Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes
NASA Astrophysics Data System (ADS)
Zhang, Ting; Song, Jinbao
2018-04-01
The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.
High resolution modelling and observation of wind-driven surface currents in a semi-enclosed estuary
NASA Astrophysics Data System (ADS)
Nash, S.; Hartnett, M.; McKinstry, A.; Ragnoli, E.; Nagle, D.
2012-04-01
Hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Firstly, the wind data used in hydrodynamic models is usually measured on land and can be quite different in magnitude and direction from offshore winds. Secondly, surface winds are spatially-varying but due to a lack of data it is common practice to specify a non-varying wind speed and direction across the full extents of a model domain. These problems can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In the present research, a wind forecast model is coupled with a three-dimensional numerical model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of surface wind data resolution on model accuracy. High resolution and low resolution wind fields are specified to the model and the computed surface currents are compared with high resolution surface current measurements obtained from two high frequency SeaSonde-type Coastal Ocean Dynamics Applications Radars (CODAR). The wind forecast models used for the research are Harmonie cy361.3, running on 2.5 and 0.5km spatial grids for the low resolution and high resolution models respectively. The low-resolution model runs over an Irish domain on 540x500 grid points with 60 vertical levels and a 60s timestep and is driven by ECMWF boundary conditions. The nested high-resolution model uses 300x300 grid points on 60 vertical levels and a 12s timestep. EFDC (Environmental Fluid Dynamics Code) is used for the hydrodynamic model. The Galway Bay model has ten vertical layers and is resolved spatially and temporally at 150m and 4 sec respectively. The hydrodynamic model is run for selected hindcast dates when wind fields were highly energetic. Spatially- and temporally-varying wind data is provided by offline coupling with the wind forecast models. Modelled surface currents show good correlation with CODAR observed currents and the resolution of the surface wind data is shown to be important for model accuracy.
B. W. Butler; N. S. Wagenbrenner; J. M. Forthofer; B. K. Lamb; K. S. Shannon; D. Finn; R. M. Eckman; K. Clawson; L. Bradshaw; P. Sopko; S. Beard; D. Jimenez; C. Wold; M. Vosburgh
2015-01-01
A number of numerical wind flow models have been developed for simulating wind flow at relatively fine spatial resolutions (e.g., 100 m); however, there are very limited observational data available for evaluating these high-resolution models. This study presents high-resolution surface wind data sets collected from an isolated mountain and a steep river canyon. The...
Experimental study of the impact of large-scale wind farms on land-atmosphere exchanges
NASA Astrophysics Data System (ADS)
Zhang, wei; Markfort, Corey; Porté-Agel, Fernando
2013-04-01
Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interactions and subsequent environmental impacts are complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics and atmospheric thermal stability. In particular, surface scalar flux is influenced by wind farms and needs to be appropriately parameterized in meso-scale and/or high-resolution numerical models. Wind-tunnel experiments of model wind farms with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a neutral turbulent boundary layer with a surface heat source. Turbulent flow and fluxes over and through the wind farm were measured using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors within the quasi-developed flow regime. Although the overall surface heat flux change produced by the wind farms was found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. The difference between the minimum and maximum surface heat fluxes could be up to 12% and 7% in aligned and staggered wind farms, respectively. This finding is important for planning intensive agriculture practices and optimizing agricultural land use with regard to wind energy project development. The well-controlled wind-tunnel experiments presented here also provide a first comprehensive dataset on turbulent flow and scalar transport in wind farms, which can be further used to develop and validate new parameterizations for surface scalar fluxes in numerical models.
Surface Currents and Winds at the Delaware Bay Mouth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muscarella, P A; Barton, N P; Lipphardt, B L
2011-04-06
Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds andmore » currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.« less
NASA Astrophysics Data System (ADS)
McKague, D. S.; Ruf, C. S.; Balasubramaniam, R.; Clarizia, M. P.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) mission, launched in December of 2016, provides all-weather observations of sea surface winds. Using GPS-based bistatic reflectometry, the CYGNSS satellites can estimate sea surface winds even through a hurricane eye wall. This, combined with the high temporal resolution of the CYGNSS constellation (median revisit time of 2.8 hours), yields unprecedented ability to estimate hurricane strength winds. While there are a number of other sources of sea surface wind estimates, such as buoys, dropsondes, passive and active microwave from aircraft and satellite, and models, the combination of all-weather, high accuracy, short revisit time, high spatial coverage, and continuous operation of the CYGNSS mission enables significant advances in the understanding, monitoring, and prediction of cyclones. Validating CYGNSS wind retrievals over the bulk of the global wind speed distribution, which peaks at around 7 meters per second, is relatively straight-forward, requiring spatial-temporal matching of observations with independent sources (such as those mentioned above). Validating CYGNSS wind retrievals for "high" winds (> 20 meters per second), though, is problematic. Such winds occur only in intense storms. While infrequent, making validation opportunities also infrequent and problematic due to their intense nature, such storms are important to study because of the high potential for damage and loss of life. This presentation will describe the efforts of the CYGNSS Calibration/Validation team to gather measurements of high sea surface winds for development and validation of the CYGNSS geophysical model function (GMF), which forms the basis of retrieving winds from CYGNSS observations. The bulk of these observations come from buoy measurements as well as aircraft ("hurricane hunter") measurements from passive microwave and dropsondes. These data are matched in space and time to CYGNSS observations for training of the CYGNSS GMF and an independent set is used for validation of the resulting high wind speed retrievals. In addition to describing the general validation process, results from matchups over the 2017 hurricane season will be presented.
Turbulent flow and scalar transport in a large wind farm
NASA Astrophysics Data System (ADS)
Porte-Agel, F.; Markfort, C. D.; Zhang, W.
2012-12-01
Wind energy is one of the fastest growing sources of renewable energy world-wide, and it is expected that many more large-scale wind farms will be built and cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer and converting it to electricity, wind farms may affect the transport of momentum, heat, moisture and trace gases (e.g. CO_2) between the atmosphere and the land surface locally and globally. Understanding wind farm-atmosphere interaction is complicated by the effects of turbine array configuration, wind farm size, land-surface characteristics, and atmospheric thermal stability. A wind farm of finite length may be modeled as an added roughness or as a canopy in large-scale weather and climate models. However, it is not clear which analogy is physically more appropriate. Also, surface scalar flux is affected by wind farms and needs to be properly parameterized in meso-scale and/or high-resolution numerical models. Experiments involving model wind farms, with perfectly aligned and staggered configurations, having the same turbine distribution density, were conducted in a thermally-controlled boundary-layer wind tunnel. A neutrally stratified turbulent boundary layer was developed with a surface heat source. Measurements of the turbulent flow and fluxes over and through the wind farm were made using a custom x-wire/cold-wire anemometer; and surface scalar flux was measured with an array of surface-mounted heat flux sensors far within the quasi-developed region of the wind-farm. The turbulence statistics exhibit similar properties to those of canopy-type flows, but retain some characteristics of surface-layer flows in a limited region above the wind farms as well. The flow equilibrates faster and the overall momentum absorption is higher for the staggered compared to the aligned farm, which is consistent with canopy scaling and leads to a larger effective roughness. Although the overall surface heat flux change produced by the wind farms is found to be small, with a net reduction of 4% for the staggered wind farm and nearly zero change for the aligned wind farm, the highly heterogeneous spatial distribution of the surface heat flux, dependent on wind farm layout, is significant. This comprehensive first wind-tunnel dataset on turbulent flow and scalar transport in wind farms will be further used to develop and validate new parameterizations of surface fluxes in numerical models.
2012-09-30
Lagrangian methods for free - surface turbulence and wave simulation . In the far field, coupled wind and wave simulations are used to obtain wind...to conserve the mass precisely. When the wave breaks, the flow at the free surface may become very violent, air and water may be highly mixed...fluids free - surface flows that can be used to study the fundamental physics of wave breaking. The research will improve the understanding of air-sea
Determination of wind from NIMBUS 6 satellite sounding data
NASA Technical Reports Server (NTRS)
Carle, W. E.; Scoggins, J. R.
1981-01-01
Objective methods of computing upper level and surface wind fields from NIMBUS 6 satellite sounding data are developed. These methods are evaluated by comparing satellite derived and rawinsonde wind fields on gridded constant pressure charts in four geographical regions. Satellite-derived and hourly observed surface wind fields are compared. Results indicate that the best satellite-derived wind on constant pressure charts is a geostrophic wind derived from highly smoothed fields of geopotential height. Satellite-derived winds computed in this manner and rawinsonde winds show similar circulation patterns except in areas of small height gradients. Magnitudes of the standard deviation of the differences between satellite derived and rawinsonde wind speeds range from approximately 3 to 12 m/sec on constant pressure charts and peak at the jet stream level. Fields of satellite-derived surface wind computed with the logarithmic wind law agree well with fields of observed surface wind in most regions. Magnitudes of the standard deviation of the differences in surface wind speed range from approximately 2 to 4 m/sec, and satellite derived surface winds are able to depict flow across a cold front and around a low pressure center.
Simulation of Extreme Surface Winds by Regional Climate Models in the NARCCAP Archive
NASA Astrophysics Data System (ADS)
Hatteberg, R.; Takle, E. S.
2011-12-01
Surface winds play a significant role in many natural processes as well as providing a very important ecological service for many human activities. Surface winds ventilate pollutants and heat from our cities, contribute to pollination for our crops, and regulate the fluxes of heat, moisture, and carbon dioxide from the earth's surface. Many environmental models such as biogeochemical models, crop models, lake models, pollutant transport models, etc., use surface winds as a key variable. Studies of the impacts of climate change and climate variability on a wide range of natural systems and coupled human-natural systems frequently need information on how surface wind speeds will change as greenhouse gas concentrations in the earth's atmosphere change. We have studied the characteristics of extreme winds - both high winds and low winds - created by regional climate models (RCMs) in the NARCCAP archives. We evaluated the capabilities of five RCMs forced by NCEP reanalysis data as well as global climate model (GCM) data for contemporary and future scenario climates to capture the observed statistical distribution of surface winds, both high-wind events and low-wind conditions. Our domain is limited to the Midwest (37°N to 49°N, -82°W to -101°W) with the Great Lakes masked out, which eliminates orographic effects that may contribute to regional circulations. The majority of this study focuses on the warm seasonal in order to examine derechos on the extreme high end and air pollution and plant processes on the low wind speed end. To examine extreme high winds we focus on derechos, which are long-lasting convectively driven extreme wind events that frequently leave a swath of damage extending across multiple states. These events are unusual in that, despite their relatively small spatial scale, they can persist for hours or even days, drawing energy from well-organized larger mesoscale or synoptic scale processes. We examine the ability of NARCCAP RCMs to reproduce these isolated extreme events by assessing their existence, location, magnitude, synoptic linkage, initiation time and duration as compared to the record of observations of derechos in the Midwest and Northeast US. We find that RCMs do reproduce features with close resemblance to derechos although their magnitudes are considerably below those observed (which may be expected given the 50-km grid spacing of the RCM models). Extreme low wind speeds in summer are frequently associated with stagnation conditions leading to high air pollution events in major cities. Low winds also lead to reduced evapotranspiration by crops, which can impact phenological processes (e.g. pollination and seed fertilization, carbon uptake by plants). We evaluate whether RCMs can simulate climatic distributions of low-wind conditions in the northern US. Results show differences among models in their ability to reproduce observed characteristics of low summer-time winds. Only one model reproduces observed high frequency of calm night-time surface winds in summer, which suggests a need to improve model capabilities for simulating extreme stagnation events.
On wind-wave-current interactions during the Shoaling Waves Experiment
NASA Astrophysics Data System (ADS)
Zhang, Fei W.; Drennan, William M.; Haus, Brian K.; Graber, Hans C.
2009-01-01
This paper presents a case study of wind-wave-current interaction during the Shoaling Waves Experiment (SHOWEX). Surface current fields off Duck, North Carolina, were measured by a high-frequency Ocean Surface Current Radar (OSCR). Wind, wind stress, and directional wave data were obtained from several Air Sea Interaction Spar (ASIS) buoys moored in the OSCR scanning domain. At several times during the experiment, significant coastal currents entered the experimental area. High horizontal shears at the current edge resulted in the waves at the peak of wind-sea spectra (but not those in the higher-frequency equilibrium range) being shifted away from the mean wind direction. This led to a significant turning of the wind stress vector away from the mean wind direction. The interactions presented here have important applications in radar remote sensing and are discussed in the context of recent radar imaging models of the ocean surface.
An oilspill trajectory analysis model with a variable wind deflection angle
Samuels, W.B.; Huang, N.E.; Amstutz, D.E.
1982-01-01
The oilspill trajectory movement algorithm consists of a vector sum of the surface drift component due to wind and the surface current component. In the U.S. Geological Survey oilspill trajectory analysis model, the surface drift component is assumed to be 3.5% of the wind speed and is rotated 20 degrees clockwise to account for Coriolis effects in the Northern Hemisphere. Field and laboratory data suggest, however, that the deflection angle of the surface drift current can be highly variable. An empirical formula, based on field observations and theoretical arguments relating wind speed to deflection angle, was used to calculate a new deflection angle at each time step in the model. Comparisons of oilspill contact probabilities to coastal areas calculated for constant and variable deflection angles showed that the model is insensitive to this changing angle at low wind speeds. At high wind speeds, some statistically significant differences in contact probabilities did appear. ?? 1982.
NASA Technical Reports Server (NTRS)
Barrett, Joe, III; Short, David; Roeder, William
2008-01-01
The expected peak wind speed for the day is an important element in the daily 24-Hour and Weekly Planning Forecasts issued by the 45th Weather Squadron (45 WS) for planning operations at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The morning outlook for peak speeds also begins the warning decision process for gusts ^ 35 kt, ^ 50 kt, and ^ 60 kt from the surface to 300 ft. The 45 WS forecasters have indicated that peak wind speeds are a challenging parameter to forecast during the cool season (October-April). The 45 WS requested that the Applied Meteorology Unit (AMU) develop a tool to help them forecast the speed and timing of the daily peak and average wind, from the surface to 300 ft on KSC/CCAFS during the cool season. The tool must only use data available by 1200 UTC to support the issue time of the Planning Forecasts. Based on observations from the KSC/CCAFS wind tower network, surface observations from the Shuttle Landing Facility (SLF), and CCAFS upper-air soundings from the cool season months of October 2002 to February 2007, the AMU created multiple linear regression equations to predict the timing and speed of the daily peak wind speed, as well as the background average wind speed. Several possible predictors were evaluated, including persistence, the temperature inversion depth, strength, and wind speed at the top of the inversion, wind gust factor (ratio of peak wind speed to average wind speed), synoptic weather pattern, occurrence of precipitation at the SLF, and strongest wind in the lowest 3000 ft, 4000 ft, or 5000 ft. Six synoptic patterns were identified: 1) surface high near or over FL, 2) surface high north or east of FL, 3) surface high south or west of FL, 4) surface front approaching FL, 5) surface front across central FL, and 6) surface front across south FL. The following six predictors were selected: 1) inversion depth, 2) inversion strength, 3) wind gust factor, 4) synoptic weather pattern, 5) occurrence of precipitation at the SLF, and 6) strongest wind in the lowest 3000 ft. The forecast tool was developed as a graphical user interface with Microsoft Excel to help the forecaster enter the variables, and run the appropriate regression equations. Based on the forecaster's input and regression equations, a forecast of the day's peak and average wind is generated and displayed. The application also outputs the probability that the peak wind speed will be ^ 35 kt, 50 kt, and 60 kt.
High-Voltage Isolation Transformer
NASA Technical Reports Server (NTRS)
Clatterbuck, C. H.; Ruitberg, A. P.
1985-01-01
Arcing and field-included surface erosion reduced by electrostatic shields around windings and ferromagnetic core of 80-kilovolt isolation transformer. Fabricated from high-resistivity polyurethane-based material brushed on critical surfaces, shields maintained at approximately half potential difference of windings.
Observation of high-resolution wind fields and offshore wind turbine wakes using TerraSAR-X imagery
NASA Astrophysics Data System (ADS)
Gies, Tobias; Jacobsen, Sven; Lehner, Susanne; Pleskachevsky, Andrey
2014-05-01
1. Introduction Numerous large-scale offshore wind farms have been built in European waters and play an important role in providing renewable energy. Therefore, knowledge of behavior of wakes, induced by large wind turbines and their impact on wind power output is important. The spatial variation of offshore wind turbine wake is very complex, depending on wind speed, wind direction, ambient atmospheric turbulence and atmospheric stability. In this study we demonstrate the application of X-band TerraSAR-X (TS-X) data with high spatial resolution for studies on wind turbine wakes in the near and far field of the offshore wind farm Alpha Ventus, located in the North Sea. Two cases which different weather conditions and different wake pattern as observed in the TS-X image are presented. 2. Methods The space-borne synthetic aperture radar (SAR) is a unique sensor that provides two-dimensional information on the ocean surface. Due to their high resolution, daylight and weather independency and global coverage, SARs are particularly suitable for many ocean and coastal applications. SAR images reveal wind variations on small scales and thus represent a valuable means in detailed wind-field analysis. The general principle of imaging turbine wakes is that the reduced wind speed downstream of offshore wind farms modulates the sea surface roughness, which in turn changes the Normalized Radar Cross Section (NRCS, denoted by σ0) in the SAR image and makes the wake visible. In this study we present two cases at the offshore wind farm Alpha Ventus to investigate turbine-induced wakes and the retrieved sea surface wind field. Using the wind streaks, visible in the TS-X image and the shadow behind the offshore wind farm, induced by turbine wake, the sea surface wind direction is derived and subsequently the sea surface wind speed is calculated using the latest generation of wind field algorithm XMOD2. 3. Case study alpha ventus Alpha Ventus is located approximately 45 km from the coast of Borkum, Germany, and consists of twelve 5-Megawatt wind power turbines. The retrieved results are validated by comparing with QuikSCAT measurements, the results of the German Weather Service (DWD) atmospheric model and in-situ measurements of wind speed and wind direction, obtained from the research platform FiNO1, installed 400 m west of Alpha Ventus. 4. Conclusion In the presented case study we quantify the wake characteristics of wake length, wake width, maximum velocity de?cit, wake merging and wake meandering. We show that SAR has the capability to map the sea surface two-dimensionally in high spatial resolution which provides a unique opportunity to observe spatial characteristics of offshore wind turbine wakes. The SAR derived information can support offshore wind farming with respect to optimal siting and design and help to estimate their effects on the environment.
Predicting Near-surface Winds with WindNinja for Wind Energy Applications
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Shannon, K.; Butler, B.
2016-12-01
WindNinja is a high-resolution diagnostic wind model widely used by operational wildland fire managers to predict how near-surface winds may influence fire behavior. Many of the features which have made WindNinja successful for wildland fire are also important for wind energy applications. Some of these features include flexible runtime options which allow the user to initialize the model with coarser scale weather model forecasts, sparse weather station observations, or a simple domain-average wind for what-if scenarios; built-in data fetchers for required model inputs, including gridded terrain and vegetation data and operational weather model forecasts; relatively fast runtimes on simple hardware; an extremely user-friendly interface; and a number of output format options, including KMZ files for viewing in Google Earth and GeoPDFs which can be viewed in a GIS. The recent addition of a conservation of mass and momentum solver based on OpenFOAM libraries further increases the utility of WindNinja to modelers in the wind energy sector interested not just in mean wind predictions, but also in turbulence metrics. Here we provide an evaluation of WindNinja forecasts based on (1) operational weather model forecasts and (2) weather station observations provided by the MesoWest API. We also compare the high-resolution WindNinja forecasts to the coarser operational weather model forecasts. For this work we will use the High Resolution Rapid Refresh (HRRR) model and the North American Mesoscale (NAM) model. Forecasts will be evaluated with data collected in the Birch Creek valley of eastern Idaho, USA between June-October 2013. Near-surface wind, turbulence data, and vertical wind and temperature profiles were collected at very high spatial resolution during this field campaign specifically for use in evaluating high-resolution wind models like WindNinja. This work demonstrates the ability of WindNinja to generate very high-resolution wind forecasts for wind energy applications and evaluates the forecasts produced by two different initialization methods with data collected in a broad valley surrounded by complex terrain.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-08-09
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps.
Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi
2016-01-01
Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932
NASA Technical Reports Server (NTRS)
Halpern, D.; Zlotnicki, V.; Newman, J.; Brown, O.; Wentz, F.
1991-01-01
Monthly mean global distributions for 1988 are presented with a common color scale and geographical map. Distributions are included for sea surface height variation estimated from GEOSAT; surface wind speed estimated from the Special Sensor Microwave Imager on the Defense Meteorological Satellite Program spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer on NOAA spacecrafts; and the Cartesian components of the 10m height wind vector computed by the European Center for Medium Range Weather Forecasting. Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
Wind Effects on Flow Patterns and Net Fluxes in Density-Driven High-Latitude Channel Flow
NASA Astrophysics Data System (ADS)
Huntley, Helga S.; Ryan, Patricia
2018-01-01
A semianalytic two-dimensional model is used to analyze the interplay between the different forces acting on density-driven flow in high-latitude channels. In particular, the balance between wind stress, viscous forces, baroclinicity, and sea surface slope adjustments under specified flux conditions is examined. Weak winds are found not to change flow patterns appreciably, with minimal (<7%) adjustments to horizontal velocity maxima. In low-viscosity regimes, strong winds change the flow significantly, especially at the surface, by either strengthening the dual-jet pattern, established without wind, by a factor of 2-3 or initiating return flow at the surface. A nonzero flux does not result in the addition of a uniform velocity throughout the channel cross section, but modifies both along-channel and cross-channel velocities to become more symmetric, dominated by a down-channel jet centered in the domain and counter-clockwise lateral flow. We also consider formulations of the model that allow adjustments of the net flux in response to the wind. Flow patterns change, beyond uniform intensification or weakening, only for strong winds and high Ekman number. Comparisons of the model results to observational data collected in Nares Strait in the Canadian Archipelago in the summer of 2007 show rough agreement, but the model misses the upstream surface jet on the east side of the strait and propagates bathymetric effects too strongly in the vertical for this moderately high eddy viscosity. Nonetheless, the broad strokes of the observed high-latitude flow are reproduced.
Offshore Wind Turbines Subjected to Hurricanes
NASA Astrophysics Data System (ADS)
Amirinia, Gholamreza
Hurricane Andrew (1992) caused one of the largest property losses in U.S. history, but limited availability of surface wind measurements hindered the advancement of wind engineering research. Many studies have been conducted on regular boundary layer winds (non-hurricane winds) and their effects on the structures. In this case, their results were used in the standards and codes; however, hurricane winds and their effects on the structures still need more studies and observations. Analysis of hurricane surface winds revealed that turbulence spectrum of hurricane winds differs from that of non-hurricane surface winds. Vertical profile of wind velocity and turbulence intensity are also important for determining the wind loads on high-rise structures. Vertical profile of hurricane winds is affected by different parameters such as terrain or surface roughness. Recent studies show that wind velocity profile and turbulence intensity of hurricane winds may be different from those used in the design codes. Most of the studies and available models for analyzing wind turbines subjected to high-winds neglect unsteady aerodynamic forces on a parked wind tower. Since the blade pitch angle in a parked wind turbine is usually about 90°, the drag coefficient on blade airfoils are very small therefore the along-wind aerodynamic forces on the blades are smaller than those on the tower. Hence, the tower in parked condition plays an important role in along-wind responses of the wind turbine. The objectives of this study are, first, to explore the nature of the hurricane surface winds. Next, to establish a time domain procedure for addressing structure-wind-wave-soil interactions. Third, investigating the behavior of wind turbines subjected to hurricane loads resulted form hurricane nature and, lastly, to investigate reconfiguration of turbine structure to reduce wind forces. In order to achieve these objective, first, recent observations on hurricane turbulence models were discussed. Then a new formulation for addressing unsteady wind forces on the tower was introduced and NREL-FAST package was modified with the new formulation. Interaction of wind-wave-soil-structure was also included in the modification. After customizing the package, the tower and blade buffeting responses, the low cycle fatigue during different hurricane categories, and extreme value of the short-term responses were analyzed. In the second part, piezoelectric materials were used to generate perturbations on the surface of a specimen in the wind tunnel. This perturbation was used to combine upward wall motion and surface curvature. For this purpose, a Macro Fiber Composite (MFC) material was mounted on the surface of a cylindrical specimen for generating perturbation in the wind tunnel. Four different perturbation frequencies (1 Hz, 2 Hz, 3 Hz, and 4Hz) as well as the baseline specimen were tested in a low-speed wind tunnel (Re= 2.8x104). Results showed that recently observed turbulence models resulted in larger structural responses and low-cycle fatigue damage than existing models. In addition, extreme value analysis of the short-term results showed that the IEC 61400-3 recommendation for wind turbine class I was sufficient for designing the tower for wind turbine class S subjected to hurricane; however, for designing the blade, IEC 61400-3 recommendations for class I underestimated the responses. In addition, wind tunnel testing results showed that the perturbation of the surface of the specimen increased the turbulence in the leeward in specific distance from the specimen. The surface perturbation technique had potential to reduce the drag by 4.8%.
NASA Technical Reports Server (NTRS)
Meyer, F. W.; Barghouty, A. F.
2012-01-01
Solar wind sputtering of the lunar surface helps determine the composition of the lunar exosphere and contributes to surface weathering. To date, only the effects of the two dominant solar wind constituents, H+ and He+, have been considered. The heavier, less abundant solar wind constituents have much larger sputtering yields because they have greater mass (kinetic sputtering) and they are highly charged (potential sputtering) Their contribution to total sputtering can therefore be orders of magnitude larger than their relative abundances would suggest
NASA Technical Reports Server (NTRS)
Halpern, D.; Fu, L.; Knauss, W.; Pihos, G.; Brown, O.; Freilich, M.; Wentz, F.
1995-01-01
The following monthly mean global distributions for 1993 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (U.S.) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the Advanced Very High Resolution Radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) satellite; 10-m height wind speed and direction estimated from the Active Microwave Instrument (AMI) on the European Space Agency (ESA) European Remote Sensing (ERS-1) satellite; sea surface height estimated from the joint U.S.-France Topography Experiment (TOPEX)/POSEIDON spacecraft; and 10-m height wind speed and direction produced by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of annual mean, monthly mean, and sampling distributions are displayed.
Investigation of the turbulent wind field below 500 feet altitude at the Eastern Test Range, Florida
NASA Technical Reports Server (NTRS)
Blackadar, A. K.; Panofsky, H. A.; Fiedler, F.
1974-01-01
A detailed analysis of wind profiles and turbulence at the 150 m Cape Kennedy Meteorological Tower is presented. Various methods are explored for the estimation of wind profiles, wind variances, high-frequency spectra, and coherences between various levels, given roughness length and either low-level wind and temperature data, or geostrophic wind and insolation. The relationship between planetary Richardson number, insolation, and geostrophic wind is explored empirically. Techniques were devised which resulted in surface stresses reasonably well correlated with the surface stresses obtained from low-level data. Finally, practical methods are suggested for the estimation of wind profiles and wind statistics.
Revised ocean backscatter models at C and Ku band under high-wind conditions
NASA Astrophysics Data System (ADS)
Donnelly, William J.; Carswell, James R.; McIntosh, Robert E.; Chang, Paul S.; Wilkerson, John; Marks, Frank; Black, Peter G.
1999-05-01
A series of airborne scatterometer experiments designed to collect C and Ku band ocean backscatter data in regions of high ocean surface winds has recently been completed. More than 100 hours of data were collected using the University of Massachusetts C and Ku band scatterometers, CSCAT and KUSCAT. These instruments measure the full azimuthal normalized radar cross section (NRCS) of a common surface area of the ocean simultaneously at four incidence angles. Our results demonstrate limitations of the current empirical models, C band geophysical model function 4 (CMOD4), SeaSat scatterometer 2 (SASS 2), and NASA scatterometer 1 (NSCAT) 1, that relate ocean backscatter to the near-surface wind at high wind speeds. The discussion focuses on winds in excess of 15 m s-1 in clear atmospheric conditions. The scatterometer data are collocated with measurements from ocean data buoys and Global Positioning System dropsondes, and a Fourier analysis is performed as a function of wind regime. A three-term Fourier series is fit to the backscatter data, and a revised set of coefficients is tabulated. These revised models, CMOD4HW and KUSCAT 1, are the basis for a discussion of the NRCS at high wind speeds. Our scatterometer data show a clear overprediction of the derived NRCS response to high winds based on the CMOD4, SASS 2, and NSCAT 1 models. Furthermore, saturation of the NRCS response begins to occur above 15 m s-1. Sensitivity of the upwind and crosswind response is discussed with implications toward high wind speed retrieval.
Sea Surface Wakes Observed by Spaceborne SAR in the Offshore Wind Farms
NASA Astrophysics Data System (ADS)
Li, Xiaoming; Lehner, Susanne; Jacobsen, Sven
2014-11-01
In the paper, we present some X-band spaceborne synthetic aperture radar (SAR) TerraSAR-X (TS-X) images acquired at the offshore wind farms in the North Sea and the East China Sea. The high spatial resolution SAR images show different sea surface wake patterns downstream of the offshore wind turbines. The analysis suggests that there are major two types of wakes among the observed cases. The wind turbine wakes generated by movement of wind around wind turbines are the most often observed cases. In contrast, due to the strong local tidal currents in the near shore wind farm sites, the tidal current wakes induced by tidal current impinging on the wind turbine piles are also observed in the high spatial resolution TS-X images. The discrimination of the two types of wakes observed in the offshore wind farms is also described in the paper.
The dune effect on sand-transporting winds on Mars.
Jackson, Derek W T; Bourke, Mary C; Smyth, Thomas A G
2015-11-05
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface-atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern 'wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today.
NASA Astrophysics Data System (ADS)
Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun
2016-08-01
A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.
NASA Astrophysics Data System (ADS)
Gough, M.; Reniers, A.; MacMahan, J. H.; Howden, S. D.
2014-12-01
The continental shelf along the northeastern Gulf of Mexico is transected by the critical latitude (30°N) for inertial motions. At this latitude the inertial period is 24 hours and diurnal surface current oscillations can amplify due to resonance with diurnal wind and tidal forcing. Tidal amplitudes are relatively small in this region although K1 tidal currents can be strong over the shelf west of the DeSoto Canyon where the K1 tide propagates onshore as a Sverdrup wave. Other sources of diurnal motions include internal tidal currents, Poincaré waves, and basin resonance. It is therefore very difficult to separate inertial wind-driven motions from other diurnal motions. Spatiotemporal surface currents were measured using hourly 6 km resolution HF radar data collected in June 2010 during the Deepwater Horizon oil spill and July 2012 during the Grand Lagrangian Deployment (GLAD). Surface currents were also measured using GLAD GPS-tracked drifters. NDBC buoy wind data were used to determine wind-forcing, and OSU Tidal Inversion Software (OTIS) were used to predict tidal currents. The relative spatiotemporal influence of diurnal wind and tidal forcing on diurnal surface current oscillations is determined through a series of comparative analyses: phase and amplitude of bandpassed timeseries, wavelet analyses, wind-driven inertial oscillation calculations, and tidal current predictions. The wind-driven inertial ocean response is calculated by applying a simple "slab" model where wind-forcing is allowed to excite a layer of low-density water riding over high density water. The spatial variance of diurnal motions are found to be correlated with satellite turbidity imagery indicating that stratification influences the sea surface inertial response to wind-forcing. Surface dispersion is found to be minimized in regions of high diurnal variance suggesting that mean surface transport is restricted in regions of inertial motions associated with stratification.
NASA Astrophysics Data System (ADS)
Tian, Wei; Ozbay, Ahmet; Hu, Hui
2014-12-01
An experimental investigation was conducted to examine the effects of incoming surface wind conditions on the wake characteristics and dynamic wind loads acting on a wind turbine model. The experimental study was performed in a large-scale wind tunnel with a scaled three-blade Horizontal Axial Wind Turbine model placed in two different types of Atmospheric Boundary Layer (ABL) winds with distinct mean and turbulence characteristics. In addition to measuring dynamic wind loads acting on the model turbine by using a force-moment sensor, a high-resolution Particle Image Velocimetry system was used to achieve detailed flow field measurements to characterize the turbulent wake flows behind the model turbine. The measurement results reveal clearly that the discrepancies in the incoming surface winds would affect the wake characteristics and dynamic wind loads acting on the model turbine dramatically. The dynamic wind loads acting on the model turbine were found to fluctuate much more significantly, thereby, much larger fatigue loads, for the case with the wind turbine model sited in the incoming ABL wind with higher turbulence intensity levels. The turbulent kinetic energy and Reynolds stress levels in the wake behind the model turbine were also found to be significantly higher for the high turbulence inflow case, in comparison to those of the low turbulence inflow case. The flow characteristics in the turbine wake were found to be dominated by the formation, shedding, and breakdown of various unsteady wake vortices. In comparison with the case with relatively low turbulence intensities in the incoming ABL wind, much more turbulent and randomly shedding, faster dissipation, and earlier breakdown of the wake vortices were observed for the high turbulence inflow case, which would promote the vertical transport of kinetic energy by entraining more high-speed airflow from above to re-charge the wake flow and result in a much faster recovery of the velocity deficits in the turbine wake.
Employing unmanned aerial vehicle to monitor the health condition of wind turbines
NASA Astrophysics Data System (ADS)
Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang; Cheng, Chia-Chi
2018-04-01
Unmanned aerial vehicle (UAV) can gather the spatial information of huge structures, such as wind turbines, that can be difficult to obtain with traditional approaches. In this paper, the UAV used in the experiments is equipped with high resolution camera and thermal infrared camera. The high resolution camera can provide a series of images with resolution up to 10 Megapixels. Those images can be used to form the 3D model using the digital photogrammetry technique. By comparing the 3D scenes of the same wind turbine at different times, possible displacement of the supporting tower of the wind turbine, caused by ground movement or foundation deterioration may be determined. The recorded thermal images are analyzed by applying the image segmentation methods to the surface temperature distribution. A series of sub-regions are separated by the differences of the surface temperature. The high-resolution optical image and the segmented thermal image are fused such that the surface anomalies are more easily identified for wind turbines.
A compact multi-wire-layered secondary winding for Tesla transformer.
Zhao, Liang; Su, Jian-Cang; Li, Rui; Wu, Xiao-Long; Xu, Xiu-Dong; Qiu, Xu-Dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-Cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 10 4 pulses, which proves the feasibility of the MWL secondary winding.
A compact multi-wire-layered secondary winding for Tesla transformer
NASA Astrophysics Data System (ADS)
Zhao, Liang; Su, Jian-cang; Li, Rui; Wu, Xiao-long; Xu, Xiu-dong; Qiu, Xu-dong; Zeng, Bo; Cheng, Jie; Zhang, Yu; Gao, Peng-cheng
2017-05-01
A compact multi-wire-layered (MWL) secondary winding for a Tesla transformer is put forward. The basic principle of this winding is to wind the metal wire on a polymeric base tube in a multi-layer manner. The tube is tapered and has high electrical strength and high mechanical strength. Concentric-circle grooves perpendicular to the axis of the tube are carved on the surface of the tube to wind the wire. The width of the groove is basically equal to the diameter of the wire so that the metal wire can be fixed in the groove without glue. The depth of the groove is n times of the diameter of the wire to realize the n-layer winding manner. All the concentric-circle grooves are connected via a spiral groove on the surface of the tube to let the wire go through. Compared with the traditional one-wire-layered (OWL) secondary winding for the Tesla transformer, the most conspicuous advantage of the MWL secondary winding is that the latter is compact with only a length of 2/n of the OWL. In addition, the MWL winding has the following advantages: high electrical strength since voids are precluded from the surface of the winding, high mechanical strength because polymer is used as the material of the base tube, and reliable fixation in the Tesla transformer as special mechanical connections are designed. A 2000-turn MWL secondary winding is fabricated with a winding layer of 3 and a total length of 1.0 m. Experiments to test the performance of this winding on a Tesla-type pulse generator are conducted. The results show that this winding can boost the voltage to 1 MV at a repetition rate of 50 Hz reliably for a lifetime longer than 104 pulses, which proves the feasibility of the MWL secondary winding.
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
Sputtering by the Solar Wind: Effects of Variable Composition
NASA Technical Reports Server (NTRS)
Killen, R. M.; Arrell, W. M.; Sarantos, M.; Delory, G. T.
2011-01-01
It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that there is no increase in the sputtering yield caused by highly charged heavy ions for metallic and for semiconducting surfaces, but the sputter yield can be noticeably increased in the case of a good insulating surface. Recently measurements of the solar wind composition have become available. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. Whereas many previous calculations of sputtering were limited to the effects of proton bombardment. we show that the heavy ion component. especially the He++ component. can greatly enhance the total sputter yield during times when the heavy ion population is enhanced. We will discuss sputtering of both neutrals and ions.
Seasonal prevailing surface winds in Northern Serbia
NASA Astrophysics Data System (ADS)
Tošić, Ivana; Gavrilov, Milivoj B.; Marković, Slobodan B.; Ruman, Albert; Putniković, Suzana
2018-02-01
Seasonal prevailing surface winds are analyzed in the territory of Northern Serbia, using observational data from 12 meteorological stations over several decades. In accordance with the general definition of prevailing wind, two special definitions of this term are used. The seasonal wind roses in 16 directions at each station are analyzed. This study shows that the prevailing winds in Northern Serbia have northwestern and southeastern directions. Circulation weather types over Serbia are presented in order to determine the connections between the synoptic circulations and prevailing surface winds. Three controlling pressure centers, i.e., the Mediterranean cyclone, Siberian high, and the Azores anticyclone, appear as the most important large-scale factors that influence the creation of the prevailing winds over Northern Serbia. Beside the synoptic cause of the prevailing winds, it is noted that the orography of the eastern Balkans has a major influence on the winds from the second quadrant. It was found that the frequencies of circulation weather types are in agreement with those of the prevailing winds over Northern Serbia.
Error trends in SASS winds as functions of atmospheric stability and sea surface temperature
NASA Technical Reports Server (NTRS)
Liu, W. T.
1983-01-01
Wind speed measurements obtained with the scatterometer instrument aboard the Seasat satellite are compared equivalent neutral wind measurements obtained from ship reports in the western N. Atlantic and eastern N. Pacific where the concentration of ship reports are high and the ranges of atmospheric stability and sea surface temperature are large. It is found that at low wind speeds the difference between satellite measurements and surface reports depends on sea surface temperature. At wind speeds higher than 8 m/s the dependence was greatly reduced. The removal of systematic errors due to fluctuations in atmospheric stability reduced the r.m.s. difference from 1.7 m/s to 0.8 m/s. It is suggested that further clarification of the effects of fluctuations in atmospheric stability on Seasat wind speed measurements should increase their reliability in the future.
Atmospheric structure favoring high sea surface temperatures in the western equatorial Pacific
NASA Astrophysics Data System (ADS)
Wirasatriya, Anindya; Kawamura, Hiroshi; Shimada, Teruhisa; Hosoda, Kohtaro
2016-10-01
We investigated the atmospheric processes over high sea surface temperature called Hot Event (HE) in the western equatorial Pacific from climatological analysis and a case study of the HE which began on 28 May 2003 (hereafter, HE030528). Climatological analysis shows that during the development stage of HE, solar radiation inside the HE area is higher than its climatology and wind speed is lower than the decay stage. During the decay stage, strong westerly wind often occurs inside HE area. The case study of HE030528 shows that the suppressed convection above high SST area resulted from the deep convection from the northern and southern areas outside HE. The suppressed convection created a band-shaped structure of low cloud cover along HE area increasing solar radiation during the development stage. Thus, the theory of "remote convection" was supported for the HE030528 formation mechanisms. The large sea level pressure gradient magnitude between the southern side of the terrain gap and the northern coast of the Solomon Islands, through which strong wind blew, indicated the role of land topography for the increase of wind speed during the decay of HE030528. Moreover, surface wind had an important role to influence the variability of solar radiation during the occurrence of HE030528 by controlling the water vapor supply in the upper troposphere through surface evaporation and surface convergence variation. Thus, surface wind was the key factor for HE030528 occurrence. The representativeness of HE030528 and the possible relation between HE and Madden-Julian Oscillation are also discussed.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Bourassa, M. A.; Ali, M. M.
2017-12-01
This observational study focuses on characterizing the surface winds in the Arabian Sea (AS), the Bay of Bengal (BoB), and the southern Indian Ocean (SIO) with special reference to the strong and weak Indian summer monsoon rainfall (ISMR) using the latest daily gridded rainfall dataset provided by the Indian Meteorological Department (IMD) and the Cross-Calibrated Multi-Platform (CCMP) gridded wind product version 2.0 produced by Remote Sensing System (RSS) over the overlapped period 1991-2014. The potential links between surface winds and Indian regional rainfall are also examined. Results indicate that the surface wind speeds in AS and BoB during June-August are almost similar during strong ISMRs and weak ISMRs, whereas significant discrepancies are observed during September. By contrast, the surface wind speeds in SIO during June-August are found to be significantly different between strong and weak ISMRs, where they are similar during September. The significant differences in monthly mean surface wind convergence between strong and weak ISMRs are not coherent in space in the three regions. However, the probability density function (PDF) distributions of daily mean area-averaged values are distinctive between strong and weak ISMRs in the three regions. The correlation analysis indicates the area-averaged surface wind speeds in AS and the area-averaged wind convergence in BoB are highly correlated with regional rainfall for both strong and weak ISMRs. The wind convergence in BoB during strong ISMRs is relatively better correlated with regional rainfall than during weak ISMRs. The surface winds in SIO do not greatly affect Indian rainfall in short timescales, however, they will ultimately affect the strength of monsoon circulation by modulating Indian Ocean Dipole (IOD) mode via atmosphere-ocean interactions.
Initialization of high resolution surface wind simulations using NWS gridded data
J. Forthofer; K. Shannon; Bret Butler
2010-01-01
WindNinja is a standalone computer model designed to provide the user with simulations of surface wind flow. It is deterministic and steady state. It is currently being modified to allow the user to initialize the flow calculation using National Digital Forecast Database. It essentially allows the user to downscale the coarse scale simulations from meso-scale models to...
Recent recovery of surface wind speed after decadal decrease: a focus on South Korea
NASA Astrophysics Data System (ADS)
Kim, JongChun; Paik, Kyungrock
2015-09-01
We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.
Observation of tropical cyclones by high resolution scatterometry
NASA Astrophysics Data System (ADS)
Quilfen, Y.; Chapron, B.; Elfouhaily, T.; Katsaros, K.; Tournadre, J.
1998-04-01
Unprecedented views of surface wind fields in tropical cyclones (hereafter TCs) are provided by the European Remote Sensing Satellite (ERS) C band scatterometer. Scatterometer measurements at C band are able to penetrate convective storms clouds, observing the surface wind fields with good accuracy. However the resolution of the measurements (50×50 km2) limits the interpretation of the scatterometer signals in such mesoscale events. The strong gradients of the surface wind existing at scales of a few kms are smoothed in the measured features such as the intensity and location of the wind maxima, and the position of the center. Beyond the ERS systems, the scatterometers on-board the ADEOS and METOP satellites, designed by the Jet Propulsion Laboratory and by the European Space Agency, respectively, will be able to produce measurements of the backscattering coefficient at about 25×25 km2 resolution. A few sets of ERS-1 orbits sampling TC events were produced with an experimental 25×25 km2 resolution. Enhancing the resolution by a factor of 2 allows location of the wind maxima and minima in a TC with a much better accuracy than at 50 km resolution. In addition, a better resolution reduces the geophysical noise (variability of wind speed within the cell and effect of rain) that dominates the radiometric noise and hence improves the definition of the backscattering measurements. A comprehensive analysis of the backscattering measurements in the case of high winds and high sea states obtained within TCs is proposed in order to refine the interpretation of the wind vector derived from a backscattering model that is currently only calibrated up to moderate winds (<20 m/s) in neutral conditions. Observations of the TOPEX-POSEIDON dual-frequency altimeter are also used for that purpose. Patterns of the surface winds in TCs are described and characteristic features concerning asymmetries in the maximum winds and in the divergence field are discussed.
Impacts of wind farms on surface air temperatures
Baidya Roy, Somnath; Traiteur, Justin J.
2010-01-01
Utility-scale large wind farms are rapidly growing in size and numbers all over the world. Data from a meteorological field campaign show that such wind farms can significantly affect near-surface air temperatures. These effects result from enhanced vertical mixing due to turbulence generated by wind turbine rotors. The impacts of wind farms on local weather can be minimized by changing rotor design or by siting wind farms in regions with high natural turbulence. Using a 25-y-long climate dataset, we identified such regions in the world. Many of these regions, such as the Midwest and Great Plains in the United States, are also rich in wind resources, making them ideal candidates for low-impact wind farms. PMID:20921371
Aeolian sediment transport on a beach: Surface moisture, wind fetch, and mean transport
NASA Astrophysics Data System (ADS)
Bauer, B. O.; Davidson-Arnott, R. G. D.; Hesp, P. A.; Namikas, S. L.; Ollerhead, J.; Walker, I. J.
2009-04-01
Temporal and spatial changes in wind speed, wind direction, and moisture content are ubiquitous across sandy coastal beaches. Often these factors interact in unknown ways to create complexity that confounds our ability to model sediment transport at any point across the beach as well as our capacity to predict sediment delivery into the adjacent foredunes. This study was designed to measure wind flow and sediment transport over a beach and foredune at Greenwich Dunes, Prince Edward Island National Park, with the express purpose of addressing these complex interactions. Detailed measurements are reported for one stormy day, October 11, 2004, during which meteorological conditions were highly variable. Wind speed ranged from 4 ms - 1 to over 20 ms - 1 , wind direction was highly oblique varying between 60° and 85° from shore perpendicular, and moisture content of the sand surface ranged from a minimum of about 3% (by mass) to complete saturation depending on precipitation, tidal excursion, and storm surge that progressively inundated the beach. The data indicate that short-term variations (i.e., minutes to hours) in sediment transport across this beach arise predominantly because of short-term changes in wind speed, as is expected, but also because of variations in wind direction, precipitation intensity, and tide level. Even slight increases in wind speed are capable of driving more intense saltation events, but this relationship is mediated by other factors on this characteristically narrow beach. As the angle of wind approach becomes more oblique, the fetch distance increases and allows greater opportunity for the saltation system to evolve toward an equilibrium transport state before reaching the foredunes. Whether the theoretically-predicted maximum rate of transport is ever achieved depends on the character of the sand surface (e.g., grain size, slope, roughness, vegetation, moisture content) and on various attributes of the wind field (e.g., average wind speed, unsteadiness, approach angle, flow compression, boundary layer development). Moisture content is widely acknowledged as an important factor in controlling release of sediment from the beach surface. All other things being equal, the rate of sediment transport over a wet surface is lesser than over a dry surface. On this beach, the moisture effect has two important influences: (a) in a temporal sense, the rate of sediment transport typically decreases in association with rainfall and increases when surface drying takes place; and (b) in a spatio-temporal sense, shoreline excursions associated with nearshore processes (such as wave run-up, storm surge, and tidal excursions) have the effect of constraining the fetch geometry of the beach—i.e., narrowing the width of the beach. Because saturated sand surfaces, such as found in the swash zone, will only reluctantly yield sediments to aeolian entrainment, the available beach surface across which aeolian transport can occur becomes narrower as the sea progressively inundates the beach. Under these constrained conditions, the transport system begins to shut down unless wind angle becomes highly oblique (thereby increasing fetch distance). In this study, maximum sediment transport was usually measured on the mid-beach rather than the upper beach (i.e., closer to the foredunes). This unusual finding is likely because of internal boundary layer development across the beach, which yields a decrease in near-surface wind speed (and hence, transport capacity) in the landward direction. Although widely recognized in the fluid mechanics literature, this decrease in near-surface shear stress as a by-product of a developing boundary layer in the downwind direction has not been adequately investigated in the context of coastal aeolian geomorphology.
Measurement of surface shear stress vector beneath high-speed jet flow using liquid crystal coating
NASA Astrophysics Data System (ADS)
Wang, Cheng-Peng; Zhao, Ji-Song; Jiao, Yun; Cheng, Ke-Ming
2018-05-01
The shear-sensitive liquid crystal coating (SSLCC) technique is investigated in the high-speed jet flow of a micro-wind-tunnel. An approach to measure surface shear stress vector distribution using the SSLCC technique is established, where six synchronous cameras are used to record the coating color at different circumferential view angles. Spatial wall shear stress vector distributions on the test surface are obtained at different velocities. The results are encouraging and demonstrate the great potential of the SSLCC technique in high-speed wind-tunnel measurement.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
NASA Astrophysics Data System (ADS)
Judt, Falko; Chen, Shuyi S.
2015-07-01
Hurricane surface wind is a key measure of storm intensity. However, a climatology of hurricane winds is lacking to date, largely because hurricanes are relatively rare events and difficult to observe over the open ocean. Here we present a new hurricane wind climatology based on objective surface wind analyses, which are derived from Stepped Frequency Microwave Radiometer measurements acquired by NOAA WP-3D and U.S. Air Force WC-130J hurricane hunter aircraft. The wind data were collected during 72 aircraft reconnaissance missions into 21 western Atlantic hurricanes from 1998 to 2012. This climatology provides an opportunity to validate hurricane intensity forecasts beyond the simplistic maximum wind speed metric and allows evaluating the predictive skill of probabilistic hurricane intensity forecasts using high-resolution model ensembles. An example of application is presented here using a 1.3 km grid spacing Weather Research and Forecasting model ensemble forecast of Hurricane Earl (2010).
Numerical simulation of hydrodynamic processes beneath a wind-driven water surface
NASA Astrophysics Data System (ADS)
Tsai, Wu-ting
Turbulent flow driven by a constant wind stress acting at the water surface was simulated numerically to gain a better understanding of the hydrodynamic processes governing the transfer of slightly soluble gases across the atmosphere-water interfaces. Simulation results show that two distinct flow features, attributed to subsurface surface renewal eddies, appear at the water surface. The first characteristic feature is surface streaming, which consists of high-speed streaks aligned with the wind stress. Floating Lagrangian particles, which are distributed uniformly at the water surface, merge to the predominantly high-speed streaks and form elongated streets immediately after they are released. The second characteristic surface signatures are localized low-speed spots which emerge randomly at the water surface. A high-speed streak bifurcates and forms a dividing flow when it encounters a low-speed surface spot. These coherent surface flow structures are qualitatively identical to those observed in the experiment of Melville et al. [1998]. The persistence of these surface features also suggests that there must exist organized subsurface vortical structures that undergo autonomous generation cycles maintained by self-sustaining mechanisms. These coherent vortical flows serve as the renewal eddies that pump the submerged fluids toward the water surface and bring down the upper fluids, and therefore enhance the scalar exchange between the atmosphere and the water body.
The dune effect on sand-transporting winds on Mars
Jackson, Derek W. T.; Bourke, Mary C; Smyth, Thomas A. G.
2015-01-01
Wind on Mars is a significant agent of contemporary surface change, yet the absence of in situ meteorological data hampers the understanding of surface–atmospheric interactions. Airflow models at length scales relevant to landform size now enable examination of conditions that might activate even small-scale bedforms (ripples) under certain contemporary wind regimes. Ripples have the potential to be used as modern ‘wind vanes' on Mars. Here we use 3D airflow modelling to demonstrate that local dune topography exerts a strong influence on wind speed and direction and that ripple movement likely reflects steered wind direction for certain dune ridge shapes. The poor correlation of dune orientation with effective sand-transporting winds suggests that large dunes may not be mobile under modelled wind scenarios. This work highlights the need to first model winds at high resolution before inferring regional wind patterns from ripple movement or dune orientations on the surface of Mars today. PMID:26537669
NASA Technical Reports Server (NTRS)
Brucks, J. T.; Leming, T. D.; Jones, W. L.
1980-01-01
Sea surface wind stress measurements recorded by a sonic anemometer are correlated with airborne scatterometer measurements of ocean roughness (cross section of radar backscatter) to establish the accuracy of remotely sensed data and assist in the definition of geophysical algorithms for the scatterometer sensor aboard Seasat A. Results of this investigation are as follows: Comparison of scatterometer and sonic anemometer wind stress measurements are good for the majority of cases; however, a tendency exists for scatterometer wind stress to be somewhat high for higher wind conditions experienced in this experiment (6-9 m/s). The scatterometer wind speed algorithm tends to overcompute the higher wind speeds by approximately 0.5 m/s. This is a direct result of the scatterometer overestimate of wind stress from which wind speeds are derived. Algorithmic derivations of wind speed and direction are, in most comparisons, within accuracies defined by Seasat A scatterometer sensor specifications.
Wind tunnel model surface gauge for measuring roughness
NASA Technical Reports Server (NTRS)
Vorburger, T. V.; Gilsinn, D. E.; Teague, E. C.; Giauque, C. H. W.; Scire, F. E.; Cao, L. X.
1987-01-01
The optical inspection of surface roughness research has proceeded along two different lines. First, research into a quantitative understanding of light scattering from metal surfaces and into the appropriate models to describe the surfaces themselves. Second, the development of a practical instrument for the measurement of rms roughness of high performance wind tunnel models with smooth finishes. The research is summarized, with emphasis on the second avenue of research.
Estimating Tropical Cyclone Surface Wind Field Parameters with the CYGNSS Constellation
NASA Astrophysics Data System (ADS)
Morris, M.; Ruf, C. S.
2016-12-01
A variety of parameters can be used to describe the wind field of a tropical cyclone (TC). Of particular interest to the TC forecasting and research community are the maximum sustained wind speed (VMAX), radius of maximum wind (RMW), 34-, 50-, and 64-kt wind radii, and integrated kinetic energy (IKE). The RMW is the distance separating the storm center and the VMAX position. IKE integrates the square of surface wind speed over the entire storm. These wind field parameters can be estimated from observations made by the Cyclone Global Navigation Satellite System (CYGNSS) constellation. The CYGNSS constellation consists of eight small satellites in a 35-degree inclination circular orbit. These satellites will be operating in standard science mode by the 2017 Atlantic TC season. CYGNSS will provide estimates of ocean surface wind speed under all precipitating conditions with high temporal and spatial sampling in the tropics. TC wind field data products can be derived from the level-2 CYGNSS wind speed product. CYGNSS-based TC wind field science data products are developed and tested in this paper. Performance of these products is validated using a mission simulator prelaunch.
NASA Astrophysics Data System (ADS)
Crespo, J.; Posselt, D. J.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS), launched in December 2016, aims to improve estimates of surface wind speeds over the tropical oceans. While CYGNSS's core mission is to provide better estimates of surface winds within the core of tropical cyclones, previous research has shown that the constellation, with its orbital inclination of 35°, also has the ability to observe numerous extratropical cyclones that form in the lower latitudes. Along with its high spatial and temporal resolution, CYGNSS can provide new insights into how extratropical cyclones develop and evolve, especially in the presence of thick clouds and precipitation. We will demonstrate this by presenting case studies of multiple extratropical cyclones observed by CYGNSS early on in its mission in both Northern and Southern Hemispheres. By using the improved estimates of surface wind speeds from CYGNSS, we can obtain better estimates of surface latent and sensible heat fluxes within and around extratropical cyclones. Surface heat fluxes, driven by surface winds and strong vertical gradients of water vapor and temperature, play a key role in marine cyclogenesis as they increase instability within the boundary layer and may contribute to extreme marine cyclogenesis. In the past, it has been difficult to estimate surface heat fluxes from space borne instruments, as these fluxes cannot be observed directly from space, and deficiencies in spatial coverage and attenuation from clouds and precipitation lead to inaccurate estimates of surface flux components, such as surface wind speeds. While CYGNSS only contributes estimates of surface wind speeds, we can combine this data with other reanalysis and satellite data to provide improved estimates of surface sensible and latent heat fluxes within and around extratropical cyclones and throughout the entire CYGNSS mission.
NASA Astrophysics Data System (ADS)
Sun, Zhaobin; Zhang, Xiaoling; Zhao, Xiujuan; Xia, Xiangao; Miao, Shiguang; Li, Ziming; Cheng, Zhigang; Wen, Wei; Tang, Yixi
2018-04-01
We used simultaneous measurements of surface PM2.5 concentration and vertical profiles of aerosol concentration, temperature, and humidity, together with regional air quality model simulations, to study an episode of aerosol pollution in Beijing from 15 to 19 November 2016. The potential effects of easterly and southerly winds on the surface concentrations and vertical profiles of the PM2.5 pollution were investigated. Favorable easterly winds produced strong upward motion and were able to transport the PM2.5 pollution at the surface to the upper levels of the atmosphere. The amount of surface PM2.5 pollution transported by the easterly winds was determined by the strength and height of the upward motion produced by the easterly winds and the initial height of the upward wind. A greater amount of PM2.5 pollution was transported to upper levels of the atmosphere by upward winds with a lower initial height. The pollutants were diluted by easterly winds from clean ocean air masses. The inversion layer was destroyed by the easterly winds and the surface pollutants and warm air masses were then lifted to the upper levels of the atmosphere, where they re-established a multi-layer inversion. This region of inversion was strengthened by the southerly winds, increasing the severity of pollution. A vortex was produced by southerly winds that led to the convergence of air along the Taihang Mountains. Pollutants were transported from southern-central Hebei Province to Beijing in the boundary layer. Warm advection associated with the southerly winds intensified the inversion produced by the easterly winds and a more stable boundary layer was formed. The layer with high PM2.5 concentration became dee-per with persistent southerly winds of a certain depth. The polluted air masses then rose over the northern Taihang Mountains to the northern mountainous regions of Hebei Province.
Field-testing a portable wind tunnel for fine dust emissions
USDA-ARS?s Scientific Manuscript database
A protable wind tunnel has been developed to allow erodibility and dust emissions testing of soil surfaces with the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study we report on the field-testing ...
Numerical simulation of thermally induced near-surface flows over Martian terrain
NASA Technical Reports Server (NTRS)
Parish, T. R.; Howard, A. D.
1993-01-01
Numerical simulations of the Martian near-surface wind regime using a mesoscale atmospheric model have shown that the thermally induced near-surface winds are analogous to terrestrial circulations. In particular, katabatic wind displays a striking similarity to flow observed over Antarctica. Introduction of solar radiation strongly perturbs the slope flows; anabatic conditions develop in middle to high latitudes during the daytime hours due to the solar heating of the sloping terrain. There appears to be a rapid transition from the katabatic to the anabatic flow regimes, emphasizing the primary importance of radiative exchanges at the surface in specifying the horizontal pressure gradient force.
Role of the Coronal Alfvén Speed in Modulating the Solar-wind Helium Abundance
NASA Astrophysics Data System (ADS)
Wang, Y.-M.
2016-12-01
The helium abundance He/H in the solar wind is relatively constant at ˜0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ˜0.01 at solar minimum to ˜0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995-2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v A in the outer corona, while being only weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v A near the source surface; resonance with Alfvén waves, with v A and the relative speed of α-particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.
NASA Astrophysics Data System (ADS)
Choi, Hyun-Jung; Lee, Hwa Woon; Jeon, Won-Bae; Lee, Soon-Hwan
2012-01-01
This study evaluated an atmospheric and air quality model of the spatial variability in low-level coastal winds and ozone concentration, which are affected by sea surface temperature (SST) forcing with different thermal gradients. Several numerical experiments examined the effect of sea surface SST forcing on the coastal atmosphere and air quality. In this study, the RAMS-CAMx model was used to estimate the sensitivity to two different resolutions of SST forcing during the episode day as well as to simulate the low-level coastal winds and ozone concentration over a complex coastal area. The regional model reproduced the qualitative effect of SST forcing and thermal gradients on the coastal flow. The high-resolution SST derived from NGSST-O (New Generation Sea Surface Temperature Open Ocean) forcing to resolve the warm SST appeared to enhance the mean response of low-level winds to coastal regions. These wind variations have important implications for coastal air quality. A higher ozone concentration was forecasted when SST data with a high resolution was used with the appropriate limitation of temperature, regional wind circulation, vertical mixing height and nocturnal boundary layer (NBL) near coastal areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wharton, Sonia; Simpson, Matthew; Osuna, Jessica
The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. Themore » LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.« less
Hurricane Imaging Radiometer (HIRAD) Wind Speed Retrievals and Assessment Using Dropsondes
NASA Technical Reports Server (NTRS)
Cecil, Daniel J.; Biswas, Sayak K.
2018-01-01
The Hurricane Imaging Radiometer (HIRAD) is an experimental C-band passive microwave radiometer designed to map the horizontal structure of surface wind speed fields in hurricanes. New data processing and customized retrieval approaches were developed after the 2015 Tropical Cyclone Intensity (TCI) experiment, which featured flights over Hurricanes Patricia, Joaquin, Marty, and the remnants of Tropical Storm Erika. These new approaches produced maps of surface wind speed that looked more realistic than those from previous campaigns. Dropsondes from the High Definition Sounding System (HDSS) that was flown with HIRAD on a WB-57 high altitude aircraft in TCI were used to assess the quality of the HIRAD wind speed retrievals. The root mean square difference between HIRAD-retrieved surface wind speeds and dropsonde-estimated surface wind speeds was 6.0 meters per second. The largest differences between HIRAD and dropsonde winds were from data points where storm motion during dropsonde descent compromised the validity of the comparisons. Accounting for this and for uncertainty in the dropsonde measurements themselves, we estimate the root mean square error for the HIRAD retrievals as around 4.7 meters per second. Prior to the 2015 TCI experiment, HIRAD had previously flown on the WB-57 for missions across Hurricanes Gonzalo (2014), Earl (2010), and Karl (2010). Configuration of the instrument was not identical to the 2015 flights, but the methods devised after the 2015 flights may be applied to that previous data in an attempt to improve retrievals from those cases.
Climate projection of synoptic patterns forming extremely high wind speed over the Barents Sea
NASA Astrophysics Data System (ADS)
Surkova, Galina; Krylov, Aleksey
2017-04-01
Frequency of extreme weather events is not very high, but their consequences for the human well-being may be hazardous. These seldom events are not always well simulated by climate models directly. Sometimes it is more effective to analyze numerical projection of large-scale synoptic event generating extreme weather. For example, in mid-latitude surface wind speed depends mainly on the sea level pressure (SLP) field - its configuration and horizontal pressure gradient. This idea was implemented for analysis of extreme wind speed events over the Barents Sea. The calendar of high surface wind speed V (10 m above the surface) was prepared for events with V exceeding 99th percentile value in the central part of the Barents Sea. Analysis of probability distribution function of V was carried out on the base of ERA-Interim reanalysis data (6-hours, 0.75x0.75 degrees of latitude and longitude) for the period 1981-2010. Storm wind events number was found to be 240 days. Sea level pressure field over the sea and surrounding area was selected for each storm wind event. For the climate of the future (scenario RCP8.5), projections of SLP from CMIP5 numerical experiments were used. More than 20 climate models results of projected SLP (2006-2100) over the Barents Sea were correlated with modern storm wind SLP fields. Our calculations showed the positive tendency of annual frequency of storm SLP patterns over the Barents Sea by the end of 21st century.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiguo; Shaw, William J.
This paper compares the wind field from a diagnostic model (CALMET) over complex terrain in the Phoenix region in the USA with observations that are gridded by a state-of-the-art Four-Dimensional Data Assimilation (FDDA) system. The wind difference between the CALMET and FDDA wind fields is larger at night than in the day. The magnitude of the wind difference can be smaller than 5% of the mean wind speed at low levels in areas with dense observational stations, while it can be larger than 80% in areas without observational stations or at high altitudes. The vector-mean wind direction difference over themore » domain is 15 deg on the surface level and 25 deg between 10 and 1500 m. To evaluate the effects of the wind difference on dispersion calculations, dispersion of a hypothetical passive tracer released from surface point sources is simulated by the second-order closure integrated puff (SCIPUFF) model driven by the CALMET and FDDA wind fields, respectively. Differences in the two simulated tracer concentration fields increase with time due to accumulation of effects of the wind differences both near the surface and at higher altitudes. Even for the release in the area with the densest distribution of surface stations, the relative difference in the peak surface concentration from CALMET-SCIPUFF and from FDDA-SCIPUFF is less than 10% only within 0.5 hr after the release in the afternoon, and increases to 70% at 1.5 hr; this is because of large differences in wind above the surface. For the release in the area with few stations, the difference can be larger than 100% or even larger after 1.5 hr from the release. To improve dispersion simulations driven by the CALMET wind in the region, observations at upper-air stations are needed and the current surface observation network needs to be reorganized or more stations are needed to account for the influence of terrain.« less
NASA Technical Reports Server (NTRS)
Fisher, David F.; Richwine, David M.; Banks, Daniel W.
1988-01-01
A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.
Modelling storm development and the impact when introducing waves, sea spray and heat fluxes
NASA Astrophysics Data System (ADS)
Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik
2015-04-01
In high wind speed conditions, sea spray generated due to intensity breaking waves have big influence on the wind stress and heat fluxes. Measurements show that drag coefficient will decrease in high wind speed. Sea spray generation function (SSGF), an important term of wind stress parameterization in high wind speed, usually treated as a function of wind speed/friction velocity. In this study, we introduce a wave state depended SSGG and wave age depended Charnock number into a high wind speed wind stress parameterization (Kudryavtsev et al., 2011; 2012). The proposed wind stress parameterization and sea spray heat fluxes parameterization from Andreas et al., (2014) were applied to an atmosphere-wave coupled model to test on four storm cases. Compared with measurements from the FINO1 platform in the North Sea, the new wind stress parameterization can reduce the forecast errors of wind in high wind speed range, but not in low wind speed. Only sea spray impacted on wind stress, it will intensify the storms (minimum sea level pressure and maximum wind speed) and lower the air temperature (increase the errors). Only the sea spray impacted on the heat fluxes, it can improve the model performance on storm tracks and the air temperature, but not change much in the storm intensity. If both of sea spray impacted on the wind stress and heat fluxes are taken into account, it has the best performance in all the experiment for minimum sea level pressure and maximum wind speed and air temperature. Andreas, E. L., Mahrt, L., and Vickers, D. (2014). An improved bulk air-sea surface flux algorithm, including spray-mediated transfer. Quarterly Journal of the Royal Meteorological Society. Kudryavtsev, V. and Makin, V. (2011). Impact of ocean spray on the dynamics of the marine atmospheric boundary layer. Boundary-layer meteorology, 140(3):383-410. Kudryavtsev, V., Makin, V., and S, Z. (2012). On the sea-surface drag and heat/mass transfer at strong winds. Technical report, Royal Netherlands Meteorological Institute.
Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.
2015-01-01
Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.
MESSENGER Observations of Extreme Space Weather in Mercury's Magnetosphere
NASA Astrophysics Data System (ADS)
Slavin, J. A.
2013-09-01
Increasing activity on the Sun is allowing MESSENGER to make its first observations of Mercury's magnetosphere under extreme solar wind conditions. At Earth interplanetary shock waves and coronal mass ejections produce severe "space weather" in the form of large geomagnetic storms that affect telecommunications, space systems, and ground-based power grids. In the case of Mercury the primary effect of extreme space weather in on the degree to which this it's weak global magnetic field can shield the planet from the solar wind. Direct impact of the solar wind on the surface of airless bodies like Mercury results in space weathering of the regolith and the sputtering of atomic species like sodium and calcium to high altitudes where they contribute to a tenuous, but highly dynamic exosphere. MESSENGER observations indicate that during extreme interplanetary conditions the solar wind plasma gains access to the surface of Mercury through three main regions: 1. The magnetospheric cusps, which fill with energized solar wind and planetary ions; 2. The subsolar magnetopause, which is compressed and eroded by reconnection to very low altitudes where the natural gyro-motion of solar wind protons may result in their impact on the surface; 3. The magnetotail where hot plasma sheet ions rapidly convect sunward to impact the surface on the nightside of Mercury. The possible implications of these new MESSENGER observations for our ability to predict space weather at Earth and other planets will be described.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1990 are proposed with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States (US) Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components on the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation values are displayed. Annual mean distributions are displayed.
NASA Technical Reports Server (NTRS)
Halpern, D.; Knauss, W.; Brown, O.; Wentz, F.
1993-01-01
The following monthly mean global distributions for 1991 are presented with a common color scale and geographical map: 10-m height wind speed estimated from the Special Sensor Microwave Imager (SSMI) on a United States Air Force Defense Meteorological Satellite Program (DMSP) spacecraft; sea surface temperature estimated from the advanced very high resolution radiometer (AVHRR/2) on a U.S. National Oceanic and Atmospheric Administration (NOAA) spacecraft; Cartesian components of free-drifting buoys which are tracked by the ARGOS navigation system on NOAA satellites; and Cartesian components of the 10-m height wind vector computed by the European Center for Medium-Range Weather Forecasting (ECMWF). Charts of monthly mean value, sampling distribution, and standard deviation value are displayed. Annual mean distributions are displayed.
Evaluation of reanalysis near-surface winds over northern Africa in Boreal summer
NASA Astrophysics Data System (ADS)
Engelstaedter, Sebastian; Washington, Richard
2014-05-01
The emission of dust from desert surfaces depends on the combined effects of surface properties such as surface roughness, soil moisture, soil texture and particle size (erodibility) and wind speed (erosivity). In order for dust cycle models to realistically simulate dust emissions for the right reasons, it is essential that erosivity and erodibility controlling factors are represented correctly. There has been a focus on improving dust emission schemes or input fields of soil distribution and texture even though it has been shown that the use of wind fields from different reanalysis datasets to drive the same model can result in significant differences in the dust emissions. Here we evaluate the representation of near-surface wind speed from three different reanalysis datasets (ERA-Interim, CFSR and MERRA) over the North African domain. Reanalysis 10m wind speeds are compared with observations from SYNOP and METAR reports available from the UK Meteorological Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Dataset. We compare 6-hourly observations of 10m wind speed between 1 January 1989 and 31 December 2009 from more the 500 surface stations with the corresponding reanalysis values. A station data based mean wind speed climatology for North Africa is presented. Overall, the representation of 10m winds is relatively poor in all three reanalysis datasets with stations in the northern parts of the Sahara still being better simulated (correlation coefficients ~ 0.5) than stations in the Sahel (correlation coefficients < 0.3) which points at the reanalyses not being able to realistically capture the Sahel dynamics systems. All three reanalyses have a systematic bias towards overestimating wind speed below 3-4 m/s and underestimating wind speed above 4 m/s. This bias becomes larger with increasing wind speed but is independent of the time of day. For instance, 14 m/s observed wind speeds are underestimated on average by 6 m/s in the ERA-Interim reanalysis. Given the cubic relationship between wind speed and dust emission this large underestimation is expected to significantly impact the simulation of dust emissions. A negative relationship between observed and ERA-Interim wind speed is found for winds above 14 m/s indicating that high wind speed generating processes are not well (if at all) represented in the model.
A field wind tunnel study of fine dust emissions in sandy soils
USDA-ARS?s Scientific Manuscript database
A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentration and properties are highly correlated with surface soil properties, as modified by crop management system. In this study, we report on the effect of ...
Field wind tunnel testing of two silt loam soils on the North American Central High Plains
NASA Astrophysics Data System (ADS)
Scott Van Pelt, R.; Baddock, Matthew C.; Zobeck, Ted M.; Schlegel, Alan J.; Vigil, Merle F.; Acosta-Martinez, Veronica
2013-09-01
Wind erosion is a soil degrading process that threatens agricultural sustainability and environmental quality globally. Protecting the soil surface with cover crops and plant residues, practices common in no-till and reduced tillage cropping systems, are highly effective methods for shielding the soil surface from the erosive forces of wind and have been credited with beneficial increases of chemical and physical soil properties including soil organic matter, water holding capacity, and wet aggregate stability. Recently, advances in biofuel technology have made crop residues valuable feed stocks for ethanol production. Relatively little is known about cropping systems effects on intrinsic soil erodibility, the ability of the soil without a protective cover to resist the erosive force of wind. We tested the bare, uniformly disturbed, surface of long-term tillage and crop rotation research plots containing silt loam soils in western Kansas and eastern Colorado with a portable field wind tunnel. Total Suspended Particulate (TSP) were measured using glass fiber filters and respirable dust, PM10 and PM2.5, were measured using optical particle counters sampling the flow to the filters. The results were highly variable and TSP emission rates varied from less than 0.5 mg m-2 s-1 to greater than 16.1 mg m-2 s-1 but all the results indicated that cropping system history had no effect on intrinsic erodibility or dust emissions from the soil surfaces. We conclude that prior best management practices will not protect the soil from the erosive forces of wind if the protective mantle of crop residues is removed.
NASA Astrophysics Data System (ADS)
Neff, William
2017-04-01
Past work has established a robust connection between easterly surface winds at the South Pole and high nitrogen oxide (NO) concentrations during field programs in 1998, 2000, 2003, and 2006 (Neff and Davis, EGU 2016): Light surface winds from the east coupled with clear skies, strong radiative losses, and shallow inversions lead to high concentrations of NO. Previously, we found indications in these four years that such conditions were most likely to occur prior to the breakup of the polar vortex in the austral spring. In this presentation, we look at the long term climatology of boundary layer conditions vis-à-vis the seasonal evolution of winds at tropopause/lowermost stratosphere levels using rawinsonde data and surface observations starting in 1961. We consider various metrics including timing of wind reversals at 50 hPa (e.g. Harnik et al 2011), time of formation of the thermal tropopause (Neff, 1999), and simply, the timing of the seasonal cycle using fixed day number. Complicating the picture is year-to-year variability in synoptic "noise."
NASA Astrophysics Data System (ADS)
de Foy, B.; Clappier, A.; Molina, L. T.; Molina, M. J.
2006-04-01
Mexico City lies in a high altitude basin where air quality and pollutant fate is strongly influenced by local winds. The combination of high terrain with weak synoptic forcing leads to weak and variable winds with complex circulation patterns. A gap wind entering the basin in the afternoon leads to very different wind convergence lines over the city depending on the meteorological conditions. Surface and upper-air meteorological observations are analysed during the MCMA-2003 field campaign to establish the meteorological conditions and obtain an index of the strength and timing of the gap wind. A mesoscale meteorological model (MM5) is used in combination with high-resolution satellite data for the land surface parameters and soil moisture maps derived from diurnal ground temperature range. A simple method to map the lines of wind convergence both in the basin and on the regional scale is used to show the different convergence patterns according to episode types. The gap wind is found to occur on most days of the campaign and is the result of a temperature gradient across the southern basin rim which is very similar from day to day. Momentum mixing from winds aloft into the surface layer is much more variable and can determine both the strength of the flow and the pattern of the convergence zones. Northerly flows aloft lead to a weak jet with an east-west convergence line that progresses northwards in the late afternoon and early evening. Westerlies aloft lead to both stronger gap flows due to channelling and winds over the southern and western basin rim. This results in a north-south convergence line through the middle of the basin starting in the early afternoon. Improved understanding of basin meteorology will lead to better air quality forecasts for the city and better understanding of the chemical regimes in the urban atmosphere.
NASA Astrophysics Data System (ADS)
Lee, Jongkuk; Lee, Kwan-Hee; Yook, Daesik; Kim, Sung Il; Lee, Byung Soo
2016-04-01
This study presents the results of atmosphere dispersion modeling using CALPUFF code that are based on computational simulation to evaluate the environmental characteristics of the Barakah nuclear power plant (BNPP) in west area of UAE. According to meteorological data analysis (2012~2013), the winds from the north(7.68%) and west(9.05%) including NNW(41.63%), NW(28.55%), and WNW(6.31%) winds accounted for more than 90% of the wind directions. East(0.2%) and south(0.6%) direction wind, including ESE(0.31%), SE(0.38%), and SSE(0.38%) were rarely distributed during the simulation period. Seasonal effects were not showed. However, a discrepancy in the tendency between daytime and night-time was observed. Approximately 87% of the wind speed was distributed below 5.4m/s (17%, 47% and 23% between the speeds of 0.5-1.8m/s 1.8-3.3m/s and 3.3-5.4m/s, respectively) during the annual period. Seasonal wind speed distribution results presented very similar pattern of annual distribution. Wind speed distribution of day and night, on the other hand, had a discrepancy with annual modeling results than seasonal distribution in some sections. The results for high wind speed (more than 10.8m/s) showed that this wind blew from the west. This high wind speed is known locally as the 'Shamal', which occurs rarely, lasting one or two days with the strongest winds experienced in association with gust fronts and thunderstorms. Six variations of cesium-137 (137Cs) dispersion test were simulated under hypothetic severe accidental condition. The 137Cs dispersion was strongly influenced by the direction and speed of the main wind. From the test cases, east-south area of the BNPP site was mainly influenced by 137Cs dispersion. A virtual receptor was set and calculated for observation of the 137Cs movement and accumulation. Surface roughness tests were performed for the analysis of topographic conditions. According to the surface condition, there are various surface roughness length. Four types of surface conditions were selected, including city area, hedge area, cut grass, and desert area. Four cases of simulations were performed under the same conditions except for surface the roughness factor. The results indicated that relatively high concentrations were found at the high surface roughness near the origin of the source point. The city area contained approximately four times 137Cs concentration than that of desert area. The atmospheric dispersion of 137Cs was affected by the surface condition in the proximal area. Moreover, movement of the radioactive material had a tendency to be dispersed in a relatively wide range in the desert areas compared to in the higher surface roughness areas. The results of these study offer useful information for developing environmental radiation monitoring systems (ERMSs) and evacuation plan under unexpected emergency condition for the BNPP and can be used to assess the environmental effects of new nuclear power plant. This work was supported by the Nuclear Safety Research Program through the Korea Nuclear Safety Foundation(KORSAFe), granted financial resource from the Nuclear Safety and Security Commission(NSSC), Republic of Korea (No. 1503003).
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.
2012-01-01
As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.
NASA Astrophysics Data System (ADS)
Lyu, Pin; Chen, Wenli; Li, Hui; Shen, Lian
2017-11-01
In recent studies, Yang, Meneveau & Shen (Physics of Fluids, 2014; Renewable Energy, 2014) developed a hybrid numerical framework for simulation of offshore wind farm. The framework consists of simulation of nonlinear surface waves using a high-order spectral method, large-eddy simulation of wind turbulence on a wave-surface-fitted curvilinear grid, and an actuator disk model for wind turbines. In the present study, several more precise wind turbine models, including the actuator line model, actuator disk model with rotation, and nacelle model, are introduced into the computation. Besides offshore wind turbines on fixed piles, the new computational framework has the capability to investigate the interaction among wind, waves, and floating wind turbines. In this study, onshore, offshore fixed pile, and offshore floating wind farms are compared in terms of flow field statistics and wind turbine power extraction rate. The authors gratefully acknowledge financial support from China Scholarship Council (No. 201606120186) and the Institute on the Environment of University of Minnesota.
Power-Production Diagnostic Tools for Low-Density Wind Farms with Applications to Wake Steering
NASA Astrophysics Data System (ADS)
Takle, E. S.; Herzmann, D.; Rajewski, D. A.; Lundquist, J. K.; Rhodes, M. E.
2016-12-01
Hansen (2011) provided guidelines for wind farm wake analysis with applications to "high density" wind farms (where average distance between turbines is less than ten times rotor diameter). For "low-density" (average distance greater than fifteen times rotor diameter) wind farms, or sections of wind farms we demonstrate simpler sorting and visualization tools that reveal wake interactions and opportunities for wind farm power prediction and wake steering. SCADA data from a segment of a large mid-continent wind farm, together with surface flux measurements and lidar data are subjected to analysis and visualization of wake interactions. A time-history animated visualization of a plan view of power level of individual turbines provides a quick analysis of wake interaction dynamics. Yaw-based sectoral histograms of enhancement/decline of wind speed and power from wind farm reference levels reveals angular width of wake interactions and identifies the turbine(s) responsible for the power reduction. Concurrent surface flux measurements within the wind farm allowed us to evaluate stability influence on wake loss. A one-season climatology is used to identify high-priority candidates for wake steering based on estimated power recovery. Typical clearing prices on the day-ahead market are used to estimate the added value of wake steering. Current research is exploring options for identifying candidate locations for wind farm "build-in" in existing low-density wind farms.
NASA Technical Reports Server (NTRS)
Cardone, Vincent J.; Cox, Andrew T.
2000-01-01
This study has demonstrated that high-resolution scatterometer measurements in tropical cyclones and other high-marine surface wind regimes may be retrieved accurately for wind speeds up to about 35 mls (1-hour average at 10 m) when the scatterometer data are processed through a revised geophysical model function, and a spatial adaptive algorithm is applied which utilizes the fact that wind direction is so tightly constrained in tile inner core of severe marine storms that wind direction may be prescribed from conventional data. This potential is demonstrated through case studies with NSCAT data in a severe West Pacific Typhoon (Violet, 1996) and an intense North Atlantic hurricane (Lili, 1996). However, operational scatterometer winds from NSCAT and QuickScat in hurricanes and severe winter storms are biased low in winds above 25 m/s. We have developed an inverse model to specify the entire surface wind field about a tropical cyclone from operational QuickScat scatterometer measurements within 150 nm of a storm center with the restriction that only wind speeds up to 20 m/s are used until improved model function are introduced. The inverse model is used to specify the wind field over the entire life-cycle of Hurricane Floyd (1999) for use to drive an ocean wave model. The wind field compares very favorably with wind fields developed from the copious aircraft flight level winds obtained in this storm.
[Measurement of Speed and Direction of Ocean Surface Winds Using Quik Scat Scatterometer
NASA Technical Reports Server (NTRS)
Stiles, Bryan; Pollard, Brian
2000-01-01
The SeaWinds on QuikSCAT scatterometer was developed by NASA JPL to measure the speed and direction of ocean surface winds. Simulations performed to estimate the performance of the instrument prior to its launch have indicated that the mid-swath accuracy is worse than that of the rest of the swath. This behavior is a general characteristic of scanning pencil beam scatterometers. For SeaWinds, the accuracy of the rest of the swath, and the size of the swath are such that the instrument meets its science requirements despite mid-swath shortcomings. However, by understanding the problem at mid-swath, we can improve the performance there as well. We discuss the underlying causes of the problem in detail and propose a new wind retrieval algorithm which improves mid-swath performance. The directional discrimination ability of the instrument varies with cross track distance wind speed, and direction. By estimating the range of likely wind directions for each measurement cell, one can optimally apply information from neighboring cells where necessary in order to reduce random wind direction errors without significantly degrading the resolution of the resultant wind field. In this manner we are able to achieve mid-swath RMS wind direction errors as low as 15 degrees for low winds and 10 degrees for moderate to high winds, while at the same time preserving high resolution structures such as cyclones and fronts.
NASA Astrophysics Data System (ADS)
Gunn, A.; Jerolmack, D. J.; Edmonds, D. A.; Ewing, R. C.; Wanker, M.; David, S. R.
2017-12-01
Aolian sand dunes grow to 100s or 1000s of meters in wavelength by sand saltation, which also produces dust plumes that feed cloud formation and may spread around the world. The relations among sediment transport, landscape dynamics and wind are typically observed at the limiting ends of the relevant range: highly resolved and localized ground observations of turbulence and relevant fluxes; or regional and synoptic-scale meteorology and satellite imagery. Between the geostrophic winds aloft and shearing stress on the Earth's surface is the boundary layer, whose stability and structure determines how momentum is transferred and ultimately entrains sediment. Although the literature on atmospheric boundary layer flows is mature, this understanding is rarely applied to aeolian landscape dynamics. Moreover, there are few vertically and time-resolved datasets of atmospheric boundary layer flows in desert sand seas, where buoyancy effects are most pronounced. Here we employ a ground-based upward-looking doppler lidar to examine atmospheric boundary layer flow at the upwind margin of the White Sands (New Mexico) dune field, providing continuous 3D wind velocity data from the surface to 300-m aloft over 70 days of the characteristically windy spring season. Data show highly resolved daily cyles of convective instabilty due to daytime heating and stable stratification due to nightime cooling which act to enhance or depress, respectively, the surface wind stresses for a given free-stream velocity. Our data implicate convective instability in driving strong saltation and dust emission, because enhanced mixing flattens the vertical velocity profile (raising surface wind speed) while upward advection helps to deliver dust to the high atmosphere. We also find evidence for Ekman spiralling, with a magnitude that depends on atmospheric stability. This spiralling gives rise to a deflection in the direction between geostrophic and surface winds, that is significant for the orientation of dunes.
Reynolds, Richard L.; Bogle, Rian; Vogel, John; Goldstein, Harland L.; Yount, James
2009-01-01
Playa type, size, and setting; playa hydrology; and surface-sediment characteristics are important controls on the type and amount of atmospheric dust emitted from playas. Soft, evaporite-rich sediment develops on the surfaces of some Mojave Desert (USA) playas (wet playas), where the water table is shallow (< 4 m). These areas are sources of atmospheric dust because of continuous or episodic replenishment of wind-erodible salts and disruption of the ground surface during salt formation by evaporation of ground water. Dust emission at Franklin Lake playa was monitored between March 2005 and April 2008. The dust record, based on day-time remote digital camera images captured during high wind, and compared with a nearby precipitation record, shows that aridity suppresses dust emission. High frequency of dust generation appears to be associated with relatively wet periods, identified as either heavy precipitation events or sustained regional precipitation over a few months. Several factors may act separately or in combination to account for this relation. Dust emission may respond rapidly to heavy precipitation when the dissolution of hard, wind-resistant evaporite mineral crusts is followed by the development of soft surfaces with thin, newly formed crusts that are vulnerable to wind erosion and (or) the production of loose aggregates of evaporite minerals that are quickly removed by even moderate winds. Dust loading may also increase when relatively high regional precipitation leads to decreasing depth to the water table, thereby increasing rates of vapor discharge, development of evaporite minerals, and temporary softening of playa surfaces. The seasonality of wind strength was not a major factor in dust-storm frequency at the playa. The lack of major dust emissions related to flood-derived sediment at Franklin Lake playa contrasts with some dry-lake systems elsewhere that may produce large amounts of dust from flood sediments. Flood sediments do not commonly accumulate on the surface of Franklin Lake playa because through-going drainage prevents frequent inundation and deposition of widespread flood sediment.
Wind flow modulation due to variations of the water surface roughness
NASA Astrophysics Data System (ADS)
Shomina, Olga; Ermakov, Stanislav; Kapustin, Ivan; Lazareva, Tatiana
2016-04-01
Air-ocean interaction is a classical problem in atmosphere and ocean physics, which has important geophysical applications related to calculation of vertical and horizontal humidity, aerosol and gas fluxes, development of global climate models and weather forecasts. The structure of wind flow over fixed underlying surfaces, such as forestry, buildings, mountains, is well described, while the interaction between a rough water surface and turbulent wind is far more complicated because of the presence of wind waves with different wavelength and amplitudes and propagating with different velocities and directions. The aim of this study was to investigate experimentally the variability of the wind profile structure due to variations of wave characteristics. The surface roughness variations were produced using a) surfactant films (oleic acid) spread on the water surface and b) mechanically generated waves superimposed on wind waves. The first case is related to oil slicks on sea surface, the second one - to the sea swell, which propagates into zones with lower wind velocities and interacts with wind flow. Laboratory experiments were conducted in the Oval Wind Wave Tank (OWWT) at the Institute of Applied Physics, cross-section of the wind channel is 30 cm x30 cm. Wave amplitude and the spectrum of surface waves were measured by a wire wave gauge, the wind speed was measured using a hot-wire anemometer DISA and a Pitot tube. In the experiments with surfactants, two frequencies of dripping of the oleic acid were studied, so that low concentration films with the elasticity parameters of about 19 mN/m and the high concentration ("thick") films with the elasticity of 34 mN/m were formed. In the experiments with mechanically generated waves (MGW) different regimes were studied with MGW amplitude of 3.4 mm and of 4.4 mm, and with MGW frequencies of 3.3 Hz and 3.7 Hz. It was shown, that: a) the mean velocity of the wind flow in the presence of surfactant and MGW can be described by a logarithmic profile; b) in the presence of a surfactant film an increase of wind speed was revealed; the more elastic films was deployed on the surface - the stronger wind acceleration was detected; c) MGW result in deceleration of wind flow, the larger MGW amplitude the stronger wind flow reduction is; d) the wind deceleration effect is more pronounced for MGW with higher frequency, i.e. for slower propagating MGW. e) experimental dependencies of the logarithmic wind profile characteristics as functions of the rout mean square (RMS) wave height were obtained demonstrating the growth of the wind friction velocity and the roughness coefficient with RMS. The work has been supported by the Russian Foundation of Basic Research (Projects № 14-05-31535, 14-05-00876, 15-35-20992).
NASA Astrophysics Data System (ADS)
Baas, A. C.; Jackson, D.; Cooper, J. A.; Lynch, K.; Delgado-Fernandez, I.; Beyers, M.; Lee, Z. S.
2010-12-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune (‘against’ the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u’, v’, w’). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.
NASA Astrophysics Data System (ADS)
Ozbay, Ahmet
A comprehensive experimental study was conducted to investigate wind turbine aeromechanics and wake interferences among multiple wind turbines sited in onshore and offshore wind farms. The experiments were carried out in a large-scale Aerodynamic/Atmospheric Boundary Layer (AABL) Wind Tunnel available at Iowa State University. An array of scaled three-blade Horizontal Axial Wind Turbine (HAWT) models were placed in atmospheric boundary layer winds with different mean and turbulence characteristics to simulate the situations in onshore and offshore wind farms. The effects of the important design parameters for wind farm layout optimization, which include the mean and turbulence characteristics of the oncoming surface winds, the yaw angles of the turbines with respect to the oncoming surface winds, the array spacing and layout pattern, and the terrain topology of wind farms on the turbine performances (i.e., both power output and dynamic wind loadings) and the wake interferences among multiple wind turbines, were assessed in detail. The aeromechanic performance and near wake characteristics of a novel dual-rotor wind turbine (DRWT) design with co-rotating or counter-rotating configuration were also investigated, in comparison to a conventional single rotor wind turbine (SRWT). During the experiments, in addition to measuring dynamic wind loads (both forces and moments) and the power outputs of the scaled turbine models, a high-resolution Particle Image Velocity (PIV) system was used to conduct detailed flow field measurements (i.e., both free-run and phase-locked flow fields measurements) to reveal the transient behavior of the unsteady wake vortices and turbulent flow structures behind wind turbines and to quantify the characteristics of the wake interferences among the wind turbines sited in non-homogenous surface winds. A miniature cobra anemometer was also used to provide high-temporal-resolution data at points of interest to supplement the full field PIV measurement results. The detailed flow field measurements are correlated with the dynamic wind loads and power output measurements to elucidate underlying physics in order to gain further insight into the characteristics of the power generation performance, dynamic wind loads and wake interferences of the wind turbines for higher total power yield and better durability of the wind turbines sited in atmospheric boundary layer (ABL) winds.
NASA Astrophysics Data System (ADS)
Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon
2016-10-01
We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.
Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux.
Ayoub, F; Avouac, J-P; Newman, C E; Richardson, M I; Lucas, A; Leprince, S; Bridges, N T
2014-09-30
Coupling between surface winds and saltation is a fundamental factor governing geological activity and climate on Mars. Saltation of sand is crucial for both erosion of the surface and dust lifting into the atmosphere. Wind tunnel experiments along with measurements from surface meteorology stations and modelling of wind speeds suggest that winds should only rarely move sand on Mars. However, evidence for currently active dune migration has recently accumulated. Crucially, the frequency of sand-moving events and the implied threshold wind stresses for saltation have remained unknown. Here we present detailed measurements of Nili Patera dune field based on High Resolution Imaging Science Experiment images, demonstrating that sand motion occurs daily throughout much of the year and that the resulting sand flux is strongly seasonal. Analysis of the seasonal sand flux variation suggests an effective threshold for sand motion for application to large-scale model wind fields (1-100 km scale) of τ(s)=0.01±0.0015 N m(-2).
Three decades of Martian surface changes
Geissler, P.E.
2005-01-01
The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.
NASA Astrophysics Data System (ADS)
Thomas, Leif N.
2008-08-01
A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.
ROLE OF THE CORONAL ALFVÉN SPEED IN MODULATING THE SOLAR-WIND HELIUM ABUNDANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y.-M., E-mail: yi.wang@nrl.navy.mil
The helium abundance He/H in the solar wind is relatively constant at ∼0.04 in high-speed streams, but varies in phase with the sunspot number in slow wind, from ∼0.01 at solar minimum to ∼0.04 at maximum. Suggested mechanisms for helium fractionation have included frictional coupling to protons and resonant interactions with high-frequency Alfvénic fluctuations. We compare He/H measurements during 1995–2015 with coronal parameters derived from source-surface extrapolations of photospheric field maps. We find that the near-Earth helium abundance is an increasing function of the magnetic field strength and Alfvén speed v {sub A} in the outer corona, while being onlymore » weakly correlated with the proton flux density. Throughout the solar cycle, fast wind is associated with short-term increases in v {sub A} near the source surface; resonance with Alfvén waves, with v {sub A} and the relative speed of α -particles and protons decreasing with increasing heliocentric distance, may then lead to enhanced He/H at 1 au. The modulation of helium in slow wind reflects the tendency for the associated coronal Alfvén speeds to rise steeply from sunspot minimum, when this wind is concentrated around the source-surface neutral line, to sunspot maximum, when the source-surface field attains its peak strengths. The helium abundance near the source surface may represent a balance between collisional decoupling from protons and Alfvén wave acceleration.« less
NASA Astrophysics Data System (ADS)
O'Donncha, Fearghal; Hartnett, Michael; Nash, Stephen; Ren, Lei; Ragnoli, Emanuele
2015-02-01
In this study, High Frequency Radar (HFR), observations in conjunction with numerical model simulations investigate surface flow dynamics in a tidally-active, wind-driven bay; Galway Bay situated on the West coast of Ireland. Comparisons against ADCP sensor data permit an independent assessment of HFR and model performance, respectively. Results show root-mean-square (rms) differences in the range 10 - 12cm/s while model rms equalled 12 - 14cm/s. Subsequent analysis focus on a detailed comparison of HFR and model output. Harmonic analysis decompose both sets of surface currents based on distinct flow process, enabling a correlation analysis between the resultant output and dominant forcing parameters. Comparisons of barotropic model simulations and HFR tidal signal demonstrate consistently high agreement, particularly of the dominant M2 tidal signal. Analysis of residual flows demonstrate considerably poorer agreement, with the model failing to replicate complex flows. A number of hypotheses explaining this discrepancy are discussed, namely: discrepancies between regional-scale, coastal-ocean models and globally-influenced bay-scale dynamics; model uncertainties arising from highly-variable wind-driven flows across alarge body of water forced by point measurements of wind vectors; and the high dependence of model simulations on empirical wind-stress coefficients. The research demonstrates that an advanced, widely-used hydro-environmental model does not accurately reproduce aspects of surface flow processes, particularly with regards wind forcing. Considering the significance of surface boundary conditions in both coastal and open ocean dynamics, the viability of using a systematic analysis of results to improve model predictions is discussed.
NASA Astrophysics Data System (ADS)
Yeo, L. H.; Han, J.; Wang, X.; Werner, G.; Deca, J.; Munsat, T.; Horanyi, M.
2017-12-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection/reflection of thecharged particles. Consequently, surface charging in these regions will be modified. Using the Colorado Solar Wind Experiment facility, this interaction is investigated with high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole (0.13 T) embedded under various insulating surfaces. The dipole moment is perpendicular to the surface. Using an emissive probe, 2D plasma potential profiles are obtained above the surface. In the dipole lobe regions, the surfaces are charged to significantly positive potentials due to the impingement of the unmagnetized ions while the electrons are magnetically shielded. At low ion beam energies, the results agree with the theoretical predictions, i.e., the surface potential follows the energy of the beam ions in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of investigations have been conducted and indicate that the surface properties (e.g., modified surface conductance, ion induced secondary electrons and electron-neutral collision at the surface) are likely to play a role in determining the surface potential.
Diamagnetic effect in the foremoon solar wind observed by Kaguya
NASA Astrophysics Data System (ADS)
Nishino, M. N.; Saito, Y.; Tsunakawa, H.; Miyake, Y.; Harada, Y.; Yokota, S.; Takahashi, F.; Matsushima, M.; Shibuya, H.; Shimizu, H.
2016-12-01
Interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the lunar plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE and WIND with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such diamagnetic effect would be prominent in the high-beta solar wind environment, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.
Sand Transport under Highly Turbulent Airflow on a Beach Surface
NASA Astrophysics Data System (ADS)
Baas, A. C. W.; Jackson, D. W. T.; Cooper, J. A. G.; Lynch, K.; Delgado-Fernandez, I.; Beyers, J. H. M.
2012-04-01
The past decade has seen a growing body of research on the relation between turbulence in the wind and the resultant transport of sediment over active sand surfaces. Widespread use of sonic anemometry and high-frequency sand transport sensors and traps have facilitated recent field studies over dunes and beach surfaces, to move beyond monitoring of mean wind speed and bulk transport to more detailed measurements at much higher spatio-temporal resolutions. In this paper we present results of a field study conducted in the recirculation flow and re-attachment zone on a beach behind a foredune at Magilligan Strand, Northern Ireland. The offshore winds over the foredune at this site are associated with flow separation and reversal located over the beach surface in the lee of the dune row, often strong enough to induce sand transport toward the toe of the foredune ('against' the overall offshore flow). The re-attachment and recirculation zone are associated with strongly turbulent fluid flow and complex streamlines that do not follow the underlying topography. High frequency (25 Hz) wind and sand transport data were collected at a grid of point locations distributed over the beach surface between 35 m to 55 m distance from the 10 m high dune crest, using ultrasonic anemometers at 0.5 m height and co-located load cell traps and Safires at the bed surface. The wind data are used to investigate the role of Reynolds shear stresses and quadrant analysis techniques for identifying burst-sweep events in relation to sand transport events. This includes an assessment of the issues involved with data rotations for yaw, pitch, and roll corrections relative to complex flow streamlines, and the subsequently derived turbulence parameters based on fluctuating vector components (u', v', w'). Results illustrate how transport may exist under threshold mean velocities because of the role played by coherent flow structures, and the findings corroborate previous findings that shear velocity obtained using traditional wind profile approaches does not correlate with transport as additional stresses are generated due to turbulent structures.
Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect
USDA-ARS?s Scientific Manuscript database
Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the...
SASS measurements of the Ku-band radar signature of the ocean
NASA Technical Reports Server (NTRS)
Schroeder, L. C.; Grantham, W. L.; Mitchell, J. L.; Sweet, J. L.
1982-01-01
SeaSat-A Satellite Scatterometer (SASS) measurements of normalized radar cross section (NRCS) have been merged with high quality surface-wind fields based on in situ, to create a large data base of NRCS-wind signature data. These data are compared to the existing NRCS-wind model used by the SASS to infer winds. Falso-color maps of SASS NRCS and ocean winds from multiple orbits show important synoptic trends.
High-Resolution Wind Measurements for Offshore Wind Energy Development
NASA Technical Reports Server (NTRS)
Nghiem, Son V.; Neumann, Gregory
2011-01-01
A mathematical transform, called the Rosette Transform, together with a new method, called the Dense Sampling Method, have been developed. The Rosette Transform is invented to apply to both the mean part and the fluctuating part of a targeted radar signature using the Dense Sampling Method to construct the data in a high-resolution grid at 1-km posting for wind measurements over water surfaces such as oceans or lakes.
Towards a parameterization of convective wind gusts in Sahel
NASA Astrophysics Data System (ADS)
Largeron, Yann; Guichard, Françoise; Bouniol, Dominique; Couvreux, Fleur; Birch, Cathryn; Beucher, Florent
2014-05-01
West Africa is responsible for between 25 and 50 % of the global emissions of mineral dust (cf [Engelstaedter et al., 2006]) and these dust emissions have a huge impact on climate (cf [Carslaw et al., 2010]) and soil erosion. Numerous studies have focused on the quantification of the dust emission fluxes from knowledges of the soil surface characteristics, leading to the formulation of a threshold wind friction velocity (cf [Marticorena and Bergametti, 1995]) above which the dust can be uplifted. That flux varies with the cube of the surface wind speed above the threshold and is therefore particularly sensitive to the way the wind speed is modeled (cf [Menut, 2008]). Moreover, in the Sahelian belt, about half of the dust uplift happens during isolated events which generate violent cold pool outflows from moist deep convection, and associated high surface wind speeds. Therefore, the representation of convectively generated winds appears critical (cf [Marsham et al., 2011], [Knippertz and Todd, 2012]). The present study is motivated by these issues, and is carried out within the CAVIARS French Research National Agency (ANR) project. First, we examine the ERA interim reanalysis of the ECMWF, frequently used as an input wind field for off-line dust emission models (cf [Pierre et al., 2012]). The comparison with high-frequency local measurements shows that, not unexpectedly, the increase of the surface wind speed from deep convection is not represented in large-scale reanalysis. Therefore, following [Redelsperger et al., 2000], we propose a statistical approach to introduce a formulation of the surface wind gusts during deep convection, based on the analysis of convection-permitting high resolution simulations made with the UKMO atmospheric model (CASCADE project), the AROME operational model from Meteo-France, and the MesoNH Large Eddy Simulations model. High-frequency observations are also used to complement the analysis. However, unlike [Redelsperger et al., 2000] who focused on the wet tropical Pacific region, and linked wind gusts to convective precipitation rates alone, here, we also analyse the subgrid wind distribution during convective events, and quantify the statistical moments (variance, skewness and kurtosis) in terms of mean wind speed and convective indexes such as DCAPE. Next step of the work will be to formulate a parameterization of the cold pool convective gust from those probability density functions and analytical formulaes obtained from basic energy budget models. References : [Carslaw et al., 2010] A review of natural aerosol interactions and feedbacks within the earth system. Atmospheric Chemistry and Physics, 10(4):1701{1737. [Engelstaedter et al., 2006] North african dust emissions and transport. Earth-Science Reviews, 79(1):73{100. [Knippertz and Todd, 2012] Mineral dust aerosols over the sahara: Meteorological controls on emission and transport and implications for modeling. Reviews of Geophysics, 50(1). [Marsham et al., 2011] The importance of the representation of deep convection for modeled dust-generating winds over west africa during summer.Geophysical Research Letters, 38(16). [Marticorena and Bergametti, 1995] Modeling the atmospheric dust cycle: 1. design of a soil-derived dust emission scheme. Journal of Geophysical Research, 100(D8):16415{16. [Menut, 2008] Sensitivity of hourly saharan dust emissions to ncep and ecmwf modeled wind speed. Journal of Geophysical Research: Atmospheres (1984{2012), 113(D16). [Pierre et al., 2012] Impact of vegetation and soil moisture seasonal dynamics on dust emissions over the sahel. Journal of Geophysical Research: Atmospheres (1984{2012), 117(D6). [Redelsperger et al., 2000] A parameterization of mesoscale enhancement of surface fluxes for large-scale models. Journal of climate, 13(2):402{421.
NASA Astrophysics Data System (ADS)
Oerder, V.; Colas, F.; Echevin, V.; Masson, S.; Lemarié, F.
2018-02-01
The ocean dynamical responses to the surface current-wind stress interaction at the oceanic mesoscale are investigated in the South-East Pacific using a high-resolution regional ocean-atmosphere coupled model. Two simulations are compared: one includes the surface current in the wind stress computation while the other does not. In the coastal region, absolute wind velocities are different between the two simulations but the wind stress remains very similar. As a consequence, the mean regional oceanic circulation is almost unchanged. On the contrary, the mesoscale activity is strongly reduced when taking into account the effect of the surface current on the wind stress. This is caused by a weakening of the eddy kinetic energy generation near the coast by the wind work and to intensified offshore eddy damping. We show that, above coherent eddies, the current-stress interaction generates eddy damping through Ekman pumping and eddy kinetic energy dissipation through wind work. This alters significantly the coherent eddy vertical structures compared with the control simulation, weakening the temperature and vorticity anomalies and increasing strongly the vertical velocity anomalies associated to eddies.
Increased Surface Wind Speeds Follow Diminishing Arctic Sea Ice
NASA Astrophysics Data System (ADS)
Mioduszewski, J.; Vavrus, S. J.; Wang, M.; Holland, M. M.; Landrum, L.
2017-12-01
Projections of Arctic sea ice through the end of the 21st century indicate the likelihood of a strong reduction in ice area and thickness in all seasons, leading to a substantial thermodynamic influence on the overlying atmosphere. This is likely to have an effect on winds over the Arctic Basin, due to changes in atmospheric stability and/or baroclinicity. Prior research on future Arctic wind changes is limited and has focused mainly on the practical impacts on wave heights in certain seasons. Here we attempt to identify patterns and likely mechanisms responsible for surface wind changes in all seasons across the Arctic, particularly those associated with sea ice loss in the marginal ice zone. Sea level pressure, near-surface (10 m) and upper-air (850 hPa) wind speeds, and lower-level dynamic and thermodynamic variables from the Community Earth System Model Large Ensemble Project (CESM-LE) were analyzed for the periods 1971-2000 and 2071-2100 to facilitate comparison between a present-day and future climate. Mean near-surface wind speeds over the Arctic Ocean are projected to increase by late century in all seasons but especially during autumn and winter, when they strengthen by up to 50% locally. The most extreme wind speeds in the 90th percentile change even more, increasing in frequency by over 100%. The strengthened winds are closely linked to decreasing lower-tropospheric stability resulting from the loss of sea ice cover and consequent surface warming (locally over 20 ºC warmer in autumn and winter). A muted pattern of these future changes is simulated in CESM-LE historical runs from 1920-2005. The enhanced winds near the surface are mostly collocated with weaker winds above the boundary layer during autumn and winter, implying more vigorous vertical mixing and a drawdown of high-momentum air.The implications of stronger future winds include increased coastal hazards and the potential for a positive feedback with sea ice by generating higher winds and greater wave activity. Our findings suggest that increasing winds, along with retreating sea ice and thawing permafrost, represent another important contributor to the growing problem of Arctic coastal erosion.
Ursella, L.; Poulain, P.-M.; Signell, R.P.
2007-01-01
More than 120 satellite-tracked drifters were deployed in the northern and middle Adriatic (NMA) Sea between September 2002 and November 2003, with the purpose of studying the surface circulation at mesoscale to seasonal scale in relation to wind forcing, river runoff, and bottom topography. Pseudo-Eulerian and Lagrangian statistics were calculated from the low-pass-filtered drifter velocity data between September 2002 and December 2003. The structure of the mean circulation is determined with unprecedented high horizontal resolution by the new data. In particular, mean currents, velocity variance, and kinetic energy levels are shown to be maximal in the Western Adriatic Current (WAC). Separating data into seasons, we found that the mean kinetic energy is maximal in fall, with high values also in winter, while it is significantly weaker in summer. High-resolution Local Area Model Italy winds were used to relate the drifter velocities to the wind fields. The surface currents appear to be significantly influenced by the winds. The mean flow during the northeasterly bora regime shows an intensification of the across-basin recirculating currents. In addition, the WAC is strongly intensified both in intensity and in its offshore lateral extension. In the southeasterly sirocco regime, northward flow without recirculation dominates in the eastern half of the basin, while during northwesterly maestro the WAC is enhanced. Separating the data into low and high Po River discharge rates for low-wind conditions shows that the WAC and the velocity fluctuations in front of the Po delta are stronger for high Po River runoff. Lagrangian covariance, diffusivity, and integral time and space scales are larger in the along-basin direction and are maximal in the southern portion of the WAC. Copyright 2006 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard
2016-04-01
Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.
Ocean Surface Winds Drive Dynamics of Transoceanic Aerial Movements
Felicísimo, Ángel M.; Muñoz, Jesús; González-Solis, Jacob
2008-01-01
Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through “wind highways” that do not match the shortest great circle routes. Bird routes closely followed the low-cost “wind-highways” linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns. PMID:18698354
Ocean surface winds drive dynamics of transoceanic aerial movements.
Felicísimo, Angel M; Muñoz, Jesús; González-Solis, Jacob
2008-08-13
Global wind patterns influence dispersal and migration processes of aerial organisms, propagules and particles, which ultimately could determine the dynamics of colonizations, invasions or spread of pathogens. However, studying how wind-mediated movements actually happen has been hampered so far by the lack of high resolution global wind data as well as the impossibility to track aerial movements. Using concurrent data on winds and actual pathways of a tracked seabird, here we show that oceanic winds define spatiotemporal pathways and barriers for large-scale aerial movements. We obtained wind data from NASA SeaWinds scatterometer to calculate wind cost (impedance) models reflecting the resistance to the aerial movement near the ocean surface. We also tracked the movements of a model organism, the Cory's shearwater (Calonectris diomedea), a pelagic bird known to perform long distance migrations. Cost models revealed that distant areas can be connected through "wind highways" that do not match the shortest great circle routes. Bird routes closely followed the low-cost "wind-highways" linking breeding and wintering areas. In addition, we found that a potential barrier, the near surface westerlies in the Atlantic sector of the Intertropical Convergence Zone (ITCZ), temporally hindered meridional trans-equatorial movements. Once the westerlies vanished, birds crossed the ITCZ to their winter quarters. This study provides a novel approach to investigate wind-mediated movements in oceanic environments and shows that large-scale migration and dispersal processes over the oceans can be largely driven by spatiotemporal wind patterns.
Characterization of the Boundary Layer Wind and Turbulence in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Pichugina, Y. L.; Banta, R. M.; Choukulkar, A.; Brewer, A.; Hardesty, R. M.; McCarty, B.; Marchbanks, R.
2014-12-01
A dataset of ship-borne Doppler lidar measurements taken in the Gulf of Mexico was analyzed to provide insight into marine boundary-layer (BL) features and wind-flow characteristics, as needed for offshore wind energy development. This dataset was obtained as part of the intensive Texas Air Quality Study in summer of 2006 (TexAQS06). During the project, the ship, the R/V Ronald H. Brown, cruised in tracks in the Gulf of Mexico along the Texas coast, in Galveston Bay, and in the Houston Ship Channel obtaining air chemistry and meteorological data, including vertical profile measurements of wind and temperature. The primary observing system used in this paper is NOAA/ESRL's High Resolution Doppler Lidar (HRDL), which features high-precision and high-resolution wind measurements and a motion compensation system to provide accurate wind data despite ship and wave motions. The boundary layer in this warm-water region was found to be weakly unstable typically to a depth of 300 m above the sea surface. HRDL data were analyzed to provide 15-min averaged profiles of wind flow properties (wind speed, direction, and turbulence) from the water surface up to 2.5 km at a vertical resolution of 15 m. The paper will present statistics and distributions of these parameters over a wide range of heights and under various atmospheric conditions. Detailed analysis of the BL features including LLJs, wind and directional ramps, and wind shear through the rotor level heights, along with examples of hub-height and equivalent wind will be presented. The paper will discuss the diurnal fluctuations of all quantities critical to wind energy and their variability along the Texas coast.
NASA Astrophysics Data System (ADS)
Markfort, Corey D.; Resseger, Emily; Porté-Agel, Fernando; Stefan, Heinz
2014-05-01
Lakes with a surface area of less than 10 km2 account for over 50% of the global cumulative lake surface water area, and make up more than 99% of the total number of global lakes, ponds, and wetlands. Within the boreal regions as well as some temperate and tropical areas, a significant proportion of land cover is characterized by lakes or wetlands, which can have a dramatic effect on land-atmosphere fluxes as well as the local and regional energy budget. Many of these small water bodies are surrounded by complex terrain and forest, which cause the wind blowing over a small lake or wetland to be highly variable. Wind mixing of the lake surface layer affects thermal stratification, surface temperature and air-water gas transfer, e.g. O2, CO2, and CH4. As the wind blows from the land to the lake, wake turbulence behind trees and other shoreline obstacles leads to a recirculation zone and enhanced turbulence. This wake flow results in the delay of the development of wind shear stress on the lake surface, and the fetch required for surface shear stress to fully develop may be ~O(1 km). Interpretation of wind measurements made on the lake is hampered by the unknown effect of wake turbulence. We present field measurements designed to quantify wind variability over a sheltered lake. The wind data and water column temperature profiles are used to evaluate a new method to quantify wind sheltering of lakes that takes into account lake size, shape and the surrounding landscape features. The model is validated against field data for 36 Minnesota lakes. Effects of non-uniform sheltering and lake shape are also demonstrated. The effects of wind sheltering must be included in lake models to determine the effect of wind-derived energy inputs on lake stratification, surface gas transfer, lake water quality, and fish habitat. These effects are also important for correctly modeling momentum, heat, moisture and trace gas flux to the atmosphere.
Measuring wintertime surface fluxes at the Tiksi observatory in northern Sakha (Yakutia)
NASA Astrophysics Data System (ADS)
Laurila, Thomas; Aurela, Mika; Hatakka, Juha; Tuovinen, Juha-Pekka; Asmi, Eija; Kondratyev, Vladimir; Ivakhov, Victor; Reshetnikov, Alexander; Makshtas, Alexander; Uttal, Taneil
2013-04-01
Tiksi hydrometeorological observatory has been equipped by new instrumentation for meteorology, turbulence, trace gas and aerosols studies as a joint effort by National Oceanic and Atmospheric Administration (NOAA), Roshydromet (Yakutian Hydrometeorological Service, Arctic and Antarctic Research Institute and Voeikov Main Geophysical Observatory units) and the Finnish Meteorological Institute (FMI). The site is close to the coast of the Laptev Sea on deep permafrost soil with low tundra vegetation and patches of arctic semidesert. Near-by terrain is gently sloping to the south. Further away they are hills in the NE- and W-directions. Turbulence (3-d wind components and sonic temperature) was measured at 10 Hz by USA-1Scientific sonic by Metek, Gmbh. Concentrations of CO2 and H2O were measured by LiCor LI7000 analyzer and CH4 concentrations by Los Gatos RMT200 analyzer. Measurement height was 2.5m. Active layer freeze up took place in extended October period. Methane and carbon dioxide emissions were observed up to early December. Emissions to the atmosphere were enhanced by turbulence created by high wind speeds. Midwinter conditions existed from the end of October to the beginning of April based on rather constant negative net radiation between 20-30 Wm-2 that cools the surface and forms highly stable stratification. Weather conditions are characterized by either low or high wind speed modes. Roughly half of the time wind speed was low, below 2 ms-1. Then, katabatic winds were common and air temperature was between -40..-30°C. High wind speeds, up to 24 ms-1, were observed during synoptic disturbances which lasted typically a few days. In this presentation we will show climatology of surface layer characteristics in late autumn and winter. We will show frequency of well-developed turbulence vs. katabatic low wind speed conditions and related atmospheric stability. The effect of wind speed on methane and carbon dioxide emissions during the freezing period will be shown.
NASA Astrophysics Data System (ADS)
O'Neill, A.; Erikson, L. H.; Barnard, P.
2013-12-01
While Global Climate Models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues (MACA) provide daily near-surface winds at an appropriate spatial resolution for wave modeling within San Francisco Bay. Using 30 years (1975-2004) of climatological data from four representative stations around San Francisco Bay, a library of example daily wind conditions for four corresponding over-water sub-regions is constructed. Empirical cumulative distribution functions (ECDFs) of station conditions are compared to MACA GFDL hindcasts to create correction factors, which are then applied to 21st century MACA wind projections. For each projection day, a best match example is identified via least squares error among all stations from the library. The best match's daily variation in velocity components (u/v) is used as an analogue of representative wind variation and is applied at 3-hour increments about the corresponding sub-region's projected u/v values. High temporal resolution reconstructions using this methodology on hindcast MACA fields from 1975-2004 accurately recreate extreme wind values within the San Francisco Bay, and because these extremes in wind forcing are of key importance in wave and subsequent coastal flood modeling, this represents a valuable method of generating near-surface wind vectors for use in coastal flood modeling.
Chapter 13. Atmospheric Dynamics and Meteorology
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.
2009-01-01
Titan, after Venus, is the second example in the solar system of an atmosphere with a global cyclostrophic circulation, but in this case a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10 deg S, indicate that the zonal winds are mostly in the sense of the satellite's rotation. They generally increase with altitude and become cyclostrophic near 35 km above the surface. An exception to this is a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from temperatures retrieved from Cassini orbiter measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds of 190 m/s at mid northern latitudes near 300 km. Above this level, the vortex decays. Curiously, the stratospheric zonal winds and temperatures in both hemispheres are symmetric about a pole that is offset from the surface pole by about 4 deg. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the onset between the equator, where the distance to the rotation axis is greatest, and the seasonally varying subsolar latitude. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures near 400 km and the enhanced concentration of several organic molecules suggest subsidence in the north polar region during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50 deg N. Titan's winter polar vortex appears to share many of the same characteristics of isolating high and low-latitude air masses as do the winter polar vortices on Earth that envelop the ozone holes. Global mapping of temperatures, winds, and composition in the troposphere, by contrast, is incomplete. The few suitable discrete clouds that have been found for tracking indicate smaller velocities than aloft, consistent: with the Huygens measurements, Along the descent trajectory, the Huygens measurements indicate eastward zonal winds down to 7 km, where they shift westward, and then eastward again below 1 km dawn to the surface. The low-latitude dune fields seen in Cassini RADAR images have been interpreted as longitudinal dunes occurring in a mean eastward zonal wind. This is not like Earth, where the low-latitude winds are westward above the surface. Because the net zonal-mean time-averaged torque exerted by the surface on the atmosphere should vanish, there must be westward flow over part of the surface; the question is where and when. The meridional contrast in tropospheric temperatures deduced from radio occultations at low, mid, and high latitudes. is small, approximately 5 K at the tropopause and approximately 3 K at the surface. This implies efficient heat transport, probably by axisymmetric meridional circulations. The effect of the methane "hydrological" cycle on the atmospheric circulation is not well constrained by existing measurements, Understanding the mature of the surface-atmosphere coupling will be critical to elucidating the atmospheric transports of momentum, heat, and volatiles.
NASA Astrophysics Data System (ADS)
Rajewski, D. A.
2015-12-01
Wind farms are an important resource for electrical generation in the Central U.S., however with each installation there are many poorly documented interactions with the local and surrounding environment. The impact of wind farms on surface microclimate is largely understood conceptually using numerical or wind tunnel models or ex situ satellite-detected changes. Measurements suitable for calibration of numerical simulations are few and of limited applicability but are urgently needed to improve parameterization of wind farm aerodynamics influenced by the diurnal evolution of the boundary layer. Among large eddy simulations of wind farm wakes in thermally stable stratification, there are discrepancies on the influence of turbine-induced mixing on the surface heat flux. We provide measurements from seven surface flux stations, vertical profiling LiDARs located upwind and downwind of turbines, and SCADA measurements from turbines during the 2013 Crop Wind Energy Experiment (CWEX-13) as the best evidence for the variability of turbine induced heat flux within a large wind farm. Examination of ambient conditions (wind direction, wind veer, and thermal stratification) and on turbine operation factors (hub-height wind speed, normalized power) reveal conditions that lead to the largest modification of heat flux. Our results demonstrate the highest flux change from the reference station to be where the leading few lines of turbines influence the surface. Under stably stratified conditions turbine-scale turbulence is highly efficient at bringing warmer air aloft to the surface, leading to an increase in downward heat flux. Conversely we see that the combination of wakes from several lines of turbines reduces the flux contrast from the reference station. In this regime of deep wind-farm flow, wake turbulence is similar in scale and intensity to the reference conditions. These analysis tools can be extended to other turbine SCADA and microclimate variables (e.g. temperature) to improve basic understanding of turbine-turbine and total wind farm wake interactions. Forthcoming tall-tower measurements will provide additional opportunities for comparison of simulated wind and thermal profiles in non-wake, and waked flow conditions.
Dynamics and early post-tsunami evolution of floating marine debris near Fukushima Daiichi
NASA Astrophysics Data System (ADS)
Matthews, John Philip; Ostrovsky, Lev; Yoshikawa, Yutaka; Komori, Satoru; Tamura, Hitoshi
2017-08-01
The devastating tsunami triggered by the Tōhoku-Oki earthquake of 11 March 2011 caused a crisis at the Fukushima Daiichi nuclear power station where it overtopped the seawall defences. On retreating, the tsunami carried loose debris and wreckage seaward and marshalled buoyant material into extensive plumes. Widespread concern over the fate of these and numerous other Tōhoku tsunami depositions prompted attempts to simulate debris dispersion throughout the wider Pacific. However, the effects of locally perturbed wind and wave fields, active Langmuir circulation and current-induced attrition determine a complex and poorly understood morphology for large floating agglomerations. Here we show that the early post-tsunami evolution of marine-debris plumes near Fukushima Daiichi was also shaped by near-surface wind modifications that took place above relatively calm (lower surface roughness) waters covered by surface films derived from oil and other contaminants. High-spatial-resolution satellite tracking reveals faster-than-expected floating-debris motions and invigorated plume evolution within these regions, while numerical modelling of turbulent air flow over the low-drag, film-covered surface predicts typically metre-per-second wind strengthening at centimetric heights, sufficient to explain the observed debris-speed increases. Wind restructuring probably stimulates the dispersion of flotsam from both biological and anthropogenic sources throughout a global ocean of highly variable surface roughness.
Dunes on Titan observed by Cassini Radar
Radebaugh, J.; Lorenz, R.D.; Lunine, J.I.; Wall, S.D.; Boubin, G.; Reffet, E.; Kirk, R.L.; Lopes, R.M.; Stofan, E.R.; Soderblom, L.; Allison, M.; Janssen, M.; Paillou, P.; Callahan, P.; Spencer, C.; ,
2008-01-01
Thousands of longitudinal dunes have recently been discovered by the Titan Radar Mapper on the surface of Titan. These are found mainly within ??30?? of the equator in optically-, near-infrared-, and radar-dark regions, indicating a strong proportion of organics, and cover well over 5% of Titan's surface. Their longitudinal duneform, interactions with topography, and correlation with other aeolian forms indicate a single, dominant wind direction aligned with the dune axis plus lesser, off-axis or seasonally alternating winds. Global compilations of dune orientations reveal the mean wind direction is dominantly eastwards, with regional and local variations where winds are diverted around topographically high features, such as mountain blocks or broad landforms. Global winds may carry sediments from high latitude regions to equatorial regions, where relatively drier conditions prevail, and the particles are reworked into dunes, perhaps on timescales of thousands to tens of thousands of years. On Titan, adequate sediment supply, sufficient wind, and the absence of sediment carriage and trapping by fluids are the dominant factors in the presence of dunes. ?? 2007 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Shuyi S.; Curcic, Milan
2016-07-01
Forecasting hurricane impacts of extreme winds and flooding requires accurate prediction of hurricane structure and storm-induced ocean surface waves days in advance. The waves are complex, especially near landfall when the hurricane winds and water depth varies significantly and the surface waves refract, shoal and dissipate. In this study, we examine the spatial structure, magnitude, and directional spectrum of hurricane-induced ocean waves using a high resolution, fully coupled atmosphere-wave-ocean model and observations. The coupled model predictions of ocean surface waves in Hurricane Ike (2008) over the Gulf of Mexico and Superstorm Sandy (2012) in the northeastern Atlantic and coastal region are evaluated with the NDBC buoy and satellite altimeter observations. Although there are characteristics that are general to ocean waves in both hurricanes as documented in previous studies, wave fields in Ike and Sandy possess unique properties due mostly to the distinct wind fields and coastal bathymetry in the two storms. Several processes are found to significantly modulate hurricane surface waves near landfall. First, the phase speed and group velocities decrease as the waves become shorter and steeper in shallow water, effectively increasing surface roughness and wind stress. Second, the bottom-induced refraction acts to turn the waves toward the coast, increasing the misalignment between the wind and waves. Third, as the hurricane translates over land, the left side of the storm center is characterized by offshore winds over very short fetch, which opposes incoming swell. Landfalling hurricanes produce broader wave spectra overall than that of the open ocean. The front-left quadrant is most complex, where the combination of windsea, swell propagating against the wind, increasing wind-wave stress, and interaction with the coastal topography requires a fully coupled model to meet these challenges in hurricane wave and surge prediction.
NASA Astrophysics Data System (ADS)
Clark, Matthew; Parker, Douglas
2014-05-01
Narrow cold frontal rainbands (NCFRs) occur frequently in the UK and other parts of northwest Europe. At the surface, the passage of an NCFR is often marked by a sharp wind veer, abrupt pressure increase and a rapid temperature decrease. Tornadoes and other instances of localised wind damage sometimes occur in association with meso-gamma-scale vortices (sometimes called misocyclones) that form along the zone of abrupt horizontal wind veer (and associated vertical vorticity) at the leading edge of the NCFR. Using one-minute-resolution data from a mesoscale network of automatic weather stations, surface pressure, wind and temperature fields in the vicinity of 12 NCFRs (five of which were tornadic) have been investigated. High-resolution surface analyses were obtained by mapping temporal variations in the observed parameters to equivalent spatial variations, using a system velocity determined by analysis of the radar-observed movement of NCFR precipitation segments. Substantial differences were found in the structure of surface wind and pressure fields close to tornadic and non-tornadic NCFRs. Tornadic NCFRs exhibited a large wind veer (near 90°) and strong pre- and post-frontal winds. These attributes were associated with large vertical vorticity and horizontal convergence across the front. Tornadoes typically occurred where vertical vorticity and horizontal convergence were increasing. Here, we present surface analyses from selected cases, and draw comparisons between the tornadic and non-tornadic NCFRs. Some Doppler radar observations will be presented, illustrating the development of misocyclones along parts of the NCFR that exhibit strong, and increasing, vertical vorticity stretching. The influence of the stability of the pre-frontal air on the likelihood of tornadoes will also be discussed.
The importance of wind-flux feedbacks during the November CINDY-DYNAMO MJO event
NASA Astrophysics Data System (ADS)
Riley Dellaripa, Emily; Maloney, Eric; van den Heever, Susan
2015-04-01
High-resolution, large-domain cloud resolving model (CRM) simulations probing the importance of wind-flux feedbacks to Madden-Julian Oscillation (MJO) convection are performed for the November 2011 CINDY-DYNAMO MJO event. The work is motivated by observational analysis from RAMA buoys in the Indian Ocean and TRMM precipitation retrievals that show a positive correlation between MJO precipitation and wind-induced surface fluxes, especially latent heat fluxes, during and beyond the CINDY-DYNAMO time period. Simulations are done using Colorado State University's Regional Atmospheric Modeling System (RAMS). The domain setup is oceanic and spans 1000 km x 1000 km with 1.5 km horizontal resolution and 65 stretched vertical levels centered on the location of Gan Island - one of the major CINDY-DYNAMO observation points. The model is initialized with ECMWF reanalysis and Aqua MODIS sea surface temperatures. Nudging from ECMWF reanalysis is applied at the domain periphery to encourage realistic evolution of MJO convection. The control experiment is run for the entire month of November so both suppressed and active, as well as, transitional phases of the MJO are modeled. In the control experiment, wind-induced surface fluxes are activated through the surface bulk aerodynamic formula and allowed to evolve organically. Sensitivity experiments are done by restarting the control run one week into the simulation and controlling the wind-induced flux feedbacks. In one sensitivity experiment, wind-induced surface flux feedbacks are completely denied, while in another experiment the winds are kept constant at the control simulations mean surface wind speed. The evolution of convection, especially on the mesoscale, is compared between the control and sensitivity simulations.
A generalized model for the air-sea transfer of dimethyl sulfide at high wind speeds
NASA Astrophysics Data System (ADS)
Vlahos, Penny; Monahan, Edward C.
2009-11-01
The air-sea exchange of dimethyl sulfide (DMS) is an important component of ocean biogeochemistry and global climate models. Both laboratory experiments and field measurements of DMS transfer rates have shown that the air-sea flux of DMS is analogous to that of other significant greenhouse gases such as CO2 at low wind speeds (<10 m/s) but that these DMS transfer rates may diverge from other gases as wind speeds increase. Herein we provide a mechanism that predicts the attenuation of DMS transfer rates at high wind speeds. The model is based on the amphiphilic nature of DMS that leads to transfer delay at the water-bubble interface and becomes significant at wind speeds above >10 m/s. The result is an attenuation of the dimensionless Henry's Law constant (H) where (Heff = H/(1 + (Cmix/Cw) ΦB) by a solubility enhancement Cmix/Cw, and the fraction of bubble surface area per m2 surface ocean.
Forced synchronization of large-scale circulation to increase predictability of surface states
NASA Astrophysics Data System (ADS)
Shen, Mao-Lin; Keenlyside, Noel; Selten, Frank; Wiegerinck, Wim; Duane, Gregory
2016-04-01
Numerical models are key tools in the projection of the future climate change. The lack of perfect initial condition and perfect knowledge of the laws of physics, as well as inherent chaotic behavior limit predictions. Conceptually, the atmospheric variables can be decomposed into a predictable component (signal) and an unpredictable component (noise). In ensemble prediction the anomaly of ensemble mean is regarded as the signal and the ensemble spread the noise. Naturally the prediction skill will be higher if the signal-to-noise ratio (SNR) is larger in the initial conditions. We run two ensemble experiments in order to explore a way to reduce the SNR of surface winds and temperature. One ensemble experiment is AGCM with prescribing sea surface temperature (SST); the other is AGCM with both prescribing SST and nudging the high-level temperature and winds to ERA-Interim. Each ensemble has 30 members. Larger SNR is expected and found over the tropical ocean in the first experiment because the tropical circulation is associated with the convection and the associated surface wind convergence as these are to a large extent driven by the SST. However, small SNR is found over high latitude ocean and land surface due to the chaotic and non-synchronized atmosphere states. In the second experiment the higher level temperature and winds are forced to be synchronized (nudged to reanalysis) and hence a larger SNR of surface winds and temperature is expected. Furthermore, different nudging coefficients are also tested in order to understand the limitation of both synchronization of large-scale circulation and the surface states. These experiments will be useful for the developing strategies to synchronize the 3-D states of atmospheric models that can be later used to build a super model.
Wind Streaks on Earth; Exploration and Interpretation
NASA Astrophysics Data System (ADS)
Cohen-Zada, Aviv Lee; Blumberg, Dan G.; Maman, Shimrit
2015-04-01
Wind streaks, one of the most common aeolian features on planetary surfaces, are observable on the surface of the planets Earth, Mars and Venus. Due to their reflectance properties, wind streaks are distinguishable from their surroundings, and they have thus been widely studied by remote sensing since the early 1970s, particularly on Mars. In imagery, these streaks are interpreted as the presence - or lack thereof - of small loose particles on the surface deposited or eroded by wind. The existence of wind streaks serves as evidence for past or present active aeolian processes. Therefore, wind streaks are thought to represent integrative climate processes. As opposed to the comprehensive and global studies of wind streaks on Mars and Venus, wind streaks on Earth are understudied and poorly investigated, both geomorphologically and by remote sensing. The aim of this study is, thus, to fill the knowledge gap about the wind streaks on Earth by: generating a global map of Earth wind streaks from modern high-resolution remotely sensed imagery; incorporating the streaks in a geographic information system (GIS); and overlaying the GIS layers with boundary layer wind data from general circulation models (GCMs) and data from the ECMWF Reanalysis Interim project. The study defines wind streaks (and thereby distinguishes them from other aeolian features) based not only on their appearance in imagery but more importantly on their surface appearance. This effort is complemented by a focused field investigation to study wind streaks on the ground and from a variety of remotely sensed images (both optical and radar). In this way, we provide a better definition of the physical and geomorphic characteristics of wind streaks and acquire a deeper knowledge of terrestrial wind streaks as a means to better understand global and planetary climate and climate change. In a preliminary study, we detected and mapped over 2,900 wind streaks in the desert regions of Earth distributed in approximately 500 sites. Most terrestrial wind streaks are formed on a relatively young geological surface and are concentrated along the equator (± 30°). They are categorized by the combination of their planform and reflectance; with linear-bright and dark are the most common. A site-specific examination of remote-sensing effects on wind streaks identification has been conducted. The results thus far, indicate that in images with varying spatial and spectral specifications some wind streaks are actually composed of other aeolian bedforms, especially dunes. Specific regions of the Earth were then compared qualitatively to surface wind data extracted from a general circulation model. Understanding the mechanism and spatial and temporal distribution of wind streak formation is important not only for understanding surface modifications in the geomorphological context but also for shedding light on past and present climatic processes and atmospheric circulation on Earth. This study yields an explanation for wind streaks as a geomorphological feature. Moreover, it is in this planet-wide geomorphological research ability to lay down the foundations for comparative planetary research.
Homogenization of Tianjin monthly near-surface wind speed using RHtestsV4 for 1951-2014
NASA Astrophysics Data System (ADS)
Si, Peng; Luo, Chuanjun; Liang, Dongpo
2018-05-01
Historical Chinese surface meteorological records provided by the special fund for basic meteorological data from the National Meteorological Information Center (NMIC) were processed to produce accurate wind speed data. Monthly 2-min near-surface wind speeds from 13 observation stations in Tianjin covering 1951-2014 were homogenized using RHtestV4 combined with their metadata. Results indicate that 10 stations had significant breakpoints—77% of the Tianjin stations—suggesting that inhomogeneity was common in the Tianjin wind speed series. Instrument change accounted for most changes, based on the metadata, including changes in type and height, especially for the instrument type. Average positive quantile matching (QM) adjustments were more than negative adjustments at 10 stations; positive biases with a probability density of 0.2 or more were mainly concentrates in the range 0.2 m s-1 to 1.2 m s-1, while the corresponding negative biases were mainly in the range -0.1 to -1.2 m s-1. Here, changes in variances and trends in the monthly mean surface wind speed series at 10 stations before and after adjustment were compared. Climate characteristics of wind speed in Tianjin were more reasonably reflected by the adjusted data; inhomogeneity in wind speed series was largely corrected. Moreover, error analysis reveals that there was a high consistency between the two datasets here and that from the NMIC, with the latter as the reference. The adjusted monthly near-surface wind speed series shows a certain reliability for the period 1951-2014 in Tianjin.
Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake
NASA Astrophysics Data System (ADS)
Lin, Y. T.
2014-12-01
In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.
O'Neill, Andrea; Erikson, Li; Barnard, Patrick
2017-01-01
While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.
A ``Cyber Wind Facility'' for HPC Wind Turbine Field Experiments
NASA Astrophysics Data System (ADS)
Brasseur, James; Paterson, Eric; Schmitz, Sven; Campbell, Robert; Vijayakumar, Ganesh; Lavely, Adam; Jayaraman, Balaji; Nandi, Tarak; Jha, Pankaj; Dunbar, Alex; Motta-Mena, Javier; Craven, Brent; Haupt, Sue
2013-03-01
The Penn State ``Cyber Wind Facility'' (CWF) is a high-fidelity multi-scale high performance computing (HPC) environment in which ``cyber field experiments'' are designed and ``cyber data'' collected from wind turbines operating within the atmospheric boundary layer (ABL) environment. Conceptually the ``facility'' is akin to a high-tech wind tunnel with controlled physical environment, but unlike a wind tunnel it replicates commercial-scale wind turbines operating in the field and forced by true atmospheric turbulence with controlled stability state. The CWF is created from state-of-the-art high-accuracy technology geometry and grid design and numerical methods, and with high-resolution simulation strategies that blend unsteady RANS near the surface with high fidelity large-eddy simulation (LES) in separated boundary layer, blade and rotor wake regions, embedded within high-resolution LES of the ABL. CWF experiments complement physical field facility experiments that can capture wider ranges of meteorological events, but with minimal control over the environment and with very small numbers of sensors at low spatial resolution. I shall report on the first CWF experiments aimed at dynamical interactions between ABL turbulence and space-time wind turbine loadings. Supported by DOE and NSF.
NASA Astrophysics Data System (ADS)
Jiménez, Pedro A.; González-Rouco, J. Fidel; Montávez, Juan P.; García-Bustamante, E.; Navarro, J.; Dudhia, J.
2013-04-01
This work uses a WRF numerical simulation from 1960 to 2005 performed at a high horizontal resolution (2 km) to analyze the surface wind variability over a complex terrain region located in northern Iberia. A shorter slice of this simulation has been used in a previous study to demonstrate the ability of the WRF model in reproducing the observed wind variability during the period 1992-2005. Learning from that validation exercise, the extended simulation is herein used to inspect the wind behavior where and when observations are not available and to determine the main synoptic mechanisms responsible for the surface wind variability. A principal component analysis was applied to the daily mean wind. Two principal modes of variation accumulate a large percentage of the wind variability (83.7%). The first mode reflects the channeling of the flow between the large mountain systems in northern Iberia modulated by the smaller topographic features of the region. The second mode further contributes to stress the differentiated wind behavior over the mountains and valleys. Both modes show significant contributions at the higher frequencies during the whole analyzed period, with different contributions at lower frequencies during the different decades. A strong relationship was found between these two modes and the zonal and meridional large scale pressure gradients over the area. This relationship is described in the context of the influence of standard circulation modes relevant in the European region like the North Atlantic Oscillation, the East Atlantic pattern, East Atlantic/Western Russia pattern, and the Scandinavian pattern.
Biophysical response of dryland soils to rainfall: implications for wind erosion
NASA Astrophysics Data System (ADS)
Bullard, J. E.; Strong, C. L.; Aubault, H.
2016-12-01
Dryland soils can be highly susceptible to wind erosion due to low vegetation cover. The formation of physical and biological soil crusts between vascular plants can exert some control on the soil surface erodibility. The development of these crusts is highly dependent on rainfall which causes sediment compaction and aggregate breakdown, and triggers photosynthetic activity and an increase soil organic matter within biological soil crusts. Using controlled field experiments, this study tests how biological soil crusts in different dryland geomorphic settings respond to various rainfall amounts (0, 5 or 10 mm) and how this in turn affects the resistance of soils to wind erosion. Results show that 10 mm of rainfall triggers more intense photosynthetic activity (high fluorescence) and a greater increase in extracellular polysaccharide content in biological crusts than 5 mm of rainfall but that the duration of photosynthetic activity is comparable for both quantities of rain. These biological responses have little impact on surface resistance, but results show that soils are more susceptible to wind erosion after rainfall events than in their initial dry state. This unexpected result could be explained by the detachment of surface sediments by raindrop impact and overland flow. The study highlights the complexity of soil erodibility at small scale which is driven by rain, wind and crust, and a necessity to understand how the spatial heterogeneity of crust and their ecophysiology alters small scale processes.
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Diamagnetic effect in the foremoon solar wind observed by Kaguya
NASA Astrophysics Data System (ADS)
Nishino, Masaki N.; Saito, Yoshifumi; Tsunakawa, Hideo; Miyake, Yohei; Harada, Yuki; Yokota, Shoichiro; Takahashi, Futoshi; Matsushima, Masaki; Shibuya, Hidetoshi; Shimizu, Hisayoshi
2017-04-01
Direct interaction between the lunar surface and incident solar wind is one of the crucial phenomena of the planetary plasma sciences. Recent observations by lunar orbiters revealed that strength of the interplanetary magnetic field (IMF) at spacecraft altitude often increases over crustal magnetic fields on the dayside. In addition, variations of the IMF on the lunar night side have been reported in the viewpoint of diamagnetic effect around the lunar wake. However, few studies have been performed for the IMF over non-magnetized regions on the dayside. Here we show an event where strength of the IMF decreases at 100 km altitude on the lunar dayside (i.e. in the foremoon solar wind) when the IMF is almost parallel to the incident solar wind flow, comparing the upstream solar wind data from ACE with Kaguya magnetometer data. The lunar surface below the Kaguya orbit is not magnetized (or very weakly magnetized), and the sunward-travelling protons show signatures of those back-scattered at the lunar surface. We find that the decrease in the magnetic pressure is compensated by the thermal pressure of the back-scattered protons. In other words, the IMF strength in the foremoon solar wind decreases by diamagnetic effect of sunward-travelling protons back-scattered at the lunar dayside surface. Such an effect would be prominent in the high-beta solar wind, and may be ubiquitous in the environment where planetary surface directly interacts with surrounding space plasma.
NASA's Newest SeaWinds Instrument Breezes Into Operation
NASA Technical Reports Server (NTRS)
2003-01-01
One of NASA's newest Earth-observing instruments, the SeaWinds scatterometer aboard Japan's Advanced Earth Observing Satellite (Adeos) 2--now renamed Midori 2--has successfully transmitted its first radar data to our home planet, generating its first high-quality images.
From its orbiting perch high above Earth, SeaWinds on Midori 2 ('midori' is Japanese for the color green, symbolizing the environment) will provide the world's most accurate, highest resolution and broadest geographic coverage of ocean wind speed and direction, sea ice extent and properties of Earth's land surfaces. It will complement and eventually replace an identical instrument orbiting since June 1999 on NASA's Quick Scatterometer (QuikScat) satellite. Its three- to five-year mission will augment a long-term ocean surface wind data series that began in 1996 with launch of the NASA Scatterometer on Japan's first Adeos spacecraft.Climatologists, meteorologists and oceanographers will soon routinely use data from SeaWinds on Midori 2 to understand and predict severe weather patterns, climate change and global weather abnormalities like El Nino. The data are expected to improve global and regional weather forecasts, ship routing and marine hazard avoidance, measurements of sea ice extent and the tracking of icebergs, among other uses.'Midori 2, its SeaWinds instrument and associated ground processing systems are functioning very smoothly,' said Moshe Pniel, scatterometer projects manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif. 'Following initial checkout and calibration, we look forward to continuous operations, providing vital data to scientists and weather forecasters around the world.' 'These first images show remarkable detail over land, ice and oceans,' said Dr. Michael Freilich, Ocean Vector Winds Science Team Leader, Oregon State University, Corvallis, Ore. 'The combination of SeaWinds data and measurements from other instruments on Midori 2 with data from other international satellites will enable detailed studies of ocean circulation, air-sea interaction and climate variation simply not possible until now.'The released image, obtained from data collected January 28-29, depicts Earth's continents in green, polar glacial ice-covered regions in blue-red and sea ice in gray. Color and intensity changes over ice and land are related to ice melting, variations in land surface roughness and vegetation cover. Ocean surface wind speeds, measured during a 12-hour period on January 28, are shown by colors, with blues corresponding to low wind speeds and reds to wind speeds up to 15 meters per second (30 knots). Black arrows denote wind direction. White gaps over the oceans represent unmeasured areas between SeaWinds swaths (the instrument measures winds over about 90 percent of the oceans each day).SeaWinds transmits high-frequency microwave pulses to Earth's land masses, ice cover and ocean surface and measures the strength of the radar pulses that bounce back to the instrument. It takes millions of radar measurements covering about 93 percent of Earth's surface every day, operating under all weather conditions, day and night. Over the oceans, SeaWinds senses ripples caused by the winds, from which scientists can compute wind speed and direction. These ocean surface winds drive Earth's oceans and control the exchange of heat, moisture and gases between the atmosphere and the sea.Launched December 14, 2002, from Japan, the instrument was first activated on January 10 and transitioned to its normal science mode on January 28. A four-day dedicated checkout period was completed on January 31. A six-month calibration/validation phase will begin in April, with regular science operations scheduled to begin this October.SeaWinds on Midori 2 is managed for NASA's Office of Earth Science, Washington, D.C., by JPL, which developed the instrument and performs instrument operations and science data processing, archiving and distribution. NASA also provides U.S. ground system support. The National Space Development Agency of Japan, or NASDA, provided the Midori 2 spacecraft, H-IIA launch vehicle, mission operations and the Japanese ground network. The National Oceanic and Atmospheric Administration provides near-real-time data processing and distribution for SeaWinds operational data users. The California Institute of Technology in Pasadena manages JPL for NASA.NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Gibson, C.; Lamb, B. K.
2017-12-01
Frequent strong gap winds were measured in a deep, steep, wildfire-prone river canyon of central Idaho, USA during July-September 2013. Analysis of archived surface pressure data indicate that the gap wind events were driven by regional scale surface pressure gradients. The events always occurred between 0400 and 1200 LT and typically lasted 3-4 hours. The timing makes these events particularly hazardous for wildland firefighting applications since the morning is typically a period of reduced fire activity and unsuspecting firefighters could be easily endangered by the onset of strong downcanyon winds. The gap wind events were not explicitly forecast by operational numerical weather prediction (NWP) models due to the small spatial scale of the canyon ( 1-2 km wide) compared to the horizontal resolution of operational NWP models (3 km or greater). Custom WRF simulations initialized with NARR data were run at 1 km horizontal resolution to assess whether higher resolution NWP could accurately simulate the observed gap winds. Here, we show that the 1 km WRF simulations captured many of the observed gap wind events, although the strength of the events was underpredicted. We also present evidence from these WRF simulations which suggests that the Salmon River Canyon is near the threshold of WRF-resolvable terrain features when the standard WRF coordinate system and discretization schemes are used. Finally, we show that the strength of the gap wind events can be predicted reasonably well as a function of the surface pressure gradient across the gap, which could be useful in the absence of high-resolution NWP. These are important findings for wildland firefighting applications in narrow gaps where routine forecasts may not provide warning for wind effects induced by high-resolution terrain features.
NASA Astrophysics Data System (ADS)
Fegyveresi, John M.; Alley, Richard B.; Muto, Atsuhiro; Orsi, Anaïs J.; Spencer, Matthew K.
2018-01-01
Observations at the West Antarctic Ice Sheet (WAIS) Divide site show that near-surface snow is strongly altered by weather-related processes such as strong winds and temperature fluctuations, producing features that are recognizable in the deep ice core. Prominent glazed
surface crusts develop frequently at the site during summer seasons. Surface, snow pit, and ice core observations made in this study during summer field seasons from 2008-2009 to 2012-2013, supplemented by automated weather station (AWS) data with short- and longwave radiation sensors, revealed that such crusts formed during relatively low-wind, low-humidity, clear-sky periods with intense daytime sunshine. After formation, such glazed surfaces typically developed cracks in a polygonal pattern likely from thermal contraction at night. Cracking was commonest when several clear days occurred in succession and was generally followed by surface hoar growth; vapor escaping through the cracks during sunny days may have contributed to the high humidity that favored nighttime formation of surface hoar. Temperature and radiation observations show that daytime solar heating often warmed the near-surface snow above the air temperature, contributing to upward mass transfer, favoring crust formation from below, and then surface hoar formation. A simple surface energy calculation supports this observation. Subsequent examination of the WDC06A deep ice core revealed that crusts are preserved through the bubbly ice, and some occur in snow accumulated during winters, although not as commonly as in summertime deposits. Although no one has been on site to observe crust formation during winter, it may be favored by greater wintertime wind packing from stronger peak winds, high temperatures and steep temperature gradients from rapid midwinter warmings reaching as high as -15 °C, and perhaps longer intervals of surface stability. Time variations in crust occurrence in the core may provide paleoclimatic information, although additional studies are required. Discontinuity and cracking of crusts likely explain why crusts do not produce significant anomalies in other paleoclimatic records.
Titan's Atmospheric Dynamics and Meteorology
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Baines, K. H.; Bird, M. K.; Tokano, T.; West, R. A.
2008-01-01
Titan, after Venus, is the second example of an atmosphere with a global cyclostrophic circulation in the solar system, but a circulation that has a strong seasonal modulation in the middle atmosphere. Direct measurement of Titan's winds, particularly observations tracking the Huygens probe at 10degS, indicate that the zonal winds are generally in the sense of the satellites rotation. They become cyclostrophic approx. 35 km above the surface and generally increase with altitude, with the exception of a sharp minimum centered near 75 km, where the wind velocity decreases to nearly zero. Zonal winds derived from the temperature field retrieved from Cassini measurements, using the thermal wind equation, indicate a strong winter circumpolar vortex, with maximum winds at mid northern latitudes of 190 ms-' near 300 km. Above this level, the vortex decays. Curiously, the zonal winds and temperatures are symmetric about a pole that is offset from the surface pole by approx.4 degrees. The cause of this is not well understood, but it may reflect the response of a cyclostrophic circulation to the offset between the equator, where the distance to the rotation axis is greatest, and the solar equator. The mean meridional circulation can be inferred from the temperature field and the meridional distribution of organic molecules and condensates and hazes. Both the warm temperatures in the north polar region near 400 km and the enhanced concentration of several organic molecules suggests subsidence there during winter and early spring. Stratospheric condensates are localized at high northern latitudes, with a sharp cut-off near 50degN. Titan's winter polar vortex appears to share many of the same characteristics of winter vortices on Earth-the ozone holes. Global mapping of temperatures, winds, and composition in he troposphere, by contrast, is incomplete. The few suitable discrete clouds that have bee found for tracking indicate smaller velocities than aloft, consistent with the Huygens measurements. At low latitudes the zonal winds near the surface appear not to be westward as on Earth, but eastward. Because the net zonal-mean time-averaged torq exerted by the surface on the atmosphere should vanish, this implies westward flow o part of the surface; the question is where. The latitude contrast in tropospheric temperatures, deduced from radio occultations at low, mid, and high latitudes, is small approx.5 K at the tropopause and approx.3 K at the surface.
NASA Astrophysics Data System (ADS)
Adkins, K. A.; Sescu, A.
2016-12-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
Multidimensional optimal droop control for wind resources in DC microgrids
NASA Astrophysics Data System (ADS)
Bunker, Kaitlyn J.
Two important and upcoming technologies, microgrids and electricity generation from wind resources, are increasingly being combined. Various control strategies can be implemented, and droop control provides a simple option without requiring communication between microgrid components. Eliminating the single source of potential failure around the communication system is especially important in remote, islanded microgrids, which are considered in this work. However, traditional droop control does not allow the microgrid to utilize much of the power available from the wind. This dissertation presents a novel droop control strategy, which implements a droop surface in higher dimension than the traditional strategy. The droop control relationship then depends on two variables: the dc microgrid bus voltage, and the wind speed at the current time. An approach for optimizing this droop control surface in order to meet a given objective, for example utilizing all of the power available from a wind resource, is proposed and demonstrated. Various cases are used to test the proposed optimal high dimension droop control method, and demonstrate its function. First, the use of linear multidimensional droop control without optimization is demonstrated through simulation. Next, an optimal high dimension droop control surface is implemented with a simple dc microgrid containing two sources and one load. Various cases for changing load and wind speed are investigated using simulation and hardware-in-the-loop techniques. Optimal multidimensional droop control is demonstrated with a wind resource in a full dc microgrid example, containing an energy storage device as well as multiple sources and loads. Finally, the optimal high dimension droop control method is applied with a solar resource, and using a load model developed for a military patrol base application. The operation of the proposed control is again investigated using simulation and hardware-in-the-loop techniques.
Low-level wind response to mesoscale pressure systems
NASA Astrophysics Data System (ADS)
Garratt, J. R.; Physick, W. L.
1983-09-01
Observations are presented which show a strong correlation between low-level wind behaviour (e.g., rotation near the surface) and the passage of mesoscale pressure systems. The latter are associated with frontal transition zones, are dominated by a pressure-jump line and a mesoscale high pressure area, and produce locally large horizontal pressure gradients. The wind observations are simulated by specifying a time sequence of perturbation pressure gradient and subsequently solving the vertically-integrated momentum equations with appropriate initial conditions. Very good agreement is found between observed and calculated winds; in particular, (i) a 360 ° rotation in wind on passage of the mesoscale high; (ii) wind-shift lines produced dynamically by the pressure-jump line; (iii) rapid linear increase in wind speed on passage of the pressure jump.
Modeling wind adjustment factor and midflame wind speed for Rothermel's surface fire spread model
Patricia L. Andrews
2012-01-01
Rothermel's surface fire spread model was developed to use a value for the wind speed that affects surface fire, called midflame wind speed. Models have been developed to adjust 20-ft wind speed to midflame wind speed for sheltered and unsheltered surface fuel. In this report, Wind Adjustment Factor (WAF) model equations are given, and the BehavePlus fire modeling...
Coastal and rain-induced wind variability depicted by scatterometers
NASA Astrophysics Data System (ADS)
Portabella, M.; Lin, W.; Stoffelen, A.; Turiel, A.; Verhoef, A.; Verspeek, J.; Ballabrera, J.; Vogelzang, J.
2012-04-01
A detailed knowledge of local wind variability near the shore is very important since it strongly affects the weather and microclimate in coastal regions. Since coastal areas are densely populated and most activity at sea occurs near the shore, sea-surface wind field information is important for a number of applications. In the vicinity of land sea-breeze, wave fetch, katabatic and current effects are more likely than in the open ocean, thus enhancing air-sea interaction. Also very relevant for air-sea interaction are the rain-induced phenomena, such as downbursts and convergence. Relatively cold and dry air is effectively transported to the ocean surface and surface winds are enhanced. In general, both coastal and rain-induced wind variability are poorly resolved by Numerical Weather Prediction (NWP) models. Satellite real aperture radars (i.e., scatterometers) are known to provide accurate mesoscale (25-50 km resolution) sea surface wind field information used in a wide variety of applications. Nowadays, there are two operating scatterometers in orbit, i.e., the C-band Advanced Scatterometer (ASCAT) onboard Metop-A and the Ku-band scatterometer (OSCAT) onboard Oceansat-2. The EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) delivers several ASCAT level 2 wind products with 25 km and 12.5 km Wind Vector Cell (WVC) spacing, including a pre-operational coastal wind product as well as an OSCAT level 2 wind product with 50 km spacing in development status. Rain is known to both attenuate and scatter the microwave signal. In addition, there is a "splashing" effect. The roughness of the sea surface is increased because of splashing due to rain drops. The so-called "rain contamination" is larger for Ku-band scatterometer systems than for C-band systems. Moreover, the associated downdrafts lead to variable wind speeds and directions, further complicating the wind retrieval. The C-band ASCAT high resolution wind processing is validated under rainy conditions, using collocations with the Tropical Rainfall Measuring Mission's (TRMM) Microwave Imager (TMI) rain data, and the tropical moored buoy wind and precipitation data. It turns out that the effect of low and moderate rain appears mainly in increasing the wind variability near the surface and, unlike for Ku-band scatterometers, the rain rate itself does not appear clearly as a limiting factor in ASCAT wind quality. Moreover, the downburst patterns as observed by ASCAT are unique and have large implications for air-sea exchange. At the conference, the main progress in scatterometer wind data processing will be shown.
Weather Research and Forecasting Model Wind Sensitivity Study at Edwards Air Force Base, CA
NASA Technical Reports Server (NTRS)
Watson, Leela R.; Bauman, William H., III
2008-01-01
NASA prefers to land the space shuttle at Kennedy Space Center (KSC). When weather conditions violate Flight Rules at KSC, NASA will usually divert the shuttle landing to Edwards Air Force Base (EAFB) in Southern California. But forecasting surface winds at EAFB is a challenge for the Spaceflight Meteorology Group (SMG) forecasters due to the complex terrain that surrounds EAFB, One particular phenomena identified by SMG is that makes it difficult to forecast the EAFB surface winds is called "wind cycling". This occurs when wind speeds and directions oscillate among towers near the EAFB runway leading to a challenging deorbit bum forecast for shuttle landings. The large-scale numerical weather prediction models cannot properly resolve the wind field due to their coarse horizontal resolutions, so a properly tuned high-resolution mesoscale model is needed. The Weather Research and Forecasting (WRF) model meets this requirement. The AMU assessed the different WRF model options to determine which configuration best predicted surface wind speed and direction at EAFB, To do so, the AMU compared the WRF model performance using two hot start initializations with the Advanced Research WRF and Non-hydrostatic Mesoscale Model dynamical cores and compared model performance while varying the physics options.
Satellite Remote Sensing of Ocean Winds, Surface Waves and Surface Currents during the Hurricanes
NASA Astrophysics Data System (ADS)
Zhang, G.; Perrie, W. A.; Liu, G.; Zhang, L.
2017-12-01
Hurricanes over the ocean have been observed by spaceborne aperture radar (SAR) since the first SAR images were available in 1978. SAR has high spatial resolution (about 1 km), relatively large coverage and capability for observations during almost all-weather, day-and-night conditions. In this study, seven C-band RADARSAT-2 dual-polarized (VV and VH) ScanSAR wide images from the Canadian Space Agency (CSA) Hurricane Watch Program in 2017 are collected over five hurricanes: Harvey, Irma, Maria, Nate, and Ophelia. We retrieve the ocean winds by applying our C-band Cross-Polarization Coupled-Parameters Ocean (C-3PO) wind retrieval model [Zhang et al., 2017, IEEE TGRS] to the SAR images. Ocean waves are estimated by applying a relationship based on the fetch- and duration-limited nature of wave growth inside hurricanes [Hwang et al., 2016; 2017, J. Phys. Ocean.]. We estimate the ocean surface currents using the Doppler Shift extracted from VV-polarized SAR images [Kang et al., 2016, IEEE TGRS]. C-3PO model is based on theoretical analysis of ocean surface waves and SAR microwave backscatter. Based on the retrieved ocean winds, we estimate the hurricane center locations, maxima wind speeds, and radii of the five hurricanes by adopting the SHEW model (Symmetric Hurricane Estimates for Wind) by Zhang et al. [2017, IEEE TGRS]. Thus, we investigate possible relations between hurricane structures and intensities, and especially some possible effects of the asymmetrical characteristics on changes in the hurricane intensities, such as the eyewall replacement cycle. The three SAR images of Ophelia include the north coast of Ireland and east coast of Scotland allowing study of ocean surface currents respond to the hurricane. A system of methods capable of observing marine winds, surface waves, and surface currents from satellites is of value, even if these data are only available in near real-time or from SAR-related satellite images. Insight into high resolution ocean winds, waves and currents in hurricanes can be useful for intensity prediction, which has had relatively few improvements in the past 25 years. In 2018 RADARSAT Constellation Mission will be launched, increasing SAR coverage by 10×, allowing increased observations during the next hurricane season.
NASA Astrophysics Data System (ADS)
Rimac, A.; Eden, C.; von Storch, J.
2012-12-01
Coexistence of stable stratification, the meridional overturning circulation and meso-scale eddies and their influence on the ocean's circulation still raise complex questions concerning the ocean energetics. Oceanic general circulation is mainly forced by the wind field and deep water tides. Its essential energetics are the conversion of kinetic energy of the winds and tides into oceanic potential and kinetic energy. Energy needed for the circulation is bound to internal wave fields. Direct internal wave generation by the wind at the sea surface is one of the sources of this energy. Previous studies using mixed-layer type of models and low frequency wind forcings (six-hourly and daily) left room for improvement. Using mixed-layer models it is not possible to assess the distribution of near-inertial energy into the deep ocean. Also, coarse temporal resolution of wind forcing strongly underestimates the near-inertial wave energy. To overcome this difficulty we use a high resolution ocean model with high frequency wind forcings. We establish the following model setup: We use the Max Planck Institute Ocean Model (MPIOM) on a tripolar grid with 45km horizontal resolution and 40 vertical levels. We run the model with wind forcings that vary in horizontal (250km versus 40km) and temporal resolution (six versus one-hourly). In our study we answer the following questions: How big is the wind kinetic energy input to the near-inertial waves? Is the kinetic energy of the near-inertial waves enhanced when high-frequency wind forcings are used? If so, by how much and why, due to higher level of temporal wind variability or due to better spatial representation of the near-inertial waves? How big is the total power of near-inertial waves generated by the wind at the surface of the ocean? We run the model for one year. Our model results show that the near-inertial waves are excited both using wind forcings of high and low horizontal and temporal resolution. Near-inertial energy is almost two times higher when we force the model with high frequency wind forcings. The influence on the energy mostly depends on the time difference between two forcing fields while the spatial difference has little influence.
Estimates of Sputter Yields of Solar-Wind Heavy Ions of Lunar Regolith Materials
NASA Technical Reports Server (NTRS)
Barghouty, Abdulmasser F.; Adams, James H., Jr.
2008-01-01
At energies of approximately 1 keV/amu, solar-wind protons and heavy ions interact with the lunar surface materials via a number of microscopic interactions that include sputtering. Solar-wind induced sputtering is a main mechanism by which the composition of the topmost layers of the lunar surface can change, dynamically and preferentially. This work concentrates on sputtering induced by solar-wind heavy ions. Sputtering associated with slow (speeds the electrons speed in its first Bohr orbit) and highly charged ions are known to include both kinetic and potential sputtering. Potential sputtering enjoys some unique characteristics that makes it of special interest to lunar science and exploration. Unlike the yield from kinetic sputtering where simulation and approximation schemes exist, the yield from potential sputtering is not as easy to estimate. This work will present a preliminary numerical scheme designed to estimate potential sputtering yields from reactions relevant to this aspect of solar-wind lunar-surface coupling.
A Wind-powered Rover for a Low-Cost Venus Mission
NASA Technical Reports Server (NTRS)
Benigno, Gina; Hoza, Kathleen; Motiwala, Samira; Landis, Geoffrey A.; Colozza, Anthony J.
2013-01-01
Venus, with a surface temperature of 450 C and an atmospheric pressure 90 times higher than that of the Earth, is a difficult target for exploration. However, high-temperature electronics and power systems now being developed make it possible that future missions may be able to operate in the Venus environment. Powering such a rover within the scope of a Discovery class mission will be difficult, but harnessing Venus' surface winds provides a possible way to keep a powered rover small and light. This project scopes out the feasibility of a wind-powered rover for Venus surface missions. Two rover concepts, a land-sailing rover and a wind-turbine-powered rover, were considered. The turbine-powered rover design is selected as being a low-risk and low-cost strategy. Turbine detailed analysis and design shows that the turbine can meet mission requirements across the desired range of wind speeds by utilizing three constant voltage generators at fixed gear ratios.
Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver
2017-01-01
Abstract The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air–sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s−1 in the tunnel and ≤4.1 m s−1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. PMID:28369320
Rahlff, Janina; Stolle, Christian; Giebel, Helge-Ansgar; Brinkhoff, Thorsten; Ribas-Ribas, Mariana; Hodapp, Dorothee; Wurl, Oliver
2017-05-01
The sea-surface microlayer (SML) at the boundary between atmosphere and hydrosphere represents a demanding habitat for bacteria. Wind speed is a crucial but poorly studied factor for its physical integrity. Increasing atmospheric burden of CO2, as suggested for future climate scenarios, may particularly act on this habitat at the air-sea interface. We investigated the effect of increasing wind speeds and different pCO2 levels on SML microbial communities in a wind-wave tunnel, which offered the advantage of low spatial and temporal variability. We found that enrichment of bacteria in the SML occurred solely at a U10 wind speed of ≤5.6 m s-1 in the tunnel and ≤4.1 m s-1 in the Baltic Sea. High pCO2 levels further intensified the bacterial enrichment in the SML during low wind speed. In addition, low wind speed and pCO2 induced the formation of a distinctive bacterial community as revealed by 16S rRNA gene fingerprints and influenced the presence or absence of individual taxonomic units within the SML. We conclude that physical stability of the SML below a system-specific wind speed threshold induces specific bacterial communities in the SML entailing strong implications for ecosystem functioning by wind-driven impacts on habitat properties, gas exchange and matter cycling processes. © FEMS 2017.
Seasat microwave wind and rain observations in severe tropical and midlatitude marine storms
NASA Technical Reports Server (NTRS)
Black, P. G.; Hawkins, J. D.; Gentry, R. C.; Cardone, V. J.
1985-01-01
Initial results of studies concerning Seasat measurements in and around tropical and severe midlatitude cyclones over the open ocean are presented, together with an assessment of their accuracy and usefulness. Complementary measurements of surface wind speed and direction, rainfall rate, and the sea surface temperature obtained with the Seasat-A Satellite Scatterometer (SASS), the Scanning Multichannel Microwave Radiometer (SMMR), and the Seasat SAR are analyzed. The Seasat data for the Hurrricanes Fico, Ella, and Greta and the QE II storm are compared with data obtained from aircraft, buoys, and ships. It is shown that the SASS-derived wind speeds are accurate to within 10 percent, and the directions are accurate to within 20 percent. In general, the SASS estimates tend to measure light winds too high and intense winds too low. The errors of the SMMR-derived measurements of the winds in hurricanes tend to be higher than those of the SASS-derived measurements.
NASA Technical Reports Server (NTRS)
1996-01-01
NASA needed a way to make high-resolution measurements of the wind profile before launching Saturn vehicles. The standard smooth-surface weather balloons zigzagged or spiraled as they ascended due to air vortices that shed off the surface at various positions, which made accurate radar-tracking measurement impossible. A Marshall Space Flight Center engineer modified the surface of the balloons with conical dixie cups, which stabilized them. Now produced by Orbital Sciences Corporation, the Jimsphere is the standard device at all U.S. missile/launch vehicle ranges.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.
1980-01-01
Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.
NASA Technical Reports Server (NTRS)
Uhlhorn, Eric; Atlas, Robert; Black, Peter; Buckley, Courtney; Chen, Shuyi; El-Nimri, Salem; Hood, Robbie; Johnson, James; Jones, Linwood; Miller, Timothy;
2009-01-01
The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
High temperature co-axial winding transformers
NASA Technical Reports Server (NTRS)
Divan, Deepakraj M.; Novotny, Donald W.
1993-01-01
The analysis and design of co-axial winding transformers is presented. The design equations are derived and the different design approaches are discussed. One of the most important features of co-axial winding transformers is the fact that the leakage inductance is well controlled and can be made low. This is not the case in conventional winding transformers. In addition, the power density of co-axial winding transformers is higher than conventional ones. Hence, using co-axial winding transformers in a certain converter topology improves the power density of the converter. The design methodology used in meeting the proposed specifications of the co-axial winding transformer specifications are presented and discussed. The final transformer design was constructed in the lab. Co-axial winding transformers proved to be a good choice for high power density and high frequency applications. They have a more predictable performance compared with conventional transformers. In addition, the leakage inductance of the transformer can be controlled easily to suit a specific application. For space applications, one major concern is the extraction of heat from power apparatus to prevent excessive heating and hence damaging of these units. Because of the vacuum environment, the only way to extract heat is by using a cold plate. One advantage of co-axial winding transformers is that the surface area available to extract heat from is very large compared to conventional transformers. This stems from the unique structure of the co-axial transformer where the whole core surface area is exposed and can be utilized for cooling effectively. This is a crucial issue here since most of the losses are core losses.
NASA Astrophysics Data System (ADS)
Bluestein, H. B.; Weiss, C.; Rotunno, R.; Reif, D. W.; Romine, G. S.
2016-12-01
On 27 May 2015 a quasi-stationary supercell in the northern Texas Panhandle produced several tornadoes, before it evolved into a mesoscale convective system. The pre-storm environment was characterized by relatively weak midlevel winds from the west and surface winds from the south/southwest, such that the 0 - 6 km vertical shear was too weak for supercells to have evolved. There was, however, an increase in speed and backing of the surface wind to the easterly/southeasterly direction during the afternoon, so that the 0 - 6 km shear exceeded 20 m s-1, the approximate threshold for supercell formation. The approximate motion of a convective storm without taking into account shear-related or gust-front propagation is the mean wind in the lowest 6 km. With an increase in the easterly component of the surface winds, the mean wind in the lowest 6 km, in the absence of any increase in westerlies at 6 km, decreased. Some physical mechanisms that could be responsible for the backing and increase in easterly component of the surface wind are as follows: (a) the approach of a synoptic-scale, upper-level trough, with its attendant pre-trough, quasi-geostrophic-induced ascent accompanied by surface convergence, an increase in surface vorticity, and concomitant drop in surface pressure, so that east of the region of ascent a westward-directed pressure-gradient forced develops; (b) surface heating on a surface that slopes upward to the west, such that a westward-directed pressure-gradient force develops; (c) the westward movement of a low-level cold pool that had developed in pre-existing, upstream convective storms; (d) the downward mixing of easterly momentum aloft; and (e) the diurnal inertial oscillation in boundary-layer wind due to the diurnal change in vertical mixing of momentum. It is hypothesized that for this case the primary mechanism was (b). A WRF forecast is described in which evidence is presented in favor of our hypothesis. An estimate will also be given of how much backing and increase in surface wind could be explained by heating on the sloping terrain and also climatological changes in wind speed and direction during the afternoon based on surface mesonet data will be shown. The results of this study could have applications to the study of convection anywhere around the globe where there is gently sloping terrain.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.; Chaubell, Mario J.
2012-01-01
Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed for warm waters (25 C). To achieve the required 0.2 psu accuracy, the impact of sea surface roughness (e.g. wind-generated ripples) on the observed brightness temperature has to be corrected to better than one tenth of a degree Kelvin. With this algorithm, the accuracy of retrieved wind speed will be high, varying from a few tenths to 0.6 m/s. The expected direction accuracy is also excellent (less than 10 ) for mid to high winds, but degrades for lower speeds (less than 7 m/s).
Controls on wind abrasion patterns through a fractured bedrock landscape
NASA Astrophysics Data System (ADS)
Perkins, J. P.; Finnegan, N. J.
2017-12-01
Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic steering. Conversely, smaller particles, which comprise the bulk of wind-transported material in lower velocity settings, can be fully deflected along fracture paths. Wind-abraded landforms therefore likely reflect a competition between the material skeleton of the landscape and the strength of the flow that shapes it.
Wind resource assessment in heterogeneous terrain
NASA Astrophysics Data System (ADS)
Vanderwel, C.; Placidi, M.; Ganapathisubramani, B.
2017-03-01
High-resolution particle image velocimetry data obtained in rough-wall boundary layer experiments are re-analysed to examine the influence of surface roughness heterogeneities on wind resource. Two different types of heterogeneities are examined: (i) surfaces with repeating roughness units of the order of the boundary layer thickness (Placidi & Ganapathisubramani. 2015 J. Fluid Mech. 782, 541-566. (doi:10.1017/jfm.2015.552)) and (ii) surfaces with streamwise-aligned elevated strips that mimic adjacent hills and valleys (Vanderwel & Ganapathisubramani. 2015 J. Fluid Mech. 774, 1-12. (doi:10.1017/jfm.2015.228)). For the first case, the data show that the power extraction potential is highly dependent on the surface morphology with a variation of up to 20% in the available wind resource across the different surfaces examined. A strong correlation is shown to exist between the frontal and plan solidities of the rough surfaces and the equivalent wind speed, and hence the wind resource potential. These differences are also found in profiles of
Maintenance of Coastal Surface Blooms by Surface Temperature Stratification and Wind Drift
Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O.
2013-01-01
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters. PMID:23593127
Maintenance of coastal surface blooms by surface temperature stratification and wind drift.
Ruiz-de la Torre, Mary Carmen; Maske, Helmut; Ochoa, José; Almeda-Jauregui, César O
2013-01-01
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.
Estimation of the remote-sensing reflectance from above-surface measurements.
Mobley, C D
1999-12-20
The remote-sensing reflectance R(rs) is not directly measurable, and various methodologies have been employed in its estimation. I review the radiative transfer foundations of several commonly used methods for estimating R(rs), and errors associated with estimating R(rs) by removal of surface-reflected sky radiance are evaluated using the Hydrolight radiative transfer numerical model. The dependence of the sea surface reflectance factor rho, which is not an inherent optical property of the surface, on sky conditions, wind speed, solar zenith angle, and viewing geometry is examined. If rho is not estimated accurately, significant errors can occur in the estimated R(rs) for near-zenith Sun positions and for high wind speeds, both of which can give considerable Sun glitter effects. The numerical simulations suggest that a viewing direction of 40 deg from the nadir and 135 deg from the Sun is a reasonable compromise among conflicting requirements. For this viewing direction, a value of rho approximately 0.028 is acceptable only for wind speeds less than 5 m s(-1). For higher wind speeds, curves are presented for the determination of rho as a function of solar zenith angle and wind speed. If the sky is overcast, a value of rho approximately 0.028 is used at all wind speeds.
NASA Technical Reports Server (NTRS)
Scambos, Theodore A.; Frezzotti, Massimo; Haran, T.; Bohlander, J.; Lenaerts, J. T. M.; Van Den Broeke, M. R.; Jezek, K.; Long, D.; Urbini, S.; Farness, K.;
2012-01-01
Persistent katabatic winds form widely distributed localized areas of near-zero net surface accumulation on the East Antarctic ice sheet (EAIS) plateau. These areas have been called 'glaze' surfaces due to their polished appearance. They are typically 2-200 square kilometers in area and are found on leeward slopes of ice-sheet undulations and megadunes. Adjacent, leeward high-accumulation regions (isolated dunes) are generally smaller and do not compensate for the local low in surface mass balance (SMB). We use a combination of satellite remote sensing and field-gathered datasets to map the extent of wind glaze in the EAIS above 1500m elevation. Mapping criteria are derived from distinctive surface and subsurface characteristics of glaze areas resulting from many years of intense annual temperature cycling without significant burial. Our results show that 11.2 plus or minus 1.7%, or 950 plus or minus 143 x 10(exp 3) square kilometers, of the EAIS above 1500m is wind glaze. Studies of SMB interpolate values across glaze regions, leading to overestimates of net mass input. Using our derived wind-glaze extent, we estimate this excess in three recent models of Antarctic SMB at 46-82 Gt. The lowest-input model appears to best match the mean in regions of extensive wind glaze.
Wave-Induced Momentum Flux over Wind-driven Surface Waves
NASA Astrophysics Data System (ADS)
Yousefi, Kianoosh; Veron, Fabrice; Buckley, Marc; Husain, Nyla; Hara, Tetsu
2017-11-01
In recent years, the exchange of momentum between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of wave-induced momentum fluxes are lacking. In the current study, using a combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) system, we obtained laboratory measurements of the airflow velocity above surface waves for wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-coherent velocity fields are then extracted from instantaneous measurements. Wave-induced stress can, therefore, be estimated. In strongly forced cases in high wind speeds, the wave-induced stress near the surface is a significant fraction of the total stress. At lower wind speeds and larger wave ages, the wave-induced stress is positive very close to the surface, below the critical height and decreases to a negative value further above the critical height. This indicates a shift in the direction of the wave-coherent momentum flux across the critical layer. NSF OCE1458977, NSF OCE1634051.
Wind-induced flow velocity effects on nutrient concentrations at Eastern Bay of Lake Taihu, China.
Jalil, Abdul; Li, Yiping; Du, Wei; Wang, Jianwei; Gao, Xiaomeng; Wang, Wencai; Acharya, Kumud
2017-07-01
Shallow lakes are highly sensitive to respond internal nutrient loading due to wind-induced flow velocity effects. Wind-induced flow velocity effects on nutrient suspension were investigated at a long narrow bay of large shallow Lake Taihu, the third largest freshwater lake in China. Wind-induced reverse/compensation flow and consistent flow field probabilities at vertical column of the water were measured. The probabilities between the wind field and the flow velocities provided a strong correlation at the surface (80.6%) and the bottom (65.1%) layers of water profile. Vertical flow velocity profile analysis provided the evidence of delay response time to wind field at the bottom layer of lake water. Strong wind field generated by the west (W) and west-north-west (WNW) winds produced displaced water movements in opposite directions to the prevailing flow field. An exponential correlation was observed between the current velocities of the surface and the bottom layers while considering wind speed as a control factor. A linear model was developed to correlate the wind field-induced flow velocity impacts on nutrient concentration at the surface and bottom layers. Results showed that dominant wind directions (ENE, E, and ESE) had a maximum nutrient resuspension contribution (nutrient resuspension potential) of 34.7 and 43.6% at the surface and the bottom profile layers, respectively. Total suspended solids (TSS), total nitrogen (TN), and total phosphorus (TP) average concentrations were 6.38, 1.5, and 0.03 mg/L during our field experiment at Eastern Bay of Lake Taihu. Overall, wind-induced low-to-moderate hydrodynamic disturbances contributed more in nutrient resuspension at Eastern Bay of Lake Taihu. The present study can be used to understand the linkage between wind-induced flow velocities and nutrient concentrations for shallow lakes (with uniform morphology and deep margins) water quality management and to develop further models.
A Closer Look at Solar Wind Sputtering of Lunar Surface Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Mansur, L.; Reinhold, C.
2008-01-01
Solar-wind induced potential sputtering of the lunar surface may be a more efficient erosive mechanism than the "standard" kinetic (or physical) sputtering. This is partly based on new but limited laboratory measurements which show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. The enhancements seen in the laboratory can be orders of magnitude for some surfaces and highly charged incident ions, but seem to depend very sensitively on the properties of the impacted surface in addition to the fluence, energy and charge of the impacting ion. For oxides, potential sputtering yields are markedly enhanced and sputtered species, especially hydrogen and light ions, show marked dependence on both charge and dose.
NASA Astrophysics Data System (ADS)
St. Laurent, Louis; Clayson, Carol Anne
2015-04-01
The near-surface oceanic boundary layer is generally regarded as convectively unstable due to the effects of wind, evaporation, and cooling. However, stable conditions also occur often, when rain or low-winds and diurnal warming provide buoyancy to a thin surface layer. These conditions are prevalent in the tropical and subtropical latitude bands, and are underrepresented in model simulations. Here, we evaluate cases of oceanic stable boundary layers and their turbulent processes using a combination of measurements and process modeling. We focus on the temperature, salinity and density changes with depth from the surface to the upper thermocline, subject to the influence of turbulent processes causing mixing. The stabilizing effects of freshwater from rain as contrasted to conditions of high solar radiation and low winds will be shown, with observations providing surprising new insights into upper ocean mixing in these regimes. Previous observations of freshwater lenses have demonstrated a maximum of dissipation near the bottom of the stable layer; our observations provide a first demonstration of a similar maximum near the bottom of the solar heating-induced stable layer and a fresh-water induced barrier layer. Examples are drawn from recent studies in the tropical Atlantic and Indian oceans, where ocean gliders equipped with microstructure sensors were used to measure high resolution hydrographic properties and turbulence levels. The limitations of current mixing models will be demonstrated. Our findings suggest that parameterizations of near-surface mixing rates during stable stratification and low-wind conditions require considerable revision, in the direction of larger diffusivities.
Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation
NASA Astrophysics Data System (ADS)
Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.
1992-06-01
Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.
Key roles of sea ice in inducing contrasting modes of glacial AMOC and climate
NASA Astrophysics Data System (ADS)
Sherriff-Tadano, S.; Abe-Ouchi, A.
2017-12-01
Gaining a better understanding of glacial Atlantic meridional overturning circulation (AMOC) is important to interpret the glacial climate changes such as the Heinrich event. Recent studies suggest that changes in sea ice over the North Atlantic largely affect the surface wind. Since changes in surface wind have a large impact on the AMOC, this implies a role of sea ice in modifying the AMOC though surface wind. However, the impact of sea ice on the surface winds and the impact of changes in the winds on the AMOC remain unclear. In this study, we first assess the impact of sea ice expansion on the winds. We then explore whether the changes in winds play a role in modifying the AMOC and climate. For this purpose, results from MIROC4m are analyzed (Kawamura et al. 2017). To clarify the impact of changes in sea ice on the surface wind, sensitivity experiments are conducted with an atmospheric general circulation model (AGCM). In the AGCM experiments, we modify the sea ice to extract the impact of sea ice on the winds. Partial decouple experiments are conducted with the coupled model MIROC4m, which we modify the surface winds to assess the impact of changes in the surface wind due to sea ice expansion on the AMOC. Results show that expansion of sea ice substantially weakens the surface wind over the northern North Atlantic. AGCM experiments show that a drastic decrease in surface temperature duo to a suppression of sensible heat flux plays a dominant role in weakening the surface winds through increasing the static stability of the air column near the surface. Partial decouple experiments with MIROC4m show that the weakening of the surface wind due to the expansion of sea ice plays an important role in maintaining the weak AMOC. Thus, these experiments show that the weakening of the surface winds due to sea ice expansion plays a role in stabilizing the AMOC.
NASA Astrophysics Data System (ADS)
Zeng, Xin-Min; Wang, Ming; Wang, Ning; Yi, Xiang; Chen, Chaohui; Zhou, Zugang; Wang, Guiling; Zheng, Yiqun
2018-06-01
We assessed the sensitivity of 10-m wind speed to land surface schemes (LSSs) and the processes affecting wind speed in China during the summer of 2003 using the ARWv3 mesoscale model. The derived hydrodynamic equation, which directly reflects the effects of the processes that drive changes in the full wind speed, shows that the convection term CON (the advection effect) plays the smallest role; thus, the summer 10-m wind speed is largely dominated by the pressure gradient (PRE) and the diffusion (DFN) terms, and the equation shows that both terms are highly sensitive to the choice of LSS within the studied subareas (i.e., Northwest China, East China, and the Tibetan Plateau). For example, Northwest China had the largest DFN, with a PRE four times that of CON and the highest sensitivity of PRE to the choice of LSS, as indicated by a difference index value of 63%. Moreover, we suggest that two types of mechanisms, direct and indirect effects, affect the 10-m wind speed. Through their simulated surface fluxes (mainly the sensible heat flux), the different LSSs directly provide different amounts of heat to the surface air at local scales, which influences atmospheric stratification and the characteristics of downward momentum transport. Meanwhile, through the indirect effect, the LSS-induced changes in surface fluxes can significantly modify the distributions of the temperature and pressure fields in the lower atmosphere over larger scales. These changes alter the thermal and geostrophic winds, respectively, as well as the 10-m wind speed. Due to the differences in land properties and climates, the indirect effect (e.g., PRE) can be greater than the direct effect (e.g., DFN).
Bag-breakup control of surface drag in hurricanes
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Zilitinkevich, Sergej; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil
2016-04-01
Air-sea interaction at extreme winds is of special interest now in connection with the problem of the sea surface drag reduction at the wind speed exceeding 30-35 m/s. This phenomenon predicted by Emanuel (1995) and confirmed by a number of field (e.g., Powell, et al, 2003) and laboratory (Donelan et al, 2004) experiments still waits its physical explanation. Several papers attributed the drag reduction to spume droplets - spray turning off the crests of breaking waves (e.g., Kudryavtsev, Makin, 2011, Bao, et al, 2011). The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Herewith, it is unknown what is air-sea interface and how water is fragmented to spray at hurricane wind. Using high-speed video, we observed mechanisms of production of spume droplets at strong winds by high-speed video filming, investigated statistics and compared their efficiency. Experiments showed, that the generation of the spume droplets near the wave crest is caused by the following events: bursting of submerged bubbles, generation and breakup of "projections" and "bag breakup". Statistical analysis of results of these experiments showed that the main mechanism of spray-generation is attributed to "bag-breakup mechanism", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film. Using high-speed video, we show that at hurricane winds the main mechanism of spray production is attributed to "bag-breakup", namely, inflating and consequent breaking of short-lived, sail-like pieces of the water-surface film - "bags". On the base of general principles of statistical physics (model of a canonical ensemble) we developed statistics of the "bag-breakup" events: their number and statistical distribution of geometrical parameters depending on wind speed. Basing on the developed statistics, we estimated the surface stress caused by bags as the average sum of stresses caused by individual bags depending on their eometrical parameters. The resulting stress is subjected to counteracting impacts of the increasing wind speed: the increasing number of bags, and their decreasing sizes and life times and the balance yields a peaking dependence of the bag resistance on the wind speed: the share of bag-stress peaks at U10 35 m/s and then reduces. Peaking of surface stress associated with the "bag-breakup" explains seemingly paradoxical non-monotonous wind-dependence of surface drag coefficient peaking at winds about 35 m/s. This work was supported by the Russian Foundation of Basic Research (14-05-91767, 13-05-12093, 16-05-00839, 14-05-91767, 16-55-52025, 15-35-20953) and experiment and equipment was supported by Russian Science Foundation (Agreements 14-17-00667 and 15-17-20009 respectively), Yu.Troitskaya, A.Kandaurov and D.Sergeev were partially supported by FP7 Collaborative Project No. 612610.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
[Ecological benefits of planting winter rapeseed in western China].
Wang, Xue-fang; Sun, Wan-cang; Li, Fang; Kang, Yan-li; Pu, Yuan-yuan; Liu, Hong-xia; Zeng, Chao-wu; Fan, Chong-xiu
2009-03-01
To evaluate the ecological benefits of popularizing winter rapeseed planting in western China, a wind tunnel simulation test was conducted with four kinds of farmland surface, i.e., winter rapeseed, winter wheat, wheat stubble, and bare field just after spring sowing, collected from west Gansu in April. The results showed that winter rapeseed surface had a roughness of 4.08 cm and a threshold wind velocity as high as 14 m x s(-1), being more effective in blown sand control than the other three surfaces. Under the same experimental conditions, the wind erosion modulus and sand transportation rate of winter rapeseed surface were only 4.1% and 485% of those of the bare field just after spring sowing, and the losses of soil organic matter, alkali-hydrolyzed N, available P and K, catalase, urease, alkaline phosphatase, invertase, and microbes of winter rapeseed surface due to wind erosion were only 1.4%, 5.1%, 1.6%, 2.7%, 9.7%, 3.6%, 6.3%, 6.7% and 1.5% of those of the bare field, respectively. It was suggested that popularizing winter rapeseed planting in west China could control wind erosion, retain soil water and nutrients, increase multicropping index, and improve economic benefits of farmland. In addition, it could benefit the regional desertification control and ecological environment improvement.
Surface Winds and Dust Biases in Climate Models
NASA Astrophysics Data System (ADS)
Evan, A. T.
2018-01-01
An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.
Zarzycki, Colin M.; Reed, Kevin A.; Bacmeister, Julio T.; ...
2016-02-25
This article discusses the sensitivity of tropical cyclone climatology to surface coupling strategy in high-resolution configurations of the Community Earth System Model. Using two supported model setups, we demonstrate that the choice of grid on which the lowest model level wind stress and surface fluxes are computed may lead to differences in cyclone strength in multi-decadal climate simulations, particularly for the most intense cyclones. Using a deterministic framework, we show that when these surface quantities are calculated on an ocean grid that is coarser than the atmosphere, the computed frictional stress is misaligned with wind vectors in individual atmospheric gridmore » cells. This reduces the effective surface drag, and results in more intense cyclones when compared to a model configuration where the ocean and atmosphere are of equivalent resolution. Our results demonstrate that the choice of computation grid for atmosphere–ocean interactions is non-negligible when considering climate extremes at high horizontal resolution, especially when model components are on highly disparate grids.« less
Wind farm density and harvested power in very large wind farms: A low-order model
NASA Astrophysics Data System (ADS)
Cortina, G.; Sharma, V.; Calaf, M.
2017-07-01
In this work we create new understanding of wind turbine wakes recovery process as a function of wind farm density using large-eddy simulations of an atmospheric boundary layer diurnal cycle. Simulations are forced with a constant geostrophic wind and a time varying surface temperature extracted from a selected period of the Cooperative Atmospheric Surface Exchange Study field experiment. Wind turbines are represented using the actuator disk model with rotation and yaw alignment. A control volume analysis around each turbine has been used to evaluate wind turbine wake recovery and corresponding harvested power. Results confirm the existence of two dominant recovery mechanisms, advection and flux of mean kinetic energy, which are modulated by the background thermal stratification. For the low-density arrangements advection dominates, while for the highly loaded wind farms the mean kinetic energy recovers through fluxes of mean kinetic energy. For those cases in between, a smooth balance of both mechanisms exists. From the results, a low-order model for the wind farms' harvested power as a function of thermal stratification and wind farm density has been developed, which has the potential to be used as an order-of-magnitude assessment tool.
Oceanography - High Frequency Radar and Ocean Thin Layers, Volume 10, No. 2
1999-03-11
near Monterey Bay. A major advantage of HF radar measurements is their ability to describe these processes in two dimensions. Complicating this...Seabreeze cycle in the winds is a broad- band process centered near the diurnal period. Harmonic analyses of coastal surface currents at periods...accurate representations of a near -surface process related to wind forcing, whereas the semidiurnal oscillations have longer vertical scales and are
Turbulent Structure Under Short Fetch Wind Waves
2015-12-01
1970) developed the LFT utilizing the concurrent measurement of sea surface elevation (η) and the near surface velocities to isolate the wave...Layers and Air-Sea Transfer program by making very high spatial resolution profile measurements of the 3-D velocity field into the crest-trough...distribution is unlimited TURBULENT STRUCTURE UNDER SHORT FETCH WIND WAVES Michael J. Papa Lieutenant Commander, United States Navy B.S., United States Naval
An Improved Wind Speed Retrieval Algorithm For The CYGNSS Mission
NASA Astrophysics Data System (ADS)
Ruf, C. S.; Clarizia, M. P.
2015-12-01
The NASA spaceborne Cyclone Global Navigation Satellite System (CYGNSS) mission is a constellation of 8 microsatellites focused on tropical cyclone (TC) inner core process studies. CYGNSS will be launched in October 2016, and will use GPS-Reflectometry (GPS-R) to measure ocean surface wind speed in all precipitating conditions, and with sufficient frequency to resolve genesis and rapid intensification. Here we present a modified and improved version of the current baseline Level 2 (L2) wind speed retrieval algorithm designed for CYGNSS. An overview of the current approach is first presented, which makes use of two different observables computed from 1-second Level 1b (L1b) delay-Doppler Maps (DDMs) of radar cross section. The first observable, the Delay-Doppler Map Average (DDMA), is the averaged radar cross section over a delay-Doppler window around the DDM peak (i.e. the specular reflection point coordinate in delay and Doppler). The second, the Leading Edge Slope (LES), is the leading edge of the Integrated Delay Waveform (IDW), obtained by integrating the DDM along the Doppler dimension. The observables are calculated over a limited range of time delays and Doppler frequencies to comply with baseline spatial resolution requirements for the retrieved winds, which in the case of CYGNSS is 25 km. In the current approach, the relationship between the observable value and the surface winds is described by an empirical Geophysical Model Function (GMF) that is characterized by a very high slope in the high wind regime, for both DDMA and LES observables, causing large errors in the retrieval at high winds. A simple mathematical modification of these observables is proposed, which linearizes the relationship between ocean surface roughness and the observables. This significantly reduces the non-linearity present in the GMF that relate the observables to the wind speed, and reduces the root-mean square error between true and retrieved winds, particularly in the high wind regime. The modified retrieval algorithm is tested using GPS-R synthetic data simulated using an End-to-End Simulator (E2ES) developed for CYGNSS, and it is then applied to GPS-R data from the TechDemoSat-1 (TDS-1) GPS-R experiment. An analysis of the algorithm performances for both synthetic and real data is illustrated.
A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations
NASA Astrophysics Data System (ADS)
Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing
2017-09-01
A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.
Wind fence enclosures for infrasonic wind noise reduction.
Abbott, JohnPaul; Raspet, Richard; Webster, Jeremy
2015-03-01
A large porous wind fence enclosure has been built and tested to optimize wind noise reduction at infrasonic frequencies between 0.01 and 10 Hz to develop a technology that is simple and cost effective and improves upon the limitations of spatial filter arrays for detecting nuclear explosions, wind turbine infrasound, and other sources of infrasound. Wind noise is reduced by minimizing the sum of the wind noise generated by the turbulence and velocity gradients inside the fence and by the area-averaging the decorrelated pressure fluctuations generated at the surface of the fence. The effects of varying the enclosure porosity, top condition, bottom gap, height, and diameter and adding a secondary windscreen were investigated. The wind fence enclosure achieved best reductions when the surface porosity was between 40% and 55% and was supplemented by a secondary windscreen. The most effective wind fence enclosure tested in this study achieved wind noise reductions of 20-27 dB over the 2-4 Hz frequency band, a minimum of 5 dB noise reduction for frequencies from 0.1 to 20 Hz, constant 3-6 dB noise reduction for frequencies with turbulence wavelengths larger than the fence, and sufficient wind noise reduction at high wind speeds (3-6 m/s) to detect microbaroms.
NASA Astrophysics Data System (ADS)
Takle, E. S.; Rajewski, D. A.; Segal, M.; Elmore, R.; Hatfield, J.; Prueger, J. H.; Taylor, S. E.
2009-12-01
The US Midwest is a unique location for wind power production because wind farms in this region, unlike any other, are co-located within major agricultural production systems that are among the most highly productive in the world. Iowa has over 3,000 MW of installed power in wind farms typically consisting of 75-120 turbines positioned within agricultural fields with irregular spacing but inter-turbine distances in some cases less than 300 m. Wind turbines extract energy from the ambient flow and change mean and turbulent characteristics of wind flow over and within the crop canopy. Turbulent exchange of air from within the crop canopy regulates vertical fluxes of heat, moisture, momentum, and CO2. Changes in wind speed and turbulence structure by wind farms and isolated wind turbines will influence crop growth, productivity, and seed quality in unknown ways. For instance, enhanced vertical fluxes of heat and moisture may help cool the crop on hot summer days (beneficial) but may enhance loss of soil moisture (detrimental). Faster drying of dew from the crop in the morning reduces leaf wetness, which is a condition favoring growth of fungus, mold and toxins. Corn and soybeans typically draw down ambient CO2 levels by 15-20% during the day in the peak growing season, providing an opportunity to enhance downward fluxes of CO2 into the crop canopy by turbine-induced turbulence. Reduction of high winds and resulting leaf shredding and stalk lodging are documented positive effects of agricultural shelterbelts and may be benefits of turbines as well. Enhanced surface evaporation during fall dry-down would improve seed readiness for storage and reduce artificial drying costs. Modification of surface wind convergence/divergence patterns may enhance convection and change rainfall patterns and modify snow deposition, melting, and soil-moisture-recharge in winter. Wind machines are widely used in orchards and vineyards for avoiding killing freezes, but turbine benefits for such purposes for growing commodity agricultural crops are unknown. Suppressing effects of a premature freeze could extend the growing season by two or more weeks. Aerodynamic surface roughness influences the mean wind at hub height of wind turbines. Type of crop (e.g., corn vs. soybeans) and stage of growth will influence roughness, as will management practices (smooth surface vs. crop residue and tillage-induced roughness). Management of crop residue and snow cover influences surface albedo and hence diabatic influences on turbulent loss of momentum at the surface. We have launched a pilot project to assess the interaction of turbines with crops in Iowa by use of models and measurements. Preliminary studies show that turbulence kinetic energy in the lee of turbines may be enhanced by as much as 300% near hub height and 40% at 10 m above the ground under neutral flow conditions. Field observations of fluxes of CO2, heat, and water vapor have been made outside of wind farms, and plans call for simultaneous measurements to be made within and outside of wind farms.
Could Crop Roughness Impact the Wind Resource at Agriculturally Productive Wind Farm Sites?
NASA Astrophysics Data System (ADS)
Vanderwende, B. J.; Lundquist, J. K.
2014-12-01
The high concentration of both large-scale agriculture and wind power production in the United States Midwest region raises new questions concerning the interaction of the two activities. For instance, it is known from internal boundary layer theory that changes in the roughness of the land-surface resulting from crop choices could modify the momentum field aloft. Upward propagation of such an effect might impact the properties of the winds encountered by modern turbines, which typically span a layer from about 40 to 120 meters above the surface. As direct observation of such interaction would require impractical interference in the planting schedules of farmers, we use numerical modeling to quantify the magnitude of crop-roughness effects. To simulate a collocated farm and turbine array, we use version 3.4.1 of the Weather Research and Forecasting model (WRF). The hypothetical farm is inserted near the real location of the 2013 Crop Wind Energy Experiment (CWEX). Reanalyses provide representative initial and boundary conditions. A month-long period spanning August 2013 is used to evaluate the differences in flows above corn (maize) and soybean crops at the mature, reproductive stage. Simulations are performed comparing the flow above each surface regime, both in the absence and presence of a wind farm, which consists of a parameterized 11x11 array of 1.8 MW Vestas V90 turbines. Appreciable differences in rotor-layer wind speeds emerge. The use of soybeans results in an increase in wind speeds and a corresponding reduction in rotor-layer shear when compared to corn. Despite the turbulent nature of flow within a wind farm, high stability reduces the impact of crop roughness on the flow aloft, particularly in the upper portion of the rotor disk. We use these results to estimate the economic impact of crop selection on wind power producers.
Observational study of surface wind along a sloping surface over mountainous terrain during winter
NASA Astrophysics Data System (ADS)
Lee, Young-Hee; Lee, Gyuwon; Joo, Sangwon; Ahn, Kwang-Deuk
2018-03-01
The 2018 Winter Olympic and Paralympic Games will be held in Pyeongchang, Korea, during February and March. We examined the near surface winds and wind gusts along the sloping surface at two outdoor venues in Pyeongchang during February and March using surface wind data. The outdoor venues are located in a complex, mountainous terrain, and hence the near-surface winds form intricate patterns due to the interplay between large-scale and locally forced winds. During February and March, the dominant wind at the ridge level is westerly; however, a significant wind direction change is observed along the sloping surface at the venues. The winds on the sloping surface are also influenced by thermal forcing, showing increased upslope flow during daytime. When neutral air flows over the hill, the windward and leeward flows show a significantly different behavior. A higher correlation of the wind speed between upper- and lower-level stations is shown in the windward region compared with the leeward region. The strong synoptic wind, small width of the ridge, and steep leeward ridge slope angle provide favorable conditions for flow separation at the leeward foot of the ridge. The gust factor increases with decreasing surface elevation and is larger during daytime than nighttime. A significantly large gust factor is also observed in the leeward region.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
Sea spray contributions to the air-sea fluxes at moderate and hurricane wind speeds
NASA Astrophysics Data System (ADS)
Mueller, J. A.; Veron, F.
2009-12-01
At sufficiently high wind speed conditions, the surface of the ocean separates to form a substantial number of sea spray drops, which can account for a significant fraction of the total air-sea surface area and thus make important contributions to the aggregate air-sea momentum, heat and mass fluxes. Although consensus around the qualitative impacts of these drops has been building in recent years, the quantification of their impacts has remained elusive. Ultimately, the spray-mediated fluxes depend on three controlling factors: the number and size of drops formed at the surface, the duration of suspension within the atmospheric marine boundary layer, and the rate of momentum, heat and mass transfer between the drops and the atmosphere. While the latter factor can be estimated from an established, physically-based theory, the estimates for the former two are not well established. Using a recent, physically-based model of the sea spray source function along with the results from Lagrangian stochastic simulations of individual drops, we estimate the aggregate spray-mediated fluxes, finding reasonable agreement with existing models and estimates within the empirical range of wind speed conditions. At high wind speed conditions that are outside the empirical range, however, we find somewhat lower spray-mediated fluxes than previously reported in the literature, raising new questions about the relative air-sea fluxes at high wind speeds as well as the development and sustainment of hurricanes.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high-altitude powered platform concepts. Expected wind conditions of the contiguous United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Seas) were obtained using a representative network of sites selected based upon adequate high-altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb (approximately 31 km) pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
Wind study for high altitude platform design
NASA Technical Reports Server (NTRS)
Strganac, T. W.
1979-01-01
An analysis of upper air winds was performed to define the wind environment at potential operating altitudes for high altitude powered platform concepts. Wind conditions of the continental United States, Pacific area (Alaska to Sea of Japan), and European area (Norwegian and Mediterranean Sea) were obtained using a representative network of sites selected based upon adequate high altitude sampling, geographic dispersion, and observed upper wind patterns. A data base of twenty plus years of rawinsonde gathered wind information was used in the analysis. Annual variations from surface to 10 mb pressure altitude were investigated to encompass the practical operating range for the platform concepts. Parametric analysis for the United States and foreign areas was performed to provide a basis for vehicle system design tradeoffs. This analysis of wind magnitudes indicates the feasibility of annual operation at a majority of sites and more selective seasonal operation for the extreme conditions between the pressure altitudes of 100 to 25 mb based upon the assumed design speeds.
NASA Technical Reports Server (NTRS)
Weick, Fred E; Wenzinger, Carl J
1935-01-01
This report covers the twelfth of a series of tests conducted to compare different lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made with two sizes of upper-surface ailerons on rectangular Clark Y wing models equipped with full span split flaps. The tests showed the effect of the upper-surface ailerons and of the split flaps on the general performance characteristics of the wings, and on the lateral controllability and stability characteristics. The results are compared with those for plain wings with ordinary ailerons of similar sizes.
Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis
NASA Astrophysics Data System (ADS)
Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick
2016-04-01
The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.
The Martian climate and energy balance models with CO2/H2O atmospheres
NASA Technical Reports Server (NTRS)
Hoffert, M. I.
1986-01-01
The analysis begins with a seasonal energy balance model (EBM) for Mars. This is used to compute surface temperature versus x = sin(latitude) and time over the seasonal cycle. The core model also computes the evolving boundaries of the CO2 icecaps, net sublimational/condensation rates, and the resulting seasonal pressure wave. Model results are compared with surface temperature and pressure history data at Viking lander sites, indicating fairly good agreement when meridional heat transport is represented by a thermal diffusion coefficient D approx. 0.015 W/sq. m/K. Condensational wind distributions are also computed. An analytic model of Martian wind circulation is then proposed, as an extension of the EMB, which incorporates vertical wind profiles containing an x-dependent function evaluated by substitution in the equation defining the diffusion coefficient. This leads to a parameterization of D(x) and of the meridional circulation which recovers the high surface winds predicted by dynamic Mars atmosphere models (approx. 10 m/sec). Peak diffusion coefficients, D approx. 0.6 w/sq m/K, are found over strong Hadley zones - some 40 times larger than those of high-latitude baroclinic eddies. When the wind parameterization is used to find streamline patterns over Martian seasons, the resulting picture shows overturning hemispheric Hadley cells crossing the equator during solstices, and attaining peak intensities during the south summer dust storm season, while condensational winds are most important near the polar caps.
MEASUREMENT OF WIND SPEED FROM COOLING LAKE THERMAL IMAGERY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, A; Robert Kurzeja, R; Eliel Villa-Aleman, E
2009-01-20
The Savannah River National Laboratory (SRNL) collected thermal imagery and ground truth data at two commercial power plant cooling lakes to investigate the applicability of laboratory empirical correlations between surface heat flux and wind speed, and statistics derived from thermal imagery. SRNL demonstrated in a previous paper [1] that a linear relationship exists between the standard deviation of image temperature and surface heat flux. In this paper, SRNL will show that the skewness of the temperature distribution derived from cooling lake thermal images correlates with instantaneous wind speed measured at the same location. SRNL collected thermal imagery, surface meteorology andmore » water temperatures from helicopters and boats at the Comanche Peak and H. B. Robinson nuclear power plant cooling lakes. SRNL found that decreasing skewness correlated with increasing wind speed, as was the case for the laboratory experiments. Simple linear and orthogonal regression models both explained about 50% of the variance in the skewness - wind speed plots. A nonlinear (logistic) regression model produced a better fit to the data, apparently because the thermal convection and resulting skewness are related to wind speed in a highly nonlinear way in nearly calm and in windy conditions.« less
NASA Astrophysics Data System (ADS)
Adkins, Kevin; Elfajri, Oumnia; Sescu, Adrian
2016-11-01
Simulation and modeling have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing. These changes alter downstream atmospheric properties. With a large portion of wind farms hosted within an agricultural context, changes to the environment can potentially have secondary impacts such as to the productivity of crops. With the exception of a few observational data sets that focus on the impact to near-surface temperature, little to no observational evidence exists. These few studies also lack high spatial resolution due to their use of a limited number of meteorological towers or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather in-situ field measurements from two Midwest wind farms, focusing on the impact that large utility-scale wind turbines have on relative humidity. Results are also compared to numerical experiments conducted using large eddy simulation (LES). Wind turbines are found to differentially alter the relative humidity in the downstream, spanwise and vertical directions under a variety of atmospheric stability conditions.
Intense sub-kilometer-scale boundary layer rolls observed in hurricane fran
Wurman; Winslow
1998-04-24
High-resolution observations obtained with the Doppler On Wheels (DOW) mobile weather radar near the point of landfall of hurricane Fran (1996) revealed the existence of intense, sub-kilometer-scale, boundary layer rolls that strongly modulated the near-surface wind speed. It is proposed that these structures are one cause of geographically varying surface damage patterns that have been observed after some landfalling hurricanes and that they cause much of the observed gustiness, bringing high-velocity air from aloft to the lowest observable levels. High-resolution DOW radar observations are contrasted with lower-resolution observations obtained with an operational weather radar, which underestimated peak low-level wind speeds.
What Factors Explain Harmful Algal Blooms of Dinophysis Along the Texas Coast?
NASA Astrophysics Data System (ADS)
Replogle, L.; Henrichs, D.; Campbell, L.
2016-02-01
The toxic dinoflagellate Dinophysis ovum is one of the harmful algal species that bloom along the Texas coast. Blooms of D. ovum can be explained by several factors that work together to cause bloom initiation. This work utilized image counts collected by the Imaging FlowCytobot (IFCB) at Port Aransas, TX and modeled winds from the European Centre for Medium-range Weather Forecasts. Based on a previous study of another dinoflagellate species, it was hypothesized that winds will be highly correlated with harmful algal bloom (HAB) years versus non-HAB years for D. ovum. Weak northerly winds and downwelling along the coast will be associated with HAB years, while strong northerly or southerly winds will be associated with non-HAB years. In non-HAB years, wind-driven currents caused by upcoast or strongly flowing downcoast winds will result in northward or southward movement of D. ovum cells. In HAB years, weaker downcoast winds will allow for accumulation of D. ovum at the coast. Results showed that weak downcoast, along-shore winds occurred in the weeks preceding HAB events in 2008, 2010, 2011, 2012 and 2014, and likely contributed to the accumulation of Dinophysis cells along the Texas coast. When winds moved upcoast or strongly downcoast in the weeks preceding bloom months, Dinophysis blooms did not occur. Additional factors (e.g. sea surface temperature, surface-based runoff, El Niño Southern Oscillation, North Atlantic Oscillation and salinity) were analyzed to better define a favorable environment for bloom formation. Sea surface temperature and surface based runoff were significantly correlated with bloom occurrence, whereas El Niño Southern Oscillation and the North Atlantic Oscillation were not.
A laboratory measurement of drop impact on a water surface in the presence of wind
NASA Astrophysics Data System (ADS)
Liu, Xinan; Liu, Ren
2014-11-01
The impact of single water drops on a water surface was studied experimentally in a wind tunnel. Water drops were generated from a needle oriented vertically from the top of the wind tunnel test section. After leaving the needle, the drops move downward due to gravity and downstream due to the effect of the wind, eventually impinging obliquely on the surface of a pool of water on the bottom of the test section. The vertical velocities of drops were about 2.0 m/s and the wind speeds varied from 0 to 6.4 m/s. The drop impacts were recorded simultaneously from the side and above with two high-speed movie cameras with frame rates of 1,000 Hz. Our measurements show that both wind speed and initial drop size dramatically affect the drop impacts and subsequent generation of crowns, secondary drops, stalks and ring waves. In the presence of wind, an asymmetric crown forms after the drop hits the water surface and secondary drops are generated from the fragmentation of the leeward side of the crown rim. This is followed by a stalk formation and ring waves at the location of the water drop impact. It is found that the stalks tilt to leeward and the ring waves in the windward direction are stronger than that in those in the leeward. This work is supported by National Science Foundation, Division of Ocean Sciences.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-05-01
Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.
2013-11-01
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
The largest renewable, easily exploitable, and economically sustainable energy resource
NASA Astrophysics Data System (ADS)
Abbate, Giancarlo; Saraceno, Eugenio
2018-02-01
Sun, the ultimate energy resource of our planet, transfers energy to the Earth at an average power of 23,000 TW. Earth surface can be regarded as a huge panel transforming solar energy into a more convenient mechanical form, the wind. Since millennia wind is recognized as an exploitable form of energy and it is common knowledge that the higher you go, the stronger the winds flow. To go high is difficult; however Bill Gates cites high wind among possible energy miracles in the near future. Public awareness of this possible miracle is still missing, but today's technology is ready for it.
Low-level nocturnal wind maximum over the Central Amazon Basin
NASA Technical Reports Server (NTRS)
Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel
1992-01-01
A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.
2016-12-22
investigated air-sea fluxes characterized by strong air flow separation over a very steep wave field. We first investigated propagating steep wave...mechanisms for flow separation over rigid surfaces compared with unsteady surfaces with a boundary slip velocity. We investigated passive scalar fluxes. In...turbulent flow over steep stationary roughness, the primary mechanism for momentum flux is via pressure drag resulting from flow separation. However
Aeolian removal of dust from radiator surfaces on Mars
NASA Technical Reports Server (NTRS)
Gaier, James R.; Perez-Davis, Marla E.; Rutledge, Sharon K.; Hotes, Deborah
1990-01-01
Simulated radiator surfaces made of arc-textured Cu and Nb-1 percent-Zr and ion beam textured graphite and C-C composite were fabricated and their integrated spectral emittance characterized from 300 to 3000 K. A thin layer of aluminum oxide, basalt, or iron (III) oxide dust was then deposited on them, and they were subjected to low pressure winds in the Martian Surface Wind Tunnel. It was found that dust deposited on simulated radiator surfaces may or may not seriously lower their integrated spectral emittance, depending upon the characteristics of the dust. With Al2O3 there is no appreciable degradation of emittance on a dusted sample, with basaltic dust there is a 10 to 20 percent degradation, and with Fe2O3 a 20 to 40 percent degradation. It was also found that very high winds on dusted highly textured surfaces can result in their abrasion. Degradation in emittance due to abrasion was found to vary with radiator material. Arc-textured Cu and Nb-1 percent Zr was found to be more susceptible to emittance degradation than graphite or C-C composite. The most abrasion occurred at low angles, peaking at the 22.5 deg test samples.
Modelling Wind Effects on Subtidal Salinity in Apalachicola Bay, Florida
NASA Astrophysics Data System (ADS)
Huang, W.; Jones, W. K.; Wu, T. S.
2002-07-01
Salinity is an important factor for oyster and estuarine productivity in Apalachicola Bay. Observations of salinity at oyster reefs have indicated a high correlation between subtidal salinity variations and the surface winds along the bay axis in an approximately east-west direction. In this paper, we applied a calibrated hydrodynamic model to examine the surface wind effects on the volume fluxes in the tidal inlets and the subtidal salinity variations in the bay. Model simulations show that, due to the large size of inlets located at the east and west ends of this long estuary, surface winds have significant effects on the volume fluxes in the estuary inlets for the water exchanges between the estuary and ocean. In general, eastward winds cause the inflow from the inlets at the western end and the outflow from inlets at the eastern end of the bay. Winds at 15 mph speed in the east-west direction can induce a 2000 m3 s-1 inflow of saline seawater into the bay from the inlets, a rate which is about 2·6 times that of the annual average freshwater inflow from the river. Due to the varied wind-induced volume fluxes in the inlets and the circulation in the bay, the time series of subtidal salinity at oyster reefs considerably increases during strong east-west wind conditions in comparison to salinity during windless conditions. In order to have a better understanding of the characteristics of the wind-induced subtidal circulation and salinity variations, the researchers also connected model simulations under constant east-west wind conditions. Results show that the volume fluxes are linearly proportional to the east-west wind stresses. Spatial distributions of daily average salinity and currents clearly show the significant effects of winds on the bay.
NASA Astrophysics Data System (ADS)
Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru
2017-04-01
The authors investigated the impact of surface wind velocity data assimilation on the predictability of plume advection in the lower troposphere exploiting the radioactive cesium emitted by the Fukushima nuclear accident in March 2011 as an atmospheric tracer. It was because the radioactive cesium plume was dispersed from the sole point source exactly placed at the Fukushima Daiichi Nuclear Power Plant and its surface concentration was measured at many locations with a high frequency and high accuracy. We used a non-hydrostatic regional weather prediction model with a horizontal resolution of 3 km, which was coupled with an ensemble Kalman filter data assimilation system in this study, to simulate the wind velocity and plume advection. The main module of this weather prediction model has been developed and used operationally by the Japan Meteorological Agency (JMA) since before March 2011. The weather observation data assimilated into the model simulation were provided from two data resources; [#1] the JMA observation archives collected for numerical weather predictions (NWPs) and [#2] the land-surface wind velocity data archived by the JMA surface weather observation network. The former dataset [#1] does not contain land-surface wind velocity observations because their spatial representativeness is relatively small and therefore the land-surface wind velocity data assimilation normally deteriorates the more than one day NWP performance. The latter dataset [#2] is usually used for real-time weather monitoring and never used for the data assimilation of more than one day NWPs. We conducted two experiments (STD and TEST) to reproduce the radioactive cesium plume behavior for 48 hours from 12UTC 14 March to 12UTC 16 March 2011 over the land area of western Japan. The STD experiment was performed to replicate the operational NWP using only the #1 dataset, not assimilating land-surface wind observations. In contrast, the TEST experiment was performed assimilating both the #1 dataset and the #2 dataset including land-surface wind observations measured at more than 200 stations in the model domain. The meteorological boundary conditions for both the experiments were imported from the JMA operational global NWP model results. The modeled radioactive cesium concentrations were examined for plume arrival timing at each observatory comparing with the hourly-measured "suspended particulate matter" filter tape's cesium concentrations retrieved by Tsuruta et al. at more than 40 observatories. The averaged difference of the plume arrival times at 40 observatories between the observational reality and the STD experiment was 82.0 minutes; at this time, the forecast period was 13 hours on average. Meanwhile, The averaged difference of the TEST experiment was 72.8 minutes, which was smaller than that of the STD experiment with a statistical significance of 99.2 %. In summary, the land-surface wind velocity data assimilation improves the predictability of plume advection in the lower troposphere at least in the case of wintertime air pollution over complex terrain. We need more investigation into the data assimilation impact of land-surface weather observations on the predictability of pollutant dispersion especially in the planetary boundary layer.
Microwave Limb Sounder/El Nino Watch - 1997 Research Data Reveal Clues about El Nino's Influence
NASA Technical Reports Server (NTRS)
1998-01-01
This image displays wind measurements taken by the satellite-borne NASA Scatterometer (NSCAT) during the last 10 days of May 1997, showing the relationship between the ocean and the atmosphere at the onset of the 1997-98 El Nino condition. The data have helped scientists confirm that the event began as an unusual weakening of the trade winds that preceded an increase in sea surface temperatures. The arrows represent wind speed and direction while the colors indicate sea surface temperature. The sea surface temperatures were measured by the Advanced Very High Resolution Radiometer, a joint mission of NASA and the National Oceanographic and Atmospheric Administration (NOAA). The trade winds normally blow from east to west, but the small arrows in the center of the image show the winds have changed direction and are blowing in the opposite direction. The areas shown in red are above normal sea surface temperatures -- along the equator, off the west coast of the U.S., and along the west coast of Mexico. This image also shows an unusual low pressure system with cyclonic (counterclockwise) circulation near the western North American coast. NSCAT also observed that winds associated with this circulation pattern branched off from the equator, bypassed Hawaii, and brought heat and moisture from the tropical ocean towards San Francisco, in what is often called the 'pineapple express.'
NASA Technical Reports Server (NTRS)
Weick, Fred E; Noyes, Richard W
1936-01-01
This is the thirteenth report on a series of systematic tests comparing lateral control devices with particular reference to their effectiveness at high angles of attack. The present wind tunnel tests were made to determine the most feasible locations for lateral control surfaces mounted externally to a rectangular Clark y wing.
Helm, P.J.; Breed, C.S.; Tigges, R.K.; Garcia, P.A.
1995-01-01
The primary purpose of the Desert Winds Project (DWP) is to obtain high-resolution meteorological data and related surface geological and vegetation data for natural (e.g., uncultivated) desert sites where wind is or has been a major erosive or depositional force. The objectives are twofold: (1) to provide the detailed field measurements needed to carry out quantitative studies of wind as an agent of surface geologic change; and (2) to establish a baseline for defining the 'normal' range of climatic conditions that can be expected to occur on a decadal time scale, in areas considered representative of the major American deserts. The Gold Spring locality was selected to represent that part of the Great Basin Desert that extends into northeastern Arizona. The long-term goal for acquiring and analyzing the Desert Winds Project data is to use them to address problems of land resource degradation by wind, whether resulting from climatic variation aridification) or human activities (desertification), or both (see techinfo.doc).
Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer
NASA Astrophysics Data System (ADS)
Schnieders, Jana; Garbe, Christoph
2014-05-01
The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale processes on interfacial transport and relate it to gas transfer. References [1] T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. Christensen, and E. S. Saltzman. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos. Chem. Phys. , 13:11073-11087, 2013. [2] J Schnieders, C. S. Garbe, W.L. Peirson, and C. J. Zappa. Analyzing the footprints of near surface aqueous turbulence - an image processing based approach. Journal of Geophysical Research-Oceans, 2013.
Wind-tunnel experiments of scalar transport in aligned and staggered wind farms
NASA Astrophysics Data System (ADS)
Zhang, W.; Markfort, C. D.; Porté-Agel, F.
2012-04-01
Wind energy is the fastest growing renewable energy worldwide, and it is expected that many more large-scale wind farms will be built and will cover a significant portion of land and ocean surfaces. By extracting kinetic energy from the atmospheric boundary layer, wind farms may affect the exchange/transport of momentum, heat and moisture between the atmosphere and land surface. To ensure the long-term sustainability of wind energy, it is important to understand the influence of large-scale wind farms on land-atmosphere interaction. Knowledge of this impact will also be useful to improve parameterizations of wind farms in numerical prediction tools, such as large-scale weather models and large-eddy simulation. Here, we present wind-tunnel measurements of the surface scalar (heat) flux from model wind farms, consisting of more than 10 rows of wind turbines, in a turbulent boundary layer with a surface heat source. Spatially distributed surface heat flux was obtained in idealized aligned and staggered wind farm layouts, having the same turbine distribution density. Measurements, using surface-mounted heat flux sensors, were taken at the 11th out of 12 rows of wind turbines, where the mean flow achieves a quasi-equilibrium state. In the aligned farm, there exist two distinct regions of increased and decreased surface heat flux on either side of turbine columns. The regions are correlated with coherent wake rotation in the turbine-array. On the upwelling side there is decreased flux, while on the downwelling side cool air moves towards the surface causing increased flux. For the staggered farm, the surface heat flux exhibits a relatively uniform distribution and an overall reduction with respect to the boundary layer flow, except in the vicinity of the turbine tower. This observation is also supported by near-surface temperature and turbulent heat flux measured using a customized x-wire/cold-wire. The overall surface heat flux, relative to that of the boundary layer flow without wind turbines, is reduced by approximately 4% in the staggered wind farm and remains nearly the same in the aligned wind farm.
Aeolus -A Mission to Study the Thermal and Wind Environment of Mars
NASA Technical Reports Server (NTRS)
Colaprete, Anthony
2017-01-01
Aeolus is a small satellite mission to observe surface and atmospheric forcing and general circulation of Mars, by measuring surface energy balance, atmospheric temperatures, aerosols and clouds, and winds. Critically, Aeolus will make these measurements at all local times of day, providing information on both seasonal and diurnal variability. To date, direct measurements of Martian wind speeds have only been possible at the surface, only during daylight hours, and over small areas limited by rover traverse capabilities. From orbit, thermal measurements (e.g., estimates from assumed geostrophic balance) as well as images of dust storms and dune migration have provided inputs to derive current data sets on Martian winds. However, Mars General Circulation models demonstrate that wind speeds derived from these indirect measurements may be in error by 50 to 100%. For this reason, direct wind velocity measurements have been deemed "High Priority" by MEPAG (Mars Exploration Program Analysis Group); measuring wind speeds and corresponding thermal data is vital to understanding the climate of Mars. Aeolus will carry four Spatial Heterodyne Spectrometers (SHS), coupled to two orthogonal viewing telescopes. These high-resolution near-infrared spectrometers will measure CO2 (daytime absorption) and O2 (day and night emission) lines in the Martian atmosphere. Doppler shifts in these lines can be measured during Martian day and night, resolving wind speeds down to 5 m/s. Orthogonal views allow the spectrometers to capture wind vectors over all observation locations. Aeolus will also carry the atmospheric limb-viewing Thermal Limb Sounder (TLS) to measure atmospheric temperatures, water ice clouds, and dust abundances across all altitudes where winds are measured. Finally, the Surface Radiometric Sensor Package (SuRSeP), a nadir viewing radiometer, will measure the total reflected solar and emitted thermal radiance, surface temperature, and water cloud and dust total column abundances. The combined spectral and thermal measurements will provide a new understanding of the global energy balance, dust transport processes, and climate cycles in the Martian atmosphere. Aeolus will consist of a single satellite in a near-polar orbit, allowing it to pass over all local times, with the baseline mission observing all seasons of an entire Martian year (two Earth years). Aeolus was one of two Martian smallsat concepts selected for study through the Planetary Science Deep Space SmallSat Studies program. This talk will provide an overview of the mission, including science rationale, instruments, spacecraft, and mission operations concept.
Will surface winds weaken in response to global warming?
NASA Astrophysics Data System (ADS)
Ma, Jian; Foltz, Gregory R.; Soden, Brian J.; Huang, Gang; He, Jie; Dong, Changming
2016-12-01
The surface Walker and tropical tropospheric circulations have been inferred to slow down from historical observations and model projections, yet analysis of large-scale surface wind predictions is lacking. Satellite measurements of surface wind speed indicate strengthening trends averaged over the global and tropical oceans that are supported by precipitation and evaporation changes. Here we use corrected anemometer-based observations to show that the surface wind speed has not decreased in the averaged tropical oceans, despite its reduction in the region of the Walker circulation. Historical simulations and future projections for climate change also suggest a near-zero wind speed trend averaged in space, regardless of the Walker cell change. In the tropics, the sea surface temperature pattern effect acts against the large-scale circulation slow-down. For higher latitudes, the surface winds shift poleward along with the eddy-driven mid-latitude westerlies, resulting in a very small contribution to the global change in surface wind speed. Despite its importance for surface wind speed change, the influence of the SST pattern change on global-mean rainfall is insignificant since it cannot substantially alter the global energy balance. As a result, the precipitation response to global warming remains ‘muted’ relative to atmospheric moisture increase. Our results therefore show consistency between projections and observations of surface winds and precipitation.
NASA Astrophysics Data System (ADS)
Zhang, K.; Han, B.; Mansaray, L. R.; Xu, X.; Guo, Q.; Jingfeng, H.
2017-12-01
Synthetic aperture radar (SAR) instruments on board satellites are valuable for high-resolution wind field mapping, especially for coastal studies. Since the launch of Sentinel-1A on April 3, 2014, followed by Sentinel-1B on April 25, 2016, large amount of C-band SAR data have been added to a growing accumulation of SAR datasets (ERS-1/2, RADARSAT-1/2, ENVISAT). These new developments are of great significance for a wide range of applications in coastal sea areas, especially for high spatial resolution wind resource assessment, in which the accuracy of retrieved wind fields is extremely crucial. Recently, it is reported that wind speeds can also be retrieved from C-band cross-polarized SAR images, which is an important complement to wind speed retrieval from co-polarization. However, there is no consensus on the optimal resolution for wind speed retrieval from cross-polarized SAR images. This paper presents a comparison strategy for investigating the influence of spatial resolutions on sea surface wind speed retrieval accuracy with cross-polarized SAR images. Firstly, for wind speeds retrieved from VV-polarized images, the optimal geophysical C-band model (CMOD) function was selected among four CMOD functions. Secondly, the most suitable C-band cross-polarized ocean (C-2PO) model was selected between two C-2POs for the VH-polarized image dataset. Then, the VH-wind speeds retrieved by the selected C-2PO were compared with the VV-polarized sea surface wind speeds retrieved using the optimal CMOD, which served as reference, at different spatial resolutions. Results show that the VH-polarized wind speed retrieval accuracy increases rapidly with the decrease in spatial resolutions from 100 m to 1000 m, with a drop in RMSE of 42%. However, the improvement in wind speed retrieval accuracy levels off with spatial resolutions decreasing from 1000 m to 5000 m. This demonstrates that the pixel spacing of 1 km may be the compromising choice for the tradeoff between the spatial resolution and wind speed retrieval accuracy with cross-polarized images obtained from RADASAT-2 fine quad polarization mode. Figs. 1 illustrate the variation of the following statistical parameters: Bias, Corr, R2, RMSE and STD as a function of spatial resolution.
Wind driven saltation: a hitherto overlooked challenge for life on Mars
NASA Astrophysics Data System (ADS)
Bak, Ebbe; Goul, Michael; Rasmussen, Martin; Moeller, Ralf; Nørnberg, Per; Knak Jensen, Svend; Finster, Kai
2017-04-01
The Martian surface is a hostile environment characterized by low water availability, low atmospheric pressure and high UV and ionizing radiation. Furthermore, wind-driven saltation leads to abrasion of silicates with a production of reactive surface sites and, through triboelectric charging, a release of electrical discharges with a concomitant production of reactive oxygen species. While the effects of low water availability, low pressure and radiation have been extensively studied in relation to the habitability of the Martian surface and the preservation of organic biosignatures, the effects of wind-driven saltation have hitherto been ignored. In this study, we have investigated the effect of exposing bacteria to wind-abraded silicates and directly to wind-driven saltation on Mars in controlled laboratory simulation experiments. Wind-driven saltation was simulated by tumbling mineral samples in a Mars-like atmosphere in sealed quartz ampoules. The effects on bacterial survival and structure were evaluated by colony forming unit counts in combination with scanning electron microscopy, quantitative polymerase chain reaction and life/dead-staining with flow cytometry. The viability of vegetative cells of P. putida, B. subtilis and D. radiodurans in aqueous suspensions was reduced by more than 99% by exposure to abraded basalt, while the viability of B. subtilis endospores was unaffected. B. subtilis mutants lacking different spore components were likewise highly resistant to the exposure to abraded basalt, which indicates that the resistance of spores is not associated with any specific spore component. We found a significant but reduced effect of abraded quartz and we suggest that the stress effect of abraded silicates is induced by a production of reactive oxygen species and hydroxyl radicals produced by Fenton-like reactions in the presence of transition metals. Direct exposure to simulated saltation had a dramatic effect on both D. radiodurans cells and B. subtilis spore with a more than 99.9% decrease in survival after 17 days. The high susceptibility of the usually multi-resistant D. radiodurans cells and B. sublitis spores to the effects of wind-driven saltation indicates that wind abraded silicates as well as direct exposure to saltation represent a considerable stress for microorganisms at the Martian surface, which may have limited the chance of indigenous life, could limit the risk of forward contamination and may have degraded potential organic biosignatures.
NASA Astrophysics Data System (ADS)
Chou, S. C.; Zolino, M. M.; Gomes, J. L.; Bustamante, J. F.; Lima-e-Silva, P. P.
2012-04-01
The Eta Model is used operationally by CPTEC to produce weather forecasts over South America since 1997. The model has gone through upgrades. In order to prepare the model for operational higher resolution forecasts, the model is configured and tested over a region of complex topography located near the coast of Southeast Brazil. The Eta Model was configured, with 2-km horizontal resolution and 50 layers. The Eta-2km is a second nesting, it is driven by Eta-15km, which in its turn is driven by Era-Interim reanalyses. The model domain includes the two Brazilians cities, Rio de Janeiro and Sao Paulo, urban areas, preserved tropical forest, pasture fields, and complex terrain and coastline. Mountains can rise up to about 700m. The region suffers frequent events of floods and landslides. The objective of this work is to evaluate high resolution simulations of wind and temperature in this complex area. Verification of model runs uses observations taken from the nuclear power plant. Accurate near-surface wind direction and magnitude are needed for the plant emergency plan and winds are highly sensitive to model spatial resolution and atmospheric stability. Verification of two cases during summer shows that model has clear diurnal cycle signal for wind in that region. The area is characterized by weak winds which makes the simulation more difficult. The simulated wind magnitude is about 1.5m/s, which is close to observations of about 2m/s; however, the observed change of wind direction of the sea breeze is fast whereas it is slow in the simulations. Nighttime katabatic flow is captured by the simulations. Comparison against Eta-5km runs show that the valley circulation is better described in the 2-km resolution run. Simulated temperatures follow closely the observed diurnal cycle. Experiments improving some surface conditions such as the surface temperature and land cover show simulation error reduction and improved diurnal cycle.
Anticipated Electrical Environment Within Permanently Shadowed Lunar Craters
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Halekas, J. S.; Killen, R. M.; Delory, G. T.; Collier, M. R.; Vondrak, R. R.
2010-01-01
Shadowed locations ncar the lunar poles arc almost certainly electrically complex regions. At these locations near the terminator, the local solar wind flows nearly tangential to the surface and interacts with large-scale topographic features such as mountains and deep large craters, In this work, we study the solar wind orographic effects from topographic obstructions along a rough lunar surface, On the leeward side of large obstructions, plasma voids are formed in the solar wind because of the absorption of plasma on the upstream surface of these obstacles, Solar wind plasma expands into such voids) producing an ambipolar potential that diverts ion flow into the void region. A surface potential is established on these leeward surfaces in order to balance the currents from the expansion-limited electron and ion populations, Wc find that there arc regions ncar the leeward wall of the craters and leeward mountain faces where solar wind ions cannot access the surface, leaving an electron-rich plasma previously identified as an "electron cloud." In this case, some new current is required to complete the closure for current balance at the surface, and we propose herein that lofted negatively charged dust is one possible (nonunique) compensating current source. Given models for both ambipolar and surface plasma processes, we consider the electrical environment around the large topographic features of the south pole (including Shoemaker crater and the highly varied terrain near Nobile crater), as derived from Goldstone radar data, We also apply our model to moving and stationary objects of differing compositions located on the surface and consider the impact of the deflected ion flow on possible hydrogen resources within the craters
NASA Astrophysics Data System (ADS)
Kandaurov, Alexander; Troitskaya, Yuliya; Caulliez, Guillemette; Sergeev, Daniil; Vdovin, Maxim
2014-05-01
Three examples of usage of high-speed video filming in investigation of wind-wave interaction in laboratory conditions is described. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) and at the Large Air-Sea Interaction Facility (LASIF) - MIO/Luminy (length 40 m, cross section of air channel 3.2 x 1.6 m, wind velocity up to 10 m/s). A combination of PIV-measurements, optical measurements of water surface form and wave gages were used for detailed investigation of the characteristics of the wind flow over the water surface. The modified PIV-method is based on the use of continuous-wave (CW) laser illumination of the airflow seeded by particles and high-speed video. During the experiments on the Wind - wave stratified flume of IAP RAS Green (532 nm) CW laser with 1.5 Wt output power was used as a source for light sheet. High speed digital camera Videosprint (VS-Fast) was used for taking visualized air flow images with the frame rate 2000 Hz. Velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved using conditional in phase averaging like in [1]. In the experiments on the LASIF more powerful Argon laser (4 Wt, CW) was used as well as high-speed camera with higher sensitivity and resolution: Optronics Camrecord CR3000x2, frame rate 3571 Hz, frame size 259×1696 px. In both series of experiments spherical 0.02 mm polyamide particles with inertial time 7 ms were used for seeding airflow. New particle seeding system based on utilization of air pressure is capable of injecting 2 g of particles per second for 1.3 - 2.4 s without flow disturbance. Used in LASIF this system provided high particle density on PIV-images. In combination with high-resolution camera it allowed us to obtain momentum fluxes directly from measured air velocity fluctuations. This data was then compared to values retrieved from wind speed profiles [2]. Visualization of water surface structure and droplets under strong wind conditions was carried out at the Wind - wave stratified flume of IAP RAS with high-speed camera NAC Memrecam HX-3 having a record-breaking performance at the moment. Shooting was performed at frame rates over 4500 Hz in 1080p resolution (1920 x 1080 px). Experimental study of droplets under strong winds has discovered a "bag breakup" droplet-production mechanism (observed previously in technical devices for liquid disintegration [3]). The investigation on this mechanism in the laboratory can improve the parameterization of heat fluxes in the models of hurricanes and intense sea storms. This work was supported by RFBR grants (project code 13-05-00865, 13-05-12093, 12-05-01064, 14-08-31740, 14-05-31415), President Grant for young scientists MK-3550.2014.5 and grant of the Government of the Russian Federation designed to support scientific research project implemented under the supervision of leading scientists at Russian institutions of higher learning (project code 11.G34.31.0048). References 1. Troitskaya Yu., D. Sergeev, O. Ermakova, G. Balandina (2011), Statistical Parameters of the Air Turbulent Boundary Layer over Steep Water Waves Measured by the PIV Technique, J. Phys. Oceanogr., 41, 1421-1454 2. Troitskaya, Y. I., D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, and V. I. Kazakov "Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions" J. Geophys. Res., 117, C00J21, 2012. 3. Villermaux, E. (2007), Fragmentation, Ann. Review Fluid Mech., 39,419-446, doi:10.1146/annurev.fluid.39.050905.110214.
Scientific Impacts of Wind Direction Errors
NASA Technical Reports Server (NTRS)
Liu, W. Timothy; Kim, Seung-Bum; Lee, Tong; Song, Y. Tony; Tang, Wen-Qing; Atlas, Robert
2004-01-01
An assessment on the scientific impact of random errors in wind direction (less than 45 deg) retrieved from space-based observations under weak wind (less than 7 m/s ) conditions was made. averages, and these weak winds cover most of the tropical, sub-tropical, and coastal oceans. Introduction of these errors in the semi-daily winds causes, on average, 5% changes of the yearly mean Ekman and Sverdrup volume transports computed directly from the winds, respectively. These poleward movements of water are the main mechanisms to redistribute heat from the warmer tropical region to the colder high- latitude regions, and they are the major manifestations of the ocean's function in modifying Earth's climate. Simulation by an ocean general circulation model shows that the wind errors introduce a 5% error in the meridional heat transport at tropical latitudes. The simulation also shows that the erroneous winds cause a pile-up of warm surface water in the eastern tropical Pacific, similar to the conditions during El Nino episode. Similar wind directional errors cause significant change in sea-surface temperature and sea-level patterns in coastal oceans in a coastal model simulation. Previous studies have shown that assimilation of scatterometer winds improves 3-5 day weather forecasts in the Southern Hemisphere. When directional information below 7 m/s was withheld, approximately 40% of the improvement was lost
Widespread land surface wind decline in the Northern Hemisphere
NASA Astrophysics Data System (ADS)
Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.-N.; Ciais, P.
2010-09-01
The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 30% of the Eurasian wind stilling. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis is supported by theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.
Measurment of threshold friction velocities at potential dust sources in semi-arid regions
NASA Astrophysics Data System (ADS)
King, Matthew A.
The threshold friction velocities of potential dust sources in the US Southwest were measured in the field using a Portable Wind Tunnel, which is based on the Desert Research Institute's Portable In-Situ Wind Erosion Laboratory (PI-SWERL). A mix of both disturbed and undisturbed surfaces were included in this study. It was found that disturbed surfaces, such as those at the Iron King Mine tailings site, which is part of the EPA's Superfund program and contains surface concentrations of arsenic and lead reaching as high as 0.5% (w/w), had lower threshold friction velocities (0.32 m s -1 to 0.40 m s-1) in comparison to those of undisturbed surfaces (0.48 to 0.61 m s-1). Surface characteristics, such as particle size distribution, had effects on the threshold friction velocity (smaller grain sized distributions resulted in lower threshold friction velocities). Overall, the threshold friction velocities of disturbed surfaces were within the range of natural wind conditions, indicating that surfaces disturbed by human activity are more prone to causing windblown dust.
NASA Astrophysics Data System (ADS)
Rogers, Robert; Uhlhorn, Eric
2008-11-01
Knowledge of the magnitude and distribution of surface winds, including the structure of azimuthal asymmetries in the wind field, are important factors for tropical cyclone forecasting. With its ability to remotely measure surface wind speeds, the stepped frequency microwave radiometer (SFMR) has assumed a prominent role for the operational tropical cyclone forecasting community. An example of this instrument's utility is presented here, where concurrent measurements of aircraft flight-level and SFMR surface winds are used to document the wind field evolution over three days in Hurricane Rita (2005). The amplitude and azimuthal location (phase) of the wavenumber-1 asymmetry in the storm-relative winds varied at both levels over time. The peak was found to the right of storm track at both levels on the first day. By the third day, the peak in flight-level storm-relative winds remained to the right of storm track, but it shifted to left of storm track at the surface, resulting in a 60-degree shift between the surface and flight-level and azimuthal variations in the ratio of surface to flight-level winds. The asymmetric differences between the surface and flight-level maximum wind radii also varied, indicating a vortex whose tilt was increasing.
Observed surface wind speed declining induced by urbanization in East China
NASA Astrophysics Data System (ADS)
Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian
2018-02-01
Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.
Sodium and potassium in the lunar atmosphere
NASA Technical Reports Server (NTRS)
Potter, A. E.; Morgan, T. H.
1991-01-01
The discovery that sodium and potassium vapor can be observed in the lunar atmosphere using ground-based telescopes has opened up a field of investigation that was closed after the last Apollo mission to the Moon. Sodium has been detected at altitudes up to 1500 km above the surface. This implies a high effective temperature for sodium, of the order of 1000 K. However, there is some evidence for two populations of sodium and potassium, one at temperatures corresponding to the surface, and another corresponding to high temperatures. The sources for the lunar atmosphere are not understood. Meteoric bombardment of the surface, solar wind sputtering of the surface, and photo-sputtering of the surface have all been suggested as possible sources for the lunar atmosphere. One of the objectives of the current research is to test different hypotheses by measurements of the atmosphere under different conditions of solar illumination and shielding from the solar wind by the Earth.
Estimation of wind stress using dual-frequency TOPEX data
NASA Astrophysics Data System (ADS)
Elfouhaily, Tanos; Vandemark, Douglas; Gourrion, Jéro‸me; Chapron, Bertrand
1998-10-01
The TOPEX/POSEIDON satellite carries the first dual-frequency radar altimeter. Monofrequency (Ku-band) algorithms are presently used to retrieve surface wind speed from the altimeter's radar cross-section measurement (σ0Ku). These algorithms work reasonably well, but it is also known that altimeter wind estimates can be contaminated by residual effects, such as sea state, embedded in the σ0Ku measurement. Investigating the potential benefit of using two frequencies for wind retrieval, it is shown that a simple evaluation of TOPEX data yields previously unavailable information, particularly for high and low wind speeds. As the wind speed increases, the dual-frequency data provides a measurement more directly linked to the short-scale surface roughness, which in turn is associated with the local surface wind stress. Using a global TOPEX σ0° data set and TOPEX's significant wave height (Hs) estimate as a surrogate for the sea state's degree of development, it is also shown that differences between the two TOPEX σ0 measurements strongly evidence nonlocal sea state signature. A composite scattering theory is used to show how the dual-frequency data can provide an improved friction velocity model, especially for winds above 7 m/s. A wind speed conversion is included using a sea state dependent drag coefficient fed with TOPEX Hs data. Two colocated TOPEX-buoy data sets (from the National Data Buoy Center (NDBC) and the Structure des Echanges Mer-Atmosphre, Proprietes des Heterogeneites Oceaniques: Recherche Expérimentale (SEMAPHORE) campaign) are employed to test the new wind speed algorithm. A measurable improvement in wind speed estimation is obtained when compared to the monofrequency Witter and Chelton [1991] model.
USDA-ARS?s Scientific Manuscript database
Large wind turbines perturb mean and turbulent wind characteristics, which modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could create significant changes in surface fluxes of heat, momentum, moisture, and CO2 over hundreds ...
USDA-ARS?s Scientific Manuscript database
Perturbations of mean and turbulent wind characteristics by large wind turbines modify fluxes between the vegetated surface and the lower boundary layer. While simulations have suggested that wind farms could significantly change surface fluxes of heat, momentum, moisture, and CO2 over hundreds of s...
How well can we measure the vertical wind speed? Implications for fluxes of energy and mass
John Kochendorfer; Tilden P. Meyers; John Frank; William J. Massman; Mark W. Heuer
2012-01-01
Sonic anemometers are capable of measuring the wind speed in all three dimensions at high frequencies (10Â50 Hz), and are relied upon to estimate eddy-covariance-based fluxes of mass and energy over a wide variety of surfaces and ecosystems. In this study, wind-velocity measurement errors from a three-dimensional sonic anemometer with a nonorthogonal transducer...
Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf
NASA Astrophysics Data System (ADS)
Lenaerts, J. T. M.; Lhermitte, S.; Drews, R.; Ligtenberg, S. R. M.; Berger, S.; Helm, V.; Smeets, C. J. P. P.; Broeke, M. R. Van Den; van de Berg, W. J.; van Meijgaard, E.; Eijkelboom, M.; Eisen, O.; Pattyn, F.
2017-01-01
Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves causing grounded glaciers to accelerate and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line, which in the recent past has led to the disintegration of the most northerly ice shelves. Here, we provide observational and model evidence that this process also occurs over an East Antarctic ice shelf, where meltwater-induced firn air depletion is found in the grounding zone. Unlike the Antarctic Peninsula, where foehn events originate from episodic interaction of the circumpolar westerlies with the topography, in coastal East Antarctica high temperatures are caused by persistent katabatic winds originating from the ice sheet’s interior. Katabatic winds warm and mix the air as it flows downward and cause widespread snow erosion, explaining >3 K higher near-surface temperatures in summer and surface melt doubling in the grounding zone compared with its surroundings. Additionally, these winds expose blue ice and firn with lower surface albedo, further enhancing melt. The in situ observation of supraglacial flow and englacial storage of meltwater suggests that ice-shelf grounding zones in East Antarctica, like their Antarctic Peninsula counterparts, are vulnerable to hydrofracturing.
Droplet Depinning on Inclined Surfaces at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
White, Edward; Singh, Natasha; Lee, Sungyon
2017-11-01
Contact angle hysteresis enables a sessile liquid drop to adhere to a solid surface when the surface is inclined, the drop is exposed to gas-phase flow, or the drop is exposed to both forcing modalities. Previous work by Schmucker and White (2012.DFD.M4.6) identified critical depinning Weber numbers for water drops subject to gravity- and wind-dominated forcing. This work extends the Schmucker and White data and finds the critical depinning Weber number obeys a two-slope linear model. Under pure wind forcing at Reynolds numbers above 1500 and with zero surface inclination, Wecrit = 8.0 . For non-zero inclinations, α, Wecrit decreases proportionally to A Bo sinα where A is the drop aspect ratio and Bo is its Bond number. The same relationship holds for α < 0 when gravity resists depinning by wind. Above We 4 , depinning is dominated by wind forcing; at We < 4 , depinning is gravity dominated. While Wecrit depends linearly on A Bo sinα in both forcing regimes, the slopes of the the limit lines depend on the forcing regime. The difference is attributed to different drop shapes and contact angle distributions that arise depending on whether wind or gravity dominates the depinning behavior. Supported by the National Science Foundation through Grant CBET-1605947.
Airborne Measurement of Insolation Impact on the Atmospheric Surface Boundary Layer
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Chilson, Phil; Houston, Adam; Detweiler, Carrick; Bailey, Sean; Cloud-Map Team
2017-11-01
Atmospheric surface boundary layer measurements of wind and thermodynamic parameters are conducted during variable insolation conditions, including the 2017 eclipse, using an unmanned aircraft system. It is well known that the air temperatures can drop significantly during a total solar eclipse as has been previously observed. In past eclipses, these observations have primarily been made on the ground. We present results from airborne measurements of the near surface boundary layer using a small unmanned aircraft with high temporal resolution wind and thermodynamic observations. Questions that motivate the study include: How does the temperature within the lower atmospheric boundary vary during an eclipse? What impact does the immediate removal of radiative heating on the ground have on the lower ABL? Do local wind patterns change during an eclipse event and if so why? Will there be a manifestation of the nocturnal boundary layer wind maximum? Comparisons are made with the DOE ARM SGP site that experiences a lower but still significant insolation. Supported by the National Science Foundation under Award Number 1539070.
NASA Astrophysics Data System (ADS)
Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang
2018-03-01
We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.
NASA Technical Reports Server (NTRS)
Fisher, David F.; Delfrate, John H.; Richwine, David M.
1991-01-01
Surface and off-surface flow visualization techniques were used to visualize the 3-D separated flows on the NASA F-18 high alpha research vehicle at high angles of attack. Results near the alpha = 25 to 26 deg and alpha = 45 to 49 deg are presented. Both the forebody and leading edge extension (LEX) vortex cores and breakdown locations were visualized using smoke. Forebody and LEX vortex separation lines on the surface were defined using an emitted fluid technique. A laminar separation bubble was also detected on the nose cone using the emitted fluid technique and was similar to that observed in the wind tunnel test, but not as extensive. Regions of attached, separated, and vortical flow were noted on the wing and the leading edge flap using tufts and flow cones, and compared well with limited wind tunnel results.
Initialization of a mesoscale model for April 10, 1979, using alternative data sources
NASA Technical Reports Server (NTRS)
Kalb, M. W.
1984-01-01
A 35 km grid limited area mesoscale model was initialized with high density SESAME radiosonde data and high density TIROS-N satellite temperature profiles for April 10, 1979. These data sources were used individually and with low level wind fields constructed from surface wind observations. The primary objective was to examine the use of satellite temperature data for initializing a mesoscale model by comparing the forecast results with similar experiments employing radiosonde data. The impact of observed low level winds on the model forecasts was also investigated with experiments varying the method of insertion. All forecasts were compared with each other and with mesoscale observations for precipitation, mass and wind structure. Several forecasts produced convective precipitation systems with characteristics satisfying criteria for a mesoscale convective complex. High density satellite temperature data and balanced winds can be used in a mesoscale model to produce forecasts which verify favorably with observations.
NASA Astrophysics Data System (ADS)
Thepaut, J.; Vautard, R.; Cattiaux, J.; Yiou, P.; Ciais, P.
2010-12-01
The decline of surface wind observed in many regions of the world is a potential source of concern for wind power electricity generation. It is also suggested as the main cause of decreasing pan evaporation. In China, a persistent and significant decrease of monsoon winds was observed in all seasons. Surface wind declines were also evidenced in several regions of the world (U.S., Australia, several European countries). Except over China, no clear explanation was given for the wind decrease in the regions studied. Whether surface winds decrease is due to changes in the global atmospheric circulation or its variability, in surface processes or to observational trends has therefore not been elucidated. The identification of the drivers of such a decline requires a global investigation of available surface and upper-air wind data, which has not been conducted so far. Here we use global datasets of in-situ wind measurements that contain surface weather stations wind data (hourly or three-hourly data acquisition time step) and rawinsonde vertical wind data profiles (monthly time step) prepared by the NCAR. A set of 822 worldwide surface stations with continuous wind records was selected after a careful elimination of stations with obvious breaks and large gaps. This dataset mostly covers the Northern mid latitudes over the period 1979-2008. Using this data set, we found that annual mean wind speeds have declined at 73% of the surface stations over the past 30 years. In the Northern Hemisphere, positive wind trends are found only in a few places. In Europe, Central Asia, Eastern Asia and in North America the annual mean surface wind speed has decreased on average at a rate of -2.9, -5.9, -4.2, and -1.8 %/decade respectively, i.e. a decrease of about 10% in 30 years and up to about 20% in Central Asia. These results are robust to changes in the station selection method and parameters. By contrast, upper-air winds observed from rawinsondes, geostrophic winds deduced from pressure gradients, and modeled winds from weather re-analyses do not exhibit any comparable stilling trends than at surface stations. For instance, large-scale circulation changes captured in the most recent European Centre for Medium Range Weather Forecast re-analysis (ERA-interim) can only explain only up to 10-50% of the wind stilling, depending on the region. In addition, a significant amount of the slow-down could originate from a generalized increase in surface roughness, due for instance to forest growth and expansion, and urbanization. This hypothesis, which could explain up to 60% of the decline, is supported by remote sensing observations and theoretical calculations combined with meso-scale model simulations. For future wind power energy resource, the part of wind decline due to land cover changes is easier to cope with than that due to global atmospheric circulation slow down.
Field Observations of Coastal Air-Sea Interaction
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, D. G.; Haus, B. K.; Williams, N. J.; Graber, H. C.
2016-12-01
In the nearshore zone wind, waves, and currents generated from different forcing mechanisms converge in shallow water. This can profoundly affect the physical nature of the ocean surface, which can significantly modulate the exchange of momentum, heat, and mass across the air-sea interface. For decades, the focus of air-sea interaction research has been on the open ocean while the shallow water regime has been relatively under-explored. This bears implications for efforts to understand and model various coastal processes, such as mixing, surface transport, and air-sea gas flux. The results from a recent study conducted at the New River Inlet in North Carolina showed that directly measured air-sea flux parameters, such as the atmospheric drag coefficient, are strong functions of space as well as the ambient conditions (i.e. wind speed and direction). The drag is typically used to parameterize the wind stress magnitude. It is generally assumed that the wind direction is the direction of the atmospheric forcing (i.e. wind stress), however significant wind stress steering off of the azimuthal wind direction was observed and was found to be related to the horizontal surface current shear. The authors have just returned from a field campaign carried out within Monterey Bay in California. Surface observations made from two research vessels were complimented by an array of beach and inland flux stations, high-resolution wind forecasts, and satellite image acquisitions. This is a rich data set and several case studies will be analyzed to highlight the importance of various processes for understanding the air-sea fluxes. Preliminary findings show that interactions between the local wind-sea and the shoaling, incident swell can have a profound effect on the wind stress magnitude. The Monterey Bay coastline contains a variety of topographical features and the importance of land-air-sea interactions will also be investigated.
Kulsrud, R.M.; Spitzer, L. Jr.
1961-12-12
An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)
CYGNSS Surface Wind Validation and Characteristics in the Maritime Continent
NASA Astrophysics Data System (ADS)
Asharaf, S.; Waliser, D. E.; Zhang, C.; Wandala, A.
2017-12-01
Surface wind over tropical oceans plays a crucial role in many local/regional weather and climate processes and helps to shape the global climate system. However, there is a lack of consistent high quality observations for surface winds. The newly launched NASA Cyclone Global Navigation Satellite System (CYGNSS) mission provides near surface wind speed over the tropical ocean with sampling that accounts for the diurnal cycle. In the early phase of the mission, validation is a critical task, and over-ocean validation is typically challenging due to a lack of robust validation resources that a cover a variety of environmental conditions. In addition, it can also be challenging to obtain in-situ observation resources and also to extract co-located CYGNSS records for some of the more scientifically interesting regions, such as the Maritime Continent (MC). The MC is regarded as a key tropical driver for the mean global circulation as well as important large-scale circulation variability such as the Madian-Julian Oscillation (MJO). The focus of this project and analysis is to take advantage of local in-situ resources from the MC regions (e.g. volunteer shipping, marine buoys, and the Year of Maritime Continent (YMC) campaign) to quantitatively characterize and validate the CYGNSS derived winds in the MC region and in turn work to unravel the complex multi-scale interactions between the MJO and MC. This presentation will show preliminary results of a comparison between the CYGNSS and the in-situ surface wind measurements focusing on the MC region. Details about the validation methods, uncertainties, and planned work will be discussed in this presentation.
Influencing factors on the cooling effect of coarse blocky top-layers on relict rock glaciers
NASA Astrophysics Data System (ADS)
Pauritsch, Marcus; Wagner, Thomas; Mayaud, Cyril; Thalheim, Felix; Kellerer-Pirklbauer, Andreas; Winkler, Gerfried
2017-04-01
Coarse blocky material widely occurs in alpine landscapes particularly at the surface of bouldery rock glaciers. Such blocky layers are known to have a cooling effect on the subjacent material because of the enhanced non-conductive heat exchange with the atmosphere. This effect is used for instance by the construction of blocky embankments in the building of railways and roads in permafrost regions to prevent thawing processes. In alpine regions, this cooling effect may have a strong influence on the distribution and conservation of permafrost related to climate warming. The thermal regimes of the blocky surface layers of two comparable - in terms of size, elevation and geology - relict rock glaciers with opposing slope aspects are investigated. Therefore, the influence of the slope aspect-related climatic conditions (mainly the incident solar radiation, wind conditions and snow cover) on the cooling effect of the blocky layers is investigated. Air temperature, ground surface temperature and ground temperature at one meter depth were continuously measured over a period of four years at several locations at the NE-oriented Schöneben Rock Glacier and the adjacent SW-oriented Dürrtal Rock Glacier. At the former, additional data about wind speed and wind direction as well as precipitation are available, which are used to take wind-forced convection and snow cover into consideration. Statistical analyses of the data reveal that the blocky top layer of the Dürrtal Rock Glacier generally exhibits lower temperatures compared to the Schöneben Rock Glacier despite the more radiation-exposed aspect and the related higher solar radiation. However, the data show that the thermal regimes of the surface layers are highly heterogeneous and that data from the individual measurement sites have to be interpreted with caution. High Rayleigh numbers at both rock glaciers show that free convection occurs particularly during winter. Furthermore, wind-forced convection has a high impact on the thermal regime of the Schöneben Rock Glacier and, as the major wind direction, especially for higher wind speeds, is from west towards east, it is suspected that wind-forced convection is even more important at the Dürrtal Rock Glacier. The limited incident solar radiation at the Schöneben Rock Glacier results in a longer seasonal snow cover that appears earlier in autumn and can persist longer during the melting season. Moreover, with the predominant westerly wind, snow is supposedly transported from neighboring catchments (i.a. the Dürrtal Rock Glacier catchment) towards the Schöneben Rock Glacier catchment. Thus, in times with relatively cold air temperatures the coarse blocky surface at the Dürrtal Rock Glacier is better connected to the atmosphere than the more northern exposed Schöneben rock glacier because of the missing or only partial snow cover, which results in an enhanced cooling effect. It can be concluded that the cooling effect of coarse blocky debris is highly variable in alpine environments and can show considerable variations, depending on the heterogeneous structure of the layer itself and a complex interplay of slope aspect-related microclimatic effects such as incident solar radiation, predominant wind direction and snow cover dynamics.
NASA Astrophysics Data System (ADS)
Booth, J. F.; Rieder, H. E.; Lee, D.; Kushnir, Y.
2014-12-01
This study analyzes the association between wintertime high wind events (HWEs) in the northeast United States US and extratropical cyclones. Sustained wind maxima in the Daily Summary Data from the National Climatic Data Center's Integrated Surface Database are analyzed for 1979-2012. For each station, a Generalized Pareto Distribution (GPD) is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at intervals of 1, 3 and 5-years are derived from the GPD fit. At each interval, wind events meeting the return level criteria are termed HWEs. The HWEs occurring on the same day are grouped into multi-station events allowing the association with extratropical cyclones, which are tracked in the European Center for Medium-Range Weather Forecast ERA-Interim reanalysis. Using hierarchical clustering analysis, this study finds that the HWEs are most often associated with cyclones travelling from southwest to northeast, usually originating west of the Appalachian Mountains. The results show that a storm approaching from the southwest is four times more likely to cause strong surface winds than a Nor'easter. A series of sensitivity analyses confirms the robustness of this result. Next, the relationship between the strength of the wind events and the corresponding storm minimum sea level pressure is analyzed. No robust relationship between these quantities is found for strong wind events. Nevertheless, subsequent analysis shows that a relationship between deeper storms and stronger winds emerges if the analysis is extended to the entire set of wintertime storms.
On the influence of ocean waves on simulated GNSS-R delay-doppler maps
NASA Astrophysics Data System (ADS)
Clarizia, M. P.; di Bisceglie, M.; Galdi, C.; Gommenginger, C.; Srokosz, M.
2012-04-01
Global Navigation Satellite System-Reflectometry (GNSS-R), is an established technique that exploits GNSS signals of opportunity reflected from the surface of the ocean, to look primarily at the ocean surface roughness. The strength of this technique, and the primary motivation to carry it forward, is in the fact that GNSS signals are available globally, all the time and over the long term, and could help dramatically improve the monitoring of ocean wind and waves. GNSS-R offers the prospect of high density global measurements of directional sea surface roughness, which are essential for scientific purposes (i.e. quantifying the air-sea exchanges of gases), operational weather and ocean forecasting (i.e. prediction of high winds, dangerous sea states, risk of flooding and storm surges) and to support important climate-relevant Earth Observation techniques (IR SST, or surface salinity retrieval). The retrieval of ocean roughness from GNSS-R data has now been demonstrated with a reasonable level of accuracy from both airborne [1] and spaceborne [2] platforms. In both cases, Directional Mean Square Slopes (DMSS) of the ocean surface have been retrieved from GNSS-R data, in the form of Delay-Doppler Maps (DDMs), using an established theoretical scattering model by Zavorotny and Voronovich (Z-V) [3]. The need for a better assessment of the way the ocean waves influence the scattering of GPS signals has recently led to a different approach, consisting of simulating the scattering of such signals, using a more sophisticated large-scale scattering model than Z-V, and explicit simulations of realistic seas. Initial results produced from these simulations have been recently published in [4], where the emphasis has been put on the effects of different sea states on Radar Cross Section (RCS) and Polarization Ratio (PR) in space domain. Linear wind wave surfaces have been simulated using the Elfouhaily wind wave spectrum [5], for different wind speeds and directions, and with or without a superimposed swell. Then, the scattering from such surfaces has been computed using the innovative Facet Approach (FA), which approximates the surface through a number of rectangular facets, differently oriented, and calculates the surface scattering as the ensemble of the signals scattered from all the facets. Here we proceed with the next step of the GPS-Reflectometry simulator, through investigation of the results in Delay- Doppler (DD) domain. Changes and variations of the DDMs, computed using the FA scattering model, are investigated for a variety of wind and wave conditions of the underlying sea surfaces simulated. Results are analysed for changing wind speed and direction of the waves, presence of a swell component superimposed on wind waves, and changing parameters (wavelength, amplitude, direction) of the swell, revealing some degree of sensitivity of these maps to different sea states. The effect of polarization is also taken into account, through an analysis of PR in DD domain. Finally, an initial investigation into the effect of nonlinearities on the sea surface in DD domain is carried out, by looking at DDMs of the signal scattered from non linear non gaussian sea surfaces explicitly simulated.
Analysis and characterization of the vertical wind profile in UAE
NASA Astrophysics Data System (ADS)
Lee, W.; Ghedira, H.; Ouarda, T.; Gherboudj, I.
2011-12-01
In this study, temporal and spatial analysis of the vertical wind profiles in the UAE has been performed to estimate wind resource potential. Due to the very limited number of wind masts (only two wind masts in the UAE, operational for less than three years), the wind potential analysis will be mainly derived from numerical-based models. Additional wind data will be derived from the UAE met stations network (at 10 m elevation) managed by the UAE National Center of Meteorology and Seismology. However, since wind turbines are generally installed at elevations higher than 80 m, it is vital to extrapolate wind speed correctly from low heights to wind turbine hub heights to predict potential wind energy properly. To do so, firstly two boundary layer based models, power law and logarithmic law, were tested to find the best fitting model. Power law is expressed as v/v0 =(H/H0)^α and logarithmic law is represented as v/v0 =[ln(H/Z0))/(ln(H0/Z0)], where V is the wind speed [m/s] at height H [m] and V0 is the known wind speed at a reference height H0. The exponent (α) coefficient is an empirically derived value depending on the atmospheric stability and z0 is the roughness coefficient length [m] that depends on topography, land roughness and spacing. After testing the two models, spatial and temporal analysis for wind profile was performed. Many studies about wind in different regions have shown that wind profile parameters have hourly, monthly and seasonal variations. Therefore, it can be examined whether UAE wind characteristics follow general wind characteristics observed in other regions or have specific wind features due to its regional condition. About 3 years data from August 2008 to February 2011 with 10-minutes resolution were used to derive monthly variation. The preliminary results(Fig.1) show that during that period, wind profile parameters like alpha from power law and roughness length from logarithmic law have monthly variation. Both alpha and roughness have low values during summer and high values during winter. This variation is mainly explained by the direct effect of air temperature on atmospheric stability. When the surface temperature becomes high, air is mixed well in atmospheric boundary layer. This phenomenon leads to vertically low wind speed change indicating low wind profile parameter. On the contrary, cold surface temperature prevents air from being mixed well in the boundary layer. This analysis is applied to different regions to see the spatial characteristics of wind in UAE. As a next step, a mesoscale model coupled with UAE roughness maps will be used to predict elevated wind speed. A micro-scale modeling approach will be also used to capture small-scale wind speed variability. This data will be combined with the NCMS data and tailored to the UAE by modeling the effects due to local changes in terrain elevation and local surface roughness changes and obstacles.
High speed operation of permanent magnet machines
NASA Astrophysics Data System (ADS)
El-Refaie, Ayman M.
This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been investigated. A 6kW, 36slot/30pole prototype SPM machine has been designed and built. Experimental measurements have been used to verify the analytical and FEA results. These test results have demonstrated that wide constant-power speed range can be achieved. Other important machine features such as the near-sinusoidal back-emf, high efficiency, and low cogging torque have also been demonstrated.
Fine dust emissions in sandy and silty agricultural soils
USDA-ARS?s Scientific Manuscript database
Dust emissions from strong winds are common in arid and semi-arid regions and occur under both natural and managed land systems. A portable field wind tunnel has been developed to allow measurements of dust emissions from soil surfaces to test the premise that dust concentrations are highly correlat...
High beta plasma operation in a toroidal plasma producing device
Clarke, John F.
1978-01-01
A high beta plasma is produced in a plasma producing device of toroidal configuration by ohmic heating and auxiliary heating. The plasma pressure is continuously monitored and used in a control system to program the current in the poloidal field windings. Throughout the heating process, magnetic flux is conserved inside the plasma and the distortion of the flux surfaces drives a current in the plasma. As a consequence, the total current increases and the poloidal field windings are driven with an equal and opposing increasing current. The spatial distribution of the current in the poloidal field windings is determined by the plasma pressure. Plasma equilibrium is maintained thereby, and high temperature, high beta operation results.
Martian aeolian features and deposits - Comparisons with general circulation model results
NASA Astrophysics Data System (ADS)
Greeley, R.; Skypeck, A.; Pollack, J. B.
1993-02-01
The relationships between near-surface winds and the distribution of wind-related features are investigated by means of a general circulation model of Mars' atmosphere. Predictions of wind surface stress as a function of season and dust optical depth are used to investigate the distribution and orientation of wind streaks, yardangs, and rock abundance on the surface. The global distribution of rocks on the surface correlates well with predicted wind stress, particularly during the dust storm season. The rocky areas are sites of strong winds, suggesting that fine material is swept away by the wind, leaving rocks and coarser material behind.
Observations of currents and density structure across a buoyant plume front
Gelfenbaum, G.; Stumpf, R.P.
1993-01-01
Observations of the Mobile Bay, Alabama, plume during a flood event in April 1991 reveal significant differences in the current field on either side of a front associated with the buoyant plume. During a strong southeasterly wind, turbid, low salinity water from Mobile Bay was pushed through an opening in the west side of the ebb-tidal delta and moved parallel to the coast. A stable front developed between the low salinity water of the buoyant plume (11‰) and the high salinity coastal water (>23‰) that was being forced landward by the prevailing winds. Despite the shallow water depth of 6 m, measurements of currents, temperature, and salinity show large shears and density gradients in both the vertical and the horizontal directions. At a station outside of the buoyant plume, currents at 0.5 m and 1.5 m below the surface were in the same direction as the wind. Inside the plume, however, currents at 0.5 m below the surface were parallel to the coast, 45°, off the direction of the wind and the magnitude was 45% larger than the magnitude of the surface currents outside the plume. Beneath the level of the plume, the currents were identical to the wind-driven currents in the ambient water south of the front. Our observations suggest that the wind-driven surface currents of the ambient water converged with the buoyant plume at the front and were subducted beneath the plume. The motion of the ambient coastal surface water was in the direction of the local wind stress, however, the motion of the plume had no northerly component of motion. The plume also did not show any flow toward the front, suggesting a balance between the northerly component of wind stress and the southerly component of buoyant spreading. In addition, the motion of the plume did not appear to affect the motion of the underlying ambient water, suggesting a lack of mixing between the two waters.
Variation of the low level winds during the passage of a thunderstorm gust front
NASA Technical Reports Server (NTRS)
Sinclair, R. W.; Anthes, R. A.; Panofsky, H. A.
1973-01-01
Three time histories of wind profiles in thunderstorm gust fronts at Cape Kennedy and three at Oklahoma City are analyzed. Wind profiles at maximum wind strength below 100 m follow logarithmic laws, so that winds above the surface layer can be estimated from surface winds once the roughness length is known. A statistical analysis of 81 cases of surface winds during thunderstorms at Tampa revealed no predictor with skill to predict the time of maximum gust. Some 34% of the variance of the strength of the gust is accounted for by a stability index and surface wind prior to the gust; the regression equations for these variables are given. The coherence between microscale wind speed variations at the different levels has the same proportions as in non-thunderstorm cases.
NASA Astrophysics Data System (ADS)
Shin, D.; Chiu, L. S.; Clemente-Colon, P.
2006-05-01
The atmospheric effects on the retrieval of sea ice concentration from passive microwave sensors are examined using simulated data typical for the Arctic summer. The simulation includes atmospheric contributions of cloud liquid water, water vapor and surface wind on the microwave signatures. A plane parallel radiative transfer model is used to compute brightness temperatures at SSM/I frequencies over surfaces that contain open water, first-year (FY) ice and multi-year (MY) ice and their combinations. Synthetic retrievals in this study use the NASA Team (NT) algorithm for the estimation of sea ice concentrations. This study shows that if the satellite sensor's field of view is filled with only FY ice the retrieval is not much affected by the atmospheric conditions due to the high contrast between emission signals from FY ice surface and the signals from the atmosphere. Pure MY ice concentration is generally underestimated due to the low MY ice surface emissivity that results in the enhancement of emission signals from the atmospheric parameters. Simulation results in marginal ice areas also show that the atmospheric effects from cloud liquid water, water vapor and surface wind tend to degrade the accuracy at low sea ice concentration. FY ice concentration is overestimated and MY ice concentration is underestimated in the presence of atmospheric water and surface wind at low ice concentration. This compensating effect reduces the retrieval uncertainties of total (FY and MY) ice concentration. Over marginal ice zones, our results suggest that strong surface wind is more important than atmospheric water in contributing to the retrieval errors of total ice concentrations in the normal ranges of these variables.
Viscous and Turbulent Stress Measurements over Wind-driven Surface Waves
NASA Astrophysics Data System (ADS)
Yousefi, K.; Veron, F.; Buckley, M. P.; Hara, T.; Husain, N.
2017-12-01
In recent years, the exchange of momentum and scalars between the atmosphere and the ocean has been the subject of several investigations. Although the role of surface waves on the air-sea momentum flux is now well established, detailed quantitative measurements of the turbulence in the airflow over surface waves remain scarce. The current incomplete physical understanding of the airflow dynamics impedes further progress in developing physically based parameterizations for improved weather and sea state predictions, particularly in high winds and extreme conditions. Using combined Particle Image Velocimetry (PIV) and Laser Induced Fluorescence (LIF) in the laboratory, we have acquired detailed quantitative measurements of the airflow over wind-driven waves and down to within the viscous sub-layer. Various wind-wave conditions are examined with mean wind speeds ranging from 0.86 to 16.63 m s-1. The mean, turbulent, and wave-induced velocity fields are then extracted from instantaneous two-dimensional velocity measurements. Individual airflow separation events precipitate abrupt and dramatic along-wave variations in the surface viscous stress. In the bulk flow above the waves, these separation events are a source of intense vorticity. Phase averages of the viscous stress present a pattern of along-wave asymmetry near the surface; it is highest on the upwind of wave crest with its peak value about the crest and its minimum occurs at the middle of the leeward side of waves. The contribution of the viscous stress to the total momentum flux is not negligible particularly for low to moderate wind speeds and this contribution decreases with increasing wind speed. Away from the surface, the distribution of turbulent Reynolds stress forms a negative-positive pattern along the wave crest with a separation-induced maximum above the downwind side of the wave. Our measurements will be discussed in the context of available previous results.
NASA Technical Reports Server (NTRS)
Peslen, C. A.; Koch, S. E.; Uccellini, L. W.
1985-01-01
The impact of satellite-derived cloud motion vectors on SESAME rawinsonde wind fields was studied in two separate cases. The effect of wind and moisture gradients on the arbitrary assignment of the satellite data is assessed to coordinate surfaces in a severe storm environment marked by strong vertical wind shear. Objective analyses of SESAME rawinsonde winds and combined winds are produced and differences between these two analyzed fields are used to make an assessment of coordinate level choice. It is shown that the standard method of arbitrarily assigning wind vectors to a low level coordinate surface yields systematic differences between the rawinsonde and combined wind analyses. Arbitrary assignment of cloud motions to the 0.9 sigma surface produces smaller differences than assignment to the 825 mb pressure surface. Systematic differences occur near moisture discontinuities and in regions of horizontal and vertical wind shears. The differences between the combined and SESAME wind fields are made smallest by vertically interpolating cloud motions to either a pressure or sigma surface.
Wind systems the driving force of evaporation at the Dead Sea
NASA Astrophysics Data System (ADS)
Metzger, Jutta; Corsmeier, Ulrich; Alpert, Pinhas
2017-04-01
The Dead Sea is a unique place on earth. It is located in the Eastern Mediterranean at the lowest point of the Jordan Rift valley and its water level is currently at 429 m below mean sea level. The region is located in a transition zone of semi-arid to arid climate conditions and endangered by severe environmental problems, especially the rapid lake level decline (>1m/year), causing the shifting of fresh/saline groundwater interfaces and the drying up of the lake. Two key features are relevant for these environmental changes: the evaporation from the water surface and its driving mechanisms. The main driver of evaporation at the Dead Sea is the wind velocity and hence the governing wind systems with different scales in space and time. In the framework of the Virtual Institute DEad SEa Research Venue (DESERVE) an extensive field campaign was conducted to study the governing wind systems in the valley and the energy balance of the water and land surface simultaneously. The combination of several in-situ and remote sensing instruments allowed temporally and spatially high-resolution measurements to investigate the frequency of occurrence of the wind systems, their three-dimensional structure, associated wind velocities and their impact on evaporation. The characteristics of the three local wind systems governing the valley's wind field, as well as their impact on evaporation, will be presented. Mostly decoupled from the large scale flow a local lake breeze determines the conditions during the day. Strong downslope winds drive the evaporation in the afternoon, and down valley flows with wind velocities of over 10 m s-1 dominate during the night causing unusually high evaporation rates after sunset.
NASA Technical Reports Server (NTRS)
Miller, A. J.; Hays, P. B.; Abreu, V.; Long, C.; Kann, D.
1994-01-01
The NOAA National Weather Service currently derives global stratospheric wind analyses via several procedures. The first is the operational data assimilation system that extends from the surface up to about 50 mb and is in process of being tested to about 10 mb. In addition, a balanced wind is determined from the available Climate Analysis Center stratospheric height analyses that encompass the 70-0.4 mb region. The High Resolution Doppler Imager (HRDI) recently launched as a member of the Upper Atmosphere Research Satellite (UARS) is the first satellite instrument designed to measure winds in this stratospheric region and, thus, provide a basic evaluation of the NMC derived products. The HRDI accomplishes this by utilizing a triple-etalon Fabry-Perot interferometer that allows one to measure the Doppler shift of O2 absorption and emission features of the atmosphere, from which the wind field can be determined.
The structure of the inner heliosphere from Pioneer Venus and IMP observations
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1992-01-01
The IMP 8 and Pioneer Venus Orbiter (PVO) spacecraft explore the region of heliographic latitudes between 8 deg N and 8 deg S. Solar wind observations from these spacecraft are used to construct synoptic maps of solar wind parameters in this region. These maps provide an explicit picture of the structure of high speed streams near 1 AU and how that structure varies with time. From 1982 until early 1985, solar wind parameters varied little with latitude. During the last solar minimum, the solar wind developed strong latitudinal structure; high speed streams were excluded from the vicinity of the solar equator. Synoptic maps of solar wind speed are compared with maps of the coronal source surface magnetic field. This comparison reveals the expected correlation between solar wind speed near 1 AU, the strength of the coronal magnetic field, and distance from the coronal neutral line.
Multivariate optimum interpolation of surface pressure and winds over oceans
NASA Technical Reports Server (NTRS)
Bloom, S. C.
1984-01-01
The observations of surface pressure are quite sparse over oceanic areas. An effort to improve the analysis of surface pressure over oceans through the development of a multivariate surface analysis scheme which makes use of surface pressure and wind data is discussed. Although the present research used ship winds, future versions of this analysis scheme could utilize winds from additional sources, such as satellite scatterometer data.
NASA Astrophysics Data System (ADS)
Wharton, S.; Simpson, M.; Osuna, J. L.; Newman, J. F.; Biraud, S.
2013-12-01
Wind power forecasting is plagued with difficulties in accurately predicting the occurrence and intensity of atmospheric conditions at the heights spanned by industrial-scale turbines (~ 40 to 200 m above ground level). Better simulation of the relevant physics would enable operational practices such as integration of large fractions of wind power into power grids, scheduling maintenance on wind energy facilities, and deciding design criteria based on complex loads for next-generation turbines and siting. Accurately simulating the surface energy processes in numerical models may be critically important for wind energy forecasting as energy exchange at the surface strongly drives atmospheric mixing (i.e., stability) in the lower layers of the planetary boundary layer (PBL), which in turn largely determines wind shear and turbulence at heights found in the turbine rotor-disk. We hypothesize that simulating accurate a surface-atmosphere energy coupling should lead to more accurate predictions of wind speed and turbulence at heights within the turbine rotor-disk. Here, we tested 10 different land surface model configurations in the Weather Research and Forecasting (WRF) model including Noah, Noah-MP, SSiB, Pleim-Xiu, RUC, and others to evaluate (1) the accuracy of simulated surface energy fluxes to flux tower measurements, (2) the accuracy of forecasted wind speeds to observations at rotor-disk heights, and (3) the sensitivity of forecasting hub-height rotor disk wind speed to the choice of land surface model. WRF was run for four, two-week periods covering both summer and winter periods over the Southern Great Plains ARM site in Oklahoma. Continuous measurements of surface energy fluxes and lidar-based wind speed, direction and turbulence were also available. The SGP ARM site provided an ideal location for this evaluation as it centrally located in the wind-rich Great Plains and multi-MW wind farms are rapidly expanding in the area. We found significant differences in simulated wind speeds at rotor-disk heights from WRF which indicated, in part, the sensitivity of lower PBL winds to surface energy exchange. We also found significant differences in energy partitioning between sensible heat and latent energy depending on choice of land surface model. Overall, the most consistent, accurate model results were produced using Noah-MP. Noah-MP was most accurate at simulating energy fluxes and wind shear. Hub-height wind speed, however, was predicted with most accuracy with Pleim-Xiu. This suggests that simulating wind shear in the surface layer is consistent with accurately simulating surface energy exchange while the exact magnitudes of wind speed may be more strongly influenced by the PBL dynamics. As the nation is working towards a 20% wind energy goal by 2030, increasing the accuracy of wind forecasting at rotor-disk heights becomes more important considering that utilities require wind farms to estimate their power generation 24 to 36 hours ahead and face penalties for inaccuracies in those forecasts.
Wind load effects on high rise buildings in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Nizamani, Z.; Thang, K. C.; Haider, B.; Shariff, M.
2018-04-01
Wind is a randomly varying dynamic phenomenon composed of a multitude of eddies of varying sizes and rotational characteristics along a general stream of air moving relative to the ground. These eddies give wind its gustiness, creating fluctuation and results in a complex flow characteristics. The wind vector at any point can be regarded as the sum of mean wind vector and the fluctuation components. These components not only vary with height but also dependant on the approach terrain and topography. Prevailing wind exerts pressure onto the structural surfaces. The effects of wind pressure in the form of shear and bending moments are found to be a major problem in structural failure. This study aims to study the effects of wind load on a fifteen-storey high rise building using EN 1991-1-4 code and MS1553:2002. The simulation results showed that by increasing the wind speed, the storey resultant forces, namely storey shear and storey moment increases significantly. Furthermore, simulation results according to EN 1991-1-4 yield higher values compared to the simulation results according to MS1553:2002.
Santa Ana Winds Over Los Angeles
2003-01-08
High-resolution ocean surface wind data from NASA's Quick Scatterometer (QuikScat) illustrate the strength of Santa Ana winds that pounded Southern California this week, causing damage and spreading brush fires. The colored arrows represent various ranges of wind speed, which were still well in excess of 30 knots (34 miles per hour), even after reaching the ocean and weakening. Santa Ana winds are offshore and down-slope winds unique to Southern California that are usually channeled through mountain gaps. These Santa Ana winds extend more than 500 kilometers (310 miles) offshore before changing direction to flow along the shore. The wind speeds and directions are retrieved from range-compressed backscatter data measured by QuikScat that has much higher spatial resolution than QuikScat's standard data products. Useful applications of high-resolution science-quality wind products derived from range-compressed backscatter have been demonstrated in two scientific papers: one on Hurricane Floyd and the other on Catalina Eddies. This is the first demonstration on near-real-time retrieval applications. http://photojournal.jpl.nasa.gov/catalog/PIA03892
Construction and test of flexible walls for the throat of the ILR high-speed wind tunnel
NASA Technical Reports Server (NTRS)
Igeta, Y.
1983-01-01
Aerodynamic tests in wind tunnels are jeopardized by the lateral limitations of the throat. This influence expands with increasing size of the model in proportion to the cross-section of the throat. Wall interference of this type can be avoided by giving the wall the form of a stream surface that would be identical to the one observed during free flight. To solve this problem, flexible walls that can adapt to every contour of surface flow are needed.
Wind-tunnel free-flight investigation of a supersonic persistence fighter
NASA Technical Reports Server (NTRS)
Hahne, David E.; Wendel, Thomas R.; Boland, Joseph R.
1993-01-01
Wind-tunnel free-flight tests have been conducted in the Langley 30- by 60-Foot Wind Tunnel to examine the high-angle-of-attack stability and control characteristics and control law design of a supersonic persistence fighter (SSPF) at 1 g flight conditions. In addition to conventional control surfaces, the SSPF incorporated deflectable wingtips (tiperons) and pitch and yaw thrust vectoring. A direct eigenstructure assignment technique was used to design control laws to provide good flying characteristics well into the poststall angle-of-attack region. Free-flight tests indicated that it was possible to blend effectively conventional and unconventional control surfaces to achieve good flying characteristics well into the poststall angle-of-attack region.
Spatiotemporal Changes of Cyanobacterial Bloom in Large Shallow Eutrophic Lake Taihu, China
Qin, Boqiang; Yang, Guijun; Ma, Jianrong; Wu, Tingfeng; Li, Wei; Liu, Lizhen; Deng, Jianming; Zhou, Jian
2018-01-01
Lake Taihu is a large shallow eutrophic lake with frequent recurrence of cyanobacterial bloom which has high variable distribution in space and time. Based on the field observations and remote sensing monitoring of cyanobacterial bloom occurrence, in conjunction with laboratory controlled experiments of mixing effects on large colony formation and colonies upward moving velocity measurements, it is found that the small or moderate wind-induced disturbance would increase the colonies size and enable it more easily to overcome the mixing and float to water surface rapidly during post-disturbance. The proposed mechanism of wind induced mixing on cyanobacterial colony enlargement is associated with the presence of the extracellular polysaccharide (EPS) which increased the size and buoyancy of cyanobacteria colonies and promote the colonies aggregate at the water surface to form bloom. Both the vertical movement and horizontal migration of cyanobacterial colonies were controlled by the wind induced hydrodynamics. Because of the high variation of wind and current coupling with the large cyanobacterial colony formation make the bloom occurrence as highly mutable in space and time. This physical factor determining cyanobacterial bloom formation in the large shallow lake differ from the previously documented light-mediated bloom formation dynamics. PMID:29619011
Transport of a Power Plant Tracer Plume over Grand Canyon National Park.
NASA Astrophysics Data System (ADS)
Chen, Jun; Bornstein, Robert; Lindsey, Charles G.
1999-08-01
Meteorological and air-quality data, as well as surface tracer concentration values, were collected during 1990 to assess the impacts of Navajo Generating Station (NGS) emissions on Grand Canyon National Park (GCNP) air quality. These data have been used in the present investigation to determine between direct and indirect transport routes taken by the NGS plume to produce measured high-tracer concentration events at GCNP.The meteorological data were used as input into a three-dimensional mass-consistent wind model, whose output was used as input into a horizontal forward-trajectory model. Calculated polluted air locations were compared with observed surface-tracer concentration values.Results show that complex-terrain features affect local wind-flow patterns during winter in the Grand Canyon area. Local channeling, decoupled canyon winds, and slope and valley flows dominate in the region when synoptic systems are weak. Direct NGS plume transport to GCNP occurs with northeasterly plume-height winds, while indirect transport to the park is caused by wind direction shifts associated with passing synoptic systems. Calculated polluted airmass positions along the modeled streak lines match measured surface-tracer observations in both space and time.
NASA Technical Reports Server (NTRS)
Kurits, Inna; Lewis, M. J.; Hamner, M. P.; Norris, Joseph D.
2007-01-01
Heat transfer rates are an extremely important consideration in the design of hypersonic vehicles such as atmospheric reentry vehicles. This paper describes the development of a data reduction methodology to evaluate global heat transfer rates using surface temperature-time histories measured with the temperature sensitive paint (TSP) system at AEDC Hypervelocity Wind Tunnel 9. As a part of this development effort, a scale model of the NASA Crew Exploration Vehicle (CEV) was painted with TSP and multiple sequences of high resolution images were acquired during a five run test program. Heat transfer calculation from TSP data in Tunnel 9 is challenging due to relatively long run times, high Reynolds number environment and the desire to utilize typical stainless steel wind tunnel models used for force and moment testing. An approach to reduce TSP data into convective heat flux was developed, taking into consideration the conditions listed above. Surface temperatures from high quality quantitative global temperature maps acquired with the TSP system were then used as an input into the algorithm. Preliminary comparison of the heat flux calculated using the TSP surface temperature data with the value calculated using the standard thermocouple data is reported.
NASA Technical Reports Server (NTRS)
Miller, TImothy L.; Atlas, R. M.; Black, P. G.; Case, J. L.; Chen, S. S.; Hood, R. E.; Johnson, J. W.; Jones, L.; Ruf, C. S.; Uhlborn, E. W.
2008-01-01
Accurate observations of surface ocean vector winds (OVW) with high spatial and temporal resolution are required for understanding and predicting tropical cyclones. As NASA's QuikSCAT and Navy's WindSat operate beyond their design life, many members of the weather and climate science communities recognize the importance of developing new observational technologies and strategies to meet the essential need for OVW information to improve hurricane intensity and location forecasts. The Hurricane Imaging Radiometer (HIRAD) is an innovative technology development which offers new and unique remotely sensed satellite observations of both extreme oceanic wind events and strong precipitation. It is based on the airborne Stepped Frequency Microwave Radiometer (SFMR), which is the only proven remote sensing technique for observing tropical cyclone (TC) ocean surface wind speeds and rain rates. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer (STAR) technology. This sensor will operate over 4-7 GHz (C-band frequencies) where the required TC remote sensing physics has been validated by both SFMR and WindSat radiometers. The instrument is described in more detail in a paper by Jones et al. presented to the Tropical Meteorology Special Symposium at this AMS Annual Meeting. Simulated HIRAD passes through a simulation of hurricane Frances are being developed to demonstrate HIRAD estimation of surface wind speed over a wide swath in the presence of heavy rain. These are currently being used in "quick" OSSEs (Observing System Simulation Experiments) with H'Wind analyses as the discriminating tool. The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic , Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa._ov/hrd/data sub/wind.html. Observations have been simulated from both aircraft altitudes and space. The simulated flight patterns for the aircraft platform cases have been designed to duplicate the timing and flight patterns used in routine NOAA and USAF hurricane surveillance flights, and the spaceborne case simulates a TRMM orbit and altitude.
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
Calculations of air cooler for new subsonic wind tunnel
NASA Astrophysics Data System (ADS)
Rtishcheva, A. S.
2017-10-01
As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.
Surface wind mixing in the Regional Ocean Modeling System (ROMS)
NASA Astrophysics Data System (ADS)
Robertson, Robin; Hartlipp, Paul
2017-12-01
Mixing at the ocean surface is key for atmosphere-ocean interactions and the distribution of heat, energy, and gases in the upper ocean. Winds are the primary force for surface mixing. To properly simulate upper ocean dynamics and the flux of these quantities within the upper ocean, models must reproduce mixing in the upper ocean. To evaluate the performance of the Regional Ocean Modeling System (ROMS) in replicating the surface mixing, the results of four different vertical mixing parameterizations were compared against observations, using the surface mixed layer depth, the temperature fields, and observed diffusivities for comparisons. The vertical mixing parameterizations investigated were Mellor- Yamada 2.5 level turbulent closure (MY), Large- McWilliams- Doney Kpp (LMD), Nakanishi- Niino (NN), and the generic length scale (GLS) schemes. This was done for one temperate site in deep water in the Eastern Pacific and three shallow water sites in the Baltic Sea. The model reproduced the surface mixed layer depth reasonably well for all sites; however, the temperature fields were reproduced well for the deep site, but not for the shallow Baltic Sea sites. In the Baltic Sea, the models overmixed the water column after a few days. Vertical temperature diffusivities were higher than those observed and did not show the temporal fluctuations present in the observations. The best performance was by NN and MY; however, MY became unstable in two of the shallow simulations with high winds. The performance of GLS nearly as good as NN and MY. LMD had the poorest performance as it generated temperature diffusivities that were too high and induced too much mixing. Further observational comparisons are needed to evaluate the effects of different stratification and wind conditions and the limitations on the vertical mixing parameterizations.
An evaluation of gas transfer velocity parameterizations during natural convection using DNS
NASA Astrophysics Data System (ADS)
Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.
2016-02-01
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.
Observational study of atmospheric surface layer and coastal weather in northern Qatar
NASA Astrophysics Data System (ADS)
Samanta, Dhrubajyoti; Sadr, Reza
2016-04-01
Atmospheric surface layer is the interaction medium between atmosphere and Earth's surface. Better understanding of its turbulence nature is essential in characterizing the local weather, climate variability and modeling of turbulent exchange processes. The importance of Middle East region, with its unique geographical, economical and weather condition is well recognized. However, high quality micrometeorological observational studies are rare in this region. Here we show experimental results from micrometeorological observations from an experimental site in the coastal region of Qatar during August-December 2015. Measurements of winds are obtained from three sonic anemometers installed on a 9 m tower placed at Al Ghariyah beach in northern Qatar (26.08 °N, 51.36 °E). Different surface layer characteristics is analyzed and compared with earlier studies in equivalent weather conditions. Monthly statistics of wind speed, wind direction, temperature, humidity and heat index are made from concurrent observations from sonic anemometer and weather station to explore variations with surface layer characteristics. The results also highlights potential impact of sea breeze circulation on local weather and atmospheric turbulence. The observed daily maximum temperature and heat index during morning period may be related to sea breeze circulations. Along with the operational micrometeorological observation system, a camera system and ultrasonic wave measurement system are installed recently in the site to study coastline development and nearshore wave dynamics. Overall, the complete observational set up is going to provide new insights about nearshore wind dynamics and wind-wave interaction in Qatar.
Global examination of the wind-dependence of very low frequency underwater ambient noise.
Nichols, Stephen M; Bradley, David L
2016-03-01
Ocean surface winds play a key role in underwater ambient noise generation. One particular frequency band of interest is the infrasonic or very low frequency (VLF) band from 1 to 20 Hz. In this spectral band, wind generated ocean surface waves interact non-linearly to produce acoustic waves, which couple into the seafloor to generate microseisms, as explained by the theory developed by Longuet-Higgins. This study examines long term data sets in the VLF portion of the ambient noise spectrum, collected by the hydroacoustic systems of the Comprehensive Nuclear-Test Ban Treaty Organization in the Atlantic, Pacific, and Indian Oceans. Three properties of the noise field were examined: (a) the behavior of the acoustic spectrum slope from 1 to 5 Hz, (b) correlation of noise levels and wind speeds, and (c) the autocorrelation behavior of both the noise field and the wind. Analysis results indicate the spectrum slope is site dependent, and for both correlation methods, a high correlation between wind and the noise field in the 1-5 Hz band.
NASA Astrophysics Data System (ADS)
Takle, E. S.; Rajewski, D. A.; Lundquist, J. K.; Doorenbos, R. K.
2014-12-01
We have analyzed turbine power and concurrent wind speed, direction and turbulence data from surface 10-m flux towers in a large wind farm for experiments during four summer periods as part of the Crop Wind Energy Experiment (CWEX). We use these data to analyze surface differences for a near-wake (within 2.5 D of the turbine line), far wake (17 D downwind of the turbine line), and double wake (impacted by two lines of turbines about 34 D downwind of the first turbine line) locations. Composites are categorized by10 degree directional intervals and three ambient stability categories as defined by Rajewski et al. (2013): neutral (|z/L|<0.05), stable (z/L>0.05) and unstable (z/L<-0.05), where z is the height of the measurement and L is the Monin-Obhukov length. The dominant influence of the turbines is under stably stratified conditions (i. e., mostly at night). A 25% to 40% increase in mean wind speed occurs when turbine wakes are moving over the downwind station at a distance of 2.8 D and 5.4 D (D = fan diameter). For the double wake condition (flux station leeward of two lines of turbines) we find a daytime (unstable conditions) speed reduction of 20% for southerly wind, but for nighttime (stable conditions) the surface speeds are enhancedby 40-60% for SSW-SW winds. The speedup is reduced as wind directions shift to the west. We interpret these speed variations as due to the rotation of the wake and interaction (or not) with higher speed air above the rotor layer in highly sheared nocturnal low-level jet conditions. From a cluster of flux stations and three profiling lidars deployed within and around a cluster of turbines in 2013 (CWEX-13) we found evidence of mesoscale influences. In particular, surface convergence (wind direction deflection of 10-20 degrees) was observed during periods of low nighttime winds (hub-height winds of 4-6 m/s) with power reduction of 50-75%. This is consistent with a similar range of deflection observed from a line of turbines in CWEX-11, In the mid to late afternoon hours when hub-height wind speeds are between 5-10 m/s convergence periods have been observed, with power enhancements of 20-40% at several locations around the farm.
Effect on the Lunar Exosphere of a CME Passage
NASA Technical Reports Server (NTRS)
Killen, Rosemary M.; Hurley, Dana M.; Farrell, William M.; Sarantos, Menelaos
2011-01-01
It has long been recognized that solar wind bombardment onto exposed surfaces in the solar system will produce an energetic component to the exospheres about those bodies. Laboratory experiments have shown that the sputter yield can be noticeably increased in the case of a good insulating surface. It is now known that the solar wind composition is highly dependent on the origin of the particular plasma. Using the measured composition of the slow wind, fast wind, solar energetic particle (SEP) population, and coronal mass ejection (CME), broken down into its various components, we have estimated the total sputter yield for each type of solar wind. The heavy ion component, especially the He++ component, greatly enhances the total sputter yield during times when the heavy ion population is enhanced, most notably during a coronal mass ejection. To simulate the effect on the lunar exosphere of a CME passage past the Moon, we ran a Monte Carlo code for the species Na, K, Mg and Ca.
NASA Astrophysics Data System (ADS)
Lavely, Adam; Vijayakumar, Ganesh; Brasseur, James; Paterson, Eric; Kinzel, Michael
2011-11-01
Using large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layers (NBL, MCBL), we analyze the impact of coherent turbulence structure of the atmospheric surface layer on the short-time statistics that are commonly collected from wind turbines. The incoming winds are conditionally sampled with a filtering and thresholding algorithm into high/low horizontal and vertical velocity fluctuation coherent events. The time scales of these events are ~5 - 20 blade rotations and are roughly twice as long in the MCBL as the NBL. Horizontal velocity events are associated with greater variability in rotor power, lift and blade-bending moment than vertical velocity events. The variability in the industry standard 10 minute average for rotor power, sectional lift and wind velocity had a standard deviation of ~ 5% relative to the ``infinite time'' statistics for the NBL and ~10% for the MCBL. We conclude that turbulence structure associated with atmospheric stability state contributes considerable, quantifiable, variability to wind turbine statistics. Supported by NSF and DOE.
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S.; Jones, W. L.; Johnson, J.; Farrar, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.;
2013-01-01
HIRAD is a new technology developed by NASA/MSFC, in partnership with NOAA and the Universities of Central Florida, Michigan, and Alabama-Huntsville. HIRAD is designed to measure wind speed and rain rate over a wide swath in heavy-rain, strong-wind conditions. HIRAD is expected to eventually fly routinely on unmanned aerial vehicles (UAVs) such as Global Hawk over hurricanes threatening the U.S. coast and other Atlantic basin areas, and possibly in the Western Pacific as well. HIRAD first flew on GRIP in 2010 and is part of the 2012-14 NASA Hurricane and Severe Storm Sentinel (HS3) mission on the Global Hawk, a high-altitude UAV. The next-generation HIRAD will include wind direction observations, and the technology can eventually be used on a satellite platform to extend the dynamical range of Ocean Surface Wind (OSV) observations from space.
Supply-limited horizontal sand drift at an ephemerally crusted, unvegetated saline playa
Gillette, Dale A.; Niemeyer, T.C.; Helm, P.J.
2001-01-01
A site at Owens Dry Lake was observed for more than 4 years. The site was a vegetation-free saline playa where the surface formed "ephemeral crusts," crusts that form after rainfall. Sometimes these crusts were destroyed and often a layer of particles on the crust would engage in vigorous aeolian activity. Three "phases" of active sand drifting are defined as almost no movement (extreme supply limitation), loose particles on crust with some degree of sand drift (moderate supply limitation), and unlimited source movement corresponding to a destroyed surface crust (unlimited supply). These "phases" occurred 45, 49, and 6% of the time, respectively. The accumulation of loose particles on the crust was mostly the result of in situ formation. Crusted sediments with loose particles on top can exhibit mass flux rates about the same as for noncrusted sediments. Crusted sediments limit or eliminate sand drift in two conditions: for rough crusts that effect a sufficiently high threshold friction velocity (above the wind friction velocity) and for limited amounts of loose particles on the crust where particle supply is less than would be transported in normal saltation for a thick sandy surface. These "supply-limited" cases are similar to wind erosion of limited spilled material on a hard concrete surface. We quantified "supply limitation" by defining a "potential" or "supply unlimited" sand drift function Q = AG where A represents supply limitation that decreases as the particle source is depleted. Here Q is the mass of sand transported through a surface perpendicular to the ground and to the wind and having unit width during time period t, and G = ??? u*(u*2 - u*t2) dt for u* > u*t. G is integrated for the same time period t as for Q, u* is the friction velocity of the wind, and u*t is the threshold friction velocity of the wind. Hard crusts (usually formed in the summer) tended to show almost no change of threshold friction velocity with time and often gave total protection from wind erosion. Rough crusts provided sufficient protection expressed as high threshold friction velocities. For these high threshold friction velocities, aeolian activity was greatly reduced or practically prevented. The softest crusts, usually formed in the winter, provided much less protection and sometimes were destroyed by the wind. Following this destruction the "potential" or "supply unlimited" sand drift would be observed. Copyright 2000 by the American Geophysical Union.
Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems
NASA Astrophysics Data System (ADS)
Mendez, Mariano J.; Buschiazzo, Daniel E.
2015-03-01
The effectiveness of wind erosion control by soil surface conditions and crop and weed canopy has been well studied in wind tunnel experiments. The aim of this study is to assess the combined effects of these variables under field conditions. Soil surface conditions, crop and weed coverage, plant residue, and non-erodible aggregates (NEA) were measured in the field between the fallow start and the growth period of sunflower (Helianthus annuus) and corn (Zea mays). Both crops were planted on a sandy-loam Entic Haplustoll with conventional-(CT), vertical-(VT) and no-till (NT) tillage systems. Wind erosion was estimated by means of the spreadsheet version the Revised Wind Erosion Equation and the soil coverage was measured each 15 days. Results indicated that wind erosion was mostly negligible in NT, exceeding the tolerable levels (estimated between 300 and 1400 kg ha-1 year-1 by Verheijen et al. (2009)) only in an year with high climatic erosivity. Wind erosion exceeded the tolerable levels in most cases in CT and VT, reaching values of 17,400 kg ha-1. Wind erosion was 2-10 times higher after planting of both crops than during fallows. During the fallows, the soil was mostly well covered with plant residues and NEA in CT and VT and with residues and weeds in NT. High wind erosion amounts occurring 30 days after planting in all tillage systems were produced by the destruction of coarse aggregates and the burying of plant residues during planting operations and rains. Differences in soil protection after planting were given by residues of previous crops and growing weeds. The growth of weeds 2-4 weeks after crop planting contributed to reduce wind erosion without impacting in crops yields. An accurate weeds management in semiarid lands can contribute significantly to control wind erosion. More field studies are needed in order to develop management strategies to reduce wind erosion.
NASA Technical Reports Server (NTRS)
Bandfield, J. L.; Wyatt, M. B.; Christensen, P.; McSween, H. Y., Jr.
2001-01-01
Basalt and andesite surface compositions are identified within individual low albedo intracrater features and adjacent dark wind streaks. High resolution mapping of compositional heterogeneities may help constrain origin hypotheses for these features. Additional information is contained in the original extended abstract.
Definition and preliminary design of the LAWS (Laser Atmospheric Wind Sounder), volume 2, phase 2
NASA Technical Reports Server (NTRS)
1992-01-01
Accurate knowledge of winds is critical to our understanding of the earth's climate and to our ability to predict climate change. Winds are a fundamental component of highly nonlinear interactions between oceans, land surfaces, and the atmosphere. Interactions at these interfaces are the focus of much climate change research. Although wind information is critical for advancing our understanding, currently most of our description of atmospheric motion is obtained indirectly - i.e., derived from observations of temperature and moisture through geostrophic relationships. Direct measurement of winds over the globe is limited to land-based rawinsonde surface stations and a few ship/aircraft reports. Cloud track winds using satellite imagery are calculated but must be used with great care. The LAWS mission objective, therefore, is to provide diurnal and global direct observations of winds - an observation that will incrementally enhance our knowledge of the earth's climate and physical processes responsible for its change. This document is Volume 2 of the LAWS Phase 2 Final Study Report and describes the definition and preliminary design of the LAWS instrument, together with details of the laser breadboard program conducted during the last 18 months of the program.
Dust emission and soil loss due to anthropogenic activities by wind erosion simulations
NASA Astrophysics Data System (ADS)
Katra, Itzhak; Swet, Nitzan; Tanner, Smadar
2017-04-01
Wind erosion is major process of soil loss and air pollution by dust emission of clays, nutrients, and microorganisms. Many soils throughout the world are currently or potentially associated with dust emissions, especially in dryland zones. The research focuses on wind erosion in semi-arid soils (Northern Negev, Israel) that are subjected to increased human activities of urban development and agriculture. A boundary-layer wind tunnel has been used to study dust emission and soil loss by simulation and quantification of high-resolution wind processes. Field experiments were conducted in various surface types of dry loess soils. The experimental plots represent soils with long-term and short term influences of land uses such as agriculture (conventional and organic practices), grazing, and natural preserves. The wind tunnel was operated under various wind velocities that are above the threshold velocity of aeolian erosion. Total soil sediment and particulate matter (PM) fluxes were calculated. Topsoil samples from the experimental plots were analysed in the laboratory for physical and chemical characteristics including aggregation, organic matter, and high-resolution particle size distribution. The results showed variations in dust emission in response to surface types and winds to provide quantitative estimates of soil loss over time. Substantial loss of particulate matter that is < 10 micrometer in diameter, including clays and nutrients, was recorded in most experimental conditions. Integrative analyses of the topsoil properties and dust experiment highlight the significant implications for soil nutrient resources and management strategies as well as for PM loading to the atmosphere and air pollution.
Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts
2013-09-30
wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability effects? surface stress Surface Momentum Flux Ensembles from Summaries of BHM Winds (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of
NASA Astrophysics Data System (ADS)
Davesne, Gautier; Fortier, Daniel; Domine, Florent; Gray, James T.
2017-06-01
We present data on the distribution and thermophysical properties of snow collected sporadically over 4 decades along with recent data of ground surface temperature from Mont Jacques-Cartier (1268 m a.s.l.), the highest summit in the Appalachians of south-eastern Canada. We demonstrate that the occurrence of contemporary permafrost is necessarily associated with a very thin and wind-packed winter snow cover which brings local azonal topo-climatic conditions on the dome-shaped summit. The aims of this study were (i) to understand the snow distribution pattern and snow thermophysical properties on the Mont Jacques-Cartier summit and (ii) to investigate the impact of snow on the spatial distribution of the ground surface temperature (GST) using temperature sensors deployed over the summit. Results showed that above the local treeline, the summit is characterized by a snow cover typically less than 30 cm thick which is explained by the strong westerly winds interacting with the local surface roughness created by the physiography and surficial geomorphology of the site. The snowpack structure is fairly similar to that observed on windy Arctic tundra with a top dense wind slab (300 to 450 kg m-3) of high thermal conductivity, which facilitates heat transfer between the ground surface and the atmosphere. The mean annual ground surface temperature (MAGST) below this thin and wind-packed snow cover was about -1 °C in 2013 and 2014, for the higher, exposed, blockfield-covered sector of the summit characterized by a sporadic herbaceous cover. In contrast, for the gentle slopes covered with stunted spruce (krummholz), and for the steep leeward slope to the south-east of the summit, the MAGST was around 3 °C in 2013 and 2014. The study concludes that the permafrost on Mont Jacques-Cartier, most widely in the Chic-Choc Mountains and by extension in the southern highest summits of the Appalachians, is therefore likely limited to the barren wind-exposed surface of the summit where the low air temperature, the thin snowpack and the wind action bring local cold surface conditions favourable to permafrost development.
On the Regulation of the Pacific Warm Pool Temperature
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Sue-Hsien; Chan, Pui-King; Lau, William K. M. (Technical Monitor)
2002-01-01
In the tropical western Pacific, regions of the highest sea surface temperature (SST) and the largest cloud cover are found to have the largest surface heating, primarily due to the weak evaporative cooling associated with weak winds. This situation is in variance with the suggestions that the temperature in the Pacific warm pool is regulated either by the reduced solar heating due to an enhanced cloudiness or by the enhanced evaporative cooling due to an elevated SST. It is clear that an enhanced surface heating in an enhanced convection region is not sustainable and must be interrupted by variations in large-scale atmospheric circulation. As the deep convective regions shift away from regions of high SST due primarily to seasonal variation and secondarily to interannual variation of the large-scale atmospheric and oceanic circulation, both trade wind and evaporative cooling in the high SST region increase, leading to a reduction in SST. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds in the primary factor that prevent the warm pool SST from increasing to a value much higher than what is observed.
Using 3D Dynamic Models to Reproduce X-ray Properties of Colliding Wind Binaries
NASA Astrophysics Data System (ADS)
Russell, C. M. P.; Okazaki, A. T.; Owocki, S. P.; Corcoran, M. F.; Madura, T. I.; Leyder, J.-C.; Hamaguchi, K.
2013-06-01
Colliding wind binaries (CWBs) are unique laboratories for X-ray astrophysics. Their wind-wind collisions produce hard X-rays that have been monitored extensively by several X-ray telescopes, such as RXTE, XMM, and Chandra. To interpret these X-ray light curves and spectra, we model the wind-wind interaction using 3D smoothed particle hydrodynamics (SPH), which incorporates radiative cooling and uses an anti-gravity approach to accelerate the winds according a β-law, and then solve the 3D formal solution of radiative transfer to synthesize the model X-ray properties. The results for the multi-year-period, highly eccentric CWBs η Carinae and WR140 match well the 2-10 keV RXTE light curve, hardness ratio, and dynamic spectra. This includes η Car's ˜3-month-long X-ray minimum associated with the 1998.0 and 2003.5 periastron passages, which we find to occur as the primary wind encroaches into the secondary wind's acceleration region, and thus quenches the high temperature gas between the stars. Furthermore, the η Car modeling suggests the commonly inferred primary mass loss rate of ˜10^-3 Mo/yr, provides further evidence that the observer is mainly viewing the system through the secondary's shock cone, and suggests that periastron occurs ˜1 month after the onset of the X-ray minimum. For WR140, the decrease in model X-rays around periastron is less than observed, but there is very good agreement with the observed XMM spectrum taken on the rise before periastron. We also model the short-period (2.67 day) CWB HD150136, which harbors the nearest O3 star. The imbalance of the wind strengths suggests a ``wind-star'' collision as the primary wind reaches the secondary star's surface, even when accounting for radiative braking, thus producing high-temperature, X-ray-emitting gas in a shock cone flowing around the surface of the secondary star. This model qualitatively reproduces the dip in X-ray emission associated with superior conjunction observed by Chandra, as well as an asymmetry around inferior conjunction due to the difference in occulting the leading and trailing-arms of the wind-star shock. We also discuss our preliminary results of accelerating the stellar winds according to CAK theory in the SPH code.
NASA Astrophysics Data System (ADS)
Pendergrass, W.; Vogel, C. A.
2013-12-01
As an outcome of discussions between Duke Energy Generation and NOAA/ARL following the 2009 AMS Summer Community Meeting, in Norman Oklahoma, ARL and Duke Energy Generation (Duke) signed a Cooperative Research and Development Agreement (CRADA) which allows NOAA to conduct atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of forecast hub-height winds from three NOAA atmospheric models. Forecasts of 10m (surface) and 80m (hub-height) wind speeds from (1) NOAA/GSD's High Resolution Rapid Refresh (HRRR) model, (2) NOAA/NCEP's 12 km North America Model (NAM12) and (3) NOAA/NCEP's 4k high resolution North America Model (NAM4) were evaluated against 18 months of surface-layer wind observations collected at the joint NOAA/Duke Energy research station located at Duke Energy's West Texas Ocotillo wind farm over the period April 2011 through October 2012. HRRR, NAM12 and NAM4 10m wind speed forecasts were compared with 10m level wind speed observations measured on the NOAA/ATDD flux-tower. Hub-height (80m) HRRR , NAM12 and NAM4 forecast wind speeds were evaluated against the 80m operational PMM27-28 meteorological tower supporting the Ocotillo wind farm. For each HRRR update, eight forecast hours (hour 01, 02, 03, 05, 07, 10, 12, 15) plus the initialization hour (hour 00), evaluated. For the NAM12 and NAM4 models forecast hours 00-24 from the 06z initialization were evaluated. Performance measures or skill score based on absolute error 50% cumulative probability were calculated for each forecast hour. HRRR forecast hour 01 provided the best skill score with an absolute wind speed error within 0.8 m/s of observed 10m wind speed and 1.25 m/s for hub-height wind speed at the designated 50% cumulative probability. For both NAM4 and NAM12 models, skill scores were diurnal with comparable best scores observed during the day of 0.7 m/s of observed 10m wind speed and 1.1 m/s for hub-height wind speed at the designated 50% cumulative probability level.
NASA Astrophysics Data System (ADS)
Stössel, Achim; von Storch, Jin-Song; Notz, Dirk; Haak, Helmuth; Gerdes, Rüdiger
2018-03-01
This study is on high-frequency temporal variability (HFV) and meso-scale spatial variability (MSV) of winter sea-ice drift in the Southern Ocean simulated with a global high-resolution (0.1°) sea ice-ocean model. Hourly model output is used to distinguish MSV characteristics via patterns of mean kinetic energy (MKE) and turbulent kinetic energy (TKE) of ice drift, surface currents, and wind stress, and HFV characteristics via time series of raw variables and correlations. We find that (1) along the ice edge, the MSV of ice drift coincides with that of surface currents, in particular such due to ocean eddies; (2) along the coast, the MKE of ice drift is substantially larger than its TKE and coincides with the MKE of wind stress; (3) in the interior of the ice pack, the TKE of ice drift is larger than its MKE, mostly following the TKE pattern of wind stress; (4) the HFV of ice drift is dominated by weather events, and, in the absence of tidal currents, locally and to a much smaller degree by inertial oscillations; (5) along the ice edge, the curl of the ice drift is highly correlated with that of surface currents, mostly reflecting the impact of ocean eddies. Where ocean eddies occur and the ice is relatively thin, ice velocity is characterized by enhanced relative vorticity, largely matching that of surface currents. Along the ice edge, ocean eddies produce distinct ice filaments, the realism of which is largely confirmed by high-resolution satellite passive-microwave data.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Technical Reports Server (NTRS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin
1994-01-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Mars vertical axis wind machines: The design of a tornado vortex machine for use on Mars
NASA Astrophysics Data System (ADS)
Carlin, Daun; Dyhr, Amy; Kelly, Jon; Schmirler, J. Eric; Carlin, Mike; Hong, Won E.; Mahoney, Kamin; Ralston, Michael
1994-06-01
Ever since Viking 1 and 2 landed on the surface of Mars in the summer of 1976, man has yearned to go back. But before man steps foot upon the surface of Mars, unmanned missions such as the Martian Soft Lander and Martian Subsurface Penetrator will precede him. Alternative renewable power sources must be developed to supply the next generation of surface exploratory spacecraft, since RTG's, solar cells, and long-life batteries all have their significant drawbacks. One such alternative is to take advantage of the unique Martian atmospheric conditions by designing a small scale, Martian wind power generator, capable of surviving impact and fulfilling the long term (2-5 years), low-level power requirements (1-2 Watts) of an unmanned surface probe. After investigation of several wind machines, a tornado vortex generator was chosen based upon its capability of theoretically augmenting and increasing the available power that may be extracted from average Martian wind speeds of approximately 7.5 m/s. The Martian Tornado Vortex Wind Generator stands 1 meter high and has a diameter of 0.5 m. Martian winds enter the base and shroud of the Tornado Vortex Generator at 7.5 m/s and are increased to an exit velocity of 13.657 m/s due to the vortex that is created. This results in a rapid pressure drop of 4.56 kg/s(exp 2) m across the vortex core which aids in producing a net power output of 1.1765 Watts. The report contains the necessary analysis and requirements needed to feasibly operate a low-level powered, unmanned, Martian surface probe.
Fatigue resistant carbon coatings for rolling/sliding contacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harpal; Ramirez, Giovanni; Eryilmaz, Osman
2016-06-01
The growing demands for renewable energy production have recently resulted in a significant increase in wind plant installation. Field data from these plants show that wind turbines suffer from costly repair, maintenance and high failure rates. Often times the reliability issues are linked with tribological components used in wind turbine drivetrains. The primary failure modes in bearings and gears are associated with micropitting, wear, brinelling, scuffing, smearing and macropitting all of which occur at or near the surface. Accordingly, a variety of surface engineering approaches are currently being considered to alter the near surface properties of such bearings and gearsmore » to prevent these tribological failures. In the present work, we have evaluated the tribological performance of compliant highly hydrogenated diamond like carbon coating developed at Argonne National Laboratory, under mixed rolling/sliding contact conditions for wind turbine drivetrain components. The coating was deposited on AISI 52100 steel specimens using a magnetron sputter deposition system. The experiments were performed on a PCS Micro-Pitting-Rig (MPR) with four material pairs at 1.79 GPa contact stress, 40% slide to roll ratio and in polyalphaolefin (PAO4) basestock oil (to ensure extreme boundary conditions). The post-test analysis was performed using optical microscopy, surface profilometry, and Raman spectroscopy. The results obtained show a potential for these coatings in sliding/rolling contact applications as no failures were observed with coated specimens even after 100 million cycles compared to uncoated pair in which they failed after 32 million cycles, under the given test conditions.« less
Abdul-Hadi, Alaa; Mansor, Shattri; Pradhan, Biswajeet; Tan, C K
2013-05-01
A study was conducted to investigate the influence of Asian monsoon on chlorophyll-a (Chl-a) content in Sabah waters and to identify the related oceanographic conditions that caused phytoplankton blooms at the eastern and western coasts of Sabah, Malaysia. A series of remote sensing measurements including surface Chl-a, sea surface temperature, sea surface height anomaly, wind speed, wind stress curl, and Ekman pumping were analyzed to study the oceanographic conditions that lead to large-scale nutrients enrichment in the surface layer. The results showed that the Chl-a content increased at the northwest coast from December to April due to strong northeasterly wind and coastal upwelling in Kota Kinabalu water. The southwest coast (Labuan water) maintained high concentrations throughout the year due to the effect of Padas River discharge during the rainy season and the changing direction of Baram River plume during the northeast monsoon (NEM). However, with the continuous supply of nutrients from the upwelling area, the high Chl-a batches were maintained at the offshore water off Labuan for a longer time during NEM. On the other side, the northeast coast illustrated a high Chl-a in Sandakan water during NEM, whereas the northern tip off Kudat did not show a pronounced change throughout the year. The southeast coast (Tawau water) was highly influenced by the direction of the surface water transport between the Sulu and Sulawesi Seas and the prevailing surface currents. The study demonstrates the presence of seasonal phytoplankton blooms in Sabah waters which will aid in forecasting the possible biological response and could further assist in marine resource managements.
Effect of leading-edge roughness on stability and transition of wind turbine blades
NASA Astrophysics Data System (ADS)
Kutz, Douglas; Freels, Justin; Hidore, John; White, Edward
2011-11-01
Over time, wind turbine blades erode due to impacts with sand and other debris. The resulting surface roughness degrades the blades' aerodynamic performance. Experimental studies conducted at the Texas A&M University Low-Speed Wind Tunnel examine roughness effects using a 2D NACA 63-418 airfoil with interchangeable leading edges of varying roughness at chord Reynolds numbers up to 3 . 0 ×106 . These data reveal decreased CL , max and increased CD , min as roughness increases. At very high roughness levels, even the lift curve slope is reduced. To better understand these findings and improve modeling of roughness effects, extensive boundary layer measurements including surface-mounted hotfilms and boundary-layer velocity profiles are used to assess how laminar-to-turbulent transition is promoted by roughness. As expected, roughness accelerates transition. Tollmien-Schlichting (TS) transition is observed only for a smooth leading edge while bypass transition is observed for the moderate and high roughness levels. Results are compared to N-factor transition predictions generated with software used by the wind industry. Predictions are successful for the smooth leading edge but even the low roughness level prevents correct transition prediction using TS-based methods. Support for this work by Vestas Technology Americas, Inc., is gratefully acknowledged as is the support of the wind-energy research group and the Low-Speed Wind Tunnel staff.
Northerly surface winds over the eastern North Pacific Ocean in spring and summer
Taylor, S.V.; Cayan, D.R.; Graham, N.E.; Georgakakos, K.P.
2008-01-01
Persistent spring and summer northerly surface winds are the defining climatological feature of the western coast of North America, especially south of the Oregon coast. Northerly surface winds are important for upwelling and a vast array of other biological, oceanic, and atmospheric processes. Intermittence in northerly coastal surface wind is characterized and wind events are quantitatively defined using coastal buoy data south of Cape Mendocino on the northern California coast. The defined wind events are then used as a basis for composites in order to explain the spatial evolution of various atmospheric and oceanic processes. Wind events involve large-scale changes in the three-dimensional atmospheric circulation including the eastern North Pacific subtropical anticyclone and southeast trade winds. Composites of QSCAT satellite scatterometer wind estimates from 1999 to 2005 based on a single coastal buoy indicate that wind events typically last 72-96 h and result in anomalies in surface wind and Ekman pumping that extend over 1000 kin from the west coast of North America. It may be useful to consider ocean circulation and dependent ecosystem dynamics and the distribution of temperature, moisture, and aerosols in the atmospheric boundary layer in the context of wind events defined herein. Copyright 2008 by the American Geophysical Union.
Development and evaluation of an empirical diurnal sea surface temperature model
NASA Astrophysics Data System (ADS)
Weihs, R. R.; Bourassa, M. A.
2013-12-01
An innovative method is developed to determine the diurnal heating amplitude of sea surface temperatures (SSTs) using observations of high-quality satellite SST measurements and NWP atmospheric meteorological data. The diurnal cycle results from heating that develops at the surface of the ocean from low mechanical or shear produced turbulence and large solar radiation absorption. During these typically calm weather conditions, the absorption of solar radiation causes heating of the upper few meters of the ocean, which become buoyantly stable; this heating causes a temperature differential between the surface and the mixed [or bulk] layer on the order of a few degrees. It has been shown that capturing the diurnal cycle is important for a variety of applications, including surface heat flux estimates, which have been shown to be underestimated when neglecting diurnal warming, and satellite and buoy calibrations, which can be complicated because of the heating differential. An empirical algorithm using a pre-dawn sea surface temperature, peak solar radiation, and accumulated wind stress is used to estimate the cycle. The empirical algorithm is derived from a multistep process in which SSTs from MTG's SEVIRI SST experimental hourly data set are combined with hourly wind stress fields derived from a bulk flux algorithm. Inputs for the flux model are taken from NASA's MERRA reanalysis product. NWP inputs are necessary because the inputs need to incorporate diurnal and air-sea interactive processes, which are vital to the ocean surface dynamics, with a high enough temporal resolution. The MERRA winds are adjusted with CCMP winds to obtain more realistic spatial and variance characteristics and the other atmospheric inputs (air temperature, specific humidity) are further corrected on the basis of in situ comparisons. The SSTs are fitted to a Gaussian curve (using one or two peaks), forming a set of coefficients used to fit the data. The coefficient data are combined with accumulated wind stress and peak solar radiation to create an empirical relationship that approximates physical processes such as turbulence and heating memory (capacity) of the ocean. Weaknesses and strengths of the model, including potential spatial biases, will be discussed.
Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping
NASA Astrophysics Data System (ADS)
Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.
2017-09-01
The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.
NASA Technical Reports Server (NTRS)
Voo, Justin K.; Garrison, James L.; Yueh, Simon H.; Grant, Michael S.; Fore, Alexander G.; Haase, Jennifer S.; Clauss, Bryan
2010-01-01
In February-March 2009 NASA JPL conducted an airborne field campaign using the Passive Active L-band System (PALS) and the Ku-band Polarimetric Scatterometer (PolSCAT) collecting measurements of brightness temperature and near surface wind speeds. Flights were conducted over a region of expected high-speed winds in the Atlantic Ocean, for the purposes of algorithm development for salinity retrievals. Wind speeds encountered were in the range of 5 to 25 m/s during the two weeks deployment. The NASA-Langley GPS delay-mapping receiver (DMR) was also flown to collect GPS signals reflected from the ocean surface and generate post-correlation power vs. delay measurements. This data was used to estimate ocean surface roughness and a strong correlation with brightness temperature was found. Initial results suggest that reflected GPS signals, using small low-power instruments, will provide an additional source of data for correcting brightness temperature measurements for the purpose of sea surface salinity retrievals.
NASA Astrophysics Data System (ADS)
Nield, J. M.; King, J.; Wiggs, G.
2012-12-01
The dust emissivity of salt pans (or playas) can be significant but is controlled by interactions between wind erosivity, surface moisture, salt chemistry and crust morphology. These surface properties influence the aeolian transport threshold and can be highly variable over both short temporal and spatial scales. In the past, field studies have been hampered by practical difficulties in accurately measuring properties controlling sediment availability at the surface in high resolution. Studies typically therefore, have investigated large scale monthly or seasonal change using remote sensing and assume a homogeneous surface when predicting dust emissivity. Here we present the first high resolution measurements (sub-cm) of salt crust expansion related to changes in diurnal moisture over daily and weekly time periods using terrestrial laser scanning (TLS, ground-based LiDAR) on Sua Pan, Botswana. The TLS measures both elevation and relative surface moisture change simultaneously, without disturbing the surface. Measurement sequences enable the variability in aeolian sediment availability to be quantified along with temporal feedbacks associated with crust degradation. On crusts with well-developed polygon ridges (high aerodynamic and surface roughness), daily surface expansion was greater than 30mm. The greatest surface change occurred overnight on the upper, exposed sections of the ridges, particularly when surface temperatures dropping below 10°C. These areas also experienced the greatest moisture variation and became increasingly moist overnight in response to an increase in relative humidity. In contrast, during daylight hours, the ridge areas were drier than the lower lying inter-ridge areas. Positive feedbacks between surface topography and moisture reinforced the maximum diurnal moisture variation at ridge peaks, encouraging crust thrusting due to overnight salt hydration, further enhancing the surface, and therefore, aerodynamic roughness. These feedbacks between surface roughness and moisture have implications for dust emissivity because crust expansion increases fluff production which is one of the main dust source materials. Further, increased roughness can locally increase wind erosivity and the potential evaporation of ridge areas. Crust thrusting also weakens the ridge peaks, developing cracked surfaces and exposing the sediment supply source below. These fast acting processes can have a major influence on wind erosion variability and dust emissivity from key dust source regions.; a-d) Elevation change overnight. e-f) Elevation change over 6 days.
Study of the Low Level Wind Shear using AMDAR reports
NASA Astrophysics Data System (ADS)
Urlea, Ana-Denisa; Pietrisi, Mirela
2015-04-01
The aim of this work is the study of the effects of the wind shear on aircraft flights, in particularly when it appears on path of take-off or landing phase which is the most troublesome phase. This phenomenon has a lot of generating sources as: convection, frontal surfaces, strong surface wind coupled with local topography, breezes (either sea or mountain originated), mountain waves or low level temperature inversions. Low Level Jet is also a most frequent cause of Low Level Wind Shear. It has a lot of generating causes, but in Romania the most encountered is the presence of a Mediterranean low in southeastern part of Europe mainly in winter, sometimes in the first days of spring or the last days of autumn. It generates Low Level Wind Shear between surface and up to 600m, affecting approaching, landing or take-off phases of an aircraft flight. Diagnosis of meteorological general and local conditions and presence of Low Level Jet- generating Low Level Wind Shear is made using Meteo-France ARPEGE products model and ALARO high resolution model dedicated to Romanian area. The study is focused on use of real-time and in situ data as AMDAR (Aircraft Meteorological Data Relay) registrations with verification of a mobile Doppler SODAR registrations-("SOnic Detection And Ranging" system -PCS.2000- Metek manufactured by Meteorologische Messtechnik GMBH) in the processes of estimation of the quantitative and qualitative manifestation of Low Level Wind Shear. The results will be used to improve the timing and the accuracy of the Low Level Wind Shear forecasting for the aerodrome area.
Light-Flash Wind-Direction Indicator
NASA Technical Reports Server (NTRS)
Zysko, Jan A.
1993-01-01
Proposed wind-direction indicator read easily by distant observers. Indicator emits bright flashes of light separated by interval of time proportional to angle between true north and direction from which wind blowing. Timing of flashes indicates direction of wind. Flashes, from high-intensity stroboscopic lights seen by viewers at distances up to 5 miles or more. Also seen more easily through rain and fog. Indicator self-contained, requiring no connections to other equipment. Power demand satisfied by battery or solar power or both. Set up quickly to provide local surface-wind data for aircraft pilots during landing or hovering, for safety officers establishing hazard zones and safety corridors during handling of toxic materials, for foresters and firefighters conducting controlled burns, and for real-time wind observations during any of variety of wind-sensitive operations.
Wind effect on salt transport variability in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Sandeep, K. K.; Pant, V.
2017-12-01
The Bay of Bengal (BoB) exhibits large spatial variability in sea surface salinity (SSS) pattern caused by its unique hydrological, meteorological and oceanographical characteristics. This SSS variability is largely controlled by the seasonally reversing monsoon winds and the associated currents. Further, the BoB receives substantial freshwater inputs through excess precipitation over evaporation and river discharge. Rivers like Ganges, Brahmaputra, Mahanadi, Krishna, Godavari, and Irawwady discharge annually a freshwater volume in range between 1.5 x 1012 and 1.83 x 1013 m3 into the bay. A major volume of this freshwater input to the bay occurs during the southwest monsoon (June-September) period. In the present study, a relative role of winds in the SSS variability in the bay is investigated by using an eddy-resolving three dimensional Regional Ocean Modeling System (ROMS) numerical model. The model is configured with realistic bathymetry, coastline of study region and forced with daily climatology of atmospheric variables. River discharges from the major rivers are distributed in the model grid points representing their respective geographic locations. Salt transport estimate from the model simulation for realistic case are compared with the standard reference datasets. Further, different experiments were carried out with idealized surface wind forcing representing the normal, low, high, and very high wind speed conditions in the bay while retaining the realistic daily varying directions for all the cases. The experimental simulations exhibit distinct dispersal patterns of the freshwater plume and SSS in different experiments in response to the idealized winds. Comparison of the meridional and zonal surface salt transport estimated for each experiment showed strong seasonality with varying magnitude in the bay with a maximum spatial and temporal variability in the western and northern parts of the BoB.
Overview of the DARPA/AFRL/NASA Smart Wing Phase II program
NASA Astrophysics Data System (ADS)
Kudva, Jayanth N.; Sanders, Brian P.; Pinkerton-Florance, Jennifer L.; Garcia, Ephrahim
2001-06-01
The DARPA/AFRL/NASA Smart Wing program, conducted by a team led by Northrop Grumman Corporation (NGC) under the DARPA Smart Materials and Structures initiative, addresses the development of smart technologies and demonstration of relevant concepts to improve the aerodynamic performance of military aircraft. This paper presents an overview of the smart wing program. The program is divided into two phases. Under Phase 1, (1995 - 1999) the NGC team developed adaptive wing structures with integrated actuation mechanisms to replace standard hinged control surfaces and provide variable, optimal aerodynamic shapes for a variety of flight regimes. Two half-span 16% scale wind tunnel models, representative of an advanced military aircraft wing, one with conventional control surfaces and the other with shape memory alloy (SMA) actuated smart control surfaces, were fabricated and tested in the NASA Langley Research Center (LaRC) Transonic Dynamics Tunnel (TDT) wind tunnel during two series of tests, conducted in May 1996 and June 1998, respectively. Details of the Phase 1 effort are documented in several papers. The on-going Phase 2 effort discussed here was started in January 1997 and includes several significant improvements over Phase 1: 1) a much larger, full-span model; 2) both leading edge (LE) and trailing edge (TE) smart control surfaces; 3) high-band width actuation systems; and 4) wind tunnel tests at transonic Mach numbers and high dynamic pressures (up to 300 psf.) representative of operational flight regimes. Phase 2 includes two wind tunnel tests, both at the NASA LaRC TDT - the first one was completed in March 2000 and the second (and final) test is scheduled for April 2001. The first test-demonstrated roll-effectiveness over a wide range of Mach numbers achieved using a combination of hingeless, smoothly contoured, SMA actuated, LE and TE control surfaces. The second test addresses the development and demonstration of high bandwidth actuation. An overview of the Phase 2 effort is presented here; detailed discussions of the wind tunnel testing, model design and fabrication, and actuation system development are given in companion papers.
Wu, Tingfeng; Qin, Boqiang; Brookes, Justin D; Shi, Kun; Zhu, Guangwei; Zhu, Mengyuan; Yan, Wenming; Wang, Zhen
2015-06-15
It has been hypothesized that climate change will induce the areal extension of cyanobacterial blooms. However, this hypothesis lacks field-based observation. In the present study both long-term historical data and short-term field measurement were used to identify the importance of changes in wind patterns on the cyanobacterial bloom in Lake Taihu (China), a large, shallow, eutrophic lake located in a subtropical zone. The cyanobacterial bloom mainly composed of Microcystis spp. recurred frequently throughout the year. The regression analysis of multi-year satellite image data extracted by the Floating Algae Index revealed that both the annual mean monthly maximum cyanobacterial bloom area (MMCBA) increased year by year from 2000 to 2011, while the contemporaneous cyanobacterial biomass showed no significant change. However, the correlation analysis shows that MMCBA was negatively correlated with wind speed. Our short-term field measurements indicated that the influence of wind on surface cyanobacterial blooms is that the Chlorophyll-a (Chla) concentration is fully mixing throughout the water column when the wind speed exceed 7 m s(-1). At lower wind speeds, there was vertical stratification of Chla with high surface concentrations and an increase in bloom area. The regression analysis of wind speed indicates that the climate has changed over the last decade. Lake Taihu has become increasingly calm, with the decrease of strong wind frequency between 2000 and 2011, corresponding to the increase in the MMCBA over time. Therefore, we conclude that changes in wind patterns related to climate change have favored the increase of cyanobacterial blooms in Lake Taihu. Copyright © 2015. Published by Elsevier B.V.
1999-02-20
958.88 BASE= 0.00 SECOND SELECTED LAYER HEIGHT- (METERS) TOP = 3008.96 BASE= 958.88 SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE... SIGMAR (AZ) AT THE SURFACE (DEGREES) 5.7504 SIGMER(EL) AT THE SURFACE (DEGREES) 1.0344 MET. WIND WIND LAYER WIND SPEED WIND DIRECTION SIGMA OF SIGMA OF NO
Studies of Current Circulation at Ocean Waste Disposal Sites
NASA Technical Reports Server (NTRS)
Klemas, V. (Principal Investigator); Davis, G.; Henry, R.
1976-01-01
The author has identified the following significant results. Acid waste plume was observed in LANDSAT imagery fourteen times ranging from during dump up to 54 hours after dump. Circulation processes at the waste disposal site are highly storm-dominated, with the majority of the water transport occurring during strong northeasterlies. There is a mean flow to the south along shore. This appears to be due to the fact that northeasterly winds produce stronger currents than those driven by southeasterly winds and by the thermohaline circulation. During the warm months (May through October), the ocean at the dump site stratifies with a distinct thermocline observed during all summer cruising at depths ranging from 10 to 21 m. During stratified conditions, the near-bottom currents were small. Surface currents responded to wind conditions resulting in rapid movement of surface drogues on windy days. Mid-depth drogues showed an intermediate behavior, moving more rapidly as wind velocities increased.
NASA Astrophysics Data System (ADS)
Klotz, Bradley W.; Jiang, Haiyan
2016-10-01
A 12 year global database of rain-corrected satellite scatterometer surface winds for tropical cyclones (TCs) is used to produce composites of TC surface wind speed distributions relative to vertical wind shear and storm motion directions in each TC-prone basin and various TC intensity stages. These composites corroborate ideas presented in earlier studies, where maxima are located right of motion in the Earth-relative framework. The entire TC surface wind asymmetry is down motion left for all basins and for lower strength TCs after removing the motion vector. Relative to the shear direction, the motion-removed composites indicate that the surface wind asymmetry is located down shear left for the outer region of all TCs, but for the inner-core region it varies from left of shear to down shear right for different basin and TC intensity groups. Quantification of the surface wind asymmetric structure in further stratifications is a necessary next step for this scatterometer data set.
NASA Technical Reports Server (NTRS)
Lewis, T. L.; Banner, R. D.
1971-01-01
A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.
Dust emission from wet and dry playas in the Mojave Desert, USA
Reynolds, R.L.; Yount, J.C.; Reheis, M.; Goldstein, H.; Chavez, P.; Fulton, R.; Whitney, J.; Fuller, C.; Forester, R.M.
2007-01-01
The interactions between playa hydrology and playa-surface sediments are important factors that control the type and amount of dust emitted from playas as a result of wind erosion. The production of evaporite minerals during evaporative loss of near-surface ground water results in both the creation and maintenance of several centimeters or more of loose sediment on and near the surfaces of wet playas. Observations that characterize the texture, mineralogic composition and hardness of playa surfaces at Franklin Lake, Soda Lake and West Cronese Lake playas in the Mojave Desert (California), along with imaging of dust emission using automated digital photography, indicate that these kinds of surface sediment are highly susceptible to dust emission. The surfaces of wet playas are dynamic - surface texture and sediment availability to wind erosion change rapidly, primarily in response to fluctuations in water-table depth, rainfall and rates of evaporation. In contrast, dry playas are characterized by ground water at depth. Consequently, dry playas commonly have hard surfaces that produce little or no dust if undisturbed except for transient silt and clay deposited on surfaces by wind and water. Although not the dominant type of global dust, salt-rich dusts from wet playas may be important with respect to radiative properties of dust plumes, atmospheric chemistry, windborne nutrients and human health.
X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform
NASA Technical Reports Server (NTRS)
Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon
2007-01-01
The increased role of unmanned aerial vehicles (UAV) in NASA's suborbital program has created a strong interest in the development of instruments with new capabilities, more compact sizes and reduced weights than the instruments currently operated on manned aircrafts. There is a strong demand and tremendous potential for using high altitude UAV (HUAV) to carry weather radars for measurements of reflectivity and wind fields from tropical storms. Tropical storm genesis frequently occurs in ocean regions that are inaccessible to piloted aircraft due to the long off shore range and the required periods of time to gather significant data. Important factors of interest for the study of hurricane genesis include surface winds, profiled winds, sea surface temperatures, precipitation, and boundary layer conditions. Current satellite precipitation and surface wind sensors have resolutions that are too large and revisit times that are too infrequent to study this problem. Furthermore, none of the spaceborne sensors measure winds within the storm itself. A dual beam X-band Doppler radar, UAV Radar (URAD), is under development at the NASA Goddard Space Flight Center for the study of tropical storms from HUAV platforms, such as a Global Hawk. X-band is the most desirable frequency for airborne weather radars since these can be built in a relatively compact size using off-the-shelf components which cost significantly less than other higher frequency radars. Furthermore, X-band radars provide good sensitivity with tolerable attenuation in storms. The low-cost and light-weight URAD will provide new capabilities for studying hurricane genesis by analyzing the vertical structure of tropical cyclones as well as 3D reflectivity and wind fields in clouds. It will enable us to measure both the 3D precipitation structure and surface winds by using two antenna beams: fixed nadir and conical scanning each produced by its associated subsystem. The nadir subsystem is a magnetron based radar modified from a marine radar transceiver. It is capable of measuring vertical reflectivity and velocity profile while being a lower-cost, smaller size, and lighter weight version of the NASA ER-2 Doppler Radar (EDOP), which has flown during many NASA field campaigns and has provided valuable scientific information on hurricanes and weather phenomena. Unfortunately, EDOP is too large and heavy for most UAV platforms, but the experience gained with this instrument provided us with the heritage to build a new low-cost, light-weight, smaller system that will be capable of flying on UAVs. The scanning subsystem uses a TWT transmitter and provides measurements of 3D reflectivity/wind fields in-clouds. Conical scanning of the radar beam at a 35 deg. incidence angle will also provide information of surface wind speed and direction derived from the surface return over a single 360 deg. sweep. URAD data system will be Linux based with the capability of autonomous operation. It will utilize cutting edge digital receiver and FPGA technologies to carry out the data acquisition and processing tasks. High speed navigation data from the aircraft will also be captured and saved along with radar data for 3D measurement field reconstruction and aircraft motion correction. There is a tremendous potential for UAVs to carry down-looking weather radars for measurements of reflectivity, horizontal and vertical winds from tropical storms. With operation from HUAV platforms, the dual beam X-band radar under development promises to provide greatly needed information for tropical storm research.
Structure of protoplanetary discs with magnetically driven winds
NASA Astrophysics Data System (ADS)
Khajenabi, Fazeleh; Shadmehri, Mohsen; Pessah, Martin E.; Martin, Rebecca G.
2018-04-01
We present a new set of analytical solutions to model the steady-state structure of a protoplanetary disc with a magnetically driven wind. Our model implements a parametrization of the stresses involved and the wind launching mechanism in terms of the plasma parameter at the disc midplane, as suggested by the results of recent, local magnetohydrodynamical simulations. When wind mass-loss is accounted for, we find that its rate significantly reduces the disc surface density, particularly in the inner disc region. We also find that models that include wind mass-loss lead to thinner dust layers. As an astrophysical application of our models, we address the case of HL Tau, whose disc exhibits a high accretion rate and efficient dust settling at its midplane. These two observational features are not easy to reconcile with conventional accretion disc theory, where the level of turbulence needed to explain the high accretion rate would prevent a thin dust layer. Our disc model that incorporates both mass-loss and angular momentum removal by a wind is able to account for HL Tau observational constraints concerning its high accretion rate and dust layer thinness.
Wind Measurements from Arc Scans with Doppler Wind Lidar
Wang, H.; Barthelmie, R. J.; Clifton, Andy; ...
2015-11-25
When defining optimal scanning geometries for scanning lidars for wind energy applications, we found that it is still an active field of research. Our paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of itsmore » high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. Moreover, the radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.« less
Potential impact of remote sensing data on sea-state analysis and prediction
NASA Technical Reports Server (NTRS)
Cardone, V. J.
1983-01-01
The severe North Atlantic storm which damaged the ocean liner Queen Elizabeth 2 (QE2) was studied to assess the impact of remotely sensed marine surface wind data obtained by SEASAT-A, on sea state specifications and forecasts. Alternate representations of the surface wind field in the QE2 storm were produced from the SEASAT enhanced data base, and from operational analyses based upon conventional data. The wind fields were used to drive a high resolution spectral ocean surface wave prediction model. Results show that sea state analyses would have been vastly improved during the period of storm formation and explosive development had remote sensing wind data been available in real time. A modest improvement in operational 12 to 24 hour wave forecasts would have followed automatically from the improved initial state specification made possible by the remote sensing data in both numerical and sea state prediction models. Significantly improved 24 to 48 hour wave forecasts require in addition to remote sensing data, refinement in the numerical and physical aspects of weather prediction models.
NASA Astrophysics Data System (ADS)
Jakub, Fabian; Mayer, Bernhard
2017-11-01
The formation of shallow cumulus cloud streets was historically attributed primarily to dynamics. Here, we focus on the interaction between radiatively induced surface heterogeneities and the resulting patterns in the flow. Our results suggest that solar radiative heating has the potential to organize clouds perpendicular to the sun's incidence angle. To quantify the extent of organization, we performed a high-resolution large-eddy simulation (LES) parameter study. We varied the horizontal wind speed, the surface heat capacity, the solar zenith and azimuth angles, and radiative transfer parameterizations (1-D and 3-D). As a quantitative measure we introduce a simple algorithm that provides a scalar quantity for the degree of organization and the alignment. We find that, even in the absence of a horizontal wind, 3-D radiative transfer produces cloud streets perpendicular to the sun's incident direction, whereas the 1-D approximation or constant surface fluxes produce randomly positioned circular clouds. Our reasoning for the enhancement or reduction of organization is the geometric position of the cloud's shadow and its corresponding surface fluxes. Furthermore, when increasing horizontal wind speeds to 5 or 10 m s-1, we observe the development of dynamically induced cloud streets. If, in addition, solar radiation illuminates the surface beneath the cloud, i.e., when the sun is positioned orthogonally to the mean wind field and the solar zenith angle is larger than 20°, the cloud-radiative feedback has the potential to significantly enhance the tendency to organize in cloud streets. In contrast, in the case of the 1-D approximation (or overhead sun), the tendency to organize is weaker or even prohibited because the shadow is cast directly beneath the cloud. In a land-surface-type situation, we find the organization of convection happening on a timescale of half an hour. The radiative feedback, which creates surface heterogeneities, is generally diminished for large surface heat capacities. We therefore expect radiative feedbacks to be strongest over land surfaces and weaker over the ocean. Given the results of this study we expect that simulations including shallow cumulus convection will have difficulties producing cloud streets if they employ 1-D radiative transfer solvers or may need unrealistically high wind speeds to excite cloud street organization.
The polarization patterns of skylight reflected off wave water surface.
Zhou, Guanhua; Xu, Wujian; Niu, Chunyue; Zhao, Huijie
2013-12-30
In this paper we propose a model to understand the polarization patterns of skylight when reflected off the surface of waves. The semi-empirical Rayleigh model is used to analyze the polarization of scattered skylight; the Harrison and Coombes model is used to analyze light radiance distribution; and the Cox-Munk model and Mueller matrix are used to analyze reflections from wave surface. First, we calculate the polarization patterns and intensity distribution of light reflected off wave surface. Then we investigate their relationship with incident radiation, solar zenith angle, wind speed and wind direction. Our results show that the polarization patterns of reflected skylight from waves and flat water are different, while skylight reflected on both kinds of water is generally highly polarized at the Brewster angle and the polarization direction is approximately parallel to the water's surface. The backward-reflecting Brewster zone has a relatively low reflectance and a high DOP in all observing directions. This can be used to optimally diminish the reflected skylight and avoid sunglint in ocean optics measurements.
The Effect of Overstory Removal Upon Surface WInd in a Black Spruce Bog
James M. Brown
1972-01-01
Wind passage was measured over a black spruce canopy, at the surface under the canopy, and in a clearcut strip in a northern Minnesota bog. During a 40-day period wind below the canopy was 10 percent of that above the canopy while the wind in the clearcut strip was 45 percent of the total above the canopy. Wind at the surface of the clearcut strip was of longer...
The Hurricane Imaging Radiometer: Present and Future
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Biswas, S. K.; Cecil, D.; Jones, W. L.; Johnson, J.; Farrar, S.; Sahawneh, S.; Ruf, C. S.;
2013-01-01
The Hurricane Imaging Radiometer (HIRAD) is an airborne passive microwave radiometer designed to provide high resolution, wide swath imagery of surface wind speed in tropical cyclones from a low profile planar antenna with no mechanical scanning. Wind speed and rain rate images from HIRAD's first field campaign (GRIP, 2010) are presented here followed, by a discussion on the performance of the newly installed thermal control system during the 2012 HS3 campaign. The paper ends with a discussion on the next generation dual polarization HIRAD antenna (already designed) for a future system capable of measuring wind direction as well as wind speed.
Surface waves on the tailward flanks of the Earth's magnetopause
NASA Technical Reports Server (NTRS)
Seon, J.; Frank, L. A.; Lazarus, A. J.; Lepping, R. P.
1995-01-01
Forty-three examples of ISEE 1 tailward flank side magnetopause crossings are examined and directly compared with upstream solar wind parameters. The crossings are classified into two groups. In the first group, a few sudden magnetopause crossings are observed, whereas repeated magnetopause crossings and oscillatory motions, often with boundary layer signatures, are observed in the second group. These distinctive characteristics of the two groups are interpreted in terms of the surface waves due to the Kelvin-Helmholtz instability. It is found that low solar wind speed tends to favor characteristics of the first group, whereas high solar wind speed yields those of the second group. However, no evident correlations between the groups and the interplanetary magnetic field directions are found.
Mojica, Elizabeth K.; Watts, Bryan D.; Turrin, Courtney L.
2016-01-01
Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60–100). PMID:27336482
Mojica, Elizabeth K; Watts, Bryan D; Turrin, Courtney L
2016-01-01
Collisions with anthropogenic structures are a significant and well documented source of mortality for avian species worldwide. The bald eagle (Haliaeetus leucocephalus) is known to be vulnerable to collision with wind turbines and federal wind energy guidelines include an eagle risk assessment for new projects. To address the need for risk assessment, in this study, we 1) identified areas of northeastern North America utilized by migrating bald eagles, and 2) compared these with high wind-potential areas to identify potential risk of bald eagle collision with wind turbines. We captured and marked 17 resident and migrant bald eagles in the northern Chesapeake Bay between August 2007 and May 2009. We produced utilization distribution (UD) surfaces for 132 individual migration tracks using a dynamic Brownian bridge movement model and combined these to create a population wide UD surface with a 1 km cell size. We found eagle migration movements were concentrated within two main corridors along the Appalachian Mountains and the Atlantic Coast. Of the 3,123 wind turbines ≥100 m in height in the study area, 38% were located in UD 20, and 31% in UD 40. In the United States portion of the study area, commercially viable wind power classes overlapped with only 2% of the UD category 20 (i.e., the areas of highest use by migrating eagles) and 4% of UD category 40. This is encouraging because it suggests that wind energy development can still occur in the study area at sites that are most viable from a wind power perspective and are unlikely to cause significant mortality of migrating eagles. In siting new turbines, wind energy developers should avoid the high-use migration corridors (UD categories 20 & 40) and focus new wind energy projects on lower-risk areas (UD categories 60-100).
Assessing Videogrammetry for Static Aeroelastic Testing of a Wind-Tunnel Model
NASA Technical Reports Server (NTRS)
Spain, Charles V.; Heeg, Jennifer; Ivanco, Thomas G.; Barrows, Danny A.; Florance, James R.; Burner, Alpheus W.; DeMoss, Joshua; Lively, Peter S.
2004-01-01
The Videogrammetric Model Deformation (VMD) technique, developed at NASA Langley Research Center, was recently used to measure displacements and local surface angle changes on a static aeroelastic wind-tunnel model. The results were assessed for consistency, accuracy and usefulness. Vertical displacement measurements and surface angular deflections (derived from vertical displacements) taken at no-wind/no-load conditions were analyzed. For accuracy assessment, angular measurements were compared to those from a highly accurate accelerometer. Shewhart's Variables Control Charts were used in the assessment of consistency and uncertainty. Some bad data points were discovered, and it is shown that the measurement results at certain targets were more consistent than at other targets. Physical explanations for this lack of consistency have not been determined. However, overall the measurements were sufficiently accurate to be very useful in monitoring wind-tunnel model aeroelastic deformation and determining flexible stability and control derivatives. After a structural model component failed during a highly loaded condition, analysis of VMD data clearly indicated progressive structural deterioration as the wind-tunnel condition where failure occurred was approached. As a result, subsequent testing successfully incorporated near- real-time monitoring of VMD data in order to ensure structural integrity. The potential for higher levels of consistency and accuracy through the use of statistical quality control practices are discussed and recommended for future applications.
Wind Stress Variability Observed Over Coastal Waters
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, D. G.; Haus, B. K.; Laxague, N.; Williams, N. J.; Graber, H. C.
2016-02-01
The wind stress on the ocean surface generates waves, drives currents, and enhances gas exchange; and a significant amount of work has been done to characterize the air-sea momentum flux in terms of bulk oceanographic and atmospheric parameters. However, the majority of this work to develop operational algorithms has been focused on the deep ocean and the suitability of these methods in the coastal regime has not been evaluated. The findings from a two-part field campaign will be presented which highlight the divergence of nearshore wind stress observations from conventional, deep water results. The first set of data comes from a coastal region near a relatively small, natural tidal inlet. A high degree of spatial variability was observed in both the wind stress magnitude and direction, suggestive of coastal processes (e.g., depth-limited wave affects and horizontal current shear) modulating the momentum flux from the atmosphere to the ocean surface. These shallow-water processes are typically not accounted for in conventional parameterizations. Across the experimental domain and for a given wind speed, the stress magnitude was found to be nearly 2.5 times that predicted by conventional methods; also, a high propensity for stress steering off the mean azimuthal wind direction (up to ±70 degrees) was observed and linked to horizontal current gradients produced by the tidal inlet. The preliminary findings from a second data set taken in the vicinity of the macrotidal Columbia River Mouth will also be presented. Compared to the first data set, a similar degree of variability is observed here, but the processes responsible for this are present at a much larger scale. Specifically, the Columbia River Mouth observations were made in the presence of significant swell wave energy and during periods of very high estuarine discharge. The relative angle between the wind and swell direction is expected to be significant with regards to the observed momentum flux. Also, these processes facilitate strong wave-current interaction, which may also affect the surface topography and thus play a role in air-sea exchanges. The Columbia River Mouth system showcases a complex coastal environment and future avenues for investigating these dynamics will be discussed.
NASA Technical Reports Server (NTRS)
Halpern, D.
1984-01-01
The natural variability of the equatorial Pacific surface wind field is described from long period surface wind measurements made at three sites along the equator (95 deg W, 109 deg 30 W, 152 deg 30 W). The data were obtained from surface buoys moored in the deep ocean far from islands or land, and provide criteria to adequately sample the tropical Pacific winds from satellites.
Thompson, Sally E; Katul, Gabriel G
2013-06-01
Migration of plant populations is a potential survival response to climate change that depends critically on seed dispersal. Biological and physical factors determine dispersal and migration of wind-dispersed species. Recent field and wind tunnel studies demonstrate biological adaptations that bias seed release toward conditions of higher wind velocity, promoting longer dispersal distances and faster migration. However, another suite of international studies also recently highlighted a global decrease in near-surface wind speeds, or 'global stilling'. This study assessed the implications of both factors on potential plant population migration rates, using a mechanistic modeling framework. Nonrandom abscission was investigated using models of three seed release mechanisms: (i) a simple drag model; (ii) a seed deflection model; and (iii) a 'wear and tear' model. The models generated a single functional relationship between the frequency of seed release and statistics of the near-surface wind environment, independent of the abscission mechanism. An Inertial-Particle, Coupled Eulerian-Lagrangian Closure model (IP-CELC) was used to investigate abscission effects on seed dispersal kernels and plant population migration rates under contemporary and potential future wind conditions (based on reported global stilling trends). The results confirm that nonrandom seed abscission increased dispersal distances, particularly for light seeds. The increases were mitigated by two physical feedbacks: (i) although nonrandom abscission increased the initial acceleration of seeds from rest, the sensitivity of the seed dispersal to this initial condition declined as the wind speed increased; and (ii) while nonrandom abscission increased the mean dispersal length, it reduced the kurtosis of seasonal dispersal kernels, and thus the chance of long-distance dispersal. Wind stilling greatly reduced the modeled migration rates under biased seed release conditions. Thus, species that require high wind velocities for seed abscission could experience threshold-like reductions in dispersal and migration potential if near-surface wind speeds continue to decline. © 2013 Blackwell Publishing Ltd.
Significant Wave Height under Hurricane Irma derived from SAR Sentinel-1 Data
NASA Astrophysics Data System (ADS)
Lehner, S.; Pleskachevsky, A.; Soloviev, A.; Fujimura, A.
2017-12-01
The 2017 Atlantic hurricane season was with three major hurricanes a particular active one. The Category 4 hurricane Irma made landfall on the Florida Keys on September 10th 2017 and was imaged several times by ESAs Sentinel-1 satellites in C-band and the TerraSAR-X satellite in X-band. The high resolution TerraSAR-X imagery showed the footprint of individual tornadoes on the sea surface together with their turbulent wake imaged as a dark line due to increased turbulence. The water-cloud structures of the tornadoes are analyzed and their sea surface structure is compared to optical and IR cloud imagery. An estimate of the wind field using standard XMOD algorithms is provided, although saturating under the strong rain and high wind speed conditions. Imaging the hurricanes by space radar gives the opportunity to observe the sea surface and thus measure the wind field and the sea state under hurricane conditions through the clouds even in this severe weather, although rain features, which are usually not observed in SAR become visible due to damping effects. The Copernicus Sentinel-1 A and B satellites, which are operating in C-band provided several images of the sea surface under hurricane Irma, Jose and Maria. The data were acquired daily and converted into measurements of sea surface wind field u10 and significant wave height Hs over a swath width of 280km about 1000 km along the orbit. The wind field of the hurricanes as derived by CMOD is provided by NOAA operationally on their web server. In the hurricane cases though the wind speed saturates at 20 m/sec and is thus too low in the area of hurricane wind speed. The technique to derive significant wave height is new though and does not show any calibration issues. This technique provides for the first time measurements of the areal coverage and distribution of the ocean wave height as caused by a hurricane on SAR wide swath images. Wave heights up to 10 m were measured under the forward quadrant of the hurricane while making landfall on Cuba and the Florida Keys, where IRMA still hit as a category 3 to 4 hurricane. Results are compared to the WW3 model, which could not be validated over an area under strong and variable wind conditions before. A new theory on hurricane intensification based on Kelvin-Helmholtz instability is discussed and a first comparison to the SAR data is given.
Laboratory modeling of air-sea interaction under severe wind conditions
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Vasiliy, Kazakov; Nicolay, Bogatov; Olga, Ermakova; Mikhail, Salin; Daniil, Sergeev; Maxim, Vdovin
2010-05-01
Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested by Emanuel (1995) on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field (Powell, Vickery, Reinhold, 2003, French et al, 2007, Black, et al, 2007) and laboratory (Donelan et al, 2004) experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed by Kudryavtsev & Makin (2007) and Kukulka,Hara Belcher (2007), the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange (Andreas, 2004; Makin, 2005; Kudryavtsev, 2006). The main objective of this work is investigation of factors determining momentum exchange under high wind speeds basing on the laboratory experiment in a well controlled environment. The experiments were carried out in the Thermo-Stratified WInd-WAve Tank (TSWIWAT) of the Institute of Applied Physics. The parameters of the facility are as follows: airflow 0 - 25 m/s (equivalent 10-m neutral wind speed U10 up to 60 m/s), dimensions 10m x 0.4m x 0.7 m, temperature stratification of the water layer. Simultaneous measurements of the airflow velocity profiles and wind waves were carried out in the wide range of wind velocities. Airflow velocity profile was measured by WindSonic ultrasonic wind sensor. The water elevation was measured by the three-channel wave-gauge. Top and side views of the water surface were fixed by CCD-camera. Wind friction velocity and surface drag coefficients were retrieved from the measurements by the profile method. Obtained values are in good agreement with the data of measurements by Donelan et al (2004). The directional frequency-wave-number spectra of surface waves were retrieved by the wavelet directional method (Donelan et al, 1996). The obtained dependencies of parameters of the wind waves indicate existing of two regimes of the waves with the critical wind speed Ucr about 30 m/s. For U10
NASA Technical Reports Server (NTRS)
Waites, W. L.; Chin, Y. T.
1974-01-01
A small-scale wind tunnel test of a two engine hybrid model with upper surface blowing on a simulated expandable duct internally blown flap was accomplished in a two phase program. The low wing Phase I model utilized 0.126c radius Jacobs/Hurkamp flaps and 0.337c radius Coanda flaps. The high wing Phase II model was utilized for continued studies on the Jacobs/Hurkamp flap. Principal study areas included: basic data both engines operative and with an engine out, control flap utilization, horizontal tail effectiveness, spoiler effectiveness, USB nacelle deflector study and USB/IBF pressure ratio effects.
NASA Astrophysics Data System (ADS)
Mo, Jingyue; Huang, Tao; Zhang, Xiaodong; Zhao, Yuan; Liu, Xiao; Li, Jixiang; Gao, Hong; Ma, Jianmin
2017-12-01
As a renewable and clean energy source, wind power has become the most rapidly growing energy resource worldwide in the past decades. Wind power has been thought not to exert any negative impacts on the environment. However, since a wind farm can alter the local meteorological conditions and increase the surface roughness lengths, it may affect air pollutants passing through and over the wind farm after released from their sources and delivered to the wind farm. In the present study, we simulated the nitrogen dioxide (NO2) air concentration within and around the world's largest wind farm (Jiuquan wind farm in Gansu Province, China) using a coupled meteorology and atmospheric chemistry model WRF-Chem. The results revealed an edge effect
, which featured higher NO2 levels at the immediate upwind and border region of the wind farm and lower NO2 concentration within the wind farm and the immediate downwind transition area of the wind farm. A surface roughness length scheme and a wind turbine drag force scheme were employed to parameterize the wind farm in this model investigation. Modeling results show that both parameterization schemes yield higher concentration in the immediate upstream of the wind farm and lower concentration within the wind farm compared to the case without the wind farm. We infer this edge effect and the spatial distribution of air pollutants to be the result of the internal boundary layer induced by the changes in wind speed and turbulence intensity driven by the rotation of the wind turbine rotor blades and the enhancement of surface roughness length over the wind farm. The step change in the roughness length from the smooth to rough surfaces (overshooting) in the upstream of the wind farm decelerates the atmospheric transport of air pollutants, leading to their accumulation. The rough to the smooth surface (undershooting) in the downstream of the wind farm accelerates the atmospheric transport of air pollutants, resulting in lower concentration level.
Influence of Persistent Wind Scour on the Surface Mass Balance of Antarctica
NASA Technical Reports Server (NTRS)
Das, Indrani; Bell, Robin E.; Scambos, Ted A.; Wolovick, Michael; Creyts, Timothy T.; Studinger, Michael; Fearson, Nicholas; Nicolas, Julien P.; Lenaerts, Jan T. M.; vandenBroeke, Michiel R.
2013-01-01
Accurate quantification of surface snow accumulation over Antarctica is a key constraint for estimates of the Antarctic mass balance, as well as climatic interpretations of ice-core records. Over Antarctica, near-surface winds accelerate down relatively steep surface slopes, eroding and sublimating the snow. This wind scour results in numerous localized regions (< or = 200 sq km) with reduced surface accumulation. Estimates of Antarctic surface mass balance rely on sparse point measurements or coarse atmospheric models that do not capture these local processes, and overestimate the net mass input in wind-scour zones. Here we combine airborne radar observations of unconformable stratigraphic layers with lidar-derived surface roughness measurements to identify extensive wind-scour zones over Dome A, in the interior of East Antarctica. The scour zones are persistent because they are controlled by bedrock topography. On the basis of our Dome A observations, we develop an empirical model to predict wind-scour zones across the Antarctic continent and find that these zones are predominantly located in East Antarctica. We estimate that approx. 2.7-6.6% of the surface area of Antarctica has persistent negative net accumulation due to wind scour, which suggests that, across the continent, the snow mass input is overestimated by 11-36.5 Gt /yr in present surface-mass-balance calculations.
A method for establishing a long duration, stratospheric platform for astronomical research
NASA Astrophysics Data System (ADS)
Fesen, Robert; Brown, Yorke
2015-10-01
During certain times of the year at middle and low latitudes, winds in the upper stratosphere move in nearly the opposite direction than the wind in the lower stratosphere. Here we present a method for maintaining a high-altitude balloon platform in near station-keeping mode that utilizes this stratospheric wind shear. The proposed method places a balloon-borne science platform high in the stratosphere connected by a lightweight, high-strength tether to a tug vehicle located in the lower or middle stratosphere. Using aerodynamic control surfaces, wind-induced aerodynamic forces on the tug can be manipulated to counter the wind drag acting on the higher altitude science vehicle, thus controlling the upper vehicle's geographic location. We describe the general framework of this station-keeping method, some important properties required for the upper stratospheric science payload and lower tug platforms, and compare this station-keeping approach with the capabilities of a high altitude airship and conventional tethered aerostat approaches. We conclude by discussing the advantages of such a platform for a variety of missions with emphasis on astrophysical research.
NASA Technical Reports Server (NTRS)
Zimmerman, M. I.; Farrell, W. M.; Poppe, A. R.
2014-01-01
We present results from a new grid-free 2D plasma simulation code applied to a small, unmagnetized body immersed in the streaming solar wind plasma. The body was purposely modeled as an irregular shape in order to examine photoemission and solar wind plasma flow in high detail on the dayside, night-side, terminator and surface-depressed 'pocket' regions. Our objective is to examine the overall morphology of the various plasma interaction regions that form around a small body like a small near-Earth asteroid (NEA). We find that the object obstructs the solar wind flow and creates a trailing wake region downstream, which involves the interplay between surface charging and ambipolar plasma expansion. Photoemission is modeled as a steady outflow of electrons from illuminated portions of the surface, and under direct illumination the surface forms a non-monotonic or ''double-sheath'' electric potential upstream of the body, which is important for understanding trajectories and equilibria of lofted dust grains in the presence of a complex asteroid geometry. The largest electric fields are found at the terminators, where ambipolar plasma expansion in the body-sized night-side wake merges seamlessly with the thin photoelectric sheath on the dayside. The pocket regions are found to be especially complex, with nearby sunlit regions of positive potential electrically connected to unlit negative potentials and forming adjacent natural electric dipoles. For objects near the surface, we find electrical dissipation times (through collection of local environmental solar wind currents) that vary over at least 5 orders of magnitude: from 39 Micro(s) inside the near-surface photoelectron cloud under direct sunlight to less than 1 s inside the particle-depleted night-side wake and shadowed pocket regions
Laboratory Simulations of Martian and Venusian Aeolian Processes
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
With the flyby of the Neptune system by Voyager, the preliminary exploration of the Solar System was accomplished. Data have been returned for all major planets and satellites except the Pluto system. Results show that the surfaces of terrestrial planets and satellites have been subjected to a wide variety of geological processes. On solid- surface planetary objects having an atmosphere, aeolian processes are important in modifying their surfaces through the redistribution of fine-grained material by the wind. Bedrock may be eroded to produce particles and the particles transported by wind for deposition in other areas. This process operates on Earth today and is evident throughout the geological record. Aeolian processes also occur on Mars, Venus, and possibly Titan and Triton, both of which are outer planet satellites that have atmospheres. Mariner 9 and Viking results show abundant wind-related landforms on Mars, including dune fields and yardangs (wind-eroded hills). On Venus, measurements made by the Soviet Venera and Vega spacecraft and extrapolations from the Pioneer Venus atmospheric probes show that surface winds are capable of transporting particulate materials and suggest that aeolian processes may operate on that planet as well. Magellan radar images of Venus show abundant wind streaks in some areas, as well as dune fields and a zone of possible yardangs. The study of planetary aeolian processes must take into account diverse environments, from the cold, low-density atmosphere of Mars to the extremely hot, high- density Venusian atmosphere. Factors such as threshold wind speeds (minimum wind velocity needed to move particles), rates of erosion and deposition, trajectories of windblown particles, and aeolian flow fields over various landforms are all important aspects of the problem. In addition, study of aeolian terrains on Earth using data analogous to planetary data-collection systems is critical to the interpretation of spacecraft information and places constraints on results from numerical models and laboratory simulations.
NASA Technical Reports Server (NTRS)
Iversen, J. D.
1991-01-01
The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.
Effect of film slicks on near-surface wind
NASA Astrophysics Data System (ADS)
Charnotskii, Mikhail; Ermakov, Stanislav; Ostrovsky, Lev; Shomina, Olga
2016-09-01
The transient effects of horizontal variation of sea-surface wave roughness due to surfactant films on near-surface turbulent wind are studied theoretically and experimentally. Here we suggest two practical schemes for calculating variations of wind velocity profiles near the water surface, the average short-wave roughness of which is varying in space and time when a film slick is present. The schemes are based on a generalized two-layer model of turbulent air flow over a rough surface and on the solution of the continuous model involving the equation for turbulent kinetic energy of the air flow. Wave tank studies of wind flow over wind waves in the presence of film slicks are described and compared with theory.
NASA Technical Reports Server (NTRS)
Ramp, Steven R.; Garwood, Roland W.; Snow, Richard L.; Davis, Curtiss O.
1991-01-01
The difference between the temperature of the ocean at 4-cm and 2-m depth was continuously monitored during a cruise to the coastal transition zone off Point Arena, California, during June 1987. The two temperatures were coincident most of the time but diverged during one nearshore leg of the cruise where large temperature differences of up to 4.7 C were observed between the 4-cm and 2-m sensors, in areas which were separated by regions where the two temperatures were coincident as usual. The spatial scale of this 'patchy' thermal structure was about 5-10 km. A mixed layer model (Garwood, 1977) was used to simulate the near surface stratification when forced by the observed wind stress, surface heating, and optical clarity of the water. The model produced a thin strongly stratified surface layer at stations where exceptionally high turbidity was observed but did not produce such features otherwise. This simple model could not explain the horizontal patchiness in the thermal structure, which was likely due to patchiness in the near-surface chlorophyll distributions or to submesoscale variability of the surface wind stress.
Ocean Wave Simulation Based on Wind Field
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates. PMID:26808718
Ocean Wave Simulation Based on Wind Field.
Li, Zhongyi; Wang, Hao
2016-01-01
Ocean wave simulation has a wide range of applications in movies, video games and training systems. Wind force is the main energy resource for generating ocean waves, which are the result of the interaction between wind and the ocean surface. While numerous methods to handle simulating oceans and other fluid phenomena have undergone rapid development during the past years in the field of computer graphic, few of them consider to construct ocean surface height field from the perspective of wind force driving ocean waves. We introduce wind force to the construction of the ocean surface height field through applying wind field data and wind-driven wave particles. Continual and realistic ocean waves result from the overlap of wind-driven wave particles, and a strategy was proposed to control these discrete wave particles and simulate an endless ocean surface. The results showed that the new method is capable of obtaining a realistic ocean scene under the influence of wind fields at real time rates.
NASA Astrophysics Data System (ADS)
Burgess, K. D.; Stroud, R. M.
2018-03-01
The solar wind is an important driver of space weathering on airless bodies. Over time, solar wind exposure alters the physical, chemical, and optical properties of exposed materials and can also impart a significant amount of helium into the surfaces of these bodies. However, common materials on the surface of the Moon, such as glass, crystalline silicates, and oxides, have highly variable responses to solar wind irradiation. We used scanning transmission electron microscopy (STEM) with electron energy loss spectroscopy (EELS) to examine the morphology and chemistry of a single grain of lunar soil that includes silicate glass, chromite and ilmenite, all present and exposed along the same surface. The exposure of the silicate glass and oxides to the same space weathering conditions allows for direct comparisons of the responses of natural materials to the complex lunar surface environment. The silicate glass shows minimal effects of solar wind irradiation, whereas both the chromite and ilmenite exhibit defect-rich rims that currently contain trapped helium. Only the weathered rim in ilmenite is rich in nanophase metallic iron (npFe0) and larger vesicles that retain helium at a range of internal pressures. The multiple exposed surfaces of the single grain of ilmenite demonstrate strong crystallographic controls of planar defects and non-spherical npFe0. The direct spectroscopic identification of helium in the vesicles and planar defects in the oxides provides additional evidence of the central role of solar wind irradiation in the formation of some common space weathering features.
Land-atmosphere-ocean interactions in the southeastern Atlantic: interannual variability
NASA Astrophysics Data System (ADS)
Sun, Xiaoming; Vizy, Edward K.; Cook, Kerry H.
2018-02-01
Land-atmosphere-ocean interactions in the southeastern South Atlantic and their connections to interannual variability are examined using a regional climate model coupled with an intermediate-level ocean model. In austral summer, zonal displacements of the South Atlantic subtropical high (SASH) can induce variations of mixed-layer currents in the Benguela upwelling region through surface wind stress curl anomalies near the Namibian coast, and an eastward shifted SASH is related to the first Pacific-South American mode. When the SASH is meridionally displaced, mixed layer vertically-integrated Ekman transport anomalies are mainly a response to the change of alongshore surface wind stress. The latitudinal shift of the SASH tends to dampen the anomalous alongshore wind by modulating the land-sea thermal contrast, while opposed by oceanic diffusion. Although the position of the SASH is closely linked to the phase of El Niño-Southern Oscillation (ENSO) and the southern annular mode (SAM) in austral summer, an overall relationship between Benguela upwelling strength and ENSO or SAM is absent. During austral winter, variations of the mixed layer Ekman transport in the Benguela upwelling region are connected to the strength of the SASH through its impact on both coastal wind stress curl and alongshore surface wind stress. Compared with austral summer, low-level cloud cover change plays a more important role. Although wintertime sea surface temperature fluctuations in the equatorial Atlantic are strong and may act to influence variability over the northern Benguela area, the surface heat budget analysis suggests that local air-sea interactions dominate.
Osan AB, Korea. Revised Uniform Summary of Surface Weather Observations (RUSSWO). Parts A-F.
1982-06-14
USAFETAC SURFACE WINDS2 AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 1471220 OSAN AS KO 73-S1 FED...BRANCHusAF’TAC SURFACE WINDS AIR WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) 47122’ OSAN AS KO 73-81 NOV _RLL
NASA Astrophysics Data System (ADS)
Mailhot, J.; Milbrandt, J. A.; Giguère, A.; McTaggart-Cowan, R.; Erfani, A.; Denis, B.; Glazer, A.; Vallée, M.
2014-01-01
Environment Canada ran an experimental numerical weather prediction (NWP) system during the Vancouver 2010 Winter Olympic and Paralympic Games, consisting of nested high-resolution (down to 1-km horizontal grid-spacing) configurations of the GEM-LAM model, with improved geophysical fields, cloud microphysics and radiative transfer schemes, and several new diagnostic products such as density of falling snow, visibility, and peak wind gust strength. The performance of this experimental NWP system has been evaluated in these winter conditions over complex terrain using the enhanced mesoscale observing network in place during the Olympics. As compared to the forecasts from the operational regional 15-km GEM model, objective verification generally indicated significant added value of the higher-resolution models for near-surface meteorological variables (wind speed, air temperature, and dewpoint temperature) with the 1-km model providing the best forecast accuracy. Appreciable errors were noted in all models for the forecasts of wind direction and humidity near the surface. Subjective assessment of several cases also indicated that the experimental Olympic system was skillful at forecasting meteorological phenomena at high-resolution, both spatially and temporally, and provided enhanced guidance to the Olympic forecasters in terms of better timing of precipitation phase change, squall line passage, wind flow channeling, and visibility reduction due to fog and snow.
A High-Resolution Merged Wind Dataset for DYNAMO: Progress and Future Plans
NASA Technical Reports Server (NTRS)
Lang, Timothy J.; Mecikalski, John; Li, Xuanli; Chronis, Themis; Castillo, Tyler; Hoover, Kacie; Brewer, Alan; Churnside, James; McCarty, Brandi; Hein, Paul;
2015-01-01
In order to support research on optimal data assimilation methods for the Cyclone Global Navigation Satellite System (CYGNSS), launching in 2016, work has been ongoing to produce a high-resolution merged wind dataset for the Dynamics of the Madden Julian Oscillation (DYNAMO) field campaign, which took place during late 2011/early 2012. The winds are produced by assimilating DYNAMO observations into the Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) system. Data sources from the DYNAMO campaign include the upper-air sounding network, radial velocities from the radar network, vector winds from the Advanced Scatterometer (ASCAT) and Oceansat-2 Scatterometer (OSCAT) satellite instruments, the NOAA High Resolution Doppler Lidar (HRDL), and several others. In order the prep them for 3DVAR, significant additional quality control work is being done for the currently available TOGA and SMART-R radar datasets, including automatically dealiasing radial velocities and correcting for intermittent TOGA antenna azimuth angle errors. The assimilated winds are being made available as model output fields from WRF on two separate grids with different horizontal resolutions - a 3-km grid focusing on the main DYNAMO quadrilateral (i.e., Gan Island, the R/V Revelle, the R/V Mirai, and Diego Garcia), and a 1-km grid focusing on the Revelle. The wind dataset is focused on three separate approximately 2-week periods during the Madden Julian Oscillation (MJO) onsets that occurred in October, November, and December 2011. Work is ongoing to convert the 10-m surface winds from these model fields to simulated CYGNSS observations using the CYGNSS End-To-End Simulator (E2ES), and these simulated satellite observations are being compared to radar observations of DYNAMO precipitation systems to document the anticipated ability of CYGNSS to provide information on the relationships between surface winds and oceanic precipitation at the mesoscale level. This research will improve our understanding of the future utility of CYGNSS for documenting key MJO processes.
NASA Astrophysics Data System (ADS)
Brilouet, Pierre-Etienne; Durand, Pierre; Canut, Guylaine
2017-02-01
During winter, cold air outbreaks take place in the northwestern Mediterranean sea. They are characterized by local strong winds (Mistral and Tramontane) which transport cold and dry continental air across a warmer sea. In such conditions, high values of surface sensible and latent heat flux are observed, which favor deep oceanic convection. The HyMeX/ASICS-MED field campaign was devoted to the study of these processes. Airborne measurements, gathered in the Gulf of Lion during the winter of 2013, allowed for the exploration of the mean and turbulent structure of the marine atmospheric boundary layer (MABL). A spectral analysis based on an analytical model was conducted on 181 straight and level runs. Profiles of characteristic length scales and sharpness parameter of the vertical wind spectrum revealed larger eddies along the mean wind direction associated with an organization of the turbulence field into longitudinal rolls. These were highlighted by boundary layer cloud bands on high-resolution satellite images. A one-dimensional description of the vertical exchanges is then a tricky issue. Since the knowledge of the flux profile throughout the entire MABL is essential for the estimation of air-sea exchanges, a correction of eddy covariance turbulent fluxes was developed taking into account the systematic and random errors due to sampling and data processing. This allowed the improvement of surface fluxes estimates, computed from the extrapolation of the stacked levels. A comparison between those surface fluxes and bulk fluxes computed at a moored buoy revealed considerable differences, mainly regarding the latent heat flux under strong wind conditions.
Soil property effects on wind erosion of organic soils
NASA Astrophysics Data System (ADS)
Zobeck, Ted M.; Baddock, Matthew; Scott Van Pelt, R.; Tatarko, John; Acosta-Martinez, Veronica
2013-09-01
Histosols (also known as organic soils, mucks, or peats) are soils that are dominated by organic matter (OM > 20%) in half or more of the upper 80 cm. Forty two states have a total of 21 million ha of Histosols in the United States. These soils, when intensively cropped, are subject to wind erosion resulting in loss of crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service (NRCS) as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to understand how soil properties vary among organic soils and to calibrate and validate estimates of wind erosion of organic soils using WEPS. Soil properties and sediment flux were measured in six soils with high organic contents located in Michigan and Florida, USA. Soil properties observed included organic matter content, particle density, dry mechanical stability, dry clod stability, wind erodible material, and geometric mean diameter of the surface aggregate distribution. A field portable wind tunnel was used to generate suspended sediment and dust from agricultural surfaces for soils ranging from 17% to 67% organic matter. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was sampled using a Grimm optical particle size analyzer. Particle density of the saltation-sized material (>106 μm) was inversely related to OM content and varied from 2.41 g cm-3 for the soil with the lowest OM content to 1.61 g cm-3 for the soil with highest OM content. Wind erodible material and the geometric mean diameter of the surface soil were inversely related to dry clod stability. The effect of soil properties on sediment flux varied among flux types. Saltation flux was adequately predicted with simple linear regression models. Dry mechanical stability was the best single soil property linearly related to saltation flux. Simple linear models with soil properties as independent variables were not well correlated with PM10E values (mass flux). A second order polynomial equation with OM as the independent variable was found to be most highly correlated with PM10E values. These results demonstrate that variations in sediment and dust emissions can be linked to soil properties using simple models based on one or more soil properties to estimate saltation mass flux and PM10E values from organic and organic-rich soils.
Role of internal variability in recent decadal to multidecadal tropical Pacific climate changes
NASA Astrophysics Data System (ADS)
Bordbar, Mohammad Hadi; Martin, Thomas; Latif, Mojib; Park, Wonsun
2017-05-01
While the Earth's surface has considerably warmed over the past two decades, the tropical Pacific has featured a cooling of sea surface temperatures in its eastern and central parts, which went along with an unprecedented strengthening of the equatorial trade winds, the surface component of the Pacific Walker Circulation (PWC). Previous studies show that this decadal trend in the trade winds is generally beyond the range of decadal trends simulated by climate models when forced by historical radiative forcing. There is still a debate on the origin of and the potential role that internal variability may have played in the recent decadal surface wind trend. Using a number of long control (unforced) integrations of global climate models and several observational data sets, we address the question as to whether the recent decadal to multidecadal trends are robustly classified as an unusual event or the persistent response to external forcing. The observed trends in the tropical Pacific surface climate are still within the range of the long-term internal variability spanned by the models but represent an extreme realization of this variability. Thus, the recent observed decadal trends in the tropical Pacific, though highly unusual, could be of natural origin. We note that the long-term trends in the selected PWC indices exhibit a large observational uncertainty, even hindering definitive statements about the sign of the trends.
Why do modelled and observed surface wind stress climatologies differ in the trade wind regions?
NASA Astrophysics Data System (ADS)
Simpson, I.; Bacmeister, J. T.; Sandu, I.; Rodwell, M. J.
2017-12-01
Global climate models (GCMs) exhibit stronger easterly zonal surface wind stress and near surface winds in the Northern Hemisphere (NH) trade winds than observationally constrained reanalyses or other observational products. A comparison, between models and reanalyses, of the processes that contribute to the zonal mean, vertically integrated balance of momentum, reveals that this wind stress discrepancy cannot be explained by either the resolved dynamics or parameterized tendencies that are common to each. Rather, a substantial residual exists in the momentum balance of the reanalyses, pointing toward a role for the analysis increments. Indeed, they are found to systematically weaken the NH near surface easterlies in winter, thereby reducing the surface wind stress. Similar effects are found in the Southern Hemisphere and further analysis of the spatial structure and seasonality of these increments, demonstrates that they act to weaken the near surface flow over much of the low latitude oceans in both summer and winter. This suggests an erroneous /missing process in GCMs that constitutes a missing drag on the low level zonal flow over oceans. Either this indicates a mis-representation of the drag between the surface and the atmosphere, or a missing internal atmospheric process that amounts to an additional drag on the low level zonal flow. If the former is true, then observation based surface stress products, which rely on similar drag formulations to GCMs, may be underestimating the strength of the easterly surface wind stress.
Viscosity effects in wind wave generation
NASA Astrophysics Data System (ADS)
Paquier, A.; Moisy, F.; Rabaud, M.
2016-12-01
We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier et al. [A. Paquier et al., Phys. Fluids 27, 122103 (2015), 10.1063/1.4936395] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the free-surface synthetic schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkle regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as ν-1 /2u*3 /2 over nearly the whole range of viscosities, whereas their size is essentially unchanged. We propose a simple model for this scaling, which compares well with the data. We show that the critical friction velocity u* for the onset of regular waves slowly increases with viscosity as ν0.2. Whereas the transition between wrinkles and waves is smooth at low viscosity, including for water, it becomes rather abrupt at high viscosity. A third wave regime is found at ν >(100 -200 ) ×10-6m2s-1 , characterized by a slow, nearly periodic emission of large-amplitude isolated fluid bumps.
NASA Technical Reports Server (NTRS)
Wu, D. L.; Kelly, M.A.; Yee, J.-H.; Boldt, J.; Demajistre, R.; Reynolds, E. L.; Tripoli, G. J.; Oman, L. D.; Prive, N.; Heidinger, A. K.;
2016-01-01
The CubeSat Constellation Cloud Winds (C3Winds) is a NASA Earth Venture Instrument (EV-I) concept with the primary objective to better understand mesoscale dynamics and their structures in severe weather systems. With potential catastrophic damage and loss of life, strong extratropical and tropical cyclones (ETCs and TCs) have profound three-dimensional impacts on the atmospheric dynamic and thermodynamic structures, producing complex cloud precipitation patterns, strong low-level winds, extensive tropopause folds, and intense stratosphere-troposphere exchange. Employing a compact, stereo IR-visible imaging technique from two formation-flying CubeSats, C3Winds seeks to measure and map high-resolution (2 km) cloud motion vectors (CMVs) and cloud geometric height (CGH) accurately by tracking cloud features within 5-15 min. Complementary to lidar wind observations from space, the high-resolution wind fields from C3Winds will allow detailed investigations on strong low-level wind formation in an occluded ETC development, structural variations of TC inner-core rotation, and impacts of tropopause folding events on tropospheric ozone and air quality. Together with scatterometer ocean surface winds, C3Winds will provide a more comprehensive depiction of atmosphere-boundary-layer dynamics and interactive processes. Built upon mature imaging technologies and long history of stereoscopic remote sensing, C3Winds provides an innovative, cost-effective solution to global wind observations with potential of increased diurnal sampling via CubeSat constellation.
Field and laboratory comparison of PM10 instruments in high winds
NASA Astrophysics Data System (ADS)
Sharratt, Brenton; Pi, Huawei
2018-06-01
Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.
NASA Technical Reports Server (NTRS)
Panda, Jayanta; James, George H.; Burnside, Nathan J.; Fong, Robert; Fogt, Vincent A.
2011-01-01
The solid-rocket plumes from the Abort motor of the Multi-Purpose Crew Vehicle (MPCV, also know as Orion) were simulated using hot, high pressure, Helium gas to determine the surface pressure fluctuations on the vehicle in the event of an abort. About 80 different abort situations over a wide Mach number range, (0.3< or =M< or =1.2) and vehicle attitudes (+/-15deg) were simulated inside the NASA Ames Unitary Plan, 11-Foot Transonic Wind Tunnel. For each abort case, typically two different Helium plume and wind tunnel conditions were used to bracket different flow matching critera. This unique, yet cost-effective test used a custom-built hot Helium delivery system, and a 6% scale model of a part of the MPCV, known as the Launch Abort Vehicle. The test confirmed the very high level of pressure fluctuations on the surface of the vehicle expected during an abort. In general, the fluctuations were found to be dominated by the very near-field hydrodynamic fluctuations present in the plume shear-layer. The plumes were found to grow in size for aborts occurring at higher flight Mach number and altitude conditions. This led to an increase in the extent of impingement on the vehicle surfaces; however, unlike some initial expectations, the general trend was a decrease in the level of pressure fluctuations with increasing impingement. In general, the highest levels of fluctuations were found when the outer edges of the plume shear layers grazed the vehicle surface. At non-zero vehicle attitudes the surface pressure distributions were found to become very asymmetric. The data from these wind-tunnel simulations were compared against data collected from the recent Pad Abort 1 flight test. In spite of various differences between the transient flight situation and the steady-state wind tunnel simulations, the hot-Helium data were found to replicate the PA1 data fairly reasonably. The data gathered from this one-of-a-kind wind-tunnel test fills a gap in the manned-space programs, and will be used to establish the acoustic environment for vibro-acoustic qualification testing of the MPCV.
NASA Astrophysics Data System (ADS)
Litt, Maxime; Sicart, Jean-Emmanuel; Six, Delphine; Wagnon, Patrick; Helgason, Warren D.
2017-04-01
Over Saint-Sorlin Glacier in the French Alps (45° N, 6.1° E; ˜ 3 km2) in summer, we study the atmospheric surface-layer dynamics, turbulent fluxes, their uncertainties and their impact on surface energy balance (SEB) melt estimates. Results are classified with regard to large-scale forcing. We use high-frequency eddy-covariance data and mean air-temperature and wind-speed vertical profiles, collected in 2006 and 2009 in the glacier's atmospheric surface layer. We evaluate the turbulent fluxes with the eddy-covariance (sonic) and the profile method, and random errors and parametric uncertainties are evaluated by including different stability corrections and assuming different values for surface roughness lengths. For weak synoptic forcing, local thermal effects dominate the wind circulation. On the glacier, weak katabatic flows with a wind-speed maximum at low height (2-3 m) are detected 71 % of the time and are generally associated with small turbulent kinetic energy (TKE) and small net turbulent fluxes. Radiative fluxes dominate the SEB. When the large-scale forcing is strong, the wind in the valley aligns with the glacier flow, intense downslope flows are observed, no wind-speed maximum is visible below 5 m, and TKE and net turbulent fluxes are often intense. The net turbulent fluxes contribute significantly to the SEB. The surface-layer turbulence production is probably not at equilibrium with dissipation because of interactions of large-scale orographic disturbances with the flow when the forcing is strong or low-frequency oscillations of the katabatic flow when the forcing is weak. In weak forcing when TKE is low, all turbulent fluxes calculation methods provide similar fluxes. In strong forcing when TKE is large, the choice of roughness lengths impacts strongly the net turbulent fluxes from the profile method fluxes and their uncertainties. However, the uncertainty on the total SEB remains too high with regard to the net observed melt to be able to recommend one turbulent flux calculation method over another.
NASA Astrophysics Data System (ADS)
Sanderson, Robert Steven
The purpose of this thesis is to investigate the dynamics of PM 10 emission from a nickel slag stockpile that closely resembles a desert pavement in physical characteristics. In the field, it was observed that slag surfaces develop by natural processes into a well-armoured surface over some period of time. The surface then consists of two distinct layers; a surficial armour layer containing only non-erodible gravel and cobble-sized clasts, and an underlying dust-laden layer, which contains a wide size range of slag particles, from clay-sized to cobble-sized. This surficial armour layer protects the underlying fines from wind entrainment, at least under typical wind conditions; however, particle emissions still do occur under high wind speeds. The dynamics of particle entrainment from within these surfaces are investigated herein. It is shown that the dynamics of the boundary layer flow over these lag surfaces are influenced by the inherent roughness and permeability of the surficial armour layer, such that the flow resembles those observed over and within vegetation canopies, and those associated with permeable gravel-bed river channels. Restriction of air flow within the permeable surface produces a high-pressure zone within the pore spaces, resulting in a Kelvin-Helmholtz shear instability, which triggers coherent motions in the form of repeating burst-sweep cycles. Using Laser Doppler Anemometry (LDA), it is demonstrated that the lower boundary layer is characterized by both Q4 sweeping motions and Q2 bursting motions, while the upper boundary layer is dominated by Q2 bursts. Pore air motions within the slag material were measured using buried pressure ports. It is shown that the mean pressure gradient which forms within the slag material results in net upward displacement of air, or wind pumping. However, this net upward motion is a result of rapid oscillatory motions which are directly driven by coherent boundary layer motions. It is also demonstrated that these coherent motions are able to penetrate at least 4 cm through the surficial armour layer, thereby transporting turbulent kinetic energy (TKE) downward to the dust-laden sub-surface layer. This represents a mechanism of momentum transfer that is able to reach the erodible material, while the wind pumping effect represents a mechanism for particle exhaustion.
NASA Astrophysics Data System (ADS)
Zhang, Changjiang; Dai, Lijie; Ma, Leiming; Qian, Jinfang; Yang, Bo
2017-10-01
An objective technique is presented for estimating tropical cyclone (TC) innercore two-dimensional (2-D) surface wind field structure using infrared satellite imagery and machine learning. For a TC with eye, the eye contour is first segmented by a geodesic active contour model, based on which the eye circumference is obtained as the TC eye size. A mathematical model is then established between the eye size and the radius of maximum wind obtained from the past official TC report to derive the 2-D surface wind field within the TC eye. Meanwhile, the composite information about the latitude of TC center, surface maximum wind speed, TC age, and critical wind radii of 34- and 50-kt winds can be combined to build another mathematical model for deriving the innercore wind structure. After that, least squares support vector machine (LSSVM), radial basis function neural network (RBFNN), and linear regression are introduced, respectively, in the two mathematical models, which are then tested with sensitivity experiments on real TC cases. Verification shows that the innercore 2-D surface wind field structure estimated by LSSVM is better than that of RBFNN and linear regression.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying
2012-01-01
The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness-based parameterization (OOST) provided the best results for wind and wave growth prediction. However, the best agreement between the measured (CODAR) and computed surface currents and storm surge values was obtained with the wave steepness-based roughness parameterization (TY2001), although the differences obtained with respect to DGHQ were not significant. The influence of sea surface temperature (SST) fields on the atmospheric boundary layer dynamics was examined; in particular, we evaluated how the SST affects wind wave generation, surface currents and storm surges. The integrated hydrograph and integrated wave height, parameters that are highly correlated with the storm damage potential, were found to be highly sensitive to the ocean surface roughness parameterization.
NASA Astrophysics Data System (ADS)
Alappattu, Denny P.; Kunhikrishnan, P. K.; Aloysius, Marina; Mohan, M.
2009-08-01
The local weather and air quality over a region are greatly influenced by the atmospheric boundary layer (ABL) structure and dynamics. ABL characteristics were measured using a tethered balloon-sonde system over Kharagpur (22.32°N, 87.32°E, 40m above MSL), India, for the period 7 December 2004 to 30 December 2004, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP) Aerosol Land Campaign II. High-resolution data of pressure, temperature, humidity, wind speed and wind direction were archived along with surface layer measurements using an automatic weather station. This paper presents the features of ABL, like ABL depth and nocturnal boundary layer (NBL) depth. The sea surface winds from Quikscat over the oceanic regions near the experiment site were analyzed along with the NCEP/NCAR reanalysis winds over Kharagpur to estimate the convergence of wind, moisture and vorticity to understand the observed variations in wind speed and relative humidity, and also the increased aerosol concentrations. The variation of ventilation coefficient ( V C), a factor determining the air pollution potential over a region, is also discussed in detail.
Climatology of Global Swell-Atmosphere Interaction
NASA Astrophysics Data System (ADS)
Semedo, Alvaro
2016-04-01
At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.
NASA Astrophysics Data System (ADS)
Belušić, Andreina; Prtenjak, Maja Telišman; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph
2018-06-01
Over the past few decades the horizontal resolution of regional climate models (RCMs) has steadily increased, leading to a better representation of small-scale topographic features and more details in simulating dynamical aspects, especially in coastal regions and over complex terrain. Due to its complex terrain, the broader Adriatic region represents a major challenge to state-of-the-art RCMs in simulating local wind systems realistically. The objective of this study is to identify the added value in near-surface wind due to the refined grid spacing of RCMs. For this purpose, we use a multi-model ensemble composed of CORDEX regional climate simulations at 0.11° and 0.44° grid spacing, forced by the ERA-Interim reanalysis, a COSMO convection-parameterizing simulation at 0.11° and a COSMO convection-resolving simulation at 0.02° grid spacing. Surface station observations from this region and satellite QuikSCAT data over the Adriatic Sea have been compared against daily output obtained from the available simulations. Both day-to-day wind and its frequency distribution are examined. The results indicate that the 0.44° RCMs rarely outperform ERA-Interim reanalysis, while the performance of the high-resolution simulations surpasses that of ERA-Interim. We also disclose that refining the grid spacing to a few km is needed to properly capture the small-scale wind systems. Finally, we show that the simulations frequently yield the accurate angle of local wind regimes, such as for the Bora flow, but overestimate the associated wind magnitude. Finally, spectral analysis shows good agreement between measurements and simulations, indicating the correct temporal variability of the wind speed.
On the role of high frequency waves in ocean altimetry
NASA Astrophysics Data System (ADS)
Vandemark, Douglas C.
This work mines a coastal and open ocean air-sea interaction field experiment data set where the goals are to refine satellite retrieval of wind, wind stress, and sea level using a microwave radar altimeter. The data were collected from a low-flying aircraft using a sensor suite designed to measure the surface waves, radar backscatter, the atmospheric flow, and turbulent fluxes within the marine boundary layer. This uncommon ensemble provides the means to address several specific altimeter-related topics. First, we examine and document the impact that non wind-driven gravity wave variability, e.g. swell, has upon the commonly-invoked direct relationship between altimeter backscatter and near surface wind speed. The demonstrated impact is larger in magnitude and more direct than previously suggested. The study also isolates the wind-dependence of short-scale slope variance and suggests its magnitude is somewhat lower than shown elsewhere while a second-order dependence on long waves is also evident. A second study assesses the hypothesis that wind-aligned swell interacts with the atmospheric boundary flow leading to a depressed level of turbulence. Cases of reduced drag coefficient at moderate wind speeds were in evidence within the data set, and buoy observations indicate that swell was present and a likely control during these events. Coincidentally, short-scale wave roughness was also depressed suggesting decreased wind stress. Attempts to confirm the theory failed, however, due to numerous limitations in the quantity and quality of the data in hand. A lesson learned is that decoupling atmospheric stability and wave impacts in field campaigns requires both a very large amount of data as well as vertical resolution of fluxes within the first 10--20 m of the surface.
NASA Astrophysics Data System (ADS)
Jacobsen, S.; Lehner, S.; Hieronimus, J.; Schneemann, J.; Kuhn, M.
2015-04-01
The increasing demand for renewable energy resources has promoted the construction of offshore wind farms e.g. in the North Sea. While the wind farm layout consists of an array of large turbines, the interrelation of wind turbine wakes with the remaining array is of substantial interest. The downstream spatial evolution of turbulent wind turbine wakes is very complex and depends on manifold parameters such as wind speed, wind direction and ambient atmospheric stability conditions. To complement and validate existing numerical models, corresponding observations are needed. While in-situ measurements with e.g. anemometers provide a time-series at the given location, the merits of ground-based and space- or airborne remote sensing techniques are indisputable in terms of spatial coverage. Active microwave devices, such as Scatterometer and Synthetic Aperture Radar (SAR), have proven their capabilities of providing sea surface wind measurements and particularly SAR images reveal wind variations at a high spatial resolution while retaining the large coverage area. Platform-based Doppler LiDAR can resolve wind fields with a high spatial coverage and repetition rates of seconds to minutes. In order to study the capabilities of both methods for the investigation of small scale wind field structures, we present a direct comparison of observations obtained by high resolution TerraSAR-X (TS-X) X-band SAR data and platform-based LiDAR devices at the North Sea wind farm alpha ventus. We furthermore compare the results with meteorological data from the COSMO-DE model run by the German Weather Service DWD. Our study indicates that the overall agreement between SAR and LiDAR wind fields is good and that under appropriate conditions small scale wind field variations compare significantly well.
The potential for geostationary remote sensing of NO2 to improve weather prediction
NASA Astrophysics Data System (ADS)
Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.
2017-12-01
Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. Assimilation of NO2 column observations succeeds in reducing wind errors, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO2 columns.
On the Impact of Wind Farms on a Convective Atmospheric Boundary Layer
NASA Astrophysics Data System (ADS)
Lu, Hao; Porté-Agel, Fernando
2015-10-01
With the rapid growth in the number of wind turbines installed worldwide, a demand exists for a clear understanding of how wind farms modify land-atmosphere exchanges. Here, we conduct three-dimensional large-eddy simulations to investigate the impact of wind farms on a convective atmospheric boundary layer. Surface temperature and heat flux are determined using a surface thermal energy balance approach, coupled with the solution of a three-dimensional heat equation in the soil. We study several cases of aligned and staggered wind farms with different streamwise and spanwise spacings. The farms consist of Siemens SWT-2.3-93 wind turbines. Results reveal that, in the presence of wind turbines, the stability of the atmospheric boundary layer is modified, the boundary-layer height is increased, and the magnitude of the surface heat flux is slightly reduced. Results also show an increase in land-surface temperature, a slight reduction in the vertically-integrated temperature, and a heterogeneous spatial distribution of the surface heat flux.
Space-based surface wind vectors to aid understanding of air-sea interactions
NASA Technical Reports Server (NTRS)
Atlas, R.; Bloom, S. C.; Hoffman, R. N.; Ardizzone, J. V.; Brin, G.
1991-01-01
A novel and unique ocean-surface wind data-set has been derived by combining the Defense Meteorological Satellite Program Special Sensor Microwave Imager data with additional conventional data. The variational analysis used generates a gridded surface wind analysis that minimizes an objective function measuring the misfit of the analysis to the background, the data, and certain a priori constraints. In the present case, the European Center for Medium-Range Weather Forecasts surface-wind analysis is used as the background.
Randolph AFB, San Antonio, Texas. Revised Uniform Summary of Surface Weather Observations (RUSSWO)
1976-03-19
FoRM ARE oUsoIII ’, " ’ . . . " " -,, ’:,,,:t."," *4 -- ".°" "- . . . " ’ * "- : ; Ir , ( DATA PROCESSING BRANCH EtAC/USAF SURFACE WINDS AIR" WATHER ...FORM ARI OS$Oitlt_ ___ _zT z __ __ ___......- ___ _ _ _ .4. .. . II DATA PROCESSIN G BRASFCH FTAC/USAF SURFACE WINDS AiR WATHER SERVICE/MAC PERCENTAGE...SURFACE WINDS 1 A/R WATHER SERVICE/MAC PERCENTAGE FREQUENCY OF WIND DIRECTION AND SPEED (FROM HOURLY OBSERVATIONS) ( 12911- RANDOLPH AFBJTEXAS/SAN
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Adams, J. H., Jr.; Meyer, F.; Reinhold, c.
2010-01-01
Solar-wind induced sputtering of the lunar surface includes, in principle, both kinetic and potential sputtering. The role of the latter mechanism, however, in many focused studies has not been properly ascertained due partly to lack of data but can also be attributed to the assertion that the contribution of solar-wind heavy ions to the total sputtering is quite low due to their low number density compared to solar-wind protons. Limited laboratory measurements show marked enhancements in the sputter yields of slow-moving, highly-charged ions impacting oxides. Lunar surface sputtering yields are important as they affect, e.g., estimates of the compositional changes in the lunar surface, its erosion rate, as well as its contribution to the exosphere as well as estimates of hydrogen and water contents. Since the typical range of solar-wind ions at 1 keV/amu is comparable to the thickness of the amorphous rim found on lunar soil grains, i.e. few 10s nm, lunar simulant samples JSC-1A AGGL are specifically enhanced to have such rims in addition to the other known characteristics of the actual lunar soil particles. However, most, if not all laboratory studies of potential sputtering were carried out in single crystal targets, quite different from the rim s amorphous structure. The effect of this structural difference on the extent of potential sputtering has not, to our knowledge, been investigated to date.
A SAR Observation and Numerical Study on Ocean Surface Imprints of Atmospheric Vortex Streets.
Li, Xiaofeng; Zheng, Weizhong; Zou, Cheng-Zhi; Pichel, William G
2008-05-21
The sea surface imprints of Atmospheric Vortex Street (AVS) off Aleutian Volcanic Islands, Alaska were observed in two RADARSAT-1 Synthetic Aperture Radar (SAR) images separated by about 11 hours. In both images, three pairs of distinctive vortices shedding in the lee side of two volcanic mountains can be clearly seen. The length and width of the vortex street are about 60-70 km and 20 km, respectively. Although the AVS's in the two SAR images have similar shapes, the structure of vortices within the AVS is highly asymmetrical. The sea surface wind speed is estimated from the SAR images with wind direction input from Navy NOGAPS model. In this paper we present a complete MM5 model simulation of the observed AVS. The surface wind simulated from the MM5 model is in good agreement with SAR-derived wind. The vortex shedding rate calculated from the model run is about 1 hour and 50 minutes. Other basic characteristics of the AVS including propagation speed of the vortex, Strouhal and Reynolds numbers favorable for AVS generation are also derived. The wind associated with AVS modifies the cloud structure in the marine atmospheric boundary layer. The AVS cloud pattern is also observed on a MODIS visible band image taken between the two RADARSAT SAR images. An ENVISAT advance SAR image taken 4 hours after the second RADARSAT SAR image shows that the AVS has almost vanished.
Wind tunnel experimental study on the effect of PAM on soil wind erosion control.
He, Ji-Jun; Cai, Qiang-Guo; Tang, Ze-Jun
2008-10-01
In recent years, high-molecular-weight anionic polyacrylamide (PAM) have been widely tested on a variety of soils, primarily in water erosion control. However, little information is available regarding the effectiveness of PAM on preventing soil loss from wind erosion. The research adopted room wind tunnel experiment, two kinds of soils were used which were from the agro-pastoral area of Inner Mongolia, the northwest of China, the clay content of soils were 22.0 and 13.7%, respectively. For these tests, all the treatments were performed under the condition of wind velocity of 14 m s(-1) and a blown angle of 8.75%, according to the actual situation of experimented area. The study results indicated that using PAM on the soil surface could enhance the capability of avoiding the wind erosion, at the same time, the effect of controlling wind soil erosion with 4 g m(-2) PAM was better than 2 g m(-2) PAM's. Economically, the 2 g m(-2) PAM used in soil surface can control wind erosion effectively in this region. The prophase PAM accumulated in soil could not improve the capability of avoiding the wind erosion, owing to the degradation of PAM in the soil and the continual tillage year after year. The texture of soil is a main factor influencing the capability of soil avoiding wind erosion. Soil with higher clay content has the higher capability of preventing soil from wind erosion than one with the opposite one under the together action of PAM and water.
Experimental study of temporal evolution of waves under transient wind conditions
NASA Astrophysics Data System (ADS)
Zavadsky, Andrey; Shemer, Lev
2016-11-01
Temporal variation of the waves excited by nearly sudden wind forcing over an initially still water surface is studied in a small wind-wave flume at Tel Aviv University for variety of fetches and wind velocities. Simultaneous measurements of the surface elevation using a conventional capacitance wave-gauge and of the surface slope in along-wind and cross-wind directions by a laser slope gauge were performed. Variation with time of two components of instantaneous surface velocity was measured by particle tracking velocimetry. The size of the experimental facility and thus relatively short characteristic time scales of the phenomena under investigation, as well as an automated experimental procedure controlling the experiments made it possible to record a large amount of independent realizations for each wind-fetch condition. Sufficient data were accumulated to compute reliable ensemble averaged temporal variation of governing wave parameters. The essentially three-dimensional structure of wind-waves at all stages of evolution is demonstrated. The results obtained at each wind-fetch condition allowed to characterize the major stages of the evolution of the wind-wave field and to suggest a plausible scenario for the initial growth of the wind-waves.
Vertical axis wind turbine airfoil
Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich
2012-12-18
A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.
Impact of using scatterometer and altimeter data on storm surge forecasting
NASA Astrophysics Data System (ADS)
Bajo, Marco; De Biasio, Francesco; Umgiesser, Georg; Vignudelli, Stefano; Zecchetto, Stefano
2017-05-01
Satellite data are rarely used in storm surge models because of the lack of established methodologies. Nevertheless, they can provide useful information on surface wind and sea level, which can potentially improve the forecast. In this paper satellite wind data are used to correct the bias of wind originating from a global atmospheric model, while satellite sea level data are used to improve the initial conditions of the model simulations. In a first step, the capability of global winds (biased and unbiased) to adequately force a storm surge model are assessed against that of a high resolution local wind. Then, the added value of direct assimilation of satellite altimeter data in the storm surge model is tested. Eleven storm surge events, recorded in Venice from 2008 to 2012, are simulated using different configurations of wind forcing and altimeter data assimilation. Focusing on the maximum surge peak, results show that the relative error, averaged over the eleven cases considered, decreases from 13% to 7%, using both the unbiased wind and assimilating the altimeter data, while, if the high resolution local wind is used to force the hydrodynamic model, the altimeter data assimilation reduces the error from 9% to 6%. Yet, the overall capabilities in reproducing the surge in the first day of forecast, measured by the correlation and by the rms error, improve only with the use of the unbiased global wind and not with the use of high resolution local wind and altimeter data assimilation.
Wind tunnel tests for wind pressure distribution on gable roof buildings.
Jing, Xiao-kun; Li, Yuan-qi
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path.
Dust Emissions from Undisturbed and Disturbed, Crusted Playa Surfaces: Cattle Trampling Effect
NASA Astrophysics Data System (ADS)
Zobeck, T. M.; Baddock, M. C.; van Pelt, R.; Fredrickson, E. L.
2009-12-01
Dry playa lake beds can be a significant source of fine dust emissions during high wind events in arid and semiarid landscapes. The physical and chemical properties of the playa surface control the amount and properties of the dust emitted. In this study, we use a field wind tunnel to quantify the dust emissions from a bare, fine-textured playa surface located in the Chihuahua Desert at the Jornada Experimental Range, near Las Cruces, New Mexico, USA. We tested natural, undisturbed crusted surfaces and surfaces that had been subjected to two levels of domestic animal disturbance. The animal disturbance was provided by trampling produced from one and ten passes along the length of the wind tunnel by a 630 kg Angus-Hereford cross cow. The trampling broke the durable crust and created loose erodible material. Each treatment (natural crust, one pass, and ten passes) was replicated three times. A push-type wind tunnel with a 6 m long, 0.5 m wide, and 1 m high test section was used to generate dust emissions under controlled conditions. Clean medium sand was dropped onto the playa surface to act as an abrader material. The tunnel wind speed was equivalent to 15 m/s at a height of 2 m over a smooth soil surface. The tunnel was initially run for ten minutes, with no abrader added. A second 30 minute run was subsequently sampled as abrader was added to the wind stream. Dust and saltating material were collected using an isokinetic slot sampler at the end of the tunnel. Total airborne dust was collected on two 25 cm x 20 cm glass fiber filters (GFF) and measured using a GRIMM particle monitor every 6 sec throughout each test run. Disturbance by trampling generated increased saltating material and airborne dust. The amount of saltating material measured during the initial (no abrader added) run was approximately 70% greater and 5.8 times the amount of saltating material measured on the one pass and ten pass plots, respectively, compared with that observed on the undisturbed plots. The total amount of dust measured during the initial (no abrader added) run on GFF for the one pass and ten pass plots was almost twice and three times, respectively, that observed on the undisturbed plots. The ten pass treatment generated about 75% more PM10 dust, as measured by the GRIMM particle monitor, than the undisturbed plots during the 30 minute abrader run.
NASA Astrophysics Data System (ADS)
Rajewski, Daniel A.; Takle, Eugene S.; Prueger, John H.; Doorenbos, Russell K.
2016-11-01
Recent wind farm studies have revealed elevated nighttime surface temperatures but have not validated physical mechanisms that create the observed effects. We report measurements of concurrent differences in surface wind speed, temperature, fluxes, and turbulence upwind and downwind of two turbine lines at the windward edge of a utility-scale wind farm. On the basis of these measurements, we offer a conceptual model based on physical mechanisms of how wind farms affect their own microclimate. Periods of documented curtailment and zero-power production of the wind farm offer useful opportunities to rigorously evaluate the microclimate impact of both stationary and operating turbines. During an 80 min nighttime wind farm curtailment, we measured abrupt and large changes in turbulent fluxes of momentum and heat leeward of the turbines. At night, wind speed decreases in the near wake when turbines are off but abruptly increases when turbine operation is resumed. Our measurements are compared with Moderate Resolution Imaging Spectroradiometer Terra and Aqua satellite measurements reporting wind farms to have higher nighttime surface temperatures. We demonstrate that turbine wakes modify surface fluxes continuously through the night, with similar magnitudes during the Terra and Aqua transit periods. Cooling occurs in the near wake and warming in the far wake when turbines are on, but cooling is negligible when turbines are off. Wind speed and surface stratification have a regulating effect of enhancing or decreasing the impact on surface microclimate due to turbine wake effects.
A Reexamination of the Emergy Input to a System from the Wind.
The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a ra...
An equilibrium model for the coupled ocean-atmosphere boundary layer in the tropics
NASA Technical Reports Server (NTRS)
Sui, C.-H.; Lau, K.-M.; Betts, Alan K.
1991-01-01
An atmospheric convective boundary layer (CBL) model is coupled to an ocean mixed-layer (OML) model in order to study the equilibrium state of the coupled system in the tropics, particularly in the Pacific region. The equilibrium state of the coupled system is solved as a function of sea-surface temperature (SST) for a given surface wind and as a function of surface wind for a given SST. It is noted that in both cases, the depth of the CBL and OML increases and the upwelling below the OML decreases, corresponding to either increasing SST or increasing surface wind. The coupled ocean-atmosphere model is solved iteratively as a function of surface wind for a fixed upwelling and a fixed OML depth, and it is observed that SST falls with increasing wind in both cases. Realistic gradients of mixed-layer depth and upwelling are observed in experiments with surface wind and SST prescribed as a function of longitude.
Observed impacts of wind farms on land surface temperature in Inner Mongolia
NASA Astrophysics Data System (ADS)
Tang, B.; Zhao, X.; Wu, D.; Zhao, W.; Wei, H.
2015-12-01
Abstract: The wind turbine industry in china has experienced a dramatic increase in recent years and wind farms (WFs) have an impact on the underlying surface conditions of climate system. This paper assesses the impacts of wind farms by analyzing the variations of the land surface temperature (LST) data for the period of 2003-2014 over a region consisted of 1097 turbines in the Huitengxile Wind Farm, the largest wind farm in Asia. We first compare the spatial coupling between the geographic layouts of the WFs and the spatial patterns of LST changes of two periods (post- versus pre- wind turbines construction) and then employ the difference of LST between WF pixels and surrounding non-WF pixels to quantify the effects of WFs. The results reveal that the LST at daytime increases by 0.52-0.86°C in winter, spring and autumn and decreases by about 0.56°C in summer over the WFs on average, with the spatial pattern of this warming or cooling generally coupled with the geographic distribution of the wind turbines, while the changes in LST at nighttime are much noisier. The daytime LST warming or cooling effects vary with seasons, and the strongest warming and tightest spatial coupling are in autumn months of September-November. The seasonal variations in albedo due to the construction of wind turbines are primarily responsible for the daytime LST changes. Areal mean decreases in winter, spring and autumn and increase in summer in albedo are observed over the WFs and the spatial pattern and magnitude of the changes in albedo couple very well with the layouts of the wind turbines. The increase (decrease) in albedo over the WFs indicates that WFs across the Huitengxile grassland absorb less (more) incoming radiation, thus resulting in a decrease (increase) in LST at daytime. The inter-annual variations in areal mean LST differences at daytime are highly correlated with those in areal mean albedo differences for all four seasons (R2=0.48~0.67). Our findings are in contrast with those studies, which show a warming effect at nighttime and no apparent effect on LST at daytime over the WFs in the United States. Keywords: Wind farm impacts; land surface temperature; albedo; warming and cooling
NASA Technical Reports Server (NTRS)
McLachlan, B. G.; Bell, J. H.; Park, H.; Kennelly, R. A.; Schreiner, J. A.; Smith, S. C.; Strong, J. M.; Gallery, J.; Gouterman, M.
1995-01-01
The pressure-sensitive paint method was used in the test of a high-sweep oblique wing model, conducted in the NASA Ames 9- by 7-ft Supersonic Wind Tunnel. Surface pressure data was acquired from both the luminescent paint and conventional pressure taps at Mach numbers between M = 1.6 and 2.0. In addition, schlieren photographs of the outer flow were used to determine the location of shock waves impinging on the model. The results show that the luminescent pressure-sensitive paint can capture both global and fine features of the static surface pressure field. Comparison with conventional pressure tap data shows good agreement between the two techniques, and that the luminescent paint data can be used to make quantitative measurements of the pressure changes over the model surface. The experiment also demonstrates the practical considerations and limitations that arise in the application of this technique under supersonic flow conditions in large-scale facilities, as well as the directions in which future research is necessary in order to make this technique a more practical wind-tunnel testing tool.
Calculating the sensitivity of wind turbine loads to wind inputs using response surfaces
NASA Astrophysics Data System (ADS)
Rinker, Jennifer M.
2016-09-01
This paper presents a methodology to calculate wind turbine load sensitivities to turbulence parameters through the use of response surfaces. A response surface is a highdimensional polynomial surface that can be calibrated to any set of input/output data and then used to generate synthetic data at a low computational cost. Sobol sensitivity indices (SIs) can then be calculated with relative ease using the calibrated response surface. The proposed methodology is demonstrated by calculating the total sensitivity of the maximum blade root bending moment of the WindPACT 5 MW reference model to four turbulence input parameters: a reference mean wind speed, a reference turbulence intensity, the Kaimal length scale, and a novel parameter reflecting the nonstationarity present in the inflow turbulence. The input/output data used to calibrate the response surface were generated for a previous project. The fit of the calibrated response surface is evaluated in terms of error between the model and the training data and in terms of the convergence. The Sobol SIs are calculated using the calibrated response surface, and the convergence is examined. The Sobol SIs reveal that, of the four turbulence parameters examined in this paper, the variance caused by the Kaimal length scale and nonstationarity parameter are negligible. Thus, the findings in this paper represent the first systematic evidence that stochastic wind turbine load response statistics can be modeled purely by mean wind wind speed and turbulence intensity.
Anisotropic Solar Wind Sputtering of the Lunar Surface Induced by Crustal Magnetic Anomalies
NASA Technical Reports Server (NTRS)
Poppe, A. R.; Sarantos, M.; Halekas, J. S.; Delory, G. T.; Saito, Y.; Nishino, M.
2014-01-01
The lunar exosphere is generated by several processes each of which generates neutral distributions with different spatial and temporal variability. Solar wind sputtering of the lunar surface is a major process for many regolith-derived species and typically generates neutral distributions with a cosine dependence on solar zenith angle. Complicating this picture are remanent crustal magnetic anomalies on the lunar surface, which decelerate and partially reflect the solar wind before it strikes the surface. We use Kaguya maps of solar wind reflection efficiencies, Lunar Prospector maps of crustal field strengths, and published neutral sputtering yields to calculate anisotropic solar wind sputtering maps. We feed these maps to a Monte Carlo neutral exospheric model to explore three-dimensional exospheric anisotropies and find that significant anisotropies should be present in the neutral exosphere depending on selenographic location and solar wind conditions. Better understanding of solar wind/crustal anomaly interactions could potentially improve our results.
Analysis of a Destructive Wind Storm on 16 November 2008 in Brisbane, Australia
Richter, Harald; Peter, Justin; Collis, Scott
2014-08-25
During the late afternoon on 16 November 2008 the Brisbane (Australia) suburb of “The Gap” experienced extensive wind damage caused by an intense local thunderstorm. The CP2 research radar nearby detected near-surface radial velocities exceeding 44 m s -1 above The Gap while hail size reports did not exceed golf ball size, and no tornadoes were reported. This study shows that the storm environment was characterized by a layer of very moist (mixing ratios exceeding 12 g kg -1) near-surface air embedded in strong storm-relative low-level flow, whereas the storm-relative winds aloft were significantly weaker. And while the thermodynamic stormmore » environment contained a range of downdraft promoting ingredients such as a ~4 km high melting level above a ~2 km deep layer with nearly dry adiabatic lapse rates mostly collocated with dry ambient air, a ~1 km deep stable layer near the ground would generally lower expectations of destructive surface winds based on the downburst mechanism. We also found that once observed reflectivities exceed 70 dBZ that downdraft cooling due to hail melting and downdraft acceleration based on hail loading are likely to become non-negligible forcing mechanisms for a strong downdraft. The study found a close proximity of the hydrostatically and dynamically driven mesohigh at the base of the downdraft to a dynamically driven mesolow associated with a radar-observed low-level circulation. This proximity is hypothesized to have been instrumental in the observed anisotropic horizontal acceleration of the near-ground outflow and the ultimate strength of the Gap storm surface winds. Finally, we speculate that the 44 weak storm-relative midlevel winds allowed the downdraft to descend close to the low45 level circulation which set up this strong horizontal perturbation pressure gradient.« less
Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect
NASA Astrophysics Data System (ADS)
Droste, Arjan; Steeneveld, Gert-Jan
2017-04-01
Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.
Cold Front Driven Flows Through Multiple Inlets of Lake Pontchartrain Estuary
NASA Astrophysics Data System (ADS)
Huang, Wei; Li, Chunyan
2017-11-01
With in situ observations using acoustic Doppler current profilers (ADCPs) and numerical experiments using the Finite Volume Coastal Ocean Model (FVCOM), this study investigates atmospheric cold front induced exchange of water between Lake Pontchartrain Estuary and coastal ocean through multiple inlets. Results show that the subtidal hydrodynamic response is highly correlated with meteorological parameters. Northerly and westerly winds tend to push water out of Lake Pontchartrain, while south and east winds tend to produce currents flowing into it. For most cases, the subtidal water level is inversely correlated with the east wind, with the correlation coefficient being ˜0.8. The most important finding of this work is that, contrary to intuition, the cold front induced remote wind effect has the greatest contribution to the overall water level variation, while the local wind stress determines the surface slope inside the estuary. It is found that wind driven flow is roughly quasi steady state: the surface slope in the north-south direction is determined by the north-south wind stress, explaining ˜83% of the variability but less so in the east-west direction (˜43%). In other words, the north-south local wind stress determines the water level gradient in that direction in the estuary while the overall water level change is pretty much controlled by the open boundary which is the "remote wind effect," a regional response that can be illustrated only by a numerical model for a much larger area encompassing the estuary.
Energetic Neutral Atom Imaging of the Lunar Poles and Night-Side
NASA Astrophysics Data System (ADS)
Vorburger, Audrey; Wurz, Peter; Barabash, Stas; Wieser, Martin; Futaana, Yoshifumi; Bhardwaj, Anil; Dhanya, Mb; Asamura, Kazushi
2016-04-01
So far all reported scientific results derived from measurements of the Chandrayaan-1 Energetic Neutral Analyzer (CENA) on board the Indian lunar mission Chandrayaan-1 focused on the sun-lit part of the Moon. Here, for the first time, we present the analysis of the Moon - solar wind interaction in Energetic Neutral Atoms (ENAs) from measurements over the poles and the night-side of the Moon. The Moon, not being protected by a global magnetic field or an atmosphere, is constantly bombarded by solar wind ions. Until recently, it was tacitly assumed that the solar wind ions that impinge onto the lunar surface are almost completely absorbed ( < 1% reflection) by the lunar surface (e.g. Crider and Vondrak [Adv. Space Res., 2002]; Feldman et al. [J. Geophys. Res., 2000]). However, recent observations conducted by the two ENA sensors of NASA's Interstellar Boundary Explorer and by Chandrayaan-1/CENA showed an average global energetic neutral atom (ENA) albedo of 10% - 20% (e.g. McComas et al. [Geophys. Res. Lett., 2009], Wieser et al. [Planet. Space Sci., 2009], Vorburger et al. [J. Geophys. Res., 2013]). In the past 6 years, several studies have closely investigated this solar wind - lunar surface interaction from various viewpoints. The main findings of these studies include (1) the dependency of the hydrogen reflection ratio on the local crustal magnetic fields (e.g., Wieser et al. [Geophys. Res. Lett. ,2010] and Vorburger et al. [J. Geophys. Res., 2012]), (2) the determination of the energy spectra of backscattered neutralized solar wind protons (Futaana et al. [J. Geophys. Res., 2012]) (3) the use of the spectra shape to remotely define an electric potential above a lunar magnetic anomaly (Futaana et al. [Geophys. Res. Lett., 2012]), (4) the favouring of backscattering over forward-scattering of impinging solar wind hydrogen particles (Vorburger et al. [Geophys. Res. Lett., 2011]), (5) the first-ever measurements of sputtered lunar oxygen (Vorburger et al. [J. Geophys. Res., 2012]), (6) the first-ever observation of backscattered solar wind helium (Vorburger et al. [J. Geophys. Res., 2012]), and (7) the determination of the scattering properties of backscattered solar wind hydrogen measured when the Moon transversed Earth's magneto-sheath (Lue et al. [J. Geophys. Res., 2016]). All findings above are based on measurements from the sun-lit side of the Moon's surface, where solar wind particles can impinge freely onto the lunar surface. On the night-side, in contrast, a large scale wake structure is formed as a result of the high absorption of solar wind plasma on the lunar day-side. Very recent ion measurements of Chandrayaan-1's Solar Wind Monitor (SWIM) have revealed the presence of protons in the near-lunar wake, though (Dhanya et al., [Icarus 2016 (submitted)]). The presence of protons in the near lunar wake implies that there is also some sort of solar wind - lunar surface interaction on the lunar night-side. A complete analysis of this interaction will be presented herein.
Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama
Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.
1996-01-01
Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Impact of Typhoons on the Western Pacific Ocean (ITOP...The measurement and modeling activities include a focus on the impact of surface waves, air-sea fluxes and the temperature, salinity and velocity...SUBTITLE Impact of Typhoons on the Western Pacific Ocean (ITOP) DRI: Numerical Modeling of Ocean Mixed Layer Turbulence and Entrainment at High Winds
Lightweight Modular Instrumentation for Planetary Applications
NASA Technical Reports Server (NTRS)
Joshi, P. B.
1993-01-01
An instrumentation, called Space Active Modular Materials ExperimentS (SAMMES), is developed for monitoring the spacecraft environment and for accurately measuring the degradation of space materials in low earth orbit (LEO). The SAMMES architecture concept can be extended to instrumentation for planetary exploration, both on spacecraft and in situ. The operating environment for planetary application will be substantially different, with temperature extremes and harsh solar wind and cosmic ray flux on lunar surfaces and temperature extremes and high winds on venusian and Martian surfaces. Moreover, instruments for surface deployment, which will be packaged in a small lander/rover (as in MESUR, for example), must be extremely compact with ultralow power and weight. With these requirements in mind, the SAMMES concept was extended to a sensor/instrumentation scheme for the lunar and Martian surface environment.
Environmental and internal controls of tropical cyclone intensity change
NASA Astrophysics Data System (ADS)
Desflots, Melicie
Tropical cyclone (TC) intensity change is governed by internal dynamics and environmental conditions. This study aims to gain a better understanding of the physical mechanisms responsible for TC intensity changes with a particular focus to those related to the vertical wind shear and the impact of sea spray on the hurricane boundary layer, by using high resolution, full physics numerical simulations. The coupled model consists of three components: the non-hydrostatic, 5th generation Pennsylvania State University-NCAR mesoscale model (MM5), the NOAA/NCEP WAVEWATCH III (WW3) ocean surface wave model, and the WHOI three-dimensional upper ocean circulation model (3DPWP). Sea spray parameterizations (SSP) were developed at NOAA/ESRL, modified by the author and introduced in uncoupled and coupled simulations. The 0.5 km grid resolution MM5 simulation of Hurricane Lili showed a rapid intensification associated with a contracting eyewall. Hurricane Lili weakened in a 5-10 m s-1 vertical wind shear environment. The simulated storm experienced wind shear direction normal to the storm motion, which produced a strong wavenumber one rainfall asymmetry in the downshear-left quadrant of the storm. The increasing vertical wind shear induced a vertical tilt of the vortex with a time lag of 5-6 hours after the wavenumber one rainfall asymmetry was first observed in the model simulation. Other factors controlling intensity and intensity change in tropical cyclones are the air-sea fluxes. Recent studies have shown that the momentum exchange coefficient levels off at high wind speed. However, the behavior of the exchange coefficient for enthalpy flux in high wind and the potential impact of sea spray on it is still uncertain. The current SSP are closely tied to wind speed and overestimate the mediated heat fluxes by sea spray in the hurricane boundary layer. As the sea spray generation depends on wind speed and the variable wave state, a new SSP based on the surface wave energy dissipation (WED) is introduced in the coupled model. In the coupled simulations, the WED is used to quantify the amount of wave breaking related to the generation of spray. The SSP coupled to the waves offers an improvement compared to the wind dependent SSP.
NASA Astrophysics Data System (ADS)
Jin, Lili; Li, Zhenjie; He, Qing; Miao, Qilong; Zhang, Huqiang; Yang, Xinghua
2016-12-01
Near-surface wind measurements obtained with five 100-m meteorology towers, 39 regional automatic stations, and simulations by the Weather Research and Forecasting (WRF) model were used to investigate the spatial structure of topography-driven flows in the complex urban terrain of Urumqi, China. The results showed that the wind directions were mainly northerly and southerly within the reach of 100 m above ground in the southern suburbs, urban area, and northern suburbs, which were consistent with the form of the Urumqi gorge. Strong winds were observed in southern suburbs, whereas the winds in the urban, northern suburbs, and northern rural areas were weak. Static wind occurred more frequently in the urban and northern rural areas than in the southern suburbs. In the southern suburbs, wind speed was relatively high throughout the year and did not show significant seasonal variations. The average annual wind speed in this region varied among 1.9-5.5, 1.1-3.6, 1.2-4.3, 1.2-4.3, and 1.1-3.5 m s -1 within the reach of 100 m above ground at Yannanlijiao, Shuitashan, Liyushan, Hongguangshan, and Midong, respectively. The flow characteristics comprised more airflows around the mountain, where the convergence and divergence were dominated by the terrain in eastern and southwestern Urumqi. Further analysis showed that there was a significant mountain-valley wind in spring, summer, and autumn, which occurred more frequently in spring and summer for 10-11 h in urban and northern suburbs. During daytime, there was a northerly valley wind, whereas at night there was a southerly mountain wind. The conversion time from the mountain wind to the valley wind was during 0800-1000 LST (Local Standard Time), while the conversion from the valley wind to the mountain wind was during 1900-2100 LST. The influence of the mountain-valley wind in Urumqi City was most obvious at 850 hPa, according to the WRF model.
The Effect of the South Asia Monsoon on the Wind Sea and Swell Patterns in the Arabian Sea
NASA Astrophysics Data System (ADS)
Semedo, Alvaro
2015-04-01
Ocean surface gravity waves have a considerable impact on coastal and offshore infrastructures, and are determinant on ship design and routing. But waves also play an important role on the coastal dynamics and beach erosion, and modulate the exchanges of momentum, and mass and other scalars between the atmosphere and the ocean. A constant quantitative and qualitative knowledge of the wave patterns is therefore needed. There are two types of waves at the ocean surface: wind-sea and swell. Wind-sea waves are growing waves under the direct influence of local winds; as these waves propagate away from their generation area, or when their phase speed overcomes the local wind speed, they are called swell. Swell waves can propagate thousands of kilometers across entire ocean basins. The qualitative analysis of ocean surface waves has been the focus of several recent studies, from the wave climate to the air-sea interaction community. The reason for this interest lies mostly in the fact that waves have an impact on the lower atmosphere, and that the air-sea coupling is different depending on the wave regime. Waves modulate the exchange of momentum, heat, and mass across the air-sea interface, and this modulation is different and dependent on the prevalence of one type of waves: wind sea or swell. For fully developed seas the coupling between the ocean-surface and the overlaying atmosphere can be seen as quasi-perfect, in a sense that the momentum transfer and energy dissipation at the ocean surface are in equilibrium. This can only occur in special areas of the Ocean, either in marginal seas, with limited fetch, or in Open Ocean, in areas with strong and persistent wind speed with little or no variation in direction. One of these areas is the Arabian Sea, along the coasts of Somalia, Yemen and Oman. The wind climate in the Arabian sea is under the direct influence of the South Asia monsoon, where the wind blows steady from the northeast during the boreal winter, and reverses direction to blow also steady but stronger from the southwest during the boreal summer months. During the summer monsoon the wind pattern in the north Arabian Sea is rather intricate, with a large scale synoptic forcing with a high pressure cell over the ocean and a thermal low pressure system in-land, but also with at least two low-level wind jets, the Finlater (or Somali) jet, and the Oman coastal jet. This wind pattern leads to a particular wave pattern and seasonal variability. The monsoon wind pattern has a direct influence in the wave climate in that area, The particular wind-sea and swell climates of the Arabian Sea are presented. The study is based on the ERA-Interim wave reanalysis from the European Centre for Medium-Range Weather Forecasts.
NASA Technical Reports Server (NTRS)
Romanski, Joy; Hameed, Sultan
2015-01-01
Interannual variations of latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Mediterranean for the boreal winter season (DJF) show positive trends during 1958-2011. Comparison of correlations between the heat fluxes and the intensity and location of the Azores High (AH), and the NAO and East Atlantic-West Russia (EAWR) teleconnections, along with analysis of composites of surface temperature, humidity and wind fields for different teleconnection states, demonstrates that variations of the AH are found to explain the heat flux changes more successfully than the NAO and the EAWR. Trends in sea level pressure and longitude of the Azores High during DJF show a strengthening, and an eastward shift. DJF Azores High pressure and longitude are shown to co-vary such that variability of the Azores High occurs along an axis defined by lower pressure and westward location at one extreme, and higher pressure and eastward location at the other extreme. The shift of the Azores High from predominance of the low/west state to the high/east state induces trends in Mediterranean Sea surface winds, temperature and moisture. These, combined with sea surface warming trends, produce trends in wintertime Mediterranean Sea sensible and latent heat fluxes.
NASA Astrophysics Data System (ADS)
Delgado, A.; Gertig, C.; Blesa, E.; Loza, A.; Hidalgo, C.; Ron, R.
2016-05-01
Typical plant configurations for Central Receiver Systems (CRS) are comprised of a large field of heliostats which concentrate solar irradiation onto the receiver, which is elevated hundreds of meters above the ground. Wind speed changes with altitude above ground, impacting on the receiver thermal efficiency due to variations of the convective heat losses. In addition, the physical properties of air vary at high altitudes to a significant degree, which should be considered in the thermal losses calculation. DNV GL has long-reaching experience in wind energy assessment with reliable methodologies to reduce the uncertainty of the determination of the wind regime. As a part of this study, DNV GL estimates the wind speed at high altitude for different sites using two methods, a detailed estimation applying the best practices used in the wind energy sector based on measurements from various wind sensors and a simplified estimation applying the power law (1, 2) using only one wind measurement and a representative value for the surface roughness. As a result of the study, a comparison of the wind speed estimation considering both methods is presented and the impact on the receiver performance for the evaluated case is estimated.
A new wind energy conversion system
NASA Technical Reports Server (NTRS)
Smetana, F. O.
1975-01-01
It is presupposed that vertical axis wind energy machines will be superior to horizontal axis machines on a power output/cost basis and the design of a new wind energy machine is presented. The design employs conical cones with sharp lips and smooth surfaces to promote maximum drag and minimize skin friction. The cones are mounted on a vertical axis in such a way as to assist torque development. Storing wind energy as compressed air is thought to be optimal and reasons are: (1) the efficiency of compression is fairly high compared to the conversion of mechanical energy to electrical energy in storage batteries; (2) the release of stored energy through an air motor has high efficiency; and (3) design, construction, and maintenance of an all-mechanical system is usually simpler than for a mechanical to electrical conversion system.
Wind-driven angular momentum loss in binary systems. I - Ballistic case
NASA Technical Reports Server (NTRS)
Brookshaw, Leigh; Tavani, Marco
1993-01-01
We study numerically the average loss of specific angular momentum from binary systems due to mass outflow from one of the two stars for a variety of initial injection geometries and wind velocities. We present results of ballistic calculations in three dimensions for initial mass ratios q of the mass-losing star to primary star in the range q between 10 exp -5 and 10. We consider injection surfaces close to the Roche lobe equipotential surface of the mass-losing star, and also cases with the mass-losing star underfilling its Roche lobe. We obtain that the orbital period is expected to have a negative time derivative for wind-driven secular evolution of binaries with q greater than about 3 and with the mass-losing star near filling its Roche lobe. We also study the effect of the presence of an absorbing surface approximating an accretion disk on the average final value of the specific angular momentum loss. We find that the effect of an accretion disk is to increase the wind-driven angular momentum loss. Our results are relevant for evolutionary models of high-mass binaries and low-mass X-ray binaries.
Determination of tropical cyclone surface pressure and winds from satellite microwave data
NASA Technical Reports Server (NTRS)
Kidder, S. Q.
1979-01-01
An approach to the problem of deducing wind speed and pressure around tropical cyclones is presented. The technique, called the Surface Wind Inference from Microwave data (SWIM technique, uses satellites microwave sounder data to measure upper tropospheric temperature anomalies which may then be related to surface pressure anomalies through the hydrostatic and radiative transfer equations. Surface pressure gradients outside of the radius of maximum wind are estimated for the first time. Future instruments may be able to estimate central pressure with + or - 0/1 kPa accuracy.
Characteristics of an Airfoil as Affected by Fabric Sag
NASA Technical Reports Server (NTRS)
Ward, Kenneth E
1932-01-01
This report presents the results of tests made at a high value of the Reynolds Number in the N.A.C.A. variable-density wind tunnel to determine the aerodynamic characteristics of an airfoil as affected by fabric sag. Tests were made of two Gottingen 387 airfoils, one having the usual smooth surface and the other having a surface modified to simulate two types of fabric sag. The results of these tests indicate that the usual sagging of the wind covering between ribs has a very small effect on the aerodynamic characteristics of an airfoil.
NASA Technical Reports Server (NTRS)
Shenk, W. E.; Adler, R. F.; Chesters, D.; Susskind, J.; Uccellini, L.
1984-01-01
The measurements from current and planned geosynchronous satellites provide quantitative estimates of temperature and moisture profiles, surface temperature, wind, cloud properties, and precipitation. A number of significant observation characteristics remain, they include: (1) temperature and moisture profiles in cloudy areas; (2) high vertical profile resolution; (3) definitive precipitation area mapping and precipitation rate estimates on the convective cloud scale; (4) winds from low level cloud motions at night; (5) the determination of convective cloud structure; and (6) high resolution surface temperature determination. Four major new observing capabilities are proposed to overcome these deficiencies: a microwave sounder/imager, a high resolution visible and infrared imager, a high spectral resolution infrared sounder, and a total ozone mapper. It is suggested that the four sensors are flown together and used to support major mesoscale and short range forecasting field experiments.
Quality Control Methodology Of A Surface Wind Observational Database In North Eastern North America
NASA Astrophysics Data System (ADS)
Lucio-Eceiza, Etor E.; Fidel González-Rouco, J.; Navarro, Jorge; Conte, Jorge; Beltrami, Hugo
2016-04-01
This work summarizes the design and application of a Quality Control (QC) procedure for an observational surface wind database located in North Eastern North America. The database consists of 526 sites (486 land stations and 40 buoys) with varying resolutions of hourly, 3 hourly and 6 hourly data, compiled from three different source institutions with uneven measurement units and changing measuring procedures, instrumentation and heights. The records span from 1953 to 2010. The QC process is composed of different phases focused either on problems related with the providing source institutions or measurement errors. The first phases deal with problems often related with data recording and management: (1) compilation stage dealing with the detection of typographical errors, decoding problems, site displacements and unification of institutional practices; (2) detection of erroneous data sequence duplications within a station or among different ones; (3) detection of errors related with physically unrealistic data measurements. The last phases are focused on instrumental errors: (4) problems related with low variability, placing particular emphasis on the detection of unrealistic low wind speed records with the help of regional references; (5) high variability related erroneous records; (6) standardization of wind speed record biases due to changing measurement heights, detection of wind speed biases on week to monthly timescales, and homogenization of wind direction records. As a result, around 1.7% of wind speed records and 0.4% of wind direction records have been deleted, making a combined total of 1.9% of removed records. Additionally, around 15.9% wind speed records and 2.4% of wind direction data have been also corrected.
NASA Astrophysics Data System (ADS)
Dong, Shenfu; Goni, Gustavo; Volkov, Denis; Lumpkin, Rick; Foltz, Gregory
2017-04-01
Three surface drifters equipped with temperature and salinity sensors at 0.2 m and 5 m depths were deployed in April/May 2015 in the subtropical South Pacific Ocean with the objective of measuring near-surface salinity differences seen by satellite and in situ sensors and examining the causes of the differences. Measurements from these drifters indicate that, on average, water at a depth of 0.2 m is about 0.013 psu fresher than at 5 m and about 0.024°C warmer. Events with large temperature and salinity differences between the two depths often occur when surface winds are weak. In addition to the expected surface freshening and cooling during rainfall events, surface salinification occurs under weak wind conditions when there is strong surface warming that enhances evaporation and upper ocean stratification. Further examination of the drifter measurements demonstrate that (i) the amount of surface freshening and vertical salinity gradient heavily depend on wind speed during rain events, (ii) salinity differences between 0.2 m and 5 m are positively correlated with the corresponding temperature differences, and (iii) temperature exhibits a diurnal cycle at both depths, whereas the diurnal cycle of salinity is observed only at 0.2 m when the wind speed is less than 4 m/s. Its phase is consistent with diurnal changes in surface temperature-induced evaporation. Below a wind speed of 6 m/s, the amplitudes of the diurnal cycles of temperature at both depths decrease with increasing wind speed. Wind speed also affects the phasing of the diurnal cycle of T5m with the time of maximum T5m increasing gradually with decreasing wind speed. Wind speed does not affect the phasing of the diurnal cycle of T0.2m. At 0.2 m and 5 m, the diurnal cycle of temperature also depends on surface solar radiation, with the amplitude and time of diurnal maximum increasing as solar radiation increases.
NASA Technical Reports Server (NTRS)
Otterman, Joseph; Atlas, R.; Ingraham, J.; Ardizzone, J.; Starr, D.; Terry, J.
1998-01-01
Surface winds over the oceans are derived from Special Sensor Microwave Imager (SSM/I) measurements, assigning direction by Variational Analysis Method (VAM). Validations by comparison with other measurements indicate highly-satisfactory data quality. Providing global coverage from 1988, the dataset is a convenient source for surface-wind climatology. In this study, the interannual variability of zonal winds is analyzed concentrating on the westerlies in North Atlantic and North Pacific, above 30 N. Interannual differences in the westerlies exceeding 10 m sec (exp -1) are observed over large regions, often accompanied by changes of the same magnitude in the easterlies below 30 N. We concentrate on February/March, since elevated temperatures, by advancing snow-melt, can produce early spring. The extremely strong westerlies in 1997 observed in these months over North Atlantic (and also North Pacific) apparently contributed to large surface-temperature anomalies in western Europe, on the order of +3 C above the climatic monthly average for England and France. At these latitudes strong positive anomalies extended in a ring around the globe. We formulated an Index of South westerlies for the North Atlantic, which can serve as an indicator for day-by-day advection effects into Europe. In comparing 1997 and 1998 with the previous years, we establish significant correlations with the temperature anomalies (one to five days later, depending on the region, and on the season). This variability of the ocean-surface winds and of the temperature anomalies on land may be related to the El Nino/La Nina oscillations. Such large temperature fluctuations over large areas, whatever the cause, can be regarded as noise in attempts to assess long-term trends in global temperature.
The Evolution of a Snow Dune Field
NASA Astrophysics Data System (ADS)
Filhol, S.; Pirk, N.; Schuler, T.; Burkhart, J. F.
2017-12-01
On March 24, 2017 we observed the evolution of a snow dune field during a passing storm on the alpine plateau of Finse, Norway. With a terrestrial lidar we captured 15 high-resolution scans of the snow surface over an area of about 5000 m2 over the course of 7.5 hours from which we analyze morphological changes. An eddy covariance system located nearby at the Finse Alpine Research Station recorded wind and its turbulent structure, and measured the snow drifting flux with a FlowCapt sensor. This combined dataset provides novel insight into the responses and changes of the snow surface morphology exposed to storm constraints (e.g. wind speed, drifting flux). We found that individual dunes have moved 30 to 37 m over the course of 7.5 hours. The wavelength of the dunes varied from 10.3±3.1 m at the time of the first scan to 13.6±3.3 m at the last scan. Within this time period we observed individual dunes 1) migrating down wind, later becoming 2) temporarily nearly static as the wind speed dropped, and finally 3) migrating, growing, and merging into larger transverse dunes under strong wind conditions accompanied by large quantities of drifting snow. This dynamics can be considered analogous to sand dune behavior, however, on much shorter time scale (1h vs 10-100 years) and smaller spatial scale (10m vs 100m). The record of this event helps us to understand the morphological evolution of a snow surface during a blowing snow storm, and further illustrates the fate of self-sustained bedforms such as dunes in varying conditions. Such detailed description of erosion/deposition processes of the snow surface are crucial for improvements of land surface models, commonly applied to hydrological and ecological purposes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolter, K.
Clusters of sea level pressure (SLP), surface wind, cloudiness, and sea surface temperature (SST) in the domain of the tropical Atlantic, eastern Pacific, and Indian Oceans are introduced and discussed in terms of general circulation and climate. They appear to capture well the large-scale degrees of freedom of the seasonal fields. In the Atlantic, and, to a lesser extent, in the eastern Pacific, most analyzed fields group into zonally oriented trade wind clusters. These are separated distinctly by the near-equatorial trough axis. By contrast, the Indian Ocean features strong interhemispheric connections associations with the monsoon systems of boreal summer and,more » to a lesser degree, of boreal winter. The usefulness of clusters thus established is elucidated with respect to the Southern Oscillation (SO). General circulation changes associated with this planetary pressure seesaw are deduced from the correlation maps of surface field clusters for January/February and July/August. During the positive SO phase (i.e., anomalously high pressure over the eastern Pacific and anomalously low pressure over Indonesia), both the Atlantic and eastern Pacific near-equatorial troughs are inferred to be shifted towards the north from July/August SLP, wind, and cloudiness fields. While eastern Pacific trade winds are weakened in both seasons in the positive PO phase, the Atlantic trades appear strengthened at the same time in the winter hemisphere only. Over the Indian Ocean, the monsoon circulation seems to be strengthened during the positive SO phase, with the summer monsoon displaying a more complex picture. Its SLP, cloudiness, and SST fields support an enhanced southwest monsoon, while its surface winds appear largely inconclusive. SST is lowered during the positive SO phase in all three tropical oceans.« less
High-frequency pressure variations in the vicinity of a surface CO2 flux chamber
Eugene S. Takle; James R. Brandle; R. A. Schmidt; Rick Garcia; Irina V. Litvina; William J. Massman; Xinhua Zhou; Geoffrey Doyle; Charles W. Rice
2003-01-01
We report measurements of 2Hz pressure fluctuations at and below the soil surface in the vicinity of a surface-based CO2 flux chamber. These measurements were part of a field experiment to examine the possible role of pressure pumping due to atmospheric pressure fluctuations on measurements of surface fluxes of CO2. Under the moderate wind speeds, warm temperatures,...
2010-09-30
simulating violent free - surface flows , and show the importance of wave breaking in energy transport...using Eulerian simulation . 3 IMPACT/APPLICATION This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that...several Eulerian and Lagrangian methods for free - surface turbulence and wave simulation . The WIND–SNOW is used to simulate 1 Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Signorini, Sergio
2002-01-01
Sensitivity analyses of sea-air CO2 flux to gas transfer algorithms, climatological wind speeds, sea surface temperatures (SST) and salinity (SSS) were conducted for the global oceans and selected regional domains. Large uncertainties in the global sea-air flux estimates are identified due to different gas transfer algorithms, global climatological wind speeds, and seasonal SST and SSS data. The global sea-air flux ranges from -0.57 to -2.27 Gt/yr, depending on the combination of gas transfer algorithms and global climatological wind speeds used. Different combinations of SST and SSS global fields resulted in changes as large as 35% on the oceans global sea-air flux. An error as small as plus or minus 0.2 in SSS translates into a plus or minus 43% deviation on the mean global CO2 flux. This result emphasizes the need for highly accurate satellite SSS observations for the development of remote sensing sea-air flux algorithms.
NASA Technical Reports Server (NTRS)
Mccarthy, J.
1984-01-01
The principal objective of the Joint Airport Weather Studies Project was to obtain high-resolution velocity, turbulence, and thermodynamic data on a convective outflow called a microburst, an intense downdraft and resulting horizontal outflow near the surface. Data collection occurred during the summer of 1982 near Denver, CO. Data sensors included three pulsed-microwave Doppler and two pulsed CO2 lidar radars, along with 27 Portable Automated Mesonet surface weather stations, the FAA's low-level-wind-shear alert system (LLWSAS), and five instrumented research aircraft. Convective storms occurred on 75 of 91 operational days, with Doppler data being collected on at least 70 microbursts. Analyses reported included a thorough examination of microburst-climatology statistics, the capability of the LLWSAS to detect adequately and accurately the presence of low-altitude wind shear danger to aircraft, the capability of a terminal Doppler radar system development to provide improved wind-shear detection and warning, and progress toward improved wind-shear training for pilots.
NASA Astrophysics Data System (ADS)
Adkins, Kevin Allan
Previous simulations have shown that wind farms have an impact on the near-surface atmospheric boundary layer (ABL) as turbulent wakes generated by the turbines enhance vertical mixing of momentum, heat and moisture. These changes alter downstream atmospheric properties. With the exception of a few observational data sets that focus on the impact to near-surface temperature within wind farms, little to no observational evidence exists with respect to vertical mixing. These few experimental studies also lack high spatial resolution due to their use of a limited number of meteorological sensors or remote sensing techniques. This study utilizes an instrumented small unmanned aerial system (sUAS) to gather high resolution in-situ field measurements from two state-of-the-art Midwest wind farms in order to differentially map downstream changes to relative humidity. These measurements are complemented by numerical experiments conducted using large eddy simulation (LES). Observations and numerical predictions are in good general agreement around a single wind turbine and show that downstream relative humidity is altered in the vertical, lateral, and downstream directions. A suite of LES is then performed to determine the effect of a turbine array on the relative humidity distribution in compounding wakes. In stable and neutral conditions, and in the presence of a positive relative humidity lapse rate, it is found that the humidity decreases below the turbine hub height and increases above the hub height. As the array is transitioned, the magnitude of change increases, differentially grows on the left-hand and right-hand side of the wake, and move slightly upward with downstream distance. In unstable conditions, the magnitude of near-surface decrease in relative humidity is a full order of magnitude smaller than that observed in a stable atmospheric regime.
NASA Technical Reports Server (NTRS)
Frost, W.; Harper, W. L.
1975-01-01
Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.
NASA Astrophysics Data System (ADS)
Russell, J. L.
2017-12-01
Floats deployed by oceanographers are giving us all ringside seats to the epic battle between the wind and the deep ocean around Antarctica which will determine the rate of global atmospheric warming over the next century. The poleward-shift and intensification of the Southern Hemisphere westerly winds has been shown to maintain the connection between the surface ocean and the atmosphere with the deep ocean even as the surface ocean warms. This "doorway" allows the vast deep ocean reservoir to play a significant role in the transient global climate response to increasing atmospheric greenhouse gases. Coupled climate and earth system models at low and high resolution all simulate poleward-shifted and intensified Southern Hemisphere surface westerly winds when subjected to an atmospheric carbon dioxide doubling. Comparisons of these simulations reveal how stratification, resolution and eddies affect the transient global climate response to increasing atmospheric greenhouse gases - and our collective fate.
NASA Astrophysics Data System (ADS)
Li, Tao; Zheng, Xiaogu; Dai, Yongjiu; Yang, Chi; Chen, Zhuoqi; Zhang, Shupeng; Wu, Guocan; Wang, Zhonglei; Huang, Chengcheng; Shen, Yan; Liao, Rongwei
2014-09-01
As part of a joint effort to construct an atmospheric forcing dataset for mainland China with high spatiotemporal resolution, a new approach is proposed to construct gridded near-surface temperature, relative humidity, wind speed and surface pressure with a resolution of 1 km×1 km. The approach comprises two steps: (1) fit a partial thin-plate smoothing spline with orography and reanalysis data as explanatory variables to ground-based observations for estimating a trend surface; (2) apply a simple kriging procedure to the residual for trend surface correction. The proposed approach is applied to observations collected at approximately 700 stations over mainland China. The generated forcing fields are compared with the corresponding components of the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis dataset and the Princeton meteorological forcing dataset. The comparison shows that, both within the station network and within the resolutions of the two gridded datasets, the interpolation errors of the proposed approach are markedly smaller than the two gridded datasets.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Butler, B.; Shannon, K.
2014-12-01
Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these various disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Numerical weather prediction models employ coarse horizontal resolutions which do not adequately resolve sub-grid terrain features important to the surface flow. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a near-surface wind model for complex terrain called WindNinja. The new version of WindNinja offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous model versions and 2) a CFD approach based on the OpenFOAM modeling framework and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from two recent field campaigns in complex terrain are presented. A comparison of predictions from the native mass-consistent method and the new CFD method is also provided.
Contrasting the projected change in extreme extratropical cyclones in the two hemispheres
NASA Astrophysics Data System (ADS)
Chang, E. K. M.
2017-12-01
Extratropical cyclones form an important part of the global circulation. They are responsible for much of the high impact weather in the mid-latitudes, including heavy precipitation, strong winds, and coastal storm surges. They are also the surface manifestation of baroclinic waves that are responsible for much of the transport of momentum, heat, and moisture across the mid-latitudes. Thus how these storms will change in the future is of much general interest. In particular, how the frequency of the extreme cyclones change are of most concern, since they are the ones that cause most damages. While the projection of a poleward shift of the Southern Hemisphere storm track and cyclone activity is widely accepted, together with a small decrease in the total number of extratropical cyclones, as discussed in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5), projected change in cyclone intensity is still rather uncertain. Several studies have suggested that cyclone intensity, in terms of absolute value of sea level pressure (SLP) minima or SLP perturbations, is projected to increase under global warming. However, other studies found no increase in wind speed around extratropical cyclones. In this study, CMIP5 multi-model projection of how the frequency of extreme cyclones in terms of near surface wind intensity may change under global warming has been examined. Results suggest significant increase in the occurrences of extreme cyclones in the Southern Hemisphere. In the Northern Hemisphere, CMIP5 models project a northeastward shift in extreme cyclone activity over the Pacific, and significant decrease over the Atlantic. Substantial differences are also found between projected changes in near surface wind intensity and wind intensity at 850 hPa, suggesting that wind change at 850 hPa is not a good proxy for change in surface wind intensity. Finally, projected changes in the large scale environment are examined to understand the dynamics behind these contrasting projected changes.
NASA Astrophysics Data System (ADS)
Li, J.; Okin, G.; Hartman, L.; Epstein, H.
2005-12-01
Wind is a key abiotic factor that determines the spatial distribution of soil nutrients in arid grasslands with large unvegetated gaps, such as those found in the southwestern US. On the landscape scale, basic relationships such as wind erosion rate vs. vegetative cover, and soil nutrient removal rate vs. vegetative cover have not yet been extensively studied. In a series of experiments conducted in the Jornada Experimental Range near Las Cruces, New Mexico, we have examined these relationships to determine the impact of wind erosion and dust emission on pools of soil nutrients. In the experiments, varying levels of cover were achieved by vegetation removal on 25 m x 50 m plots. Intense surface soil sampling was conducted to monitor spatial distribution of soil nutrients. Large numbers of aeolian sediment samplers were installed to obtain estimates of vertical and horizontal dust flux. Available data from one wind erosion season show that: 1) total organic C (TOC) and total N (TN) content in the windblown sediment collected at the height of 1 m were 2.2 to 7.2 times larger than those of nutrients in the surface soil (enrichment ratio); 2) enrichment ratio generally increases with the increase of vegetative cover, indicating biotic processes continually add nutrients to surface soil in high-cover treatments, while nutrients are depleted in low-cover treatments; 3) average horizontal mass flux is 12 times larger in the bare plot than in the control plot, indicating the extreme importance of vegetative cover in protecting soil nutrient loss caused by wind erosion; 4) detectable soil nutrient depletion happened within one windy season in plots with vegetation removal, especially for TOC and TN, reflecting the importance of biotic processes in maintaining nutrient pools in the surface soil; and, 5) after only a single windy season, wind erosion can significantly alter the spatial pattern of soil nutrients.
NASA Technical Reports Server (NTRS)
Lang, Timothy; Mecikalski, John; Li, Xuanli; Chronis, Themis; Brewer, Alan; Churnside, James; Rutledge, Steve
2014-01-01
CYGNSS is a planned constellation consisting of multiple micro-satellites that leverage the Global Positioning System (GPS) to provide rapidly updated, high resolution (approx. 15-50 km, approx. 4 h) surface wind speeds (via bi-static scatterometry) over the tropical oceans in any weather condition, including heavy rainfall. The approach of the work to be presented at this conference is to utilize a limited-domain, cloud-system resolving model (Weather Research and Forecasting or WRF) and its attendant data assimilation scheme (Three-Dimensional Variational Assimilation or 3DVAR) to investigate the utility of the CYGNSS mission for helping characterize key convectiveto- mesoscale processes - such as surface evaporation, moisture advection and convergence, and upscale development of precipitation systems - that help drive the initiation and development of the Madden-Julian Oscillation (MJO) in the equatorial Indian Ocean. The proposed work will focus on three scientific objectives. Objective 1 is to produce a high-resolution surface wind dataset resolution (approx. 0.5 h, approx. 1-4 km) for multiple MJO onsets using WRF-assimilated winds and other data from the DYNAmics of the MJO (DYNAMO) field campaign, which took place during October 2011 - March 2012. Objective 2 is to study the variability of surface winds during MJO onsets at temporal and spatial scales of finer resolution than future CYGNSS data. The goal is to understand how sub-CYGNSS-resolution processes will shape the observations made by the satellite constellation. Objective 3 is to ingest simulated CYGNSS data into the WRF model in order to perform observing system simulation experiments (OSSEs). These will be used to test and quantify the potential beneficial effects provided by CYGNSS, particularly for characterizing the physical processes driving convective organization and upscale development during the initiation and development of the MJO. The proposed research is ideal for answering important questions about the CYGNSS mission, such as the representativeness of surface wind retrievals in the context of the complex airflow processes that occur during heavy precipitation, as well as the tradeoffs in retrieval accuracy that result from finer spatial resolution of the CYGNSS winds versus increased errors/noisiness in those data. Research plans and initial progress toward these objectives will be presented.
NASA Astrophysics Data System (ADS)
Deca, J.; Lapenta, G.; Divin, A. V.; Lembege, B.; Markidis, S.
2013-12-01
Unlike the Earth and Mercury, our Moon has no global magnetic field and is therefore not shielded from the impinging solar wind by a magnetosphere. However, lunar magnetic field measurements made by the Apollo missions provided direct evidence that the Moon has regions of small-scale crustal magnetic fields, ranging up to a few 100km in scale size with surface magnetic field strengths up to hundreds of nanoTeslas. More recently, the Lunar Prospector spacecraft has provided high-resolution observations allowing to construct magnetic field maps of the entire Moon, confirming the earlier results from Apollo, but also showing that the lunar plasma environment is much richer than earlier believed. Typically the small-scale magnetic fields are non-dipolar and rather tiny compared to the lunar radius and mainly clustered on the far side of the moon. Using iPic3D we present the first 3D fully kinetic and electromagnetic Particle-in-Cell simulations of the solar wind interaction with lunar magnetic anomalies. We study the behaviour of a dipole model with variable surface magnetic field strength under changing solar wind conditions and confirm that lunar crustal magnetic fields may indeed be strong enough to stand off the solar wind and form a mini-magnetosphere, as suggested by MHD and hybrid simulations and spacecraft observations. 3D-PIC simulations reveal to be very helpful to analyze the diversion/braking of the particle flux and the characteristics of the resulting particles accumulation. The particle flux to the surface is significantly reduced at the magnetic anomaly, surrounded by a region of enhanced density due to the magnetic mirror effect. Second, the ability of iPic3D to resolve all plasma components (heavy ions, protons and electrons) allows to discuss in detail the electron physics leading to the highly non-adiabatic interactions expected as well as the implications for solar wind shielding of the lunar surface, depending on the scale size (solar wind protons typically have gyroradii larger than the magnetic anomaly scale size) and magnetic field strength. The research leading to these results has received funding from the European Commission's Seventh Framework Programme (FP7/2007-2013) under the grant agreement SWIFF (project 2633430, swiff.eu). Cut along the dipole axis of the lunar anomaly, showing the electron density structure.
NASA Technical Reports Server (NTRS)
Wheeler, Mark
2011-01-01
The 30 Weather Squadron (30 WS) is concerned about strong winds observed at their northern towers without advance warning. They state that terrain influences along the extreme northern fringes of Vandenberg Air Force Base (VAFB) make it difficult for forecasters to issue timely and accurate high wind warnings for northeasterly wind events. These events tend to occur during the winter or early spring when they are under the influence of the Great Basin high pressure weather regime. The Launch Weather Officers (LWOs) have seen these rapid wind increases in the current northern Towers 60, 70 and 71 in excess of their 35 kt operational warning threshold. For this task, the 30 WS requested the Applied Meteorology Unit (AMU) analyze data from days when these towers reported winds in excess of 35 kt and determine if there were any precursors in the observations that would allow the LWOs to better forecast and warn their operational customers for these wind events. The 30 WS provided wind tower data for the cool season (October - March) from the period January 2004-March 20 IO. The AMU decoded and evaluated the wind tower data for 66 days identified by the 30 WS as having high-wind events. Out of the 66 event days, only 30 had wind speed observations of > or =35 kt from at least one of the three northern towers. The AMU analyzed surface and upper air charts to determine the synoptic conditions for each event day along with tower peak wind speed and direction time series and wind rose charts for all 30 event days. The analysis revealed a trend on all event days in which the tower winds shifted to the northeast for a period of time before the first recorded > or =35 kt wind speed. The time periods for the 30 event days ranged from 20 minutes to several hours, with a median value of 110 minutes. This trend, if monitored, could give the 30 WS forecasters a precursor to assist in issuing an operational warning before a high wind event occurs. The AMU recommends developing a high-wind alert capability for VAFB using a local mesoscale model to forecast these wind events. The model should incorporate all of the VAFB local data sets and have a forecast capability of between 2 to 24 hours. Such a model would allow the meteorologists at VAFB to alert the operational customers of high wind events in a timely manner so protective action could be taken.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Butler, B.
2015-12-01
Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a wind model, WindNinja, developed for wildfire applications in complex terrain. The new version offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous versions and 2) a CFD approach based on the OpenFOAM toolbox and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from a recent field campaign at a tall isolated mountain are presented. CFD models have typically been evaluated with data collected from relatively simple terrain (e.g., low-elevation hills such as Askervein and Bolund) compared to the highly rugged terrain found in many regions, such as the western U.S. Here we provide one of the first evaluations of a CFD model over real terrain with ruggedness approaching that of landscapes characteristic of the western U.S. and other regions prone to wildfire. A comparison of predictions from the native mass-consistent method and the new CFD method is provided.
Measurements of Martian dust devil winds with HiRISE
Choi, D.S.; Dundas, C.M.
2011-01-01
We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.
Examination of the wind speed limit function in the Rothermel surface fire spread model
Patricia L. Andrews; Miguel G. Cruz; Richard C. Rothermel
2013-01-01
The Rothermel surface fire spread model includes a wind speed limit, above which predicted rate of spread is constant. Complete derivation of the wind limit as a function of reaction intensity is given, along with an alternate result based on a changed assumption. Evidence indicates that both the original and the revised wind limits are too restrictive. Wind limit is...
Measurements of wind-waves under transient wind conditions.
NASA Astrophysics Data System (ADS)
Shemer, Lev; Zavadsky, Andrey
2015-11-01
Wind forcing in nature is always unsteady, resulting in a complicated evolution pattern that involves numerous time and space scales. In the present work, wind waves in a laboratory wind-wave flume are studied under unsteady forcing`. The variation of the surface elevation is measured by capacitance wave gauges, while the components of the instantaneous surface slope in across-wind and along-wind directions are determined by a regular or scanning laser slope gauge. The locations of the wave gauge and of the laser slope gauge are separated by few centimeters in across-wind direction. Instantaneous wind velocity was recorded simultaneously using Pitot tube. Measurements are performed at a number of fetches and for different patterns of wind velocity variation. For each case, at least 100 independent realizations were recorded for a given wind velocity variation pattern. The accumulated data sets allow calculating ensemble-averaged values of the measured parameters. Significant differences between the evolution patterns of the surface elevation and of the slope components were found. Wavelet analysis was applied to determine dominant wave frequency of the surface elevation and of the slope variation at each instant. Corresponding ensemble-averaged values acquired by different sensors were computed and compared. Analysis of the measured ensemble-averaged quantities at different fetches makes it possible to identify different stages in the wind-wave evolution and to estimate the appropriate time and length scales.
New insights into modeling an organic mass fraction of sea spray aerosol
NASA Astrophysics Data System (ADS)
Meskhidze, N.; Gantt, B.
2010-12-01
As the study of climate change progresses, a need to separate the effects of natural and anthropogenic processes becomes essential in order to correctly forecast the future climate. Due to their massive source regions underlying an atmosphere with low aerosol concentration, marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) are extremely important for the Earth’s radiative budget, regional air quality and biogeochemical cycling of elements. Measurements of freshly-emitted sea spray have revealed that bubble bursting processes, largely responsible for the production of sea salt aerosol, also control sea-to-air transfer of marine organic matter. It has been established that the organic mass fraction of sea spray can be a function of sea-water composition (e.g., concentrations of Chlorophyll-a, [Chl-a], dissolved organic carbon, [DOC], particulate organic carbon, [POC], types of organic carbon, and the amount of surfactants). Current paramaterizations of marine primary organic aerosol emissions use remotely sensed [Chl-a] data as a proxy for oceanic biological activity. However, it has also been shown that the path length, size, and lifetime of bubbles in seawater as well as spatial coverage of seawater surface by streaks or slicks (visible film of a roughly 50 μm thick layer, highly enriched in organics) can have dramatic effect on organic mass fraction of sea spray (OCss). Dynamics of bubble entrainment and the level of microlayer enrichment by organics relative to the underlying bulk water can be controlled by surface wind speed. For bubble entrainment, high winds can increase rising bubble path length and therefore the amount of organics scavenged by the bubble. However, when the surface wind speeds exceed 8 m s-1 breaking of ocean waves can entirely destroy surface organic films and diminish the amount of organics leaving the sea. Despite the probable impact of wind speed, existing parameterizations do not consider the wind speed dependence of OCss. In this study we use remotely sensed data for ocean slick coverage and surface wind speed in conjunction with an upwind averaged concentrations of [Chl-a], [DOC] and [POC] to derive marine primary organic aerosol emission function. Derived empirical relationships between the aerosol and ocean/meteorological data are then compared to observed OCss at Mace Head and Point Reyes National Seashore. MATLAB curve fitting tool revealed that multi-variable regression analysis (with both wind speed and [Chl-a]) yields a significant improvement between model predicted and observed submicron fraction of OCss. The coefficient of determination increased from R2=0.1 for previous parameterizations to R2=0.6. Based on the results of this study we propose that in addition to sea-water composition, future parameterizations of marine primary organic aerosol emissions should include sea spray organic mass fraction dependence on surface wind speed.
NASA Astrophysics Data System (ADS)
Walker, Ian J.; Hesp, Patrick A.; Davidson-Arnott, Robin G. D.; Bauer, Bernard O.; Namikas, Steven L.; Ollerhead, Jeff
2009-04-01
This study reports the responses of three-dimensional near-surface airflow over a vegetated foredune to variations in the conditions of incident flow during an 8-h experiment. Two parallel measurement transects were established on morphologically different dune profiles: i) a taller, concave-convex West foredune transect with 0.5-m high, densely vegetated (45%), seaward incipient foredune, and ii) a shorter, concave-straight East foredune transect with lower, sparsely vegetated (14%) seaward incipient foredune. Five stations on each transect from the incipient dune to the crest were equipped with ultrasonic anemometers at 0.6 and 1.65 m height and logged at 1 Hz. Incident conditions were recorded from a 4-m tower over a flat beach. Winds increased from 6 m s - 1 to > 20 m s - 1 and were generally obliquely onshore (ENE, 73°). Three sub-events and the population of 10-minute averages of key properties of flow ( U, W, S, CV U) from all sample locations on the East transect ( n = 235) are examined to identify location- and profile-specific responses over 52° of the incident direction of flow (from 11 to 63° onshore). Topographic steering and forcing cause major deviations in the properties and vectors of near-surface flow from the regional wind. Topographic forcing on the concave-straight dune profile increases wind speed and steadiness toward the crest, with speed-up values to 65% in the backshore. Wind speed and steadiness of flow are least responsive to changes in incident angle in the backshore because of stagnation of flow and are most responsive at the lower stoss under pronounced streamline compression. On the steeper concave-convex profile, speed and steadiness decrease toward the crest because of stagnation of flow at the toe and flow expansion at the slope inflection point on the lower stoss. Net downward vertical velocity occurs over both profiles, increases toward the crest, and reflects enhanced turbulent momentum conveyance toward the surface. All of these flow responses are enhanced with faster speeds of incident flow and/or more onshore winds. Significant onshore steering of near-surface vectors of flow (to 37°) occurs and is greatest closer to the surface and during highly oblique winds (~ 15° onshore). Therefore, even subtle effects of streamline compression and amplification of flow under alongshore conditions effectively steer flow and sand transport toward the dune. As topographic forcing and steering cause significant, three-dimensional deviations in near-surface properties of flow, most regional-scale and/or two-dimensional models of dune process-response dynamics are insufficient for characterizing coastal and desert dune sediment budgets and morphodynamics. In particular, deflection of sand transport vectors with greater fetch distances than those derived from regional winds may occur. Coincident flow, transport and morphological response data are required to better quantitatively model these processes.
Dust and nutrient enrichment by wind erosion from Danish soils in dependence of tillage direction
NASA Astrophysics Data System (ADS)
Mohammadian Behbahani, Ali; Fister, Wolfgang; Heckrath, Goswin; Kuhn, Nikolaus J.
2016-04-01
Wind erosion is a selective process, which promotes erosion of fine particles. Therefore, it can be assumed that increasing erosion rates are generally associated with increasing loss of dust sized particles and nutrients. However, this selective process is strongly affected by the orientation and respective trapping efficiency of tillage ridges and furrows. Since tillage ridges are often the only protection measure available on poorly aggregated soils in absence of a protective vegetation cover, it is very important to know which orientation respective to the dominant wind direction provides best protection. This knowledge could be very helpful for planning erosion protection measures on fields with high wind erosion susceptibility. The main objective of this study, therefore, was to determine the effect of tillage direction on dust and nutrient mobilization by wind, using wind tunnel simulations. In order to assess the relationship between the enrichment ratio of specific particle sizes and the amount of eroded nutrients, three soils with loamy sand texture, but varying amounts of sand-sized particles, were selected. In addition, a soil with slightly less sand, but much higher organic matter content was chosen. The soils were tested with three different soil surface scenarios - flat surface, parallel tillage, perpendicular tillage. The parallel tillage operation experienced the greatest erosion rates, independent of soil type. Particles with D50 between 100-155 μm showed the greatest risk of erosion. However, due to a greater loss of dust sized particles from perpendicularly tilled surfaces, this wind-surface arrangement showed a significant increase in nutrient enrichment ratio compared to parallel tillage and flat surfaces. The main reason for this phenomenon is most probably the trapping of larger particles in the perpendicular furrows. This indicates that the highest rate of soil protection does not necessarily coincide with lowest soil nutrient losses and dust emissions. For the evaluation of protection measures on these soil types in Denmark it is, therefore, important to differentiate between their effectivity to reduce total soil erosion amount, dust emission, and nutrient loss.
NASA Astrophysics Data System (ADS)
Wiggs, Giles F. S.; Livingstone, Ian; Warren, Andrew
1996-09-01
Field measurements on an unvegetated, 10 m high barchan dune in Oman are compared with measurements over a 1:200 scale fixed model in a wind tunnel. Both the field and wind tunnel data demonstrate similar patterns of wind and shear velocity over the dune, confirming significant flow deceleration upwind of and at the toe of the dune, acceleration of flow up the windward slope, and deceleration between the crest and brink. This pattern, including the widely reported upwind reduction in shear velocity, reflects observations of previous studies. Such a reduction in shear velocity upwind of the dune should result in a reduction in sand transport and subsequent sand deposition. This is not observed in the field. Wind tunnel modelling using a near-surface pulse-wire probe suggests that the field method of shear velocity derivation is inadequate. The wind tunnel results exhibit no reduction in shear velocity upwind of or at the toe of the dune. Evidence provided by Reynolds stress profiles and turbulence intensities measured in the wind tunnel suggest that this maintenance of upwind shear stress may be a result of concave (unstable) streamline curvature. These additional surface stresses are not recorded by the techniques used in the field measurements. Using the occurrence of streamline curvature as a starting point, a new 2-D model of dune dynamics is deduced. This model relies on the establishment of an equilibrium between windward slope morphology, surface stresses induced by streamline curvature, and streamwise acceleration. Adopting the criteria that concave streamline curvature and streamwise acceleration both increase surface shear stress, whereas convex streamline curvature and deceleration have the opposite effect, the relationships between form and process are investigated in each of three morphologically distinct zones: the upwind interdune and concave toe region of the dune, the convex portion of the windward slope, and the crest-brink region. The applicability of the model is supported by measurements of the rate of sand transport and the change of the dune surface in the field.
NASA Astrophysics Data System (ADS)
Dukhovskoy, Dmitry; Bourassa, Mark
2017-04-01
Ocean processes in the Nordic Seas and northern North Atlantic are strongly controlled by air-sea heat and momentum fluxes. The predominantly cyclonic, large-scale atmospheric circulation brings the deep ocean layer up to the surface preconditioning the convective sites in the Nordic Seas for deep convection. In winter, intensive cooling and possibly salt flux from newly formed sea ice erodes the near-surface stratification and the mixed layer merges with the deeper domed layer, exposing the very weakly stratified deep water mass to direct interaction with the atmosphere. Surface wind is one of the atmospheric parameters required for estimating momentum and turbulent heat fluxes to the sea ice and ocean surface. In the ocean models forced by atmospheric analysis, errors in surface wind fields result in errors in air-sea heat and momentum fluxes, water mass formation, ocean circulation, as well as volume and heat transport in the straits. The goal of the study is to assess discrepancies across the wind vector fields from reanalysis data sets and scatterometer-derived gridded products over the Nordic Seas and northern North Atlantic and to demonstrate possible implications of these differences for ocean modeling. The analyzed data sets include the reanalysis data from the National Center for Environmental Prediction Reanalysis 2 (NCEPR2), Climate Forecast System Reanalysis (CFSR), Arctic System Reanalysis (ASR) and satellite wind products Cross-Calibrated Multi-Platform (CCMP) wind product version 1.1 and recently released version 2.0, and Remote Sensing Systems QuikSCAT data. Large-scale and mesoscale characteristics of winds are compared at interannual, seasonal, and synoptic timescales. Numerical sensitivity experiments are conducted with a coupled ice-ocean model forced by different wind fields. The sensitivity experiments demonstrate differences in the net surface heat fluxes during storm events. Next, it is hypothesized that discrepancies in the wind vorticity fields should manifest different behaviors of the isopycnals in the Nordic Seas. Time evolution of isopycnal depths in the sensitivity experiments forced by different wind fields is discussed. Results of these sensitivity experiments demonstrate a relationship between the isopycnal surfaces and the wind stress curl. The numerical experiments are also analyzed to investigate the relationship between the East Greenland Current and the wind stress curl over the Nordic Seas. The transport of the current at this location has substantial contribution from wind-driven large-scale circulation. This wind-driven part of the East Greenland Current is a western-intensified return flow of a wind-driven cyclonic gyre in the central Nordic Seas. The numerical experiments with different wind fields reveal notable sensitivity of the East Greenland Current to differences in the wind forcing.
Wind Streaks on Venus: Clues to Atmospheric Circulation
NASA Technical Reports Server (NTRS)
Greeley, Ronald; Schubert, Gerald; Limonadi, Daniel; Bender, Kelly C.; Newman, William I.; Thomas, Peggy E.; Weitz, Catherine M.; Wall, Stephen D.
1994-01-01
Magellan images reveal surface features on Venus attributed to wind processes. Sand dunes, wind-sculpted hills, and more than 5830 wind streaks have been identified. The streaks serve as local "wind vanes," representing wind direction at the time of streak formation and allowing the first global mapping of near-surface wind patterns on Venus. Wind streaks are oriented both toward the equator and toward the west. When streaks associated with local transient events, such as impact cratering, are deleted, the westward component is mostly lost but the equatorward component remains. This pattern is consistent with a Hadley circulation of the lower atmosphere.
A Spacebased Ocean Surface Exchange Data Analysis System
NASA Technical Reports Server (NTRS)
Tang, Wenqing; Liu, W. Timothy
2000-01-01
Emerging technologies have provided unprecedented opportunities to transform information into knowledge and disseminate them in a much faster, cheaper, and userfriendly mode. We have set up a system to produce and disseminate high level (gridded) ocean surface wind data from the NASA Scatterometer and European Remote Sensing missions. The data system is being expanded to produce real-time gridded ocean surface winds from an improved sensor SeaWinds on the Quikscat Mission. The wind field will be combined with hydrologic parameters from the Tropical Rain Measuring Mission to monitor evolving weather systems and natural hazard in real time. It will form the basis for spacebased Ocean Surface Exchange Data Analysis System (SOSEDAS) which will include the production of ocean surface momentum, heat, and water fluxes needed for interdisciplinary studies of ocean-atmosphere interaction. Various commercial or non-commercial software tools have been compared and selected in terms of their ability in database management, remote data accessing, graphical interface, data quality, storage needs and transfer speed, etc. Issues regarding system security and user authentication, distributed data archiving and accessing, strategy to compress large-volume geophysical and satellite data/image. and increasing transferring speed are being addressed. A simple and easy way to access information and derive knowledge from spacebased data of multiple missions is being provided. The evolving 'knowledge system' will provide relevant infrastructure to address Earth System Science, make inroads in educating an informed populace, and illuminate decision and policy making.
NASA Astrophysics Data System (ADS)
Wang, Dongxiao; Shu, Yeqiang; Xue, Huijie; Hu, Jianyu; Chen, Ju; Zhuang, Wei; Zu, TingTing; Xu, Jindian
2014-04-01
Topographically induced upwelling caused by the interaction between large-scale currents and topography was observed during four cruises in the northern South China Sea (NSCS) when the upwelling favorable wind retreated. Using a high-resolution version of the Princeton Ocean Model, we investigate relative contributions of local wind and topography to the upwelling intensity in the NSCS. The results show that the topographically induced upwelling is sensitive to alongshore large-scale currents, which have an important contribution to the upwelling intensity. The topographically induced upwelling is comparable with the wind-driven upwelling at surface and has a stronger contribution to the upwelling intensity than the local wind does at bottom in the near-shore shelf region. The widened shelf to the southwest of Shanwei and west of the Taiwan Banks intensifies the bottom friction, especially off Shantou, which is a key factor for topographically induced upwelling in terms of bottom Ekman transport and Ekman pumping. The local upwelling favorable wind enhances the bottom friction as well as net onshore transport along the 50 m isobath, whereas it has less influence along the 30 m isobath. This implies the local wind is more important in upwelling intensity in the offshore region than in the nearshore region. The contribution of local upwelling favorable wind on upwelling intensity is comparable with that of topography along the 50 m isobath. The effects of local upwelling favorable wind on upwelling intensity are twofold: on one hand, the wind transports surface warm water offshore, and as a compensation of mass the bottom current transports cold water onshore; on the other hand, the wind enhances the coastal current, and the bottom friction in turn increases the topographically induced upwelling intensity.
Aircraft High-Lift Aerodynamic Analysis Using a Surface-Vorticity Solver
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Albertson, Cindy W.
2016-01-01
This study extends an existing semi-empirical approach to high-lift analysis by examining its effectiveness for use with a three-dimensional aerodynamic analysis method. The aircraft high-lift geometry is modeled in Vehicle Sketch Pad (OpenVSP) using a newly-developed set of techniques for building a three-dimensional model of the high-lift geometry, and for controlling flap deflections using scripted parameter linking. Analysis of the low-speed aerodynamics is performed in FlightStream, a novel surface-vorticity solver that is expected to be substantially more robust and stable compared to pressure-based potential-flow solvers and less sensitive to surface perturbations. The calculated lift curve and drag polar are modified by an empirical lift-effectiveness factor that takes into account the effects of viscosity that are not captured in the potential-flow solution. Analysis results are validated against wind-tunnel data for The Energy-Efficient Transport AR12 low-speed wind-tunnel model, a 12-foot, full-span aircraft configuration with a supercritical wing, full-span slats, and part-span double-slotted flaps.
WNDCOM: estimating surface winds in mountainous terrain
Bill C. Ryan
1983-01-01
WNDCOM is a mathematical model for estimating surface winds in mountainous terrain. By following the procedures described, the sheltering and diverting effect of terrain, the individual components of the windflow, and the surface wind in remote mountainous areas can be estimated. Components include the contribution from the synoptic scale pressure gradient, the sea...
Optimizing stellarator coil winding surfaces with Regcoil
NASA Astrophysics Data System (ADS)
Bader, Aaron; Landreman, Matt; Anderson, David; Hegna, Chris
2017-10-01
We show initial attempts at optimizing a coil winding surface using the Regcoil code [1] for selected quasi helically symmetric equilibria. We implement a generic optimization scheme which allows for variation of the winding surface to allow for improved diagnostic access and allow for flexible divertor solutions. Regcoil and similar coil-solving algorithms require a user-input winding surface, on which the coils lie. Simple winding surfaces created by uniformly expanding the plasma boundary may not be ideal. Engineering constraints on reactor design require a coil-plasma separation sufficient for the introduction of neutron shielding and a tritium generating blanket. This distance can be the limiting factor in determining reactor size. Furthermore, expanding coils in other regions, where possible, can be useful for diagnostic and maintenance access along with providing sufficient room for a divertor. We minimize a target function that includes as constraints, the minimum coil-plasma distance, the winding surface volume, and the normal magnetic field on the plasma boundary. Results are presented for two quasi-symmetric equilibria at different aspect ratios. Work supported by the US DOE under Grant DE-FG02-93ER54222.
Surface and Flow Field Measurements on the FAITH Hill Model
NASA Technical Reports Server (NTRS)
Bell, James H.; Heineck, James T.; Zilliac, Gregory; Mehta, Rabindra D.; Long, Kurtis R.
2012-01-01
A series of experimental tests, using both qualitative and quantitative techniques, were conducted to characterize both surface and off-surface flow characteristics of an axisymmetric, modified-cosine-shaped, wall-mounted hill named "FAITH" (Fundamental Aero Investigates The Hill). Two separate models were employed: a 6" high, 18" base diameter machined aluminum model that was used for wind tunnel tests and a smaller scale (2" high, 6" base diameter) sintered nylon version that was used in the water channel facility. Wind tunnel and water channel tests were conducted at mean test section speeds of 165 fps (Reynolds Number based on height = 500,000) and 0.1 fps (Reynolds Number of 1000), respectively. The ratio of model height to boundary later height was approximately 3 for both tests. Qualitative techniques that were employed to characterize the complex flow included surface oil flow visualization for the wind tunnel tests, and dye injection for the water channel tests. Quantitative techniques that were employed to characterize the flow included Cobra Probe to determine point-wise steady and unsteady 3D velocities, Particle Image Velocimetry (PIV) to determine 3D velocities and turbulence statistics along specified planes, Pressure Sensitive Paint (PSP) to determine mean surface pressures, and Fringe Imaging Skin Friction (FISF) to determine surface skin friction (magnitude and direction). This initial report summarizes the experimental set-up, techniques used, data acquired and describes some details of the dataset that is being constructed for use by other researchers, especially the CFD community. Subsequent reports will discuss the data and their interpretation in more detail
NASA Astrophysics Data System (ADS)
Troitskaya, Yuliya; Sergeev, Daniil; Vdovin, Maxim; Kandaurov, Alexander; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The most important characteristics that determine the interaction between atmosphere and ocean are fluxes of momentum, heat and moisture. For their parameterization the dimensionless exchange coefficients (the surface drag coefficient CD and the heat transfer coefficient or the Stanton number CT) are used. Numerous field and laboratory experiments show that CD increases with increasing wind speed at moderate and strong wind, and as it was shows recently CD decreases at hurricane wind speed. Waves are known to increase the sea surface resistance due to enhanced form drag, the sea spray is considered as a possible mechanism of the 'drag reduction' at hurricane conditions. The dependence of heat transfer coefficient CD on the wind speed is not so certain and the role of the mechanism associated with the wave disturbances in the mass transfer is not completely understood. Observations and laboratory data show that this dependence is weaker than for the CD, and there are differences in the character of the dependence in different data sets. The purpose of this paper is investigation of the effect of surface waves on the turbulent exchange of momentum and heat within the laboratory experiment, when wind and wave parameters are maintained and controlled. The effect of spray on turbulent exchange at strong winds is also estimated. A series of experiments to study the processes of turbulent exchange of momentum and heat in a stably stratified temperature turbulent boundary layer air flow over waved water surface were carried out at the Wind - wave stratified flume of IAP RAS, the peculiarity of this experiment was the option to change the surface wave parameters regardless of the speed of the wind flow in the channel. For this purpose a polyethylene net with the variable depth (0.25 mm thick and a cell of 1.6 mm × 1.6mm) has been stretched along the channel. The waves were absent when the net was located at the level of the undisturbed water surface, and had maximum amplitude at the maximum depth of the net (33cm). To create a stable temperature stratification of the wind, the air entering the flume was heated to 30-40 oC. The water temperature was maintained about 15 degrees. The air flow velocity in the flume corresponded to the 10-m wind speed from 10 to 35 m/s. Turbulent fluxes of heat and momentum and roughness parameters were retrieved from the velocity and temperature profiles measured at the distance 6.5 m from the inlet of the flume and subsequent data processing exploiting the self-similarity of the temperature and velocity profiles. In a result surface drag and heat exchange coefficients and roughness parameters were obtained. Wind wave spectra and integral parameters (significant wave height, mean square slope) were retrieved from measurements by 3-channel array wave gauge by coherent spectral data processing. To estimate the amount of spray in the air flow, a spray marker was introduced using the effect of a sharp decline in film anemometer readings in contact with a droplet. Dependences of the exchange coefficients on the wind speed, wave parameters and the spray marker were obtained. It is shown that the exchange coefficients increase with the wind speed and wave height. It was found, that the sharp increase of the drag and heat exchange coefficients at wind speeds exceeded 25 m/s was accompanied by the emergence and increasing concentration of the spray in the air flow over water. The correlation coefficient between the drag coefficient and the spray marker was about 0.9. Using high-speed video revealed the dominant mechanism for the generation of spray at strong winds. It is shown that it is associated with the development of a special type of instability of the air-water interface, which is known as "bag-breakup instability" in the theory of fragmentation of liquids. The hypothesis is suggested, that the observed increase of surface drag and heat exchange can be attributed to the development of this type of instability. This work was supported by the Russian Foundation of Basic Research (13-05-00865, 14-05-91767, 13-05-12093, 15-05-) and Alexander Kandaurov, Maxim Vdovin and Olga Ermakova acknowledge partial support from Russian Science Foundation (Agreement No. 14-17-00667).
NASA Astrophysics Data System (ADS)
Messié, Monique; Chavez, Francisco P.
2017-09-01
A simple combination of wind-driven nutrient upwelling, surface currents, and plankton growth/grazing equations generates zooplankton patchiness and hotspots in coastal upwelling regions. Starting with an initial input of nitrate from coastal upwelling, growth and grazing equations evolve phytoplankton and zooplankton over time and space following surface currents. The model simulates the transition from coastal (large phytoplankton, e.g., diatoms) to offshore (picophytoplankton and microzooplankton) communities, and in between generates a large zooplankton maximum. The method was applied to four major upwelling systems (California, Peru, Northwest Africa, and Benguela) using latitudinal estimates of wind-driven nitrate supply and satellite-based surface currents. The resulting zooplankton simulations are patchy in nature; areas of high concentrations coincide with previously documented copepod and krill hotspots. The exercise highlights the importance of the upwelling process and surface currents in shaping plankton communities.
NASA Technical Reports Server (NTRS)
Yueh, Simon H.
2004-01-01
Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.
Wind regimes and their relation to synoptic variables using self-organizing maps
NASA Astrophysics Data System (ADS)
Berkovic, Sigalit
2018-01-01
This study exemplifies the ability of the self-organizing maps (SOM) method to directly define well known wind regimes over Israel during the entire year, except summer period, at 12:00 UTC. This procedure may be applied at other hours and is highly relevant to future automatic climatological analysis and applications. The investigation is performed by analysing surface wind measurements from 53 Israel Meteorological Service stations. The relation between the synoptic variables and the wind regimes is revealed from the averages of ECMWF ERA-INTERIM reanalysis variables for each SOM wind regime. The inspection of wind regimes and their average geopotential anomalies has shown that wind regimes relate to the gradient of the pressure anomalies, rather than to the specific isobars pattern. Two main wind regimes - strong western and the strong eastern or northern - are well known over this region. The frequencies of the regimes according to seasons is verified. Strong eastern regimes are dominant during winter, while strong western regimes are frequent in all seasons.
NASA Astrophysics Data System (ADS)
Kandaurov, Alexander; Troitskaya, Yuliya; Sergeev, Daniil; Ermakova, Olga; Kazakov, Vassily
2015-04-01
The sea spray is considered as a possible mechanism of the reduction of sea surface aerodynamic drag coefficient at hurricane conditions [1]. In this paper the mechanism of generation of spray in the near-surface layer of the atmosphere in a strong wind through the mechanism of «bag-breakup instability» was investigated in laboratory conditions with the help of high-speed video shooting. The laboratory experiments were performed on the Thermostratified Wind-Wave Channel of the IAP RAS (length 10 m, cross section of air channel 0.4 x 0.4 m, wind velocity up to 24 m/s) [2]. Experiments were carried out for the wind speeds from 14 to 22 m/s. In this range spray generation characteristics change dramatically from almost no spray generation to so called catastrophic regime with multiple cascade breakups on each crest. Shooting was performed with High-speed digital camera NAC Memrecam HX-3 in two different setups to obtain both statistical data and detailed spray generation mechanism overview. In first setup bright LED spotlight with mate screen the side of a channel was used for horizontal shadow-method shooting. Camera was placed in semi-submerged box on the opposite side of the channel. Shooting was performed at the distance of 7.5 m from the beginning of the working section. Series of short records of the surface evolution were made at 10 000 fps with 55 to 119 µm/px scale revealed the dominant mechanism of spray generation - bag-breakup instability. Sequences of high resolution images allowed investigating the details of this "bags" evolution. Shadow method provided better image quality for such conditions than side illumination and fluorescence methods. To obtain statistical data on "bags" sizes and densities vertical shadow method was used. Submerged light box was created with two 300 W underwater lamps and mate screen places at the fetch of 6.5 m. Long records (up to 8 seconds) were made with 4500 fps at 124-256 µm/px scales. Specially developed software allowed finding "bags" of the records and analyzing its geometrical characteristics. Significant increase of the number of bags was observed at equivalent wind velocities exceeding 25 m/s corresponding to change of regime of surface drag dependency on wind speed. Distributions of sizes, velocities and time of life of "bags" found were obtained for wind speeds up to 22 m/s. This work was supported by the RFBR grants (13-05-00865, 14-05-91767, 13-05-12093, 14-05-31415, 15-35-20953), RSF grant 14-17-00667 and by President grant for young scientists MK-3550.2014.5. References: 1. Andreas, E. L. and K. A. Emanuel, (2001): Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., Vol. 58, No 24, p. 3741-3751. 2. Yu. I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A Baidakov, M.A. Vdovin, V.I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J21, 13 PP., 2012 doi:10.1029/2011JC007778
2011-03-09
This image from NASA Mars Odyssey is located west of Zephyria Planum. Surfaces in this region have undergone extensive erosion by the wind. Wind is one of the most active processes of erosion on the surface of Mars today.
Mars Atmospheric Characterization Using Advanced 2-Micron Orbiting Lidar
NASA Technical Reports Server (NTRS)
Singh, U.; Engelund, W.; Refaat, T.; Kavaya, M.; Yu, J.; Petros, M.
2015-01-01
Mars atmospheric characterization is critical for exploring the planet. Future Mars missions require landing massive payloads to the surface with high accuracy. The accuracy of entry, descent and landing (EDL) of a payload is a major technical challenge for future Mars missions. Mars EDL depends on atmospheric conditions such as density, wind and dust as well as surface topography. A Mars orbiting 2-micron lidar system is presented in this paper. This advanced lidar is capable of measuring atmospheric pressure and temperature profiles using the most abundant atmospheric carbon dioxide (CO2) on Mars. In addition Martian winds and surface altimetry can be mapped, independent of background radiation or geographical location. This orbiting lidar is a valuable tool for developing EDL models for future Mars missions.
NASA Astrophysics Data System (ADS)
Smith, Craig M.; Barthelmie, R. J.; Pryor, S. C.
2013-09-01
Observations of wakes from individual wind turbines and a multi-megawatt wind energy installation in the Midwestern US indicate that directly downstream of a turbine (at a distance of 190 m, or 2.4 rotor diameters (D)), there is a clear impact on wind speed and turbulence intensity (TI) throughout the rotor swept area. However, at a downwind distance of 2.1 km (26 D downstream of the closest wind turbine) the wake of the whole wind farm is not evident. There is no significant reduction of hub-height wind speed or increase in TI especially during daytime. Thus, in high turbulence regimes even very large wind installations may have only a modest impact on downstream flow fields. No impact is observable in daytime vertical potential temperature gradients at downwind distances of >2 km, but at night the presence of the wind farm does significantly decrease the vertical gradients of potential temperature (though the profile remains stably stratified), largely by increasing the temperature at 2 m.
NASA Astrophysics Data System (ADS)
Del Sontro, T.; Sollberger, S.; Kling, G. W.; Shaver, G. R.; Eugster, W.
2013-12-01
Approximately 14% of the Alaskan North Slope is covered in lakes of various sizes and depths. Diffusive carbon emissions (CH4 and CO2) from these lakes offset the tundra sink by ~20 %, but the offset would substantially increase if ebullitive CH4 emissions were also considered. Ultimately, arctic lake CH4 emissions are not insignificant in the global CH4 budget and their contribution is bound to increase due to impacts from climate change. Here we present high resolution CH4 emission data as measured via eddy covariance and a Los Gatos gas analyzer during the ice free period from Toolik Lake, a deep (20 m) Arctic lake located on the Alaskan North Slope, over the last few summers. Emissions are relatively low (< 25 mg CH4 m-2 d-1) with little variation over the summer. Diurnal variations regularly occur, however, with up to 3 times higher fluxes at night. Gas exchange is a relatively difficult process to estimate, but is normally done so as the product of the CH4 gradient across the air-water interface and the gas transfer velocity, k. Typically, k is determined based on the turbulence on the water side of the interface, which is most commonly approximated by wind speed; however, it has become increasingly apparent that this assumption does not remain valid across all water bodies. Dissolved CH4 profiles in Toolik revealed a subsurface peak in CH4 at the thermocline of up to 3 times as much CH4 as in the surface water. We hypothesize that convective mixing at night due to cooling surface waters brings the subsurface CH4 to the surface and causes the higher night fluxes. In addition to high resolution flux emission estimates, we also acquired high resolution data for dissolved CH4 in surface waters of Toolik Lake during the last two summers using a CH4 equilibrator system connected to a Los Gatos gas analyzer. Thus, having both the flux and the CH4 gradient across the air-water interface measured directly, we can calculate k and investigate the processes influencing CH4 gas exchange in this lake. Preliminary results indicate that there are two regimes in wind speed that impact k - one at low wind speeds up to ~5 m s-1 and another at higher wind speeds (max ~10 m s-1). The differential wind speeds during night and day may compound the effect of convective mixing and cause the diurnal variation in observed fluxes.
Geophysical potential for wind energy over the open oceans
2017-01-01
Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m−2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m−2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power. PMID:29073053
Geophysical potential for wind energy over the open oceans.
Possner, Anna; Caldeira, Ken
2017-10-24
Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m -2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m -2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.
Wind Tunnel Tests for Wind Pressure Distribution on Gable Roof Buildings
2013-01-01
Gable roof buildings are widely used in industrial buildings. Based on wind tunnel tests with rigid models, wind pressure distributions on gable roof buildings with different aspect ratios were measured simultaneously. Some characteristics of the measured wind pressure field on the surfaces of the models were analyzed, including mean wind pressure, fluctuating wind pressure, peak negative wind pressure, and characteristics of proper orthogonal decomposition results of the measured wind pressure field. The results show that extremely high local suctions often occur in the leading edges of longitudinal wall and windward roof, roof corner, and roof ridge which are the severe damaged locations under strong wind. The aspect ratio of building has a certain effect on the mean wind pressure coefficients, and the effect relates to wind attack angle. Compared with experimental results, the region division of roof corner and roof ridge from AIJ2004 is more reasonable than those from CECS102:2002 and MBMA2006.The contributions of the first several eigenvectors to the overall wind pressure distributions become much bigger. The investigation can offer some basic understanding for estimating wind load distribution on gable roof buildings and facilitate wind-resistant design of cladding components and their connections considering wind load path. PMID:24082851
The potential for geostationary remote sensing of NO2 to improve weather prediction
NASA Astrophysics Data System (ADS)
Liu, X.; Mizzi, A. P.; Anderson, J. L.; Fung, I. Y.; Cohen, R. C.
2016-12-01
Observations of surface winds remain sparse making it challenging to simulate and predict the weather in circumstances of light winds that are most important for poor air quality. Direct measurements of short-lived chemicals from space might be a solution to this challenge. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of surface wind fields. Specifically, synthetic NO2 observations are sampled from a "nature run (NR)" regarded as the true atmosphere. Then NO2 observations are assimilated using EAKF methods into a "control run (CR)" which differs from the NR in the wind field. Wind errors are generated by introducing (1) errors in the initial conditions, (2) creating a model error by using two different formulations for the planetary boundary layer, (3) and by combining both of these effects. The assimilation reduces wind errors by up to 50%, indicating the prospects for future geostationary atmospheric composition measurements to improve weather forecasting are substantial. We also examine the assimilation sensitivity to the data assimilation window length. We find that due to the temporal heterogeneity of wind errors, the success of this application favors chemical observations of high frequency, such as those from geostationary platform. We also show the potential to improve soil moisture field by assimilating NO2 columns.
"Rapid Revisit" Measurements of Sea Surface Winds Using CYGNSS
NASA Astrophysics Data System (ADS)
Park, J.; Johnson, J. T.
2017-12-01
The Cyclone Global Navigation Satellite System (CYGNSS) is a space-borne GNSS-R (GNSS-Reflectometry) mission that launched December 15, 2016 for ocean surface wind speed measurements. CYGNSS includes 8 small satellites in the same LEO orbit, so that the mission provides wind speed products having unprecedented coverage both in time and space to study multi-temporal behaviors of oceanic winds. The nature of CYGNSS coverage results in some locations on Earth experiencing multiple wind speed measurements within a short period of time (a "clump" of observations in time resulting in a "rapid revisit" series of measurements). Such observations could seemingly provide indications of regions experiencing rapid changes in wind speeds, and therefore be of scientific utility. Temporally "clumped" properties of CYGNSS measurements are investigated using early CYGNSS L1/L2 measurements, and the results show that clump durations and spacing vary with latitude. For example, the duration of a clump can extend as long as a few hours at higher latitudes, with gaps between clumps ranging from 6 to as high as 12 hours depending on latitude. Examples are provided to indicate the potential of changes within a clump to produce a "rapid revisit" product for detecting convective activity. Also, we investigate detector design for identifying convective activities. Results from analyses using recent CYGNSS L2 winds will be provided in the presentation.
NASA Technical Reports Server (NTRS)
Gordon, H. H.; Munday, J. C., Jr.
1977-01-01
In estuaries, the interaction of wind, tidal current, and mixing of fresh and saline water produces a variable depth profile of current, with foam lines and convergence zones between water types. Careful measurement of surface currents via Lagrangian drifters requires a drifter design appropriate to both the depth of current to be measured and the tide and wind conditions of interest. The use of remote sensing to track drifters contributes additional constraints on drifter design. Several designs of biodegradable drifters which emit uranine dye plumes, resolvable in aerial imagery to 1:60,000 scale, were tested for wind drag in field conditions against data from calibrated current meters. A 20 cm-vaned wooden drifter and a window shade drifter set to 1.5 m depth had negligible wind drag in winds to 8 m/sec. Prediction of oil slick trajectories using surface current data and a wind factor should be approached cautiously, as surface current data may be wind-contaminated, while the usual 3.5% wind factor is appropriate only for currents measured at depth.
NASA Astrophysics Data System (ADS)
Villas Boas, A. B.; Gille, S. T.; Mazloff, M. R.
2016-02-01
Surface gravity waves play a crucial role in upper-ocean dynamics, and they are an important mechanism by which the ocean exchanges energy with the overlying atmosphere. Surface waves are largely wind forced and can also be modulated by ocean currents via nonlinear wave-current interactions, leading to either an amplification or attenuation of the wave amplitude. Even though individual waves cannot be detected by present satellite altimeters, surface waves have the potential to produce a sea-state bias in altimeter measurements and can impact the sea-surface-height spectrum at high wavenumbers or frequencies. Knowing the wave climatology is relevant for the success of future altimeter missions, such as the Surface Water and Ocean Topography (SWOT). We analyse the seasonal, intra-annual and interannual variability of significant wave heights retrieved from over two decades of satellite altimeter data and assess the extent to which the variability of the surface wave field in the California Current region is modulated by the local wind and current fields.
Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site.
Sullivan, R; Banfield, D; Bell, J F; Calvin, W; Fike, D; Golombek, M; Greeley, R; Grotzinger, J; Herkenhoff, K; Jerolmack, D; Malin, M; Ming, D; Soderblom, L A; Squyres, S W; Thompson, S; Watters, W A; Weitz, C M; Yen, A
2005-07-07
The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s(-1), most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.
Aeolian processes at the Mars Exploration Rover Meridiani Planum landing site
Sullivan, R.; Banfield, D.; Bell, J.F.; Calvin, W.; Fike, D.; Golombek, M.; Greeley, R.; Grotzinger, J.; Herkenhoff, K.; Jerolmack, D.; Malin, M.; Ming, D.; Soderblom, L.A.; Squyres, S. W.; Thompson, S.; Watters, W.A.; Weitz, C.M.; Yen, A.
2005-01-01
The martian surface is a natural laboratory for testing our understanding of the physics of aeolian (wind-related) processes in an environment different from that of Earth. Martian surface markings and atmospheric opacity are time-variable, indicating that fine particles at the surface are mobilized regularly by wind. Regolith (unconsolidated surface material) at the Mars Exploration Rover Opportunity's landing site has been affected greatly by wind, which has created and reoriented bedforms, sorted grains, and eroded bedrock. Aeolian features here preserve a unique record of changing wind direction and wind strength. Here we present an in situ examination of a martian bright wind streak, which provides evidence consistent with a previously proposed formational model for such features. We also show that a widely used criterion for distinguishing between aeolian saltation- and suspension-dominated grain behaviour is different on Mars, and that estimated wind friction speeds between 2 and 3 m s-1, most recently from the northwest, are associated with recent global dust storms, providing ground truth for climate model predictions.
Jacox, Michael G.; Hazen, Elliott L.; Bograd, Steven J.
2016-01-01
In Eastern Boundary Current systems, wind-driven upwelling drives nutrient-rich water to the ocean surface, making these regions among the most productive on Earth. Regulation of productivity by changing wind and/or nutrient conditions can dramatically impact ecosystem functioning, though the mechanisms are not well understood beyond broad-scale relationships. Here, we explore bottom-up controls during the California Current System (CCS) upwelling season by quantifying the dependence of phytoplankton biomass (as indicated by satellite chlorophyll estimates) on two key environmental parameters: subsurface nitrate concentration and surface wind stress. In general, moderate winds and high nitrate concentrations yield maximal biomass near shore, while offshore biomass is positively correlated with subsurface nitrate concentration. However, due to nonlinear interactions between the influences of wind and nitrate, bottom-up control of phytoplankton cannot be described by either one alone, nor by a combined metric such as nitrate flux. We quantify optimal environmental conditions for phytoplankton, defined as the wind/nitrate space that maximizes chlorophyll concentration, and present a framework for evaluating ecosystem change relative to environmental drivers. The utility of this framework is demonstrated by (i) elucidating anomalous CCS responses in 1998–1999, 2002, and 2005, and (ii) providing a basis for assessing potential biological impacts of projected climate change. PMID:27278260
NASA Astrophysics Data System (ADS)
Wirasatriya, A.; Kunarso; Maslukah, L.; Satriadi, A.; Armanto, R. D.
2018-03-01
During southeast monsoon, along the western coast of Sumatra Island and southern coast of Java Island are known as the coastal upwelling areas denoted by the occurrence of Sea Surface Temperature (SST) cooling and chlorophyll-a blooming. Located between Sumatra and Java Islands, Sunda Strait waters may give different response to the southeasterly wind blowing above. Using SST and chlorophyll-a data obtained from daily MODIS level 3 during 2006–2016, this study demonstrated the evidence on how bathymetry and topography modified the effect of southeasterly wind on the spatial variability of SST and chlorophyll-a. All datasets were composed into monthly and monthly climatology. The area in the center of Sunda Strait had the lowest chlorophyll-a concentration and the warmest SST during the peak of upwelling season. The deep bottom topography and the absence of barrier land prevented the generation of wind driven coastal upwelling. However, the chlorophyll-a concentration in this area had the highest correlation with the wind speed which means that the variation of chlorophyll-a concentration in this area was highly depended on the variability of wind. On the other hand, the areas with shallow bathymetry and in front of Panaitan and Java Islands had higher chlorophyll-a concentration and cooler SSTs.
Local diurnal wind-driven variabiity and upwelling in a small coastal embayment
NASA Astrophysics Data System (ADS)
Walter, R. K.; Reid, E. C.; Davis, K. A.; Armenta, K. J.; Merhoff, K.; Nidzieko, N.
2017-12-01
The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.
Local diurnal wind-driven variability and upwelling in a small coastal embayment
NASA Astrophysics Data System (ADS)
Walter, Ryan K.; Reid, Emma C.; Davis, Kristen A.; Armenta, Kevin J.; Merhoff, Kevin; Nidzieko, Nicholas J.
2017-02-01
The oceanic response to high-frequency local diurnal wind forcing is examined in a small coastal embayment located along an understudied stretch of the central California coast. We show that local diurnal wind forcing is the dominant control on nearshore temperature variability and circulation patterns. A complex empirical orthogonal function (CEOF) analysis of velocities in San Luis Obispo Bay reveals that the first-mode CEOF amplitude time series, which accounts for 47.9% of the variance, is significantly coherent with the local wind signal at the diurnal frequency and aligns with periods of weak and strong wind forcing. The diurnal evolution of the hydrographic structure and circulation in the bay is examined using both individual events and composite-day averages. During the late afternoon, the local wind strengthens and results in a sheared flow with near-surface warm waters directed out of the bay and a compensating flow of colder waters into the bay over the bottom portion of the water column. This cold water intrusion into the bay causes isotherms to shoal toward the surface and delivers subthermocline waters to shallow reaches of the bay, representing a mechanism for small-scale upwelling. When the local winds relax, the warm water mass advects back into the bay in the form of a buoyant plume front. Local diurnal winds are expected to play an important role in nearshore dynamics and local upwelling in other small coastal embayments with important implications for various biological and ecological processes.
NASA Astrophysics Data System (ADS)
Wu, Tingfeng; Timo, Huttula; Qin, Boqiang; Zhu, Guangwei; Janne, Ropponen; Yan, Wenming
2016-08-01
In order to address the major factors affecting cohesive sediment erosion using high-frequency in-situ observations in Lake Taihu, and the response of this erosion to long-term decline in wind speed, high-frequency meteorological, hydrological and turbidity sensors were deployed to record continuous field wind-induced wave, current and sediment erosion processes; Statistical analyses and mathematic modeling spanning 44 years were also conducted. The results revealed that the unconsolidated surficial cohesive sediment frequently experiences the processes of erosion, suspension and deposition. Wind waves, generated by the absorption of wind energy, are the principal force driving this cycle. When the wavelength-to-water depth ratio (L/D) is 2-3, wave propagation is affected by lakebed friction and surface erosion occurs. When L/D > 3, the interaction between wave and lakebed increases to induce massive erosion. However, influenced by rapid urbanization in the Lake Taihu basin, wind speed has significantly decreased, by an average rate of -0.022 m s-1 a-1, from 1970 to 2013. This has reduced the erodible area, represented by simulated L/D, at a rate of -16.9 km2 a-1 in the autumn and winter, and -8.1 km2 a-1 in the spring and summer. This significant decrease in surface erosion area, and the near disappearance of areas experiencing massive erosion, imply that Lake Taihu has become calmer, which can be expected to have adverse effects on the lake ecosystem by increasing eutrophication and nuisance cyanobacteria blooms.
Effects of Electrostatic Environment on Charged Particle Transport near Lunar Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Nishino, M. N.
2017-12-01
The Moon has neither dense atmosphere nor intrinsic magnetic field, and solar wind interactions with lunar surfaces are one of major plasma processes. The near-surface, dayside electrostatic environment is governed mainly by volume charges of solar wind plasma and photoelectrons as well as charged lunar surfaces. In fact, the electric environment strongly depends on surface topologies, as it will produce a shaded region, the electric environment of which can be very different from that in a sunlit condition. As one of high-profile terrains on the Moon, we have been focusing on the lunar vertical holes (or lunar pits), identified by the KAGUYA satellite and the Lunar Reconnaissance Orbiter. In order to model the distinctive electric and dust environments near the holes, we have started three-dimensional particle simulation analysis. The present study addresses the plasma environment of a lunar hole that is accompanied with a subsurface cavern. Besides the topographical effect of having a cavern, an investigation is focused on the following points. The first point is how deeply the solar wind protons are accessible into the hole and cavern. This point is relevant not only to an electric environment but also to possible existence of volatiles at permanently shaded regions of the hole. In order to examine the possibility, we implemented a proton scattering process at lunar surfaces into the simulation model. The other is the role of some minor current components such as secondary electrons, scattered protons, and charged dust grains at the lunar surface. Such minor currents become important for the charging of shaded surfaces, as major current components (solar wind plasma and photoelectrons) are not accessible there. We address these points based on kinetic model descriptions.
Surface wind characteristics of some Aleutian Islands. [for selection of windpowered machine sites
NASA Technical Reports Server (NTRS)
Wentink, T., Jr.
1973-01-01
The wind power potential of Alaska is assessed in order to determine promising windpower sites for construction of wind machines and for shipment of wind derived energy. Analyses of near surface wind data from promising Aleutian sites accessible by ocean transport indicate probable velocity regimes and also present deficiencies in available data. It is shown that winds for some degree of power generation are available 77 percent of the time in the Aleutians with peak velocities depending on location.
A Reexamination of the Emergy Input to a System from the ...
The wind energy absorbed in the global boundary layer (GBL, 900 mb surface) is the basis for calculating the wind emergy input for any system on the Earth’s surface. Estimates of the wind emergy input to a system depend on the amount of wind energy dissipated, which can have a range of magnitudes for a given velocity depending on surface drag and atmospheric stability at the location and time period under study. In this study, we develop a method to consider this complexity in estimating the emergy input to a system from the wind. A new calculation of the transformity of the wind energy dissipated in the GBL (900 mb surface) based on general models of atmospheric circulation in the planetary boundary layer (PBL, 100 mb surface) is presented and expressed on the 12.0E+24 seJ y-1 geobiosphere baseline to complete the information needed to calculate the emergy input from the wind to the GBL of any system. The average transformity of wind energy dissipated in the GBL (below 900 mb) was 1241±650 sej J-1. The analysis showed that the transformity of the wind varies over the course of a year such that summer processes may require a different wind transformity than processes occurring with a winter or annual time boundary. This is a paper in the proceedings of Emergy Synthesis 9, thus it will be available online for those interested in this subject. The paper describes a new and more accurate way to estimate the wind energy input to any system. It also has a new cal
NASA Astrophysics Data System (ADS)
MacKenzie Laxague, Nathan Jean
Short ocean waves play a crucial role in the physical coupling between the ocean and the atmosphere. This is particularly true for gravity-capillary waves, waves of a scale (O(0.01-0.1) m) such that they are similarly restored to equilibrium by gravitational and interfacial tension (capillary) effects. These waves are inextricably linked to the turbulent boundary layer processes which characterize near-interfacial flows, acting as mediators of the momentum, gas, and heat fluxes which bear greatly on surface material transport, tropical storms, and climatic processes. The observation of these waves and the fluid mechanical phenomena which govern their behavior has long posed challenges to the would-be observer. This is due in no small part to the delicacy of centimeter-scale waves and the sensitivity of their properties to disruption via tactile measurement. With the ever-growing interest in satellite remote sensing, direct observations of short wave characteristics are needed along coastal margins. These zones are characterized by a diversity of physical processes which can affect the short-scale sea surface topography that is directly sensed via radar backscatter. In a related vein, these observations are needed to more fully understand the specific hydrodynamic relationship between young, wind-generated gravity-capillary waves and longer gravity waves. Furthermore, understanding of the full oceanic current profile is hampered by a lack of observations in the near-surface domain (z = O(0.01-0.1) m), where flows can differ greatly from those at depth. Here I present the development of analytical techniques for describing gravity-capillary ocean surface waves in order to better understand their role in the mechanical coupling between the atmosphere and ocean. This is divided amongst a number of research topics, each connecting short ocean surface waves to a physical forcing process via the transfer of momentum. One involves the examination of the sensitivity of short ocean surface waves to atmospheric forcing. Another is the exploration of long wave-short wave interactions and their effects on air-sea interaction vis-a-vis hydrodynamic modulation. The third and final topic is the characterization of the gravity-capillary regime of the wavenumber-frequency spectrum for the purpose of retrieving near-surface, wind-driven current. All of these fit as part of the desire to more fully describe the mechanism by which momentum is transferred across the air-sea interface and to discuss the consequences of this flux in the very near-surface layer of the ocean. Gravity-capillary waves are found to have an outsize share of ocean surface roughness, with short wave spectral peaks showing a connection to turbulent atmospheric stress. Short wave modulation is found to occur strongest at high wavenumbers at the lowest wind speeds, with peak modulation occurring immediately downwind of the long wave crest. Furthermore, short scale roughness enhancement is found to occur upwind of the long wave crest for increasing wind forcing magnitude. Observations of the near-surface current profile show that flows retrieved via this method agree well with the results of camera-tracked dye. Application of this method to data collected in the mouth of the Columbia River (MCR) indicates the presence of a near-surface current component that departs considerably from the tidal flow and orients into the wind stress direction. These observations demonstrate that wind speed-based parameterizations may not be sufficient to estimate wind drift and hold implications for the way in which surface material (e.g., debris or spilled oil) transport is estimated when atmospheric stress is of relatively high magnitude or is steered off the mean wind direction.
Simulation of the Impact of New Ocean Surface Wind Measurements on H*Wind Analyses
NASA Technical Reports Server (NTRS)
Miller, Timothy; Atlas, Robert; Black, Peter; Chen, Shuyi; Hood, Robbie; Johnson, James; Jones, Linwood; Ruf, Chris; Uhlhorn, Eric
2008-01-01
The H*Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of surface wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRAD) is a new passive microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the current real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airbome Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 x the aircraft altitude, or approximately 2 km from space). The instrument is described in a separate paper presented at this conference. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami, and those results are used to construct H*Wind analyses. Evaluations will be presented on the relative impact of HIRAD and other instruments on H*Wind analyses, including the use of HIRAD from 2 aircraft altitudes and from a space-based platform.
NASA Technical Reports Server (NTRS)
Kantsios, A. G.; Henley, W. C., Jr.; Snow, W. L.
1982-01-01
The use of a photographic pyrometer for nonintrusive measurement of high temperature surfaces in a wind tunnel test is described. The advantages of the pyrometer for measuring surfaces whose unique shape makes use of thermocouples difficult are pointed out. The use of computer operated densitometers or optical processors for the data reduction is recommended.
Improved satellite observations in coastal areas from altimetry and SAR
NASA Astrophysics Data System (ADS)
Cipollini, Paolo; Martin, Adrien; Gommenginger, Christine; Calafat, Francisco
2017-04-01
The coastal environment is under constant pressure by natural forces and anthropogenic activities and is very sensitive to climate change. Observations of many physical and biological parameters are critical for its monitoring and management. Satellite observations constitute an efficient way to observe the global coastal environment, but ocean satellite observations have often been designed and optimised for the open ocean: algorithms and processing techniques need to be revisited and adapted for application in the coastal zone. A case in point is that of satellite altimetry, which over the oceans is regarded as one of the most successful remote sensing techniques, as it has allowed an unprecedented mapping of the ocean surface dynamics at the large- and meso-scale. With the improvements in orbit models, radar processing, atmospheric and geophysical effect corrections that have emerged over the years, altimetry gives today also a very accurate estimation of the rate of sea level rise and its geographical variability. However, altimetric data in the near-land strip (0 to 50 km from the coastline) are often flagged as bad and left unused, essentially owing to 1) difficulties with the corrections; and/or 2) the modification of the radar returns due to the presence of land in the footprint, which makes the fitting of the altimetric echoes with a waveform model (the so-called "retracking") problematic. Techniques to recover meaningful estimates of the altimeter-derived parameters (height, significant wave height and wind) in the coastal zone have been developed and lead to a number of new applications, which will be presented here. The new observation from coastal altimetry are highly synergistic with Synthetic Aperture Radar (SAR). SAR imagers measure the backscattered signal from the ocean surface at spatial resolution better than 100m. This backscattered signal gives knowledge on the sea surface roughness, which is related to wind and waves. The very high resolution enabled by this instrument makes it very promising for coastal application, but interpretation depends of information from numerical weather models that often lack accuracy and resolution in the coastal zone. A new technique, measuring the Doppler shift of the backscattered signal, permits to sense the motion of the ocean surface. Together with the water displacement associated with ocean currents, the SAR measurements are also affected by a Wind-wave induced Artefact Surface Velocity (WASV) caused by the velocity of Bragg scatterers and the orbital velocity of ocean surface gravity waves which can be of the order of 1m/s. By using the additional SAR Doppler information, it is possible either to improve wind retrieval by loosing the prior information on wind from numerical weather model, or to retrieve the surface current if the wind is well known. We will discuss how this information can be compared with the height and wind retrieval from coastal altimetry in the framework of the H2020 CEASELESS project.
An adjoint method for gradient-based optimization of stellarator coil shapes
NASA Astrophysics Data System (ADS)
Paul, E. J.; Landreman, M.; Bader, A.; Dorland, W.
2018-07-01
We present a method for stellarator coil design via gradient-based optimization of the coil-winding surface. The REGCOIL (Landreman 2017 Nucl. Fusion 57 046003) approach is used to obtain the coil shapes on the winding surface using a continuous current potential. We apply the adjoint method to calculate derivatives of the objective function, allowing for efficient computation of analytic gradients while eliminating the numerical noise of approximate derivatives. We are able to improve engineering properties of the coils by targeting the root-mean-squared current density in the objective function. We obtain winding surfaces for W7-X and HSX which simultaneously decrease the normal magnetic field on the plasma surface and increase the surface-averaged distance between the coils and the plasma in comparison with the actual winding surfaces. The coils computed on the optimized surfaces feature a smaller toroidal extent and curvature and increased inter-coil spacing. A technique for computation of the local sensitivity of figures of merit to normal displacements of the winding surface is presented, with potential applications for understanding engineering tolerances.
Potential climatic impacts and reliability of large-scale offshore wind farms
NASA Astrophysics Data System (ADS)
Wang, Chien; Prinn, Ronald G.
2011-04-01
The vast availability of wind power has fueled substantial interest in this renewable energy source as a potential near-zero greenhouse gas emission technology for meeting future world energy needs while addressing the climate change issue. However, in order to provide even a fraction of the estimated future energy needs, a large-scale deployment of wind turbines (several million) is required. The consequent environmental impacts, and the inherent reliability of such a large-scale usage of intermittent wind power would have to be carefully assessed, in addition to the need to lower the high current unit wind power costs. Our previous study (Wang and Prinn 2010 Atmos. Chem. Phys. 10 2053) using a three-dimensional climate model suggested that a large deployment of wind turbines over land to meet about 10% of predicted world energy needs in 2100 could lead to a significant temperature increase in the lower atmosphere over the installed regions. A global-scale perturbation to the general circulation patterns as well as to the cloud and precipitation distribution was also predicted. In the later study reported here, we conducted a set of six additional model simulations using an improved climate model to further address the potential environmental and intermittency issues of large-scale deployment of offshore wind turbines for differing installation areas and spatial densities. In contrast to the previous land installation results, the offshore wind turbine installations are found to cause a surface cooling over the installed offshore regions. This cooling is due principally to the enhanced latent heat flux from the sea surface to lower atmosphere, driven by an increase in turbulent mixing caused by the wind turbines which was not entirely offset by the concurrent reduction of mean wind kinetic energy. We found that the perturbation of the large-scale deployment of offshore wind turbines to the global climate is relatively small compared to the case of land-based installations. However, the intermittency caused by the significant seasonal wind variations over several major offshore sites is substantial, and demands further options to ensure the reliability of large-scale offshore wind power. The method that we used to simulate the offshore wind turbine effect on the lower atmosphere involved simply increasing the ocean surface drag coefficient. While this method is consistent with several detailed fine-scale simulations of wind turbines, it still needs further study to ensure its validity. New field observations of actual wind turbine arrays are definitely required to provide ultimate validation of the model predictions presented here.
Project "Convective Wind Gusts" (ConWinG)
NASA Astrophysics Data System (ADS)
Mohr, Susanna; Richter, Alexandra; Kunz, Michael; Ruck, Bodo
2017-04-01
Convectively-driven strong winds usually associated with thunderstorms frequently cause substantial damage to buildings and other structures in many parts of the world. Decisive for the high damage potential are the short-term wind speed maxima with duration of a few seconds, termed as gusts. Several studies have shown that convectively-driven gusts can reach even higher wind speeds compared to turbulent gusts associated with synoptic-scale weather systems. Due to the small-scale and non-stationary nature of convective wind gusts, there is a considerable lack of knowledge regarding their characteristics and statistics. Furthermore, their interaction with urban structures and their influence on buildings is not yet fully understood. For these two reasons, convective wind events are not included in the present wind load standards of buildings and structures, which so far have been based solely on the characteristics of synoptically-driven wind gusts in the near-surface boundary layer (e. g., DIN EN 1991-1-4:2010-12; ASCE7). However, convective and turbulent gusts differ considerably, e.g. concerning vertical wind-speed profiles, gust factors (i.e., maximum to mean wind speed), or exceedance probability curves. In an effort to remedy this situation, the overarching objective of the DFG-project "Convective Wind Gusts" (ConWinG) is to investigate the characteristics and statistics of convective gusts as well as their interaction with urban structures. Based on a set of 110 climate stations of the German Weather Service (DWD) between 1992 and 2014, we analyzed the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from South to North Germany. A relation between gust intensity/probability to orography or climate conditions cannot be identified. Rather, high wind speeds, e.g., above 30 m/s, can be expected everywhere in Germany with almost similar occurrence probabilities. A laboratory experiment with an impinging jet simulating the downdraft was performed to investigate the propagation of a gust within built environment. The aim is to investigate the interaction of the resulting convective gusts along the near-surface layers with different urban structures - from single street canyons up to more complex block array structures. It was shown that high velocities are conserved within street canyons over longer distances compared to open terrain conditions. In addition, the experiments revealed the ratio of building height to downdraft size as a crucial factor with regard to vertical velocities at roof level and the pressure distribution on the facades.
Results of a study on polarization mix selection for the NSCAT scatterometer
NASA Technical Reports Server (NTRS)
Long, David G.; Dunbar, R. Scott; Shaffer, Scott; Freilich, Michael H.; Hsiao, S. Vincent
1989-01-01
The NASA scatterometer (NSCAT) is an instrument designed to measure the radar backscatter of the ocean's surface for estimating the near-surface wind velocity. A given resolution element is observed from several different azimuth angles. From these measurements the near-surface vector wind over the ocean may be inferred using a geophysical model function relating the normalized radar backscatter coefficient (sigma0) to the near-surface wind. The results of a study to select a polarization mix for NSCAT using an end-to-end simulation of the NSCAT scatterometer and ground processing of the sigma0 measurements into unambiguous wind fields using a median-filter-based ambiguity-removal algorithm are presented. The system simulation was used to compare the wind measurement accuracy and ambiguity removal skill over a set of realistic mesoscale wind fields for various polarization mixes. Considerations in the analysis and simulation are discussed, and a recommended polarization mix is given.
Signatures of Air-Wave Interactions Over a Large Lake
NASA Astrophysics Data System (ADS)
Li, Qi; Bou-Zeid, Elie; Vercauteren, Nikki; Parlange, Marc
2018-06-01
The air-water exchange of momentum and scalars (temperature and water vapour) is investigated using the Lake-Atmosphere Turbulent EXchange (LATEX) dataset. The wind waves and swell are found to affect the coupling between the water surface and the air differently. The surface-stress vector aligns with the wind velocity in the presence of wind waves, but a wide range of stress-wind misalignment angles is observed during swell. The momentum transport efficiency decreases when significant stress-wind misalignment is present, suggesting a strong influence of surface wave properties on surface drag. Based on this improved understanding of the role of wave-wind misalignment, a new relative wind speed for surface-layer similarity formulations is proposed and tested using the data. The new expression yields a value of the von Kármán constant (κ ) of 0.38, compared to 0.36 when using the absolute wind speed, as well as reduced data fitting errors. Finally, the ratios of aerodynamic to scalar roughness lengths are computed and various existing models in the literature are tested using least-square fitting to the observed ratios. The tests are able to discriminate between the performance of various models; however, they also indicate that more investigations are required to understand the physics of scalar exchanges over waves.
The Character of the Solar Wind, Surface Interactions, and Water
NASA Technical Reports Server (NTRS)
Farrell, William M.
2011-01-01
We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.
Scattering by Artificial Wind and Rain Roughened Water Surfaces at Oblique Incidences
NASA Technical Reports Server (NTRS)
Craeye, C.; Sobieski, P. W.; Bliven, L. F.
1997-01-01
Rain affects wind retrievals from scatterometric measurements of the sea surface. To depict the additional roughness caused by rain on a wind driven surface, we use a ring-wave spectral model. This enables us to analyse the rain effect on K(u) band scatterometric observations from two laboratory experiments. Calculations based on the small perturbation method provide good simulation of scattering measurements for the rain-only case, whereas for combined wind and rain cases, the boundary perturbation method is appropriate.
Trapping of Momentum due to Low Salinity Water in the north Bay of Bengal
NASA Astrophysics Data System (ADS)
Chaudhuri, D.; Tandon, A.; Farrar, T.; Weller, R. A.; Venkatesan, R.; S, S.; MacKinnon, J. A.; D'Asaro, E. A.; Sengupta, D.
2016-02-01
We study the relation between near-surface ocean stratification and upper ocean currents (momentum) during the diurnal cycle and subseasonal "active-break cycle" of the summer monsoon in the north Bay of Bengal. We use time series of hourly observations from NIOT moorings BD08, BD09 and an INCOIS mooring near 18 N, 89 E in 2013, and data collected during two research cruises of ORV Sagar Nidhi in August-September 2014 and 2015. Our analyses are based on upper ocean profiles of temperature, salinity and density (from moorings and a shipborne underway conductivity-temperature-depth profiler), velocity (Acoustic Doppler Current Profiler), and surface forcing (meterology sensors on moored buoy and ship). Monsoon breaks are characterized by low rainfall, low wind speed (0-5 m/s) and high incident shortwave radiation, whereas active phases are marked by intense rainfall, high wind speed (8-16 m/s) and low incident sunlight. Our main findings are: (i) Net surface heat flux is positive (ocean gains heat) during break spells, and sea surface temperature (SST) rises by upto 1.5 C in 1-2 weeks. (ii) During breaks, day-night SST difference can reach 1.5C; mixed layer depth (MLD) shoals to 5m during day time, and deepens to 15-20 m by late night/early morning. (iii) During active spells, SST cools on subseasonal scales; MLD is deep (exceeding 20 m), and diurnal re-stratification is weak or absent. (iv) Once very low-salinity water (<30 psu) from rivers arrives at the moorings in late August, MLD remains shallow, and is insensitive to subseasonal changes in surface forcing. (v) Moored data and high-resolution observations from the summer 2014 and 2015 cruises reveal trapping of momentum from winds in a relatively thin surface layer when surface salinity is low and the shallow stratification is strong. Results of ingoing analyses will be presented at the meeting.
Preliminary results and assessment of the MAR outputs over High Mountain Asia
NASA Astrophysics Data System (ADS)
Linares, M.; Tedesco, M.; Margulis, S. A.; Cortés, G.; Fettweis, X.
2017-12-01
Lack of ground measurements has made the use of regional climate models (RCMs) over the High Mountain Asia (HMA) pivotal for understanding the impact of climate change on the hydrological cycle and on the cryosphere. Here, we show an analysis of the assessment of the outputs of Modèle Atmosphérique Régionale (MAR) model RCM over the HMA region as part of the NASA-funded project `Understanding and forecasting changes in High Mountain Asia snow hydrology via a novel Bayesian reanalysis and modeling approach'. The first step was to evaluate the impact of the different forcings on MAR outputs. To this aim, we performed simulations for the 2007 - 2008 and 2014 - 2015 years forcing MAR at its boundaries either with reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) or from the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). The comparison between the outputs obtained with the two forcings indicates that the impact on MAR simulations depends on specific parameters. For example, in case of surface pressure the maximum percentage error is 0.09 % while the 2-m air temperature has a maximum percentage error of 103.7%. Next, we compared the MAR outputs with reanalysis data fields over the region of interest. In particular, we evaluated the following parameters: surface pressure, snow depth, total cloud cover, two meter temperature, horizontal wind speed, vertical wind speed, wind speed, surface new solar radiation, skin temperature, surface sensible heat flux, and surface latent heat flux. Lastly, we report results concerning the assessment of MAR surface albedo and surface temperature over the region through MODIS remote sensing products. Next steps are to determine whether RCMs and reanalysis datasets are effective at capturing snow and snowmelt runoff processes in the HMA region through a comparison with in situ datasets. This will help determine what refinements are necessary to improve RCM outputs.
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; James, M. W.; Roberts, J. B.; Jones, W. L.; Biswas, S.; Ruf, C. S.; Uhlhorn, E. W.; Atlas, R.; Black, P.; Albers, C.
2012-01-01
HIRAD flew on high-altitude aircraft over Earl and Karl during NASA s GRIP (Genesis and Rapid Intensification Processes) campaign in August - September of 2010, and plans to fly over Atlantic tropical cyclones in September of 2012 as part of the Hurricane and Severe Storm Sentinel (HS3) mission. HIRAD is a new C-band radiometer using a synthetic thinned array radiometer (STAR) technology to obtain spatial resolution of approximately 2 km, out to roughly 30 km each side of nadir. By obtaining measurements of emissions at 4, 5, 6, and 6.6 GHz, observations of ocean surface wind speed and rain rate can be retrieved. The physical retrieval technique has been used for many years by precursor instruments, including the Stepped Frequency Microwave Radiometer (SFMR), which has been flying on the NOAA and USAF hurricane reconnaissance aircraft for several years to obtain observations within a single footprint at nadir angle. Results from the flights during the GRIP and HS3 campaigns will be shown, including images of brightness temperatures, wind speed, and rain rate. Comparisons will be made with observations from other instruments on the campaigns, for which HIRAD observations are either directly comparable or are complementary. Features such as storm eye and eye-wall, location of storm wind and rain maxima, and indications of dynamical features such as the merging of a weaker outer wind/rain maximum with the main vortex may be seen in the data. Potential impacts on operational ocean surface wind analyses and on numerical weather forecasts will also be discussed.
A dynamic experimental study on the evaporative cooling performance of porous building materials
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Lei; Meng, Qinglin; Feng, Yanshan; Chen, Yuanrui
2017-08-01
Conventional outdoor dynamic and indoor steady-state experiments have certain limitations in regard to investigating the evaporative cooling performance of porous building materials. The present study investigated the evaporative cooling performance of a porous building material using a special wind tunnel apparatus. First, the composition and control principles of the wind tunnel environment control system were elucidated. Then, the meteorological environment on a typical summer day in Guangzhou was reproduced in the wind tunnel and the evaporation process and thermal parameters of specimens composed of a porous building material were continuously measured. Finally, the experimental results were analysed to evaluate the accuracy of the wind tunnel environment control system, the heat budget of the external surface of the specimens and the total thermal resistance of the specimens and its uncertainty. The analysis results indicated that the normalized root-mean-square error between the measured value of each environmental parameter in the wind tunnel test section and the corresponding value input into the environment control system was <4%, indicating that the wind tunnel apparatus had relatively high accuracy in reproducing outdoor meteorological environments. In addition, the wet specimen could cumulatively consume approximately 80% of the shortwave radiation heat during the day, thereby reducing the temperature of the external surface and the heat flow on the internal surface of the specimen. Compared to the dry specimen, the total thermal resistance of the wet specimen was approximately doubled, indicating that the evaporation process of the porous building material could significantly improve the thermal insulation performance of the specimen.
James, Eric P.; Benjamin, Stanley G.; Marquis, Melinda
2016-10-28
A new gridded dataset for wind and solar resource estimation over the contiguous United States has been derived from hourly updated 1-h forecasts from the National Oceanic and Atmospheric Administration High-Resolution Rapid Refresh (HRRR) 3-km model composited over a three-year period (approximately 22 000 forecast model runs). The unique dataset features hourly data assimilation, and provides physically consistent wind and solar estimates for the renewable energy industry. The wind resource dataset shows strong similarity to that previously provided by a Department of Energy-funded study, and it includes estimates in southern Canada and northern Mexico. The solar resource dataset represents anmore » initial step towards application-specific fields such as global horizontal and direct normal irradiance. This combined dataset will continue to be augmented with new forecast data from the advanced HRRR atmospheric/land-surface model.« less
Atmospheric Science Data Center
2018-04-18
... Layer Winds Surface Winds Upper Level Winds Wind Profiles LIDAR Calibration/Validation Order Data: ... Model Barrier Flow Case Study DAWN Coherent Wind Profiling Flights DAWN Overview and Preliminary Flight Results ...
Cutaway of SEIS (Artist's Concept)
2018-04-09
This artist's rendering shows a cutaway of the Seismic Experiment for Interior Structure instrument, or SEIS, which will fly as part of NASA's Mars InSight lander. SEIS is a highly sensitive seismometer that will be used to detect marsquakes from the Red Planet's surface for the first time. There are two layers in this cutaway. The outer layer is the Wind and Thermal Shield -- a covering that protects the seismometer from the Martian environment. The wind on Mars, as well as extreme temperature changes, could affect the highly sensitive instrument. The inside layer is SEIS itself, a brass-colored dome that houses the instrument's three pendulums. These insides are inside a titanium vacuum chamber to further isolate them from temperature changes on the Martian surface. https://photojournal.jpl.nasa.gov/catalog/PIA22320
Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind
NASA Astrophysics Data System (ADS)
Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.
2015-04-01
Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.
NASA Astrophysics Data System (ADS)
Wörman, A.; Bottacin-Busolin, A.; Zmijewski, N.; Riml, J.
2017-08-01
Climate-driven fluctuations in the runoff and potential energy of surface water are generally large in comparison to the capacity of hydropower regulation, particularly when hydropower is used to balance the electricity production from covarying renewable energy sources such as wind power. To define the bounds of reservoir storage capacity, we introduce a dedicated reservoir volume that aggregates the storage capacity of several reservoirs to handle runoff from specific watersheds. We show how the storage bounds can be related to a spectrum of the climate-driven modes of variability in water availability and to the covariation between water and wind availability. A regional case study of the entire hydropower system in Sweden indicates that the longest regulation period possible to consider spans from a few days of individual subwatersheds up to several years, with an average limit of a couple of months. Watershed damping of the runoff substantially increases the longest considered regulation period and capacity. The high covariance found between the potential energy of the surface water and wind energy significantly reduces the longest considered regulation period when hydropower is used to balance the fluctuating wind power.
NASA Technical Reports Server (NTRS)
Edgett, Kenneth S.
2001-01-01
High spatial resolution (1.5 to 12 m/pixel) Mars Global Surveyor Mars Orbiter Camera images obtained September 1997 through June 2001 indicate that the large, dark wind streaks of western Arabia Terra each originate at a barchan dune field on a crater floor. The streaks consist of a relatively thin coating of sediment deflated from the dune fields and their vicinity. This sediment drapes a previous mantle that more thickly covers nearly all of western Arabia Terra. No dunes or eolian bedforms are found within the dark wind streaks, nor do any of the intracrater dunes climb up crater walls to provide sand to the wind streaks. The relations between dunes, wind streak, and subjacent terrain imply that dark-toned grains finer than those which comprise the dunes are lifted into suspension and carried out of the craters to be deposited on the adjacent terrain. Such grains are most likely in the silt size range (3.9-62.5 micrometers). The streaks change in terms of extent, relative albedo, and surface pattern over periods measured in years, but very little evidence for recent eolian activity (dust plumes, storms, dune movement) has been observed.
NASA Astrophysics Data System (ADS)
Magee, Madeline R.; Wu, Chin H.
2017-12-01
Water temperatures and stratification are important drivers for ecological and water quality processes within lake systems, and changes in these with increases in air temperature and changes to wind speeds may have significant ecological consequences. To properly manage these systems under changing climate, it is important to understand the effects of increasing air temperatures and wind speed changes in lakes of different depths and surface areas. In this study, we simulate three lakes that vary in depth and surface area to elucidate the effects of the observed increasing air temperatures and decreasing wind speeds on lake thermal variables (water temperature, stratification dates, strength of stratification, and surface heat fluxes) over a century (1911-2014). For all three lakes, simulations showed that epilimnetic temperatures increased, hypolimnetic temperatures decreased, the length of the stratified season increased due to earlier stratification onset and later fall overturn, stability increased, and longwave and sensible heat fluxes at the surface increased. Overall, lake depth influences the presence of stratification, Schmidt stability, and differences in surface heat flux, while lake surface area influences differences in hypolimnion temperature, hypolimnetic heating, variability of Schmidt stability, and stratification onset and fall overturn dates. Larger surface area lakes have greater wind mixing due to increased surface momentum. Climate perturbations indicate that our larger study lakes have more variability in temperature and stratification variables than the smaller lakes, and this variability increases with larger wind speeds. For all study lakes, Pearson correlations and climate perturbation scenarios indicate that wind speed has a large effect on temperature and stratification variables, sometimes greater than changes in air temperature, and wind can act to either amplify or mitigate the effect of warmer air temperatures on lake thermal structure depending on the direction of local wind speed changes.
Reminiscences on the study of wind waves
MITSUYASU, Hisashi
2015-01-01
The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena. PMID:25864467
Reminiscences on the study of wind waves.
Mitsuyasu, Hisashi
2015-01-01
The wind blowing over sea surface generates tiny wind waves. They develop with time and space absorbing wind energy, and become huge wind waves usually referred to ocean surface waves. The wind waves cause not only serious sea disasters but also take important roles in the local and global climate changes by affecting the fluxes of momentum, heat and gases (e.g. CO2) through the air-sea boundary. The present paper reviews the selected studies on wind waves conducted by our group in the Research Institute for Applied Mechanics (RIAM), Kyushu University. The themes discussed are interactions between water waves and winds, the energy spectrum of wind waves, nonlinear properties of wind waves, and the effects of surfactant on some air-sea interaction phenomena.
Observations of the effect of wind on the cooling of active lava flows
Keszthelyi, L.; Harris, A.J.L.; Dehn, J.
2003-01-01
We present the first direct observations of the cooling of active lava flows by the wind. We confirm that atmospheric convective cooling processes (i.e., the wind) dominate heat loss over the lifetime of a typical pahochoe lava flow. In fact, the heat extracted by convection is greater than predicted, especially at wind speeds less than 5 m/s and surface temperatures less than 400??C. We currently estimate that the atmospheric heat transfer coefficient is about 45-50 W m-2 K-1 for a 10 m/s wind and a surface temperature ???500??C. Further field experiments and theoretical studies should expand these results to a broader range of surface temperatures and wind speeds.
NASA Technical Reports Server (NTRS)
Liu, W. T.
1984-01-01
The average wind speeds from the scatterometer (SASS) on the ocean observing satellite SEASAT are found to be generally higher than the average wind speeds from ship reports. In this study, two factors, sea surface temperature and atmospheric stability, are identified which affect microwave scatter and, therefore, wave development. The problem of relating satellite observations to a fictitious quantity, such as the neutral wind, that has to be derived from in situ observations with models is examined. The study also demonstrates the dependence of SASS winds on sea surface temperature at low wind speeds, possibly due to temperature-dependent factors, such as water viscosity, which affect wave development.
NASA Astrophysics Data System (ADS)
Neff, William; Crawford, Jim; Buhr, Marty; Nicovich, John; Chen, Gao; Davis, Douglas
2018-03-01
Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006-2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280-310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310-340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340-375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east - it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for high accumulation of NO. This may occur via the non-linear HOX-NOx chemistry proposed after the first ISCAT field programs and NOx recycling to the surface where quantum yields may be large under the low-snow-accumulation regime of the Antarctic plateau. During the 2003 field program a sodar made direct measurements of the stable boundary layer depth (BLD), a key factor in explaining the chemistry of the high NO concentrations. Because direct measurements were not available in the other years, we developed an estimator for BLD using direct observations obtained in 2003 and step-wise linear regression with meteorological data from a 22 m tower (that was tested against independent data obtained in 1993). These data were then used with assumptions about the column abundance of NO to estimate surface fluxes of NOx. These results agreed in magnitude with results at Concordia Station and confirmed significant daily, intraseasonal and interannual variability in NO and its flux from the snow surface. Finally, we found that synoptic to mesoscale eddies governed the boundary layer circulation and accumulation pathways for NO at the SP rather than katabatic forcing. It was the small-scale features of the circulation including the transition from cloudy to clear conditions that set the stage for short-term extremes in NO, whereas larger-scale features were associated with more moderate concentrations.
An OSSE on Mesoscale Model Assimilation of Simulated HIRAD-Observed Hurricane Surface Winds
NASA Technical Reports Server (NTRS)
Albers, Cerese; Miller, Timothy; Uhlhorn, Eric; Krishnamurti, T. N.
2012-01-01
The hazards of landfalling hurricanes are well known, but progress on improving the intensity forecasts of these deadly storms at landfall has been slow. Many cite a lack of high-resolution data sets taken inside the core of a hurricane, and the lack of reliable measurements in extreme conditions near the surface of hurricanes, as possible reasons why even the most state-of-the-art forecasting models cannot seem to forecast intensity changes better. The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for observing hurricanes, and is operated and researched by NASA Marshall Space Flight Center in partnership with the NOAA Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, the University of Central Florida, the University of Michigan, and the University of Alabama in Huntsville. This instrument?s purpose is to study the wind field of a hurricane, specifically observing surface wind speeds and rain rates, in what has traditionally been the most difficult areas for other instruments to study; the high wind and heavy rain regions. Dr. T. N. Krishnamurti has studied various data assimilation techniques for hurricane and monsoon rain rates, and this study builds off of results obtained from utilizing his style of physical initializations of rainfall observations, but obtaining reliable observations in heavy rain regions has always presented trouble to our research of high-resolution rainfall forecasting. Reliable data from these regions at such a high resolution and wide swath as HIRAD provides is potentially very valuable to mesoscale forecasting of hurricane intensity. This study shows how the data assimilation technique of Ensemble Kalman Filtering (EnKF) in the Weather Research and Forecasting (WRF) model can be used to incorporate wind, and later rain rate, data into a mesoscale model forecast of hurricane intensity. The study makes use of an Observing System Simulation Experiment (OSSE) with a simulated HIRAD dataset sampled during a hurricane and uses EnKF to forecast the track and intensity prediction of the hurricane. Comparisons to truth and error metrics are used to assess the model?s forecast performance.
Two decades [1992-2012] of surface wind analyses based on satellite scatterometer observations
NASA Astrophysics Data System (ADS)
Desbiolles, Fabien; Bentamy, Abderrahim; Blanke, Bruno; Roy, Claude; Mestas-Nuñez, Alberto M.; Grodsky, Semyon A.; Herbette, Steven; Cambon, Gildas; Maes, Christophe
2017-04-01
Surface winds (equivalent neutral wind velocities at 10 m) from scatterometer missions since 1992 have been used to build up a 20-year climate series. Optimal interpolation and kriging methods have been applied to continuously provide surface wind speed and direction estimates over the global ocean on a regular grid in space and time. The use of other data sources such as radiometer data (SSM/I) and atmospheric wind reanalyses (ERA-Interim) has allowed building a blended product available at 1/4° spatial resolution and every 6 h from 1992 to 2012. Sampling issues throughout the different missions (ERS-1, ERS-2, QuikSCAT, and ASCAT) and their possible impact on the homogeneity of the gridded product are discussed. In addition, we assess carefully the quality of the blended product in the absence of scatterometer data (1992 to 1999). Data selection experiments show that the description of the surface wind is significantly improved by including the scatterometer winds. The blended winds compare well with buoy winds (1992-2012) and they resolve finer spatial scales than atmospheric reanalyses, which make them suitable for studying air-sea interactions at mesoscale. The seasonal cycle and interannual variability of the product compare well with other long-term wind analyses. The product is used to calculate 20-year trends in wind speed, as well as in zonal and meridional wind components. These trends show an important asymmetry between the southern and northern hemispheres, which may be an important issue for climate studies.
Experimental damage detection of wind turbine blade using thin film sensor array
NASA Astrophysics Data System (ADS)
Downey, Austin; Laflamme, Simon; Ubertini, Filippo; Sarkar, Partha
2017-04-01
Damage detection of wind turbine blades is difficult due to their large sizes and complex geometries. Additionally, economic restraints limit the viability of high-cost monitoring methods. While it is possible to monitor certain global signatures through modal analysis, obtaining useful measurements over a blade's surface using off-the-shelf sensing technologies is difficult and typically not economical. A solution is to deploy dedicated sensor networks fabricated from inexpensive materials and electronics. The authors have recently developed a novel large-area electronic sensor measuring strain over very large surfaces. The sensing system is analogous to a biological skin, where local strain can be monitored over a global area. In this paper, we propose the utilization of a hybrid dense sensor network of soft elastomeric capacitors to detect, localize, and quantify damage, and resistive strain gauges to augment such dense sensor network with high accuracy data at key locations. The proposed hybrid dense sensor network is installed inside a wind turbine blade model and tested in a wind tunnel to simulate an operational environment. Damage in the form of changing boundary conditions is introduced into the monitored section of the blade. Results demonstrate the ability of the hybrid dense sensor network, and associated algorithms, to detect, localize, and quantify damage.
Seasonal forecasting of high wind speeds over Western Europe
NASA Astrophysics Data System (ADS)
Palutikof, J. P.; Holt, T.
2003-04-01
As financial losses associated with extreme weather events escalate, there is interest from end users in the forestry and insurance industries, for example, in the development of seasonal forecasting models with a long lead time. This study uses exceedences of the 90th, 95th, and 99th percentiles of daily maximum wind speed over the period 1958 to present to derive predictands of winter wind extremes. The source data is the 6-hourly NCEP Reanalysis gridded surface wind field. Predictor variables include principal components of Atlantic sea surface temperature and several indices of climate variability, including the NAO and SOI. Lead times of up to a year are considered, in monthly increments. Three regression techniques are evaluated; multiple linear regression (MLR), principal component regression (PCR), and partial least squares regression (PLS). PCR and PLS proved considerably superior to MLR with much lower standard errors. PLS was chosen to formulate the predictive model since it offers more flexibility in experimental design and gave slightly better results than PCR. The results indicate that winter windiness can be predicted with considerable skill one year ahead for much of coastal Europe, but that this deteriorates rapidly in the hinterland. The experiment succeeded in highlighting PLS as a very useful method for developing more precise forecasting models, and in identifying areas of high predictability.
NASA Technical Reports Server (NTRS)
Ziemann, J.
1982-01-01
The NACA 0012 profile at Mach 0.5 was investigated in a wind tunnel with adaptive walls. It is found that adaptation of the flexible walls is possible in the high angle of attack range on both sides of maximum lift. Oil film photographs of the flow at the profile surface show three dimensional effects in the region of the corners between the profile and the sidewall. It is concluded that pure two dimensional separated flow is not possible.
NASA Astrophysics Data System (ADS)
Loope, D. B.; Zlotnik, V. A.; Kettler, R. M.; Pederson, D. T.
2012-12-01
Eolian sandstones of south-central and southeast Utah contain large volumes of contorted cross-strata that have long been recognized as products of liquefaction caused by seismic shaking. Unlike most sites where Navajo Sandstone is exposed, in Zion National Park (southwestern Utah), the Navajo contains very, very few contorted strata. We have, however, mapped the distribution of more than 1,000 small-scale, vertical pipes and dikes in uncontorted cross-strata of the Navajo at two small study sites in Zion. Pipes are 2-5 cm in diameter and up to 3 m long; dikes are ~6 cm wide. Clusters of the water-escape structures lie directly above and below numerous, near-horizontal bounding surfaces. Dikes are restricted to the wind-ripple strata that lie above the bounding surfaces. Pipes are common both above and below the bounding surfaces. In map view, most pipes are arranged in lines. Near the bounding surfaces, pipes merge upward with shallow dikes trending parallel to the lines of pipes. Pipes formed in grainflows—homogeneous, well-sorted sand lacking cohesion. Dikes formed above the bounding surface, in more-cohesive, poorly sorted, wind-ripple strata. As liquefaction began, expansion of subsurface sand caused spreading within the unliquified (capping) beds near the land surface. Dikes intruded cracks in the wind-ripple strata, and pipes rose from the better-sorted sand to interdune surfaces, following trends of cracks. Because the wind-ripple strata had low cohesive strength, a depression formed around each rupture, and ejected sand built upward to a flat-topped surface rather than forming the cone of a classic sand volcano. In one 3 m2 portion of the map area, a cluster of about 20 pipes and dikes, many with truncated tops, record eight stratigraphically distinct seismic events. The large dunes that deposited the Navajo cross-strata likely moved ~1m/yr. When, in response to seismic shaking, a few liters of fluidized sand erupted onto the lowermost portion of the dune lee slope through a pipe, the erupted sand dried and was buried by climbing wind-ripple strata as the large dune continued to advance downwind. The mapped cluster recording eight distinct seismic events lies within thin-laminated sediment that was deposited by wind ripples during 1 m (~ 1 year) of southeastward dune migration. We conclude that the small pipes and dikes of our study sites are products of numerous >MM 5 earthquakes, some of which recurred at intervals of less than 2 months. We interpret one small cluster of pipes and dikes with well-defined upward terminations as a distinct shock-aftershock sequence. Because the largest modern earthquakes can produce surface liquefaction only up to about 175 km from their epicenters, the Jurassic epicenters must have been well within that distance. The tendency of modern plate boundaries to produce high-frequency aftershocks suggests that the epicenter for this Jurassic sequence lay to the southwest, within the plate boundary zone (not within continental rocks to the east). As eolian dunes steadily migrate over interdune surfaces underlain by water-saturated dune cross-strata, the thin, distinct laminae produced by the wind ripples that occupy dune toes can faithfully record high-frequency seismic events.
NASA Astrophysics Data System (ADS)
McCarter, R.; Kohfeld, K. E.; Schepanski, K.; Gill, T. E.
2016-12-01
In 2011 the Mid-Continental United States of America experienced its worst drought since the 1930s `Dust Bowl` and subsequent 1950s Southwest drought. Both the 1950s and 2010s droughts have had negative ecological and economic impacts the Mid-Continental US (i.e. crops, livestock, fuel, and transportation). Drought distribution, severity, and duration in North America are influenced by large-scale ocean-atmosphere climate variability as well as mesoscale land-surface forcing. Intense surface heating during a drought's summer months promotes dry convection and convergence thereby indirectly increasing dust emissions through increased surface-winds. Thus, drought years are frequently linked with increased dust storms and overall dust production that can affect visibility, crop production, and human health. Another important aspect that influences dust production is the potential change in behavior of surface winds during different drought and non-drought regimes over the past 60 years. This investigation compares historic and modern surface winds to determine if the wind-driven drought and dust producing conditions have changed. We examine hourly wind speed data from 79 meteorological stations distributed over the mid-continental USA (25° to 49°N,-116° to -93°W) for two drought periods (1954-1956, 2011-2013), and two relatively wet time periods (1983-1987, 1992-1998), as determined using the Palmer-Drought Severity Index. Our preliminary examination of annual and seasonal distributions of wind speed and show that wind speeds were statistically higher during the 1950s compared with the 2010s drought and wind speeds were also greater during the spring months compared to other seasons. Characterizing these winds is a first step in identifying if these changes are a result of land surface changes, general circulation changes associated with atmospheric anomalies, and/or climate change.
NASA Astrophysics Data System (ADS)
Grosvenor, D. P.; Choularton, T. W.; Gallagher, M. W.; Lachlan-Cope, T. A.; King, J. C.
2009-12-01
The high mountains of the Antarctic Peninsula (AP) provide a climatic barrier between the west and east. The east side is generally blocked from the warmer oceanic air of the west and is consequently usually under the influence of colder continental air. On occasion, however, air from the west can cross the barrier in the form of strong winds travelling down the eastern slopes, which are also very warm and dry due to adiabatic descent. They penetrate onto the Larsen ice shelves where they lead to above zero surface temperatures and are therefore likely to encourage surface melting. Crevasse propagation due to the weight of accumulated meltwater is currently thought to have been the major factor in causing the near total disintegration of the Larsen B ice shelf in 2002. In January 2006 the British Antarctic Survey performed an aircraft flight over the Larsen C ice shelf on the east side of the AP, which sampled a strong downslope wind event. Surface flux measurements over the ice shelf suggest that the sensible heat provided by the warm jets would be likely to be negated by latent heat losses from ice ablation. The main cause of any ice melting was likely to be due to shortwave radiation input. However, the warming from the jets is still likely to be important by acting as an on/off control for melting by keeping air temperatures above zero. In addition, the dryness of the winds is likely to prevent cloud cover and thus maximize exposure of the ice shelf to solar energy input. This case study has been modeled using the WRF mesoscale model. The model reproduces the strong downslope winds seen by the aircraft with good comparisons of wind speed and temperature profiles through the wind jets. Further comparisons to surface station data have allowed progress towards achieving the best set up of the model for this case. The modeling agrees with the results of the aircraft study in suggesting that solar radiation input is likely to provide the largest amount of energy for melting of the ice surface. The modeling provides insight into the physics of the downslope winds. They are driven by descent of air from above the mountain. This mechanism is different from that often perceived to occur in the AP region, whereby air from below the mountain crest rises over the obstacle and descends on the lee side. In the latter case, stronger cross-mountain winds lead to a greater likelihood of strong downslope winds. Instead, the situation is one where hydraulic flow over the mountain seems to occur as a symptom of both a low level inversion and gravity wave breaking higher up. These create critical layers so that the fluid depth at the mountain crest is tuned to the wavelength of the gravity waves resulting in the downslope winds. The wavelength depends on wind speed and atmospheric stability. Thus stronger cross mountain winds may not necessarily lead to strong downslope winds, since the wavelength may then be detuned to the fluid depth at the mountain crest.
NASA Astrophysics Data System (ADS)
Benjanirat, Sarun
Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.
Design and analysis of a direct-drive wind power generator with ultra-high torque density
NASA Astrophysics Data System (ADS)
Jian, Linni; Shi, Yujun; Wei, Jin; Zheng, Yanchong
2015-05-01
In order to get rid of the nuisances caused by mechanical gearboxes, generators with low rated speed, which can be directly connected to wind turbines, are attracting increasing attention. The purpose of this paper is to propose a new direct-drive wind power generator (DWPG), which can offer ultra-high torque density. First, magnetic gear (MG) is integrated to achieve non-contact torque transmission and speed variation. Second, armature windings are engaged to achieve electromechanical energy conversion. Interior permanent magnet (PM) design on the inner rotor is adopted to boost the torque transmission capability of the integrated MG. Nevertheless, due to lack of back iron on the stator, the proposed generator does not exhibit prominent salient feature, which usually exists in traditional interior PM (IPM) machines. This makes it with good controllability and high power factor as the surface-mounted permanent magnet machines. The performance is analyzed using finite element method. Investigation on the magnetic field harmonics demonstrates that the permanent-magnetic torque offered by the MG can work together with the electromagnetic torque offered by the armature windings to balance the driving torque captured by the wind turbine. This allows the proposed generator having the potential to offer even higher torque density than its integrated MG.
Stellar wind erosion of protoplanetary discs
NASA Astrophysics Data System (ADS)
Schnepf, N. R.; Lovelace, R. V. E.; Romanova, M. M.; Airapetian, V. S.
2015-04-01
An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly rotating, strongly magnetized young stars. The presence of the magnetic field in the wind leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary layer which entrains and carries away the disc gas. The model uses the conservation of mass and momentum in the turbulent boundary layer. The time-scale for significant erosion depends on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity. The time-scale is estimated to be ˜2 × 106 yr. The analytic model assumes a steady stellar wind with mass- loss rate dot {M}}_w ˜ 10^{-10} M_{⊙} yr-1 and velocity vw ˜ 103 km s-1. A significant contribution to the disc erosion can come from frequent powerful coronal mass ejections (CMEs) where the average mass-loss rate in CMEs, dot{M}_CME, and velocities, vCME, have values comparable to those for the steady wind.
The Impact of Coastal Terrain on Offshore Wind and Implications for Wind Energy
NASA Astrophysics Data System (ADS)
Strobach, Edward Justin
The development of offshore wind energy is moving forward as one of several options for carbon-free energy generation along the populous US east coast. Accurate assessments of the wind resource are essential and can significantly lower financing costs that have been a barrier to development. Wind resource assessment in the Mid-Atlantic region is challenging since there are no long-term measurements of winds across the rotor span. Features of the coastal and inland terrain, such as such as the Appalachian mountains and the Chesapeake Bay, are known to lead to complex mesoscale wind regimes onshore, including low-level jets (LLJs), downslope winds and sea breezes. Little is known, however, about whether or how the inland physiography impacts the winds offshore. This research is based on the first comprehensive set of offshore wind observations in the Maryland Wind Energy Area gathered during a UMBC measurement campaign. The presentation will include a case study of a strong nocturnal LLJ that persisted for several hours before undergoing a rapid breakdown and loss of energy to smaller scales. Measurements from an onshore wind profiler and radiosondes, together with North American Regional Analysis (NARR) and a high resolution Weather Research and Forecast (WRF) model simulation, are used to untangle the forcing mechanisms on synoptic, regional and local scales that led to the jet and its collapse. The results suggest that the evolution of LLJs were impacted by a downslope wind from the Appalachians that propagated offshore riding atop a shallow near-surface boundary layer across the coastal plain. Baroclinic forcing from low sea surface temperatures (SSTs) due to coastal upwelling is also discussed. Smaller scale details of the LLJ breakdown are analyzed using a wave/mean flow/turbulence interaction approach. The case study illustrates several characteristics of low-level winds offshore that are important for wind energy, including LLJs, strong wind shear, turbulence and rapid changes in the wind, so-called "ramp events". A 3-year survey based on NARR analyses is used to estimate the likelihood that similar events could occur under the same meteorological conditions.
Sea surface mean square slope from Ku-band backscatter data
NASA Technical Reports Server (NTRS)
Jackson, F. C.; Walton, W. T.; Hines, D. E.; Walter, B. A.; Peng, C. Y.
1992-01-01
A surface mean-square-slope parameter analysis is conducted for 14-GHz airborne radar altimeter near-nadir, quasi-specular backscatter data, which in raw form obtained by least-squares fitting of an optical scattering model to the return waveform show an approximately linear dependence over the 7-15 m/sec wind speed range. Slope data are used to draw inferences on the structure of the high-wavenumber portion of the spectrum. A directionally-integrated model height spectrum that encompasses wind speed-dependent k exp -5/2 and classical Phillips k exp -3 power laws subranges in the range of gravity waves is supported by the data.
NASA Astrophysics Data System (ADS)
Khan, Alia L.; McMeeking, Gavin R.; Schwarz, Joshua P.; Xian, Peng; Welch, Kathleen A.; Berry Lyons, W.; McKnight, Diane M.
2018-03-01
Measurements of light-absorbing particles in the boundary layer of the high southern latitudes are scarce, particularly in the McMurdo Dry Valleys (MDV), Antarctica. During the 2013-2014 austral summer near-surface boundary layer refractory black carbon (rBC) aerosols were measured in air by a single-particle soot photometer (SP2) at multiple locations in the MDV. Near-continuous rBC atmospheric measurements were collected at Lake Hoare Camp (LH) over 2 months and for several hours at more remote locations away from established field camps. We investigated periods dominated by both upvalley and downvalley winds to explore the causes of differences in rBC concentrations and size distributions. Snow samples were also collected in a 1 m pit on a glacier near the camp. The range of concentrations rBC in snow was 0.3-1.2 ± 0.3 μg-rBC/L-H2O, and total organic carbon was 0.3-1.4 ± 0.3 mg/L. The rBC concentrations measured in this snow pit are not sufficient to reduce surface albedo; however, there is potential for accumulation of rBC on snow and ice surfaces at low elevation throughout the MDV, which were not measured as part of this study. At LH, the average background rBC mass aerosol concentrations were 1.3 ng/m3. rBC aerosol mass concentrations were slightly lower, 0.09-1.3 ng/m3, at the most remote sites in the MDV. Concentration spikes as high as 200 ng/m3 were observed at LH, associated with local activities. During a foehn wind event, the average rBC mass concentration increased to 30-50 ng/m3. Here we show that the rBC increase could be due to resuspension of locally produced BC from generators, rocket toilets, and helicopters, which may remain on the soil surface until redistributed during high wind events. Quantification of local production and long-range atmospheric transport of rBC to the MDV is necessary for understanding the impacts of this species on regional climate.
2011-09-30
simulation provides boundary condition to the SPH simulation in a sub- domain. For the test with surface wave propagation, the free surface and the...This project aims at developing an advanced simulation tool for multi-fluids free - surface flows that can be used to study the fundamental physics...of horizontal velocity(normalized by wave phase speed c) obtained from SPH simulation and the corresponding free surface obtained from LSM
How supernovae launch galactic winds?
NASA Astrophysics Data System (ADS)
Fielding, Drummond; Quataert, Eliot; Martizzi, Davide; Faucher-Giguère, Claude-André
2017-09-01
We use idealized three-dimensional hydrodynamic simulations of global galactic discs to study the launching of galactic winds by supernovae (SNe). The simulations resolve the cooling radii of the majority of supernova remnants (SNRs) and thus self-consistently capture how SNe drive galactic winds. We find that SNe launch highly supersonic winds with properties that agree reasonably well with expectations from analytic models. The energy loading (η _E= \\dot{E}_wind/ \\dot{E}_SN) of the winds in our simulations are well converged with spatial resolution while the wind mass loading (η _M= \\dot{M}_wind/\\dot{M}_\\star) decreases with resolution at the resolutions we achieve. We present a simple analytic model based on the concept that SNRs with cooling radii greater than the local scaleheight break out of the disc and power the wind. This model successfully explains the dependence (or lack thereof) of ηE (and by extension ηM) on the gas surface density, star formation efficiency, disc radius and the clustering of SNe. The winds our simulations are weaker than expected in reality, likely due to the fact that we seed SNe preferentially at density peaks. Clustering SNe in time and space substantially increases the wind power.
In-flight wind identification and soft landing control for autonomous unmanned powered parafoils
NASA Astrophysics Data System (ADS)
Luo, Shuzhen; Tan, Panlong; Sun, Qinglin; Wu, Wannan; Luo, Haowen; Chen, Zengqiang
2018-04-01
For autonomous unmanned powered parafoil, the ability to perform a final flare manoeuvre against the wind direction can allow a considerable reduction of horizontal and vertical velocities at impact, enabling a soft landing for a safe delivery of sensible loads; the lack of knowledge about the surface-layer winds will result in messing up terminal flare manoeuvre. Moreover, unknown or erroneous winds can also prevent the parafoil system from reaching the target area. To realize accurate trajectory tracking and terminal soft landing in the unknown wind environment, an efficient in-flight wind identification method merely using Global Positioning System (GPS) data and recursive least square method is proposed to online identify the variable wind information. Furthermore, a novel linear extended state observation filter is proposed to filter the groundspeed of the powered parafoil system calculated by the GPS information to provide a best estimation of the present wind during flight. Simulation experiments and real airdrop tests demonstrate the great ability of this method to in-flight identify the variable wind field, and it can benefit the powered parafoil system to fulfil accurate tracking control and a soft landing in the unknown wind field with high landing accuracy and strong wind-resistance ability.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
Impacts of Wind Farms on Local Land Surface Temperature
NASA Astrophysics Data System (ADS)
Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L. F.; Hu, Y.
2012-12-01
The U.S. wind industry has experienced a remarkably rapid expansion of capacity in recent years and this rapid growth is expected to continue in the future. While converting wind's kinetic energy into electricity, wind turbines modify surface-atmosphere exchanges and transfer of energy, momentum, mass and moisture within the atmosphere. These changes, if spatially large enough, may have noticeable impacts on local to regional weather and climate. Here we present observational evidence for such impacts based on analyses of satellite derived land surface temperature (LST) data at ~1.1 km for the period of 2003-2011 over a region in West-Central Texas, where four of the world's largest wind farms are located. Our results show a warming effect of up to 0.7 degrees C at nighttime for the 9-year period during which data was collected, over wind farms relative to nearby non wind farm regions and this warming is gradually enhanced with time, while the effect at daytime is small. The spatial pattern and magnitude of this warming effect couple very well with the geographic distribution of wind turbines and such coupling is stronger at nighttime than daytime and in summer than winter. These results suggest that the warming effect is very likely attributable to the development of wind farms. This inference is consistent with the increasing number of operational wind turbines with time during the study period, the diurnal and seasonal variations in the frequency of wind speed and direction distribution, and the changes in near-surface atmospheric boundary layer conditions due to wind farm operations. Figure 1: Nighttime land surface temperature (LST, C) differences between 2010 and 2003 (2010 minus 2003) in summer (June-July-August). Pixels with plus symbol have at least one wind turbine. A regional mean value (0.592 C) was removed to emphasize the relative LST changes at pixel level and so the resulting warming or cooling rate represents a change relative to the regional mean value. The LST data were derived from MODIS (Moderate Imaging Spectroradiometer) instruments on NASA's Aqua and Terra satellites. Note that LST measures the radiometric temperature of the Earth's surface itself - It has a larger diurnal variation than surface air temperature used in daily weather reports.
A study of rain effects on radar scattering from water waves
NASA Technical Reports Server (NTRS)
Bliven, Larry F.; Giovanangeli, Jean-Paul; Norcross, George
1988-01-01
Results are presented from a laboratory investigation of microwave power return due to rain-generated short waves on a wind wave surface. The wind wave tank, sensor, and data processing methods used in the study are described. The study focuses on the response of a 36-GHz radar system, orientated 30 deg from nadir and pointing upwind, to surface waves generated by various combinations of rain and wind. The results show stronger radar signal levels due to short surface waves generated by rain impacting the wind wave surface, supporting the results of Moore et al. (1979) for a 14-GHz radar.
NASA Technical Reports Server (NTRS)
Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.
1991-01-01
Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.
Wind noise measured at the ground surface.
Yu, Jiao; Raspet, Richard; Webster, Jeremy; Abbott, Johnpaul
2011-02-01
Measurements of the wind noise measured at the ground surface outdoors are analyzed using the mirror flow model of anisotropic turbulence by Kraichnan [J. Acoust. Soc. Am. 28(3), 378-390 (1956)]. Predictions of the resulting behavior of the turbulence spectrum with height are developed, as well as predictions of the turbulence-shear interaction pressure at the surface for different wind velocity profiles and microphone mounting geometries are developed. The theoretical results of the behavior of the velocity spectra with height are compared to measurements to demonstrate the applicability of the mirror flow model to outdoor turbulence. The use of a logarithmic wind velocity profile for analysis is tested using meteorological models for wind velocity profiles under different stability conditions. Next, calculations of the turbulence-shear interaction pressure are compared to flush microphone measurements at the surface and microphone measurements with a foam covering flush with the surface. The measurements underneath the thin layers of foam agree closely with the predictions, indicating that the turbulence-shear interaction pressure is the dominant source of wind noise at the surface. The flush microphones measurements are intermittently larger than the predictions which may indicate other contributions not accounted for by the turbulence-shear interaction pressure.
Alternatives to Rare Earth Permanent Magnets for Energy Harvesting Applications
NASA Astrophysics Data System (ADS)
Khazdozian, Helena; Hadimani, Ravi; Jiles, David
Direct-drive permanent magnet generators (DDPMGs) offer increased reliability and efficiency over the more commonly used geared doubly-fed induction generator, yet are only employed in less than 1 percent of utility scale wind turbines in the U.S. One major barrier to increased deployment of DDPMGs in the U.S. wind industry is NdFeB permanent magnets (PMs), which contain critical rare earth elements Nd and Dy. To allow for the use of rare earth free PMs, the magnetic loading, defined as the average magnetic flux density over the rotor surface, must be maintained. Halbach cylinders are employed in 3.5kW Halbach PMGs (HPMGs) of varying slot-to-pole ratio to concentrate the magnetic flux output by a lower energy density PM over the rotor surface. We found that for high pole and slot number, the increase in magnetic loading is sufficient to allow for the use of strontium iron oxide hard ferrite PMs and achieved rated performance. Joule losses in the stator windings were found to increase for the hard ferrite PMs due to increased inductance in the stator windings. However, for scaling of the HPMG designs to 3MW, rated performance and high efficiency were achieved, demonstrating the potential for elimination for rare earth PMs in commercial scale wind turbines. This work was supported by the National Science Foundation under Grant No. 1069283 and a Barbara and James Palmer Endowment at Iowa State University.
NASA Astrophysics Data System (ADS)
Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos
2018-01-01
The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.
GPS Ocean Reflection Experiment (GORE) Wind Explorer (WindEx) Instrument Design and Development
NASA Astrophysics Data System (ADS)
Ganoe, G.
2004-12-01
This paper describes the design and development of the WindEx instrument, and the technology implemented by it. The important design trades will be covered along with the justification for the options selected. An evaluation of the operation of the instrument, and plans for continued development and enhancements will also be given. The WindEx instrument consists of a processor that receives data from an included GPS Surface reflection receiver, and computes ocean surface wind speeds in real time utilizing an algorithm developed at LaRC by Dr. Stephen J. Katzberg. The WindEx performs a windspeed server function as well as acting as a repository for the client moving map applications, and providing a web page with instructions on the installation and use of the WindEx system. The server receives the GPS reflection data produced by the receiver, performs wind speed processing, then makes the wind speed data available as a moving map display to requesting client processors on the aircraft network. The client processors are existing systems used by the research personnel onboard. They can be configured to be WINDEX clients by downloading the Java client application from the WINDEX server. The client application provides a graphical display of a moving map that shows the aircraft position along with the position of the reflection point from the surface of the ocean where the wind speed is being estimated, and any coastlines within the field of view. Information associated with the reflection point includes the estimated wind speed, and a confidence factor that gives the researcher an idea about the reliability of the wind speed measurement. The instrument has been installed on one of NOAA's Hurricane Hunters, a Gulfstream IV, whose nickname is "Gonzo". Based at MacDill AFB, Florida, "Gonzo" flies around the periphery of the storm deploying GPS-based dropsondes which measure local winds. The dropsondes are the "gold-standard" for determining surface winds, but can only be deployed sparingly. The GPS WindEx system allows for a continuous map between dropsonde releases as well as monitoring the ocean surface for suspicious areas. The GPS technique is insensitive to clouds or rain and can give information concerning surface conditions not available to the flight crew.
Dust emission and transport over Iraq associated with the summer Shamal winds
NASA Astrophysics Data System (ADS)
Karam Francis, Diana Bou; Flamant, Cyrille; Chaboureau, Jean-Pierre; Banks, Jamie
2016-04-01
In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model Meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a Meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source. Keywords: Dust, Low Level Jet, Shamal winds, Middle East, dust sources.
NASA Astrophysics Data System (ADS)
Dortch, J.; Schoenbohm, L. M.
2011-12-01
Wind erosion of bedrock has been suggested to be responsible for the removal of more than 800 m of strata in the Qaidam Basin while wind deposition creates large-scale landforms such as the loess plateau. Wind eroded landforms, such as desert pavements in the Namibian Desert, Africa, form relic landscapes that are stable for more than 5 Ma. Desert pavements are of particular importance because of their widespread occurrence on terraces and fans, in mountains and coastal areas, and in hot and cold deserts including: Southwestern Africa, Antartic Dry valleys, Southwest USA, Denmark, Ireland, Israel, Sweden, and Central Tibet. Moreover, greater than 95 % of ventifacts on desert pavements are suspected to be late Quaternary to Holocene in age and are located on surfaces suitable for cosmogenic radionuclide dating. In spite of this, glacial, fluvial, and mass wasting systems have received far more attention than wind as an important geomorphic agent of erosion, deposition, and rock mass redistribution. Our goal is to: 1) quantify bedrock wind erosion rates; 2) quantify the ages of old, stable desert pavements; 3) and to identify which lithology-isotope pair provides the most accurate exposure ages for desert pavements in arid landscapes. The Puna Plateau, Argentina, is an ideal area to undertake this study because numerous wind eroded/deposited landforms are present, rates of fluvial erosion are low, and glaciation is limited. Mapping using remote sensed images shows that a significant portion of the Puna Plateau surface is covered by wind eroded or wind deposited landforms. These landforms align with the dominant wind direction (southeast) determined from ~450 ventifact measurements from 9 locations on the plateau. Twelve amalgamated samples sets that span six lithologies (granite, gneiss, quartzite, rhyolite, diabase, and basalt) using four cosmogenic isotopes (10Be, 26Al, 36Cl, 3He) on ventifacted clasts were collected from two surfaces to identify the most appropriate lithologies and cosmogenic isotopes for obtaining an accurate chronology of desert pavements. Moreover, 3He dating of six in situ samples from basalt flows with independent 39Ar/40Ar ages will begin to address long-term time-averaged wind erosion rates of bedrock while enabling wind-erosion rate corrections for pavement ventifacts. Our results and methodology can be applied worldwide and will aid future research in the many environments where ventifacts and/or high wind erosion rates are found.
Windblown Features on Venus and Geological Mapping
NASA Technical Reports Server (NTRS)
Greeley, Ronald
1999-01-01
The objectives of this study were to: 1) develop a global data base of aeolian features by searching Magellan coverage for possible time-variable wind streaks, 2) analyze the data base to characterize aeolian features and processes on Venus, 3) apply the analysis to assessments of wind patterns near the surface and for comparisons with atmospheric circulation models, 4) analyze shuttle radar data acquired for aeolian features on Earth to determine their radar characteristics, and 5) conduct geological mapping of two quadrangles. Wind, or aeolian, features are observed on Venus and aeolian processes play a role in modifying its surface. Analysis of features resulting from aeolian processes provides insight into characteristics of both the atmosphere and the surface. Wind related features identified on Venus include erosional landforms (yardangs), depositional dune fields, and features resulting from the interaction of the atmosphere and crater ejecta at the time of impact. The most abundant aeolian features are various wind streaks. Their discovery on Venus afforded the opportunity to learn about the interaction of the atmosphere and surface, both for the identification of sediments and in mapping near-surface winds.
NASA Technical Reports Server (NTRS)
Colon, Edward; Lindesay, James; Suarez, Max J.
1998-01-01
An examination of simulated Madden-Julian Oscillation (MJO) response to active and suppressed air-sea interactions is made using an aquaplanet model employing a realistic representation of the hydrologic cyle. In general, the evaporation-wind feedback (EWF) results from a coupling between tropical zonal surface wind stresses and evaporation anomalies. Recent observational and theoretical studies have questioned the significance of EWF in sustaining the predominantly wavenumber 1 eastward propagating mode commonly attributed to the interaction between large scale convergence and cumulus-scale convection (conditional instability of the second kind, CISK). To ascertain the nature of the EWF dependence on lower boundary conditions and thus quantify its effect on MJO development, a series of numerical experiments were conducted employing various zonally symmetric sea surface temperature (SST) distributions with active and suppressed EWF mechanisms. Results suggest that a correlation exists between tropical SSTs and the efficacy of the EWF in vertically redistributing heat acquired through surface wind stresses. It has been determined that the removal of the EWF is not a crucial factor in the dampening of the simulated MJO at high equatorial SSTs. The additional energy fed into the developing convective mode by the EWF selectively amplifies higher order wave modes in all numerical experiments thus boosting overall variances in oscillatory responses.