emitted by snow covered surfaces are highly variable, snowfall above such surfaces is difficult to observe using window channels that occur at low frequencies (v less than 100 GHz). Furthermore, at frequencies v less than or equal to 37 GHz, sensitivity to liquid hydrometeors is dominant. These problems are mitigated at high frequencies (v greater than 100 GHz) where water vapor screens the surface emission and sensitivity to frozen hydrometeors is significant. However the scattering effect of snowfall in the atmosphere at those higher frequencies is also impacted by water vapor in the upper atmosphere. This work describes the methodology and results of physically-based retrievals of snow falling over land surfaces. The theory of scattering by randomly oriented dry snow particles at high microwave frequencies appears to be better described by regarding snow as a concatenation of equivalent ice spheres rather than as a sphere with the effective dielectric constant of an air-ice mixture. An equivalent sphere snow scattering model was validated against high frequency attenuation measurements. Satellite-based high frequency observations from an Advanced Microwave Sounding Unit (AMSU-B) instrument during the March 5-6, 2001 New England blizzard were used to retrieve snowfall over land. Vertical distributions of snow, temperature and relative humidity profiles were derived from the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) fifth-generation Mesoscale Model (MM5). Those data were applied and modified in a radiative transfer model that derived brightness temperatures consistent with the AMSU-B observations. The retrieved snowfall distribution was validated with radar reflectivity measurements obtained from the National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS) ground-based radar network.
Titan's Surface Brightness Temperatures and H2 Mole Fraction from Cassini CIRS
NASA Technical Reports Server (NTRS)
Jennings, Donald E.; Flasar, F. M.; Kunde, V. G.; Samuelson, R. E.; Pearl, J. C.; Nixon, C. A.; Carlson, R. C.; Mamoutkine, A. A.; Brasunas, J. C.; Guandique, E.;
2008-01-01
The atmosphere of Titan has a spectral window of low opacity around 530/cm in the thermal infrared where radiation from the surface can be detected from space. The Composite Infrared spectrometer1 (CIRS) uses this window to measure the surface brightness temperature of Titan. By combining all observations from the Cassini tour it is possible to go beyond previous Voyager IRIS studies in latitude mapping of surface temperature. CIRS finds an average equatorial surface brightness temperature of 93.7+/-0.6 K, which is close to the 93.65+/-0.25 K value measured at the surface by Huygens HASi. The temperature decreases toward the poles, reaching 91.6+/-0.7 K at 90 S and 90.0+/-1.0 K at 87 N. The temperature distribution is centered in latitude at approximately 12 S, consistent with Titan's season of late northern winter. Near the equator the temperature varies with longitude and is higher in the trailing hemisphere, where the lower albedo may lead to relatively greater surface heating5. Modeling of radiances at 590/cm constrains the atmospheric H2 mole fraction to 0.12+/-0.06 %, in agreement with results from Voyager iris.
Nano-size defects in arsenic-implanted HgCdTe films: a HRTEM study
NASA Astrophysics Data System (ADS)
Bonchyk, O. Yu.; Savytskyy, H. V.; Swiatek, Z.; Morgiel, Y.; Izhnin, I. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Fitsych, O. I.; Varavin, V. S.; Dvoretsky, S. A.; Marin, D. V.; Yakushev, M. V.
2018-02-01
Radiation damage and its transformation under annealing were studied with bright-field and high-resolution transmission electron microscopy for arsenic-implanted HgCdTe films with graded-gap surface layers. In addition to typical highly defective layers in as-implanted material, a 50 nm-thick sub-surface layer with very low defect density was observed. The main defects in other layers after implantation were dislocation loops, yet after arsenic activation annealing, the dominating defects were single dislocations. Transport (from depth to surface), transformation and annihilation of radiation-induced defects were observed as a result of annealing, with the depth with the maximum defect density decreasing from 110 to 40 nm.
NASA Technical Reports Server (NTRS)
Deutsch, Ariel N.; Head, James W.; Neumann, Gregory A.; Chabot, Nancy L.
2017-01-01
Earth-based radar observations revealed highly reflective deposits at the poles of Mercury [e.g., 1], which collocate with permanently shadowed regions (PSRs) detected from both imagery and altimetry by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft [e.g., 2]. MESSENGER also measured higher hydrogen concentrations at the north polar region, consistent with models for these deposits to be composed primarily of water ice [3]. Enigmatic to the characterization of ice deposits on Mercury is the thickness of these radar-bright features. A current minimum bound of several meters exists from the radar measurements, which show no drop in the radar cross section between 13- and 70-cm wavelength observations [4, 5]. A maximum thickness of 300 m is based on the lack of any statistically significant difference between the height of craters that host radar-bright deposits and those that do not [6]. More recently, this upper limit on the depth of a typical ice deposit has been lowered to approximately 150 m, in a study that found a mean excess thickness of 50 +/- 35 m of radar-bright deposits for 6 craters [7]. Refining such a constraint permits the derivation of a volumetric estimate of the total polar ice on Mercury, thus providing insight into possible sources of water ice on the planet. Here, we take a different approach to constrain the thickness of water-ice deposits. Permanently shadowed surfaces have been resolved in images acquired with the broadband filter on MESSENGER's wide-angle camera (WAC) using low levels of light scattered by crater walls and other topography [8]. These surfaces are not featureless and often host small craters (less than a few km in diameter). Here we utilize the presence of these small simple craters to constrain the thickness of the radar-bright ice deposits on Mercury. Specifically, we compare estimated depths made from depth-to-diameter ratios and depths from individual Mercury Laser Altimeter (MLA) tracks to constrain the fill of material of small craters that lie within the permanently shadowed, radar bright deposits of 7 north polar craters.
NASA Technical Reports Server (NTRS)
Reichle, Rolf H.; De Lannoy, Gabrielle J. M.
2012-01-01
The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters, and the single scattering albedo. After this climatological calibration, the modeling system can provide L-band brightness temperatures with a global mean absolute bias of less than 10K against SMOS observations, across multiple incidence angles and for horizontal and vertical polarization. Third, seasonal and regional variations in the residual biases are addressed by estimating the vegetation optical depth through state augmentation during the assimilation of the L-band brightness temperatures. This strategy, tested here with SMOS data, is part of the baseline approach for the Level 4 Surface and Root Zone Soil Moisture data product from the planned Soil Moisture Active Passive (SMAP) satellite mission.
High altitude oblique view of lunar surface taken from Apollo 8 spacecraft
1968-12-24
AS08-12-2209 (21-27 Dec. 1968) --- High altitude oblique view of the lunar surface, looking northeastward, as seen from the Apollo 8 spacecraft. The crater Joliot-Curie, about 175 kilometers in diameter and centered near 94 degrees east longitude and 27 degrees north latitude, is near the center of the left side of this photograph. The bright rayed crater near the horizon is probably located near 105 degrees east longitude and 45 degrees north latitude. Long, narrow rays that have been reported in the polar region of Earth facing hemisphere may radiate from this crater.
The Andromeda Optical and Infrared Disk Survey
NASA Astrophysics Data System (ADS)
Sick, J.; Courteau, S.; Cuillandre, J.-C.
2014-03-01
The Andromeda Optical and Infrared Disk Survey has mapped M31 in u* g' r' i' JKs wavelengths out to R = 40 kpc using the MegaCam and WIRCam wide-field cameras on the Canada-France-Hawaii Telescope. Our survey is uniquely designed to simultaneously resolve stars while also carefully reproducing the surface brightness of M31, allowing us to study M31's global structure in the context of both resolved stellar populations and spectral energy distributions. We use the Elixir-LSB method to calibrate the optical u* g' r' i' images by building real-time maps of the sky background with sky-target nodding. These maps are stable to μg ≲ 28.5 mag arcsec-2 and reveal warps in the outer M31 disk in surface brightness. The equivalent WIRCam mapping in the near-infrared uses a combination of sky-target nodding and image-to-image sky offset optimization to produce stable surface brightnesses. This study enables a detailed analysis of the systematics of spectral energy distribution fitting with near-infrared bands where asymptotic giant branch stars impose a significant, but ill-constrained, contribution to the near-infrared light of a galaxy. Here we present panchromatic surface brightness maps and initial results from our near-infrared resolved stellar catalog.
VLA+WSRT HI Imaging of Two "Almost Dark" Galaxies
NASA Astrophysics Data System (ADS)
Ball, Catie; Singer, Quinton; Cannon, John M.; Leisman, Luke; Haynes, Martha P.; Adams, Elizabeth A.; Bernal Neira, David; Giovanelli, Riccardo; Hallenbeck, Gregory L.; Janesh, William; Janowiecki, Steven; Jozsa, Gyula; Rhode, Katherine L.; Salzer, John Joseph
2017-01-01
We present sensitive HI imaging of the "Almost Dark" galaxies AGC229385 and AGC229101. Selected from the ALFALFA survey, "Almost Dark" galaxies have significant HI reservoirs but lack an obvious stellar counterpart in survey-depth ground-based optical imaging. Deeper ground- and space-based imaging reveals very low surface brightness optical counterparts in both systems. The resulting M_HI/L_B ratios are among the highest ever measured for individual galaxies. Here we combine VLA and WSRT imaging of these two systems, allowing us to preserve surface brightness sensitivity while working at high angular resolution. The resulting maps of HI mass surface density, velocity field, and velocity dispersion are compared to deep optical and ultraviolet imaging. In both systems the highest column density HI gas is clumpy and resolved into multiple components. In the case of AGC229385, the kinematics are inconsistent with a simple rotating disk and may be the result of either an infall episode or an interaction between two HI-rich disks.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.
NASA Technical Reports Server (NTRS)
Weinberg, J. L.
1976-01-01
A 10 color photoelectric polarimeter was used to measure the surface brightness and polarization associated with zodiacal light, background starlight, and spacecraft corona during each of the Skylab missions. Fixed position and sky scanning observations were obtained during Skylab missions SL-2 and SL-3 at 10 wavelenghts between 4000A and 8200A. Initial results from the fixed-position data are presented on the spacecraft corona and on the polarized brightness of the zodiacal light. Included among the fixed position regions that were observed are the north celestial pole, south ecliptic pole, two regions near the north galactic pole, and 90 deg from the sun in the ecliptic. The polarized brightness of the zodiacal light was found to have the color of the sun at each of these positions. Because previous observations found the total brightness to have the color of the sun from the near ultraviolet out to 2.4 micrometers, the degree of polarization of the zodiacal light is independent of wavelength from 4000A to 8200A.
Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Akesson, Susanne; Horvath, Gabor
2012-01-01
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts.
Blaho, Miklos; Egri, Adam; Bahidszki, Lea; Kriska, Gyorgy; Hegedus, Ramon; Åkesson, Susanne; Horvath, Gabor
2012-01-01
During blood-sucking, female members of the family Tabanidae transmit pathogens of serious diseases and annoy their host animals so strongly that they cannot graze, thus the health of the hosts is drastically reduced. Consequently, a tabanid-resistant coat with appropriate brightness, colour and pattern is advantageous for the host. Spotty coats are widespread among mammals, especially in cattle (Bos primigenius). In field experiments we studied the influence of the size and number of spots on the attractiveness of test surfaces to tabanids that are attracted to linearly polarized light. We measured the reflection-polarization characteristics of living cattle, spotty cattle coats and the used test surfaces. We show here that the smaller and the more numerous the spots, the less attractive the target (host) is to tabanids. We demonstrate that the attractiveness of spotty patterns to tabanids is also reduced if the target exhibits spottiness only in the angle of polarization pattern, while being homogeneous grey with a constant high degree of polarization. Tabanid flies respond strongly to linearly polarized light, and we show that bright and dark parts of cattle coats reflect light with different degrees and angles of polarization that in combination with dark spots on a bright coat surface disrupt the attractiveness to tabanids. This could be one of the possible evolutionary benefits that explains why spotty coat patterns are so widespread in mammals, especially in ungulates, many species of which are tabanid hosts. PMID:22876282
NASA Technical Reports Server (NTRS)
Mazzarella, J.; Voit, G.; Soifer, B.; Matthews, K.; Graham, J.; Armus, L.; Shupe, D.
1993-01-01
High resolution near-infrared images of the type 1 Seyfert Galaxy NGC 7469 have been obtained to probe its dusty nuclear environment. Direct images are relatively featureless, but residual images created by subtacting a smooth model based on best-fitting elliptical isoophotes reveal a tight inner spiral whose high surface-brightness portions correspond to a previously detected 3.
Comparative Analysis of Aerosol Retrievals from MODIS, OMI and MISR Over Sahara Region
NASA Technical Reports Server (NTRS)
Lyapustin, A.; Wang, Y.; Hsu, C.; Terres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.
2011-01-01
MODIS is a wide field-of-view sensor providing daily global observations of the Earth. Currently, global MODIS aerosol retrievals over land are performed with the main Dark Target algorithm complimented with the Deep Blue (DB) Algorithm over bright deserts. The Dark Target algorithm relies on surface parameterization which relates reflectance in MODIS visible bands with the 2.1 micrometer region, whereas the Deep Blue algorithm uses an ancillary angular distribution model of surface reflectance developed from the time series of clear-sky MODIS observations. Recently, a new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been developed for MODIS. MAIAC uses a time series and an image based processing to perform simultaneous retrievals of aerosol properties and surface bidirectional reflectance. It is a generic algorithm which works over both dark vegetative surfaces and bright deserts and performs retrievals at 1 km resolution. In this work, we will provide a comparative analysis of DB, MAIAC, MISR and OMI aerosol products over bright deserts of northern Africa.
NASA Astrophysics Data System (ADS)
Forte, Paulo M. F.; Felgueiras, P. E. R.; Ferreira, Flávio P.; Sousa, M. A.; Nunes-Pereira, Eduardo J.; Bret, Boris P. J.; Belsley, Michael S.
2017-01-01
An automatic optical inspection system for detecting local defects on specular surfaces is presented. The system uses an image display to produce a sequence of structured diffuse illumination patterns and a digital camera to acquire the corresponding sequence of images. An image enhancement algorithm, which measures the local intensity variations between bright- and dark-field illumination conditions, yields a final image in which the defects are revealed with a high contrast. Subsequently, an image segmentation algorithm, which compares statistically the enhanced image of the inspected surface with the corresponding image for a defect-free template, allows separating defects from non-defects with an adjusting decision threshold. The method can be applied to shiny surfaces of any material including metal, plastic and glass. The described method was tested on the plastic surface of a car dashboard system. We were able to detect not only scratches but also dust and fingerprints. In our experiment we observed a detection contrast increase from about 40%, when using an extended light source, to more than 90% when using a structured light source. The presented method is simple, robust and can be carried out with short cycle times, making it appropriate for applications in industrial environments.
NASA Astrophysics Data System (ADS)
Hwang, Eunkyung; Chang, Yun Hee; Kim, Yong-Sung; Koo, Ja-Yong; Kim, Hanchul
2012-10-01
The initial adsorption of oxygen molecules on Si(001) is investigated at room temperature. The scanning tunneling microscopy images reveal a unique bright O2-induced feature. The very initial sticking coefficient of O2 below 0.04 Langmuir is measured to be ˜0.16. Upon thermal annealing at 250-600 °C, the bright O2-induced feature is destroyed, and the Si(001) surface is covered with dark depressions that seem to be oxidized structures with -Si-O-Si- bonds. This suggests that the observed bright O2-induced feature is an intermediate precursor state that may be either a silanone species or a molecular adsorption structure.
Wu, Mingzhong; Kalinikos, Boris A; Patton, Carl E
2004-10-08
The generation of dark spin wave envelope soliton trains from a continuous wave input signal due to spontaneous modulational instability has been observed for the first time. The dark soliton trains were formed from high dispersion dipole-exchange spin waves propagated in a thin yttrium iron garnet film with pinned surface spins at frequencies situated near the dipole gaps in the dipole-exchange spin wave spectrum. Dark and bright soliton trains were generated for one and the same film through placement of the input carrier frequency in regions of negative and positive dispersion, respectively. Two unreported effects in soliton dynamics, hysteresis and period doubling, were also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles
We present wide-field near-infrared J and K{sub s} images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-targetmore » nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.« less
2016-04-04
This striking NASA/ESA Hubble Space Telescope image captures the galaxy UGC 477, located just over 110 million light-years away in the constellation of Pisces (The Fish). UGC 477 is a low surface brightness (LSB) galaxy. First proposed in 1976 by Mike Disney, the existence of LSB galaxies was confirmed only in 1986 with the discovery of Malin 1. LSB galaxies like UGC 477 are more diffusely distributed than galaxies such as Andromeda and the Milky Way. With surface brightnesses up to 250 times fainter than the night sky, these galaxies can be incredibly difficult to detect. Most of the matter present in LSB galaxies is in the form of hydrogen gas, rather than stars. Unlike the bulges of normal spiral galaxies, the centres of LSB galaxies do not contain large numbers of stars. Astronomers suspect that this is because LSB galaxies are mainly found in regions devoid of other galaxies, and have therefore experienced fewer galactic interactions and mergers capable of triggering high rates of star formation. LSB galaxies such as UGC 477 instead appear to be dominated by dark matter, making them excellent objects to study to further our understanding of this elusive substance. However, due to an underrepresentation in galactic surveys — caused by their characteristic low brightness — their importance has only been realised relatively recently.
Analysis of moving surface structures at a laser-induced boiling front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
2014-10-01
Recently ultra-high speed imaging enabled to observe moving wave patterns on metal melts that experience laser-induced boiling. In laser materials processing a vertical laser-induced boiling front governs processes like keyhole laser welding, laser remote fusion cutting, laser drilling or laser ablation. The observed waves originate from temperature variations that are closely related to the melt topology. For improved understanding of the essential front mechanisms and of the front topology, for the first time a deeper systematic analysis of the wave patterns was carried out. Seven geometrical shapes of bright or dark domains were distinguished and categorized, in particular bright peaks of three kinds and dark valleys, often inclined. Two categories describe special flow patterns at the top and bottom of the front. Dynamic and statistical analysis has revealed that the shapes often combine or separate from one category to another when streaming down the front. The brightness of wave peaks typically fluctuates during 20-50 μs. This variety of thermal wave observations is interpreted with respect to the accompanying surface topology of the melt and in turn for governing local mechanisms like absorption, shadowing, boiling, ablation pressure and melt acceleration. The findings can be of importance for understanding the key process mechanisms and for optimizing laser materials processing.
1979-02-28
Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.
Microwave Brightness Of Land Surfaces From Outer Space
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Njoku, Eni G.
1991-01-01
Mathematical model approximates microwave radiation emitted by land surfaces traveling to microwave radiometer in outer space. Applied to measurements made by Scanning Multichannel Microwave Radiometer (SMMR). Developed for interpretation of microwave imagery of Earth to obtain distributions of various chemical, physical, and biological characteristics across its surface. Intended primarily for use in mapping moisture content of soil and fraction of Earth covered by vegetation. Advanced Very-High-Resolution Radiometer (AVHRR), provides additional information on vegetative cover, thereby making possible retrieval of soil-moisture values from SMMR measurements. Possible to monitor changes of land surface during intervals of 5 to 10 years, providing significant data for mathematical models of evolution of climate.
NASA Astrophysics Data System (ADS)
Li, Weidong; Shan, Xinjian; Qu, Chunyan
2010-11-01
In comparison with polar-orbiting satellites, geostationary satellites have a higher time resolution and wider field of visions, which can cover eleven time zones (an image covers about one third of the Earth's surface). For a geostationary satellite panorama graph at a point of time, the brightness temperature of different zones is unable to represent the thermal radiation information of the surface at the same point of time because of the effect of different sun solar radiation. So it is necessary to calibrate brightness temperature of different zones with respect to the same point of time. A model of calibrating the differences of the brightness temperature of geostationary satellite generated by time zone differences is suggested in this study. A total of 16 curves of four positions in four different stages are given through sample statistics of brightness temperature of every 5 days synthetic data which are from four different time zones (time zones 4, 6, 8, and 9). The above four stages span January -March (winter), April-June (spring), July-September (summer), and October-December (autumn). Three kinds of correct situations and correct formulas based on curves changes are able to better eliminate brightness temperature rising or dropping caused by time zone differences.
An Automatic Cloud Mask Algorithm Based on Time Series of MODIS Measurements
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie; Frey, R.
2008-01-01
Quality of aerosol retrievals and atmospheric correction depends strongly on accuracy of the cloud mask (CM) algorithm. The heritage CM algorithms developed for AVHRR and MODIS use the latest sensor measurements of spectral reflectance and brightness temperature and perform processing at the pixel level. The algorithms are threshold-based and empirically tuned. They don't explicitly address the classical problem of cloud search, wherein the baseline clear-skies scene is defined for comparison. Here, we report on a new CM algorithm which explicitly builds and maintains a reference clear-skies image of the surface (refcm) using a time series of MODIS measurements. The new algorithm, developed as part of the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm for MODIS, relies on fact that clear-skies images of the same surface area have a common textural pattern, defined by the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. This pattern changes slowly given the daily rate of global Earth observations, whereas clouds introduce high-frequency random disturbances. Under clear skies, consecutive gridded images of the same surface area have a high covariance, whereas in presence of clouds covariance is usually low. This idea is central to initialization of refcm which is used to derive cloud mask in combination with spectral and brightness temperature tests. The refcm is continuously updated with the latest clear-skies MODIS measurements, thus adapting to seasonal and rapid surface changes. The algorithm is enhanced by an internal dynamic land-water-snow classification coupled with a surface change mask. An initial comparison shows that the new algorithm offers the potential to perform better than the MODIS MOD35 cloud mask in situations where the land surface is changing rapidly, and over Earth regions covered by snow and ice.
MOST detects corotating bright spots on the mid-O-type giant ξ Persei
NASA Astrophysics Data System (ADS)
Ramiaramanantsoa, Tahina; Moffat, Anthony F. J.; Chené, André-Nicolas; Richardson, Noel D.; Henrichs, Huib F.; Desforges, Sébastien; Antoci, Victoria; Rowe, Jason F.; Matthews, Jaymie M.; Kuschnig, Rainer; Weiss, Werner W.; Sasselov, Dimitar; Rucinski, Slavek M.; Guenther, David B.
2014-06-01
We have used the MOST (Microvariability and Oscillations of STars) microsatellite to obtain four weeks of contiguous high-precision broad-band visual photometry of the O7.5III(n)((f)) star ξ Persei in 2011 November. This star is well known from previous work to show prominent DACs (discrete absorption components) on time-scales of about 2 d from UV spectroscopy and non-radial pulsation with one (l = 3) p-mode oscillation with a period of 3.5 h from optical spectroscopy. Our MOST-orbit (101.4 min) binned photometry fails to reveal any periodic light variations above the 0.1 mmag 3σ noise level for periods of a few hours, while several prominent Fourier peaks emerge at the 1 mmag level in the two-day period range. These longer period variations are unlikely due to pulsations, including gravity modes. From our simulations based upon a simple spot model, we deduce that we are seeing the photometric modulation of several corotating bright spots on the stellar surface. In our model, the starting times (random) and lifetimes (up to several rotations) vary from one spot to another yet all spots rotate at the same period of 4.18 d, the best-estimated rotation period of the star. This is the first convincing reported case of corotating bright spots on an O star, with important implications for drivers of the DACs (resulting from corotating interaction regions) with possible bright-spot generation via a breakout at the surface of a global magnetic field generated by a subsurface convection zone.
Is the zodiacal light intensity steady. [cloud surface brightness and polarization from OSO-5 data
NASA Technical Reports Server (NTRS)
Burnett, G. B.; Sparrow, J. G.; Ney, E. P.
1974-01-01
It is pointed out that conclusions reported by Sparrow and Ney (1972, 1973) could be confirmed in an investigation involving the refinement of OSO-5 data on zodiacal light. It had been found by Sparrow and Ney that the absolute value of both the surface brightness and polarization of the zodiacal cloud varied by less than 10% over the 4-yr period from January 1969 to January 1973.
Measurements of the dielectric properties of sea water at 1.43 GHz
NASA Technical Reports Server (NTRS)
Ho, W. W.; Love, A. W.; Vanmelle, M. J.
1974-01-01
Salinity and temperature of water surfaces of estuaries and bay regions are determined to accuracies of 1 ppt salinity and 0.3 kelvin surface temperature. L-band and S-band radiometers are used in combination as brightness temperature detectors. The determination of the brightness temperature versus salinity, with the water surface temperature as a parameter for 1.4 GHz, is performed with a capillary tube inserted into a resonance cavity. Detailed analysis of the results indicates that the measured values are accurate to better than 0.2 percent in the electric property epsilon' and 0.4 percent in epsilon''. The calculated brightness temperature as a function of temperature and salinity is better than 0.2 kelvin. Thus it is possible to reduce the measured data obtained with the two-frequency radiometer system with 1 ppt accuracy to values in the salinity range 5 to 40 ppt.
Low-temperature transonic cooling flows in galaxy clusters
NASA Technical Reports Server (NTRS)
Sulkanen, Martin E.; Burns, Jack O.; Norman, Michael L.
1989-01-01
Calculations are presented which demonstrate that cooling flow models with large sonic radii may be consistent with observed cluster gas properties. It is found that plausible cluster parameters and cooling flow mass accretion rates can produce sonic radii of 10-20 kpc for sonic point temperatures of 1-3 x 10 to the 6th K. The numerical calculations match these cooling flows to hydrostatic atmosphere solutions for the cluster gas beyond the cooling flow region. The cooling flows produce no appreciable 'holes' in the surface brightness toward the cluster center, and the model can be made to match the observed X-ray surface brightness of three clusters in which cooling flows had been believed to be absent. It is suggested that clusters with low velocity dispersion may be the natural location for such 'cool' cooling flows, and fits of these models to the X-ray surface brightness profiles for three clusters are presented.
The Fundamental Plane and the Surface Brightness Test for the Expansion of the Universe
NASA Astrophysics Data System (ADS)
Kjaergaard, Per; Jorgensen, Inger; Moles, Mariano
1993-12-01
We have determined the Petrosian radius, rη , and the enclosed mean surface brightness within the Petrosian radius, <μ>η, for 33 elliptical and S0 galaxies in the Coma cluster from new accurate CCD surface photometry. For the Petrosian parameter η = 1.39, rη and <μ>η are compared with the effective radius, re, and the effective mean surface brightness, <μ>e derived from fitting a de Vaucouleurs law. The fundamental plane (FP) expressed using rη and <μ>η is the same as the FP found by Jørgensen, Franx, & Kjaergaard (1993) using re and <μ>e. The FP can be used to predict the mean surface brightness within the effective radius or the corresponding Petrosian radius (η = 1.39) with an uncertainty of ±0.14 mag for Coma cluster ellipticals. Thus the FP, applied to clusters, appears to be a suitable tool for performing the surface brightness test (SBT) for the expansion of the universe. We suggest that instead of correcting individual galaxies to some standard conditions, e.g., the same metric radius, the fundamental plane itself should be considered the standard. It is argued that the metric size enclosing around 75% of the total light represents a reasonable compromise between resolution and faint level detection when performing the SBT. This radius could be derived as the Petrosian radius corresponding to η = 2.0 or from a global fit to that part of the observed profile which encompasses 75% of the total light. In case both small and large galaxies are well described by a de Vaucouleurs law the global fit can be performed on a smaller central part of the brightness profile. The use of the FP involves the time consuming determinations of velocity dispersions. We find that <μ>η (η = 1.39) can be predicted from the log rη alone with an accuracy of 0.3 mag for the Coma cluster ellipticals. Our discussion of the various error contributions to the predicted mean surface brightness for faint cluster ellipticals at redshifts z < 0.5 shows that the final error is probably dominated by extra scatter due to, e.g., environmental and evolutionary effects. Thus it might be possible that the use of velocity dispersions are not necessary. To get significant results for the SBT, clusters out to a redshift of approximately z = 0.3 have to be observed. For the most distant galaxies light levels down to about 25-26 mag arcsec-2 in the red and sizes as small as approximately 2" have to be accurately measured. We outline an observational program which will allow the control of the different sources of scatter, including cosmic evolution, producing conclusive results about the expansion of the universe.
High brightness InP micropillars grown on silicon with Fermi level splitting larger than 1 eV.
Tran, Thai-Truong D; Sun, Hao; Ng, Kar Wei; Ren, Fan; Li, Kun; Lu, Fanglu; Yablonovitch, Eli; Chang-Hasnain, Constance J
2014-06-11
The growth of III-V nanowires on silicon is a promising approach for low-cost, large-scale III-V photovoltaics. However, performances of III-V nanowire solar cells have not yet been as good as their bulk counterparts, as nanostructured light absorbers are fundamentally challenged by enhanced minority carriers surface recombination rates. The resulting nonradiative losses lead to significant reductions in the external spontaneous emission quantum yield, which, in turn, manifest as penalties in the open-circuit voltage. In this work, calibrated photoluminescence measurements are utilized to construct equivalent voltage-current characteristics relating illumination intensities to Fermi level splitting ΔF inside InP microillars. Under 1 sun, we show that splitting can exceed ΔF ∼ 0.90 eV in undoped pillars. This value can be increased to values of ΔF ∼ 0.95 eV by cleaning pillar surfaces in acidic etchants. Pillars with nanotextured surfaces can yield splitting of ΔF ∼ 0.90 eV, even though they exhibit high densities of stacking faults. Finally, by introducing n-dopants, ΔF of 1.07 eV can be achieved due to a wider bandgap energy in n-doped wurzite InP, the higher brightness of doped materials, and the extraordinarily low surface recombination velocity of InP. This is the highest reported value for InP materials grown on a silicon substrate. These results provide further evidence that InP micropillars on silicon could be a promising material for low-cost, large-scale solar cells with high efficiency.
Remote sensing studies of the Dionysius region of the Moon
Giguere, T.A.; Hawke, B.R.; Gaddis, L.R.; Blewett, D.T.; Gillis-Davis, J. J.; Lucey, P.G.; Smith, G.A.; Spudis, P.D.; Taylor, G.J.
2006-01-01
The Dionysius region is located near the western edge of Mare Tranquillitatis and is centered on Dionysius crater, which exhibits a well-developed dark ray system. Proposed origins for these dark rays included impact melt deposits and dark primary ejecta. The region also contains extensive deposits of Cayley-type light plains. Clementine multispectral images and a variety of spacecraft photography were utilized to investigate the composition and origin of geologic units in the Dionysius region. The portions of the dark rays for which spectral and chemical data were obtained are composed of mare debris contaminated with minor amounts of highland material. Both five-point spectra and values of the optical maturity (OMAT) parameter indicate that the dark rays are dominated by mare basalts, not glassy impact melts. The high-albedo rays associated with Dionysius exhibit FeO and TiO2 values that are lower than those of the adjacent dark ray surfaces and OMAT values that indicate that bright ray surfaces are not fully mature. The high-albedo rays are bright largely because of the contrast in albedo between ray material containing highlands-rich ejecta and the adjacent mare-rich surfaces. The mafic debris ejected by Dionysius was derived from a dark, iron-rich unit exposed high on the inner wall of the crater. This layer probably represents a mare deposit that was present at the surface of the preimpact target site. With one possible exception, there is no evidence for buried mare basalts associated with Cayley plains in the region. Copyright 2006 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
2017-09-26
Xevioso Crater is the small (5.3 miles, 8.5 kilometers in diameter) crater associated with bright ejecta toward the top of this image, taken by NASA's Dawn spacecraft. It is one of the newly named craters on Ceres. Xevioso is located in the vicinity of Ahuna Mons, the tall, lonely mountain seen toward the bottom of the picture. Given that the small impact that formed Xevioso was able to excavate bright material, scientists suspect the material may be found at shallow depth. Its nature and relationship to other bright regions on Ceres is under analysis. The asymmetrical distribution of this bright ejecta indicates Xevioso formed via an oblique impact. Another view of Xevioso can be found here. Xevioso is named for the Fon god of thunder and fertility from the Kingdom of Dahomey, which was located in a region that is now the west African country of Benin. Dawn acquired this picture on October 15, 2015, from its high altitude mapping orbit at about 915 miles (1,470 kilometers) above the surface. The center coordinates of this image are 3.8 degrees south latitude, 314 degrees east longitude, and its resolution is 450 feet (140 meters) per pixel. https://photojournal.jpl.nasa.gov/catalog/PIA21907
FC colour images of dwarf planet Ceres reveal a complicated geological history
NASA Astrophysics Data System (ADS)
Nathues, A.; Hoffmann, M.; Platz, T.; Thangjam, G. S.; Cloutis, E. A.; Reddy, V.; Le Corre, L.; Li, J.-Y.; Mengel, K.; Rivkin, A.; Applin, D. M.; Schaefer, M.; Christensen, U.; Sierks, H.; Ripken, J.; Schmidt, B. E.; Hiesinger, H.; Sykes, M. V.; Sizemore, H. G.; Preusker, F.; Russell, C. T.
2016-12-01
The dwarf planet Ceres (equatorial diameter 963km) is the largest object that has remained in the main asteroid belt (Russell and Raymond, 2012), while most large bodies have been destroyed or removed by dynamical processes (Petit et al. 2001; Minton and Malhotra, 2009). Pre-Dawn investigations (McCord and Sotin, 2005; Castillo-Rogez and McCord, 2010; Castillo-Rogez et al., 2011) suggest that Ceres is a thermally evolved, but still volatile-rich body with potential geological activity, that was never completely molten, but possibly differentiated into a rocky core, an ice-rich mantle, and may contain remnant internal liquid water. Thermal alteration should contribute to producing a (dark) carbonaceous chondritic-like surface (McCord and Sotin, 2005; Castillo-Rogez and McCord, 2010; Castillo-Rogez et al., 2011; Nathues et al., 2015) containing ammoniated phyllosilicates (King et al., 1992; De Sanctis et al., 2015 and 2016). Here we show and analyse global contrast-rich colour mosaics, derived from a camera on-board Dawn at Ceres (Russell et al., 2016). Colours are unexpectedly more diverse on global scale than anticipated by Hubble Space Telescope (Li et al., 2006) and ground-based observations (Reddy et al. 2015). Dawn data led to the identification of five major colour units. The youngest units identified by crater counting, termed bright and bluish units, are exclusively found at equatorial and intermediate latitudes. We identified correlations between the distribution of the colour units, crater size, and formation age, inferring a crustal stratigraphy. Surface brightness and spectral properties are not correlated. The youngest surface features are the bright spots at crater Occator ( Ø 92km). Their colour spectra are highly consistent with the presence of carbonates while most of the remaining surface resembles modifications of various types of ordinary carbonaceous chondrites.
Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift
NASA Technical Reports Server (NTRS)
Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher
2011-01-01
Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.
NASA Astrophysics Data System (ADS)
Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.
2017-03-01
We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.
NASA Astrophysics Data System (ADS)
Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.
2016-06-01
Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na I D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the VLTI. Based on observations obtained at the Télescope Bernard Lyot (TBL) at Observatoire du Pic du Midi, CNRS/INSU and Université de Toulouse, France.
NASA Astrophysics Data System (ADS)
Wang, Shaowei; Zhao, Xinyuan; Zhang, Hequn; Cai, Fuhong; Qian, Jun
2016-01-01
Gold Nanorods (GNRs) with tunable aspect ratios can strongly absorb and scatter light in the NIR region due to their localized surface plasmon resonance (LSPR) property, and have been demonstrated to exhibit strong plasmon enhanced multiphoton luminescence (MPL) with brightness many times stronger than the conventional organic chromophores. In this study, we synthesized GNRs with longitudinal LSPR peak at 1036 nm to match our home-built light source 1040 nm femtosecond laser, which locates in the “optical window” where the tissue absorbs relatively little light. PEGylated GNRs with great biocompatibility were intravenously injected through the tail vein into mice. Excited by 1040 nm laser, the GNRs exhibit bright three-photon luminescence (3PL) signals while circulating in the blood vessels. The use of GNRs as bright contrast agents for 3PL imaging of mouse ear blood vessels in vivo was demonstrated. And GNRs targeted in tissues can be excited by 1040 nm laser and could be clearly visualized with no autofluorescence background. These results indicated that 3PL of GNRs is very promising for deep in vivo bioimaging and assessing the distribution of GNRs in tissues with high contrast.
Color constancy in a scene with bright colors that do not have a fully natural surface appearance.
Fukuda, Kazuho; Uchikawa, Keiji
2014-04-01
Theoretical and experimental approaches have proposed that color constancy involves a correction related to some average of stimulation over the scene, and some of the studies showed that the average gives greater weight to surrounding bright colors. However, in a natural scene, high-luminance elements do not necessarily carry information about the scene illuminant when the luminance is too high for it to appear as a natural object color. The question is how a surrounding color's appearance mode influences its contribution to the degree of color constancy. Here the stimuli were simple geometric patterns, and the luminance of surrounding colors was tested over the range beyond the luminosity threshold. Observers performed perceptual achromatic setting on the test patch in order to measure the degree of color constancy and evaluated the surrounding bright colors' appearance mode. Broadly, our results support the assumption that the visual system counts only the colors in the object-color appearance for color constancy. However, detailed analysis indicated that surrounding colors without a fully natural object-color appearance had some sort of influence on color constancy. Consideration of this contribution of unnatural object color might be important for precise modeling of human color constancy.
Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost
NASA Technical Reports Server (NTRS)
1979-01-01
Photographer : JPL Range : 7 million kilometers (5 million miles) Callisto is Jupiter's outermost Galilean satellites and darkest of the four(but almost twice as bright as Earth's Moon). Mottled appearance from bright and dark patches. Bright spots seem like rayed or bright halved craters seen on our Moon. This face is always turned toward Jupiter. Photo taken through violet filter. Ganymede is slightly larger than Mercury but much less dense (twice the density of water). Its surface brightness is 4 times of Earth's Moon. Mare regions (dark features) are like the Moon's but have twice the brightness, and believed to be unlikely of rock or lava as the Moon's are. It's north pole seems covered with brighter material and may be water frost. Scattered brighter spots may be related to impact craters or source of fresh ice.
Results of soil moisture flights during April 1974
NASA Technical Reports Server (NTRS)
Schmugge, T. J.; Blanchard, B. J.; Burke, W. J.; Paris, J. F.; Swang, J. R.
1976-01-01
The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions.
NASA Astrophysics Data System (ADS)
Sacuto, S.; Jorissen, A.; Cruzalèbes, P.; Pasquato, E.; Chiavassa, A.; Spang, A.; Rabbia, Y.; Chesneau, O.
2011-09-01
A monitoring of surface brightness asymmetries in evolved giants and supergiants is necessary to estimate the threat that they represent to accurate Gaia parallaxes. Closure-phase measurements obtained with AMBER/VISA in a 3-telescope configuration are fitted by a simple model to constrain the photocenter displacement. The results for the C-type star TX Psc show a large deviation of the photocenter displacement that could bias the Gaia parallax.
NASA Technical Reports Server (NTRS)
Kitzis, S. N.; Kitzis, J. L.
1979-01-01
The accuracy of the SEASAT-A SMMR antenna pattern correction (APC) algorithm was assessed. Interim APC brightness temperature measurements for the SMMR 6.6 GHz channels are compared with surface truth derived sea surface temperatures. Plots and associated statistics are presented for SEASAT-A SMMR data acquired for the Gulf of Alaska experiment. The cross-track gradients observed in the 6.6 GHz brightness temperature data are discussed.
The Chandra M10l Megasecond: Diffuse Emission
NASA Technical Reports Server (NTRS)
Kuntz, K. D.; Snowden, S. L.
2009-01-01
Because MIOl is nearly face-on, it provides an excellent laboratory in which to study the distribution of X-ray emitting gas in a typical late-type spiral galaxy. We obtained a Chandra observation with a cumulative exposure of roughly 1 Ms to study the diffuse X-ray emission in MlOl. The bulk of the X-ray emission is correlated with the star formation traced by the FUV emission. The global FUV/Xray correlation is non-linear (the X-ray surface brightness is roughly proportional to the square root of the FUV surface brightness) and the small-scale correlation is poor, probably due to the delay between the FUV emission and the X-ray production ill star-forming regions. The X-ray emission contains only minor contributions from unresolved stars (approximates less than 3%), unresolved X-ray point sources (approximates less than 4%), and individual supernova remnants (approximates 3%). The global spectrum of the diffuse emission can be reasonably well fitted with a three component thermal model, but the fitted temperatures are not unique; many distributions of emission measure can produce the same temperatures when observed with the current CCD energy resolution. The spectrum of the diffuse emission depends on the environment; regions with higher X-ray surface brightnesses have relatively stronger hard components, but there is no significant evidence that the temperatures of the emitting components increase with surface brightness.
A dual-colored bio-marker made of doped ZnO nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.
2008-08-01
Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.
An enhanced structure tensor method for sea ice ridge detection from GF-3 SAR imagery
NASA Astrophysics Data System (ADS)
Zhu, T.; Li, F.; Zhang, Y.; Zhang, S.; Spreen, G.; Dierking, W.; Heygster, G.
2017-12-01
In SAR imagery, ridges or leads are shown as the curvilinear features. The proposed ridge detection method is facilitated by their curvilinear shapes. The bright curvilinear features are recognized as the ridges while the dark curvilinear features are classified as the leads. In dual-polarization HH or HV channel of C-band SAR imagery, the bright curvilinear feature may be false alarm because the frost flowers of young leads may show as bright pixels associated with changes in the surface salinity under calm surface conditions. Wind roughened leads also trigger the backscatter increasing that can be misclassified as ridges [1]. Thus the width limitation is considered in this proposed structure tensor method [2], since only shape feature based method is not enough for detecting ridges. The ridge detection algorithm is based on the hypothesis that the bright pixels are ridges with curvilinear shapes and the ridge width is less 30 meters. Benefited from GF-3 with high spatial resolution of 3 meters, we provide an enhanced structure tensor method for detecting the significant ridge. The preprocessing procedures including the calibration and incidence angle normalization are also investigated. The bright pixels will have strong response to the bandpass filtering. The ridge training samples are delineated from the SAR imagery in the Log-Gabor filters to construct structure tensor. From the tensor, the dominant orientation of the pixel representing the ridge is determined by the dominant eigenvector. For the post-processing of structure tensor, the elongated kernel is desired to enhance the ridge curvilinear shape. Since ridge presents along a certain direction, the ratio of the dominant eigenvector will be used to measure the intensity of local anisotropy. The convolution filter has been utilized in the constructed structure tensor is used to model spatial contextual information. Ridge detection results from GF-3 show the proposed method performs better compared to the direct threshold method.
Remote sensing of soil moisture content over bare fields at 1.4 GHz frequency
NASA Technical Reports Server (NTRS)
Wang, J. R.; Choudhury, B. J.
1980-01-01
A simple method of estimating moisture content (W) of a bare soil from the observed brightness temperature (T sub B) at 1.4 GHz is discussed. The method is based on a radiative transfer model calculation, which has been successfully used in the past to account for many observational results, with some modifications to take into account the effect of surface roughness. Besides the measured T sub B's, the three additional inputs required by the method are the effective soil thermodynamic temperature, the precise relation between W and the smooth field brightness temperature T sub B and a parameter specifying the surface roughness characteristics. The soil effective temperature can be readily measured and the procedures of estimating surface roughness parameter and obtaining the relation between W and smooth field brightness temperature are discussed in detail. Dual polarized radiometric measurements at an off-nadir incident angle are sufficient to estimate both surface roughness parameter and W, provided that the relation between W and smooth field brightness temperature at the same angle is known. The method of W estimate is demonstrated with two sets of experimental data, one from a controlled field experiment by a mobile tower and the other, from aircraft overflight. The results from both data sets are encouraging when the estimated W's are compared with the acquired ground truth of W's in the top 2 cm layer. An offset between the estimated and the measured W's exists in the results of the analyses, but that can be accounted for by the presently poor knowledge of the relationship between W and smooth field brightness temperature for various types of soils. An approach to quantify this relationship for different soils and thus improve the method of W estimate is suggested.
The HR 4796A Debris System: Discovery of Extensive Exo-ring Dust Material
NASA Astrophysics Data System (ADS)
Schneider, Glenn; Debes, John H.; Grady, Carol A.; Gáspár, Andras; Henning, Thomas; Hines, Dean C.; Kuchner, Marc J.; Perrin, Marshall; Wisniewski, John P.
2018-02-01
The optically and IR-bright and starlight-scattering HR 4796A ringlike debris disk is one of the most- (and best-) studied exoplanetary debris systems. The presence of a yet-undetected planet has been inferred (or suggested) from the narrow width and inner/outer truncation radii of its r = 1.″05 (77 au) debris ring. We present new, highly sensitive Hubble Space Telescope (HST) visible-light images of the HR 4796A circumstellar debris system and its environment over a very wide range of stellocentric angles from 0.″32 (23 au) to ≈15″ (1100 au). These very high-contrast images were obtained with the Space Telescope Imaging Spectrograph (STIS) using six-roll PSF template–subtracted coronagraphy suppressing the primary light of HR 4796A, with three image-plane occulters, and simultaneously subtracting the background light from its close angular proximity M2.5V companion. The resulting images unambiguously reveal the debris ring embedded within a much larger, morphologically complex, and biaxially asymmetric exo-ring scattering structure. These images at visible wavelengths are sensitive to and map the spatial distribution, brightness, and radial surface density of micron-size particles over 5 dex in surface brightness. These particles in the exo-ring environment may be unbound from the system and interacting with the local ISM. Herein, we present a new morphological and photometric view of the larger-than-prior-seen HR 4796A exoplanetary debris system with sensitivity to small particles at stellocentric distances an order of magnitude greater than has previously been observed.
The Stacked LYα Emission Profile from the Circum-Galactic Medium of z ˜ 2 Quasars
NASA Astrophysics Data System (ADS)
Arrigoni Battaia, Fabrizio; Hennawi, Joseph F.; Cantalupo, Sebastiano; Prochaska, J. Xavier
2016-09-01
In the context of the FLASHLIGHT survey, we obtained deep narrowband images of 15 z ˜ 2 quasars with the Gemini Multi-object Spectrograph on Gemini South in an effort to measure Lyα emission from circum- and intergalactic gas on scales of hundreds of kpc from the central quasar. We do not detect bright giant Lyα nebulae (SB ˜ 10-17 erg s-1 cm-2 arcsec-2 at distances >50 kpc) around any of our sources, although we routinely (≃47%) detect smaller-scale <50 kpc Lyα emission at this surface brightness level emerging from either the extended narrow emission line regions powered by the quasars or by star formation in their host galaxies. We stack our 15 deep images to study the average extended Lyα surface brightness profile around z ˜ 2 quasars, carefully PSF-subtracting the unresolved emission component and paying close attention to sources of systematic error. Our analysis, which achieves an unprecedented depth, reveals a surface brightness of SBLyα ˜ 10-19 erg s-1 cm-2 arcsec-2 at ˜200 kpc, with a 2.3σ detection of Lyα emission at SB {}{Lyα }=(5.5+/- 3.1)× {10}-20 erg s-1 cm-2 arcsec-2 within an annulus spanning 50 kpc < R < 500 kpc from the quasars. Assuming that this Lyα emission is powered by fluorescence from highly ionized gas illuminated by the bright central quasar, we deduce an average volume density of n H = 0.6 × 10-2 cm-3 on these large scales. Our results are in broad agreement with the densities suggested by cosmological hydrodynamical simulations of massive (M ≃ 1012.5 M ⊙) quasar hosts; however, they indicate that the typical quasars at these redshifts are surrounded by gas that is a factor of ˜100 times less dense than the (˜1 cm-3) gas responsible for the giant bright Lyα nebulae around quasars recently discovered by our group. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil), and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
NASA Technical Reports Server (NTRS)
Petty, Grant W.; Katsaros, Kristina B.
1992-01-01
A detailed parameterization is developed for the contribution of the nonprecipitating atmosphere to the microwave brightness temperatures observed by the Special Sensor Microwave/Imager (SSM/I). The atmospheric variables considered include the viewing angle, the integrated water vapor amount and scale height, the effective tropospheric lapse rate and near-surface temperature, the total cloud liquid water, the effective cloud height, and the surface pressure. The dependence of the radiative variables on meteorological variables is determined for each of the SSM/I frequencies 19.35, 22.235, 37.0, and 85.5 GHz, based on the values computed from 16,893 maritime temperature and humidity profiles representing all latitude belts and all seasons. A comparison of the predicted brightness temperatures with brightness temperatures obtained by direct numerical integration of the radiative transfer equation for the radiosonde-profile dataset yielded rms differences well below 1 K for all four SSM/I frequencies.
NASA Technical Reports Server (NTRS)
Goldstein, R. M.; Rumsey, H. C.
1972-01-01
Radar scans of Venus have yielded a brightness map of a large portion of the surface. The bright area in the south (alpha) and the twin such areas in the north (beta and delta) were first discovered by spectral analysis of radar echos. When range-gating is also applied, their shapes are revealed, and they are seen to be roundish and about 1000 km across. Although radar brightness can be the result of either intrinsic reflectivity or surface roughness, polarization studies show these features to be rough (to the scale of the wavelength, 12.5 cm). Dark, circular areas can also be seen, many with bright central spots. The dark areas are probably smooth. The blurring of the equatorial strip is an artifact of the range-Doppler geometry; all resolution disappears at the equator. Another artifact of the method is the 'ghost', in the south, of the images of beta and delta. Such ghosts appear only at the eastern and western extremes of the map.
First direct visualization of spillover species emitted from pt nanoparticles.
Takakusagi, Satoru; Fukui, Ken-ichi; Tero, Ryugo; Asakura, Kiyotaka; Iwasawa, Yasuhiro
2010-11-02
We studied the methanol adsorption behavior of Pt nanoparticles that were vacuum-deposited on a TiO(2)(110) surface at room temperature by using an ultrahigh vacuum (UHV) scanning tunneling microscope (STM). A large number of bright spots were observed on fivefold-coordinated Ti (Ti(5c)) rows of the TiO(2)(110) surface after exposure of the Pt/TiO(2)(110) to methanol vapor. We assigned the bright spots to methoxy species. These were mobile and were found to hop along the Ti(5c) rows. In situ time-resolved STM observations of the formation and migration of the bright spots on the Pt/TiO(2)(110) were carried out in the presence of methanol. The bright spots were produced at the periphery of the Pt nanoparticles and migrated to the substrate Ti(5c) rows. We discuss the spillover process and behavior of the methoxy species on the Pt/TiO(2)(110).
Arecibo radar imagery of Mars: The major volcanic provinces
NASA Astrophysics Data System (ADS)
Harmon, John K.; Nolan, Michael C.; Husmann, Diana I.; Campbell, Bruce A.
2012-08-01
We present Earth-based radar images of Mars obtained with the upgraded Arecibo S-band (λ = 12.6 cm) radar during the 2005-2012 oppositions. The imaging was done using the same long-code delay-Doppler technique as for the earlier (pre-upgrade) imaging but at a much higher resolution (˜3 km) and, for some regions, a more favorable sub-Earth latitude. This has enabled us to make a more detailed and complete mapping of depolarized radar reflectivity (a proxy for small-scale surface roughness) over the major volcanic provinces of Tharsis, Elysium, and Amazonis. We find that vast portions of these regions are covered by radar-bright lava flows exhibiting circular polarization ratios close to unity, a characteristic that is uncommon for terrestrial lavas and that is a likely indicator of multiple scattering from extremely blocky or otherwise highly disrupted flow surfaces. All of the major volcanoes have radar-bright features on their shields, although the brightness distribution on Olympus Mons is very patchy and the summit plateau of Pavonis Mons is entirely radar-dark. The older minor shields (paterae and tholi) are largely or entirely radar-dark, which is consistent with mantling by dust or pyroclastic material. Other prominent radar-dark features include: the "fan-shaped deposits", possibly glacial, associated with the three major Tharsis Montes shields; various units of the Medusae Fossae Formation; a region south and west of Biblis Patera where "Stealth" deposits appear to obscure Tharsis flows; and a number of "dark-halo craters" with radar-absorbing ejecta blankets deposited atop surrounding bright flows. Several major bright features in Tharsis are associated with off-shield lava flows; these include the Olympus Mons basal plains, volcanic fields east and south of Pavonis Mons, the Daedalia Planum flows south of Arsia Mons, and a broad expanse of flows extending east from the Tharsis Montes to Echus Chasma. The radar-bright lava plains in Elysium are concentrated mainly in Cerberus and include the fluvio-volcanic channels of Athabasca Valles, Grjotá Valles, and Marte Valles, as well as an enigmatic region at the southern tip of the Cerberus basin. Some of the Cerberus bright features correspond to the distinctive "platy-ridged" flows identified in orbiter images. The radar-bright terrain in Amazonis Planitia comprises two distinct but contiguous sections: a northern section formed of lavas and sediments debouched from Marte Valles and a southern section whose volcanics may derive, in part, from local sources. This South Amazonis region shows perhaps the most complex radar-bright structure on Mars and includes features that correspond to platy-ridged flows similar to those in Cerberus.
Extending the Deep Blue aerosol record from SeaWiFS and MODIS to NPP-VIIRS
NASA Technical Reports Server (NTRS)
Sayer, Andrew M.; Hsu, Nai-Yung Christina; Bettenhausen, Corey; Lee, Jaehwa
2015-01-01
Deep Blue expands AOD coverage to deserts and other bright surfaces. Using multiple similar satellite sensors enables us to obtain a long data record. The Deep Blue family consists of three separate aerosol optical depth (AOD) retrieval algorithms: 1. Bright Land: Surface reflectance database, BRDF correction. AOD retrieved separately at each of 412, 470/490, (650) nm. SSA retrieved for heavy dust events. 2. Dark Land: Spectral/directional surface reflectance relationship. AOD retrieved separately at 470/490 and 650 nm. 3. Water: Surface BRDF including glint, foam, underlight. Multispectral inversion (Not present in MODISdataset) All report the AOD at 550 nm, and Ångström exponent (AE).
X-ray morphological study of galaxy cluster catalogues
NASA Astrophysics Data System (ADS)
Democles, Jessica; Pierre, Marguerite; Arnaud, Monique
2016-07-01
Context : The intra-cluster medium distribution as probed by X-ray morphology based analysis gives good indication of the system dynamical state. In the race for the determination of precise scaling relations and understanding their scatter, the dynamical state offers valuable information. Method : We develop the analysis of the centroid-shift so that it can be applied to characterize galaxy cluster surveys such as the XXL survey or high redshift cluster samples. We use it together with the surface brightness concentration parameter and the offset between X-ray peak and brightest cluster galaxy in the context of the XXL bright cluster sample (Pacaud et al 2015) and a set of high redshift massive clusters detected by Planck and SPT and observed by both XMM-Newton and Chandra observatories. Results : Using the wide redshift coverage of the XXL sample, we see no trend between the dynamical state of the systems with the redshift.
Pattern recognition analysis of polar clouds during summer and winter
NASA Technical Reports Server (NTRS)
Ebert, Elizabeth E.
1992-01-01
A pattern recognition algorithm is demonstrated which classifies eighteen surface and cloud types in high-latitude AVHRR imagery based on several spectral and textural features, then estimates the cloud properties (fractional coverage, albedo, and brightness temperature) using a hybrid histogram and spatial coherence technique. The summertime version of the algorithm uses both visible and infrared data (AVHRR channels 1-4), while the wintertime version uses only infrared data (AVHRR channels 3-5). Three days of low-resolution AVHRR imagery from the Arctic and Antarctic during January and July 1984 were analyzed for cloud type and fractional coverage. The analysis showed significant amounts of high cloudiness in the Arctic during one day in winter. The Antarctic summer scene was characterized by heavy cloud cover in the southern ocean and relatively clear conditions in the continental interior. A large region of extremely low brightness temperatures in East Antarctica during winter suggests the presence of polar stratospheric cloud.
Thermal Stability of Frozen Volatiles in the North Polar Region of Mercury
NASA Technical Reports Server (NTRS)
Paige, David A.; Siegler, Matthew A.; Harmon, John K.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.
2012-01-01
Earth-based radar observations have revealed the presence on Mercury of anomalously bright, depolarizing features that appear to be localized in the permanently shadowed regions of high-latitude impact craters [1]. Observations of similar radar signatures over a range of radar wavelengths implies that they correspond to deposits that are highly transparent at radar wavelengths and extend to depths of several meters below the surface [1]. Thermal models using idealized crater topographic profiles have predicted the thermal stability of surface and subsurface water ice at these same latitudes [2]. One of the major goals of the MESSENGER mission is to characterize the nature of radar-bright craters and presumed associated frozen volatile deposits at the poles of Mercury through complementary orbital observations by a suite of instruments [3]. Here we report on an examination of the thermal stability of water ice and other frozen volatiles in the north polar region of Mercury using topographic profiles obtained by the Mercury Laser Altimeter (MLA) instrument [4] in conjunction with a three-dimensional ray-tracing thermal model previously used to study the thermal environment of polar craters on the Moon [5].
Hunting Faint Dwarf Galaxies in the Field Using Integrated Light Surveys
NASA Astrophysics Data System (ADS)
Danieli, Shany; van Dokkum, Pieter; Conroy, Charlie
2018-03-01
We discuss the approach of searching the lowest mass dwarf galaxies, ≲ {10}6 {M}ȯ , in the general field, using integrated light surveys. By exploring the limiting surface brightness-spatial resolution (μ eff,lim‑θ) parameter space, we suggest that faint field dwarfs in the Local Volume, between 3 and 10 Mpc, are expected to be detected very effectively and in large numbers using integrated light photometric surveys, complementary to the classical star counts method. We use a sample of dwarf galaxies in the Local Group to construct relations between their photometric and structural parameters, M *–μ eff,V and M *–R eff. We use these relations, along with assumed functional forms for the halo mass function and the stellar mass–halo mass (SMHM) relation, to calculate the lowest detectable stellar masses in the Local Volume and the expected number of galaxies as a function of the limiting surface brightness and spatial resolution. The number of detected galaxies depends mostly on the limiting surface brightness for distances >3 Mpc, while spatial resolution starts to play a role for galaxies at distances >8 Mpc. Surveys with μ eff,lim ∼ 30 mag arcsec‑2 should be able to detect galaxies with stellar masses down to ∼104 M ⊙ in the Local Volume. Depending on the form of the SMHM relation, the expected number of dwarf galaxies with distances between 3 and 10 Mpc is 0.04–0.35 per square degree, assuming a limiting surface brightness of ∼29–30 mag arcsec‑2 and a spatial resolution <4″. We plan to search for a population of low-mass dwarf galaxies in the field by performing a blank wide field photometric survey with the Dragonfly Telephoto Array, an imaging system optimized for the detection of extended ultra low surface brightness structures.
NASA Technical Reports Server (NTRS)
Gao, Bo-Cai; Wiscombe, W. J.
1993-01-01
A method for detecting cirrus clouds in terms of brightness temperature differences between narrow bands at 8, 11, and 12 mu m has been proposed by Ackerman et al. (1990). In this method, the variation of emissivity with wavelength for different surface targets was not taken into consideration. Based on state-of-the-art laboratory measurements of reflectance spectra of terrestrial materials by Salisbury and D'Aria (1992), we have found that the brightness temperature differences between the 8 and 11 mu m bands for soils, rocks and minerals, and dry vegetation can vary between approximately -8 K and +8 K due solely to surface emissivity variations. We conclude that although the method of Ackerman et al. is useful for detecting cirrus clouds over areas covered by green vegetation, water, and ice, it is less effective for detecting cirrus clouds over areas covered by bare soils, rocks and minerals, and dry vegetation. In addition, we recommend that in future the variation of surface emissivity with wavelength should be taken into account in algorithms for retrieving surface temperatures and low-level atmospheric temperature and water vapor profiles.
NASA Technical Reports Server (NTRS)
Moran, J. M.; Rosen, B. R.
1980-01-01
The uncertainity in propagation delay estimates is due primarily to tropospheric water, the total amount and vertical distribution of which is variable. Because water vapor both delays and attenuates microwave signals, the propagation delay, or wet path length, can be estimated from the microwave brightness temperature near the 22.235 GHz transition of water vapor. The data from a total of 240 radiosonde launches taken simultaneously were analyzed. Estimates of brightness temperature at 19 and 22 GHz and wet path length were made from these data. The wet path length in the zenith direction could be estimated from the surface water vapor density to an accuracy of 5 cm for the summer data and 2 cm for winter data. Using the brightness temperatures, the wet path could be estimated to an accuracy of 0.3 cm. Two dual frequency radiometers were refurbished in order to test these techniques. These radiometers were capable of measuring the difference in the brightness temperature at 30 deg elevation angle and at the zenith to an accuracy of about 1 K. In August 1975, 45 radiosondes were launched over an 11 day period. Brightness temperature measurements were made simultaneously at 19 and 22 GHz with the radiometers. The rms error for the estimation of wet path length from surface meteorological parameters was 3.2 cm, and from the radiometer brightness temperatures, 1.5 cm.
NASA Astrophysics Data System (ADS)
Walker, S. A.; Sanders, J. S.; Fabian, A. C.
2016-09-01
The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.
The Origin of Dwarf Ellipticals in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Boselli, A.; Boissier, S.; Cortese, L.; Gavazzi, G.
2008-02-01
We study the evolution of dwarf (LH < 109.6 LH⊙) star-forming and quiescent galaxies in the Virgo Cluster by comparing their UV to radio centimetric properties to the predictions of multizone chemospectrophotometric models of galaxy evolution especially tuned to take into account the perturbations induced by the interaction with the cluster intergalactic medium. Our models simulate one or multiple ram pressure stripping events and galaxy starvation. Models predict that all star-forming dwarf galaxies entering the cluster for the first time loose most, if not all, of their atomic gas content, quenching on short timescales (<=150 Myr) their activity of star formation. These dwarf galaxies soon become red and quiescent, gas metal-rich objects with spectrophotometric and structural properties similar to those of dwarf ellipticals. Young, low-luminosity, high surface brightness star-forming galaxies such as late-type spirals and BCDs are probably the progenitors of relatively massive dwarf ellipticals, while it is likely that low surface brightness Magellanic irregulars evolve into very low surface brightness quiescent objects hardly detectable in ground-based imaging surveys. The small number of dwarf galaxies with physical properties intermediate between those of star-forming and quiescent systems is consistent with a rapid (<1 Gyr) transitional phase between the two dwarf galaxy populations. These results, combined with statistical considerations, are consistent with the idea that most of the dwarf ellipticals dominating the faint end of the Virgo luminosity function were initially star-forming systems, accreted by the cluster and stripped of their gas by one or subsequent ram pressure stripping events.
FORTY-SEVEN MILKY WAY-SIZED, EXTREMELY DIFFUSE GALAXIES IN THE COMA CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dokkum, Pieter G.; Merritt, Allison; Geha, Marla
2015-01-10
We report the discovery of 47 low surface brightness objects in deep images of a 3° × 3° field centered on the Coma cluster, obtained with the Dragonfly Telephoto Array. The objects have central surface brightness μ(g, 0) ranging from 24-26 mag arcsec{sup –2} and effective radii r {sub eff} = 3''-10'', as measured from archival Canada-France-Hawaii Telescope images. From their spatial distribution we infer that most or all of the objects are galaxies in the Coma cluster. This relatively large distance is surprising as it implies that the galaxies are very large: with r {sub eff} = 1.5-4.6 kpcmore » their sizes are similar to those of L {sub *} galaxies even though their median stellar mass is only ∼6 × 10{sup 7} M {sub ☉}. The galaxies are relatively red and round, with (g – i) = 0.8 and (b/a) = 0.74. One of the 47 galaxies is fortuitously covered by a deep Hubble Space Telescope Advanced Camera for Surveys (ACS) observation. The ACS imaging shows a large spheroidal object with a central surface brightness μ{sub 475} = 25.8 mag arcsec{sup –2}, a Sérsic index n = 0.6, and an effective radius of 7'', corresponding to 3.4 kpc at the distance of Coma. The galaxy is not resolved into stars, consistent with expectations for a Coma cluster object. We speculate that these ''ultra-diffuse galaxies'' may have lost their gas supply at early times, possibly resulting in very high dark matter fractions.« less
Characterizing bars in low surface brightness disc galaxies
NASA Astrophysics Data System (ADS)
Peters, Wesley; Kuzio de Naray, Rachel
2018-05-01
In this paper, we use B-band, I-band, and 3.6 μm azimuthal light profiles of four low surface brightness galaxies (LSBs; UGC 628, F568-1, F568-3, F563-V2) to characterize three bar parameters: length, strength, and corotation radius. We employ three techniques to measure the radius of the bars, including a new method using the azimuthal light profiles. We find comparable bar radii between the I-band and 3.6 μm for all four galaxies when using our azimuthal light profile method, and that our bar lengths are comparable to those in high surface brightness galaxies (HSBs). In addition, we find the bar strengths for our galaxies to be smaller than those for HSBs. Finally, we use Fourier transforms of the B-band, I-band, and 3.6 μm images to characterize the bars as either `fast' or `slow' by measuring the corotation radius via phase profiles. When using the B- and I-band phase crossings, we find three of our galaxies have faster than expected relative bar pattern speeds for galaxies expected to be embedded in centrally dense cold dark matter haloes. When using the B-band and 3.6 μm phase crossings, we find more ambiguous results, although the relative bar pattern speeds are still faster than expected. Since we find a very slow bar in F563-V2, we are confident that we are able to differentiate between fast and slow bars. Finally, we find no relation between bar strength and relative bar pattern speed when comparing our LSBs to HSBs.
NASA Astrophysics Data System (ADS)
Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu
2016-09-01
The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.
HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects
NASA Technical Reports Server (NTRS)
Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.
1994-01-01
We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.
NASA Technical Reports Server (NTRS)
Treiman, Allan H.
1997-01-01
A sequence of layers, bright and dark, is exposed on the walls of canyons, impact craters and mesas throughout the Ares Vallis region, Chryse Planitia, and Xanthe Terra, Mars. Four layers can be seen: two pairs of alternating dark and bright albedo. The upper dark layer forms the top surface of many walls and mesas. The upper dark-bright pair was stripped as a unit from many streamlined mesas and from the walls of Ares Valles, leaving a bench at the top of the lower dark layer, approximately 250 m below the highland surface on streamlined islands and on the walls of Ares Vallis itself. Along Ares Vallis, the scarp between the highlands surface and this bench is commonly angular in plan view (not smoothly curving), suggesting that erosion of the upper dark-bright pair of layers controlled by planes of weakness, like fractures or joints. These near-surface layers in the Ares Vallis area have similar thicknesses, colors, and resistances to erosion to layers exposed near the tops of walls in Valles Marineris (Treiman et al.) and may represent the same pedogenic hardpan units. From this correlation, and from analogies with hardpans on Earth, the light-color layers may be cemented by calcite or gypsum. The dark layers are likely cemented by an iron-bearing mineral. Mars Pathfinder instruments should permit recognition and useful analyses of hardpan fragments, provided that clean uncoated surfaces are accessible. Even in hardpan-cemented materials, it should be possible to determine the broad types of lithologies in the Martian highlands. However, detailed geochemical modeling of highland rocks and soils may be compromised by the presence of hardpan cement minerals.
A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex
NASA Technical Reports Server (NTRS)
Moser, D. E.; Suggs, R. M.; Suggs, R. J.
2015-01-01
On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.
1979-07-10
P-21762 C This color picture of Ganymede in the region 30° S 180° W shows features as small as 6 kilometers (3.7 miles) across. Shown is a bright halo impact crater that shows the fresh material thrown out of the crater. In the background is bright grooved terrain that may be the result of shearing of the surface materials along fault planes. The dark background material is the ancient heavily cratered terrain--the oldest material preserved on the Ganymede surface.
Simple Forest Canopy Thermal Exitance Model
NASA Technical Reports Server (NTRS)
Smith J. A.; Goltz, S. M.
1999-01-01
We describe a model to calculate brightness temperature and surface energy balance for a forest canopy system. The model is an extension of an earlier vegetation only model by inclusion of a simple soil layer. The root mean square error in brightness temperature for a dense forest canopy was 2.5 C. Surface energy balance predictions were also in good agreement. The corresponding root mean square errors for net radiation, latent, and sensible heat were 38.9, 30.7, and 41.4 W/sq m respectively.
High power VCSELs for miniature optical sensors
NASA Astrophysics Data System (ADS)
Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason
2010-02-01
Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.
NASA Soil Moisture Mapper Takes First SMAPshots
2015-03-09
Fresh off the recent successful deployment of its 20-foot (6-meter) reflector antenna and associated boom arm, NASA's new Soil Moisture Active Passive (SMAP) observatory has successfully completed a two-day test of its science instruments. On Feb. 27 and 28, SMAP's radar and radiometer instruments were successfully operated for the first time with SMAP's antenna in a non-spinning mode. The test was a key step in preparation for the planned spin-up of SMAP's antenna to approximately 15 revolutions per minute in late March. The spin-up will be performed in a two-step process after additional tests and maneuvers adjust the observatory to its final science orbit over the next couple of weeks. Based on the data received, mission controllers at NASA's Jet Propulsion Laboratory, Pasadena, California; and NASA's Goddard Space Flight Center, Greenbelt, Maryland; concluded that the radar and radiometer performed as expected. SMAP launched Jan. 31 on a minimum three-year mission to map global soil moisture and detect whether soils are frozen or thawed. The mission will help scientists understand the links in Earth's water, energy and carbon cycles, help reduce uncertainties in predicting weather and climate, and enhance our ability to monitor and predict natural hazards such as floods and droughts The first test image illustrates the significance of SMAP's spinning instrument design. For this initial test with SMAP's antenna not yet spinning, the observatory's measurement swath width -- the strips observed on Earth in the image -- was limited to 25 miles (40 kilometers). When fully spun up and operating, SMAP's antenna will measure a 620-mile-wide (1,000-kilometer) swath of the ground as it flies above Earth at an altitude of 426 miles (685 kilometers). This will allow SMAP to map the entire globe with high-resolution radar data every two to three days, filling in all of the land surface detail that is not available in this first image. The radar data illustrated in the upper panel of the image show a clear contrast between land and ocean surfaces. The Amazon and Congo forests in South America and Africa, respectively, produced strong radar echoes due to their large biomass and water content. Areas with no vegetation and low soil moisture, such as the Sahara Desert, yielded weaker radar echoes. As expected, the dry snow zone in central Greenland, the largest zone of the Greenland ice sheet where snow does not melt year-round, produced weaker radar echoes. Surrounding areas in Greenland's percolation zone, where some meltwater penetrates down into glaciers and refreezes, had strong radar echoes due to ice lens and glands within the ice sheet. Ice lenses form when moisture that is diffused within soil or rock accumulates in a localized zone. Ice glands are columns of ice in the granular snow at the top of glaciers. The test shows that SMAP's radiometer is performing well. The radiometer's brightness temperature data are illustrated in the lower panel. Brightness temperature is a measurement of how much natural microwave radiant energy is traveling up from Earth's surface to the satellite. The contrast between land and ocean surface brightness temperatures is clear, as they are in the radar image. The Sahara Desert has high brightness temperatures because it is so hot and has low soil moisture content. The India subcontinent is currently in its dry season and therefore also has high brightness temperatures. Some regions, such as the northeast corner of Australia, showed low brightness temperatures, likely due to the high moisture content of the soil after heavy rainfall from Cyclone Marcia in late February. http://photojournal.jpl.nasa.gov/catalog/PIA19236
Pancam multispectral imaging results from the Spirit Rover at Gusev crater
Bell, J.F.; Squyres, S. W.; Arvidson, R. E.; Arneson, H.M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.; Goetz, W.; Golombek, M.; Grant, J. A.; Greeley, R.; Guinness, E.; Hayes, A.G.; Hubbard, M.Y.H.; Herkenhoff, K. E.; Johnson, M.J.; Johnson, J. R.; Joseph, J.; Kinch, K.M.; Lemmon, M.T.; Li, R.; Madsen, M.B.; Maki, J.N.; Malin, M.; McCartney, E.; McLennan, S.; McSween, H.Y.; Ming, D. W.; Moersch, J.E.; Morris, R.V.; Dobrea, E.Z.N.; Parker, T.J.; Proton, J.; Rice, J. W.; Seelos, F.; Soderblom, J.; Soderblom, L.A.; Sohl-Dickstein, J. N.; Sullivan, R.J.; Wolff, M.J.; Wang, A.
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater.
Bell, J F; Squyres, S W; Arvidson, R E; Arneson, H M; Bass, D; Blaney, D; Cabrol, N; Calvin, W; Farmer, J; Farrand, W H; Goetz, W; Golombek, M; Grant, J A; Greeley, R; Guinness, E; Hayes, A G; Hubbard, M Y H; Herkenhoff, K E; Johnson, M J; Johnson, J R; Joseph, J; Kinch, K M; Lemmon, M T; Li, R; Madsen, M B; Maki, J N; Malin, M; McCartney, E; McLennan, S; McSween, H Y; Ming, D W; Moersch, J E; Morris, R V; Dobrea, E Z Noe; Parker, T J; Proton, J; Rice, J W; Seelos, F; Soderblom, J; Soderblom, L A; Sohl-Dickstein, J N; Sullivan, R J; Wolff, M J; Wang, A
2004-08-06
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Pancam multispectral imaging results from the Spirit Rover at Gusev Crater
NASA Technical Reports Server (NTRS)
Bell, J. F., III; Squyres, S. W.; Arvidson, R. E.; Arneson, H. M.; Bass, D.; Blaney, D.; Cabrol, N.; Calvin, W.; Farmer, J.; Farrand, W. H.;
2004-01-01
Panoramic Camera images at Gusev crater reveal a rock-strewn surface interspersed with high- to moderate-albedo fine-grained deposits occurring in part as drifts or in small circular swales or hollows. Optically thick coatings of fine-grained ferric iron-rich dust dominate most bright soil and rock surfaces. Spectra of some darker rock surfaces and rock regions exposed by brushing or grinding show near-infrared spectral signatures consistent with the presence of mafic silicates such as pyroxene or olivine. Atmospheric observations show a steady decline in dust opacity during the mission, and astronomical observations captured solar transits by the martian moons, Phobos and Deimos, as well as a view of Earth from the martian surface.
Analysis of Temperature Maps of Selected Dawn Data Over the Surface of Vesta
NASA Technical Reports Server (NTRS)
Tosi, F.; Capria, M. T.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-Ph.; Sunshine, J. M.; McCord, T. B.;
2012-01-01
The thermal behavior of areas of unusual albedo at the surface of Vesta can be related to physical properties that may provide some information about the origin of those materials. Dawn s Visible and Infrared Mapping Spectrometer (VIR) [1] hyperspectral cubes can be used to retrieve surface temperatures. Due to instrumental constraints, high accuracy is obtained only if temperatures are greater than 180 K. Bright and dark surface materials on Vesta are currently investigated by the Dawn team [e.g., 2 and 3 respectively]. Here we present temperature maps of several local-scale features that were observed by Dawn under different illumination conditions and different local solar times.
Flexible high-resolution display systems for the next generation of radiology reading rooms
NASA Astrophysics Data System (ADS)
Caban, Jesus J.; Wood, Bradford J.; Park, Adrian
2007-03-01
A flexible, scalable, high-resolution display system is presented to support the next generation of radiology reading rooms or interventional radiology suites. The project aims to create an environment for radiologists that will simultaneously facilitate image interpretation, analysis, and understanding while lowering visual and cognitive stress. Displays currently in use present radiologists with technical challenges to exploring complex datasets that we seek to address. These include resolution and brightness, display and ambient lighting differences, and degrees of complexity in addition to side-by-side comparison of time-variant and 2D/3D images. We address these issues through a scalable projector-based system that uses our custom-designed geometrical and photometrical calibration process to create a seamless, bright, high-resolution display environment that can reduce the visual fatigue commonly experienced by radiologists. The system we have designed uses an array of casually aligned projectors to cooperatively increase overall resolution and brightness. Images from a set of projectors in their narrowest zoom are combined at a shared projection surface, thus increasing the global "pixels per inch" (PPI) of the display environment. Two primary challenges - geometric calibration and photometric calibration - remained to be resolved before our high-resolution display system could be used in a radiology reading room or procedure suite. In this paper we present a method that accomplishes those calibrations and creates a flexible high-resolution display environment that appears seamless, sharp, and uniform across different devices.
Dawn Color Topography of Ahuna Mons on Ceres
2016-03-11
These color topographic views show variations in surface height around Ahuna Mons, a mysterious mountain on Ceres. The views are colorized versions of PIA20348 and PIA20349. They represent an update to the view in PIA19976, which showed the mountain using data from an earlier, higher orbit. Both views were made using images taken by NASA's Dawn spacecraft during its low-altitude mapping orbit, at a distance of about 240 miles (385 kilometers) from the surface. The resolution of the component images is about 120 feet (35 meters) per pixel. Elevations span a range of about 5.5 miles (9 kilometers) from the lowest places in the region to the highest terrains. Blue represents the lowest elevation, and brown is the highest. The streaks running down the side of the mountain, which appear white in the grayscale view, are especially bright parts of the surface (the brightness does not relate to elevation). The elevations are from a shape model generated using images taken at varying sun and viewing angles during Dawn's lower-resolution, high-altitude mapping orbit (HAMO) phase. The side perspective view was generated by draping the image mosaics over the shape model. http://photojournal.jpl.nasa.gov/catalog/PIA20399
Localized spoof surface plasmon resonances at terahertz range
NASA Astrophysics Data System (ADS)
Chen, Lin; Xu, Mengjian; Zang, Xiaofei; Peng, Yan; Zhu, Yiming
2016-11-01
The influence of the inner disk radius r, the filling ratio α, numbers of sectors N, and the gap g on transmission response for corrugated metallic disk (CMD) with single C-shaped resonator(CSR) has been fully studied. The results indicate that varying parameters r can efficiently excite the higher order spoof localized surface plasmon modes in corrugated metallic disk. The relationship between the bright dipole and dark multipolar resonances presents the possibility of high Q dark resonances excitation. All results may be of great interest for diverse applications.
NASA Astrophysics Data System (ADS)
Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.
2013-07-01
We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.
Resolved spectrophotometric properties of the Ceres surface from Dawn Framing Camera images
NASA Astrophysics Data System (ADS)
Schröder, S. E.; Mottola, S.; Carsenty, U.; Ciarniello, M.; Jaumann, R.; Li, J.-Y.; Longobardo, A.; Palmer, E.; Pieters, C.; Preusker, F.; Raymond, C. A.; Russell, C. T.
2017-05-01
We present a global spectrophotometric characterization of the Ceres surface using Dawn Framing Camera (FC) images. We identify the photometric model that yields the best results for photometrically correcting images. Corrected FC images acquired on approach to Ceres were assembled into global maps of albedo and color. Generally, albedo and color variations on Ceres are muted. The albedo map is dominated by a large, circular feature in Vendimia Planitia, known from HST images (Li et al., 2006), and dotted by smaller bright features mostly associated with fresh-looking craters. The dominant color variation over the surface is represented by the presence of "blue" material in and around such craters, which has a negative spectral slope over the visible wavelength range when compared to average terrain. We also mapped variations of the phase curve by employing an exponential photometric model, a technique previously applied to asteroid Vesta (Schröder et al., 2013b). The surface of Ceres scatters light differently from Vesta in the sense that the ejecta of several fresh-looking craters may be physically smooth rather than rough. High albedo, blue color, and physical smoothness all appear to be indicators of youth. The blue color may result from the desiccation of ejected material that is similar to the phyllosilicates/water ice mixtures in the experiments of Poch et al. (2016). The physical smoothness of some blue terrains would be consistent with an initially liquid condition, perhaps as a consequence of impact melting of subsurface water ice. We find red terrain (positive spectral slope) near Ernutet crater, where De Sanctis et al. (2017) detected organic material. The spectrophotometric properties of the large Vendimia Planitia feature suggest it is a palimpsest, consistent with the Marchi et al. (2016) impact basin hypothesis. The central bright area in Occator crater, Cerealia Facula, is the brightest on Ceres with an average visual normal albedo of about 0.6 at a resolution of 1.3 km per pixel (six times Ceres average). The albedo of fresh, bright material seen inside this area in the highest resolution images (35 m per pixel) is probably around unity. Cerealia Facula has an unusually steep phase function, which may be due to unresolved topography, high surface roughness, or large average particle size. It has a strongly red spectrum whereas the neighboring, less-bright, Vinalia Faculae are neutral in color. We find no evidence for a diurnal ground fog-type haze in Occator as described by Nathues et al. (2015). We can neither reproduce their findings using the same images, nor confirm them using higher resolution images. FC images have not yet offered direct evidence for present sublimation in Occator.
Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz
Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.; ...
2018-01-08
Here, we report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright "brush" of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range –0.70 ≤ α ≤ –0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namelymore » $${ \\mathcal M }={3.78}_{-0.2}^{+0.3}$$. The radio halo shows an average spectral index of α = –1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.« less
Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.
Here, we report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright "brush" of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range –0.70 ≤ α ≤ –0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namelymore » $${ \\mathcal M }={3.78}_{-0.2}^{+0.3}$$. The radio halo shows an average spectral index of α = –1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.« less
Deep VLA Observations of the Cluster 1RXS J0603.3+4214 in the Frequency Range of 1–2 GHz
NASA Astrophysics Data System (ADS)
Rajpurohit, K.; Hoeft, M.; van Weeren, R. J.; Rudnick, L.; Röttgering, H. J. A.; Forman, W. R.; Brüggen, M.; Croston, J. H.; Andrade-Santos, F.; Dawson, W. A.; Intema, H. T.; Kraft, R. P.; Jones, C.; Jee, M. James
2018-01-01
We report L-band VLA observations of 1RXS J0603.3+4214, a cluster that hosts a bright radio relic, known as the Toothbrush, and an elongated giant radio halo. These new observations allow us to study the surface brightness distribution down to 1 arcsec resolution with very high sensitivity. Our images provide an unprecedented detailed view of the Toothbrush, revealing enigmatic filamentary structures. To study the spectral index distribution, we complement our analysis with published LOFAR and GMRT observations. The bright “brush” of the Toothbrush shows a prominent narrow ridge to its north with a sharp outer edge. The spectral index at the ridge is in the range ‑0.70 ≤ α ≤ ‑0.80. We suggest that the ridge is caused by projection along the line of sight. With a simple toy model for the smallest region of the ridge, we conclude that the magnetic field is below 5 μG and varies significantly across the shock front. Our model indicates that the actual Mach number is higher than that obtained from the injection index and agrees well with the one derived from the overall spectrum, namely { M }={3.78}-0.2+0.3. The radio halo shows an average spectral index of α = ‑1.16 ± 0.05 and a slight gradient from north to south. The southernmost part of the halo is steeper and possibly related to a shock front. Excluding the southernmost part, the halo morphology agrees very well with the X-ray morphology. A power-law correlation is found between the radio and X-ray surface brightness.
NASA Astrophysics Data System (ADS)
Challouf, M.; Nardetto, N.; Domiciano de Souza, A.; Mourard, D.; Tallon-Bosc, I.; Aroui, H.; Farrington, C.; Ligi, R.; Meilland, A.; Mouelhi, M.
2017-08-01
Context. Rapid rotation is a common feature for massive stars, with important consequences on their physical structure, flux distribution and evolution. Fast-rotating stars are flattened and show gravity darkening (non-uniform surface intensity distribution). Another important and less studied impact of fast-rotation in early-type stars is its influence on the surface brightness colour relation (hereafter SBCR), which could be used to derive the distance of eclipsing binaries. Aims: The purpose of this paper is to determine the flattening of the fast-rotating B-type star δ Per using visible long-baseline interferometry. A second goal is to evaluate the impact of rotation and gravity darkening on the V - K colour and surface brightness of the star. Methods: The B-type star δ Per was observed with the VEGA/CHARA interferometer, which can measure spatial resolutions down to 0.3 mas and spectral resolving power of 5000 in the visible. We first used a toy model to derive the position angle of the rotation axis of the star in the plane of the sky. Then we used a code of stellar rotation, CHARRON, in order to derive the physical parameters of the star. Finally, by considering two cases, a static reference star and our best model of δ Per, we can quantify the impact of fast rotation on the surface brightness colour relation (SBCR). Results: We find a position angle of 23 ± 6 degrees. The polar axis angular diameter of δ Per is θp = 0.544 ± 0.007 mas, and the derived flatness is r = 1.121 ± 0.013. We derive an inclination angle for the star of I = 85+ 5-20 degrees and a projected rotation velocity Vsini = 175+ 8-11 km s-1 (or 57% of the critical velocity). We find also that the rotation and inclination angle of δ Per keeps the V - K colour unchanged while it decreasing its surface-brightness by about 0.05 mag. Conclusions: Correcting the impact of rotation on the SBCR of early-type stars appears feasible using visible interferometry and dedicated models.
NASA Astrophysics Data System (ADS)
Stolker, T.; Dominik, C.; Avenhaus, H.; Min, M.; de Boer, J.; Ginski, C.; Schmid, H. M.; Juhasz, A.; Bazzon, A.; Waters, L. B. F. M.; Garufi, A.; Augereau, J.-C.; Benisty, M.; Boccaletti, A.; Henning, Th.; Langlois, M.; Maire, A.-L.; Ménard, F.; Meyer, M. R.; Pinte, C.; Quanz, S. P.; Thalmann, C.; Beuzit, J.-L.; Carbillet, M.; Costille, A.; Dohlen, K.; Feldt, M.; Gisler, D.; Mouillet, D.; Pavlov, A.; Perret, D.; Petit, C.; Pragt, J.; Rochat, S.; Roelfsema, R.; Salasnich, B.; Soenke, C.; Wildi, F.
2016-11-01
Context. The protoplanetary disk around the F-type star HD 135344B (SAO 206462) is in a transition stage and shows many intriguing structures both in scattered light and thermal (sub-)millimeter emission which are possibly related to planet formation processes. Aims: We aim to study the morphology and surface brightness of the disk in scattered light to gain insight into the innermost disk regions, the formation of protoplanets, planet-disk interactions traced in the surface and midplane layers, and the dust grain properties of the disk surface. Methods: We have carried out high-contrast polarimetric differential imaging (PDI) observations with VLT/SPHERE and obtained polarized scattered light images with ZIMPOL in the R and I-bands and with IRDIS in the Y and J-bands. The scattered light images and surface brightness profiles are used to study in detail structures in the disk surface and brightness variations. We have constructed a 3D radiative transfer model to support the interpretation of several detected shadow features. Results: The scattered light images reveal with unprecedented angular resolution and sensitivity the spiral arms as well as the 25 au cavity of the disk. Multiple shadow features are discovered on the outer disk with one shadow only being present during the second observation epoch. A positive surface brightness gradient is observed in the stellar irradiation corrected (r2-scaled) images in southwest direction possibly due to an azimuthally asymmetric perturbation of the temperature and/or surface density by the passing spiral arms. The disk integrated polarized flux, normalized to the stellar flux, shows a positive trend towards longer wavelengths which we attribute to large (2πa ≳ λ) aggregate dust grains in the disk surface. Part of the non-azimuthal polarization signal in the Uφ image of the J-band observation can be attributed to multiple scattering in the disk. Conclusions: The detected shadow features and their possible variability have the potential to provide insight into the structure of and processes occurring in the innermost disk regions. Possible explanations for the presence of the shadows include a 22° misaligned inner disk, a warped disk region that connects the inner disk with the outer disk, and variable or transient phenomena such as a perturbation of the inner disk or an asymmetric accretion flow. The spiral arms are best explained by one or multiple protoplanets in the exterior of the disk although no gap is detected beyond the spiral arms up to 1.''0. Based on observations collected at the European Southern Observatory, Chile, ESO No. 095.C-0273(A) and 095.C-0273(D).
The Nature of LSB galaxies revealed by their Globular Clusters
NASA Astrophysics Data System (ADS)
Kissler-Patig, Markus
2005-07-01
Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST/ACS imaging is the only facility capable of studying the globular cluster systems of LSB galaxies given their distance and relative scarcity.
Recombination Line versus Forbidden Line Abundances in Planetary Nebulae
NASA Astrophysics Data System (ADS)
Robertson-Tessi, Mark; Garnett, Donald R.
2005-04-01
Recombination lines (RLs) of C II, N II, and O II in planetary nebulae (PNs) have been found to give abundances that are much larger in some cases than abundances from collisionally excited forbidden lines (CELs). The origins of this abundance discrepancy are highly debated. We present new spectroscopic observations of O II and C II recombination lines for six planetary nebulae. With these data we compare the abundances derived from the optical recombination lines with those determined from collisionally excited lines. Combining our new data with published results on RLs in other PNs, we examine the discrepancy in abundances derived from RLs and CELs. We find that there is a wide range in the measured abundance discrepancy Δ(O+2)=logO+2(RL)-logO+2(CEL), ranging from approximately 0.1 dex (within the 1 σ measurement errors) up to 1.4 dex. This tends to rule out errors in the recombination coefficients as a source of the discrepancy. Most RLs yield similar abundances, with the notable exception of O II multiplet V15, known to arise primarily from dielectronic recombination, which gives abundances averaging 0.6 dex higher than other O II RLs. We compare Δ(O+2) against a variety of physical properties of the PNs to look for clues as to the mechanism responsible for the abundance discrepancy. The strongest correlations are found with the nebula diameter and the Balmer surface brightness; high surface brightness, compact PNs show small values of Δ(O+2), while large low surface brightness PNs show the largest discrepancies. An inverse correlation of Δ(O+2) with nebular density is also seen. A marginal correlation of Δ(O+2) is found with expansion velocity. No correlations are seen with electron temperature, He+2/He+, central star effective temperature and luminosity, stellar mass-loss rate, or nebular morphology. Similar results are found for carbon in comparing C II RL abundances with ultraviolet measurements of C III].
Potential of fish scales as a filling material in surface coating of cellulosic paper.
Ural, Elif; Kandirmaz, Emine A
2018-01-01
Paper is one of the important inputs for the printing industry, and the most important leading parameter in the printing process is its brightness. Brightness can be brought to paper using coatings and sizing. Desired surface properties and, most importantly, surface roughness can be achieved by changing the contents of the coating and sizing of the materials it contains. The use of biomaterials is becoming more important in the paper industry, as they represent substances with a lower carbon footprint. Fish scales are already used as a filling material, cosmetic material and fish food, as well as for determining the age of fish. Fish scales were brought to different sizes by a milling process. Paper formulations including different amounts of fish scales were prepared with fish scales, and coatings on raw paper were subjected to test printings in IGT-C1, with formulations and physical characteristics of coatings such as brightness, lightfastness, strength, adhesion etc. being determined. Regarding the value of yellowness, mixtures of 2.5%-10% can be used. The maximum value of brightness was obtained from a mixture of 10%. Aging visibly changed the colors. The coatings obtained were brighter than the initial coating compositions. The top quality formulation was the coating with 5% medium-sized fish scale particles.
NASA Technical Reports Server (NTRS)
Weaver, W. R.; Meador, W. E.
1977-01-01
Photometric data from the bright desert areas of Mars were used to determine the dependence of the three photometric parameters of the photometric function on wavelength and to provide qualitative predictions about the physical properties of the surface. Knowledge of the parameters allowed the brightness of these areas of Mars to be determined for any scattering geometry in the wavelength range of 0.45 to 0.70 micron. The changes that occur in the photometric parameters due to changes in wavelength were shown to be consistent with their physical interpretations, and the predictions of surface properties were shown to be consistent with conditions expected to exist in these regions of Mars. The photometric function was shown to have potential as a diagnostic tool for the qualitative determination of surface properties, and the consistency of the behavior of the photometric parameters was considered to be support for the validity of the photometric function.
The MESSIER surveyor: unveiling the ultra-low surface brightness universe
NASA Astrophysics Data System (ADS)
Valls-Gabaud, David; MESSIER Collaboration
2017-03-01
The MESSIER surveyor is a small mission designed at exploring the very low surface brightness universe. The satellite will drift-scan the entire sky in 6 filters covering the 200-1000 nm range, reaching unprecedented surface brightness levels of 34 and 37 mag arcsec-2 in the optical and UV, respectively. These levels are required to achieve the two main science goals of the mission: to critically test the ΛCDM paradigm of structure formation through (1) the detection and characterisation of ultra-faint dwarf galaxies, which are predicted to be extremely abundant around normal galaxies, but which remain elusive; and (2) tracing the cosmic web, which feeds dark matter and baryons into galactic haloes, and which may contain the reservoir of missing baryons at low redshifts. A large number of science cases, ranging from stellar mass loss episodes to intracluster light through fluctuations in the cosmological UV-optical background radiation are free by-products of the full-sky maps produced.
NASA Astrophysics Data System (ADS)
Trujillo, Ignacio; Fliri, Jüergen
2016-06-01
The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5-2 mag deeper than most previous results within a reasonable amount of time (I.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec-2 (3σ in 10 × 10 arcsec boxes; r-band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ˜150 Mpc, by obtaining a radial profile of surface brightness down to μ r ˜ 33 mag arcsec-2. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ˜4 × 109 M ⊙, I.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.
Bright Ray Craters in Ganymede's Northern Hemisphere
NASA Technical Reports Server (NTRS)
1979-01-01
GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is of a region in the northern hemisphere near the terminator. It shows a variety of impact structures, including both razed and unrazed craters, and the odd, groove-like structures discovered by Voyager in the lighter regions. The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the southern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejects patterns (such as several of the craters in the southern half of PIA01516; P21262). This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.
Highly-branched anisotropic hybrid nanoparticles at surfaces.
NASA Astrophysics Data System (ADS)
Tsukruk, Vladimir
2009-03-01
We present a brief overview of our recent studies on combined hybrid anisotropic structures composed of inorganic nanoparticles and highly branched molecules such as modified silsesquioxanes polyhedra cores (POSS) with mixed hydrophobic-hydrophilic tails and silver nanowires with functionalized star block copolymer with embedded gold nanoparticles (nanocobs). We demonstrate two-stage melting of that branched POSS and their ability to form monolayer and multilayered LB structures. On the other hand, we observed that silver-BCP-gold nanocobs display extremely bright Raman scattering caused by surface enhanced Raman effect with very different longitudinal and transversal optical properties as revealed by high-resolution confocal Raman microscopy. To study these hybrid nanostructures we applied combined AFM, SEM, TEM, XPS, SERS, UV-vis, and XR techniques.
NASA Technical Reports Server (NTRS)
Eagleman, J. R.; Pogge, E. C.; Moore, R. K. (Principal Investigator); Hardy, N.; Lin, W.; League, L.
1974-01-01
The author has identified the following significant results. Skylab 2 data for June 5, 1973 (Texas site) relates favorably with previously calculated aircraft data when correlating brightness temperature to soil moisture. However, more detailed work is needed to determine the corrected surface temperature. In addition, correlations between the S194 antenna temperature and soil moisture have been obtained for five sets of Skylab data. The best correlations were obtained for the surface to one inch depth in four cases and for surface to two inches depth for the fifth case. Correlation coefficients for the surface to one inch depth were -0.98, -0.95, -0.90, -0.82, and -0.80.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2012-01-01
Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).
Edge Modeling by Two Blur Parameters in Varying Contrasts.
Seo, Suyoung
2018-06-01
This paper presents a method of modeling edge profiles with two blur parameters, and estimating and predicting those edge parameters with varying brightness combinations and camera-to-object distances (COD). First, the validity of the edge model is proven mathematically. Then, it is proven experimentally with edges from a set of images captured for specifically designed target sheets and with edges from natural images. Estimation of the two blur parameters for each observed edge profile is performed with a brute-force method to find parameters that produce global minimum errors. Then, using the estimated blur parameters, actual blur parameters of edges with arbitrary brightness combinations are predicted using a surface interpolation method (i.e., kriging). The predicted surfaces show that the two blur parameters of the proposed edge model depend on both dark-side edge brightness and light-side edge brightness following a certain global trend. This is similar across varying CODs. The proposed edge model is compared with a one-blur parameter edge model using experiments of the root mean squared error for fitting the edge models to each observed edge profile. The comparison results suggest that the proposed edge model has superiority over the one-blur parameter edge model in most cases where edges have varying brightness combinations.
Spatiotemporal analysis of brightness induction
McCourt, Mark E.
2011-01-01
Brightness induction refers to a class of visual illusions in which the perceived intensity of a region of space is influenced by the luminance of surrounding regions. These illusions are significant because they provide insight into the neural organization of the visual system. A novel quadrature-phase motion cancelation technique was developed to measure the magnitude of the grating induction brightness illusion across a wide range of spatial frequencies, temporal frequencies and test field heights. Canceling contrast is greatest at low frequencies and declines with increasing frequency in both dimensions, and with increasing test field height. Canceling contrast scales as the product of inducing grating spatial frequency and test field height (the number of inducing grating cycles per test field height). When plotted using a spatial axis which indexes this product, the spatiotemporal induction surfaces for four test field heights can be described as four partially overlapping sections of a single larger surface. These properties of brightness induction are explained in the context of multiscale spatial filtering. The present study is the first to measure the magnitude of grating induction as a function of temporal frequency. Taken in conjunction with several other studies (Blakeslee & McCourt, 2008; Robinson & de Sa, 2008; Magnussen & Glad, 1975) the results of this study illustrate that at least one form of brightness induction is very much faster than that reported by DeValois et al. (1986) and Rossi and Paradiso (1996), and are inconsistent with the proposition that brightness induction results from a slow “filling in” process. PMID:21763339
Anticorrelation of X-ray bright points with sunspot number, 1970-1978
NASA Technical Reports Server (NTRS)
Golub, L.; Davis, J. M.; Krieger, A. S.
1979-01-01
Soft X-ray observations of the solar corona over the period 1970-1978 show that the number of small short-lived bipolar magnetic features (X-ray bright points) varies inversely with the sunspot index. During the entire period from 1973 to 1978 most of the magnetic flux emerging at the solar surface appeared in the form of bright points. In 1970, near the peak of solar cycle 20, the contributions from bright points and from active regions appear to be approximately equal. These observations strongly support an earlier suggestion that the solar cycle may be characterized as an oscillator in wave-number space with relatively little variation in the average total rate of flux emergence.
The dark side of Venus - Near-infrared images and spectra from the Anglo-Australian Observatory
NASA Technical Reports Server (NTRS)
Crisp, D.; Allen, D. A.; Grinspoon, D. H.; Pollack, J. B.
1991-01-01
Near-IR images and spectra of the night side of Venus taken at the Anglo-Australian Telescope during February 1990 reveal four new thermal emission windows at 1.10, 1.18, 1.27, and 1.31 microns, in addition to the previously discovered windows at 1.74 and 2.3 microns. Images of the Venus night side show similar bright and dark markings in all windows, but their contrast is much lower at short wavelengths. The 1.27-micron window includes a bright, high-altitude O2 airglow feature in addition to a thermal contribution from the deep atmosphere. Simulations of the 1.27- and 2.3-micron spectra indicate water vapor mixing ratios near 40 + or - 20 ppm by volume between the surface and the cloud base.
Study on hexagonal super-lattice pattern with surface discharges in dielectric barrier discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying; Dong, Lifang, E-mail: donglfhbu@163.com; Niu, Xuejiao
2015-10-15
The hexagonal super-lattice pattern with surface discharges (SDs) in dielectric barrier discharge is investigated by intensified charge-coupled device. The pattern is composed of the bright spot and the dim spot which is located at the centroid of surrounding other three bright spots. The phase diagram of the pattern as a function of the gas pressure and the argon concentration is given. The instantaneous images indicate that the bright spot emerging at the front of the current pulse is formed by the volume discharge (VD), and dim spot occurring at the tail of the current pulse is formed by the SD.more » The above result shows that the SD is induced by the VD. The simulation of the electric fields of wall charges accumulated by VDs confirms that the dim spot is formed by the confluences of the SDs of surrounding other three bright spots. By using optical emission spectrum method, both the molecule vibration temperature and electron density of the SD are larger than that of the VD.« less
Modelling the phase curve and occultation of WASP-43b with SPIDERMAN
NASA Astrophysics Data System (ADS)
Louden, Tom
2017-06-01
Presenting SPIDERMAN, a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary two dimensional surface brightness distributions. SPIDERMAN uses an exact geometric algorithm to calculate the area of sub-regions of the planet that are occulted by the star, with no loss in numerical precision. The speed of this calculation makes it possible to run MCMCs to marginalise effectively over the underlying parameters controlling the brightness distribution of exoplanets. The code is fully open source and available over Github. We apply the code to the phase curve of WASP-43b using an analytical surface brightness distribution, and find an excellent fit to the data. We are able to place direct constraints on the physics of heat transport in the atmosphere, such as the ratio between advective and radiative timescales at different altitudes.
Bright Feature Appears in Titan Kraken Mare
2014-11-10
Two Synthetic Aperture Radar (SAR) images from the radar experiment on NASA's Cassini spacecraft show that, between May 2013 and August 2014, a bright feature appeared in Kraken Mare, the largest hydrocarbon sea on Saturn's moon Titan. Researchers think the bright feature is likely representative of something on the hydrocarbon sea's surface, such as waves or floating debris. A similar feature appeared in Ligea Mare, another Titan sea, and was seen to evolve in appearance between 2013 and 2014 (see PIA18430). The image at left was taken on May 23, 2013 at an incidence angle of 56 degrees; the image at right was taken on August 21, 2014 at an incidence angle of 5 degrees. Incidence angle refers to the angle at which the radar beam strikes the surface. http://photojournal.jpl.nasa.gov/catalog/PIA19047
Lunar and Venusian radar bright rings
NASA Technical Reports Server (NTRS)
Thompson, T. W.; Saunders, R. S.; Weissman, D. E.
1986-01-01
Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.
High-precision photometry by telescope defocussing - VIII. WASP-22, WASP-41, WASP-42 and WASP-55
NASA Astrophysics Data System (ADS)
Southworth, John; Tregloan-Reed, J.; Andersen, M. I.; Calchi Novati, S.; Ciceri, S.; Colque, J. P.; D'Ago, G.; Dominik, M.; Evans, D. F.; Gu, S.-H.; Herrera-Cordova, A.; Hinse, T. C.; Jørgensen, U. G.; Juncher, D.; Kuffmeier, M.; Mancini, L.; Peixinho, N.; Popovas, A.; Rabus, M.; Skottfelt, J.; Tronsgaard, R.; Unda-Sanzana, E.; Wang, X.-B.; Wertz, O.; Alsubai, K. A.; Andersen, J. M.; Bozza, V.; Bramich, D. M.; Burgdorf, M.; Damerdji, Y.; Diehl, C.; Elyiv, A.; Figuera Jaimes, R.; Haugbølle, T.; Hundertmark, M.; Kains, N.; Kerins, E.; Korhonen, H.; Liebig, C.; Mathiasen, M.; Penny, M. T.; Rahvar, S.; Scarpetta, G.; Schmidt, R. W.; Snodgrass, C.; Starkey, D.; Surdej, J.; Vilela, C.; von Essen, C.; Wang, Y.
2016-04-01
We present 13 high-precision and four additional light curves of four bright southern-hemisphere transiting planetary systems: WASP-22, WASP-41, WASP-42 and WASP-55. In the cases of WASP-42 and WASP-55, these are the first follow-up observations since their discovery papers. We present refined measurements of the physical properties and orbital ephemerides of all four systems. No indications of transit timing variations were seen. All four planets have radii inflated above those expected from theoretical models of gas-giant planets; WASP-55 b is the most discrepant with a mass of 0.63 MJup and a radius of 1.34 RJup. WASP-41 shows brightness anomalies during transit due to the planet occulting spots on the stellar surface. Two anomalies observed 3.1 d apart are very likely due to the same spot. We measure its change in position and determine a rotation period for the host star of 18.6 ± 1.5 d, in good agreement with a published measurement from spot-induced brightness modulation, and a sky-projected orbital obliquity of λ = 6 ± 11°. We conclude with a compilation of obliquity measurements from spot-tracking analyses and a discussion of this technique in the study of the orbital configurations of hot Jupiters.
Detection of radio emission from optically identified supernova remnants in M31
NASA Technical Reports Server (NTRS)
Dickel, J. R.; Dodorico, S.; Felli, M.; Dopita, M.
1982-01-01
The Very Large Array was used to conduct a radio search at a wavelength of 20 cm for ten optically identified supernova remnants (SNRs) in M31. Five SNRs were detected, and for the other objects, upper limits to the emission were determined. On the average, the surface brightness of an SNR in M31 appears to be fainter than that of an SNR in the Galaxy. It is suggested that the median surface brightness at a given diameter is higher in late-type spirals than in Sb systems.
Mastalerz, Maria; Drobniak, A.; Walker, R.; Morse, D.
2010-01-01
Four lithotypes, vitrain, bright clarain, clarain, and fusain, were hand-picked from the core of the Pennsylvanian Springfield Coal Member (Petersburg Formation) in Illinois. These lithotypes were analyzed petrographically and for meso- and micropore characteristics, functional group distribution using FTIR techniques, and fluidity. High-pressure CO2 adsorption isotherm analyses of these lithotypes were performed and, subsequently, all samples were reanalyzed in order to investigate the effects of CO2. After the high-pressure adsorption isotherm analysis was conducted and the samples were reanalyzed, there was a decrease in BET surface area for vitrain from 31.5m2/g in the original sample to 28.5m2/g, as determined by low-pressure nitrogen adsorption. Bright clarain and clarain recorded a minimal decrease in BET surface area, whereas for fusain there was an increase from 6.6m2/g to 7.9m2/g. Using low-pressure CO2 adsorption techniques, a small decrease in the quantity of the adsorbed CO2 is recorded for vitrain and bright clarain, no difference is observed for clarain, and there is an increase in the quantity of the adsorbed CO2 for fusain. Comparison of the FTIR spectra before and after CO2 injection for all lithotypes showed no differences with respect to functional group distribution, testifying against chemical nature of CO2 adsorption. Gieseler plastometry shows that: 1) softening temperature is higher for the post-CO2 sample (389.5??C vs. 386??C); 2) solidification temperature is lower for the post-CO2 sample (443.5??C vs. 451??C); and 3) the maximum fluidity is significantly lower for the post-CO2 sample (4 ddpm vs. 14 ddpm). ?? 2010 Elsevier B.V.
Vertical cavity surface-emitting semiconductor lasers with injection laser pumping
NASA Astrophysics Data System (ADS)
McDaniel, D. L., Jr.; McInerney, J. G.; Raja, M. Y. A.; Schaus, C. F.; Brueck, S. R. J.
1990-05-01
Continuous-wave GaAs/GaAlAs edge-emitting diode lasers were used to pump GaAs/AlGaAs and InGaAs/AlGaAs vertical cavity surface-emitting lasers (VCSELs) with resonant periodic gain (RPG) at room temperature. Pump threshold as low as 11 mW, output powers as high as 27 mW at 850 nm, and external differential quantum efficiencies of about 70 percent were observed in GaAs/AlGaAs surface -emitters; spectral brightness 22 times that of the pump laser was also observed. Output powers as high as 85 mW at 950 nm and differential quantum efficiencies of up to 58 percent were recorded for the InGaAs surface-emitting laser. This is the highest quasi-CW output power ever reported for any RPG VCSEL, and the first time such a device has been pumped using an injection laser diode.
Remote sensing of ocean currents using ERTS imagery
NASA Technical Reports Server (NTRS)
Maul, G. A.
1973-01-01
Major ocean currents such as the Loop Current in the eastern Gulf of Mexico have surface manifestations which can be exploited for remote sensing. Surface chlorophyll-a concentrations, which contribute to the shift in color from blue to green in the open sea, were found to have high spatial variability; significantly lower concentrations were observed in the current. The cyclonic edge of the current is an accumulation zone which causes a peak in chlorophyll concentration. The dynamics also cause surface concentrations of algae, which have a high reflectance in the near infrared. Combining these observations gives rise to an edge effect which can show up as a bright lineation on multispectral imagery delimiting the current's boundary under certain environmental conditions. When high seas introduce bubbles, white caps, and foam, the reflectance is dominated by scattering rather than absorption. This has been detected in ERTS imagery and used for current location.
NASA Astrophysics Data System (ADS)
Golombek, M. P.; Haldemann, A. F.; Simpson, R. A.; Furgason, R. L.; Putzig, N. E.; Huertas, A.; Arvidson, R. E.; Heet, T.; Bell, J. F.; Mellon, M. T.; McEwen, A. S.
2008-12-01
Surface characteristics at the six sites where spacecraft have successfully landed on Mars can be related favorably to their signatures in remotely sensed data from orbit and from the Earth. Comparisons of the rock abundance, types and coverage of soils (and their physical properties), thermal inertia, albedo, and topographic slope all agree with orbital remote sensing estimates and show that the materials at the landing sites can be used as ground truth for the materials that make up most of the equatorial and mid- to moderately high-latitude regions of Mars. The six landing sites sample two of the three dominant global thermal inertia and albedo units that cover ~80% of the surface of Mars. The Viking, Spirit, Mars Pathfinder, and Phoenix landing sites are representative of the moderate to high thermal inertia and intermediate to high albedo unit that is dominated by crusty, cloddy, blocky or frozen soils (duricrust that may be layered) with various abundances of rocks and bright dust. The Opportunity landing site is representative of the moderate to high thermal inertia and low albedo surface unit that is relatively dust free and composed of dark eolian sand and/or increased abundance of rocks. Rock abundance derived from orbital thermal differencing techniques in the equatorial regions agrees with that determined from rock counts at the surface and varies from ~3-20% at the landing sites. The size-frequency distributions of rocks >1.5 m diameter fully resolvable in HiRISE images of the landing sites follow exponential models developed from lander measurements of smaller rocks and are continuous with these rock distributions indicating both are part of the same population. Interpretation of radar data confirms the presence of load bearing, relatively dense surfaces controlled by the soil type at the landing sites, regional rock populations from diffuse scattering similar to those observed directly at the sites, and root-mean-squared slopes that compare favorably with 100 m scale topographic slopes extrapolated from altimetry profiles and meter scale slopes from high-resolution stereo images. The third global unit has very low thermal inertia and very high albedo, indicating it is dominated by deposits of bright red atmospheric dust that may be neither load bearing nor trafficable. The landers have thus sampled the majority of likely safe and trafficable surfaces that cover most of Mars and show that remote sensing data can be used to infer the surface characteristics, slopes, and surface materials present at other locations.
NASA Technical Reports Server (NTRS)
1979-01-01
GANYMEDE COLOR PHOTOS: This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The images show detail on the surface with a resolution of four and a half km. This picture is south of PIA01516 (P21262) near the equator of Ganymede, and has relatively subdued colors in the visible part of the spectrum (later, scientists will analyze Voyager pictures taken in UV). The most striking features are the bright ray craters which have a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggest that here, too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.
Suppression of cooling by strong magnetic fields in white dwarf stars.
Valyavin, G; Shulyak, D; Wade, G A; Antonyuk, K; Zharikov, S V; Galazutdinov, G A; Plachinda, S; Bagnulo, S; Machado, L Fox; Alvarez, M; Clark, D M; Lopez, J M; Hiriart, D; Han, Inwoo; Jeon, Young-Beom; Zurita, C; Mujica, R; Burlakova, T; Szeifert, T; Burenkov, A
2014-11-06
Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs, which has been a puzzle because magnetic fields are expected to decay with time but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate, which has been variously attributed to surface brightness inhomogeneities similar to sunspots, chemical inhomogeneities and other magneto-optical effects. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.
Low-Latitude Ethane Rain on Titan
NASA Technical Reports Server (NTRS)
Dalba, Paul A.; Buratti, Bonnie J.; Brown, R. H.; Barnes, J. W.; Baines, K. H.; Sotin, C.; Clark, R. N.; Lawrence, K. J.; Nicholson, P. D.
2012-01-01
Cassini ISS observed multiple widespread changes in surface brightness in Titan's equatorial regions over the past three years. These brightness variations are attributed to rainfall from cloud systems that appear to form seasonally. Determining the composition of this rainfall is an important step in understanding the "methanological" cycle on Titan. I use data from Cassini VIMS to complete a spectroscopic investigation of multiple rain-wetted areas. I compute "before-and-after" spectral ratios of any areas that show either deposition or evaporation of rain. By comparing these spectral ratios to a model of liquid ethane, I find that the rain is most likely composed of liquid ethane. The spectrum of liquid ethane contains multiple absorption features that fall within the 2-micron and 5-micron spectral windows in Titan's atmosphere. I show that these features are visible in the spectra taken of Titan's surface and that they are characteristically different than those in the spectrum of liquid methane. Furthermore, just as ISS saw the surface brightness reverting to its original state after a period of time, I show that VIMS observations of later flybys show the surface composition in different stages of returning to its initial form.
Atlas of Galaxies Useful for Measuring the Cosmological Distance Scale
NASA Technical Reports Server (NTRS)
Sandage, Allan; Bedke, John
1988-01-01
A critical first step in determining distances to galaxies is to measure some property of primary objects such as stars of specific types, H II regions, and supernovae remnants that are resolved out of the general galactic star content. With the completion of the Mount Wilson/Palomar/Las Campanas survey of bright galaxies in 1985, excellent large-scale photographs of the complete Shapley-Ames sample were on hand. Most of the galaxies useful for distance scale calibration are in this collection. This atlas contains photographs of 322 galaxies including the majority of all Shapley-Ames bright galaxies, plus cluster members in the Virgo Cluster core that might be usefully resolved by the Hubble Space Telescope (HST). Because of crowding and high background-disk surface brightness, the choice of field position is crucial for programs involving resolution of particular galaxies into stars. The purpose of this atlas is to facilitate this choice. Enough information is given herein (coordinates of the galaxy centers and the scale of the photography) to allow optimum placement of the HST wide-field planetary camera format of approximately 150 arc-seconds on a side.
HD 169142 in the eyes of ZIMPOL/SPHERE
NASA Astrophysics Data System (ADS)
Bertrang, G. H.-M.; Avenhaus, H.; Casassus, S.; Montesinos, M.; Kirchschlager, F.; Perez, S.; Cieza, L.; Wolf, S.
2018-03-01
We present new data of the protoplanetary disc surrounding the Herbig Ae/Be star HD 169142 obtained in the very broad-band (VBB) with the Zurich imaging polarimeter (ZIMPOL), a subsystem of the Spectro-Polarimetric High-contrast Exoplanet REsearch instrument (SPHERE) at the Very Large Telescope (VLT). Our Polarimetric Differential Imaging (PDI) observations probe the disc as close as 0.03 arcsec (3.5 au) to the star and are able to trace the disc out to ˜1.08 arcsec (˜126 au). We find an inner hole, a bright ring bearing substructures around 0.18 arcsec (21 au), and an elliptically shaped gap stretching from 0.25 to 0.47 arcsec (29-55 au). Outside of 0.47 arcsec, the surface brightness drops off, discontinued only by a narrow annular brightness minimum at ˜0.63 to 0.74 arcsec (74-87 au). These observations confirm features found in less-well-resolved data as well as reveal yet undetected indications for planet-disc interactions, such as small-scale structures, star-disc offsets, and potentially moving shadows.
NASA Astrophysics Data System (ADS)
Honey, M.; van Driel, W.; Das, M.; Martin, J.-M.
2018-06-01
We present a study of the H I and optical properties of nearby (z ≤ 0.1) Low Surface Brightness galaxies (LSBGs). We started with a literature sample of ˜900 LSBGs and divided them into three morphological classes: spirals, irregulars, and dwarfs. Of these, we could use ˜490 LSBGs to study their H I and stellar masses, colours, and colour-magnitude diagrams, and local environment, compare them with normal, High Surface Brightness (HSB) galaxies and determine the differences between the three morphological classes. We found that LSB and HSB galaxies span a similar range in H I and stellar masses, and have a similar M_{H I}/M⋆-M⋆ relationship. Among the LSBGs, as expected, the spirals have the highest average H I and stellar masses, both of about 109.8 M⊙. The LSGBs' (g - r) integrated colour is nearly constant as function of H I mass for all classes. In the colour-magnitude diagram, the spirals are spread over the red and blue regions whereas the irregulars and dwarfs are confined to the blue region. The spirals also exhibit a steeper slope in the M_{H I}/M⋆-M⋆ plane. Within their local environment, we confirmed that LSBGs are more isolated than HSB galaxies, and LSB spirals more isolated than irregulars and dwarfs. Kolmogorov-Smirnov statistical tests on the H I mass, stellar mass, and number of neighbours indicate that the spirals are a statistically different population from the dwarfs and irregulars. This suggests that the spirals may have different formation and H I evolution than the dwarfs and irregulars.
2005-01-11
This map illustrates the planned imaging coverage for the Descent Imager/Spectral Radiometer, onboard the European Space Agency's Huygens probe during the probe's descent toward Titan's surface on Jan. 14, 2005. The Descent Imager/Spectral Radiometer is one of two NASA instruments on the probe. The colored lines delineate regions that will be imaged at different resolutions as the probe descends. On each map, the site where Huygens is predicted to land is marked with a yellow dot. This area is in a boundary between dark and bright regions. This map was made from the images taken by the Cassini spacecraft cameras on Oct. 26, 2004, at image scales of 4 to 6 kilometers (2.5 to 3.7 miles) per pixel. The images were obtained using a narrow band filter centered at 938 nanometers -- a near-infrared wavelength (invisible to the human eye) at which light can penetrate Titan's atmosphere to reach the surface and return through the atmosphere to be detected by the camera. The images have been processed to enhance surface details. Only brightness variations on Titan's surface are seen; the illumination is such that there is no shading due to topographic variations. For about two hours, the probe will fall by parachute from an altitude of 160 kilometers (99 miles) to Titan's surface. During the descent the camera on the probe and five other science instruments will send data about the moon's atmosphere and surface back to the Cassini spacecraft for relay to Earth. The Descent Imager/Spectral Radiometer will take pictures as the probe slowly spins, and some these will be made into panoramic views of Titan's surface. This map shows the planned coverage by the medium- and high-resolution. PIA06173 shows expected coverage by the Descent Imager/Spectral Radiometer side-looking imager and two downward-looking imagers - one providing medium-resolution and the other high-resolution coverage. http://photojournal.jpl.nasa.gov/catalog/PIA06173
Comparative testing of dark matter models with 15 HSB and 15 LSB galaxies
NASA Astrophysics Data System (ADS)
Kun, E.; Keresztes, Z.; Simkó, A.; Szűcs, G.; Gergely, L. Á.
2017-12-01
Context. We assemble a database of 15 high surface brightness (HSB) and 15 low surface brightness (LSB) galaxies, for which surface brightness density and spectroscopic rotation curve data are both available and representative for various morphologies. We use this dataset to test the Navarro-Frenk-White, the Einasto, and the pseudo-isothermal sphere dark matter models. Aims: We investigate the compatibility of the pure baryonic model and baryonic plus one of the three dark matter models with observations on the assembled galaxy database. When a dark matter component improves the fit with the spectroscopic rotational curve, we rank the models according to the goodness of fit to the datasets. Methods: We constructed the spatial luminosity density of the baryonic component based on the surface brightness profile of the galaxies. We estimated the mass-to-light (M/L) ratio of the stellar component through a previously proposed color-mass-to-light ratio relation (CMLR), which yields stellar masses independent of the photometric band. We assumed an axissymetric baryonic mass model with variable axis ratios together with one of the three dark matter models to provide the theoretical rotational velocity curves, and we compared them with the dataset. In a second attempt, we addressed the question whether the dark component could be replaced by a pure baryonic model with fitted M/L ratios, varied over ranges consistent with CMLR relations derived from the available stellar population models. We employed the Akaike information criterion to establish the performance of the best-fit models. Results: For 7 galaxies (2 HSB and 5 LSB), neither model fits the dataset within the 1σ confidence level. For the other 23 cases, one of the models with dark matter explains the rotation curve data best. According to the Akaike information criterion, the pseudo-isothermal sphere emerges as most favored in 14 cases, followed by the Navarro-Frenk-White (6 cases) and the Einasto (3 cases) dark matter models. We find that the pure baryonic model with fitted M/L ratios falls within the 1σ confidence level for 10 HSB and 2 LSB galaxies, at the price of growing the M/Ls on average by a factor of two, but the fits are inferior compared to the best-fitting dark matter model.
Groundbased Observations of [C I] 9850A Emission from Comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Doane, N. E.; Oliversen, R. J.; Scherb, F.; Morgenthaler, J. P.; Roesler, F. L.; Woodward, R. C.; Harris, W. M.; Hilton, G. M.
1999-05-01
High spectral resolution observations of Comet Hale-Bopp [C I] 9850A emission were obtained at the NSO McMath-Pierce main telescope on 13 nights during 1997 March 9 to 10 and April 7 to 19. Spectra with good signal-to-noise were obtained using a dual- etalon 50mm Fabry-Perot spectrometer (R 40,000) with a 6 arcmin field of view. The comet was observed over a 0.92-1.00 AU range of heliocentric distances. Most observations were centered on the comet nucleus where the surface brightness ranged from about 70 to 170 Rayleighs. Several observations were also centered approximately 5 arcmin sunward and tailward of the comet nucleus. The sunward [C I] emission was fainter than the tailward emission. Assuming that CO photodissociation is the source of cometary C(1D) (and neglecting quenching), for a surface brightness of 120 Rayleighs, we estimate a (lower limit) CO production rate of about 2x10(30) per sec. These [C I] observationsare the first extensive set reported for this cometary emission line.
The Au modified Ge(1 1 0) surface
NASA Astrophysics Data System (ADS)
Zhang, L.; Kabanov, N. S.; Bampoulis, P.; Saletsky, A. M.; Zandvliet, H. J. W.; Klavsyuk, A. L.
2018-05-01
The pristine Ge(1 1 0) surface is composed of Ge pentagons, which are arranged in relatively large (16 × 2) and c(8 × 10) unit cells. The deposition of sub-monolayer amounts of Au and mild annealing results into de-reconstructed Ge(1 1 0) regions completely free of Ge pentagons and regions composed of nanowires that are aligned along the high symmetry [ 1 1 bar 0 ] direction of the Ge(1 1 0) surface. The de-reconstructed Ge(1 1 0) regions consist of atomic rows that are aligned along the [ 1 1 bar 0 ] direction. A substantial fraction of these substrate rows are straight and resemble the atom rows of the unreconstructed, i.e. bulk terminated, Ge(1 1 0) surface, whereas the other substrate rows have a meandering appearance. These meandering atom rows are comprised of two types of atoms, one type that appears dim, whereas the other type appears bright in filled-state scanning tunneling microscopy images. Using density functional theory calculations, we have tested more than 20 different atomic models for the meandering atom rows. The density functional theory calculations reveal that it is energetically favorable for the deposited Au atoms to exchange position with Ge atoms in the first layer. Based on these findings we conclude that the bright atoms are Ge atoms, whereas the dim atoms are Au atoms.
Venus - 3D Perspective View of Latona Corona and Dali Chasma
NASA Technical Reports Server (NTRS)
1992-01-01
This computer-generated perspective view of Latona Corona and Dali Chasma on Venus shows Magellan radar data superimposed on topography. The view is from the northeast and vertical exaggeration is 10 times. Exaggeration of relief is a common tool scientists use to detect relationships between structure (i.e. faults and fractures) and topography. Latona Corona, a circular feature approximately 1,000 kilometers (620 miles) in diameter whose eastern half is shown at the left of the image, has a relatively smooth, radar-bright raised rim. Bright lines or fractures within the corona appear to radiate away from its center toward the rim. The rest of the bright fractures in the area are associated with the relatively deep (approximately 3 kilometers or 1.9 miles) troughs of Dali Chasma. The Dali and Diana Chasma system consist of deep troughs that extend for 7,400 kilometers (4,588 miles) and are very distinct features on Venus. Those chasma connect the Ovda and Thetis highlands with the large volcanoes at Atla Regio and thus are considered to be the 'Scorpion Tail' of Aphrodite Terra. The broad, curving scarp resembles some of Earth's subduction zones where crustal plates are pushed over each other. The radar-bright surface at the highest elevation along the scarp is similar to surfaces in other elevated regions where some metallic mineral such as pyrite (fool's gold) may occur on the surface.
(Almost) Dark Galaxies in the ALFALFA Survey: Isolated H I-bearing Ultra-diffuse Galaxies
NASA Astrophysics Data System (ADS)
Leisman, Lukas; Haynes, Martha P.; Janowiecki, Steven; Hallenbeck, Gregory; Józsa, Gyula; Giovanelli, Riccardo; Adams, Elizabeth A. K.; Bernal Neira, David; Cannon, John M.; Janesh, William F.; Rhode, Katherine L.; Salzer, John J.
2017-06-01
We present a sample of 115 very low optical surface brightness, highly extended, H I-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H I. We find that while these sources have normal star formation rates for H I-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H I-synthesis follow-up imaging of three of these H I-bearing ultra-diffuse sources. We measure H I diameters extending to ˜40 kpc, but note that while all three sources have large H I diameters for their stellar mass, they are consistent with the H I mass-H I radius relation. We further analyze the H I velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H I-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.
A microbeam slit system for high beam currents
NASA Astrophysics Data System (ADS)
Vallentin, T.; Moser, M.; Eschbaumer, S.; Greubel, C.; Haase, T.; Reichart, P.; Rösch, T.; Dollinger, G.
2015-04-01
A new microbeam slit system for high beam currents of 10 μA was built up to improve the brightness transport of a proton beam with a kinetic energy of up to 25 MeV into the microprobe SNAKE. The new slit system features a position accuracy of less than 1 μm under normal operating conditions and less than 2 μm if the beam is switched on and off. The thermal management with a powerful watercooling and potential-free thermocouple feedback controlled heating cables is optimized for constant slit aperture at thermal power input of up to 250 W. The transparent zone is optimized to 0.7 μm due to the use of tungsten formed to a cylindrical surface with a radius r = 100 mm and mechanically lapped surface to minimize small angle scattering effects and to minimize the number of ions passing the slits with low energy loss. Electrical isolation of the slit tip enables slit current monitoring, e.g. for tandem accelerator feedback control. With the ability to transport up to 10 μA of protons with the new microslit system, the brightness Bexp transported into the microprobe was increased by a factor of 2 compared to low current injection using the old slit system.
NASA Astrophysics Data System (ADS)
qin, kai; Wu, Lixin; De Santis, Angelo; Zhang, Bin
2016-04-01
Pre-seismic thermal IR anomalies and ionosphere disturbances have been widely reported by using the Earth observation system (EOS). To investigate the possible physical mechanisms, a series of detecting experiments on rock loaded to fracturing were conducted. Some experiments studies have demonstrated that microwave radiation energy will increase under the loaded rock in specific frequency and the feature of radiation property can reflect the deformation process of rock fracture. This experimental result indicates the possibility that microwaves are emitted before earthquakes. Such microwaves signals are recently found to be detectable before some earthquake cases from the brightness temperature data obtained by the microwave-radiometer Advanced Microwave-Scanning Radiometer for the EOS (AMSR-E) aboard the satellite Aqua. This suggested that AMSR-E with vertical- and horizontal-polarization capability for six frequency bands (6.925, 10.65, 18.7, 23.8, 36.5, and 89.0 GHz) would be feasible to detect an earthquake which is associated with rock crash or plate slip. However, the statistical analysis of the correlation between satellite-observed microwave emission anomalies and seismic activity are firstly required. Here, we focus on the Kamchatka peninsula to carry out a statistical study, considering its high seismicity activity and the dense orbits covering of AMSR-E in high latitudes. 8-years (2003-2010) AMSR-E microwave brightness temperature data were used to reveal the spatio-temporal association between microwave emission anomalies and 17 earthquake events (M>5). Firstly, obvious spatial difference of microwave brightness temperatures between the seismic zone at the eastern side and the non-seismic zone the western side within the Kamchatka peninsula are found. Secondly, using both vertical- and horizontal-polarization to extract the temporal association, it is found that abnormal changes of microwave brightness temperatures appear generally 2 months before the M>6 earthquakes. Since the microwave emissions observed by AMSR-E are affected by various factors (e.g., emission of the earth's surface and emission, absorption and scattering of the atmosphere), further study together with the surface temperature, soil moisture and atmospheric water vapor will remove the weather and climate influences.
NASA Technical Reports Server (NTRS)
King, Michael D.; Platnick, Steven; Yang, Ping; Arnold, G. Thomas; Gray, Mark A.; Riedi, Jerome C.; Ackerman, Steven A.; Liou, Kuo-Nan
2003-01-01
A multispectral scanning spectrometer was used to obtain measurements of the reflection function and brightness temperature of clouds, sea ice, snow, and tundra surfaces at 50 discrete wavelengths between 0.47 and 14.0 microns. These observations were obtained from the NASA ER-2 aircraft as part of the FIRE Arctic Clouds Experiment, conducted over a 1600 x 500 km region of the north slope of Alaska and surrounding Beaufort and Chukchi Seas between 18 May and 6 June 1998. Multispectral images of the reflection function and brightness temperature in 11 distinct bands of the MODIS Airborne Simulator (MAS) were used to derive a confidence in clear sky (or alternatively the probability of cloud), shadow, and heavy aerosol over five different ecosystems. Based on the results of individual tests run as part of the cloud mask, an algorithm was developed to estimate the phase of the clouds (water, ice, or undetermined phase). Finally, the cloud optical thickness and effective radius were derived for both water and ice clouds that were detected during one flight line on 4 June. This analysis shows that the cloud mask developed for operational use on MODIS, and tested using MAS data in Alaska, is quite capable of distinguishing clouds from bright sea ice surfaces during daytime conditions in the high Arctic. Results of individual tests, however, make it difficult to distinguish ice clouds over snow and sea ice surfaces, so additional tests were added to enhance the confidence in the thermodynamic phase of clouds over the Beaufort Sea. The cloud optical thickness and effective radius retrievals used 3 distinct bands of the MAS, with the newly developed 1.62 and 2.13 micron bands being used quite successfully over snow and sea ice surfaces. These results are contrasted with a MODIS-based algorithm that relies on spectral reflectance at 0.87 and 2.13 micron.
From 20 cm - 1 micron: Measuring the Gas and Dust in Massive Low Surface Brightness Galaxies
NASA Astrophysics Data System (ADS)
Kearsley, E.; O'Neil, K.
2005-12-01
Archival data from the IRAS, 2MASS, NVSS, and FIRST catalogs, supplemented with new measurements of HI, are used to analyze the relationship between the relative mass of the various components of galaxies (stars, atomic hydrogen, dust, and molecular gas) using a small sample of nearby (z<0.1), massive low surface brightness galaxies. The sample is compared to three sets of published data: a large collection of radio sources from the UGC having a radio continuum intensity >2.5 mJy (Condon, Cotton, & Broderick 2002 AJ 124, 675) ; a smaller sample of low surface brightness galaxies (Galaz, et al 2002 2002 AJ 124, 1360); and a collection of NIR low surface brightness galaxies (Monnier-Ragaigne, et al 2002 Ap&SS 281, 145). Overall, our sample properties are similar to the comparison samples in regard to NIR color, gas, stellar, and dynamic mass ratios, etc. Based off the galaxies' q-value (determined from the FIR/1.4 GHz ratio), it appears likely that at least two of the 28 galaxies studied harbor AGN. Notably, we also find that if we naively assume the ratio of the dust and molecular gas mass relative to the mass of HI is a constant we are unable to predict the observed ratio of stellar mass to HI mass, indicating that the HI mass ratio is a poor indicator of the total baryonic mass in the studied galaxies. HI measurements obtained during this study using the Green Bank Telescope also provide a correction to the velocity of UGC 11068.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trujillo, Ignacio; Fliri, Jüergen, E-mail: trujillo@iac.es; Departamento de Astrofísica, Universidad de La Laguna, E-38206, La Laguna, Tenerife
2016-06-01
The detection of structures in the sky with optical surface brightnesses fainter than 30 mag arcsec{sup −2} (3 σ in 10 × 10 arcsec boxes; r -band) has remained elusive in current photometric deep surveys. Here we show how present-day telescopes of 10 m class can provide broadband imaging 1.5–2 mag deeper than most previous results within a reasonable amount of time (i.e., <10 hr on-source integration). In particular, we illustrate the ability of the 10.4 m Gran Telescopio de Canarias telescope to produce imaging with a limiting surface brightness of 31.5 mag arcsec{sup −2} (3 σ in 10 ×more » 10 arcsec boxes; r -band) using 8.1 hr on source. We apply this power to explore the stellar halo of the galaxy UGC 00180, a galaxy analogous to M31 located at ∼150 Mpc, by obtaining a radial profile of surface brightness down to μ{sub r} ∼ 33 mag arcsec{sup −2}. This depth is similar to that obtained using the star-counts techniques for Local Group galaxies, but is achieved at a distance where this technique is unfeasible. We find that the mass of the stellar halo of this galaxy is ∼4 × 10{sup 9} M {sub ⊙}, i.e., (3 ± 1)% of the total stellar mass of the whole system. This amount of mass in the stellar halo is in agreement with current theoretical expectations for galaxies of this kind.« less
NASA Technical Reports Server (NTRS)
2006-01-01
This HiRISE image is of the north polar layered deposits (PLD) and underlying units exposed along the margins of Chasma Boreale. Chasma Boreale is the largest trough in the north PLD, thought to have formed due to outflow of water from underneath the polar cap, or due to winds blowing off the polar cap, or a combination of both. At the top and left of the image, the bright area with uniform striping is the gently sloping surface of the PLD. In the middle of the image this surface drops off in a steeper scarp, or cliff. At the top of this cliff we see the bright PLD in a side view, or cross-section. From these two perspectives of the PLD it is evident that the PLD are a stack of roughly horizontal layers. The gently sloping top surface cuts through the vertical sequence of layers at a low angle, apparently stretching the layers out horizontally and thus revealing details of the brightness and texture of individual layers. The surface of the PLD on the scarp is also criss-crossed by fine scale fractures. The layers of the PLD are probably composed of differing proportions of ice and dust, believed to be related to the climate conditions at the time they were deposited. In this way, sequences of polar layers are records of past climates on Mars, as ice cores from terrestrial ice sheets hold evidence of past climates on Earth. Further down the scarp in the center of the image the bright layers give way suddenly to a much darker section where a few layers are visible intermittently amongst aprons of dark material. The darkest material, with a smooth surface suggestive of loose grains, is thought to be sandy because similar exposures elsewhere show it to be formed into dunes by the wind. An intermediate-toned material also appears to form aprons draped over layers in the scarp, but its surface contains lobate structures that appear hardened into place and its edges are more abrupt in places, suggesting it may contain some ice or other cementing agent that makes it more competent, or resistant. At the base of the cliff, especially visible on the right side of the image, are several prominent bright layers with regular, rectangular-shaped polygons. Due to similarities in brightness and surface fracturing with the upper PLD, these bottom layers are also likely to be ice rich. The presence of sandy material sandwiched in between the upper PLD and these bottom layers suggests that the climate was once much different from the times during which the icier layers were deposited. The scattered bright and dark points are boulder-sized blocks that are likely pieces of the fractured PLD or other darker layers that have broken off and fallen downhill. At the bottom and right of the image, the floor of Chasma Boreale is dark, with a knobby texture and irregular polygons. Several circular features surrounded by an area that is slightly smoother, lighter, and raised relative to the chasm floor may be impact craters that have been modified after their formation in ice-rich ground. Image PSP_001412_2650 was taken by the High Resolution Imaging Science Experiment (HiRISE) camera onboard the Mars Reconnaissance Orbiter spacecraft on November 14, 2006. The complete image is centered at 84.7 degrees latitude, 4.0 degrees East longitude. The range to the target site was 320.9 km (200.6 miles). At this distance the image scale ranges from 32.1 cm/pixel (with 1 x 1 binning) to 128.4 cm/pixel (with 4 x 4 binning). The image shown here has been map-projected to 25 cm/pixel. The image was taken at a local Mars time of 12:52 PM and the scene is illuminated from the west with a solar incidence angle of 67 degrees, thus the sun was about 23 degrees above the horizon. At a solar longitude of 135.3 degrees, the season on Mars is Northern Summer. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.Roche tomography of cataclysmic variables - VIII. The irradiated and spotted dwarf nova, SS Cygni
NASA Astrophysics Data System (ADS)
Hill, C. A.; Smith, Robert Connon; Hebb, L.; Szkody, P.
2017-12-01
We present the results of our spectroscopic study of the dwarf nova SS Cyg, using Roche tomography to map the stellar surface and derive the system parameters. Given that this technique takes into account the inhomogeneous brightness distribution on the surface of the secondary star, our derived parameters are (in principle) the most robust yet found for this system. Furthermore, our surface maps reveal that the secondary star is highly spotted, with strongly asymmetric irradiation on the inner hemisphere. Moreover, by constructing Doppler tomograms of several Balmer emission lines, we find strong asymmetric emission from the irradiated secondary star, and an asymmetric accretion disc that exhibits spiral structures.
Magnetic field strength of a neutron-star-powered ultraluminous X-ray source
NASA Astrophysics Data System (ADS)
Brightman, M.; Harrison, F. A.; Fürst, F.; Middleton, M. J.; Walton, D. J.; Stern, D.; Fabian, A. C.; Heida, M.; Barret, D.; Bachetti, M.
2018-04-01
Ultraluminous X-ray sources (ULXs) are bright X-ray sources in nearby galaxies not associated with the central supermassive black hole. Their luminosities imply they are powered by either an extreme accretion rate onto a compact stellar remnant, or an intermediate mass ( 100-105M⊙) black hole1. Recently detected coherent pulsations coming from three bright ULXs2-5 demonstrate that some of these sources are powered by accretion onto a neutron star, implying accretion rates significantly in excess of the Eddington limit, a high degree of geometric beaming, or both. The physical challenges associated with the high implied accretion rates can be mitigated if the neutron star surface field is very high (1014 G)6, since this suppresses the electron scattering cross-section, reducing the radiation pressure that chokes off accretion for high luminosities. Surface magnetic field strengths can be determined through cyclotron resonance scattering features7,8 produced by the transition of charged particles between quantized Landau levels. Here, we present the detection at a significance of 3.8σ of an absorption line at 4.5 keV in the Chandra spectrum of a ULX in M51. This feature is likely to be a cyclotron resonance scattering feature produced by the strong magnetic field of a neutron star. Assuming scattering off electrons, the magnetic field strength is implied to be 1011 G, while protons would imply a magnetic field of B 1015 G.
49 CFR 213.337 - Defective rails.
Code of Federal Regulations, 2010 CFR
2010-10-01
... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...
49 CFR 213.337 - Defective rails.
Code of Federal Regulations, 2011 CFR
2011-10-01
... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...
49 CFR 213.337 - Defective rails.
Code of Federal Regulations, 2013 CFR
2013-10-01
... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...
49 CFR 213.337 - Defective rails.
Code of Federal Regulations, 2012 CFR
2012-10-01
... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...
49 CFR 213.337 - Defective rails.
Code of Federal Regulations, 2014 CFR
2014-10-01
... crystalline center or nucleus inside the head from which it spreads outward as a smooth, bright, or dark... a smooth, bright, or dark surface progressing until substantially at a right angle to the length of... through it. A crack or rust streak may show under the head close to the web or pieces may be split off the...
DIFFUSE Ly{alpha} EMITTING HALOS: A GENERIC PROPERTY OF HIGH-REDSHIFT STAR-FORMING GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steidel, Charles C.; Bogosavljevic, Milan; Shapley, Alice E.
2011-08-01
Using a sample of 92 UV continuum-selected, spectroscopically identified galaxies with (z) = 2.65, all of which have been imaged in the Ly{alpha} line with extremely deep narrow-band imaging, we examine galaxy Ly{alpha} emission profiles to very faint surface brightness limits. The galaxy sample is representative of spectroscopic samples of Lyman break galaxies (LBGs) at similar redshifts in terms of apparent magnitude, UV luminosity, inferred extinction, and star formation rate and was assembled without regard to Ly{alpha} emission properties. Approximately 45% (55%) of the galaxy spectra have Ly{alpha} appearing in net absorption (emission), with {approx_equal} 20% satisfying commonly used criteriamore » for the identification of 'Ly{alpha} emitters' (LAEs; W{sub 0}(Ly{alpha}) {>=} 20 A). We use extremely deep stacks of rest-UV continuum and continuum-subtracted Ly{alpha} images to show that all sub-samples exhibit diffuse Ly{alpha} emission to radii of at least 10'' ({approx}80 physical kpc). The characteristic exponential scale lengths for Ly{alpha} line emission exceed that of the {lambda}{sub 0} = 1220 A UV continuum light by factors of {approx}5-10. The surface brightness profiles of Ly{alpha} emission are strongly suppressed relative to the UV continuum light in the inner few kpc, by amounts that are tightly correlated with the galaxies' observed spectral morphology; however, all galaxy sub-subsamples, including that of galaxies for which Ly{alpha} appears in net absorption in the spectra, exhibit qualitatively similar diffuse Ly{alpha} emission halos. Accounting for the extended Ly{alpha} emission halos, which generally would not be detected in the slit spectra of individual objects or with typical narrow-band Ly{alpha} imaging, increases the total Ly{alpha} flux (and rest equivalent width W{sub 0}(Ly{alpha})) by an average factor of {approx}5, and by a much larger factor for the 80% of LBGs not classified as LAEs. We argue that most, if not all, of the observed Ly{alpha} emission in the diffuse halos originates in the galaxy H II regions but is scattered in our direction by H I gas in the galaxy's circum-galactic medium. The overall intensity of Ly{alpha} halos, but not the surface brightness distribution, is strongly correlated with the emission observed in the central {approx}1''-more luminous halos are observed for galaxies with stronger central Ly{alpha} emission. We show that whether or not a galaxy is classified as a giant 'Ly{alpha} blob' (LAB) depends sensitively on the Ly{alpha} surface brightness threshold reached by an observation. Accounting for diffuse Ly{alpha} halos, all LBGs would be LABs if surveys were sensitive to 10 times lower Ly{alpha} surface brightness thresholds; similarly, essentially all LBGs would qualify as LAEs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Shuo; Zhu, Zong-Hong; Covone, Giovanni
We present a new analysis of Hubble Space Telescope, Spitzer Space Telescope, and Very Large Telescope imaging and spectroscopic data of a bright lensed galaxy at z = 1.0334 in the lensing cluster A2667. Using this high-resolution imaging, we present an updated lens model that allows us to fully understand the lensing geometry and reconstruct the lensed galaxy in the source plane. This giant arc gives a unique opportunity to view the structure of a high-redshift disk galaxy. We find that the lensed galaxy of A2667 is a typical spiral galaxy with a morphology similar to the structure of itsmore » counterparts at higher redshift, z ∼ 2. The surface brightness of the reconstructed source galaxy in the z {sub 850} band reveals the central surface brightness I(0) = 20.28 ± 0.22 mag arcsec{sup –2} and a characteristic radius r{sub s} = 2.01 ± 0.16 kpc at redshift z ∼ 1. The morphological reconstruction in different bands shows obvious negative radial color gradients for this galaxy. Moreover, the redder central bulge tends to contain a metal-rich stellar population, rather than being heavily reddened by dust due to high and patchy obscuration. We analyze the VIMOS/integral field unit spectroscopic data and find that, in the given wavelength range (∼1800-3200 Å), the combined arc spectrum of the source galaxy is characterized by a strong continuum emission with strong UV absorption lines (Fe II and Mg II) and shows the features of a typical starburst Wolf-Rayet galaxy, NGC 5253. More specifically, we have measured the equivalent widths of Fe II and Mg II lines in the A2667 spectrum, and obtained similar values for the same wavelength interval of the NGC 5253 spectrum. Marginal evidence for [C III] 1909 emission at the edge of the grism range further confirms our expectation.« less
NASA Astrophysics Data System (ADS)
Wang, Nianfang; Koh, Sungjun; Jeong, Byeong Guk; Lee, Dongkyu; Kim, Whi Dong; Park, Kyoungwon; Nam, Min Ki; Lee, Kangha; Kim, Yewon; Lee, Baek-Hee; Lee, Kangtaek; Bae, Wan Ki; Lee, Doh C.
2017-05-01
We present facile synthesis of bright CdS/CdSe/CdS@SiO2 nanoparticles with 72% of quantum yields (QYs) retaining ca 80% of the original QYs. The main innovative point is the utilization of the highly luminescent CdS/CdSe/CdS seed/spherical quantum well/shell (SQW) as silica coating seeds. The significance of inorganic semiconductor shell passivation and structure design of quantum dots (QDs) for obtaining bright QD@SiO2 is demonstrated by applying silica encapsulation via reverse microemulsion method to three kinds of QDs with different structure: CdSe core and 2 nm CdS shell (CdSe/CdS-thin); CdSe core and 6 nm CdS shell (CdSe/CdS-thick); and CdS core, CdSe intermediate shell and 5 nm CdS outer shell (CdS/CdSe/CdS-SQW). Silica encapsulation inevitably results in lower photoluminescence quantum yield (PL QY) than pristine QDs due to formation of surface defects. However, the retaining ratio of pristine QY is different in the three silica coated samples; for example, CdSe/CdS-thin/SiO2 shows the lowest retaining ratio (36%) while the retaining ratio of pristine PL QY in CdSe/CdS-thick/SiO2 and SQW/SiO2 is over 80% and SQW/SiO2 shows the highest resulting PL QY. Thick outermost CdS shell isolates the excitons from the defects at surface, making PL QY relatively insensitive to silica encapsulation. The bright SiO2-coated SQW sample shows robustness against harsh conditions, such as acid etching and thermal annealing. The high luminescence and long-term stability highlights the potential of using the SQW/SiO2 nanoparticles in bio-labeling or display applications.
Correction of WindScat Scatterometric Measurements by Combining with AMSR Radiometric Data
NASA Technical Reports Server (NTRS)
Song, S.; Moore, R. K.
1996-01-01
The Seawinds scatterometer on the advanced Earth observing satellite-2 (ADEOS-2) will determine surface wind vectors by measuring the radar cross section. Multiple measurements will be made at different points in a wind-vector cell. When dense clouds and rain are present, the signal will be attenuated, thereby giving erroneous results for the wind. This report describes algorithms to use with the advanced mechanically scanned radiometer (AMSR) scanning radiometer on ADEOS-2 to correct for the attenuation. One can determine attenuation from a radiometer measurement based on the excess brightness temperature measured. This is the difference between the total measured brightness temperature and the contribution from surface emission. A major problem that the algorithm must address is determining the surface contribution. Two basic approaches were developed for this, one using the scattering coefficient measured along with the brightness temperature, and the other using the brightness temperature alone. For both methods, best results will occur if the wind from the preceding wind-vector cell can be used as an input to the algorithm. In the method based on the scattering coefficient, we need the wind direction from the preceding cell. In the method using brightness temperature alone, we need the wind speed from the preceding cell. If neither is available, the algorithm can work, but the corrections will be less accurate. Both correction methods require iterative solutions. Simulations show that the algorithms make significant improvements in the measured scattering coefficient and thus is the retrieved wind vector. For stratiform rains, the errors without correction can be quite large, so the correction makes a major improvement. For systems of separated convective cells, the initial error is smaller and the correction, although about the same percentage, has a smaller effect.
Atmospheric transformation of solar radiation reflected from the ocean
NASA Technical Reports Server (NTRS)
Malkevich, M. S.; Istomina, L. G.; Hovis, W. A., Jr.
1977-01-01
Airborne measurements of the brightness spectrum of the Atlantic Ocean in the wavelength region from 0.4 to 0.7 micron are analyzed. These measurements were made over a tropical region of the Atlantic from an aircraft at heights of 0.3 and 10.5 km during the TROPEX-72 experiment. The results are used to estimate the contribution of the atmosphere to the overall brightness of the ocean-atmosphere system. It is concluded that: (1) the atmosphere decreases the absolute brightness of the ocean by a factor of 5 to 10 and also strongly affects the spectral behavior of solar radiation reflected from the ocean surface; (2) the atmospheric contribution to overall brightness may vary considerably under real conditions; (3) finely dispersed particles and Rayleigh scattering affect the spectral distribution of solar radiation; and (4) the spectral composition of ocean-atmosphere brightness may be completely governed by the atmosphere.
Highest-resolution Europa Image & Mosaic from Galileo
2017-02-08
This mosaic of images includes the most detailed view of the surface of Jupiter's moon Europa obtained by NASA's Galileo mission. The topmost footprint is the highest resolution image taken by Galileo at Europa. It was obtained at an original image scale of 19 feet (6 meters) per pixel. The other seven images in this observation were obtained at a resolution of 38 feet (12 meters) per pixel, thus the mosaic, including the top image, has been projected at the higher image scale. The top image is also provided at its original resolution, as a separate image file. It includes a vertical black line that resulted from missing data that was not transmitted by Galileo. This is the highest resolution view of Europa available until a future mission visits the icy moon. The right side of the image was previously published as PIA01180. Although this data has been publicly available in NASA's Planetary Data System archive for many years, NASA scientists have not previously combined these images into a mosaic for public release. This observation was taken with the sun relatively high in the sky, so most of the brightness variations visible here are due to color differences in the surface material rather than shadows. Bright ridge tops are paired with darker valleys, perhaps due to a process in which small temperature variations allow bright frost to accumulate in slightly colder, higher-elevation locations. http://photojournal.jpl.nasa.gov/catalog/PIA21431
Another Shock for the Bullet Cluster, and the Source of Seed Electrons for Radio Relics
NASA Technical Reports Server (NTRS)
Shimwell, Timothy W,; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav
2015-01-01
With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2:30:11025 WHz(exp -1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94% of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re- )acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.
Ceres During Opposition Surge.
2017-05-16
NASA's Dawn spacecraft successfully observed Ceres at opposition on April 29, 2017, taking images from a position exactly between the sun and Ceres' surface. Mission specialists had carefully maneuvered Dawn into a special orbit so that the spacecraft could view Occator Crater, which contains the brightest area of Ceres, from this new perspective. A movie shows these opposition images, with contrast enhanced to highlight brightness differences. The bright spots of Occator stand out particularly well on an otherwise relatively bland surface. Dawn took these images from an altitude of about 12,000 miles (20,000 kilometers). Based on data from ground-based telescopes and spacecraft that have previously viewed planetary bodies at opposition, scientists predicted that Ceres would appear brighter from this opposition configuration. This increase in brightness, or "surge," relates the size of the grains of material on the surface, as well as how porous those materials are. The science motivation for performing these observations is further explained in the March 2017 issue of the Dawn Journal blog. A movie can be viewed at https://photojournal.jpl.nasa.gov/catalog/PIA21405
Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites
NASA Technical Reports Server (NTRS)
Zolensky, Michael; Chan, Queenie H. S.; Gounelle, Matthieu; Fries, Marc
2016-01-01
Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO4•6(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Ceres
NASA Technical Reports Server (NTRS)
Petty, Grant W.
1990-01-01
A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.
NASA Technical Reports Server (NTRS)
Mitchell, K. J.; Warnock, A., III; Usher, P. D.
1984-01-01
A new medium-bright quasar sample (MBQS) is constructed from spectroscopic observations of 140 bright objects selected for varying degrees of blue and ultraviolet excess (B-UVX) in five Palomar 1.2 m Schmidt fields. The MBQS contains 32 quasars with B less than 17.65 mag. The new integral surface densities in the B range from 16.45 to 17.65 mag are approximately 40 percent (or more) higher than expected. The MBQS and its redshift distribution increase the area of the Hubble diagram covered by complete samples of quasars. The general spectroscopic results indicate that the three-color classification process used to catalog the spectroscopic candidates (1) has efficiently separated the intrinsically B-UVX stellar objects from the Population II subdwarfs and (2) has produced samples of B-UVX objects which are more complete than samples selected by (U - B) color alone.
Clusters in Formation - The Case of 3C61.1 and A Luminous AGN in a Merging Cluster
NASA Astrophysics Data System (ADS)
Kraft, Ralph
2017-09-01
We propose a Chandra investigation of the serendipitously detected cluster, X-CLASS 1835, that hosts the classical FRII radio source 3C61.1 as well as a radiatively efficient, X-ray bright AGN. The cluster exhibits a prominent surface brightness edge which suggests a merger and/or a major AGN outburst. The radio emission from 3C61.1 shows interaction with the hot cluster plasma. We will characterize the merger/outburst by measuring the properties of the surface brightness edge, study the interaction of the FRII radio source (its hotspots, jet, and cocoon) with the ICM, measure spectra of 3C61.1 (nucleus and hotspots) and the AGN to explore their physical properties, and measure the PV work from any detected cavities around 3C61.1 to compare to the radio power.
RESOLVE: A new algorithm for aperture synthesis imaging of extended emission in radio astronomy
NASA Astrophysics Data System (ADS)
Junklewitz, H.; Bell, M. R.; Selig, M.; Enßlin, T. A.
2016-02-01
We present resolve, a new algorithm for radio aperture synthesis imaging of extended and diffuse emission in total intensity. The algorithm is derived using Bayesian statistical inference techniques, estimating the surface brightness in the sky assuming a priori log-normal statistics. resolve estimates the measured sky brightness in total intensity, and the spatial correlation structure in the sky, which is used to guide the algorithm to an optimal reconstruction of extended and diffuse sources. During this process, the algorithm succeeds in deconvolving the effects of the radio interferometric point spread function. Additionally, resolve provides a map with an uncertainty estimate of the reconstructed surface brightness. Furthermore, with resolve we introduce a new, optimal visibility weighting scheme that can be viewed as an extension to robust weighting. In tests using simulated observations, the algorithm shows improved performance against two standard imaging approaches for extended sources, Multiscale-CLEAN and the Maximum Entropy Method.
NASA Astrophysics Data System (ADS)
Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.
2017-09-01
We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.
Passive microwave sensing of soil moisture content: Soil bulk density and surface roughness
NASA Technical Reports Server (NTRS)
Wang, J. R.
1982-01-01
Microwave radiometric measurements over bare fields of different surface roughnesses were made at the frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence as well as the possible time variation of surface roughness. The presence of surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time series observation over a given field indicated that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. This time variation of surface roughness served to enhance the uncertainty in remote soil moisture estimate by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which turned out to be an important factor in the interpretation of radiometric data.
NASA Technical Reports Server (NTRS)
Wang, J. R.
1983-01-01
Microwave radiometric measurements over bare fields of different surface roughness were made at frequencies of 1.4 GHz, 5 GHz, and 10.7 GHz to study the frequency dependence, as well as the possible time variation, of surface roughness. An increase in surface roughness was found to increase the brightness temperature of soils and reduce the slope of regression between brightness temperature and soil moisture content. The frequency dependence of the surface roughness effect was relatively weak when compared with that of the vegetation effect. Radiometric time-series observations over a given field indicate that field surface roughness might gradually diminish with time, especially after a rainfall or irrigation. The variation of surface roughness increases the uncertainty of remote soil moisture estimates by microwave radiometry. Three years of radiometric measurements over a test site revealed a possible inconsistency in the soil bulk density determination, which is an important factor in the interpretation of radiometric data.
http://www.esa.int/esaSC/Pr_11_2004_s_en.html
NASA Astrophysics Data System (ADS)
2004-06-01
Phoebe hi-res Size hi-res: 2280 kb Credits: NASA/JPL/Space Science Institute Peering at Phoebe Shown here is a mosaic of seven of the sharpest, highest resolution images taken of Phoebe during the Cassini-Huygens close fly-by of the tiny moon. The image scales range from 27 to 13 metres per pixel. Smaller and smaller craters can be detected as resolution increases from left to right. The number of blocks, or bumps on the surface also increases to the right. The Sun is coming from the right, so the bright-dark pattern is reversed between blocks and small craters. Grooves or chains of pits are seen on the left portion of the mosaic, which may mark fractures or faults induced by large impact events. Many of the small craters have bright rays, similar to recent craters on the Moon. There are also bright streaks on steep slopes, perhaps where loose material slid downhill during the seismic shaking of impact events. There are also places where especially dark materials are present, perhaps rich in carbon compounds. Phoebe hi-res Size hi-res: 265 kb Credits: NASA/JPL/Space Science Institute Dark desolation On 11 June 2004, during its closest approach to Phoebe, Cassini-Huygens obtained this extremely high-resolution view of a dark, desolate landscape. Regions of different reflectivity are clearly visible on what appears to be a gently rolling surface. Notable are several bright-rayed impact craters, lots of small craters with bright-coloured floors and light-coloured streaks across the landscape. Note also the several sharply defined craters, probably fairly young features, near the upper left corner. This high-resolution image was obtained with an angle of 30.7 degrees between the Sun, Phoebe and spacecraft and from a distance of approximately 2365 kilometres. The image scale is approximately 14 metres per pixel. The image was high-pass filtered to bring out small-scale features and then enhanced in contrast. Phoebe hi-res Size hi-res: 311 kb Credits: NASA/JPL/Space Science Institute A view to the south A mosaic of two images of Saturn's moon Phoebe taken shortly after Cassini's fly-by on 11 June 2004, gives a close-up view of a region near its South Pole. The view, taken about 13 000 kilometres from Phoebe, is about 120 kilometres across and shows a region battered by crater impacts. Brighter material, likely to be ice, is exposed by small craters and streams down the slopes of large craters. The skyline is a combination of Phoebe's roundish shape and the formation of impact craters. Walls of some of the larger craters are more than four kilometres high. The image scale is 80 metres per pixel. Phoebe hi-res Size hi-res: 136 kb Credits: NASA/JPL/Space Science Institute A skyline view Images like this one, showing bright 'wispy' streaks thought to be ice revealed by subsidence of crater walls, are leading to the view that Phoebe is an icy-rich body overlain with a thin layer of dark material. Obvious downslope motion of material occurring along the walls of the major craters in this image is the cause for the bright streaks, which are over-exposed here. Significant slumping has occurred along the crater wall at top left. The slumping of material might have been caused by a small projectile punching into the steep slope of the wall of a pre-existing larger crater. Another possibility is that the material collapsed when triggered by another impact elsewhere on Phoebe. Note that the bright, exposed areas of ice are not very uniform along the wall. Small craters are exposing bright material on the ‘hummocky’ floor of the larger crater. Elsewhere on this image, there are local areas of outcropping along the larger crater wall where denser, more resistant material is located. Whether these outcrops are large blocks being exhumed by landslides or actual 'bedrock' is not currently understood. The crater on the left, with most of the bright streamers, is about 45 kilometres in diameter, front to back as viewed. The larger depression in which the crater sits is on the order of 100 kilometres across. The slopes from the rim down to the ‘hummocky’ floor are approximately 20 kilometres long; many of the bright streamers on the crater wall are on the order of 10 kilometres long. A future project for Cassini image scientists will be to work out the chronology of slumping events in this scene. This image was obtained with an angle of 78 degrees between the Sun, Phoebe and the spacecraft, from a distance of 11 918 kilometres. The image scale is approximately 70 metres per pixel. No enhancement was performed on this image. On Friday 11 June, at 22:56 CET, the Cassini-Huygens spacecraft flew by Saturn's outermost moon Phoebe, coming within approximately 2070 kilometres of the satellite's surface. All eleven on-board instruments scheduled to be active at that time worked flawlessly and acquired data. The first high-resolution images show a scarred surface, covered with craters of all sizes and large variation of brightness across the surface. Phoebe is a peculiar moon amongst the 31 known satellites orbiting Saturn. Most of Saturn's moons are bright but Phoebe is very dark and reflects only 6% of the Sun's light. Another difference is that Phoebe revolves around the planet on a rather elongated orbit and in a direction opposite to that of the other large moons (a motion known as 'retrograde' orbit). All these hints suggested that Phoebe, rather than forming together with Saturn, was captured at a later stage. Scientists, however, do not know whether Phoebe was originally an asteroid or an object coming from the 'Kuiper Belt'. The stunning images obtained by Cassini's high-resolution camera now seem to indicate that it contains ice-rich material and is covered by a thin layer of dark material, probably 300-500 metres thick. Scientists base this hypothesis on the observation of bright streaks in the rims of the largest craters, bright rays radiating from smaller craters, grooves running continuously across the surface of the moon and, most importantly, the presence of layers of dark material at the top of crater walls. "The imaging team is in hot debate at the moment on the interpretations of our findings," said Dr Carolyn Porco, Cassini imaging team leader at the Space Science Institute in Boulder, USA. "Based on our images, some of us are leaning towards the view that has been promoted recently, that Phoebe is probably ice-rich and may be an object originating in the outer solar system, more related to comets and Kuiper Belt objects than to asteroids." The high-resolution images of Phoebe show a world of dramatic landforms, with landslides and linear structures such as grooves, ridges and chains of pits. Craters are ubiquitous, with many smaller than one kilometre. "This means, besides the big ones, lots of projectiles smaller than 100 metres must have hit Phoebe," said Prof. Gerhard Neukum, Freie Universitaet Berlin, Germany, and a member of the imaging team. Whether these projectiles came from outside or within the Saturn system is debatable. There is a suspicion that Phoebe, the largest of Saturn's outer moons, might be parent to the other, much smaller retrograde outer moons that orbit Saturn. They could have resulted from the impact ejecta that formed the many craters on Phoebe. Besides these stunning images, the instruments on board Cassini collected a wealth of other data, which will allow scientists to study the surface structures, determine the mass and composition of Phoebe and create a global map of it. "If these additional data confirm that Phoebe is mostly ice, covered by layers of dust, this may well mean that we are looking at a 'leftover' from the formation of the Solar System about 4600 million years ago," said Dr Jean-Pierre Lebreton, ESA Huygens Project Scientist. Phoebe might indeed be an icy wanderer from the distant outer reaches of the Solar System, which, like a comet, was dislodged from the Kuiper Belt and captured by Saturn when the planet was forming. Whilst studying the nature of Phoebe may give scientists clues on the origin of the building blocks of the Solar System, more data are needed to reconstruct the history of our own neighbourhood in space. With that aim, ESA's Rosetta mission is on its way to study one of these primitive objects, Comet 67P/Churyumov-Gerasimenko, from close quarters for over a year and land a probe on it. The fly-by of Phoebe on 11 June was the only one that Cassini-Huygens will perform with this mysterious moon. The mission will now take the spacecraft to its closest approach to Saturn on 1 July, when it will enter into orbit around the planet. From there, it will conduct 76 orbits of Saturn over four years and execute 52 close encounters with seven other Saturnian moons. Of these, 45 will be with the largest and most interesting one, Titan. On 25 December, Cassini will release the Huygens probe, which will descend through Titan's thick atmosphere to investigate its composition and complex organic chemistry.
MOC Image of Phobos with TES Temperature Overlay
NASA Technical Reports Server (NTRS)
1998-01-01
This image of Phobos, the inner and larger of the two moons of Mars, was taken by the Mars Global Surveyor on August 19, 1998. The Thermal Emission Spectrometer (TES) measured the brightness of thermal radiation at the same time the camera acquired this image. By analyzing the brightness, TES scientists could deduce the various fractions of the surface exposed to the Sun and their temperatures. This preliminary analysis shows that the surface temperature, dependent on slope and particle size, varies from a high of +25o F (-4o C) on the most illuminated slopes to -170o F (-112o C) in shadows. This large difference, and the fact that such differences can be found in close proximity, adds support to the notion that the surface of Phobos is covered by very small particles.
Malin Space Science Systems, Inc. and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Thermal Emission Spectrometer is operated by Arizona State University and was built by Raytheon Santa Barbara Remote Sensing. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas
2014-01-01
The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.
Aquarius Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface. [29
NASA Technical Reports Server (NTRS)
Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Picard, Ghislain; Champollion, Nicolas
2014-01-01
The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GHz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.
Photometric Lambert Correction for Global Mosaicking of HRSC Data
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas
2015-04-01
The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.
Temple, P A; Lowdermilk, W H; Milam, D
1982-09-15
Mechanically polished fused silica surfaces were heated with continuous-wave CO(2) laser radiation. Laser-damage thresholds of the surfaces were measured with 1064-nm 9-nsec pulses focused to small spots and with large-spot, 1064-nm, 1-nsec irradiation. A sharp transition from laser-damage-prone to highly laser-damage-resistant took place over a small range in CO(2) laser power. The transition to high damage resistance occurred at a silica surface temperature where material softening began to take place as evidenced by the onset of residual strain in the CO(2) laser-processed part. The small-spot damage measurements show that some CO(2) laser-treated surfaces have a local damage threshold as high as the bulk damage threshold of SiO(2). On some CO(2) laser-treated surfaces, large-spot damage thresholds were increased by a factor of 3-4 over thresholds of the original mechanically polished surface. These treated parts show no obvious change in surface appearance as seen in bright-field, Nomarski, or total internal reflection microscopy. They also show little change in transmissive figure. Further, antireflection films deposited on CO(2) laser-treated surfaces have thresholds greater than the thresholds of antireflection films on mechanically polished surfaces.
Atmospheric Science Data Center
2013-04-18
... in brightness between them. Varying degrees of surface moisture around the two playas are illustrated by the different display ... angular composites contain information relating to surface moisture and/or texture characteristics that are not apparent with a single ...
The formation of giant low surface brightness galaxies
NASA Technical Reports Server (NTRS)
Hoffman, Yehuda; Silk, Joseph; Wyse, Rosemary F. G.
1992-01-01
It is demonstrated that the initial structure of galaxies can be strongly affected by their large-scale environments. In particular, rare (about 3 sigma) massive galaxies in voids will have normal bulges, but unevolved, extended disks; it is proposed that the low surface brightness objects Malin I and Malin II are prototypes of this class of object. The model predicts that searches for more examples of 'crouching giants' should be fruitful, but that such galaxies do not provide a substantial fraction of mass in the universe. The identification of dwarf galaxies is relatively unaffected by their environment.
K-band observations of boxy bulges - I. Morphology and surface brightness profiles
NASA Astrophysics Data System (ADS)
Bureau, M.; Aronica, G.; Athanassoula, E.; Dettmar, R.-J.; Bosma, A.; Freeman, K. C.
2006-08-01
In this first paper of a series on the structure of boxy and peanut-shaped (B/PS) bulges, Kn-band observations of a sample of 30 edge-on spiral galaxies are described and discussed. Kn-band observations best trace the dominant luminous galactic mass and are minimally affected by dust. Images, unsharp-masked images, as well as major-axis and vertically summed surface brightness profiles are presented and discussed. Galaxies with a B/PS bulge tend to have a more complex morphology than galaxies with other bulge types, more often showing centred or off-centred X structures, secondary maxima along the major-axis and spiral-like structures. While probably not uniquely related to bars, those features are observed in three-dimensional N-body simulations of barred discs and may trace the main bar orbit families. The surface brightness profiles of galaxies with a B/PS bulge are also more complex, typically containing three or more clearly separated regions, including a shallow or flat intermediate region (Freeman Type II profiles). The breaks in the profiles offer evidence for bar-driven transfer of angular momentum and radial redistribution of material. The profiles further suggest a rapid variation of the scaleheight of the disc material, contrary to conventional wisdom but again as expected from the vertical resonances and instabilities present in barred discs. Interestingly, the steep inner region of the surface brightness profiles is often shorter than the isophotally thick part of the galaxies, itself always shorter than the flat intermediate region of the profiles. The steep inner region is also much more prominent along the major-axis than in the vertically summed profiles. Similarly to other recent work but contrary to the standard `bulge + disc' model (where the bulge is both thick and steep), we thus propose that galaxies with a B/PS bulge are composed of a thin concentrated disc (a disc-like bulge) contained within a partially thick bar (the B/PS bulge), itself contained within a thin outer disc. The inner disc likely formed secularly through bar-driven processes and is responsible for the steep inner region of the surface brightness profiles, traditionally associated with a classic bulge, while the bar is responsible for the flat intermediate region of the surface brightness profiles and the thick complex morphological structures observed. Those components are strongly coupled dynamically and are formed mostly of the same (disc) material, shaped by the weak but relentless action of the bar resonances. Any competing formation scenario for galaxies with a B/PS bulge, which represent at least 45 per cent of the local disc galaxy population, must explain equally well and self-consistently the above morphological and photometric properties, the complex gas and stellar kinematics observed, and the correlations between them.
Simultaneous Multi-band Detection of Low Surface Brightness Galaxies with Markovian Modeling
NASA Astrophysics Data System (ADS)
Vollmer, B.; Perret, B.; Petremand, M.; Lavigne, F.; Collet, Ch.; van Driel, W.; Bonnarel, F.; Louys, M.; Sabatini, S.; MacArthur, L. A.
2013-02-01
We present to the astronomical community an algorithm for the detection of low surface brightness (LSB) galaxies in images, called MARSIAA (MARkovian Software for Image Analysis in Astronomy), which is based on multi-scale Markovian modeling. MARSIAA can be applied simultaneously to different bands. It segments an image into a user-defined number of classes, according to their surface brightness and surroundings—typically, one or two classes contain the LSB structures. We have developed an algorithm, called DetectLSB, which allows the efficient identification of LSB galaxies from among the candidate sources selected by MARSIAA. The application of the method to two and three bands simultaneously was tested on simulated images. Based on our tests, we are confident that we can detect LSB galaxies down to a central surface brightness level of only 1.5 times the standard deviation from the mean pixel value in the image background. To assess the robustness of our method, the method was applied to a set of 18 B- and I-band images (covering 1.3 deg2 in total) of the Virgo Cluster to which Sabatini et al. previously applied a matched-filter dwarf LSB galaxy search algorithm. We have detected all 20 objects from the Sabatini et al. catalog which we could classify by eye as bona fide LSB galaxies. Our method has also detected four additional Virgo Cluster LSB galaxy candidates undetected by Sabatini et al. To further assess the completeness of the results of our method, both MARSIAA, SExtractor, and DetectLSB were applied to search for (1) mock Virgo LSB galaxies inserted into a set of deep Next Generation Virgo Survey (NGVS) gri-band subimages and (2) Virgo LSB galaxies identified by eye in a full set of NGVS square degree gri images. MARSIAA/DetectLSB recovered ~20% more mock LSB galaxies and ~40% more LSB galaxies identified by eye than SExtractor/DetectLSB. With a 90% fraction of false positives from an entirely unsupervised pipeline, a completeness of 90% is reached for sources with r e > 3'' at a mean surface brightness level of μg = 27.7 mag arcsec-2 and a central surface brightness of μ0 g = 26.7 mag arcsec-2. About 10% of the false positives are artifacts, the rest being background galaxies. We have found our proposed Markovian LSB galaxy detection method to be complementary to the application of matched filters and an optimized use of SExtractor, and to have the following advantages: it is scale free, can be applied simultaneously to several bands, and is well adapted for crowded regions on the sky. .
Cao, Ya-nan; Wei, He-li; Dai, Cong-ming; Zhang, Xue-hai
2015-05-01
A study was carried out to retrieve optical thickness and cloud top height of cirrus clouds from the Atmospheric Infrared Sounder (AIRS) high spectral resolution data in 1070~1135 cm-1 IR band using a Combined Atmospheric Radiative Transfer model (CART) by brightness temperature difference between model simulation and AIRS observation. The research is based on AIRS LIB high spectral infrared observation data combined with Moderate Resolution Imaging Spectroradiometer (MODIS) cloud product data. Brightness temperature spectra based, on the retrieved cirrus optical thickness and cloud top height were simulated and compared with brightness temperature spectra of AIRS observation in the 650~1150 cm-1 band. The cirrus optical thickness and cloud top height retrieved were compared with brightness temperature of AIRS for channel 760 (900.56 cm-1, 11. 1 µm) and cirrus reflectance of MODIS cloud product. And cloud top height retrieved was compared with cloud top height from MODIS. Results show that the brightness temperature spectra simulated were basically consistent with AIRS observation under the condition of retrieval in the 650~1150 cm-1 band. It means that CART can be used to simulate AIRS brightness temperature spectra. The retrieved cirrus parameters are consistent with brightness temperature of AIRS for channel 11. 1 µm with low brightness temperature corresponding to large cirrus optical thickness and high cloud top height. And the retrieved cirrus parameters are consistent with cirrus reflectance of MODIS cloud product with high cirrus reflectance corresponding to large cirrus optical thickness and high cloud top height. Correlation coefficient of brightness temperature between retrieved cloud top height and MODIS cloud top height was relatively high. They are mostly located in the range of 8. 5~11.5 km, and their probability distribution trend is approximately identical. CART model is feasible to retrieve cirrus properties, and the retrieval is reliable.
Analyzing and Post-modelling the High Speed Images of a Wavy Laser Induced Boiling Front
NASA Astrophysics Data System (ADS)
Matti, R. S.; Kaplan, A. F. H.
The boiling front in laser materials processing like remote fusion cutting, keyhole welding or drilling can nowadays be recorded by high speed imaging. It was recently observed that bright waves flow down the front. Several complex physical mechanisms are associated with a stable laser-induced boiling front, like beam absorption, shadowing, heating, ablation pressure, fluid flow, etc. The evidence of dynamic phenomena from high speed imaging is closely linked to these phenomena. As a first step, the directly visible phenomena were classified and analyzed. This has led to the insight that the appearance of steady flow of the bright front peaks is a composition of many short flashing events of 20-50 μs duration, though composing a rather constant melt film flow downwards. Five geometrical front shapes of bright and dark domains were categorized, for example long inclined dark valleys. In addition, the special top and bottom regions of the front are distinguished. As a second step, a new method of post-modelling based on the greyscale variation of the images was applied, to approximately reconstruct the topology of the wavy front and subsequently to calculate the absorption across the front. Despite certain simplifications this kind of analysis provides a variety of additional information, including statistical analysis. In particular, the model could show the sensitivity of front waves to the formation of shadow domains and the robustness of fiber lasers to keep most of an irradiated steel surface in an absorptivity window between 35 to 43%.
Zhong, Xinke; Labed, Jelila; Zhou, Guoqing; Shao, Kun; Li, Zhao-Liang
2015-01-01
The surface temperature (ST) of high-emissivity surfaces is an important parameter in climate systems. The empirical methods for retrieving ST for high-emissivity surfaces from hyperspectral thermal infrared (HypTIR) images require spectrally continuous channel data. This paper aims to develop a multi-channel method for retrieving ST for high-emissivity surfaces from space-borne HypTIR data. With an assumption of land surface emissivity (LSE) of 1, ST is proposed as a function of 10 brightness temperatures measured at the top of atmosphere by a radiometer having a spectral interval of 800–1200 cm−1 and a spectral sampling frequency of 0.25 cm−1. We have analyzed the sensitivity of the proposed method to spectral sampling frequency and instrumental noise, and evaluated the proposed method using satellite data. The results indicated that the parameters in the developed function are dependent on the spectral sampling frequency and that ST of high-emissivity surfaces can be accurately retrieved by the proposed method if appropriate values are used for each spectral sampling frequency. The results also showed that the accuracy of the retrieved ST is of the order of magnitude of the instrumental noise and that the root mean square error (RMSE) of the ST retrieved from satellite data is 0.43 K in comparison with the AVHRR SST product. PMID:26061199
NASA Technical Reports Server (NTRS)
Eldridge, Jeffrey I.; Bencic, Timothy J.; Zhu, Dongming; Cuy, Michael D.; Wolfe, Douglas E.; Allison, Stephen W.; Beshears, David L.; Jenkins, Thomas P.; Heeg, Bauke; Howard, Robert P.;
2014-01-01
The overall goal of the Aeronautics Research Mission Directorate (ARMD) Seedling Phase II effort was to build on the promising temperature-sensing characteristics of the ultrabright thermographic phosphor Cr-doped gadolinium aluminum perovskite (Cr:GAP) demonstrated in Phase I by transitioning towards an engine environment implementation. The strategy adopted was to take advantage of the unprecedented retention of ultra-bright luminescence from Cr:GAP at temperatures over 1000 C to enable fast 2D temperature mapping of actual component surfaces as well as to utilize inexpensive low-power laser-diode excitation suitable for on-wing diagnostics. A special emphasis was placed on establishing Cr:GAP luminescence-based surface temperature mapping as a new tool for evaluating engine component surface cooling effectiveness.
Variations in Surface Texture of the North Polar Residual Cap of Mars
NASA Technical Reports Server (NTRS)
Milkovich, S. M.; Byrne, S.; Russell, P. S.
2011-01-01
The northern polar residual cap (NPRC) of Mars is a water ice deposit with a rough surface made up of pits, knobs, and linear depressions on scales of tens of meters. This roughness manifests as a series of bright mounds and dark hollows in visible images; these bright and dark patches have a characteristic wavelength and orientation. Spectral data indicate that the surface of the NPRC is composed of large-grained (and therefore old) water ice. Due to the presence of this old ice, it is thought that the NPRC is in a current state of net loss of material a result potentially at odds with impact crater statistics, which suggest ongoing deposition over the past 10-20 Kyr.
Estimation of surface temperature in remote pollution measurement experiments
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm has been developed for estimating the actual surface temperature by applying corrections to the effective brightness temperature measured by radiometers mounted on remote sensing platforms. Corrections to effective brightness temperature are computed using an accurate radiative transfer model for the 'basic atmosphere' and several modifications of this caused by deviations of the various atmospheric and surface parameters from their base model values. Model calculations are employed to establish simple analytical relations between the deviations of these parameters and the additional temperature corrections required to compensate for them. Effects of simultaneous variation of two parameters are also examined. Use of these analytical relations instead of detailed radiative transfer calculations for routine data analysis results in a severalfold reduction in computation costs.
NASA Astrophysics Data System (ADS)
Cornet, T.; Altobelli, N.; Sotin, C.; Le Mouelic, S.; Rodriguez, S.; Philippe, S.; Brown, R. H.; Barnes, J. W.; Buratti, B. J.; Baines, K. H.; Clark, R. N.; Nicholson, P. D.
2014-12-01
Due to the influence of methane gas and a thick aerosols haze in the atmosphere, Titan's surface is only visible in 7 spectral atmospheric windows centered at 0.93, 1.08, 1.27, 1.59, 2.01, 2.7-2.8 and 5 microns with the Cassini Visual and Infrared Mapping Spectrometer (VIMS). The 5 microns atmospheric window constitutes the only one being almost insensitive to the haze scattering and which presents only a reduced atmospheric absorption contribution to the signal recorded by the instrument. Despite these advantages leading to the almost direct view of the surface, the 5 microns window is also the noisiest spectral window of the entire VIMS spectrum (an effect highly dependent on the time exposure used for the observations), and it is not totally free from atmospheric contributions, enough to keep "artefacts" in mosaics of several thousands of cubes due to atmospheric and surface photometric effects amplified by the very heterogeneous viewing conditions between each Titan flyby. At first order, a lambertian surface photometry at 5 microns has been used as an initial parameter in order to estimate atmospheric opacity and surface photometry in all VIMS atmospheric windows and to determine the albedo of the surface, yet unknown, both using radiative transfer codes on single cubes or empirical techniques on global hyperspectral mosaics. Other studies suggested that Titan's surface photometry would not be uniquely lambertian but would also contain anisotropic lunar-like contributions. In the present work, we aim at constraining accurately the surface photometry of Titan and residual atmospheric absorption effects in this 5 microns window using a comprehensive study of relevant sites located at various latitudes. Those include bright and dark (dunes) terrains, 5-microns bright terrains (Hotei Regio and Tui Regio), the Huygens Landing Site and high latitudes polar lakes and seas. The VIMS 2004 to 2014 database, composed of more than 40,000 hyperspectral cubes acquired on Titan, has been decomposed into a MySQL relational database in order to perform the present study looking at both spatial and temporal (seasonal) aspects.
The influence of thermal inertia on temperatures and frost stability on Triton
NASA Technical Reports Server (NTRS)
Spencer, John R.; Moore, Jeffrey M.
1992-01-01
It is presently argued, in view of (1) a thermal inertia model for the surface of Triton which (like previous ones) predicts a monotonic recession of permanent N2 deposits toward the poles and very little seasonal N2 frost in the southern hemisphere, and (2) new spectroscopic evidence for nonvolatile CO2 on Triton's bright southern hemisphere, that much of that bright southern material is not N2. Such bright southern hemisphere volatiles may allow the formation of seasonal frosts, thereby helping to explain the observed spectroscopic changes of Triton during the last decade.
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeriy V.
2004-12-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual coherence function (MCF) for the backscattered (returned) wave. The resulting evolution equation for the MCF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
The Dragonfly Nearby Galaxies Survey. IV. A Giant Stellar Disk in NGC 2841
NASA Astrophysics Data System (ADS)
Zhang, Jielai; Abraham, Roberto; van Dokkum, Pieter; Merritt, Allison; Janssens, Steven
2018-03-01
Neutral gas is commonly believed to dominate over stars in the outskirts of galaxies, and investigations of the disk-halo interface are generally considered to be in the domain of radio astronomy. This may simply be a consequence of the fact that deep H I observations typically probe to a lower-mass surface density than visible wavelength data. This paper presents low-surface-brightness, optimized visible wavelength observations of the extreme outskirts of the nearby spiral galaxy NGC 2841. We report the discovery of an enormous low-surface brightness stellar disk in this object. When azimuthally averaged, the stellar disk can be traced out to a radius of ∼70 kpc (5 R 25 or 23 inner disk scale lengths). The structure in the stellar disk traces the morphology of H I emission and extended UV emission. Contrary to expectations, the stellar mass surface density does not fall below that of the gas mass surface density at any radius. In fact, at all radii greater than ∼20 kpc, the ratio of the stellar mass to gas mass surface density is a constant 3:1. Beyond ∼30 kpc, the low-surface-brightness stellar disk begins to warp, which may be an indication of a physical connection between the outskirts of the galaxy and infall from the circumgalactic medium. A combination of stellar migration, accretion, and in situ star formation might be responsible for building up the outer stellar disk, but whatever mechanisms formed the outer disk must also explain the constant ratio between stellar and gas mass in the outskirts of this galaxy.
Short Pulse High Brightness X-ray Production with the PLEIADES Thomson Scattering Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S G; Barty, C P J; Betts, S M
2003-07-01
We describe PLEIADES, a compact, tunable, high-brightness, ultra-short pulse, Thomson x-ray source. The peak brightness of the source is expected to exceed 10{sup 20} photons/s/0.1% bandwidth/mm{sup 2}/mrad{sup 2}. Initial results are reported and compared to theoretical calculations.
NASA Astrophysics Data System (ADS)
Mackey, A. D.; Gilmore, G. F.
2003-01-01
We have compiled a pseudo-snapshot data set of two-colour observations from the Hubble Space Telescope archive for a sample of 53 rich LMC clusters with ages of 106-1010 yr. We present surface brightness profiles for the entire sample, and derive structural parameters for each cluster, including core radii, and luminosity and mass estimates. Because we expect the results presented here to form the basis for several further projects, we describe in detail the data reduction and surface brightness profile construction processes, and compare our results with those of previous ground-based studies. The surface brightness profiles show a large amount of detail, including irregularities in the profiles of young clusters (such as bumps, dips and sharp shoulders), and evidence for both double clusters and post-core-collapse (PCC) clusters. In particular, we find power-law profiles in the inner regions of several candidate PCC clusters, with slopes of approximately -0.7, but showing considerable variation. We estimate that 20 +/- 7 per cent of the old cluster population of the Large Magellanic Cloud (LMC) has entered PCC evolution, a similar fraction to that for the Galactic globular cluster system. In addition, we examine the profile of R136 in detail and show that it is probably not a PCC cluster. We also observe a trend in core radius with age that has been discovered and discussed in several previous publications by different authors. Our diagram has better resolution, however, and appears to show a bifurcation at several hundred Myr. We argue that this observed relationship reflects true physical evolution in LMC clusters, with some experiencing small-scale core expansion owing to mass loss, and others large-scale expansion owing to some unidentified characteristic or physical process.
Oxygen abundance distributions in six late-type galaxies based on SALT spectra of H II regions
NASA Astrophysics Data System (ADS)
Zinchenko, I. A.; Kniazev, A. Y.; Grebel, E. K.; Pilyugin, L. S.
2015-10-01
Spectra of 34 H ii regions in the late-type galaxies NGC 1087, NGC 2967, NGC 3023, NGC 4030, NGC 4123, and NGC 4517A were observed with the South African Large Telescope (SALT). In all 34 H ii regions, oxygen abundances were determined through the "counterpart" method (C method). Additionally, in two H ii regions in which we detected auroral lines, we measured oxygen abundances with the classic Te method. We also estimated the abundances in our H ii regions using the O3N2 and N2 calibrations and compared those with the C-based abundances. With these data, we examined the radial abundance distributions in the disks of our target galaxies. We derived surface-brightness profiles and other characteristics of the disks (the surface brightness at the disk center and the disk scale length) in three photometric bands for each galaxy using publicly available photometric imaging data. The radial distributions of the oxygen abundances predicted by the relation between abundance and disk surface brightness in the W1 band obtained for spiral galaxies in our previous study are close to the radial distributions of the oxygen abundances determined from the analysis of the emission line spectra for four galaxies where this relation is applicable. Hence, when the surface-brightness profile of a late-type galaxy is known, this parametric relation can be used to estimate the likely present-day oxygen abundance in the disk of the galaxy. Based on observations made with the Southern African Large Telescope, programs 2012-1-RSA_OTH-001, 2012-2-RSA_OTH-003 and 2013-1-RSA_OTH-005.
NASA Technical Reports Server (NTRS)
1997-01-01
The varied effects of Ionian volcanism can be seen in this false color infrared composite image of Io's trailing hemisphere. Low resolution color data from Galileo's first orbit (June, 1996) have been combined with a higher resolution clear filter picture taken on the third orbit (November, 1996) of the spacecraft around Jupiter.
A diffuse ring of bright red material encircles Pele, the site of an ongoing, high velocity volcanic eruption. Pele's plume is nearly invisible, except in back-lit photographs, but its deposits indicate energetic ejection of sulfurous materials out to distances more than 600 kilometers from the central vent. Another bright red deposit lies adjacent to Marduk, also a currently active ediface. High temperature hot spots have been detected at both these locations, due to the eruption of molten material in lava flows or lava lakes. Bright red deposits on Io darken and disappear within years or decades of deposition, so the presence of bright red materials marks the sites of recent volcanism.This composite was created from data obtained by the Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft. The region imaged is centered on 15 degrees South, 224 degrees West, and is almost 2400 kilometers across. The finest details that can be discerned in this picture are about 3 kilometers across. North is towards the top of the picture and the sun illuminates the surface from the west.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepoNASA Astrophysics Data System (ADS)
Daniel, J.; Godin, A. G.; Clermont, G.; Lounis, B.; Cognet, L.; Blanchard-Desce, M.
2015-07-01
In order to provide a green alternative to QDs for bioimaging purposes and aiming at designing bright nanoparticles combining both large one- and two-photon brightness, a bottom-up route based on the molecular engineering of dedicated red to NIR emitting dyes that spontaneously form fluorescent organic nanoparticles (FONs) has been implemented. These fully organic nanoparticles built from original quadrupolar dyes are prepared using a simple, expeditious and green protocol that yield very small molecular-based nanoparticles (radius ~ 7 nm) suspension in water showing a nice NIR emission (λem=710 nm). These FONs typically have absorption coefficient more than two orders larger than popular NIR-emitting dyes (such as Alexa Fluor 700, Cy5.5 ….) and much larger Stokes shift values (i.e. up to over 5500 cm-1). They also show very large two-photon absorption response in the 800-1050 nm region (up to about 106 GM) of major promise for two-photon excited fluorescence microscopy. Thanks to their brightness and enhanced photostability, these FONs could be imaged as isolated nanoparticles and tracked using wide-field imaging. As such, thanks to their size and composition (absence of heavy metals), they represent highly promising alternatives to NIR-emitting QDs for use in bioimaging and single particle tracking applications. Moreover, efficient FONs coating was achieved by using a polymeric additive built from a long hydrophobic (PPO) and a short hydrophilic (PEO) segment and having a cationic head group able to interact with the highly negative surface of FONs. This electrostatically-driven interaction promotes both photoluminescence and two-photon absorption enhancement leading to an increase of two-photon brightness of about one order of magnitude. This opens the way to wide-field single particle tracking under two-photon excitation
Galaxy And Mass Assembly (GAMA): detection of low-surface-brightness galaxies from SDSS data
NASA Astrophysics Data System (ADS)
Williams, Richard P.; Baldry, I. K.; Kelvin, L. S.; James, P. A.; Driver, S. P.; Prescott, M.; Brough, S.; Brown, M. J. I.; Davies, L. J. M.; Holwerda, B. W.; Liske, J.; Norberg, P.; Moffett, A. J.; Wright, A. H.
2016-12-01
We report on a search for new low-surface-brightness galaxies (LSBGs) using Sloan Digital Sky Survey (SDSS) data within the Galaxy And Mass Assembly (GAMA) equatorial fields. The search method consisted of masking objects detected with SDSS PHOTO, combining gri images weighted to maximize the expected signal-to-noise ratio, and smoothing the images. The processed images were then run through a detection algorithm that finds all pixels above a set threshold and groups them based on their proximity to one another. The list of detections was cleaned of contaminants such as diffraction spikes and the faint wings of masked objects. From these, selecting potentially the brightest in terms of total flux, a list of 343 LSBGs was produced having been confirmed using VISTA Kilo-degree Infrared Galaxy Survey (VIKING) imaging. The photometry of this sample was refined using the deeper VIKING Z band as the aperture-defining band. Measuring their g - I and J - K colours shows that most are consistent with being at redshifts less than 0.2. The photometry is carried out using an AUTO aperture for each detection giving surface brightnesses of μr ≳ 25 mag arcsec-2 and magnitudes of r > 19.8 mag. None of these galaxies are bright enough to be within the GAMA main survey limit but could be part of future deeper surveys to measure the low-mass end of the galaxy stellar mass function.
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
NASA Astrophysics Data System (ADS)
White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Cheng, A. F.
2016-12-01
The New Horizons flyby of Pluto provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, interpreted to have formed via sublimation. The mapping that will be presented at AGU focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units, with the bright unit forming a continuous high albedo zone with the bright uplands of east Tombaugh Regio. We interpret the dark plains to represent the main body of convecting N2 ice that forms the cellular plains of Sputnik Planum, with the low albedo caused by a high concentration of entrained dark material (likely tholins). Preferential sublimation of N2 ice from these plains would leave the dark ice exposed, and re-deposition of the N2 ice on the eastern cellular plains and uplands of east Tombaugh Regio would create a thin veneer of pure, bright N2 ice covering these landscapes. The non-cellular plains are universally bright and display evidence for southwards flow of the N2 ice, based on the orientations of fields of elongate sublimation pits as well as the presence of `extinct cells' that appear to have migrated away from the zone of active convection. The larger pits that occur within the non-cellular plains imply that these plains are older than the cellular plains, where resurfacing via convection limits the maximum size attainable by sublimation pits.
X-Ray generation by the laser-plasma interaction in the regime of relativistic electronic spring
NASA Astrophysics Data System (ADS)
Gonoskov, Arkady; Blackburn, Thomas; Blanco, Manuel; Flores-Arias, M. T.; Wettervik, Benjamin; Marklund, Mattias
2017-10-01
Inducing and controlling relativistic motion of surface electrons in overdense plasmas with high-intensity lasers is a promising way to produce X-rays with unique properties, including high brightness, ultra-short duration and tunable polarization. Although the well-studied relativistic oscillating mirror (ROM) regime provides robust generation of high harmonics, the amplitude of the outgoing light in this regime is always equal to that of the incident radiation because the conversion takes place continuously without energy accumulation. This restriction can be overcome by increasing the laser intensity and/or decreasing the plasma density such that n / a < 10 . In this case the plasma acts as a spring, first accumulating up to 60% of the energy of one laser cycle, then re-emitting it in the form of a burst of high harmonics. Under optimal conditions this burst can be both 100 times shorter in duration and 100 times higher in intensity. The theory of relativistic electronic spring (RES) describes a wide variety of interaction scenarios in this regime and provides insight into the underlying physics. The talk will concern the prospects of creating and controlling XUV bursts of exceptional brightness in the RES regime.
Loop models of low coronal structures observed by the Normal Incidence X-Ray Telescope (NIXT)
NASA Technical Reports Server (NTRS)
Peres, G.; Reale, F.; Golub, L.
1994-01-01
The X-ray pictures obtained with the Normal Incidence X-Ray Telescope (NIXT), apart from the ubiquitous coronal loops well known from previous X-ray observations, show a new and peculiar morphology: in many active regions there are wide and apparently low-lying areas of intense emission which resemble H alpha plages. By means of hydrostatic models of coronal arches, we analyze the distribution of temperature, density, emission measure, and plasma emissivity in the spectral band to which NIXT is sensitive, and we show that the above morphology can be explained by the characteristics of high pressure loops having a thin region of high surface brightness at the base. We therefore propose that this finding might help to identify high-pressure X-ray emitting coronal regions in NIXT images, and it is in principle applicable to any imaging instrument which has high sensitivity to 10(exp 4) - 10(exp 6) K plasma within a narrow coronal-temperature passband. As a more general result of this study, we propose that the comparison of NIXT observations with models of stationary loops might provide a new diagnostic: the determination of the loop plasma pressure from measurements of brightness distribution along the loop.
Current development and patents on high-brightness white LED for illumination.
Pang, Wen-Yuan; Lo, Ikai; Hsieh, Chia-Ho; Hsu, Yu-Chi; Chou, Ming-Chi; Shih, Cheng-Hung
2010-01-01
In this paper, we reviewed the current development and patents for the application of high-brightness and high-efficiency white light-emitting diode (LED). The high-efficiency GaN nanostructures, such as disk, pyramid, and rod were grown on LiAlO(2) substrate by plasma-assisted molecular-beam epitaxy, and a model was developed to demonstrate the growth of the GaN nanostructures. Based on the results, the GaN disk p-n junction was designed for the application of high brightness and high efficiency white LED.
The evolution of tectonic features on Ganymede
NASA Technical Reports Server (NTRS)
Squyres, S. W.
1982-01-01
The bands of bright resurfaced terrain on Ganymede are probably broad grabens formed by global expansion and filled with deposits of ice. Grooves within the bands are thought to be extensional features formed during the same episode of expansion. The crust of Ganymede is modeled as a viscoelastic material subjected to extensional strain. With sufficiently high strain rates and stresses, deep normal faulting will occur, creating broad grabens that may then be filled. Continuing deformation at high strain rates and stresses will cause propagation of deep faults up into the flood deposits and normal faulting at the surface, while lower strain rates and stresses will cause formation of open extension fractures or, if the crustal strength is very low, grabens at the surface. The spacing between adjacent fractures may reflect the geothermal gradient at the time of deformation. Surface topography resulting from fracturing and normal faulting will decay with time as a result of viscous relaxation and mass-wasting.
All-metal meta-surfaces for narrowband light absorption and high performance sensing
NASA Astrophysics Data System (ADS)
Liu, Zhengqi; Liu, Guiqiang; Fu, Guolan; Liu, Xiaoshan; Huang, Zhenping; Gu, Gang
2016-11-01
We report an experimental scheme for high performance sensing by an all-metal meta-surface (AMMS) platform. A dual-band resonant absorption spectrum with a bandwidth down to a single-digit nanometer level and an absorbance up to 89% is achieved due to the surface lattice resonances supported by the resonators array and their hybridization coupling with the particle plasmon resonances. The sensing application in the analysis of the sodium chloride solution has been demonstrated, where remarkable changes from a spectral ‘dark state’ to ‘bright state’ and vice versa are observed. Sensing performance factors of the figure of merit exceeding 50 and the spectral intensity change related FoM* up to 1075 are simultaneously achieved. The corresponding detection limit is as low as 8.849 × 10-6 RIU. These features make such an AMMS-based sensor a promising route for efficient bio-chemical sensing, etc.
Improvement in reduced-mode (REM) diodes enable 315 W from 105-μm 0.15-NA fiber-coupled modules
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2018-02-01
High-power, high-brightness diode lasers have been pursued for many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - and 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. As a result, there have been many technical thrusts for driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, nLIGHT element®. In the past decade, the power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brightness and the development of techniques for efficiently coupling multiple emitters. In this paper, we demonstrate further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new chip technology using x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report record 315 W output from a 2×12 nLIGHT element with 105 μm diameter fiber using x-REM diodes and these diodes will allow next generation of fiber-coupled product capable of 250W output power from 105 μm/0.15 NA beam at 915 nm.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Kirstetter, P. E.; Hong, Y.; Wen, Y.; Turk, J.; Gourley, J. J.
2015-12-01
One of primary uncertainties in satellite overland quantitative precipitation estimates (QPE) from passive sensors such as radiometers is the impact on the brightness temperatures by the surface land emissivity. The complexity of surface land emissivity is linked to its temporal variations (diurnal and seasonal) and spatial variations (subsurface vertical profiles of soil moisture, vegetation structure and surface temperature) translating into sub-pixel heterogeneity within the satellite field of view (FOV). To better extract the useful signal from hydrometeors, surface land emissivity needs to be determined and filtered from the satellite-measured brightness temperatures. Based on the dielectric properties of surface land cover constitutes, Microwave Polarization Differential index (MPDI) is expected to carry the composite effect of surface land properties on land surface emissivity, with a higher MPDI indicating a lower emissivity. This study analyses the dependence of MPDI to soil moisture, vegetation and surface skin temperature over 9 different land surface types. Such analysis is performed using the normalized difference vegetation index (NDVI) from MODIS, the near surface air temperature from the RAP model and ante-precedent precipitation accumulation from the Multi-Radar Multi-Sensor as surrogates for the vegetation, surface skin temperature and shallow layer soil moisture, respectively. This paper provides 1) evaluations of brightness temperature-based MPDI from the TRMM and GPM Microwave Imagers in both raining and non-raining conditions to test the dependence of MPDI to precipitation; 2) comparisons of MPDI categorized into instantly before, during and immediately after selected precipitation events to examine the impact of modest-to-heavy precipitation on the spatial pattern of MPDI; 3) inspections of relationship between MPDI versus rain fraction and rain rate within the satellite sensors FOV to investigate the behaviors of MPDI in varying precipitation conditions; 4) analysis of discrepancies of MPDI over 10.65, 19.35, 37 and 85.8 GHz to identify the sensitivity of MPDS to microwave wavelengths.
Development Of HUD Combiner For Automotive Windshield Application
NASA Astrophysics Data System (ADS)
Hattori, Akimasa; Makita, Kensuke; Okabayashi, Shigeru
1989-12-01
The head-up display system (HUM) has been developed for the windshield of Nissan Motor's passenger car, '88 model of Silvia (240SX) and '89 model of Maxima. HUD consists of a projector with high brightness VFT and a combiner which is a light-selective reflective film applied on the surface of ' e windshield. The system provides nice display legibility of speed in a three-digit reap at the position more than one meter far from driver's eye even under the bright sunlight. In this report, we present the optical properties and manufacturing process of the advanced combiner. The combiner has to have high transmittance as well as high reflectance so that a driver can see both foreground object and display reading at the same time. The optical design for the combiner is based on the concepts: (a) Visible light transmittance has to be 70% or more in accordance with a legal requirement, and (b) taking both peak wavelengths of Vim' and sensitivity characteristics of human eyes into consideration, 530nm of wave length is chosen as a reflective light. The combiner consists of a dielectric thin layer of Ti02-Si02 system. Its basic structure is decided by simulation with matrix method of the resultant waves. The coating film is applied on the restricted area of the forth surface of laminated windshield by newly developed solgel printing process using a metal alkoxide solution with a relatively long storage life.
Skylab floating ice experiment
NASA Technical Reports Server (NTRS)
Campbell, W. J. (Principal Investigator); Ramseier, R. O.; Weaver, R. J.; Weeks, W. F.
1975-01-01
The author has identified the following significant results. Coupling of the aircraft data with the ground truth observations proved to be highly successful with interesting results being obtained with IR and SLAR passive microwave techniques, and standard photography. Of particular interest were the results of the PMIS system which operated at 10.69 GHz with both vertical and horizontal polarizations. This was the first time that dual polarized images were obtained from floating ice. In both sea and lake ice, it was possible to distinguish a wide variety of thin ice types because of their large differences in brightness temperatures. It was found that the higher brightness temperature was invariably obtained in the vertically polarized mode, and as the age of the ice increases the brightness temperature increases in both polarizations. Associated with this change in age, the difference in temperature was observed as the different polarizations decreased. It appears that the horizontally polarized data is the most sensitive to variations in ice type for both fresh water and sea ice. The study also showed the great amount of information on ice surface roughness and deformation patterns that can be obtained from X-band SLAR observations.
Dynamic biophotonics: female squid exhibit sexually dimorphic tunable leucophores and iridocytes.
DeMartini, Daniel G; Ghoshal, Amitabh; Pandolfi, Erica; Weaver, Aaron T; Baum, Mary; Morse, Daniel E
2013-10-01
Loliginid squid use tunable multilayer reflectors to modulate the optical properties of their skin for camouflage and communication. Contained inside specialized cells called iridocytes, these photonic structures have been a model for investigations into bio-inspired adaptive optics. Here, we describe two distinct sexually dimorphic tunable biophotonic features in the commercially important species Doryteuthis opalescens: bright stripes of rainbow iridescence on the mantle just beneath each fin attachment and a bright white stripe centered on the dorsal surface of the mantle between the fins. Both of these cellular features are unique to the female; positioned in the same location as the conspicuously bright white testis in the male, they are completely switchable, transitioning between transparency and high reflectivity. The sexual dimorphism, location and tunability of these features suggest that they may function in mating or reproduction. These features provide advantageous new models for investigation of adaptive biophotonics. The intensely reflective cells of the iridescent stripes provide a greater signal-to-noise ratio than the adaptive iridocytes studied thus far, while the cells constituting the white stripe are adaptive leucophores--unique biological tunable broadband scatterers containing Mie-scattering organelles activated by acetylcholine, and a unique complement of reflectin proteins.
NASA Astrophysics Data System (ADS)
Rajyaguru, Parth K.; Pegram, Kimberly V.; Kingston, Alexandra C. N.; Rutowski, Ronald L.
2013-06-01
In many animals, males bear bright ornamental color patches that may signal both the direct and indirect benefits that a female might accrue from mating with him. Here we test whether male coloration in the Pipevine Swallowtail butterfly, Battus philenor, predicts two potential direct benefits for females: brief copulation duration and the quantity of materials the male passes to the female during mating. In this species, males have a bright iridescent blue field on the dorsal hindwing surface, while females have little or no dorsal iridescence. Females preferentially mate with males who display a bright and highly chromatic blue field on their dorsal hindwing. In this study, we show that the chroma of the blue field on the male dorsal hindwing and male body size (forewing length) significantly predict the mass of material or spermatophore that a male forms within the female's copulatory sac during mating. We also found that spermatophore mass correlated negatively with copulation duration, but that color variables did not significantly predict this potential direct benefit. These results suggest that females may enhance the material benefits they receive during mating by mating with males based on the coloration of their dorsal hindwing.
How are the wetlands over tropical basins impacted by the extreme hydrological events?
NASA Astrophysics Data System (ADS)
Al-Bitar, A.; Parrens, M.; Frappart, F.; Papa, F.; Kerr, Y. H.; Cretaux, J. F.; Wigneron, J. P.
2016-12-01
Wetlands play a crucial role in tropical basins and still many questions remain unanswered on how extreme events (like El-Nino) impacts them. Answering these questions is challenging as monitoring of inland water surfaces via remote sensing over tropical areas is a difficult task because of impact of vegetation and cloud cover. Several microwave based products have been elaborated to monitor these surfaces (Papa et al. 2010). In this study we combine the use of L-band microwave brightness temperatures and altimetric data from SARAL/ALTIKA to derive water storage maps at relatively high (7days) temporal frequency. The area of interest concerns the Amazon, Congo and GBH basins A first order radiative model is used to derive surface water over land from the brightness temperature measured by ESA SMOS mission at coarse resolution (25 km x 25 km) and 7-days frequency. An initial investigation of the use of the SMAP mission for the same purpose will be also presented. The product is compared to the static land cover map such as ESA CCI and the International Geosphere-Biosphere Program (IGBP) and also dynamic maps from SWAPS. It is then combined to the altimetric data to derive water storage maps. The water surfaces and water storage products are then compared to precipitation data from GPM TRMM datasets, ground water storage change from GRACE and river discharge data from field data. The amplitudes and time shifts of the signals is compared based on the sub-basin definition from Hydroshed database. The dataset is then divided into years of strong and weak El-Nino signal and the anomaly is between the two dataset is compared. The results show a strong influence of EL-Nino on the time shift of the different components showing that the hydrological regime of wetlands is highly impacted by these extreme events. This can have dramatic impacts on the ecosystem as the wetlands are vulnerable with a high biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dokkum, Pieter G.; Merritt, Allison; Abraham, Roberto
2014-02-20
We use a new telescope concept, the Dragonfly Telephoto Array, to study the low surface brightness outskirts of the spiral galaxy M101. The radial surface brightness profile is measured down to μ {sub g} ∼ 32 mag arcsec{sup –2}, a depth that approaches the sensitivity of star count studies in the Local Group. We convert surface brightness to surface mass density using the radial g – r color profile. The mass density profile shows no significant upturn at large radius and is well-approximated by a simple bulge + disk model out to R = 70 kpc, corresponding to 18 diskmore » scale lengths. Fitting a bulge + disk + halo model we find that the best-fitting halo mass M{sub halo}=1.7{sub −1.7}{sup +3.4}×10{sup 8} M {sub ☉}. The total stellar mass of M101 is M{sub tot,∗}=5.3{sub −1.3}{sup +1.7}×10{sup 10} M {sub ☉}, and we infer that the halo mass fraction f{sub halo}=M{sub halo}/M{sub tot,∗}=0.003{sub −0.003}{sup +0.006}. This mass fraction is lower than that of the Milky Way (f {sub halo} ∼ 0.02) and M31 (f {sub halo} ∼ 0.04). All three galaxies fall below the f {sub halo}-M {sub tot,} {sub *} relation predicted by recent cosmological simulations that trace the light of disrupted satellites, with M101's halo mass a factor of ∼10 below the median expectation. However, the predicted scatter in this relation is large, and more galaxies are needed to better quantify this possible tension with galaxy formation models. Dragonfly is well suited for this project: as integrated-light surface brightness is independent of distance, large numbers of galaxies can be studied in a uniform way.« less
NASA Astrophysics Data System (ADS)
Barella-Ortiz, Anaïs; Polcher, Jan; de Rosnay, Patricia; Piles, Maria; Gelati, Emiliano
2017-01-01
L-band radiometry is considered to be one of the most suitable techniques to estimate surface soil moisture (SSM) by means of remote sensing. Brightness temperatures are key in this process, as they are the main input in the retrieval algorithm which yields SSM estimates. The work exposed compares brightness temperatures measured by the SMOS mission to two different sets of modelled ones, over the Iberian Peninsula from 2010 to 2012. The two modelled sets were estimated using a radiative transfer model and state variables from two land-surface models: (i) ORCHIDEE and (ii) H-TESSEL. The radiative transfer model used is the CMEM. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations at the moment. Further hypotheses are proposed and will be explored in a forthcoming paper. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies.
Design of a backlighting structure for very large-area luminaries
NASA Astrophysics Data System (ADS)
Carraro, L.; Mäyrä, A.; Simonetta, M.; Benetti, G.; Tramonte, A.; Benedetti, M.; Randone, E. M.; Ylisaukko-Oja, A.; Keränen, K.; Facchinetti, T.; Giuliani, G.
2017-02-01
A novel approach for RGB semiconductor LED-based backlighting system is developed to satisfy the requirements of the Project LUMENTILE funded by the European Commission, whose scope is to develop a luminous electronic tile that is foreseen to be manufactured in millions of square meters each year. This unconventionally large-area surface of uniform, high-brightness illumination requires a specific optical design to keep a low production cost, while maintaining high optical extraction efficiency and a reduced thickness of the structure, as imposed by architectural design constraints. The proposed solution is based on a light-guiding layer to be illuminated by LEDs in edge configuration, or in a planar arrangement. The light guiding slab is finished with a reflective top interface and a diffusive or reflective bottom interface/layer. Patterning is used for both the top interface (punctual removal of reflection and generation of a light scattering centers) and for the bottom layer (using dark/bright printed pattern). Computer-based optimization algorithms based on ray-tracing are used to find optimal solutions in terms of uniformity of illumination of the top surface and overall light extraction efficiency. Through a closed-loop optimization process, that assesses the illumination uniformity of the top surface, the algorithm generates the desired optimized top and bottom patterns, depending on the number of LED sources used, their geometry, and the thickness of the guiding layer. Specific low-cost technologies to realize the patterning are discussed, with the goal of keeping the production cost of these very large-area luminaries below the value of 100$/sqm.
A new, bright and hard aluminum surface produced by anodization
NASA Astrophysics Data System (ADS)
Hou, Fengyan; Hu, Bo; Tay, See Leng; Wang, Yuxin; Xiong, Chao; Gao, Wei
2017-07-01
Anodized aluminum (Al) and Al alloys have a wide range of applications. However, certain anodized finishings have relatively low hardness, dull appearance and/or poor corrosion resistance, which limited their applications. In this research, Al was first electropolished in a phosphoric acid-based solution, then anodized in a sulfuric acid-based solution under controlled processing parameters. The anodized specimen was then sealed by two-step sealing method. A systematic study including microstructure, surface morphology, hardness and corrosion resistance of these anodized films has been conducted. Results show that the hardness of this new anodized film was increased by a factor of 10 compared with the pure Al metal. Salt spray corrosion testing also demonstrated the greatly improved corrosion resistance. Unlike the traditional hard anodized Al which presents a dull-colored surface, this newly developed anodized Al alloy possesses a very bright and shiny surface with good hardness and corrosion resistance.
NASA Technical Reports Server (NTRS)
Kerr, Yann H.; Njoku, Eni G.
1990-01-01
A radiative-transfer model for simulating microwave brightness temperatures over land surfaces is described. The model takes into account sensor viewing conditions (spacecraft altitude, viewing angle, frequency, and polarization) and atmospheric parameters over a soil surface characterized by its moisture, roughness, and temperature and covered with a layer of vegetation characterized by its temperature, water content, single scattering albedo, structure, and percent coverage. In order to reduce the influence of atmospheric and surface temperature effects, the brightness temperatures are expressed as polarization ratios that depend primarily on the soil moisture and roughness, canopy water content, and percentage of cover. The sensitivity of the polarization ratio to these parameters is investigated. Simulation of the temporal evolution of the microwave signal over semiarid areas in the African Sahel is presented and compared to actual satellite data from the SMMR instrument on Nimbus-7.
Surface brightness profiles of 10 comets
NASA Astrophysics Data System (ADS)
Jewitt, D. C.; Meech, K. J.
1987-06-01
CCD photometric observations of the comae of 10 comets, obtained at the 4-m and 2.1-m telescopes at KPNO during 1985-1986 using filters centered at 700.5, 650.0, or 546.0 nm, are reported. The data are presented in extensive tables and graphs and characterized in detail. The radial surface brightness profiles are shown to be steeper than predicted by an idealized spherically symmetric steady-state comet model, the steepness increasing with the projected distance from the nucleus. These profiles are attributed, on the basis of Monte Carlo simulations, to imperfect coupling between the sublimated gas and the optically dominant grains of the coma.
Rayleigh beacon for measuring the surface profile of a radio telescope.
Padin, S
2014-12-01
Millimeter-wavelength Rayleigh scattering from water droplets in a cloud is proposed as a means of generating a bright beacon for measuring the surface profile of a radio telescope. A λ=3 mm transmitter, with an output power of a few watts, illuminating a stratiform cloud, can generate a beacon with the same flux as Mars in 10 GHz bandwidth, but the beacon has a narrow line width, so it is extremely bright. The key advantage of the beacon is that it can be used at any time, and positioned anywhere in the sky, as long as there are clouds.
OH+ emission from cometary knots in planetary nebulae
NASA Astrophysics Data System (ADS)
Priestley, F. D.; Barlow, M. J.
2018-05-01
We model the molecular emission from cometary knots in planetary nebulae (PNe) using a combination of photoionization and photodissociation region (PDR) codes, for a range of central star properties and gas densities. Without the inclusion of ionizing extreme ultraviolet (EUV) radiation, our models require central star temperatures T* to be near the upper limit of the range investigated in order to match observed H2 and OH+ surface brightnesses consistent with observations - with the addition of EUV flux, our models reproduce observed OH+ surface brightnesses for T* ≥ 100 kK. For T* < 80 kK, the predicted OH+ surface brightness is much lower, consistent with the non-detection of this molecule in PNe with such central star temperatures. Our predicted level of H2 emission is somewhat weaker than commonly observed in PNe, which may be resolved by the inclusion of shock heating or fluorescence due to UV photons. Some of our models also predict ArH+ and HeH+ rotational line emission above detection thresholds, despite neither molecule having been detected in PNe, although the inclusion of photodissociation by EUV photons, which is neglected by our models, would be expected to reduce their detectability.
Exponential Stellar Disks in Low Surface Brightness Galaxies: A Critical Test of Viscous Evolution
NASA Astrophysics Data System (ADS)
Bell, Eric F.
2002-12-01
Viscous redistribution of mass in Milky Way-type galactic disks is an appealing way of generating an exponential stellar profile over many scale lengths, almost independent of initial conditions, requiring only that the viscous timescale and star formation timescale are approximately equal. However, galaxies with solid-body rotation curves cannot undergo viscous evolution. Low surface brightness (LSB) galaxies have exponential surface brightness profiles, yet have slowly rising, nearly solid-body rotation curves. Because of this, viscous evolution may be inefficient in LSB galaxies: the exponential profiles, instead, would give important insight into initial conditions for galaxy disk formation. Using star formation laws from the literature and tuning the efficiency of viscous processes to reproduce an exponential stellar profile in Milky Way-type galaxies, I test the role of viscous evolution in LSB galaxies. Under the conservative and not unreasonable condition that LSB galaxies are gravitationally unstable for at least a part of their lives, I find that it is impossible to rule out a significant role for viscous evolution. This type of model still offers an attractive way of producing exponential disks, even in LSB galaxies with slowly rising rotation curves.
Tracers of Stellar Mass-loss. II. Mid-IR Colors and Surface Brightness Fluctuations
NASA Astrophysics Data System (ADS)
González-Lópezlira, Rosa A.
2018-04-01
I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of “extreme” single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.
Automated detection of very Low Surface Brightness galaxies in the Virgo Cluster
NASA Astrophysics Data System (ADS)
Prole, D. J.; Davies, J. I.; Keenan, O. C.; Davies, L. J. M.
2018-04-01
We report the automatic detection of a new sample of very low surface brightness (LSB) galaxies, likely members of the Virgo cluster. We introduce our new software, DeepScan, that has been designed specifically to detect extended LSB features automatically using the DBSCAN algorithm. We demonstrate the technique by applying it over a 5 degree2 portion of the Next-Generation Virgo Survey (NGVS) data to reveal 53 low surface brightness galaxies that are candidate cluster members based on their sizes and colours. 30 of these sources are new detections despite the region being searched specifically for LSB galaxies previously. Our final sample contains galaxies with 26.0 ≤ ⟨μe⟩ ≤ 28.5 and 19 ≤ mg ≤ 21, making them some of the faintest known in Virgo. The majority of them have colours consistent with the red sequence, and have a mean stellar mass of 106.3 ± 0.5M⊙ assuming cluster membership. After using ProFit to fit Sérsic profiles to our detections, none of the new sources have effective radii larger than 1.5 Kpc and do not meet the criteria for ultra-diffuse galaxy (UDG) classification, so we classify them as ultra-faint dwarfs.
Giant Lyman-alpha Nebulae in the Illustris Simulation
NASA Astrophysics Data System (ADS)
Gronke, Max; Bird, Simeon
2017-02-01
Several “giant” Lyα nebulae with an extent ≳300 kpc and observed Lyα luminosity of ≳1044 erg s-1 cm-2 arcsec-2 have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Lyα emission emerging from large halos (M > 1011.5 M⊙) at z ˜ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare the simulated surface brightness maps, profiles, and Lyα spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Lyα nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann, Kimberly A.; Hunter, Deidre A.; Elmegreen, Bruce G., E-mail: kah259@psu.edu, E-mail: dah@lowell.edu, E-mail: bge@us.ibm.com
In this second paper of a series, we explore the B − V , U − B , and FUV−NUV radial color trends from a multi-wavelength sample of 141 dwarf disk galaxies. Like spirals, dwarf galaxies have three types of radial surface brightness profiles: (I) single exponential throughout the observed extent (the minority), (II) down-bending (the majority), and (III) up-bending. We find that the colors of (1) Type I dwarfs generally become redder with increasing radius, unlike spirals which have a blueing trend that flattens beyond ∼1.5 disk scale lengths, (2) Type II dwarfs come in six different “flavors,” one of whichmore » mimics the “U” shape of spirals, and (3) Type III dwarfs have a stretched “S” shape where the central colors are flattish, become steeply redder toward the surface brightness break, then remain roughly constant beyond, which is similar to spiral Type III color profiles, but without the central outward bluing. Faint (−9 > M{sub B} > −14) Type II dwarfs tend to have continuously red or “U” shaped colors and steeper color slopes than bright (−14 > M{sub B} > −19) Type II dwarfs, which additionally have colors that become bluer or remain constant with increasing radius. Sm dwarfs and BCDs tend to have at least some blue and red radial color trend, respectively. Additionally, we determine stellar surface mass density (Σ) profiles and use them to show that the break in Σ generally remains in Type II dwarfs (unlike Type II spirals) but generally disappears in Type III dwarfs (unlike Type III spirals). Moreover, the break in Σ is strong, intermediate, and weak in faint dwarfs, bright dwarfs, and spirals, respectively, indicating that Σ may straighten with increasing galaxy mass. Finally, the average stellar surface mass density at the surface brightness break is roughly 1−2 M {sub ⊙} pc{sup −2} for Type II dwarfs but higher at 5.9 M {sub ⊙} pc{sup −2} or 27 M {sub ⊙} pc{sup −2} for Type III BCDs and dIms, respectively.« less
Total Internal Reflection Accounts for the Bright Color of the Saharan Silver Ant
Aron, Serge
2016-01-01
The Saharan silver ant Cataglyphis bombycina is one of the terrestrial living organisms best adapted to tolerate high temperatures. It has recently been shown that the hairs covering the ant’s dorsal body part are responsible for its silvery appearance. The hairs have a triangular cross-section with two corrugated surfaces allowing a high optical reflection in the visible and near-infrared (NIR) range of the spectrum while maximizing heat emissivity in the mid-infrared (MIR). Those two effects account for remarkable thermoregulatory properties, enabling the ant to maintain a lower thermal steady state and to cope with the high temperature of its natural habitat. In this paper, we further investigate how geometrical optical and high reflection properties account for the bright silver color of C. bombycina. Using optical ray-tracing models and attenuated total reflection (ATR) experiments, we show that, for a large range of incidence angles, total internal reflection (TIR) conditions are satisfied on the basal face of each hair for light entering and exiting through its upper faces. The reflection properties of the hairs are further enhanced by the presence of the corrugated surface, giving them an almost total specular reflectance for most incidence angles. We also show that hairs provide an almost 10-fold increase in light reflection, and we confirm experimentally that they are responsible for a lower internal body temperature under incident sunlight. Overall, this study improves our understanding of the optical mechanisms responsible for the silver color of C. bombycina and the remarkable thermoregulatory properties of the hair coat covering the ant’s body. PMID:27073923
Detectability of Boulders on Near-Earth Asteroids
NASA Astrophysics Data System (ADS)
Miller, Kevin J.; Taylor, Patrick A.; Magri, Christopher; Nolan, Michael C.; Howell, Ellen S.
2014-11-01
Boulders are seen on spacecraft images of near-Earth asteroids Eros and Itokawa. Radar images often show bright pixels or groups of pixels that travel consistently across the surface as the object rotates, which may be indicative of similar boulders on other near-Earth asteroids. Examples of these bright pixels were found on radar observations of 2005 YU55 and 2006 VV2 (Benner et al. 2014). Nolan et al. (2013) also identify one large possible boulder on the surface of Bennu, target of the OSIRIS-REx sample return mission. We explore the detectability of boulders by adding synthetic features on asteroid models, and then simulating radar images. These synthetic features were added using BLENDER ver. 2.70, a free open-source 3-D animation suite. Starting with the shape model for Bennu (diameter ~500 m), spherical 'boulders' of 10 m, 20 m, and 40 m diameter were placed at latitudes between 0 and 90 deg. Simulated radar observations of these models indicated that spherical boulders smaller than 10 m may not be visible in observations but that larger ones should be readily seen. Boulders near the sub-Earth point can be hidden in the bright region near the leading edge, but as the asteroid's rotation moves them towards the terminator, they become visible again, with no significant dependence on the latitude of the boulder. These simulations suggest that we should detect large boulders under most circumstances in high-quality radar images, and we have a good estimate of the occurrence of such features on near-Earth objects. Results of these simulations will be presented.
Another shock for the Bullet cluster, and the source of seed electrons for radio relics
NASA Astrophysics Data System (ADS)
Shimwell, Timothy W.; Markevitch, Maxim; Brown, Shea; Feretti, Luigina; Gaensler, B. M.; Johnston-Hollitt, M.; Lage, Craig; Srinivasan, Raghav
2015-05-01
With Australia Telescope Compact Array observations, we detect a highly elongated Mpc-scale diffuse radio source on the eastern periphery of the Bullet cluster 1E 0657-55.8, which we argue has the positional, spectral and polarimetric characteristics of a radio relic. This powerful relic (2.3 ± 0.1 × 1025 W Hz-1) consists of a bright northern bulb and a faint linear tail. The bulb emits 94 per cent of the observed radio flux and has the highest surface brightness of any known relic. Exactly coincident with the linear tail, we find a sharp X-ray surface brightness edge in the deep Chandra image of the cluster - a signature of a shock front in the hot intracluster medium (ICM), located on the opposite side of the cluster to the famous bow shock. This new example of an X-ray shock coincident with a relic further supports the hypothesis that shocks in the outer regions of clusters can form relics via diffusive shock (re-)acceleration. Intriguingly, our new relic suggests that seed electrons for reacceleration are coming from a local remnant of a radio galaxy, which we are lucky to catch before its complete disruption. If this scenario, in which a relic forms when a shock crosses a well-defined region of the ICM polluted with aged relativistic plasma - as opposed to the usual assumption that seeds are uniformly mixed in the ICM - is also the case for other relics, this may explain a number of peculiar properties of peripheral relics.
NASA Astrophysics Data System (ADS)
Barucci, Maria Antonietta; Fulchignoni, Marcello; Pommerol, Antoine; Erard, Stéphane; Oklay, Nilda; Tosi, Federico; Capaccioni, Fabrizio; Sierks, Holger; Filacchione, Gianrico; Bockelee-Morvan, Dominique; Guettler, Carsten; Fornasier, Sonia; Raponi, Andrea; Deshapriya, J. D. P.; Feller, Clement; Ciarniello, Mauro; Leyrat, Cedric
2016-07-01
Since the Rosetta mission arrived at the comet 67P/Churyumov-Gerasimenko (67/P C-G) on August 2014, the comet nucleus has been mapped by both OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System), and VIRTIS (Visible Infrared Thermal Imaging Spectrometer) acquiring a huge quantity of surface's images and spectra, producing the most detailed maps at the highest spatial resolution of a cometary nucleus. The OSIRIS imaging system (NAC & WAC) has a set of filters at different wavelengths from the ultraviolet (269 nm) to the near-infrared (989 nm). The OSIRIS imaging system has been the first instrument with the capability to map a comet surface at a high resolution reaching a maximum resolution of 11cm/px during the closest fly-by on February 14, 2015 at a distance of about 6 km from the nucleus surface while the VIRTIS spectro-imager (with two channels M and H) operates from 0.25 to 5m with medium and high spectral resolution. The spectral analysis on global scale from the VIRTIS data indicates that the nucleus presents different terrains covered by a very dark and dehydrated organic-rich material [1]. OSIRIS images indicate a morphologically complex and dark surface with a variety of terrain types and several intricate features [2]. The surface shows albedo variation and from the spectrophotometric analysis a large heterogeneity on the surface properties [3, 4, 5]. Limited evidences of exposed H2O ice have been found on the surface of 67/P C-G up to now [6, 7, 8], even though ices are considered to be a major constituent of cometary nuclei. The aim of this work is, taking advantage of the high resolution of the OSIRIS images, i) to detect the bright spots at all dimensions by albedo and spectral slope analyses, ii) to select those spots which could be resolved by VIRTIS and iii ) to deeply analyse the corresponding spectra. The OSIRIS analysis has been carried out on the colours and spectrophotometry of the whole 67/P C-G nucleus from images acquired since the first Rosetta bound orbits in August 2014 up to the end of 2015. The bright spots are spread everywhere on the surface. The analysis of the VIRTIS spectra on the selected positions by OSIRIS allowed us to detect eight spots with positive H2O ice signatures detection. The obtained results with the computed models will be presented and discussed. References : [1] Capaccioni et al. 2015. Science 347, DOI: 10.1126/science.aaa0628 [2] Sierks et al. 2015. Science 347, DOI: 10.1126/science.aaa1044 [3] Fornasier et al. 2015. A&A, 583, A30 [4] Ciarniello et al., 2015, A&A, 583, A31 [5] Oklay et al. 2016. A&A 586, A80 [6] Pommerol et al. 2015. A&A, 583, A25 [7] De Sanctis et al. 2015. Nature 525, 500 [8] Filacchione et al. 2016. Nature 529, 368.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2011-01-01
Aquarius is a combined passive/active L-band microwave instrument developed to map the salinity field at the surface of the ocean from space. The data will support studies of the coupling between ocean circulation, the global water cycle, and climate. The primary science objective of this mission is to monitor the seasonal and interannual variation of the large scale features of the surface salinity field in the open ocean with a spatial resolution of 150 kilometers and a retrieval accuracy of 0.2 practical salinity units globally on a monthly basis. The measurement principle is based on the response of the L-band (1.413 gigahertz) sea surface brightness temperatures (T (sub B)) to sea surface salinity. To achieve the required 0.2 practical salinity units accuracy, the impact of sea surface roughness (e.g. wind-generated ripples and waves) along with several factors on the observed brightness temperature has to be corrected to better than a few tenths of a degree Kelvin. To the end, Aquarius includes a scatterometer to help correct for this surface roughness effect.
NASA Technical Reports Server (NTRS)
2005-01-01
This spectacular image of comet Tempel 1 was taken 67 seconds after it obliterated Deep Impact's impactor spacecraft. The image was taken by the high-resolution camera on the mission's flyby craft. Scattered light from the collision saturated the camera's detector, creating the bright splash seen here. Linear spokes of light radiate away from the impact site, while reflected sunlight illuminates most of the comet surface. The image reveals topographic features, including ridges, scalloped edges and possibly impact craters formed long ago.Synthesizing SMOS Zero-Baselines with Aquarius Brightness Temperature Simulator
NASA Technical Reports Server (NTRS)
Colliander, A.; Dinnat, E.; Le Vine, D.; Kainulainen, J.
2012-01-01
SMOS [1] and Aquarius [2] are ESA and NASA missions, respectively, to make L-band measurements from the Low Earth Orbit. SMOS makes passive measurements whereas Aquarius measures both passive and active. SMOS was launched in November 2009 and Aquarius in June 2011.The scientific objectives of the missions are overlapping: both missions aim at mapping the global Sea Surface Salinity (SSS). Additionally, SMOS mission produces soil moisture product (however, Aquarius data will eventually be used for retrieving soil moisture too). The consistency of the brightness temperature observations made by the two instruments is essential for long-term studies of SSS and soil moisture. For resolving the consistency, the calibration of the instruments is the key. The basis of the SMOS brightness temperature level is the measurements performed with the so-called zero-baselines [3]; SMOS employs an interferometric measurement technique which forms a brightness temperature image from several baselines constructed by combination of multiple receivers in an array; zero-length baseline defines the overall brightness temperature level. The basis of the Aquarius brightness temperature level is resolved from the brightness temperature simulator combined with ancillary data such as antenna patterns and environmental models [4]. Consistency between the SMOS zero-baseline measurements and the simulator output would provide a robust basis for establishing the overall comparability of the missions.
The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains.
Brenes, Roberto; Eames, Christopher; Bulović, Vladimir; Islam, M Saiful; Stranks, Samuel D
2018-04-01
Metal halide perovskites are exceptional candidates for inexpensive yet high-performing optoelectronic devices. Nevertheless, polycrystalline perovskite films are still limited by nonradiative losses due to charge carrier trap states that can be affected by illumination. Here, in situ microphotoluminescence measurements are used to elucidate the impact of light-soaking individual methylammonium lead iodide grains in high-quality polycrystalline films while immersing them with different atmospheric environments. It is shown that emission from each grain depends sensitively on both the environment and the nature of the specific grain, i.e., whether it shows good (bright grain) or poor (dark grain) luminescence properties. It is found that the dark grains show substantial rises in emission, while the bright grain emission is steady when illuminated in the presence of oxygen and/or water molecules. The results are explained using density functional theory calculations, which reveal strong adsorption energies of the molecules to the perovskite surfaces. It is also found that oxygen molecules bind particularly strongly to surface iodide vacancies which, in the presence of photoexcited electrons, lead to efficient passivation of the carrier trap states that arise from these vacancies. The work reveals a unique insight into the nature of nonradiative decay and the impact of atmospheric passivation on the microscale properties of perovskite films. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The trans-neptunian object UB313 is larger than Pluto.
Bertoldi, F; Altenhoff, W; Weiss, A; Menten, K M; Thum, C
2006-02-02
The most distant known object in the Solar System, 2003 UB313 (97 au from the Sun), was recently discovered near its aphelion. Its high eccentricity and inclination to the ecliptic plane, along with its perihelion near the orbit of Neptune, identify it as a member of the 'scattered disk'. This disk of bodies probably originates in the Kuiper belt objects, which orbit near the ecliptic plane in circular orbits between 30 and 50 au, and may include Pluto as a member. The optical brightness of 2003 UB313, if adjusted to Pluto's distance, is greater than that of Pluto, which suggested that it might be larger than Pluto. The actual size, however, could not be determined from the optical measurements because the surface reflectivity (albedo) was unknown. Here we report observations of the thermal emission of 2003 UB313 at a wavelength of 1.2 mm, which in combination with the measured optical brightness leads to a diameter of 3,000 +/- 300 +/- 100 km. Here the first error reflects measurement uncertainties, while the second derives from the unknown object orientation. This makes 2003 UB313 the largest known trans-neptunian object, even larger than Pluto (2,300 km). The albedo is 0.60 +/- 0.10 +/- 0.05, which is strikingly similar to that of Pluto, suggesting that the methane seen in the optical spectrum causes a highly reflective icy surface.
(Almost) Dark Galaxies in the ALFALFA Survey: Isolated H i-bearing Ultra-diffuse Galaxies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leisman, Lukas; Haynes, Martha P.; Giovanelli, Riccardo
2017-06-20
We present a sample of 115 very low optical surface brightness, highly extended, H i-rich galaxies carefully selected from the ALFALFA survey that have similar optical absolute magnitudes, surface brightnesses, and radii to recently discovered “ultra-diffuse” galaxies (UDGs). However, these systems are bluer and have more irregular morphologies than other UDGs, are isolated, and contain significant reservoirs of H i. We find that while these sources have normal star formation rates for H i-selected galaxies of similar stellar mass, they have very low star formation efficiencies. We further present deep optical and H i-synthesis follow-up imaging of three of thesemore » H i-bearing ultra-diffuse sources. We measure H i diameters extending to ∼40 kpc, but note that while all three sources have large H i diameters for their stellar mass, they are consistent with the H i mass–H i radius relation. We further analyze the H i velocity widths and rotation velocities for the unresolved and resolved sources, respectively, and find that the sources appear to inhabit halos of dwarf galaxies. We estimate spin parameters, and suggest that these sources may exist in high spin parameter halos, and as such may be potential H i-rich progenitors to the ultra-diffuse galaxies observed in cluster environments.« less
The new world atlas of artificial night sky brightness
Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C. M.; Elvidge, Christopher D.; Baugh, Kimberly; Portnov, Boris A.; Rybnikova, Nataliya A.; Furgoni, Riccardo
2016-01-01
Artificial lights raise night sky luminance, creating the most visible effect of light pollution—artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world’s land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights. PMID:27386582
The new world atlas of artificial night sky brightness.
Falchi, Fabio; Cinzano, Pierantonio; Duriscoe, Dan; Kyba, Christopher C M; Elvidge, Christopher D; Baugh, Kimberly; Portnov, Boris A; Rybnikova, Nataliya A; Furgoni, Riccardo
2016-06-01
Artificial lights raise night sky luminance, creating the most visible effect of light pollution-artificial skyglow. Despite the increasing interest among scientists in fields such as ecology, astronomy, health care, and land-use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, we present the world atlas of artificial sky luminance, computed with our light pollution propagation software using new high-resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the world and more than 99% of the U.S. and European populations live under light-polluted skies. The Milky Way is hidden from more than one-third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of the world's land surfaces between 75°N and 60°S, 88% of Europe, and almost half of the United States experience light-polluted nights.
VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)
NASA Astrophysics Data System (ADS)
Capaccioli, M.; Spavone, M.; Grado, A.; Iodice, E.; Limatola, L.; Napolitano, N. R.; Cantiello, M.; Paolillo, M.; Romanowsky, A. J.; Forbes, D. A.; Puzia, T. H.; Raimondo, G.; Schipani, P.
2015-11-01
The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file).
VEGAS-SSS: A VST Early-Type GAlaxy Survey: Analysis of Small Stellar System
NASA Astrophysics Data System (ADS)
Cantiello, M.
VEGAS-SSS is a program devoted to study the properties of small stellar systems (SSSs) around bright galaxies, built on the VEGAS survey. At completion, the survey will have collected detailed photometric information of ˜ 100 bright early-type galaxies to study the properties of diffuse light (surface brightness, colours, SBF, etc.) and the clustered light (compact stellar systems) out to previously unreached projected galactocentric radii. VEGAS-SSS will define an accurate and homogeneous dataset that will have an important legacy value for studies of the evolution and transformation processes taking place in galaxies through the fossil information provided by SSSs.
Photometric study of fine structure of a sunspot penumbra (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, R.
1973-10-01
The microphotometric analysis of the fime structure of a sunspot penumbra, photographed in white hight with the 38 cm refractor of the Pic du Midi Observatory with a resolution very close to 0.3'', allows to give from it, at lambda 5280, the following picture: the penumbra appears to consist of bright grains, lined up in the form of filaments, with am average brightness I/sub beta //I = 0.95 of average width 0.36''(270 km) and which cover 43% of its surface, show-ing up a dark background of brightness I/sub beta //I = 0.6 nearly uniform. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zemcov, M.; Cooray, A.; Bock, J.
We have observed four massive galaxy clusters with the SPIRE instrument on the Herschel Space Observatory and measure a deficit of surface brightness within their central region after removing detected sources. We simulate the effects of instrumental sensitivity and resolution, the source population, and the lensing effect of the clusters to estimate the shape and amplitude of the deficit. The amplitude of the central deficit is a strong function of the surface density and flux distribution of the background sources. We find that for the current best fitting faint end number counts, and excellent lensing models, the most likely amplitudemore » of the central deficit is the full intensity of the cosmic infrared background (CIB). Our measurement leads to a lower limit to the integrated total intensity of the CIB of I{sub 250{mu}m}>0.69{sub -0.03}{sup +0.03}(stat.){sub -0.06}{sup +0.11}(sys.) MJy sr{sup -1}, with more CIB possible from both low-redshift sources and from sources within the target clusters. It should be possible to observe this effect in existing high angular resolution data at other wavelengths where the CIB is bright, which would allow tests of models of the faint source component of the CIB.« less
Globular clusters in high-redshift dwarf galaxies: a case study from the Local Group
NASA Astrophysics Data System (ADS)
Zick, Tom O.; Weisz, Daniel R.; Boylan-Kolchin, Michael
2018-06-01
We present the reconstructed evolution of rest-frame ultraviolet (UV) luminosities of the most massive Milky Way dwarf spheroidal satellite galaxy, Fornax, and its five globular clusters (GCs) across redshift, based on analysis of the stellar fossil record and stellar population synthesis modelling. We find that (1) Fornax's (proto-)GCs can generate 10-100 times more UV flux than the field population, despite comprising <˜{5} per cent of the stellar mass at the relevant redshifts; (2) due to their respective surface brightnesses, it is more likely that faint, compact sources in the Hubble Frontier Fields (HFFs) are GCs hosted by faint galaxies, than faint galaxies themselves. This may significantly complicate the construction of a galaxy UV luminosity function at z > 3. (3) GC formation can introduce order-of-magnitude errors in abundance matching. We also find that some compact HFF objects are consistent with the reconstructed properties of Fornax's GCs at the same redshifts (e.g. surface brightness, star formation rate), suggesting we may have already detected proto-GCs in the early Universe. Finally, we discuss the prospects for improving the connections between local GCs and proto-GCs detected in the early Universe.
Lewis, David J; Dore, Valentina; Rogers, Nicola J; Mole, Thomas K; Nash, Gerard B; Angeli, Panagiota; Pikramenou, Zoe
2013-11-26
To establish highly luminescent nanoparticles for monitoring fluid flows, we examined the preparation of silica nanoparticles based on immobilization of a cyclometalated iridium(III) complex and an examination of the photophysical studies provided a good insight into the Ir(III) microenvironment in order to reveal the most suitable silica nanoparticles for micro particle imaging velocimetry (μ-PIV) studies. Iridium complexes covalently incorporated at the surface of preformed silica nanoparticles, [Ir-4]@Si500-Z, using a fluorinated polymer during their preparation, demonstrated better stability than those without the polymer, [Ir-4]@Si500, as well as an increase in steady state photoluminescence intensity (and therefore particle brightness) and lifetimes which are increased by 7-fold compared with nanoparticles with the same metal complex attached covalently throughout their core, [Ir-4]⊂Si500. Screening of the nanoparticles in fluid flows using epi-luminescence microscopy also confirm that the brightest, and therefore most suitable particles for microparticle imaging velocimetry (μ-PIV) measurements are those with the Ir(III) complex immobilized at the surface with fluorosurfactant, that is [Ir-4]@Si500-Z. μ-PIV studies demonstrate the suitability of these nanoparticles as nanotracers in microchannels.
Galaxy Interactions, Tidal Debris, and the Origin of Intracluster Light in the Coma Cluster
NASA Astrophysics Data System (ADS)
Gregg, Michael
1999-07-01
We propose to obtain deep WFPC2 and parallel STIS images of low surface brightness tidal debris that we have recently discovered in the Coma cluster; the material is being stripped from its parent galaxy and added to the general cluster background. These images will enable direct study of the brightest blue and red supergiants, globular clusters, and star forming regions which may be present, or will place strong limits on the numbers of such objects and any recent star formation. We also propose similar observations of the parent spiral, NGC4911, in the core of Coma; it is losing its ISM to the hot cluster gas and as well as the low surface brightness tidal debris. By imaging this galaxy, we will get a high resolution look at the interaction between the galaxy and interstellar medium, as well as any ram-pressure induced star formation. The tidal features in Coma appear to be adding material to the background light and cD galaxy envelopes at a significant rate; determining the nature of the added stellar population and the interactions which produce it are critical to understanding the formation and evolution of cD galaxies and clusters.
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
NASA Astrophysics Data System (ADS)
Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew
2016-11-01
Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.
NASA Astrophysics Data System (ADS)
Tomita, H.; Hihara, T.; Kubota, M.
2018-01-01
Near-surface air-specific humidity is a key variable in the estimation of air-sea latent heat flux and evaporation from the ocean surface. An accurate estimation over the global ocean is required for studies on global climate, air-sea interactions, and water cycles. Current remote sensing techniques are problematic and a major source of errors for flux and evaporation. Here we propose a new method to estimate surface humidity using satellite microwave radiometer instruments, based on a new finding about the relationship between multichannel brightness temperatures measured by satellite sensors, surface humidity, and vertical moisture structure. Satellite estimations using the new method were compared with in situ observations to evaluate this method, confirming that it could significantly improve satellite estimations with high impact on satellite estimation of latent heat flux. We recommend the adoption of this method for any satellite microwave radiometer observations.
IRAS surface brightness maps of reflection nebulae in the Pleiades
NASA Technical Reports Server (NTRS)
Castelaz, Michael W.; Werner, M. W.; Sellgren, K.
1987-01-01
Surface brightness maps at 12, 25, 60, and 100 microns were made of a 2.5 deg x 2.5 deg area of the reflection nebulae in the Pleiades by coadding IRAS scans of this region. Emission is seen surrounding 17 Tau, 20 Tau, 23 Tau, and 25 Tau in all four bands, coextensive with the visible reflection nebulosity, and extending as far as 30 arcminutes from the illuminating stars. The infrared energy distributions of the nebulae peak in the 100 micron band, but up to 40 percent of the total infrared power lies in the 12 and 25 micron bands. The brightness of the 12 and 25 micron emission and the absence of temperature gradients at these wavelengths are inconsistent with the predictions of equilibrium thermal emission models. The emission at these wavelengths appears to be the result of micron nonequilibrium emission from very small grains, or from molecules consisting of 10-100 carbon atoms, which have been excited by ultraviolet radiation from the illuminating stars.
Application of photometric models to asteroids
NASA Technical Reports Server (NTRS)
Bowell, Edward; Hapke, Bruce; Domingue, Deborah; Lumme, Kari; Peltoniemi, Jouni; Harris, Alan W.
1989-01-01
The way an asteroid or other atmosphereless solar system body varies in brightness in response to changing illumination and viewing geometry depends in a very complicated way on the physical and optical properties of its surface and on its overall shape. This paper summarizes the formulation and application of recent photometric models by Hapke (1981, 1984, 1986) and by Lumme and Bowell (1981). In both models, the brightness of a rough and porous surface is parameterized in terms of the optical properties of individual particles, by shadowing between particles, and by the way in which light is scattered among collections of particles. Both models succeed in their goal of fitting the observed photometric behavior of a wide variety of bodies, but neither has led to a very complete understanding of the properties of asteroid regoliths, primarily because, in most cases, the parameters in the present models cannot be adequately constrained by observations of integral brightness alone over a restricted range of phase angles.
Relative effects of plumage coloration and vegetation density on nest success
Miller, M.W.
1999-01-01
Many passerine species are highly dichromatic with brightly-colored males and cryptically-colored females. Bright plumage in males is commonly thought to arise as a result of sexual selection by females such that males with bright coloration possess high fitness. However, bright plumage potentially could expose males to increased predation risk. Consistent with this idea, males of many highly dichromatic passerine species do not incubate. I tested whether brightly-colored males avoid incubation to reduce the probability of visual predators locating their nest. This hypothesis predicts greater hatching success for clutches incubated by cryptically-colored individuals than by brightly-colored individuals. The Northern Cardinal (Cardinalis cardinalis) is a common dichromatic species that breeds throughout the eastern U.S. I placed two button-quail (Turnix st).) eggs in each of 203 simulated cardinal nests. Dull brown cardboard, simulating a female cardinal, was placed over about half of all clutches. Bright red cardboard, simulating a male cardinal, was placed over the other clutches. Nest success was highest for well-concealed nests (87%) and lowest for nests in open habitat (54%). Nests containing red cardboard did not have significantly lower success than nests with brown cardboard, nor did I detect a significant color X vegetation-density interaction. My analysis may have had insufficient power to detect an effect of color on nest success; alternatively, brightly-colored males that do not incubate may achieve benefits unrelated to predation risk.
NASA Astrophysics Data System (ADS)
Comerón, S.; Salo, H.; Knapen, J. H.
2018-02-01
Recent studies have made the community aware of the importance of accounting for scattered light when examining low-surface-brightness galaxy features such as thick discs. In our past studies of the thick discs of edge-on galaxies in the Spitzer Survey of Stellar Structure in Galaxies - the S4G - we modelled the point spread function as a Gaussian. In this paper we re-examine our results using a revised point spread function model that accounts for extended wings out to more than 2\\farcm5. We study the 3.6 μm images of 141 edge-on galaxies from the S4G and its early-type galaxy extension. Thus, we more than double the samples examined in our past studies. We decompose the surface-brightness profiles of the galaxies perpendicular to their mid-planes assuming that discs are made of two stellar discs in hydrostatic equilibrium. We decompose the axial surface-brightness profiles of galaxies to model the central mass concentration - described by a Sérsic function - and the disc - described by a broken exponential disc seen edge-on. Our improved treatment fully confirms the ubiquitous occurrence of thick discs. The main difference between our current fits and those presented in our previous papers is that now the scattered light from the thin disc dominates the surface brightness at levels below μ 26 mag arcsec-2. We stress that those extended thin disc tails are not physical, but pure scattered light. This change, however, does not drastically affect any of our previously presented results: 1) Thick discs are nearly ubiquitous. They are not an artefact caused by scattered light as has been suggested elsewhere. 2) Thick discs have masses comparable to those of thin discs in low-mass galaxies - with circular velocities vc< 120 km s-1 - whereas they are typically less massive than the thin discs in high-mass galaxies. 3) Thick discs and central mass concentrations seem to have formed at the same epoch from a common material reservoir. 4) Approximately 50% of the up-bending breaks in face-on galaxies are caused by the superposition of a thin and a thick disc where the scale-length of the latter is the largest. Data of Figs. B.1 and C.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A5
Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime
NASA Astrophysics Data System (ADS)
Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao
2016-03-01
In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.
Atmospheric Science Data Center
2013-04-19
... the albedo. Bright surfaces have albedo near unity, and dark surfaces have albedo near zero. The DHR refers to the amount of spectral ... Atmospheric Science Data Center's MISR Level 3 Imagery web site . The Multi-angle Imaging SpectroRadiometer observes the daylit ...
Teradiode's high brightness semiconductor lasers
NASA Astrophysics Data System (ADS)
Huang, Robin K.; Chann, Bien; Burgess, James; Lochman, Bryan; Zhou, Wang; Cruz, Mike; Cook, Rob; Dugmore, Dan; Shattuck, Jeff; Tayebati, Parviz
2016-03-01
TeraDiode is manufacturing multi-kW-class ultra-high brightness fiber-coupled direct diode lasers for industrial applications. A fiber-coupled direct diode laser with a power level of 4,680 W from a 100 μm core diameter, <0.08 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. Our TeraBlade industrial platform achieves world-record brightness levels for direct diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.5 mm-mrad and is the lowest BPP multi-kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 4-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers. We have also demonstrated novel high peak power lasers and high brightness Mid-Infrared Lasers.
10 Years of Asian Dust Storm Observations from SeaWiFS: Source, Pathway, and Interannual Variability
NASA Technical Reports Server (NTRS)
Hsu, N. Christina; Tsay, S.-C.; King, M.D.; Jeong, M.-J.
2008-01-01
In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as SeaWiFS and MODIS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over desert and semi-desert regions. The comparisons show reasonable agreements between these two. These new satellite products will allow scientists to determine quantitatively the aerosol properties near sources using high spatial resolution measurements from SeaWiFS and MODIS-like instruments. The multiyear satellite measurements (1998 - 2007) from SeaWiFS will be utilized to investigate the interannual variability of source, pathway, and dust loading associated with these dust outbreaks in East Asia. The monthly averaged aerosol optical thickness during the springtime from SeaWiFS will also be compared with the MODIS Deep Blue products.
1979-02-05
Photo by Voyager 1 (JPL) Jupiter, its Great Red Spot and three of its four largest satellites are visible in this photo taken Feb 5, 1979 by Voyager 1. The spacecraft was 28.4 million kilomters (17.5 million miles) from the planet at the time. The inner-most large satellite, Io, can be seen against Jupiter's disk. Io is distinguished by its bright, brown-yellow surface. To the right of Jupiter is the satellite Europa, also very bright but with fainter surface markings. The darkest satellite, Callisto (still nearly twice as bright as Earth's Moon), is barely visible at the bottom left of the picture. Callisto shows a bright patch in its northern hemisphere. All tThree orbit Jupiter in the equatorial plane, and appear in their present position because Voyageris above the plane. All three satellites show the same face to Jupiter always -- just as Earth's Moon always shows us the same face. In this photo we see the sides of the satellites that always face away from the planet. Jupiter's colorfully banded atmosphere displays complex patterns highlighted by the Great Red Spot, a large, circulating atmospheric disturbance. This photo was assembled from three black and white negatives by the Image Processing Lab at Jet Propulsion Laboratory. JPL manages and controls the Voyage Project for NASA's Office of Space Science. (ref: P-21083)
VizieR Online Data Catalog: Reference Catalogue of Bright Galaxies (RC1; de Vaucouleurs+ 1964)
NASA Astrophysics Data System (ADS)
de Vaucouleurs, G.; de Vaucouleurs, A.
1995-11-01
The Reference Catalogue of Bright Galaxies lists for each entry the following information: NGC number, IC number, or A number; A, B, or C designation; B1950.0 positions, position at 100 year precession; galactic and supergalactic positions; revised morphological type and source; type and color class in Yerkes list 1 and 2; Hubble-Sandage type; revised Hubble type according to Holmberg; logarithm of mean major diameter (log D) and ratio of major to minor diameter (log R) and their weights; logarithm of major diameter; sources of the diameters; David Dunlap Observatory type and luminosity class; Harvard photographic apparent magnitude; weight of V, B-V(0), U-B(0); integrated magnitude B(0) and its weight in the B system; mean surface brightness in magnitude per square minute of arc and sources for the B magnitude; mean B surface brightness derived from corrected Harvard magnitude; the integrated color index in the standard B-V system; "intrinsic" color index; sources of B-V and/or U-B; integrated color in the standard U-B system; observed radial velocity in km/sec; radial velocity corrected for solar motion in km/sec; sources of radial velocities; solar motion correction; and direct photographic source. The catalog was created by concatenating four files side by side. (1 data file).
Evidence of Titan's Climate History from Evaporite Distribution
NASA Astrophysics Data System (ADS)
MacKenzie, Shannon; Barnes, J. W.; Brown, R.; Sotin, C.; Buratti, B. J.; Clark, R.; Baines, K. H.; Nicholson, P. D.; Le Mouelic, S.; Rodriguez, S.
2013-10-01
5-μm bright material on the surface of Titan has been positively correlated with the shores of RADAR-dark (liquid-filled) and the bottoms of RADAR-bright (empty) lakebeds in the region just south of Ligea Mare by Barnes et al. (2011). This water ice-poor spectral unit was thus proposed to be evaporite, the formerly-dissolved solute deposits left behind when the solvent (here presumably a methane/ethane mixture) evaporates. Because evaporite forms under specific conditions—solute and solvent at or near saturation, no outlets or other means of affecting the solution balance, etc.—the presence of evaporite can shed light on Titan's climate history. Adding to the previously identified cases, we use the breadth of available Cassini VIMS data to comprehensively map new instances of evaporite. In particular, we found new instances of evaporite in the north polar region and the midlatitudes. Our map of the global distribution of Titan's 5-μm-bright deposits can be used to constrain the historical evolution of Titan's surface volatile inventory and may bear on the question of the time variation of the methane concentration in Titan's atmosphere. Furthermore, we explore the implications of the idea that the 5-$\\mu$m-bright areas are indeed mostly evaporitic in nature with respect to the relationship between the regional and global volatile cycles.
Neuhauser, S; Handler, J
2013-09-01
The aims of this study were to compare two different methods of quantifying the colour of the luminal surface of the equine endometrium and to relate the results to histopathological evidence of inflammation and fibrosis. The mucosal surfaces of 17 equine uteri obtained from an abattoir were assessed using a spectrophotometer and by computer-assisted analysis of photographs. Values were converted into L(*)a(*)b(*) colour space. Although there was significant correlation between the two methods of quantification, variations in 'brightness', 'red' and 'yellow' values were noted. Within a given uterus, measurements using the spectrophotometer did not differ significantly. Using photographic analysis, brightness differed between horns, although no differences in chromaticity were found. Histopathological classification of changes within endometria corresponded to measured differences in colour. Extensive fibrosis was associated with increased brightness and decreased chromaticity using both methods. Inflammation correlated with reduced chromaticity, when measured by spectrophotometry, and with reduced brightness and yellow values, when assessed photographically. For this technique to gain wider acceptance as a diagnostic tool, e.g. for the endoscopic evaluation of uterine mucosae in vivo, standardised illumination techniques will be required so that colours can be compared and interpreted accurately. Copyright © 2013 Elsevier Ltd. All rights reserved.
Extremely Low Passive Microwave Brightness Temperatures Due to Thunderstorms
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.
2015-01-01
Extreme events by their nature fall outside the bounds of routine experience. With imperfect or ambiguous measuring systems, it is appropriate to question whether an unusual measurement represents an extreme event or is the result of instrument errors or other sources of noise. About three weeks after the Tropical Rainfall Measuring Mission (TRMM) satellite began collecting data in Dec 1997, a thunderstorm was observed over northern Argentina with 85 GHz brightness temperatures below 50 K and 37 GHz brightness temperatures below 70 K (Zipser et al. 2006). These values are well below what had previously been observed from satellite sensors with lower resolution. The 37 GHz brightness temperatures are also well below those measured by TRMM for any other storm in the subsequent 16 years. Without corroborating evidence, it would be natural to suspect a problem with the instrument, or perhaps an irregularity with the platform during the first weeks of the satellite mission. Automated quality control flags or other procedures in retrieval algorithms could treat these measurements as errors, because they fall outside the expected bounds. But the TRMM satellite also carries a radar and a lightning sensor, both confirming the presence of an intense thunderstorm. The radar recorded 40+ dBZ reflectivity up to about 19 km altitude. More than 200 lightning flashes per minute were recorded. That same storm's 19 GHz brightness temperatures below 150 K would normally be interpreted as the result of a low-emissivity water surface (e.g., a lake, or flood waters) if not for the simultaneous measurements of such intense convection. This paper will examine records from TRMM and related satellite sensors including SSMI, AMSR-E, and the new GMI to find the strongest signatures resulting from thunderstorms, and distinguishing those from sources of noise. The lowest brightness temperatures resulting from thunderstorms as seen by TRMM have been in Argentina in November and December. For SSMI sensors carried on five DMSP satellites examined so far, the lowest thunderstorm-related brightness temperatures have been from Argentina in November - December and from Minnesota in June-July. The Minnesota cases were associated with spotter reports of large hail, significant severe wind, and tornadoes. Those locations have the record-holders for each satellite. The lowest AMSR-E 36.5 GHz brightness temperatures associated with deep convection have been in Argentina; the lowest 89.0 GHz brightness temperatures were from Typhoon Bolaven in the Philippine Sea. This paper will show examples of cases with the lowest brightness temperatures, and map the locations of these and other storms with brightness temperatures nearly as low. The study is largely motivated by the new GMI sensor on the Global Precipitation Mission core satellite, launched in February 2014, with its high resolution expected to reveal unprecedented low brightness temperatures when extreme events are encountered.
VizieR Online Data Catalog: Face-on disk galaxies photometry. I. (de Jong+, 1994)
NASA Astrophysics Data System (ADS)
de Jong, R. S.; van der Kruit, P. C.
1995-07-01
We present accurate surface photometry in the B, V, R, I, H and K passbands of 86 spiral galaxies. The galaxies in this statistically complete sample of undisturbed spirals were selected from the UGC to have minimum diameters of 2' and minor over major axis ratios larger than 0.625. This sample has been selected in such a way that it can be used to represent a volume limited sample. The observation and reduction techniques are described in detail, especially the not often used driftscan technique for CCDs and the relatively new techniques using near-infrared (near-IR) arrays. For each galaxy we present radial profiles of surface brightness. Using these profiles we calculated the integrated magnitudes of the galaxies in the different passbands. We performed internal and external consistency checks for the magnitudes as well as the luminosity profiles. The internal consistency is well within the estimated errors. Comparisons with other authors indicate that measurements from photographic plates can show large deviations in the zero-point magnitude. Our surface brightness profiles agree within the errors with other CCD measurements. The comparison of integrated magnitudes shows a large scatter, but a consistent zero-point. These measurements will be used in a series of forthcoming papers to discuss central surface brightnesses, scalelengths, colors and color gradients of disks of spiral galaxies. (9 data files).
Cratering and Grooved Terrain on Ganymede
NASA Technical Reports Server (NTRS)
1979-01-01
This color picture as acquired by Voyager 1 during its approach to Ganymede on Monday afternoon (the 5th of March). At ranges between about 230 to 250 thousand km. The image shows detail on the surface with a resolution of four and a half km. This picture is just south of PIA001515 (P21161) and shows more craters. It also shows the two distinctive types of terrain found by Voyager, the darker ungrooved regions and the lighter areas which show the grooves or fractures in abundance. The most striking features are the bright ray craters which havE a distinctly 'bluer' color appearing white against the redder background. Ganymede's surface is known to contain large amounts of surface ice and it appears that these relatively young craters have spread bright fresh ice materials over the surface. Likewise, the lighter color and reflectivity of the grooved areas suggests that here too, there is cleaner ice. We see ray craters with all sizes of ray patterns, ranging from extensive systems of the crater in the northern part of this picture, which has rays at least 300-500 kilometers long, down to craters which have only faint remnants of bright ejecta patterns. This variation suggests that, as on the Moon, there are processes which act to darken ray material, probably 'gardening' by micrometeoroid impact. JPL manages and controls the Voyager project for NASA's Office of Space Science.
NASA Astrophysics Data System (ADS)
Prasanna Deshapriya, Jasinghege Don; Barucci, Maria Antonieta; Fornasier, Sonia; Feller, Clement; Hasselmann, Pedro Henrique; Sierks, Holger; Ramy El-Maarry, Mohammed; OSIRIS Team
2016-10-01
Since the Rosetta spacecraft rendezvoused with the comet 67P/Churyumov-Gerasimenko in August 2014, OSIRIS (Optical,Spectroscopic and Infrared Remote Imaging System) has been instrumental in characterising and studying both the nucleus as well as the coma of the comet. OSIRIS has thus far contributed to a plethora of scientific results. OSIRIS observations have revealed a bilobate nucleus accreted from a pair of cometesimals each having an irregular shape and a size, populated with numerous geomorphological features. Among the well defined 26 regions of the comet, Khonsu region inherits a heterogeneous terrain composed of smooth areas, scarps, outcroppings, large boulders, an intriguing 'pancake' feature, both transient and long-lived bright patches plus many other geological features.Our work focuses on the spectrophotometric analysis of some selected terrain and bright patches in the Khonsu region. Despite the variety of geological features, their spectrophotometric properties appear to share a similar composition. It is noticeable also that the smooth areas in Khonsu possess similar spectrophotometric behaviour to some other regions of the comet. By comparing the spectrophotometric characteristics of observed bright patches on Khonsu with those described and attributed to the presence of H2O ice on the comet by Barucci et al. (2016) utilising infrared data, we suggest that the bright patches we present could plausibly be derived from H2O ice. One of the studied bright patches has been observed to exist on the surface for more than 4 months without a major diminution of its size, which implies the existence of potential subsurface icy layers. The location of this feature is strongly correlated with a cometary outburst during the perihelion passage of the comet in August 2015, and we interpret it to have triggered the surface modifications necessary to unearth the stratified icy layers beneath the surface.
Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning
NASA Astrophysics Data System (ADS)
Yazaki, Akio; Kim, Chanju; Chan, Jacky; Mahjoubfar, Ata; Goda, Keisuke; Watanabe, Masahiro; Jalali, Bahram
2014-06-01
High-speed surface inspection plays an important role in industrial manufacturing, safety monitoring, and quality control. It is desirable to go beyond the speed limitation of current technologies for reducing manufacturing costs and opening a new window onto a class of applications that require high-throughput sensing. Here, we report a high-speed dark-field surface inspector for detection of micrometer-sized surface defects that can travel at a record high speed as high as a few kilometers per second. This method is based on a modified time-stretch microscope that illuminates temporally and spatially dispersed laser pulses on the surface of a fast-moving object and detects scattered light from defects on the surface with a sensitive photodetector in a dark-field configuration. The inspector's ability to perform ultrafast dark-field surface inspection enables real-time identification of difficult-to-detect features on weakly reflecting surfaces and hence renders the method much more practical than in the previously demonstrated bright-field configuration. Consequently, our inspector provides nearly 1000 times higher scanning speed than conventional inspectors. To show our method's broad utility, we demonstrate real-time inspection of the surface of various objects (a non-reflective black film, transparent flexible film, and reflective hard disk) for detection of 10 μm or smaller defects on a moving target at 20 m/s within a scan width of 25 mm at a scan rate of 90.9 MHz. Our method holds promise for improving the cost and performance of organic light-emitting diode displays for next-generation smart phones, lithium-ion batteries for green electronics, and high-efficiency solar cells.
1998-05-08
In this "family portrait," the four Galilean Satellites are shown to scale. These four largest moons of Jupiter shown in increasing distance from Jupiter are (left to right) Io, Europa, Ganymede, and Callisto. These global views show the side of volcanically active Io which always faces away from Jupiter, icy Europa, the Jupiter-facing side of Ganymede, and heavily cratered Callisto. The appearances of these neighboring satellites are amazingly different even though they are relatively close to Jupiter (350,000 kilometers for Io; 1, 800,000 kilometers for Callisto). These images were acquired on several orbits at very low "phase" angles (the sun, spacecraft, moon angle) so that the sun is illuminating the Jovian moons from completely behind the spacecraft, in the same way a full moon is viewed from Earth. The colors have been enhanced to bring out subtle color variations of surface features. North is to the top of all the images which were taken by the Solid State Imaging (SSI) system on NASA's Galileo spacecraft. Io, which is slightly larger than Earth's moon, is the most colorful of the Galilean satellites. Its surface is covered by deposits from actively erupting volcanoes, hundreds of lava flows, and volcanic vents which are visible as small dark spots. Several of these volcanoes are very hot; at least one reached a temperature of 2000 degrees Celsius (3600 degrees Fahrenheit) in the summer of 1997. Prometheus, a volcano located slightly right of center on Io's image, was active during the Voyager flybys in 1979 and is still active as Galileo images were obtained. This global view was obtained in September 1996 when Galileo was 485,000 kilometers from Io; the finest details that can be discerned are about 10 km across. The bright, yellowish and white materials located at equatorial latitudes are believed to be composed of sulfur and sulfur dioxide. The polar caps are darker and covered by a redder material. Europa has a very different surface from its rocky neighbor, Io. Galileo images hint at the possibility of liquid water beneath the icy crust of this moon. The bright white and bluish parts of Europa's surface are composed almost completely of water ice. In contrast, the brownish mottled regions on the right side of the image may be covered by salts (such as hydrated magnesium-sulfate) and an unknown red component. The yellowish mottled terrain on the left side of the image is caused by some other, unknown contaminant. This global view was obtained in June 1997 when Galileo was 1.25 million kilometers from Europa; the finest details that can be discerned are 25 kilometers across. Ganymede, larger than the planet Mercury, is the largest Jovian satellite. Its distinctive surface is characterized by patches of dark and light terrain. Bright frost is visible at the north and south poles. The very bright icy impact crater, Tros, is near the center of the image in a region known as Phrygia Sulcus. The dark area to the northwest of Tros is Perrine Regio; the dark terrain to the south and southeast is Nicholson Regio. Ganymede's surface is characterized by a high degree of crustal deformation. Much of the surface is covered by water ice, with a higher amount of rocky material in the darker areas. This global view was taken in September 1997 when Galileo was 1.68 million kilometers from Ganymede; the finest details that can be discerned are about 67 kilometers across. Callisto's dark surface is pocked by numerous bright impact craters. The large Valhalla multi-ring structure (visible near the center of the image) has a diameter of about 4,000 kilometers, making it one of the largest impact features in the Solar System. Although many crater rims exhibit bright icy "bedrock" material, a dark layer composed of hydrated minerals and organic components (tholins) is seen inside many craters and in other low lying areas. Evidence of tectonic and volcanic activity, seen on the other Galilean satellites, appears to be absent on Callisto. This global view was obtained in November 1997 when Galileo was 684,500 kilometers from Callisto; the finest details that can be discerned are about 27 kilometers across. http://photojournal.jpl.nasa.gov/catalog/PIA01400
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 1 May 2002) The Science This image is from the region of Syrtis Major, which is dominated by a low-relief shield volcano. This area is believed to be an area of vigorous aeolian activity with strong winds in the east-west direction. The effects of these winds are observed as relatively bright streaks across the image, extending from topographic features such as craters. The brighter surface material probably indicates a smaller relative particle size in these areas, as finer particles have a higher albedo. The bright streaks seen off of craters are believed to have formed during dust storms. A raised crater rim can cause a reduction in the wind velocity directly behind it, which results in finer particles being preferentially deposited in this location. In the top half of the image, there is a large bright streak that crosses the entire image. There is no obvious topographic obstacle, therefore it is unclear whether it was formed in the same manner as described above. This image is located northwest of Nili Patera, a large caldera in Syrtis Major. Different flows from the caldera eruptions can be recognized as raised ridges, representing the edge of a flow lobe. The Story In the 17th century, Holland was in its Golden Age, a time of cultural greatness and immense political and economic influence in the world. In that time, lived a inquisitive person named Christian Huygens. As a boy, he loved to draw and to figure out problems in mathematics. As a man, he used these talents to make the first detailed drawings of the Martian surface - - only 50 years or so after Galileo first turned his telescope on Mars. Mars suddenly became something other than a small red dot in the sky. One of the drawings Huygens made was of a dark marking on the red planet's surface named Syrtis Major. Almost 350 years later, here we are with an orbiter that can show us this place in detail. Exploration lives! It's great we can study this area up close. In earlier periods of history, scientists were fascinated with Syrtis Major because this dark region varied so much through the seasons and years. Some people thought it might be a changing sea, and others thought it might be vegetation. Early spacecraft like Mariner and Viking revealed for the first time that the changes were caused by the wind blowing dust and sand across the surface. What we can see in this image is exactly that: evidence of a lot of wind action. Bright dust patches streak across this image, formed through wind interference from craters and other landforms. These wispy, bright streaks are spread on the surface by a vigorous, east-west wind that kicked up huge dust storms, scattering the fine particles of sand and dust in an almost etherial pattern. The bright streaks in the top part of the image might have formed in a slightly different way, because there is no landform standing in the wind's way. Beneath the bright surface dust are raised ridges that mark the edges of earlier lava flows from Nili Patera, a Martian 'caldera.' A caldera is a collapsed, bowl-shaped depression at the top of a volcano cone. Can you imagine how Christian Huygens would feel if he lived today and could see all of this knowledge unfold? Or how it would feel to be the first person to stand in this dark volcanic and cratered region, knowing how many discovers had paved the way to that moment? Yes, exploration lives!
NASA Astrophysics Data System (ADS)
Liu, Jin-Song; Hao, Zhong-Hua
2003-10-01
The self-deflection of a bright solitary beam can be controlled by a dark solitary beam via a parametric coupling effect between the bright and dark solitary beams in a separate bright-dark spatial soliton pair supported by an unbiased series photorefractive crystal circuit. The spatial shift of the bright solitary beam centre as a function of the input intensity of the dark solitary beam (hat rho) is investigated by taking into account the higher-order space charge field in the dynamics of the bright solitary beam via both numerical and perturbation methods under steady-state conditions. The deflection amount (Deltas0), defined as the value of the spatial shift at the output surface of the crystal, is a monotonic and nonlinear function of hat rho. When hat rho is weak or strong enough, Deltas0 is, in fact, unchanged with hat rho, whereas Deltas0 increases or decreases monotonically with hat rho in a middle range of hat rho. The corresponding variation range (deltas) depends strongly on the value of the input intensity of the bright solitary beam (r). There are some peak and valley values in the curve of deltas versus r under some conditions. When hat rho increases, the bright solitary beam can scan toward both the direction same as and opposite to the crystal's c-axis. Whether the direction is the same as or opposite to the c-axis depends on the parameter values and configuration of the crystal circuit, as well as the value of r. Some potential applications are discussed.
Volcanism on Io: New insights from global geologic mapping
Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L.
2011-01-01
We produced the first complete, 1:15M-scale global geologic map of Jupiter's moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ???18% of Io's surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (???0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >??30?? latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2+contaminants) occur mostly in the equatorial antijovian region (??30??, 90-230??W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io's recent bright flows, and that primary sulfur-rich effusions could be an important component of Io's recent volcanism. An unusual concentration of bright flows at ???45-75??N, ???60-120??W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io's surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io's heat flow. (4) Mountains cover only ???3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io's mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io's flow fields, suggesting active emplacement is occurring in less than a third of Io's
IUE high resolution spectrophotometry of H Ly alpha emission from the local interstellar medium
NASA Technical Reports Server (NTRS)
Clarke, J. T.; Bowyer, S.; Fahr, H. J.; Lay, G.
1984-01-01
IUE high dispersion spectra of resonantly scattered solar Ly alpha emission from H moving into the solar system with the local interstellar wind are reported which are based on observations conducted in April 1981 and April 1983. A heliocentric velocity of -29 + or - 5 km/s has been observed from the ISW component along with a surface brightness which has decreased from about 1000 to 800 Rayleighs over the two-year interval. A preliminary derivation of the velocity of the ISM at large distances from the sun yields a value of 25.6 + or - 5 km/s.
The Impact of Changing Cloud Cover on the High Arctic's Primary Cooling-to-space Windows
NASA Astrophysics Data System (ADS)
Mariani, Zen; Rowe, Penny; Strong, Kimberly; Walden, Von; Drummond, James
2014-05-01
In the Arctic, most of the infrared energy emitted by the surface escapes to space in two atmospheric windows at 10 and 20 μm. As the Arctic warms, the 20 μm cooling-to-space window becomes increasingly opaque (or "closed"), trapping more surface infrared radiation in the atmosphere, with implications for the Arctic's radiative energy balance. Since 2006, the Canadian Network for the Detection of Atmospheric Change (CANDAC) has measured downwelling infrared radiance with an Atmospheric Emitted Radiance Interferometer (AERI) at the Polar Environment Atmospheric Research Laboratory (PEARL) at Eureka, Canada, providing the first long-term measurements of the 10 and 20 μm windows in the high Arctic. In this work, measurements of the distribution of downwelling 10 and 20 µm brightness temperatures at Eureka are separated based on cloud cover, providing a comparison to an existing climatology from the Southern Great Plains (SGP). Measurements of the downwelling radiance at both 10 and 20 μm exhibit strong seasonal variability as a result of changes in temperature and water vapour, in addition to variability with cloud cover. When separated by season, brightness temperatures in the 20 µm window are found to be independent of cloud thickness in the summertime, indicating that this window is closed in the summer. Radiance trends in three-month averages are positive and are significantly larger (factor > 5) than the trends detected at the SGP, indicating that changes in the downwelling radiance are accelerated in the high Arctic compared to lower latitudes. This statistically significant increase (> 5% / yr) in radiance at 10 μm occurs only when the 20 μm window is mostly transparent, or "open" (i.e., in all seasons except summer), and may have long-term consequences, particularly as warmer temperatures and increased water vapour "close" the dirty window for a prolonged period. These surface-based measurements of radiative forcing can be used to quantify changes in the high-Arctic energy budget and evaluate general circulation model simulations.
The Origin of the EUV Emission in Her X-1
NASA Technical Reports Server (NTRS)
Leahy, D. A.; Marshall, H.
1999-01-01
Her X-1 exhibits a strong orbital modulation of its EUV flux with a large decrease around time of eclipse of the neutron star, and a significant dip which appears at different orbital phases at different 35-day phases. We consider observations of Her X-1 in the EUVE by the Extreme Ultraviolet Explorer (EUVE), which includes data from 1995 near the end of the Short High state, and date from 1997 at the start of the Short High state. The observed EUV lightcurve has bright and faint phases. The bright phase can be explained as the low energy tail of the soft x-ray pulse. The faint phase emission has been modeled to understand its origin. We find: the x-ray heated surface of HZ Her is too cool to produce enough emission; the accretion disk does not explain the orbital modulation; however, reflection of x-rays off of HZ Her can produce the observed lightcurve with orbital eclipses. The dip can be explained by shadowing of the companion by the accretion disk. We discuss the constraints on the accretion disk geometry derived from the observed shadowing.
Video-rate functional photoacoustic microscopy at depths
NASA Astrophysics Data System (ADS)
Wang, Lidai; Maslov, Konstantin; Xing, Wenxin; Garcia-Uribe, Alejandro; Wang, Lihong V.
2012-10-01
We report the development of functional photoacoustic microscopy capable of video-rate high-resolution in vivo imaging in deep tissue. A lightweight photoacoustic probe is made of a single-element broadband ultrasound transducer, a compact photoacoustic beam combiner, and a bright-field light delivery system. Focused broadband ultrasound detection provides a 44-μm lateral resolution and a 28-μm axial resolution based on the envelope (a 15-μm axial resolution based on the raw RF signal). Due to the efficient bright-field light delivery, the system can image as deep as 4.8 mm in vivo using low excitation pulse energy (28 μJ per pulse, 0.35 mJ/cm2 on the skin surface). The photoacoustic probe is mounted on a fast-scanning voice-coil scanner to acquire 40 two-dimensional (2-D) B-scan images per second over a 9-mm range. High-resolution anatomical imaging is demonstrated in the mouse ear and brain. Via fast dual-wavelength switching, oxygen dynamics of mouse cardio-vasculature is imaged in realtime as well.
NASA Technical Reports Server (NTRS)
Macmillan, Daniel S.; Han, Daesoo
1989-01-01
The attitude of the Nimbus-7 spacecraft has varied significantly over its lifetime. A summary of the orbital and long-term behavior of the attitude angles and the effects of attitude variations on Scanning Multichannel Microwave Radiometer (SMMR) brightness temperatures is presented. One of the principal effects of these variations is to change the incident angle at which the SMMR views the Earth's surface. The brightness temperatures depend upon the incident angle sensitivities of both the ocean surface emissivity and the atmospheric path length. Ocean surface emissivity is quite sensitive to incident angle variation near the SMMR incident angle, which is about 50 degrees. This sensitivity was estimated theoretically for a smooth ocean surface and no atmosphere. A 1-degree increase in the angle of incidence produces a 2.9 C increase in the retrieved sea surface temperature and a 5.7 m/sec decrease in retrieved sea surface wind speed. An incident angle correction is applied to the SMMR radiances before using them in the geophysical parameter retrieval algorithms. The corrected retrieval data is compared with data obtained without applying the correction.
1979-07-07
Range : 1,094,666 km (677,000 mi.) This false color picture of Callisto was taken by Voyager 2 and is centered on 11 degrees N and 171 degrees W. This rendition uses an ultraviolet image for the blue component. Because the surface displays regional contrast in UV, variations in surface materials are apparent. Notice in particular the dark blue haloes which surround bright craters in the eastern hemisphere. The surface of Callisto is the most heavily cratered of the Galilean satellites and resembles ancient heavily cratered terrains on the moon, Mercury and Mars. The bright areas are ejecta thrown out by relatively young impact craters. A large ringed structure, probably an impact basin, is shown in the upper left part of the picture. The color version of this picture was constructed by compositing black and white images taken through the ultraviolet, clear and orange filters.
Spectral characteristics of the microwave emission from a wind-driven foam-covered sea
NASA Technical Reports Server (NTRS)
Webster, W. J., Jr.; Wilheit, T. T.; Gloersen, P.; Ross, D. B.
1976-01-01
Aircraft observations of the microwave emission from the wind-driven foam-covered Bering Sea substantiate earlier results and show that the combination of surface roughness and white water yields a significant microwave brightness temperature dependence on wind speed over a wide range of microwave wavelengths, with a decreasing dependence for wavelengths above 6 cm. The spectral characteristic of brightness temperature as a function of wind speed is consistent with a foam model in which the bubbles give rise to a cusped surface between the foam and the sea. In the fetch-limited situation the contribution of the wave structure at the surface appears to increase as the foam coverage decreases. Although the data show that the thin streaks are the most important part of the white water signature, there is some evidence for the contribution of whitecaps.
Surface modification of graphene using HBC-6ImBr in solution-processed OLEDs
NASA Astrophysics Data System (ADS)
Cheng, Tsung-Chin; Ku, Ting-An; Huang, Kuo-You; Chou, Ang-Sheng; Chang, Po-Han; Chang, Chao-Chen; Yue, Cheng-Feng; Liu, Chia-Wei; Wang, Po-Han; Wong, Ken-Tsung; Wu, Chih-I.
2018-01-01
In this work, we report a simple method for solution-processed organic light emitting devices (OLEDs), where single-layer graphene acts as the anode and the hexa-peri-hexabenzocoronene exfoliating agent (HBC-6ImBr) provides surface modification. In SEM images, the PEDOT:PSS solution fully covered the graphene electrode after coating with HBC-6ImBr. The fabricated solution-processed OLEDs with a single-layer graphene anode showed outstanding brightness at 3182 cd/m2 and current efficiency up to 6 cd/A which is comparable to that of indium tin oxide films, and the OLED device brightness performance increases six times compared to tri-layer graphene treated with UV-Ozone at the same driving voltage. This method can be used in a wide variety of solution-processed organic optoelectronics on surface-modified graphene anodes.
NASA Technical Reports Server (NTRS)
Deguchi, Shuji; Watson, William D.
1988-01-01
Statistical methods are developed for gravitational lensing in order to obtain analytic expressions for the average surface brightness that include the effects of microlensing by stellar (or other compact) masses within the lensing galaxy. The primary advance here is in utilizing a Markoff technique to obtain expressions that are valid for sources of finite size when the surface density of mass in the lensing galaxy is large. The finite size of the source is probably the key consideration for the occurrence of microlensing by individual stars. For the intensity from a particular location, the parameter which governs the importance of microlensing is determined. Statistical methods are also formulated to assess the time variation of the surface brightness due to the random motion of the masses that cause the microlensing.
Electron beam emission from a diamond-amplifier cathode.
Chang, Xiangyun; Wu, Qiong; Ben-Zvi, Ilan; Burrill, Andrew; Kewisch, Jorg; Rao, Triveni; Smedley, John; Wang, Erdong; Muller, Erik M; Busby, Richard; Dimitrov, Dimitre
2010-10-15
The diamond amplifier (DA) is a new device for generating high-current, high-brightness electron beams. Our transmission-mode tests show that, with single-crystal, high-purity diamonds, the peak current density is greater than 400 mA/mm², while its average density can be more than 100 mA/mm². The gain of the primary electrons easily exceeds 200, and is independent of their density within the practical range of DA applications. We observed the electron emission. The maximum emission gain measured was 40, and the bunch charge was 50 pC/0.5 mm². There was a 35% probability of the emission of an electron from the hydrogenated surface in our tests. We identified a mechanism of slow charging of the diamond due to thermal ionization of surface states that cancels the applied field within it. We also demonstrated that a hydrogenated diamond is extremely robust.
The Impact History of Vesta: New Views from the Dawn Mission
NASA Technical Reports Server (NTRS)
OBrien, D. P.; Marchi, S.; Schenk, P.; Mittlefehldt, D. W.; Jaumann, R.; Ammannito, E.; Buczkowski, D. L.; DeSanctis, M. C.; Filacchione, G.; Gaskell, R.;
2011-01-01
The Dawn mission has completed its Survey and High-Altitude Mapping Orbit (HAMO) phases at Vesta, resulting in 60-70 meter per pixel imaging, high-resolution image-derived topography, and visual and infrared spectral data covering up to approx.50 degrees north latitude (the north pole was in shadow during these mission phases). These data have provided unprecedented views of the south polar impact structure first detected in HST imaging [1], now named Rheasilvia, and in addition hint at the existence of a population of ancient basins. Smaller craters are seen at all stages from fresh to highly-eroded, with some exposing atypically bright or dark material. The morphology of some craters has been strongly influenced by regional slope. Detailed studies of crater morphology are underway. We have begun making crater counts to constrain the relative ages of different regions of the surface, and are working towards developing an absolute cratering chronology for Vesta's surface.
Hints at Ceres Composition from Color
2015-09-30
This map-projected view of Ceres was created from images taken by NASA's Dawn spacecraft during its high-altitude mapping orbit, in August and September, 2015. Images taken using infrared (920 nanometers), red (750 nanometers) and blue (440 nanometers) spectral filters were combined to create this false-color view. Redder colors indicate places on Ceres' surface that reflect light strongly in the infrared, while bluish colors indicate enhanced reflectivity at short (bluer) wavelengths; green indicates places where albedo, or overall brightness, is strongly enhanced. Scientists use this technique in order to highlight subtle color differences across Ceres, which would appear fairly uniform in natural color. This can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features. http://photojournal.jpl.nasa.gov/catalog/PIA19977
Ceres Topographic Globe Animation
2015-07-28
This frame from an animation shows a color-coded map from NASA Dawn mission revealing the highs and lows of topography on the surface of dwarf planet Ceres. The color scale extends 3.7 miles (6 kilometers) below the surface in purple to 3.7 miles (6 kilometers) above the surface in brown. The brightest features (those appearing nearly white) -- including the well-known bright spots within a crater in the northern hemisphere -- are simply reflective areas, and do not represent elevation. The topographic map was constructed from analyzing images from Dawn's framing camera taken from varying sun and viewing angles. The map was combined with an image mosaic of Ceres and projected onto a 3-D shape model of the dwarf planet to create the animation. http://photojournal.jpl.nasa.gov/catalog/PIA19605
NASA Technical Reports Server (NTRS)
Vukovich, Fred M.; Toll, David L.; Kennard, Ruth L.
1989-01-01
Surface biophysical estimates were derived from analysis of NOAA Advanced Very High Spectral Resolution (AVHRR) spectral data of the Senegalese area of west Africa. The parameters derived were of solar albedo, spectral visible and near-infrared band reflectance, spectral vegetative index, and ground temperature. Wet and dry linked AVHRR scenes from 1981 through 1985 in Senegal were analyzed for a semi-wet southerly site near Tambacounda and a predominantly dry northerly site near Podor. Related problems were studied to convert satellite derived radiance to biophysical estimates of the land surface. Problems studied were associated with sensor miscalibration, atmospheric and aerosol spatial variability, surface anisotropy of reflected radiation, narrow satellite band reflectance to broad solar band conversion, and ground emissivity correction. The middle-infrared reflectance was approximated with a visible AVHRR reflectance for improving solar albedo estimates. In addition, the spectral composition of solar irradiance (direct and diffuse radiation) between major spectral regions (i.e., ultraviolet, visible, near-infrared, and middle-infrared) was found to be insensitive to changes in the clear sky atmospheric optical depth in the narrow band to solar band conversion procedure. Solar albedo derived estimates for both sites were not found to change markedly with significant antecedent precipitation events or correspondingly from increases in green leaf vegetation density. The bright soil/substrate contributed to a high albedo for the dry related scenes, whereas the high internal leaf reflectance in green vegetation canopies in the near-infrared contributed to high solar albedo for the wet related scenes. The relationship between solar albedo and ground temperature was poor, indicating the solar albedo has little control of the ground temperature. The normalized difference vegetation index (NDVI) and the derived visible reflectance were more sensitive to antecedent rainfall amounts and green vegetation changes than were near-infrared changes. The information in the NDVI related to green leaf density changes primarily was from the visible reflectance. The contribution of the near-infrared reflectance to explaining green vegetation is largely reduced when there is a bright substrate.
Nonlinear Optics Technology, Area 1: FWM (Four Wave Mixing) Technology
1986-09-22
41 0 u Q)Co o 0 0. >1- o 0 41 -A $4 P4 38 paths to insure a high degree of copolarization at the Na cell. Turning mirrors (M) were visible dielectric...or MAXBRIte coated Zerodur substrate optics with twentieth wave or better surface figures. A 50-50 beamsplitter (BSl) served to generate the two pump...retroreflecting mirror . The signal beam, which essentially constituted a very bright glint, was split off of the pump leg by a beamsplitter and directed to a
Simultaneous Luminescence Pressure and Temperature Mapping
NASA Technical Reports Server (NTRS)
Buck, Gregory M. (Inventor)
1998-01-01
A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (-150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.
ERIC Educational Resources Information Center
Cole, Mike
2017-01-01
Critical Race Theory (CRT) has a relatively long history in the United States, from where it originated, dating back to the 1980s. Its presence in UK academic literature, however, is more recent, having surfaced in the first decade of the twenty-first century. I focus in this paper on developments in CRT in the UK from January 2012 to January…
Simultaneous Luminescence Pressure and Temperature Mapping System
NASA Technical Reports Server (NTRS)
Buck, Gregory M. (Inventor)
1995-01-01
A simultaneous luminescence pressure and temperature mapping system is developed including improved dye application techniques for surface temperature and pressure measurements from 5 torr to 1000 torr with possible upgrade to from 0.5 torr to several atmospheres with improved camera resolution. Adsorbed perylene dye on slip-cast silica is pressure (oxygen) sensitive and reusable to relatively high temperatures (approximately 150 C). Adsorbed luminescence has an approximately linear color shift with temperature, which can be used for independent temperature mapping and brightness pressure calibration with temperature.
NASA Astrophysics Data System (ADS)
Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey
2017-11-01
Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.
Attività fotometrica di Plutone nel 2005
NASA Astrophysics Data System (ADS)
Bianciardi, Giorgio
2006-06-01
This report describes unfiltered CCD differential photometry of Pluto performed between 1 August and 10 September 2005. Results show that in the present year Pluto is maintaining a high photometric activity, higher than expected (maximum brightness variations of 0.29±0.02 magnitudes) in relation to the rotational period. Pluto's appearance is now drastically changing owing to viewing geometry and the next collapse of its atmosphere onto the surface. Amateurs too should dedicate particular attention to the photometric evolution of the planet.
Calibrating the Type Ia Supernova Distance Scale Using Surface Brightness Fluctuations
NASA Astrophysics Data System (ADS)
Potter, Cicely; Jensen, Joseph B.; Blakeslee, John; Milne, Peter; Garnavich, Peter M.; Brown, Peter
2018-06-01
We have observed 20 supernova host galaxies with HST WFC3/IR in the F110W filter, and prepared the data for Surface Brightness Fluctuation (SBF) distance measurements. The purpose of this study is to determine if there are any discrepancies between the SBF distance scale and the type-Ia SN distance scale, for which local calibrators are scarce. We have now measured SBF magnitudes to all early-type galaxies that have hosted SN Ia within 80 Mpc for which SBF measurements are possible. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to galaxies out to 80 Mpc.
Ground temperature measurement by PRT-5 for maps experiment
NASA Technical Reports Server (NTRS)
Gupta, S. K.; Tiwari, S. N.
1978-01-01
A simple algorithm and computer program were developed for determining the actual surface temperature from the effective brightness temperature as measured remotely by a radiation thermometer called PRT-5. This procedure allows the computation of atmospheric correction to the effective brightness temperature without performing detailed radiative transfer calculations. Model radiative transfer calculations were performed to compute atmospheric corrections for several values of the surface and atmospheric parameters individually and in combination. Polynomial regressions were performed between the magnitudes or deviations of these parameters and the corresponding computed corrections to establish simple analytical relations between them. Analytical relations were also developed to represent combined correction for simultaneous variation of parameters in terms of their individual corrections.
Bright Summer Afternoon on the Mars Utopian Planitia
NASA Technical Reports Server (NTRS)
1976-01-01
A UTOPIAN BRIGHT SUMMER AFTERNOON ON MARS--Looking south from Viking 2 on September 6, the orange-red surface of the nearly level plain upon which the spacecraft sits is seen strewn with rocks as large as three feet across. Many of these rocks are porous and sponge-like, similar to some of Earth's volcanic rocks. Other rocks are coarse-grained such as the large rock at lower left. Between the rocks, the surface is blanketed with fine-grained material that, in places, is piled into small drifts and banked against some of the larger blocks. The cylindrical mast with the orange cable is the low-gain antenna used to receive commands from Earth.
NASA Technical Reports Server (NTRS)
Sandage, A.; Tarenghi, M.; Binggeli, B.
1984-01-01
Attention is given to the technical aspects of photometric measurements of 109 galaxies near the center of the Virgo Cluster, noting various types of radii and surface brightness for about 50 E and dE galaxies in the sample that range in absolute magnitude from -20 to -12. These data are combined with data from the literature for giant E and dwarf E galaxies in the Local Group to study the systematic properties of E galaxies over a range of one million luminosities. The radial intensity profiles derived are fitted to the manifold of King (1978) models to derive model-dependent central surface brightness, core radii, and cutoff radii.
NASA Astrophysics Data System (ADS)
Lin, Zhong-Yi; Vincent, Jean-Baptiste; A'Hearn, Mike; Lara, Luisa; Knollenberg, Joerg; Ip, Wing-Huen; Osiris Team
2016-04-01
The OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) WAC and NAC camera onboard the ESA Rosetta spacecraft orbiting 67P/Churyumov-Gersimenko has captured a lot of outbursts since July, 2015. Most of their source regions were located at southern hemisphere of comet C-G. Including the March- and perihelion-outbursts, the detected events show a variety of morphological features (i.e. broad fan, collimated jet and so on). In this work, we investigate these events and characterize the physical properties, including the surface brightness profiles, ejected mass and speed if there were two or more images acquired by the same filter during the outburst timeframe.
NASA Technical Reports Server (NTRS)
Loose, Hans-Hermann; Thuan, Trinh X.
1986-01-01
The first results of a large-scale program to study the morphology and structure of blue compact dwarf galaxies from CCD observations are presented. The observations and reduction procedures are described, and surface brightness and color profiles are shown. The results are used to discuss the morphological type of Haro 2 and its stellar populations. It is found that Haro 2 appears to be an extreme example of an elliptical galaxy undergoing intense star formation in its central regions, and that the oldest stars it contains were made only about four million yr ago. The 'missing' mass problem of Haro 2 is also discussed.
Satellite microwave and in situ observations of the Weddell Sea ice cover and its marginal ice zone
NASA Technical Reports Server (NTRS)
Comiso, J. C.; Sullivan, C. W.
1986-01-01
The radiative and physical characteristics of the Weddell Sea ice cover and its marginal ice zone are analyzed using multichannel satellite passive microwave data and ship and helicopter observations obtained during the 1983 Antarctic Marine Ecosystem Research. Winter and spring brightness temperatures are examined; spatial variability in the brightness temperatures of consolidated ice in winter and spring cyclic increases and decrease in brightness temperatures of consolidated ice with an amplitude of 50 K at 37 GHz and 20 K at 18 GHz are observed. The roles of variations in air temperature and surface characteristics in the variability of spring brightness temperatures are investigated. Ice concentrations are derived using the frequency and polarization techniques, and the data are compared with the helicopter and ship observations. Temporal changes in the ice margin structure and the mass balance of fresh water and of biological features of the marginal ice zone are studied.
Dark Material at the Surface of Polar Crater Deposits on Mercury
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Cavanaugh, John F.; Sun, Xiaoli; Mazarico, Erwan; Smith, David E.; Zuber, Maria T.; Solomon, Sean C.; Paige, Daid A.
2012-01-01
Earth-based radar measurements [1-3] have yielded images of radar-bright material at the poles of Mercury postulated to be near-surface water ice residing in cold traps on the permanently shadowed floors of polar impact craters. The Mercury Laser Altimeter (MLA) on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft has now mapped much of the north polar region of Mercury [4] (Fig. 1). Radar-bright zones lie within polar craters or along poleward-facing scarps lying mainly in shadow. Calculations of illumination with respect to solid-body motion [5] show that at least 0.5% of the surface area north of 75deg N lies in permanent shadow, and that most such permanently shadowed regions (PSRs) coincide with radar-bright regions. MLA transmits a 1064-nm-wavelength laser pulse at 8 Hz, timing the leading and trailing edges of the return pulse. MLA can in some cases infer energy and thereby surface reflectance at the laser wavelength from the returned pulses. Surficial exposures of water ice would be optically brighter than the surroundings, but persistent surface water ice would require temperatures over all seasons to remain extremely low (<110 K). Thermal models [6,7] incorporating direct and scattered radiation, Mercury s eccentric orbit, 3:2 spin-orbit resonance, and near-zero obliquity generally do not support such conditions in all permanently shadowed craters but suggest that water ice buried near the surface (<0.5 m depth) could survive for > 1 Gy. We describe measurements of reflectivity derived from MLA pulse returns. These reflectivity data show that surface materials in the shadowed regions are darker than their surroundings, enough to strongly attenuate or extinguish laser returns. Such measurements appear to rule out widespread surface exposures of water ice. We consider explanations for the apparent low reflectivity of these regions involving other types of volatile deposit.
NASA Astrophysics Data System (ADS)
Wang, Huan; Liang, Xiaoping; Liu, Kai; Zhou, Qianqian; Chen, Peng; Wang, Jun; Li, Jianxin
2016-03-01
Dy3+ doped SrAl2O4:Eu2+ phosphors were synthesized by high temperature solid phase method in a weak reducing atmosphere (5% H2 + 95% N2). The relationship between the crushed granularity and the phosphors brightness was studied. The effect of co-doping amount of Dy3+, Tb3+ and Si4+ on the structure and properties of SrAl2O4:Eu2+ via response surface method was investigated. Photoluminescence measurement results showed that the initial afterglow brightness of 0.002 mol% Dy3+ doped SrAl2O4:Eu2+0.002 phosphors decreased after first increased within the sintering temperature range from 1150 to 1400 °C, which created the highest value of 12,101 mcd/m2 at 1300 °C. Numerous coarse particles in the powder ought to be crushed for the practical application, however, the brightness became lower accompanied by the decrease of the granularity. The luminescence property of SrAl2O4:Eu2+ sintered at 1200 °C improved by co-doping Dy3+-Tb3+-Si4+. The results of response surface method showed that the influence extent on the luminescence property was Dy3+ > Tb3+ > Si4+. When the co-doping amount in SrAl2O4:Eu2+0.002 phosphors of Dy3+, Tb3+ and Si4+ was 0.001 mol%, 0.0005 mol% and 0.002 mol%, respectively, the initial afterglow brightness of SrAl2O4 was up to the highest value of 12,231 mcd/m2, which was in good agreement on the predicted maximum value of 12,519 mcd/m2 with the optimum co-doping amount of 0.0015 mol% Dy3+, 0.0005 mol% Tb3+ and 0.0017 mol% Si4+. The brightness of co-doped phosphors not only increased by 56.79% than that of SrAl2O4:Eu2+0.002, Dy3+0.002 sintered at 1200 °C, but also was above that of 1300 °C. The emission spectra results showed that, compared with 0.001 mol% Dy3+ doped phosphor, the emission peak of 0.001 mol% Dy3+-0.001 mol% Tb3+ co-doped phosphor generated red shift and increased by 9.3% in emission intensity; 0.001 mol% Dy3+-0.004 mol% Si4+ and 0.001 mol% Dy3+-0.001 mol% Tb3+-0.004 mol% Si4+ co-doped SrAl2O4:Eu2+0.002 emission peak created blue shift and increased by 37.2% and 47.6% in emission intensity, respectively.
A high brightness probe of polymer nanoparticles for biological imaging
NASA Astrophysics Data System (ADS)
Zhou, Sirong; Zhu, Jiarong; Li, Yaping; Feng, Liheng
2018-03-01
Conjugated polymer nanoparticles (CPNs) with high brightness in long wavelength region were prepared by the nano-precipitation method. Based on fluorescence resonance energy transfer (FRET) mechanism, the high brightness property of the CPNs was realized by four different emission polymers. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) displayed that the CPNs possessed a spherical structure and an average diameter of 75 nm. Analysis assays showed that the CPNs had excellent biocompatibility, good photostability and low cytotoxicity. The CPNs were bio-modified with a cell penetrating peptide (Tat, a targeted element) through covalent link. Based on the entire wave fluorescence emission, the functionalized CPNs1-4 can meet multichannel and high throughput assays in cell and organ imaging. The contribution of the work lies in not only providing a new way to obtain a high brightness imaging probe in long wavelength region, but also using targeted cell and organ imaging.
Transport of a high brightness proton beam through the Munich tandem accelerator
NASA Astrophysics Data System (ADS)
Moser, M.; Greubel, C.; Carli, W.; Peeper, K.; Reichart, P.; Urban, B.; Vallentin, T.; Dollinger, G.
2015-04-01
Basic requirement for ion microprobes with sub-μm beam focus is a high brightness beam to fill the small phase space usually accepted by the ion microprobe with enough ion current for the desired application. We performed beam transport simulations to optimize beam brightness transported through the Munich tandem accelerator. This was done under the constraint of a maximum ion current of 10 μA that is allowed to be injected due to radiation safety regulations and beam power constrains. The main influence of the stripper foil in conjunction with intrinsic astigmatism in the beam transport on beam brightness is discussed. The calculations show possibilities for brightness enhancement by using astigmatism corrections and asymmetric filling of the phase space volume in the x- and y-direction.
Evidence of Space Weathering Processes Across the Surface of Vesta
NASA Technical Reports Server (NTRS)
Pieters, Carle M.; Blewett, David T.; Gaffey, Michael; Mittlefehldt, David W.; CristinaDeSanctis, Maria; Reddy, Vishnu; Coradini, Angioletta; Nathues, Andreas; Denevi, Brett W.; Li, Jian-Yang;
2011-01-01
As NASA s Dawn spacecraft explores the surface of Vesta, it has become abundantly clear that Vesta is like no other planetary body visited to date. Dawn is collecting global data at increasingly higher spatial resolution during its one-year orbital mission. The bulk properties of Vesta have previously been linked to the HED meteorites through remote mineral characterization of its surface from Earth-based spectroscopy. A principal puzzle has been why Vesta exhibits relatively unweathered diagnostic optical features compared to other large asteroids. Is this due to the composition of this proto-planet or the space environment at Vesta? Alteration or weathering of materials in space normally develops as the products of several processes accumulate on the surface or in an evolving particulate regolith, transforming the bedrock into fragmental material with properties that may be measurably different from the original. Data from Dawn reveal that the regolith of Vesta is exceptionally diverse. Regional surface units are observed that have not been erased by weathering with time. Several morphologically-fresh craters have excavated bright, mafic-rich materials and exhibit bright ray systems. Some of the larger craters have surrounding subdued regions (often asymmetric) that are lower in albedo and relatively red-sloped in the visible while exhibiting weaker mafic signatures. Several other prominent craters have rim exposures containing very dark material and/or display a system of prominent dark rays. Most, but not all, dark areas associated with craters exhibit significantly lower spectral contrast, suggesting that either a Vesta lithology with an opaque component has been exposed locally or that the surface has been contaminated by a relatively dark impactor. Similarly, most, but not all, bright areas associated with craters exhibit enhanced mafic signatures compared to surroundings. On a regional scale, the large south polar structure and surrounding terrain exhibit relatively strong mafic absorption features, suggesting either a concentration of mafic materials or that materials exposed have been less affected by space weathering products. These combined initial observations indicate some space weathering processes are active in this part of the main asteroid belt, but are highly variable across the surface of Vesta. Such processes include: impacts from wandering asteroidal debris and local mixing at both micro- and macro-scales, irradiation by solar wind and galactic particles, production and distribution of impact breccias or melt products, and local movement of materials to gravity lows (gradual as well as sudden).
NASA Technical Reports Server (NTRS)
Allen, R. J.
1992-01-01
The relation between the projected face-on velocity-integrated CO (1-0) brightness ICO and the 20 cm nonthermal radio continuum brightness T20 is examined as a function of radius in the Galactic disk. Averaged in 1 kpc annuli, the ratio ICO/T20 is nearly constant with a mean value of 1.51 +/- 0.34 km/s from 2 to 10 kpc. The manner in which ICO and T20 are derived for the Galaxy is different in several significant respects from the more direct observational determinations possible in nearby galaxies. The fact that the Galaxy also follows this correlation further strengthens the generality of the result.
Morphologic examination of CD3-CD4(bright) cells in rat liver.
Yamamoto, Satoshi; Sato, Yosinobu; Abo, Toru; Hatakeyama, Katsuyosi
2002-01-01
Recently, we found CD3-CD4(bright) cells with comparative specificity for normal rat liver. In the current study, we investigated the type and form of both CD3-CD4(bright) cells and CD3-CD4(dull) cells in the rat liver. The surface phenotype of hepatic mononuclear cells in Lewis rats was identified by using monoclonal antibodies including anti-CD4, anti-CD3, and antimacrophage in conjunction with two- or three-color immunofluorescence analysis. CD3-CD4(bright) cells and CD3-CD4(dull) cells were examined morphologically using May-Giemsa staining and scanning electron microscopy. The distribution of CD3-CD4(bright) cells and CD3-CD4(dull) cells 48 hours after intravenous administration of liposome-encapsulated dichloromethylene diphosphate was also investigated. In comparison to CD3-CD4(dull) cells, CD3-CD4(bright) cells were slightly larger macrophages with abundant cytoplasmic granules, being present with comparative specificity for normal rat liver and showing negligible effects by intravenous liposome-encapsulated dichloromethylene diphosphate administration. These data suggest that in normal young rat liver these CD3-CD4(dull) and CD3-CD4(bright) cells may be dendritic cells and Kupffer cells that shift from the liver to the spleen or vice versa. These cells may also be able to locally proliferate in liver or spleen due to changes in the developing liver.
Morphologic and thermophysical characteristics of lava flows southwest of Arsia Mons, Mars
NASA Astrophysics Data System (ADS)
Crown, David A.; Ramsey, Michael S.
2017-08-01
The morphologic and thermophysical characteristics of part of the extensive lava flow fields southwest of Arsia Mons (22.5-27.5°S, 120-130°W) have been examined using a combination of orbital VNIR and TIR datasets. THEMIS images provide context for the regional geology and record diurnal temperature variability that is diverse and unusual for flow surfaces in such close proximity. CTX images were used to distinguish dominant flow types and assess local age relationships between individual lava flows. CTX and HiRISE images provide detailed information on flow surface textures and document aeolian effects as they reveal fine-grained deposits in many low-lying areas of the flow surfaces as well as small patches of transverse aeolian ridges. Although this region is generally dust-covered and has a lower overall thermal inertia, the THEMIS data indicate subtle spectral variations within the population of lava flows studied. These variations could be due to compositional differences among the flows or related to mixing of flow and aeolian materials. Specific results regarding flow morphology include: a) Two main lava flow types (bright, rugged and dark, smooth as observed in CTX images) dominate the southwest Arsia Mons/NE Daedalia Planum region; b) the bright, rugged flows have knobby, ridged, and/or platy surface textures, commonly have medial channel/levee systems, and may have broad distal lobes; c) the dark, smooth flows extend from distributary systems that consist of combinations of lava channels, lava tubes, and/or sinuous ridges and plateaus; and d) steep-sided, terraced margins, digitate breakout lobes, and smooth-surfaced plateaus along lava channel/tube systems are interpreted as signatures of flow inflation within the dark, smooth flow type. These flows exhibit smoother upper surfaces, are thinner, and have more numerous, smaller lobes, which, along with their the channel-/tube-fed nature, indicate a lower viscosity lava than for the bright, rugged flows. Flow patterns and local interfingering and overlapping relationships are delineated in CTX images and allow reconstruction of the complex flow field surfaces. Darker channel-/tube-fed flows are generally younger than adjacent thicker, bright, rugged flows; however, the diversity and complexity of temporal relationships observed, along with the thermophysical variability, suggests that lava sources with different eruptive styles and magnitudes and/or lavas that experienced different local emplacement conditions were active contemporaneously.
NASA Astrophysics Data System (ADS)
D'Onofrio, M.
2001-10-01
In this paper we analyse the results of the two-dimensional (2D) fit of the light distribution of 73 early-type galaxies belonging to the Virgo and Fornax clusters, a sample volume- and magnitude-limited down to MB=-17.3, and highly homogeneous. In our previous paper (Paper I) we have presented the adopted 2D models of the surface-brightness distribution - namely the r1/n and (r1/n+exp) models - we have discussed the main sources of error affecting the structural parameters, and we have tested the ability of the chosen minimization algorithm (MINUIT) in determining the fitting parameters using a sample of artificial galaxies. We show that, with the exception of 11 low-luminosity E galaxies, the best fit of the real galaxy sample is always achieved with the two-component (r1/n+exp) model. The improvement in the χ2 due to the addition of the exponential component is found to be statistically significant. The best fit is obtained with the exponent n of the generalized r1/n Sersic law different from the classical de Vaucouleurs value of 4. Nearly 42 per cent of the sample have n<2, suggesting the presence of exponential `bulges' also in early-type galaxies. 20 luminous E galaxies are fitted by the two-component model, with a small central exponential structure (`disc') and an outer big spheroid with n>4. We believe that this is probably due to their resolved core. The resulting scalelengths Rh and Re of each component peak approximately at ~1 and ~2kpc, respectively, although with different variances in their distributions. The ratio Re/Rh peaks at ~0.5, a value typical for normal lenticular galaxies. The first component, represented by the r1/n law, is probably made of two distinct families, `ordinary' and `bright', on the basis of their distribution in the μe-log(Re) plane, a result already suggested by Capaccioli, Caon and D'Onofrio. The bulges of spirals and S0 galaxies belong to the `ordinary' family, while the large spheroids of luminous E galaxies form the `bright' family. The second component, represented by the exponential law, also shows a wide distribution in the μ0c-log(Rh) plane. Small discs (or cores) have short scalelengths and high central surface brightness, while normal lenticulars and spiral galaxies generally have scalelengths higher than 0.5kpc and central surface brightness brighter than 20magarcsec-2 (in the B band). The scalelengths Re and Rh of the `bulge' and `disc' components are probably correlated, indicating that a self-regulating mechanism of galaxy formation may be at work. Alternatively, two regions of the Re-Rh plane are avoided by galaxies due to dynamical instability effects. The bulge-to-disc (B/D) ratio seems to vary uniformly along the Hubble sequence, going from late-type spirals to E galaxies. At the end of the sequence the ratio between the large spheroidal component and the small inner core can reach B/D~100.
Using Aerosol Reflectance for Dust Detection
NASA Astrophysics Data System (ADS)
Bahramvash Shams, S.; Mohammadzade, A.
2013-09-01
In this study we propose an approach for dust detection by aerosol reflectance over arid and urban region in clear sky condition. In urban and arid areas surface reflectance in red and infrared spectral is bright and hence shorter wavelength is required for this detections. Main step of our approach can be mentioned as: cloud mask for excluding cloudy pixels from our calculation, calculate Rayleigh path radiance, construct a surface reflectance data base, estimate aerosol reflectance, detect dust aerosol, dust detection and evaluations of dust detection. Spectral with wavelength 0.66, 0.55, 0.47 μm has been used in our dust detection. Estimating surface reflectance is the most challenging step of obtaining aerosol reflectance from top of atmosphere (TOA) reflectance. Hence for surface estimation we had created a surface reflectance database of 0.05 degree latitude by 0.05 degree longitude resolution by using minimum reflectivity technique (MRT). In order to evaluate our dust detection algorithm MODIS aerosol product MOD04 and common dust detection method named Brightness Temperature Difference (BTD) had been used. We had implemented this method to Moderate Resolution Imaging Spectroradiometer (MODIS) image of part of Iran (7 degree latitude and 8 degree longitude) spring 2005 dust phenomenon from April to June. This study uses MODIS LIB calibrated reflectance high spatial resolution (500 m) MOD02Hkm on TERRA spacecraft. Hence our dust detection spatial resolution will be higher spatial resolution than MODIS aerosol product MOD04 which has 10 × 10 km2 and BTD resolution is 1 km due to the band 29 (8.7 μm), 31 (11 μm), and 32 (12 μm) spatial resolutions.
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
Giant Ly α Nebulae in the Illustris Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gronke, Max; Bird, Simeon, E-mail: maxbg@astro.uio.no
2017-02-01
Several “giant” Ly α nebulae with an extent ≳300 kpc and observed Ly α luminosity of ≳10{sup 44} erg s{sup −1} cm{sup −2} arcsec{sup −2} have recently been detected, and it has been speculated that their presence hints at a substantial cold gas reservoir in small cool clumps not resolved in modern hydrodynamical simulations. We use the Illustris simulation to predict the Ly α emission emerging from large halos ( M > 10{sup 11.5} M {sub ⊙}) at z ∼ 2 and thus test this model. We consider both active galactic nucleus (AGN) and star driven ionization, and compare themore » simulated surface brightness maps, profiles, and Ly α spectra to a model where most gas is clumped below the simulation resolution scale. We find that with Illustris, no additional clumping is necessary to explain the extents, luminosities, and surface brightness profiles of the “giant Ly α nebulae” observed. Furthermore, the maximal extents of the objects show a wide spread for a given luminosity and do not correlate significantly with any halo properties. We also show how the detected size depends strongly on the employed surface brightness cutoff, and predict that further examples of such objects will be found in the near future.« less
Optical Properties of CdSe/ZnS Nanocrystals
Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong
2014-01-01
Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047
Analysis of wave propagation and wavefront sensing in target-in-the-loop beam control systems
NASA Astrophysics Data System (ADS)
Vorontsov, Mikhail A.; Kolosov, Valeri V.
2004-10-01
Target-in-the-loop (TIL) wave propagation geometry represents perhaps the most challenging case for adaptive optics applications that are related with maximization of irradiance power density on extended remotely located surfaces in the presence of dynamically changing refractive index inhomogeneities in the propagation medium. We introduce a TIL propagation model that uses a combination of the parabolic equation describing outgoing wave propagation, and the equation describing evolution of the mutual intensity function (MIF) for the backscattered (returned) wave. The resulting evolution equation for the MIF is further simplified by the use of the smooth refractive index approximation. This approximation enables derivation of the transport equation for the returned wave brightness function, analyzed here using method characteristics (brightness function trajectories). The equations for the brightness function trajectories (ray equations) can be efficiently integrated numerically. We also consider wavefront sensors that perform sensing of speckle-averaged characteristics of the wavefront phase (TIL sensors). Analysis of the wavefront phase reconstructed from Shack-Hartmann TIL sensor measurements shows that an extended target introduces a phase modulation (target-induced phase) that cannot be easily separated from the atmospheric turbulence-related phase aberrations. We also show that wavefront sensing results depend on the extended target shape, surface roughness, and the outgoing beam intensity distribution on the target surface.
NASA Technical Reports Server (NTRS)
2002-01-01
(Released 6 May 2002) The Science Cerberus is a dark region on Mars that has shrunk down from a continuous length of about 1000 km to roughly three discontinuous spots a few 100 kms in length in less than 20 years. There are two competing processes at work in the Cerberus region that produce the bright and dark features seen in this THEMIS image. Bright dust settles out of the atmosphere, especially after global dust storms, depositing a layer just thick enough to brighten the dark surfaces. Deposition occurs preferentially in the low wind 'shadow zones' within craters and downwind of crater rims, producing the bright streaks. The direction of the streaks clearly indicates that the dominant winds come from the northeast. Dust deposition would completely blot out the dark areas if it were not for the action of wind-blown sand grains scouring the surface and lifting the dust back into the atmosphere. Again, the shadow zones are protected from the blowing sand, preserving the bright layer of dust. Also visible in this image are lava flow features extending from the flanks of the huge Elysium volcanoes to the northwest. Two shallow channels and a raised flow lobe are just barely discernable. The lava channel in the middle of the image crosses the boundary of the bright and dark surfaces without any obvious change in its morphology. This demonstrates that the bright dust layer is very thin in this location, perhaps as little as a few millimeters. The Story Mars is an ever-changing land of spectacular contrasts. This THEMIS image shows the Cerberus region of Mars, a dark area located near the Elysium volcanoes and fittingly named after the three-headed, dragon-tailed dog who guards the door of the underworld. Two opposing processes are at work here: a thin layer of dust falling from the atmosphere and/or dust storms creating brighter surface areas (e.g. the top left portion of this image) and dust being scoured away by the action of the Martian wind disturbing the sand grains and freeing the lighter dust to fly away once more (the darker portions of this image). There are, however, some darker areas that are somewhat shielded and protected from the wind that have yielded bright, dusty crater floors and wind streaks that trail out behind the craters. These wind streaks tell a story all their own as to the prevailing wind direction coming from the northeast. This, added to the fact that this dark region was once 1000 km in length and has dwindled to just a few isolated dark splotches of 100 kilometers in the past 20 years, help us to see that the Martian environment is still quite dynamic and capable of changing. Finally, this being a volcanic region, a lobe of a lava flow from the immense Elysium volcanoes to the northwest is visible stretching across the bottom one-quarter of the image.
Contrast in the Photoelectric Effect of Organic and Biochemical Surfaces
Birrell, G. B.; Burke, C.; Dehlinger, P.; Griffith, O. H.
1973-01-01
The photoelectric effect can provide the physical basis for a new method of mapping organic and biological surfaces. The technique, photoelectron microscopy, is similar to fluorescence microscopy using incident ultraviolet light except that photoejected electrons form the image of the specimen surface. In this work the minimum wavelengths of incident light required to produce an image were determined for the molecules 3,6-bis(dimethylamino)acridine (acridine orange) (I), benzo[a]pyrene (II), N,N,N′,N′-tetraphenylbenzidine (III), and copper phthalocyanine (IV). The photoelectron image thresholds for these compounds are 220 (I), 215 (II), 220 (III), and 240 nm (IV), all ±5 nm. Contrast of I-IV with respect to typical protein, lipid, nucleic acid, and polysaccharide surfaces was examined over the wavelength range 240-180 nm. The low magnification micrographs exhibited bright areas corresponding to I-IV but dark regions for the biochemical surfaces. The high contrast suggests the feasibility of performing extrinsic photoelectron microscopy experiments through selective labeling of sites on biological surfaces. ImagesFIGURE 3 PMID:4704486
Precise on-machine extraction of the surface normal vector using an eddy current sensor array
NASA Astrophysics Data System (ADS)
Wang, Yongqing; Lian, Meng; Liu, Haibo; Ying, Yangwei; Sheng, Xianjun
2016-11-01
To satisfy the requirements of on-machine measurement of the surface normal during complex surface manufacturing, a highly robust normal vector extraction method using an Eddy current (EC) displacement sensor array is developed, the output of which is almost unaffected by surface brightness, machining coolant and environmental noise. A precise normal vector extraction model based on a triangular-distributed EC sensor array is first established. Calibration of the effects of object surface inclination and coupling interference on measurement results, and the relative position of EC sensors, is involved. A novel apparatus employing three EC sensors and a force transducer was designed, which can be easily integrated into the computer numerical control (CNC) machine tool spindle and/or robot terminal execution. Finally, to test the validity and practicability of the proposed method, typical experiments were conducted with specified testing pieces using the developed approach and system, such as an inclined plane and cylindrical and spherical surfaces.
Bok, Sangho; Korampally, Venumadhav; Darr, Charles M; Folk, William R; Polo-Parada, Luis; Gangopadhyay, Keshab; Gangopadhyay, Shubhra
2013-03-15
We report a simple, robust fluorescence biosensor for the ultra-sensitive detection of Clostridium botulinum Neurotoxin Type A (BoNT/A) in complex, real-world media. High intrinsic signal amplification was achieved through the combined use of ultra-bright, photostable dye-doped nanoparticle (DOSNP) tags and high surface area nanoporous organosilicate (NPO) thin films. DOSNP with 22 nm diameter were synthesized with more than 200 times equivalent free dye fluorescence and conjugated to antibodies with average degree of substitution of 90 dyes per antibody, representing an order of magnitude increase compared with conventional dye-labeled antibodies. The NPO films were engineered to form constructive interference at the surface where fluorophores were located. In addition, DOSNP-labeled antibodies with NPO films increased surface roughness causing diffuse scattering resulting in 24% more scattering intensity than dye-labeled antibody with NPO films. These substrates were used for immobilization of capture antibodies against BoNT/A, which was further quantified by DOSNP-labeled signal antibodies. The combination of optical effects enhanced the fluorescence and, therefore, the signal-to-noise ratio significantly. BoNT/A was detected in PBS buffer down to 21.3 fg mL(-1) in 4 h. The assay was then extended to several complex media and the four-hour detection limit was found to be 145.8 fg mL(-1) in orange juice and 164.2 fg mL(-1) in tap water, respectively, demonstrating at least two orders of magnitude improvement comparing to the reported detection limit of other enzyme-linked immunosorbent assays (ELISA). This assay, therefore, demonstrates a novel method for rapid, ultra-low level detection of not only BoNT/A, but other analytes as well. Copyright © 2012 Elsevier B.V. All rights reserved.
Continued improvement in reduced-mode (REM) diodes enable 272 W from 105 μm 0.15 NA beam
NASA Astrophysics Data System (ADS)
Kanskar, M.; Bao, L.; Chen, Z.; Dawson, D.; DeVito, M.; Dong, W.; Grimshaw, M.; Guan, X.; Hemenway, M.; Martinsen, R.; Urbanek, W.; Zhang, S.
2017-02-01
High-power, high-brightness diode lasers from 8xx nm to 9xx nm have been pursued in many applications including fiber laser pumping, materials processing, solid-state laser pumping, and consumer electronics manufacturing. In particular, 915 nm - 976 nm diodes are of interest as diode pumps for the kilowatt CW fiber lasers. Thus, there have been many technical efforts on driving the diode lasers to have both high power and high brightness to achieve high-performance and reduced manufacturing costs. This paper presents our continued progress in the development of high brightness fiber-coupled product platform, elementTM. In the past decade, the amount of power coupled into a single 105 μm and 0.15 NA fiber has increased by over a factor of ten through improved diode laser brilliance and the development of techniques for efficiently coupling multiple emitters into a single fiber. In this paper, we demonstrate the further brightness improvement and power-scaling enabled by both the rise in chip brightness/power and the increase in number of chips coupled into a given numerical aperture. We report a new x-REM design with brightness as high as 4.3 W/mm-mrad at a BPP of 3 mm-mrad. We also report the record 272W from a 2×9 elementTM with 105 μm/0.15 NA beam using x-REM diodes and a new product introduction at 200W output power from 105 μm/0.15 NA beam at 915 nm.
On The Missing Dwarf Problem In Clusters And Around The Nearby Galaxy M33
NASA Astrophysics Data System (ADS)
Keenan, Olivia Charlotte
2017-08-01
This thesis explores possible solutions to the dwarf galaxy problem. This is a discrepancy between the number of dwarf galaxies we observe, and the number predicted from cosmological computer simulations. Simulations predict around ten times more dwarf galaxy satellites than are currently observed. I have investigated two possible solutions: dark galaxies and the low surface brightness universe. Dark galaxies are dark matter halos which contain gas, but few or no stars, hence are optically dark. As part of the Arecibo Galaxy Environment Survey I surveyed the neutral hydrogen gas around the nearby galaxy M33. I found 32 gas clouds, 11 of which are new detections. Amongst these there was one particularly interesting cloud. AGESM33-32 is ring shaped and larger than M33 itself, if at the same distance. It has a velocity width which is similar to the velocity dispersion of gas in a disk galaxy, as well as having a clear velocity gradient across it which may be due to rotation. The fact that it also currently has no observed associated stars means it is a dark galaxy candidate. Optically, dwarf galaxies may be out there, but too faint for us to detect. This means that with newer, deeper, images we may be able to unveil a large, low surface brightness, population of dwarf galaxies. However, the question remains as to how these can be distinguished from background galaxies. I have used Next Generation Virgo Survey (NGVS) data to carry out photometry on 852 Virgo galaxies in four bands. I also measured the photometric properties of galaxies on a background (non-cluster) NGVS frame. I discovered that a combination of colour, magnitude and surface brightness information could be used to identify cluster dwarf galaxies from background field galaxies. The most effective method is to use the surface brightness-magnitude relation.
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
Progress of OLED devices with high efficiency at high luminance
NASA Astrophysics Data System (ADS)
Nguyen, Carmen; Ingram, Grayson; Lu, Zhenghong
2014-03-01
Organic light emitting diodes (OLEDs) have progressed significantly over the last two decades. For years, OLEDs have been promoted as the next generation technology for flat panel displays and solid-state lighting due to their potential for high energy efficiency and dynamic range of colors. Although high efficiency can readily be obtained at low brightness levels, a significant decline at high brightness is commonly observed. In this report, we will review various strategies for achieving highly efficient phosphorescent OLED devices at high luminance. Specifically, we will provide details regarding the performance and general working principles behind each strategy. We will conclude by looking at how some of these strategies can be combined to produce high efficiency white OLEDs at high brightness.
Prospects for Near Ultraviolet Astronomical Observations from the Lunar Surface — LUCI
NASA Astrophysics Data System (ADS)
Mathew, J.; Kumar, B.; Sarpotdar, M.; Suresh, A.; Nirmal, K.; Sreejith, A. G.; Safonova, M.; Murthy, J.; Brosch, N.
2018-04-01
We have explored the prospects for UV observations from the lunar surface and developed a UV telescope (LUCI-Lunar Ultraviolet Cosmic Imager) to put on the Moon, with the aim to detect bright UV transients such as SNe, novae, TDE, etc.
Optimum Image Formation for Spaceborne Microwave Radiometer Products.
Long, David G; Brodzik, Mary J
2016-05-01
This paper considers some of the issues of radiometer brightness image formation and reconstruction for use in the NASA-sponsored Calibrated Passive Microwave Daily Equal-Area Scalable Earth Grid 2.0 Brightness Temperature Earth System Data Record project, which generates a multisensor multidecadal time series of high-resolution radiometer products designed to support climate studies. Two primary reconstruction algorithms are considered: the Backus-Gilbert approach and the radiometer form of the scatterometer image reconstruction (SIR) algorithm. These are compared with the conventional drop-in-the-bucket (DIB) gridded image formation approach. Tradeoff study results for the various algorithm options are presented to select optimum values for the grid resolution, the number of SIR iterations, and the BG gamma parameter. We find that although both approaches are effective in improving the spatial resolution of the surface brightness temperature estimates compared to DIB, SIR requires significantly less computation. The sensitivity of the reconstruction to the accuracy of the measurement spatial response function (MRF) is explored. The partial reconstruction of the methods can tolerate errors in the description of the sensor measurement response function, which simplifies the processing of historic sensor data for which the MRF is not known as well as modern sensors. Simulation tradeoff results are confirmed using actual data.
Vela X: A plerion or part of a shell?
NASA Astrophysics Data System (ADS)
Gvaramadze, V. V.
1998-03-01
An analysis of the radio, optical, and X-ray observations of the supernova remnant (SNR) in Vela has led us to conclude that the radio source Vela X is part of the SNR shell. The high brightness of this radio source is assumed to be a result of the interaction of dome-shaped deformations (bubbles) on the SNR shell, which gives rise to bright radio filaments. The deformations could be produced by Richtmaier-Meshkov's instability, which develops during the impulsive acceleration of a shell of gas (swept up from the interstellar medium by the wind from a presupernova) by a shock wave (generated by a supernova explosion). The brightest radio filament and the X-ray jet extending along it are shown to be located in the region of interaction of two prominent bubbles on the SNR shell. We conclude that the X-ray jet, like Vela X, is part of the shell, and that it has its origin in the Mach reflection of two semispherical shock waves. Our estimate of the plasma temperature behind the front of the Mach wave matches the jet temperature. We also show that the large spread in the estimates of the spectral index for Vela X could be caused by the instrumental effect which arises during observations of extended radio sources with a nonuniform surface-brightness distribution.
Compact radio sources in the starburst galaxy M82 and the Sigma-D relation for supernova remnants
NASA Technical Reports Server (NTRS)
Huang, Z. P.; Thuan, T. X.; Chevalier, R. A.; Condon, J. J.; Yin, Q. F.
1994-01-01
We have obtained an 8.4 GHz Very Large Array (VLA) A-array map of the starburst galaxy M82 with a resolution Full Width at Half Maximum (FWHM) approximately 0.182 sec. About 50 compact radio sources in the central region of M82 were detected with a peak surface brightness approximately greater than 10(exp -17) W/Hz/sq m/sr. Comparison with previous observations shows that most sources are declining in flux. Three previously visible sources have faded into the background of our map (approximately less than 0.2 mJy/beam), while a few sources, including the second and third brightest radio sources in M82, may have increased slightly in flux over the last decade. No new radio supernova was found. The birth rate of the compact radio sources is estimated to be 0.11 + or - 0.05/yr. We attribute the population of such bright, small supernova remnants (SNRs) in M82 to the high pressure in the central region that can truncate the mass loss during a red supergiant phase or allow dense ionized clouds to be present. The compact radio sources obey a Sigma(radio surface brightness) - D(diameter) relation which is remarkably similar to that followed by supernova remnants in the Galaxy and the Magellanic Clouds and by two of the strongest known extragalactic radio supernovae: SN 1986J and SN 1979C. A least-squares fit to the SNR data gives: Sigma(sub 8.4 GHz) (W/Hz/sq m/sr) = 4.4 x 10(exp -16) D(sub pc)(exp -3.5 +/- 0.1) covering seven orders of magnitude in Sigma. Possible selection effects are discussed and a theoretical discussion of the correlation is presented.
NASA Astrophysics Data System (ADS)
Jin, Y.-Q.
begin table htbp begin center begin tabular p 442pt hline A correspondence of the lunar regolith layer thickness to the lunar digital elevation mapping DEM is presented to construct the global distribution of lunar regolith layer thickness Based on some measurements the physical temperature distribution over the lunar surface is proposed Albedo of the lunar nearside at the wavelengths 0 42 0 65 0 75 0 95 mu m from the telescopic observation is employed to construct the spatial distribution of the FeO TiO 2 on the lunar regolith layer A statistic relationship between the DEM and FeO TiO 2 content of the lunar nearside is then extended to construction of FeO TiO 2 content of the lunar farside Thus the dielectric permittivity of global lunar regolith layer can be determined par Based on all theses conditions brightness temperature of the lunar regolith layer in passive microwave remote sensing which is planned for China s Chang-E lunar project is numerically simulated by a parallel layer model using the fluctuation dissipation theorem par Furthermore taking these simulations as observations an inversion method of the lunar regolith layer thickness is developed by using three- or two-channels brightness temperatures When the FeO TiO 2 content is low and the four channels brightness temperatures in Chang-E project are well distinguishable the regolith layer thickness and physical temperature of the underlying lunar rocky media can be inverted by the three-channels approach When the FeO TiO 2 content is so high that the
EUV brightness variations in the quiet Sun
NASA Astrophysics Data System (ADS)
Brković, A.; Rüedi, I.; Solanki, S. K.; Fludra, A.; Harrison, R. A.; Huber, M. C. E.; Stenflo, J. O.; Stucki, K.
2000-01-01
The Coronal Diagnostic Spectrometer (CDS) onboard the SOHO satellite has been used to obtain movies of quiet Sun regions at disc centre. These movies were used to study brightness variations of solar features at three different temperatures sampled simultaneously in the chromospheric He I 584.3 Ä (2 * 104 K), the transition region O V 629.7 Ä (2.5 * 105 K) and coronal Mg IX 368.1 Ä (106 K) lines. In all parts of the quiet Sun, from darkest intranetwork to brightest network, we find significant variability in the He I and O V line, while the variability in the Mg IX line is more marginal. The relative variability, defined by rms of intensity normalised to the local intensity, is independent of brightness and strongest in the transition region line. Thus the relative variability is the same in the network and the intranetwork. More than half of the points on the solar surface show a relative variability, determined over a period of 4 hours, greater than 15.5% for the O V line, but only 5% of the points exhibit a variability above 25%. Most of the variability appears to take place on time-scales between 5 and 80 minutes for the He I and O V lines. Clear signs of ``high variability'' events are found. For these events the variability as a function of time seen in the different lines shows a good correlation. The correlation is higher for more variable events. These events coincide with the (time averaged) brightest points on the solar surface, i.e. they occur in the network. The spatial positions of the most variable points are identical in all the lines.
Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data
NASA Technical Reports Server (NTRS)
Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greekely, Ronald
2003-01-01
We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution ( 186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100 - 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.
Hubble Sees Galaxy Hiding in the Night Sky
2017-12-08
This striking NASA/ESA Hubble Space Telescope image captures the galaxy UGC 477, located just over 110 million light-years away in the constellation of Pisces (The Fish). UGC 477 is a low surface brightness (LSB) galaxy. First proposed in 1976 by Mike Disney, the existence of LSB galaxies was confirmed only in 1986 with the discovery of Malin 1. LSB galaxies like UGC 477 are more diffusely distributed than galaxies such as Andromeda and the Milky Way. With surface brightnesses up to 250 times fainter than the night sky, these galaxies can be incredibly difficult to detect. Most of the matter present in LSB galaxies is in the form of hydrogen gas, rather than stars. Unlike the bulges of normal spiral galaxies, the centers of LSB galaxies do not contain large numbers of stars. Astronomers suspect that this is because LSB galaxies are mainly found in regions devoid of other galaxies, and have therefore experienced fewer galactic interactions and mergers capable of triggering high rates of star formation. LSB galaxies such as UGC 477 instead appear to be dominated by dark matter, making them excellent objects to study to further our understanding of this elusive substance. However, due to an underrepresentation in galactic surveys — caused by their characteristic low brightness — their importance has only been realized relatively recently. Image credit: ESA/Hubble & NASA, Acknowledgement: Judy Schmidt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Pox 186: An ultracompact galaxy with dominant ionized gas emission
NASA Astrophysics Data System (ADS)
Guseva, N. G.; Papaderos, P.; Izotov, Y. I.; Noeske, K. G.; Fricke, K. J.
2004-07-01
We present a ground-based optical spectroscopic and HST U, V, I photometric study of the blue compact dwarf (BCD) galaxy Pox 186. It is found that the emission of the low-surface brightness (LSB) component in Pox 186 at radii ⪉3 arcsec (⪉270 pc in linear scale) is mainly gaseous in origin. We detect Hα emission out to radii as large as 6 arcsec. At radii ⪆3 arcsec the light of the LSB component is contaminated by the emission of background galaxies complicating the study of the outermost regions. The surface brightness distribution in the LSB component can be approximated by an exponential law with a scale length α ⪉ 120 pc. This places Pox 186 among the most compact dwarf galaxies known. The derived α is likely to be an upper limit to the scale length of the LSB component because of the strong contribution of the gaseous emission. The oxygen abundance in the bright H II region derived from the 4.5 m Multiple Mirror Telescope (MMT) and 3.6 m ESO telescope spectra are 12 + log (O/H) = 7.76 ± 0.02 and 7.74 ± 0.01 (˜Z⊙/15), respectively, in accordance with previous determinations. The helium mass fractions found in this region are Y = 0.248 ± 0.009 (MMT) and Y = 0.248 ± 0.004 (3.6 m) suggesting a high primordial helium abundance. The MMT Observatory is a joint facility of the Smithsonian Institution and the University of Arizona. Based on observations collected at the European Southern Observatory, Chile, ESO program 71.B-0032(A). 12+\\log(O/H)⊙ = 8.92 (Anders & Grevesse \\cite{Anders89}).
Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data
NASA Technical Reports Server (NTRS)
Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greeley, Ronald
2002-01-01
We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution (186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys (1979) are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100- 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.
Blue diffuse dwarf galaxies: a clearer picture
NASA Astrophysics Data System (ADS)
James, Bethan L.; Koposov, Sergey E.; Stark, Daniel P.; Belokurov, Vasily; Pettini, Max; Olszewski, Edward W.; McQuinn, Kristen B. W.
2017-03-01
The search for chemically unevolved galaxies remains prevalent in the nearby Universe, mostly because these systems provide excellent proxies for exploring in detail the physics of high-z systems. The most promising candidates are extremely metal-poor galaxies (XMPs), I.e. galaxies with <1/10 solar metallicity. However, due to the bright emission-line-based search criteria traditionally used to find XMPs, we may not be sampling the full XMP population. In 2014, we reoriented this search using only morphological properties and uncovered a population of ˜150 'blue diffuse dwarf (BDD) galaxies', and published a sub-sample of 12 BDD spectra. Here, we present optical spectroscopic observations of a larger sample of 51 BDDs, along with their Sloan Digital Sky Survey (SDSS) photometric properties. With our improved statistics, we use direct-method abundances to confirm that BDDs are chemically unevolved (7.43 < 12 + log(O/H) < 8.01), with ˜20 per cent of our sample classified as being XMP galaxies, and find that they are actively forming stars at rates of ˜1-33 × 10-2 M⊙ yr-1 in H II regions randomly embedded in a blue, low-surface-brightness continuum. Stellar masses are calculated from population synthesis models and estimated to be in the range log (M*/M⊙) ≃ 5-9. Unlike other low-metallicity star-forming galaxies, BDDs are in agreement with the mass-metallicity relation at low masses, suggesting that they are not accreting large amounts of pristine gas relative to their stellar mass. BDD galaxies appear to be a population of actively star-forming dwarf irregular (dIrr) galaxies which fall within the class of low-surface-brightness dIrr galaxies. Their ongoing star formation and irregular morphology make them excellent analogues for galaxies in the early Universe.
NASA Astrophysics Data System (ADS)
Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori
2018-06-01
We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.
Electric potential of the moon in the magnetosheath and in the geomagnetic tail
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moskalenko, A.M.
1995-03-01
A layer of charged particles near the lunar surface is investigated. It is shown that in the magnetosheath and in the tail lobes, where secondary electronic emission of lunar soil in the plasma sheet is low, the electrostatic potential as a function of the height over the subsolar region of the surface is nonmonotone. As the terminator is approached, the potential becomes a negative monotone function. For most temperatures of the primary electrons that exist in the plasma sheet, secondary electron emission is high. In the case of high secondary electron emission, the electric potential is nonmonotone, and the variationmore » of the potential in the double layer is determined by the secondary electron emission and varies weakly in the passage from the dark side to the bright side.« less
L Band Brightness Temperature Observations over a Corn Canopy during the Entire Growth Cycle
Joseph, Alicia T.; van der Velde, Rogier; O’Neill, Peggy E.; Choudhury, Bhaskar J.; Lang, Roger H.; Kim, Edward J.; Gish, Timothy
2010-01-01
During a field campaign covering the 2002 corn growing season, a dual polarized tower mounted L-band (1.4 GHz) radiometer (LRAD) provided brightness temperature (TB) measurements at preset intervals, incidence and azimuth angles. These radiometer measurements were supported by an extensive characterization of land surface variables including soil moisture, soil temperature, vegetation biomass, and surface roughness. In the period May 22 to August 30, ten days of radiometer and ground measurements are available for a corn canopy with a vegetation water content (W) range of 0.0 to 4.3 kg m−2. Using this data set, the effects of corn vegetation on surface emissions are investigated by means of a semi-empirical radiative transfer model. Additionally, the impact of roughness on the surface emission is quantified using TB measurements over bare soil conditions. Subsequently, the estimated roughness parameters, ground measurements and horizontally (H)-polarized TB are employed to invert the H-polarized transmissivity (γh) for the monitored corn growing season. PMID:22163585