Science.gov

Sample records for high temperature co-electrolysis

  1. Results Of Recent High Temperature Co-Electrolysis Studies At The Idaho National Laboratory

    SciTech Connect

    C. M. Stoots; James E. O'Brien; Joseph J. Hartvigsen

    2007-11-01

    For the past several years, the Idaho National Laboratory and Ceramatec, Inc. have been studying the feasibility of high temperature solid oxide electrolysis for large-scale, nuclear-powered hydrogen production. Parallel to this effort, the INL and Ceramatec have been researching high temperature solid oxide co-electrolysis of steam/CO2 mixtures to produce syngas, the raw material for synthetic fuels production. When powered by nuclear energy, high temperature co-electrolysis offers a carbon-neutral means of syngas production while consuming CO2. The INL has been conducting experiments to characterize the electrochemical performance of co-electrolysis, as well as validate INL-developed computer models. An inline methanation reactor has also been tested to study direct methane production from co-electrolysis products. Testing to date indicate that high temperature steam electrolysis cells perform equally well under co-electrolysis conditions. Process model predictions compare well with measurements for outlet product compositions. The process appears to be a promising technique for large-scale syngas production.

  2. Parametric Study Of Large-Scale Production Of Syngas Via High Temperature Co-Electrolysis

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; C. M. Stoots; J. S. Herring; G. L. Hawkes

    2007-11-01

    A process model has been developed to evaluate the potential performance of a largescale high-temperature co-electrolysis plant for the production of syngas from steam and carbon dioxide. The co-electrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the Honeywell UniSim systems analysis code. Using this code, a detailed process flow sheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard UniSim component, a custom one-dimensional co-electrolysis model was developed for incorporation into the overall UniSim process flow sheet. The one dimensional co-electrolysis model assumes local chemical equilibrium among the four process-gas species via the gas shift reaction. The electrolyzer model allows for the determination of co-electrolysis outlet temperature, composition (anode and cathode sides); mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully three dimensional computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the UniSim flow sheet model for a 300 MW co-electrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the overall process, from production through utilization, would be climate neutral.

  3. 3D CFD Model of High Temperature H2O/CO2 Co-electrolysis

    SciTech Connect

    Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring; Joe Hartvigsen

    2007-06-01

    3D CFD Model of High Temperature H2O/CO2 Co-Electrolysis Grant Hawkes1, James O’Brien1, Carl Stoots1, Stephen Herring1 Joe Hartvigsen2 1 Idaho National Laboratory, Idaho Falls, Idaho, grant.hawkes@inl.gov 2 Ceramatec Inc, Salt Lake City, Utah INTRODUCTION A three-dimensional computational fluid dynamics (CFD) model has been created to model high temperature co-electrolysis of steam and carbon dioxide in a planar solid oxide electrolyzer (SOE) using solid oxide fuel cell technology. A research program is under way at the Idaho National Laboratory (INL) to simultaneously address the research and scale-up issues associated with the implementation of planar solid-oxide electrolysis cell technology for syn-gas production from CO2 and steam. Various runs have been performed under different run conditions to help assess the performance of the SOE. This paper presents CFD results of this model compared with experimental results. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to produce syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. A strong interest exists in the large-scale production of syn-gas from CO2 and steam to be reformed into a usable transportation fuel. If biomass is used as the carbon source, the overall process is climate neutral. Consequently, there is a high level of interest in production of syn-gas from CO2 and steam electrolysis. With the price of oil currently around $60 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World

  4. HIGH-TEMPERATURE CO-ELECTROLYSIS OF H2O AND CO2 FOR SYNGAS PRODUCTION

    SciTech Connect

    Stoots, C.M.

    2006-11-01

    Worldwide, the demand for light hydrocarbon fuels like gasoline and diesel oil is increasing. To satisfy this demand, oil companies have begun to utilize oil deposits of lower hydrogen content (an example is the Athabasca Oil Sands). Additionally, the higher contents of sulfur and nitrogen of these resources requires processes such as hydrotreating to meet environmental requirements. In the mean time, with the price of oil currently over $50 / barrel, synthetically-derived hydrocarbon fuels (synfuels) have become economical. Synfuels are typically produced from syngas – hydrogen (H2) and carbon monoxide (CO) -- using the Fischer-Tropsch process, discovered by Germany before World War II. South Africa has used synfuels to power a significant number of their buses, trucks, and taxicabs. The Idaho National Laboratory (INL), in conjunction with Ceramatec Inc. (Salt Lake City, USA) has been researching for several years the use of solid-oxide fuel cell technology to electrolyze steam for large-scale nuclear-powered hydrogen production. Now, an experimental research project is underway at the INL to investigate the feasibility of producing syngas by simultaneously electrolyzing at high-temperature steam and carbon dioxide (CO2) using solid oxide fuel cell technology. The syngas can then be used for synthetic fuel production. This program is a combination of experimental and computational activities. Since the solid oxide electrolyte material is a conductor of oxygen ions, CO can be produced by electrolyzing CO2 sequestered from some greenhouse gas-emitting process. Under certain conditions, however, CO can further electrolyze to produce carbon, which can then deposit on cell surfaces and reduce cell performance. The understanding of the co-electrolysis of steam and CO2 is also complicated by the competing water-gas shift reaction. Results of experiments and calculations to date of CO2 and CO2/H2O electrolysis will be presented and discussed. These will include

  5. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    SciTech Connect

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon

  6. Reactions and mass transport in high temperature co-electrolysis of steam/CO2 mixtures for syngas production

    NASA Astrophysics Data System (ADS)

    Kim, Si-Won; Kim, Hyoungchul; Yoon, Kyung Joong; Lee, Jong-Ho; Kim, Byung-Kook; Choi, Wonjoon; Lee, Jong-Heun; Hong, Jongsup

    2015-04-01

    High temperature co-electrolysis of steam/CO2 mixtures using solid oxide cells has been proposed as a promising technology to mitigate climate change and power fluctuation of renewable energy. To make it viable, it is essential to control the complex reacting environment in their fuel electrode. In this study, dominant reaction pathway and species transport taking place in the fuel electrode and their effect on the cell performance are elucidated. Results show that steam is a primary reactant in electrolysis, and CO2 contributes to the electrochemical performance subsequently in addition to the effect of steam. CO2 reduction is predominantly governed by thermochemical reactions, whose influence to the electrochemical performance is evident near limiting currents. Chemical kinetics and mass transport play a significant role in co-electrolysis, given that the reduction reactions and diffusion of steam/CO2 mixtures are slow. The characteristic time scales determined by the kinetics, diffusion and materials dictate the cell performance and product compositions. The fuel electrode design should account for microstructure and catalysts for steam electrolysis and thermochemical CO2 reduction in order to optimize syngas production and store electrical energy effectively and efficiently. Syngas yield and selectivity are discussed, showing that they are substantially influenced by operating conditions, fuel electrode materials and its microstructure.

  7. PROCESS MODEL FOR THE PRODUCTION OF SYNGAS VIA HIGH TEMPERATURE CO-ELECTROLYSIS

    SciTech Connect

    M. G. McKellar; J. E. O'Brien; C. M. Stoots; G. L. Hawkes

    2007-11-01

    A process model has been developed to evaluate the potential performance of a large-scale high-temperature coelectrolysis plant for the production of syngas from steam and carbon dioxide. The coelectrolysis process allows for direct electrochemical reduction of the steam – carbon dioxide gas mixture, yielding hydrogen and carbon monoxide, or syngas. The process model has been developed using the HYSYS systems analysis code. Using this code, a detailed process flowsheet has been defined that includes all the components that would be present in an actual plant such as pumps, compressors, heat exchangers, turbines, and the electrolyzer. Since the electrolyzer is not a standard HYSYS component, a custom one-dimensional coelectrolysis model was developed for incorporation into the overall HYSYS process flowsheet. The 1-D coelectrolysis model assumes local chemical equilibrium among the four process-gas species via the shift reaction. The electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. The one-dimensional electrolyzer model was validated by comparison with results obtained from a fully 3-D computational fluid dynamics model developed using FLUENT, and by comparison to experimental data. This paper provides representative results obtained from the HYSYS flowsheet model for a 300 MW coelectrolysis plant, coupled to a high-temperature gas-cooled nuclear reactor. The coelectrolysis process, coupled to a nuclear reactor, provides a means of recycling carbon dioxide back into a useful liquid fuel. If the carbon dioxide source is based on biomass, the entire process would be climate neutral.

  8. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology.

    PubMed

    Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun

    2017-03-06

    High-temperature solid oxide electrolysis cells (SOECs) are advanced electrochemical energy storage and conversion devices with high conversion/energy efficiencies. They offer attractive high-temperature co-electrolysis routes that reduce extra CO2 emissions, enable large-scale energy storage/conversion and facilitate the integration of renewable energies into the electric grid. Exciting new research has focused on CO2 electrochemical activation/conversion through a co-electrolysis process based on the assumption that difficult C[double bond, length as m-dash]O double bonds can be activated effectively through this electrochemical method. Based on existing investigations, this paper puts forth a comprehensive overview of recent and past developments in co-electrolysis with SOECs for CO2 conversion and utilization. Here, we discuss in detail the approaches of CO2 conversion, the developmental history, the basic principles, the economic feasibility of CO2/H2O co-electrolysis, and the diverse range of fuel electrodes as well as oxygen electrode materials. SOEC performance measurements, characterization and simulations are classified and presented in this paper. SOEC cell and stack designs, fabrications and scale-ups are also summarized and described. In particular, insights into CO2 electrochemical conversions, solid oxide cell material behaviors and degradation mechanisms are highlighted to obtain a better understanding of the high temperature electrolysis process in SOECs. Proposed research directions are also outlined to provide guidelines for future research.

  9. TEST RESULTS OF HIGH TEMPERATURE STEAM/CO2 CO-ELECTROLYSIS IN A 10-CELL STACK

    SciTech Connect

    James E. O'Brien; Joseph J. Hartvigsen

    2007-06-01

    High temperature coelectrolysis experiments with CO2 / H2O mixtures were performed in a 10-cell planar solid oxide stack. Results indicated that stack apparent ASR values were shown not to vary significantly between pure steam electrolysis and steam / CO2 coelectrolysis values. Product gas compositions measured via an online micro gas chromatograph (GC) showed excellent agreement to predictions obtained from a chemical equilibrium coelectrolysis model developed for this study. Experimentally determined open cell potentials and thermal neutral voltages for coelectrolysis compared favorably to predictions obtained from a chemical equilibrium coelectrolysis and energy balance model, also developed for this study.

  10. High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect

    O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

    2007-07-01

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  11. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

    NASA Astrophysics Data System (ADS)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2016-10-01

    In this work, the durability of Ni-YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H2O + 45% CO2 + 10% H2) at current density of -1.5 or -2.0 A cm-2. The cell consists of ∼300 μm Ni-YSZ support, ∼10 μm Ni-YSZ electrode, ∼10 μm YSZ electrolyte and ∼15 μm LSM-YSZ oxygen electrode. The gas conversion was 45% at -1.5 A cm-2 and 60% at -2.0 A cm-2, and the operating durations were up to 700 h. The detailed electrochemical analysis revealed significant increase of the ohmic resistance, oxide ion transport resistance in the Ni-YSZ composite electrodes and the electrochemical reaction resistance at the Ni-YSZ triple-phase boundaries. The performance degradation is mainly ascribed to the microstructural change in the Ni-YSZ electrode close to the YSZ electrolyte, including the percolation loss of Ni, the contact loss between Ni and YSZ electrolyte and the decomposition of YSZ close to Ni-YSZ|YSZ interface. The electrochemical performance and the microstructure of the oxygen electrode were found to be relatively stable.

  12. Methane assisted solid oxide co-electrolysis process for syngas production

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Liu, Tong; Lei, Libin; Chen, Fanglin

    2017-03-01

    In this study, methane assisted high temperature steam/CO2 co-electrolysis process is performed on symmetrical cells with a configuration of SFM-SDC/LSGM/SFM-SDC to produce high-quality synthesis gas (syngas, a mixture of H2 and CO). The Nernst potential has been evaluated for solid oxide cells in the methane assisted mode, which is reduced by nearly one order of magnitude through substituting the anode atmosphere from air to methane. The open circuit voltage (OCV) is -0.06 V at 800 °C, and an electrolysis current density of -242 mAcm-2 has been obtained at 850 °C and 0.3 V. Effects of operating conditions on products composition have been revealed by using the chemical equilibrium co-electrolysis model and HSC software. High-quality syngas with high conversion rate of CO2 to CO as well as ideal H2/CO molar ratio of 2 could be achieved in both electrode sides by adjusting appropriate operating conditions. The short-term cell voltage is slightly fluctuant less than 0.05 V at 850 °C and -120 mAcm-2, in which condition carbon deposition has been observed in the SFM-SDC anode due to the low O2-/CH4 ratio.

  13. A model-based understanding of solid-oxide electrolysis cells (SOECs) for syngas production by H2O/CO2 co-electrolysis

    NASA Astrophysics Data System (ADS)

    Menon, Vikram; Fu, Qingxi; Janardhanan, Vinod M.; Deutschmann, Olaf

    2015-01-01

    High temperature co-electrolysis of H2O and CO2 offers a promising route for syngas (H2, CO) production via efficient use of heat and electricity. The performance of a SOEC during co-electrolysis is investigated by focusing on the interactions between transport processes and electrochemical parameters. Electrochemistry at the three-phase boundary is modeled by a modified Butler-Volmer approach that considers H2O electrolysis and CO2 electrolysis, individually, as electrochemically active charge transfer pathways. The model is independent of the geometrical structure. A 42-step elementary heterogeneous reaction mechanism for the thermo-catalytic chemistry in the fuel electrode, the dusty gas model (DGM) to account for multi-component diffusion through porous media, and a plug flow model for flow through the channels are used in the model. Two sets of experimental data are reproduced by the simulations, in order to deduce parameters of the electrochemical model. The influence of micro-structural properties, inlet cathode gas velocity, and temperature are discussed. Reaction flow analysis is performed, at OCV, to study methane production characteristics and kinetics during co-electrolysis. Simulations are carried out for configurations ranging from simple one-dimensional electrochemical button cells to quasi-two-dimensional co-flow planar cells, to demonstrate the effectiveness of the computational tool for performance and design optimization.

  14. Syngas production on a symmetrical solid oxide H2O/CO2 co-electrolysis cell with Sr2Fe1.5Mo0.5O6-Sm0.2Ce0.8O1.9 electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Liu, Tong; Fang, Shumin; Chen, Fanglin

    2016-02-01

    High temperature H2O/CO2 co-electrolysis process is performed on the symmetrical Sr2Fe1.5Mo0.5O6(SFM)-Sm0.2Ce0.8O1.9(SDC)/La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM)/SFM-SDC cells, which exhibit excellent electrochemical performance with the current density of -734 mAcm-2 at 1.3 V and the interfacial polarization resistance of 0.48 Ωcm2 at 850 °C. Enhanced co-electrolysis kinetics are obtained with increasing the operating temperature and applied cell voltage. Synthesis gas of H2 and CO is produced by H2O splitting and reverse water gas shift (RWGS) reaction on the SFM-SDC/LSGM/SFM-SDC co-electrolysis cells. Effects of temperature and electrolysis current on the produced gas fraction are predicted using the chemical equilibrium co-electrolysis model. High CO2 conversion rate and ideal H2 to CO ratio of approximately 2 can be achieved by adjusting appropriate inlet gas fraction, temperature and electrolysis current. The SFM-SDC/LSGM/SFM-SDC cell shows a relative stable cell voltage in the 103-h galvanostatic test.

  15. Partial oxidation of methane (POM) assisted solid oxide co-electrolysis

    DOEpatents

    Chen, Fanglin; Wang, Yao

    2017-02-21

    Methods for simultaneous syngas generation by opposite sides of a solid oxide co-electrolysis cell are provided. The method can comprise exposing a cathode side of the solid oxide co-electrolysis cell to a cathode-side feed stream; supplying electricity to the solid oxide co-electrolysis cell such that the cathode side produces a product stream comprising hydrogen gas and carbon monoxide gas while supplying oxygen ions to an anode side of the solid oxide co-electrolysis cell; and exposing the anode side of the solid oxide co-electrolysis cell to an anode-side feed stream. The cathode-side feed stream comprises water and carbon dioxide, and the anode-side feed stream comprises methane gas such that the methane gas reacts with the oxygen ions to produce hydrogen and carbon monoxide. The cathode-side feed stream can further comprise nitrogen, hydrogen, or a mixture thereof.

  16. Development and Validation of a One-Dimensional Co-Electrolysis Model for Use in Large-Scale Process Modeling Analysis

    SciTech Connect

    J. E. O'Brien; M. G. McKellar; G. L. Hawkes; C. M. Stoots

    2007-07-01

    A one-dimensional chemical equilibrium model has been developed for analysis of simultaneous high-temperature electrolysis of steam and carbon dioxide (coelectrolysis) for the direct production of syngas, a mixture of hydrogen and carbon monoxide. The model assumes local chemical equilibrium among the four process-gas species via the shift reaction. For adiabatic or specified-heat-transfer conditions, the electrolyzer model allows for the determination of coelectrolysis outlet temperature, composition (anode and cathode sides), mean Nernst potential, operating voltage and electrolyzer power based on specified inlet gas flow rates, heat loss or gain, current density, and cell area-specific resistance. Alternately, for isothermal operation, it allows for determination of outlet composition, mean Nernst potential, operating voltage, electrolyzer power, and the isothermal heat requirement for specified inlet gas flow rates, operating temperature, current density and area-specific resistance. This model has been developed for incorporation into a system-analysis code from which the overall performance of large-scale coelectrolysis plants can be evaluated. The one-dimensional co-electrolysis model has been validated by comparison with results obtained from a 3-D computational fluid dynamics model and by comparison with experimental results.

  17. A novel clean and effective syngas production system based on partial oxidation of methane assisted solid oxide co-electrolysis process

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Liu, Tong; Fang, Shumin; Xiao, Guoliang; Wang, Huanting; Chen, Fanglin

    2015-03-01

    Development of the syngas production from solid oxide H2O/CO2 co-electrolysis is limited by the intensive energy input and low efficiency. Here, we present a new concept to efficiently generate syngas in both sides of the solid oxide electrolyzer by synergistically combining co-electrolysis with partial oxidation of methane (POM). Thermodynamic calculation and electrochemical measurements for the POM assisted solid oxide co-electrolysis processes on the SFM-SDC/LSGM/SFM-SDC cells exhibited an reduced electric input, increased energy conversion efficiency and decreased cathodic co-electrolysis polarization resistance in comparison with the conventional co-electrolysis. This method will be crucial to establish a clean and effective energy conversion system to meet global sustainable energy needs.

  18. Co-electrolysis of steam and CO2 in a solid oxide electrolysis cell with La0.75Sr0.25Cr0.5Mn0.5O3-δ -Cu ceramic composite electrode

    NASA Astrophysics Data System (ADS)

    Xing, Ruimin; Wang, Yarong; Zhu, Yongqiang; Liu, Shanhu; Jin, Chao

    2015-01-01

    Cu impregnation has been performed to improve electronic conductivity of La0.75Sr0.25Cr0.5Mn0.5O3-δ (LSCM) material in reducing atmosphere, and solid oxide electrolysis cells (SOECs) with the configuration of LSCF|LSGM|LSCM-Cu are prepared and evaluated for high temperature steam and carbon dioxide co-electrolysis. Electrochemical impedance spectra (EIS) and voltage-current curves are carried out to characterize the cell performances. Compared with LSCF|LSGM|LSCM cell without Cu impregnation for steam electrolysis under the same conditions, EIS results show that LSCF|LSGM|LSCM-Cu cell not only displays lower ohmic resistance and better electrochemical performances, but also their resistance increases with the percentage of the fed CO2 under open circuit voltage, in which the polarization resistance dominates. With the applied electrolysis voltage of 1.65 V and the operating temperature of 750 °C, the maximum consumed current density increases from 1.31 A cm-2 without CO2 to 1.82 A cm-2 with 37.5% CO2. Although there is an increase of 2.0% in the applied electrolysis voltage, the cell has exhibited an excellent durability test for more than 50 h with the electrolysis current density of 0.33 A cm-2 and the gas mixture of 50% AH-25% H2-25% CO2 at 750 °C.

  19. The Concept and Analytical Investigation of CO2 and Steam Co-Electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    McKellar, Michael G.; Stoots, Carl M.; Sohal, Manohar S.; Mulloth, Lila M.; Luna, Bernadette; Abney, Morgan B.

    2010-01-01

    CO2 acquisition and utilization technologies will have a vital role in designing sustainable and affordable life support and in situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture the metabolic CO2 from the cabin air and chemically reduce it to recover oxygen. Technologies that enable the in situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars. This paper describes the concept and mathematical analysis of a closed-loop life support system based on combined electrolysis of CO2 and steam (co-electrolysis). Products of the coelectrolysis process include oxygen and syngas (CO and H2) that are suitable for life support and synthetic fuel production, respectively. The model was developed based on the performance of a co-electrolysis system developed at Idaho National Laboratory (INL). Individual and combined process models of the co-electrolysis and Sabatier, Bosch, Boudouard, and hydrogenation reactions are discussed and their performance analyses in terms of oxygen production and CO2 utilization are presented.

  20. Co-electrolysis of steam and CO2 in full-ceramic symmetrical SOECs: a strategy for avoiding the use of hydrogen as a safe gas.

    PubMed

    Torrell, M; García-Rodríguez, S; Morata, A; Penelas, G; Tarancón, A

    2015-01-01

    The use of cermets as fuel electrodes for solid oxide electrolysis cells requires permanent circulation of reducing gas, e.g. H2 or CO, so called safe gas, in order to avoid oxidation of the metallic phase. Replacing metallic based electrodes by pure oxides is therefore proposed as an advantage for the industrial application of solid oxide electrolyzers. In this work, full-ceramic symmetrical solid oxide electrolysis cells have been investigated for steam/CO2 co-electrolysis. Electrolyte supported cells with La(0.75)Sr(0.25)Cr(0.5)Mn(0.5)O3-δ reversible electrodes have been fabricated and tested in co-electrolysis mode using different fuel compositions, from pure H2O to pure CO2, at temperatures between 850-900 °C. Electrochemical impedance spectroscopy and galvanostatic measurements have been carried out for the mechanistic understanding of the symmetrical cell performance. The content of H2 and CO in the product gas has been measured by in-line gas micro-chromatography. The effect of employing H2 as a safe gas has also been investigated. Maximum density currents of 750 mA cm(-2) and 620 mA cm(-2) have been applied at 1.7 V for pure H2O and for H2O : CO2 ratios of 1 : 1, respectively. Remarkable results were obtained for hydrogen-free fuel compositions, which confirmed the interest of using ceramic oxides as a fuel electrode candidate to reduce or completely avoid the use of safe gas in operation minimizing the contribution of the reverse water shift reaction (RWSR) in the process. H2 : CO ratios close to two were obtained for hydrogen-free tests fulfilling the basic requirements for synthetic fuel production. An important increase in the operation voltage was detected under continuous operation leading to a dramatic failure by delaminating of the oxygen electrode.

  1. Elementary reaction modeling of CO2/H2O co-electrolysis cell considering effects of cathode thickness

    NASA Astrophysics Data System (ADS)

    Li, Wenying; Shi, Yixiang; Luo, Yu; Cai, Ningsheng

    2013-12-01

    A one-dimensional elementary reaction model of CO2/H2O co-electrolysis in solid oxide electrolysis cell (SOEC) coupled with heterogeneous elementary reactions, electrochemical reactions, electrode microstructure, and the transport of mass and charge is developed in this paper. This model, validated with the experimental performance of H2O electrolysis, CO2 electrolysis and CO2/H2O co-electrolysis at 700 °C, is demonstrated to be a useful tool for understanding the intricate reaction and transport processes within SOEC electrode and the electrode structure design and optimization. The simulation results indicate that the heterogeneous reactions reach the equilibrium near the cathode outside surface, and the electrochemical reactions mainly occur in the electrode near the electrode-electrolyte interface. The main zone of electrochemical reactions is far enough from the main zone of heterogeneous reactions, so that the two kinds of reactions almost don't influence each other when the cathode is thick enough (e.g. 700 μm). While, as the cathode thickness reduces, the zones of electrochemical reactions and the non-equilibrium heterogeneous reactions overlap each other, and the electrochemical performance of CO2/H2O co-electrolysis is affected by the variations of elementary species concentrations of O(Ni) and (Ni) due to the heterogeneous reactions. The model successfully explains the experimental phenomenon that the polarization curve of CO2/H2O electrolysis lies between that of H2O and CO2 electrolysis in a cathode supported SOEC, but almost the same as that of H2O electrolysis in a electrolyte supported SOEC.

  2. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  3. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  4. High temperature superconductors

    NASA Technical Reports Server (NTRS)

    Wu, Maw-Kuen

    1987-01-01

    The two principle objectives are to develop materials that superconduct at higher temperatures and to better understand the mechanisms behind high temperature superconductivity. Experiments on the thermal reaction, structure, and physical properties of materials that exhibit superconductivity at high temperatures are discussed.

  5. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  6. The Concept and Experimental Investigation of CO2 and Steam Co-electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.

    2009-01-01

    CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.

  7. The Concept and Experimental Investigation of CO2 and Steam Co-electrolysis for Resource Utilization in Space Exploration

    NASA Technical Reports Server (NTRS)

    Stoots, Carl; Mulloth, Lila M.; Luna, Bernadette; Varghese, Mini M.

    2009-01-01

    CO2 acquisition and utilization technologies will have a vital role in determining sustained and affordable life support and in-situ fuel production architectures for human and robotic exploration of Moon and Mars. For long-term human exploration to be practical, reliable technologies have to be implemented to capture and chemically reduce the metabolic CO2 from the cabin air to restitute oxygen consumption. Technologies that facilitate the in-situ capture and conversion of atmospheric CO2 to fuel are essential for a viable human mission to Mars and their demonstration on the moon is critical as well. This paper describes the concept and experimental investigation of a CO2 capture and reduction system that comprises an adsorption compressor and a CO2 and steam co-electrolysis unit. The process products include oxygen for life support and Syngas (CO and H2) for synthetic fuel production. Electrochemical performance in terms of CO2 conversion, oxygen production, and power consumption of a system with a capacity to process 1kg CO2 per day (1-person equivalent) will be discussed.

  8. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  9. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  10. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  11. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  12. High Temperature Semiconductor Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899

  13. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  14. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  15. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  16. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  17. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  18. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  19. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  20. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  1. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  2. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  3. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  4. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  5. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  6. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  7. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  8. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  9. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  11. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  12. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  13. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  14. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  15. High-temperature superconductivity

    SciTech Connect

    Burns, G.

    1992-01-01

    Review of conventional superconductors. Structures. Normal-state properties. Superconducting properties. Vortex behavior, J[sub c], and applications. Index. An introductory presentation of high-temperature superconductivity, with emphasis on the experimental approach. Intended as a supplementary text for undergraduate solid state physics courses, assumes some background in physics and applicable technologies. Chapters contain unsolved problems. Bibliography and chapter notes appear at end of text.

  16. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  17. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  18. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  19. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  20. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  1. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1990-10-01

    usual substrates, SrTiO3 , YSZ, MgO, and LaA103, it has been possible to deposit films on Si substrates without any buffer layer. A bolometer has been...new opportunities for the study of superconductor-insulator transitions and the investigation of photo- doping with carriers of high temperature super... SrTiO3 (00), SrTiO3 (l 10), LaA103 (100), MgO(100), and yttria stabilized zirconia (YSZ). The surfaces of these films could be imaged with a scanning

  2. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  3. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  4. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  5. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  6. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  7. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  8. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  9. High temperature nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo

    2016-09-01

    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  10. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  11. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  12. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  13. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  14. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  15. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1992-11-30

    power spectral density measurements as a function of temperature, frequency, current, and magnetic field on DyBa2Cu3O7.x ( DBCO ) thin films have been...proceeding. The goals has been to understand the "intrinsic" noise present in DBCO thin films grown on SrTiO3 or LaAlO2 substrates, namely: the

  16. High Temperature Surface Interactions

    DTIC Science & Technology

    1989-11-01

    yttrium sulfide. Surface segregation studies were conducted employing Auger Electron Spectroscopy (AES) coupled with cyclic oxidation experiments...temperature (530*C) in air. The early stages of oxidation were studied by Auger electron spectroscopy (AES) with depth profiling using inert gas ion...basicity at 927 ’C are shown in Figure 7 . The purpose of such studies is to mfnlmize hot corrosion reactions by selection of an alloy or coating which is

  17. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  18. High-temperature constitutive modeling

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Ellis, J. R.

    1984-01-01

    Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.

  19. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  20. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  1. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  2. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  3. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  5. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  6. High temperature be panel development

    NASA Technical Reports Server (NTRS)

    Hardesty, R.; Jensen, M.; Grant, L.

    1989-01-01

    Beryllium materials have been used for many aerospace applications over the years. Most of these applications have been fairly ambient environments. The possibility of fabricating beryllium panels for high temperature applications up to 1200 F is investigated. Joining alloys were reviewed, tested and evaluated for high temperature applications.

  7. High Temperature Adhesive Systems

    DTIC Science & Technology

    1988-02-01

    only XLVI need be disqualified from the group of silane- functional molecules in Figure 2- 15 . However, the authors also postulated that R2SiH 2 and...Hydrosilation Reaction 2-41 2-14. Commercially Available Silane Monomers 2-42 2- 15 . Phthalocyanine-containing Silane Monomers 2-42 2-16. High Polymer by...Solutions Using FEAP 3- 15 4. Preliminary Test Specimen 3-18 5. Preliminary Test Loading Device with Specimen 3-18 6. Preliminary Test Results. Plot of

  8. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  9. Studies of high temperature superconductors

    SciTech Connect

    Narlikar, A. )

    1990-01-01

    With the pioneering discovery of high temperature superconductors in 1986 superconductivity has ceased to remain an area of mere academic curiosity and a preserve of a small community of low temperature physicists and cryogenists. Renouncing their cold confines freed from the grip of liquid helium, superconductors have stepped into the realm of high temperatures. The area has transformed into a rich field of intensive and highly competitive research, encompassing diverse disciplines such as: structural chemistry, ceramic engineering, metallurgy, solid state electronics, experimental and theoretical, and condensed matter physics.

  10. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  11. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  12. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  13. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  14. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  15. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  16. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  17. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  18. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  19. The Very High Temperature Reactor

    SciTech Connect

    Hans D. Gougar; David A. Petti

    2011-06-01

    The High Temperature Reactor (HTR) and Very High Temperature Reactor (VHTR) are types of nuclear power plants that, as the names imply, operate at temperatures above those of the conventional nuclear power plants that currently generate electricity in the US and other countries. Like existing nuclear plants, heat generated from the fission of uranium or plutonium atoms is carried off by a working fluid and can be used generate electricity. The very hot working fluid also enables the VHTR to drive other industrial processes that require high temperatures not achievable by conventional nuclear plants (Figure 1). For this reason, the VHTR is being considered for non-electrical energy applications. The reactor and power conversion system are constructed using special materials that make a core meltdown virtually impossible.

  20. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  1. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  2. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  3. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  4. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  5. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  6. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  7. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  8. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  9. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  10. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  11. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  12. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  13. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  14. High temperature solar thermal technology

    NASA Astrophysics Data System (ADS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-11-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  15. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  16. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  17. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  18. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  19. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2016-10-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  20. High temperature in absorption measurements

    NASA Astrophysics Data System (ADS)

    Krech, R. H.; Pugh, E. R.

    1981-09-01

    The temperature dependence of the absorption coefficient of water vapor was measured to determine the feasibility of using water vapor as a molecular seed to couple 10.6 micrometer CO2 laser radiation into a propellant for use in a high performance laser heated rocket thruster. A series of shock tube experiments were performed to determine the temperature dependence of the absorption coefficient of water vapor at high temperatures on the P(16), P(18) and P(20) 10.6 micrometer CO2 laser transitions. Measurements were made behind both incident and reflected shock waves encompassing a temperature range from 600 K to 3700 K at pressures from 1 to 40 atmospheres in 2, 5, and 10 mole percent water vapor in argon gas mixtures. Within the spectral range (944 to 948 cm) covered, no significant variation in the absorption coefficient was observed as a function of laser wavelength, water concentration, total pressure, or collision partner. Observations suggest that the water lines are sufficiently broadened to act as a continuum absorber under conditions to be found in a laser-heated rocket thruster. The measured laser high temperature absorption coefficients are 50 percent lower than the values obtained from the Ludwig empirical curve fit to low resolution data.

  1. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  2. High Temperature SHM/NDE

    DTIC Science & Technology

    2009-09-04

    durability and reliability Integrated Sensors High Temperature network (e.g. silicon carbide) AFOSR-MURI Functionally Graded Hybrid Composites...Strain under voltage potential •  Produce potential when strained + + + + - - - - + + + + - - - - STANDARD PZTs Sensors...PI/ PZT /SWNT   Texas A&M (SO) AFOSR-MURI Functionally Graded Hybrid Composites Sensors Development: Nanomaterials Conductivity changes Strain

  3. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  4. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  5. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  6. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  7. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  8. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  9. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  10. High temperature strain gage evaluation

    NASA Technical Reports Server (NTRS)

    Gonzalez, J. I.

    1977-01-01

    The structural thermal test of an advanced ramjet missile section required strain measurements as high as 922 K (1200 F). Since there is relatively little experience in the use of strain gages above the 700-755 K (800-900 F) level, a program was initiated to select and evaluate the best available gage. Candidate gages suitable for measurements up to 922 K (1200 F) were selected. This involved the determination of their operating characteristics, availability, cost, installation aspects, etc. The evaluation involved the following tests: strain as a function of load at room temperature and apparent strain as a function of temperature.

  11. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  12. High temperature superconducting magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Blumenfeld, P. E.; Prenger, F. C.; Sternberg, A.; Zimm, C.

    2002-05-01

    A near-room temperature active magnetic regenerative refrigerator (AMRR) was designed and built using a high-temperature superconducting (HTS) magnet in a charge-discharge cycle and a gadolinium-packed regenerative bed as the magnetocaloric component. Current to the HTS magnet was ramped periodically from zero to 100 amperes, which generated a ramp in field strength from zero to 1.7 tesla. Water was moved periodically through the bed and through hot and cold heat exchangers to accomplish a continuous refrigeration cycle. Cycle periods as short as 30 seconds were realized. Refrigerator performance was measured in terms of cooling capacity as a function of temperature span and in terms of efficiency expressed as a percentage of maximum obtainable (Carnot) efficiency. A three-watt cooling capacity was measured over a temperature span of 15 degrees C between hot and cold end temperatures of 25 degrees C and 10 degrees C. This experiment is directed to two possible applications for magnetic refrigeration: a no-moving part cryogenic refrigerator for space applications, and a compact permanent magnet refrigerator for commercial and consumer applications.

  13. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  14. High temperature loop heat pipes

    SciTech Connect

    Anderson, W.G.; Bland, J.J.; Fershtater, Y.; Goncharov, K.A.; Nikitkin, M.; Juhasz, A.

    1995-12-31

    Advantages of loop heat pipes over conventional heat pipes include self-priming during start-up, improved tolerance for noncondensible gas, and ability for ground testing in any orientation. The applications for high temperature, alkali-metal working fluid loop heat pipes include space radiators, and bimodal systems. A high temperature loop heat pipe was fabricated and tested at 850 K, using cesium as the working fluid. Previous loop heat pipes were tested with ambient temperature working fluids at temperatures below about 450 K. The loop heat pipe had a titanium envelope, and a titanium aluminide wick. The maximum cesium loop heat pipe power was only about 600 watts, which was lower the predicted 1,000 W power. The power limitation may be due to a wettability problem with the cesium not completely wetting the titanium aluminide wick. This would reduce the pumping capability of the wick, and the maximum power that the heat pipe could carry. This problem could be solved by using a refractory metal powder wick, since the alkali metals are known to wet refractory metal wicks.

  15. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  16. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  17. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  18. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  19. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  20. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  1. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  2. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  3. High-Temperature Test Technology

    DTIC Science & Technology

    1987-03-01

    Center ............. las Cruces, NM White Sands Test Facility NASA-Kennedy Space Center.................... FL NASA-Langley Research Center...We believe that two former suppliers, Pyro -Metrics and lunar Infrared, are no longer in business. In addition, the Hi-Shear product line is now...nitrogen through them for cooling. High-temperature test specimen materials have included Rene’ 41, Inconel, metal matrix composites , etc. The major

  4. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  5. High-Temperature Structural Ceramics

    NASA Astrophysics Data System (ADS)

    Katz, R. Nathan

    1980-05-01

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented.

  6. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  7. High-temperature sand consolidation

    SciTech Connect

    Friedman, R.H.; Suries, B.W.; Kleke, D.E.

    1987-05-01

    A sand consolidation system has been developed that is stable to wellbore temperatures of 700/sup 0/F (371/sup 0/C). Two improvements in technique have contributed to this development. First, a controlled quantity of catalyst is absorbed on the sand. Consequently, consolidation occurs only on or very near the sand grains, resulting in a high-permeability consolidation. Second, the reaction is driven to completion by avoiding, insofar as possible, the adverse effect of water. The resin used for the consolidation is a very viscous derivative of furfuryl alcohol that requires a diluent to make it injectable. The diulent used to reduce viscosity is a hydrolyzable ester. The diluted fluid, which is sill more viscous than water, displaces much of the water present in the pore space. During the catalyzed consolidation, water produced by the polymerization is removed by reaction with the diluent (hydrolysis of the ester). The high-molecular-weight polymeric consolidation is better able to resist the high temperatures encountered in steam-displacement producing wells. Adaptation of the technology has been made so that the process can also be used in low-temperature wells. Because of the catalysis method, long shelf life is guaranteed for the consolidating formation.

  8. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  9. High-temperature oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Terasaki, Ichiro

    2011-09-01

    We have evaluated the power factor of transition metal oxides at high temperatures using the Heikes formula and the Ioffe-Regel conductivity. The evaluated power factor is found to be nearly independent of carrier concentration in a wide range of doping, and explains the experimental data for cobalt oxides well. This suggests that the same power factor can be obtained with a thermopower larger than 2kB/e, and also suggests a reasonably high value of the dimensionless figure of merit ZT. We propose an oxide thermoelectric power generator by using materials having a thermopower larger than 300 μV/K.

  10. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1987-01-01

    With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.

  11. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  12. High temperature insulation barrier composite

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W. (Inventor)

    1989-01-01

    A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.

  13. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  14. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1980-09-01

    Department of Commerce 23 -1A , /7 National Bureau of Standards A102 Washington, D.C. 20234 ______________ I I. CONTROLLING OFFICE NAME AND ADDRESS Air...DISTRIBUTION STATEMENT (of this Report) r ~Appro-,’. f’or public re r-: e ; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from...8SOLETE SCRT SEUIYCLASSIFICATION OF TNIS PAGE " e aoEtr AEOST.1-0443 THERMODYNAMICS OF HIGH TEMPERATURE MATERIALS Annual Report for the Period of 1 October

  15. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  16. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  17. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  18. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  19. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  20. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  1. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  2. High Temperature Particle Filtration Technology

    SciTech Connect

    Besmann, T.M.

    2001-11-13

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment.

  3. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  4. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  5. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  6. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  7. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  8. High temperature autoclave vacuum seals

    NASA Technical Reports Server (NTRS)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  9. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  10. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  11. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  12. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  13. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  14. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Condie, Keith G [Idaho Falls, ID; Wilkins, S Curt [Idaho Falls, ID

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  15. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  16. High-temperature borehole instrumentation

    SciTech Connect

    Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

    1985-10-01

    A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

  17. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  19. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  20. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  1. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  2. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  3. High Temperature Catalytically Assisted Combustion.

    DTIC Science & Technology

    1983-01-28

    entrance. The model also shows that the heat release producing these gradients occurs primarily at the entrance is due to heterogeneous reactions and is...running at low tem- perature is to insure that all of the heat release is due to surface reactions . Therefore the maximum substrate temperature in these...runs was kept below 8000C. Even at low temperatures, however it is important that the overall process be surface reaction rate controlled and not

  4. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  5. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  6. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  7. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  8. Risk Mitigation for High Temperature Superconducting Generators

    DTIC Science & Technology

    2009-01-01

    and Technology Division Background: High temperature superconduct- ing (HTS) motors and generators will enable high- efficiency , high power density...naval propulsion, and compact electrical generators for weapons and ship systems. The second-generation high temperature superconductors (2G-HTS...manufacturability of long lengths of these materials, sufficient for demonstrations of large motors and generators. Ensuring superior fatigue prop- erties

  9. High Temperature Strain Measurements Using Digital Optics

    DTIC Science & Technology

    1991-09-01

    Eae Melting and Boiling Temperatures for Several Metals ................ 3 2 Comparison of Micrometer and Camera Readings at Room Temperature...over-all accuracy. For materials at or near melting or ablation temperatures any contact with the test sample is an undesirable and often unacceptable... melting and boiling temperatures for several metals 3. In addition to high metals, carbon in the form of graphite sublimes at temperatures near 7000’F in

  10. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    SciTech Connect

    Parks, D. A.; Tittmann, B. R.; Kropf, M. M.

    2010-02-22

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  11. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  12. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  13. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  14. CARS thermometry in high temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Dunn-Rankin, D.

    1993-01-01

    CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.

  15. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  16. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  17. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  18. Electrodeposition of High Temperature Superconductors

    DTIC Science & Technology

    1992-08-11

    temperatures (300-5500C). The approach entails establishing a sequence of electrochemical steps for the layered deposition of Y, Ba and Cu oxide...positive of that required for Ba oxide deposition , and monolayer amounts of Cu and Y are injected (by electrodissolution of individual metal electrodes...and electrodeposited in sequence. A cell of very small volume is used to ensure that complete deposition of the injected metal occurs in a short time

  19. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-12-24

    Specific Heat: Non-Metallic Solids, In Thormophysical Properties of Matter, The TPRC Data Series, Touloukian , Y.S., and Ho, C.Y. (Eds.), IFI, Plenum, New...heating method. Thermodynamic properties of silicon nitride (a, b) and boron nitride (hex, cub) have been determined to 1300K. Calculational...I. ’Research on Therophy/ical Properties . ......... a. Preliminary Measurements oft -"riple Point Temperature of Graphite 1 i_- ng Technique

  20. Temperature dependence of Vortex Charges in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Ting, C. S.; Chen, Yan; Wang, Z. D.

    2003-03-01

    By considering of competition between antiferromagnetic (AF) and d-wave superconductivity orders, the temperature dependence of the vortex charge in high Tc superconductors is investigated by solving self-consistently the Bogoliubov-de Gennes equations. The magnitude of induced antiferromagnetic order inside the vortex core is temperature dependent. The vortex charge is always negative when a sufficient strength of AF order presents at low temperature while the AF order may be suppressed at higher temperature and there the vortex charge becomes positive. A first order like transition from negative to the positive vortex charges occurs at certain temperature TN which is very close to the temperature for the disappearence of the local AF order. The vortex charges at various doping levels will also going to be examined. We show that the temperature dependence of the vortex core radius with induced AF order exhibits a weak Kramer-Pesch effect. The local density of states spectrum has a broad peak pattern at higher temperature while it exhibits two splitting peak at lower temperature. This temperature evolution may be detected by the future scanning-tunnel-microscope experiment. In addition, the effect of the vortex charge on the mixed state Hall effect will be discussed.

  1. Technological Evolution of High Temperature Superconductors

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS Jordan R. White Lieutenant

  2. High temperature silicon carbide impregnated insulating fabrics

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L. (Inventor)

    1982-01-01

    High temperature insulating articles having improved performance characteristics are described. The articles comprise fabrics of closely woven refractory or heat resistant fibers having particles of silicon carbide dispersed at least partially through the fabric and bonded to the fibers with an emulsifiable polyethylene wax. Such articles exhibit significantly increased high temperature emittance characteristics and an improved retention of integrity and flexibility after prolonged exposure to high temperature.

  3. High Temperature Heterojunction Bipolar Transistors

    DTIC Science & Technology

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  4. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  5. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  6. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  7. Alloys developed for high temperature applications

    NASA Astrophysics Data System (ADS)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  8. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  9. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  10. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  11. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  12. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  13. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  14. Buckling of carbon nanotubes at high temperatures.

    PubMed

    Zhang, Y Y; Wang, C M; Tan, V B C

    2009-05-27

    Presented herein is an investigation into the buckling behavior of single-walled carbon nanotubes (SWCNT) subjected to axial compression and torsion at high temperatures. This study is carried out by performing molecular dynamics (MD) simulations at both room temperature and extremely high temperatures. It is observed that the SWCNT becomes more susceptible to buckling in a higher temperature environment, especially when the SWCNT is subject to axial compression. The high thermal energy enhances the vibration of carbon atoms in the SWCNT significantly, which leads to bond breaking and the formation of sp(3) bonds as well as Stone-Wales (SW) defects in the postbuckling stage.

  15. High-temperature miniature blackbody radiation sources.

    PubMed

    Chernin, S M

    1997-03-01

    Various high-temperature blackbody sources for quantitative energy measurements in the IR spectral region are developed. Techniques that ensure a stable operation of the sources at high temperatures are described. The developed blackbody models with maximum temperatures of 2000, 2500, and 3000 K can also operate at other temperatures. Graphite is used as a material for radiators. These blackbodies can be used successfully in radiometric measurements in UV and visible spectral ranges. Blackbodies as high-brightness sources may find wide application in solving the problems of multipass spectroscopy. The blackbody sources developed as rocket engineering has progressed have remained outside the knowledge of foreign scientists.

  16. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  17. Copper Alloy For High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  18. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  19. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  20. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  1. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-03-15

    C.W. Beckett, J. Res. Nat. Bur. Stand. (U.S.) 74A: 65 (1970). 3. F. Righini, A. Cibraria, and A. Rosso, Rappporto Interno 5/173, Instituto di...al., [1979], have indicated the utility of short pulse time, high power lasers (e.g., Nd/YAG) for controlled surface vaporization studies. The laser...using an estimated emissivity. This is one of the few graphite vaporization studies where controllable CW laser radia- tion was used and direct surface

  2. Evaluation of high temperature polymers

    NASA Technical Reports Server (NTRS)

    Jayaraj, K.; Dorogy, W.; Farrell, B.; Landrau, N.

    1995-01-01

    The purpose of this paper is to identify and develop arc-track resistant insulation materials that can operate reliably at 300 C. In the first phase, high performance polymers are evaluated based on structure, thermal stability and electrical properties. Next, the polymers are ranked according to performance and experimental characterization. Then, experimental evaluations in wire configuration are conducted. And selection is made based on performance and commerical potential.

  3. Recrystallization of high temperature superconductors

    SciTech Connect

    Kouzoudis, Dimitris

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  4. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  5. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  7. Sandia_HighTemperatureComponentEvaluation_2015

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  8. Viscoelastic creep of high-temperature concrete

    SciTech Connect

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme.

  9. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  10. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  12. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  13. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  14. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  15. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  16. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-12-31

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed ``cyclodehydrogenation reactions`` which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  17. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-01-01

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed cyclodehydrogenation reactions'' which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  18. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  19. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  20. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  1. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  2. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  3. Development of high temperature capable piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  4. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  5. RADIATIVE PROPERTIES OF HIGH TEMPERATURE GASES

    DTIC Science & Technology

    DENSITY, *GAS IONIZATION, *GASES, *HIGH TEMPERATURE, *QUANTUM THEORY , *THERMODYNAMICS, ABSORPTION, CONTINUUM MECHANICS, EQUATIONS OF STATE, HEAT...HYDRODYNAMICS, HYDROGEN, INEQUALITIES, INTEGRAL EQUATIONS, IONS, MATRICES(MATHEMATICS), MEASUREMENT, NITROGEN, NUMBER THEORY , OXYGEN, PHOTOELECTRIC...CELLS (SEMICONDUCTOR), PHOTOTUBES, PROBABILITY, STATISTICAL FUNCTIONS, TEMPERATURE, THEORY

  6. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  7. Electrical Properties Of Capacitors At High Temperatures

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Overton, E.; Hammoud, A. N.

    1994-01-01

    Brief report describes results of experiments in which capacitance and dielectric loss of glass, metallized-polytetrafluoroethylene, and solid-tantalum capacitor measured at temperatures from 20 degrees C to 200 degrees C. Conclusions drawn concerning suitability of capacitors for use at high temperatures; such as in nuclear powerplants, aircraft, equipment for extracting geothermal energy, switching power supplies, and automotive integrated engine electronics.

  8. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  9. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  10. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  11. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  12. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  13. NEW APPROACHES: High temperature superconductor levitation motor

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Lee, K. H.

    1998-01-01

    We show how it is possible to construct a high temperature superconductor levitation motor in an introductory physics laboratory. It is suitable for classroom demonstration and uses a simple yet efficient cooling method.

  14. High-temperature superconductivity: A conventional conundrum

    DOE PAGES

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  15. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  16. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  17. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  18. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  19. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  20. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  1. High-temperature superconductivity: A conventional conundrum

    SciTech Connect

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  2. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  3. A sharp knife for high temperatures

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1978-01-01

    Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.

  4. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  5. High Temperature Self-Healing Metallic Composite

    NASA Astrophysics Data System (ADS)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  6. Corrosion Inhibition in High Temperature Environment

    DTIC Science & Technology

    1993-06-28

    resistant coatings is optional. Further 5 examples of high temperature corrosion-resistant coatings are the 6 " aluminides " and "silicides", which are...produced by diffusing 7 aluminum and silicon, respectively, into the surface of superalloys 8 or other substrates. Other metallic or ceramic coatings can... superalloys to form 9 nonprotective NaAlO 2 which causes catastrophic hot corrosion. High 10 temperature chromium-containing metals which rely on chromia

  7. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  8. PLA recycling by hydrolysis at high temperature

    SciTech Connect

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari Fausto, Gironi

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  9. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  10. Structural ceramics for high temperature applications

    SciTech Connect

    Dapkunas, S.J.

    1995-12-31

    Structural ceramics, primarily silicon nitride and silicon carbide, are recognized as offering significant performance benefits in heat engine and other high temperature applications. These benefits accrue from superior high temperature mechanical properties, corrosion and wear resistance and lower density. Improved processing and understanding of the phenomena determining properties and performance have made these materials viable replacements for metallic components in some applications. Cost barriers hinder more widespread use.

  11. Preparation Of High-Temperature Reactive Oligomers

    NASA Technical Reports Server (NTRS)

    Ottenbrite, Raphael M.

    1990-01-01

    Very reactive materials form very-heat-stable polymers. Recent research directed toward synthesis of polyimides soluble in common organic solvents, melt-processable, and thermally curable without evolution of volatile by-products. Diels-Alder polymerization yields compounds that maintain integrities and toughnesses during long exposure times at high temperatures. High-temperature polymers synthesized by use of technique. Films and perhaps fibers fabricated from prepolymer in solution. Major potential at this stage of research limited to aerospace applications.

  12. Recent developments in high temperature organic polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  13. Developments on high temperature fiber optic microphone

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Zuckerwar, Allan J.

    1992-01-01

    A fiber optic microphone, based on the principle of the fiber optic lever, features small size, extended bandwidth, and capability to operate at high temperatures. These are requirements for measurements in hypersonic flow. This paper describes the principles of operation of fiber optic sensors, a discussion of the design of a fiber optic microphone, the functional elements and packaging techniques of the optoelectronic circuitry, and the calibration techniques used in the development of the high temperature fiber optic microphone.

  14. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  15. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  16. Phonon spectra of plutonium at high temperatures

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Bottin, François; Bouchet, Johann

    2017-03-01

    Ab initio molecular dynamics calculations are used to investigate the vibrational properties of the high-temperature δ and ɛ phases of plutonium. We combine the local-density approximation (LDA)+U for strong electron correlations and the temperature-dependent effective potential method in order to calculate the phonon spectra of the two phases, as well as their dependence on temperature. Our results show that the ɛ phase can only be stabilized when temperature and correlations are simultaneously accounted for. We are also able to quantify the degree of anharmonicity of the two phases. While the δ phase is fairly harmonic up to 1000 K, we find that the ɛ phase is strongly anharmonic, which explains why this structure dominates the phase diagram at high temperature.

  17. High-temperature discontinuously reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  18. High temperature structural fibers: Status and needs

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.

    1991-01-01

    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers.

  19. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  20. O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

  1. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  2. Attachment Techniques for High Temperature Strain

    DTIC Science & Technology

    1993-01-01

    3.6.6.1 Pull Tests on Ceramic Cements and Flame Sprayed Coatings 26 3.6.6.2 Effect of Cement Age on Bond Strength. 29 3.6.6.3 Effect of Cure...Temperature on Bond Strength. 29 3.6.6.4 Effect of High Temperature Cure on Cement Strength . 29 3.7 THEORY OF ADHESION 33 3.7.1 High...broke rather than pull out of the coating 28 Figure 16 Effect of Cement Age 30 Figure 17 Cure Temperature vs. Strength 31 Figure 18

  3. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  4. High Temperature MEMS for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The presentation will discuss Microelectromechanical Systems (MEMS) research and development activities and technologies being conducted at NASA Glenn Research Center to address the needs of harsh environment applications. The focus will be on silicon carbide based h4EMS for high temperature, high power and high radiation environment as well as high temperature sensor technologies which are made possible by MEMS processing techniques. These technologies can enable new measurements and capabilities for future turbine engines. All the presentation materials are publicly available and have been presented/published before.

  5. Ultra-High Temperature Ceramics for solar receivers: spectral and high-temperature emittance characterization

    NASA Astrophysics Data System (ADS)

    Sani, E.; Mercatelli, L.; Jafrancesco, D.; Sans, J. L.; Sciti, D.

    2012-12-01

    We report on the preparation, room temperature spectral reflectance and high-temperature thermal emittance characterization of different boride and carbide Ultra-High Temperature Ceramics (UHTCs). The investigated samples are compared with a reference material for solar absorber applications, i.e. silicon carbide. We show that spectral and thermal emittance properties of UHTCs are promising for novel solar receivers.

  6. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  7. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  8. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  9. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  10. High-temperature superconducting conductors and cables

    SciTech Connect

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  11. The low salinity effect at high temperatures

    DOE PAGES

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...

    2017-04-05

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  12. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  13. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  14. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  15. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  16. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    DTIC Science & Technology

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  17. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  18. MAS-NMR at very high temperatures.

    PubMed

    van Wüllen, Leo; Schwering, Georg; Naumann, Ernst; Jansen, Martin

    2004-09-01

    We report MAS-NMR experiments at temperatures of approx. 1200 K using a CO(2) laser as the heating device. An internal NMR thermometer based on the (7)Li T1 data of Li(0.24)La(0.54)TiO(3) is used for temperature calibration. Using this setup, temperatures as high as 1191 K could be reached under MAS conditions as confirmed by the melting of Li(2)B(4)O(7) at 1191 K which could be followed by (7)Li-MAS-NMR.

  19. A Road Towards High Temperature Superconductors

    DTIC Science & Technology

    2013-08-01

    issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also...behavior of the cuprates under applied fields can be made by using an unconventional pinning mechanism directly based on the Bond Contraction...Pairing (BCP) mechanism proposed by Deutscher and de Gennes. In the second part a new mechanism for superconductivity that we may have uncovered in

  20. Modeling of concrete response at high temperature

    SciTech Connect

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results.

  1. High temperature stress-strain analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.

    1985-01-01

    The objectives of the high temperature structures program are threefold: to assist in the development of analytical tools needed to improve design analysis and procedures for the efficient and accurate prediction of the nonlinear structural response of hot-section components; to aid in the calibration, validation, and evaluation of the analytical tools by comparing predictions with experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation.

  2. High Temperature Studies of La-Monazite

    DTIC Science & Technology

    2004-07-01

    Alumina/alumina composite with a porous [55] Callender RL, Barron AR. Facile synthesis of aluminum con- zirconia interphase - processing, properties ...temperature propertie of LaPO4, with a view to its application in high-temperature structural composites. Previous studies at Rockwell and the Air Force...established that LaPO4 has a unique set of properties that make it suitable as a weakly bonded interphase material that enables damage tolerance by

  3. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  4. Solar Selective Coatings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is to be used to power heat engines or to provide thermal energy for remote regions in the interior of the spacecraft. These coatings are designed to have the combined properties of high solar absorptance and low infrared emittance. The coatings must be durable at elevated temperatures. For thermal bus applications, the temperature during operation is likely to be near 100 C. For heat engine applications. the temperature is expected to be much greater. The objective of this work was to screen candidate solar selective coatings for their high temperature durability. Candidate solar selective coatings were composed of molecular mixtures of metal and dielectric, including: nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. To identify high temperature durability, the solar absorptance and infrared emittance of the candidate coatings were evaluated initially, and after heating to temperatures in the range of 400 C to 700 C. The titanium and aluminum oxide molecular mixture was found to be the most durable.

  5. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  6. Ethylammonium nitrate in high temperature stable microemulsions.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Kolodziejski, Agnes; Touraud, Didier; Grillo, Isabelle; Kunz, Werner

    2010-07-15

    The increasing number of publications reflects the still growing interest in nonaqueous microemulsions containing room-temperature ionic liquids. Recently, we characterized microemulsions composed of the room-temperature ionic liquid ethylammonium nitrate (EAN) as polar phase, dodecane as continuous phase and 1-hexadecyl-3-methyl imidazolium chloride ([C(16)mim][Cl]), an IL that exhibits surfactant properties, and decanol as cosurfactant at ambient temperature. We demonstrate here the high thermal stability of these microemulsions. Along an experimental path, no phase change could be observed visually within a temperature range between 30 degrees C and 150 degrees C. The microemulsions are characterized with quasi-elastic light scattering measurements at ambient temperature and temperature dependent small angle neutron scattering (SANS) experiments between 30 degrees C and 150 degrees C. DLS measurements at ambient temperature indicate a swelling of the formed structures with increasing amount of EAN up to a certain threshold. The SANS experiments were performed below this threshold. The data evaluation of such concentrated systems like microemulsions is possible with the "generalized indirect Fourier transformation" method (GIFT). We evaluated the small angle scattering data via the GIFT method, for comparison we also applied the model of Teubner and Strey (TS) which was often used to describe scattering curves of microemulsions. The GIFT method gives good fits throughout the experimental path, while the TS model gives relatively poor fits. Both, light scattering and SANS results are in agreement with the existence of EAN droplets stabilized by surfactant with dodecane as continuous phase along the whole investigated temperature range. Moreover, these results clearly demonstrate the possibility to formulate high temperature stable microemulsions with ionic liquids at ambient pressure. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Towards simulation of high temperature methane spectra

    NASA Astrophysics Data System (ADS)

    Borysov, A.; Champion, J. P.; Jørgensen, U. G.; Wenger, C.

    Methane plays a central role in gas layers of temperatures up to around 3000K in a number of astrophysical objects ranging from giant planets to brown dwarfs, over proto-solar nebulae, to several classes of cool stars. In order to model and analyse these objects correctly, an accurate and complete list of spectral lines at high temperature is demanded. Predicting high temperature spectra implies, however, predicting hot bands and thus modelling highly excited vibrational states. This is a real challenge in the case of methane. We report the preliminary results of a theoretical study combining the global effective Hamiltonian approach and its computational implementation (STDS package: http://www.u-bourgogne.fr/LPUB/ shTDS.html) with semi-quantitative statistical considerations.

  8. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  9. Controlled thermonuclear fusion, high temperature plasma physics

    NASA Astrophysics Data System (ADS)

    1985-05-01

    The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.

  10. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  11. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  12. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  13. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  14. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  15. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  16. Frustrated phase separation and high temperature superconductivity

    SciTech Connect

    Emery, V.J. ); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

  17. Frustrated phase separation and high temperature superconductivity

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

  18. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  19. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  20. Temperature measurements of high power LEDs

    NASA Astrophysics Data System (ADS)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  1. Combinatorial and High Throughput Discovery of High Temperature Piezoelectric Ceramics

    DTIC Science & Technology

    2011-10-10

    new proposed compounds based on our work nearly doubles the known candidate piezoelectric ferroelectric perovskites . Unlike most computational...potential new high temperature ferroelectric piezoelectric perovskite compounds. Our predictions of the Curie temperature (Tc) ranging from 700C...1100C are the highest reported in either experimental or theoretical studies and the number of new proposed compounds based on our work nearly doubles

  2. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  3. High temperature experiment for accelerator inertial fusion

    SciTech Connect

    Lee, E.P.

    1985-05-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50 to 100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy, number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse.

  4. On-wafer high temperature characterization system

    NASA Astrophysics Data System (ADS)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  5. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  6. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  7. Bimodular high temperature planar oxygen gas sensor

    PubMed Central

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  8. High Summer Temperatures and Mortality in Estonia

    PubMed Central

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    Background On-going climate change is predicted to result in a growing number of extreme weather events—such as heat waves—throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. Methods We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. Results We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. Discussion We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed. PMID:27167851

  9. High Summer Temperatures and Mortality in Estonia.

    PubMed

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  10. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  11. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  12. Gravimeter using high-temperature superconductor bearing.

    SciTech Connect

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  13. High Temperature Materials Interim Data Qualification Report

    SciTech Connect

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  14. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  15. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  16. Lightweight High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  17. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  18. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  19. High-temperature adhesives for polyimide films

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Slemp, W. S.

    1979-01-01

    Linear condensation polyimides which are high-temperature polymers show promise as adhesives which form flexible film coatings compatible with polyimide films. Materials are advantageous since they can be supplied as flexible tape, already B-staged and ready for bonding.

  20. Nuclear and quark matter at high temperature

    NASA Astrophysics Data System (ADS)

    Biró, Tamás S.; Jakovác, Antal; Schram, Zsolt

    2017-03-01

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process.

  1. High-temperature carbidization of carboniferous rocks

    NASA Astrophysics Data System (ADS)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  2. Enamel for high-temperature superalloys

    NASA Technical Reports Server (NTRS)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  3. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  4. HYFIRE: fusion-high temperature electrolysis system

    SciTech Connect

    Fillo, J A; Powell, J R; Steinberg, M; Benenati, R; Dang, V D; Horn, F; Isaacs, H; Lazareth, O; Makowitz, H; Usher, J

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400/sup 0/C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800/sup 0/C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H/sub 2/ and O/sub 2/, electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%.

  5. Braze alloys for high temperature service

    NASA Technical Reports Server (NTRS)

    Lindberg, R. A.; Mckisson, R. L.; Erwin, G., Jr.

    1973-01-01

    Two groups of refractory metal compositions have been developed that are very useful as high temperature brazing alloys for sealing between ceramic and metal parts. Each group consists of various compositions of three selected refractory metals which, when combined, have characteristics required of good braze alloys.

  6. High-temperature pump-motor assembly

    NASA Technical Reports Server (NTRS)

    Colker, C.; Waldron, W.

    1971-01-01

    Assembly pumps liquid sodium-potassium /NaK/ eutectic at 950 K for up to 20,000 hours. Design features include - high operating-temperature capability, zero leakage, process fluid lubricant/coolant, insulation system compatible with ionizing radiation environments, and reliability and long life without maintenance.

  7. Helium-cooled high temperature reactors

    SciTech Connect

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  8. Oxidation-Strengthened High-Temperature Rivets

    NASA Technical Reports Server (NTRS)

    Mclemore, R. L.

    1982-01-01

    Shear strength of titanium-niobium rivets improves with oxidation. Ti-Nb rivets developed for fastening parts of Space Shuttle thrustors may be suitable also for other high-temperature applications in oxidizing environments--for example, in burner cans of commercial jet engines and boilers and retorts for coal gasification systems.

  9. High Temperature Langasite SAW Oxygen Sensor

    SciTech Connect

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  10. Substrates For High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1988-01-01

    Proposed hot-dipping process prepares materials well suited to serve as substrates for high-temperature superconductors. Makes it possible to produce substrates combining properties needed for given application, such as flexibility, strength, long grains, and <001> crystal orientation. Properties favor growth of superconductive films carrying high current and fabricated in variety of useful shapes. Used in making solar cells, described in "Hot-Dipped Metal Films as Epitaxial Substrates" (NPO-15904).

  11. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  12. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  13. Urania vapor composition at very high temperatures

    SciTech Connect

    Pflieger, Rachel; Colle, Jean-Yves; Iosilevskiy, Igor; Sheindlin, Michael

    2011-02-01

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  14. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  15. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  16. New Waste Calciner High Temperature Operation

    SciTech Connect

    Swenson, M.C.

    2000-09-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

  17. Dynamic high-temperature-phosphor thermometry

    SciTech Connect

    Tobin, K.W.; Capps, G.J.; Muhs, J.D.; Smith, D.B.; Cates, M.R.

    1990-08-01

    Dynamic surface phosphor thermometry is being investigated as part of a continuing effort by the Applied Technology Division (ATD) at Oak Ridge National Laboratory (ORNL) to develop and apply thermographic phosphor technology to an ever expanding thermometry field. The purpose of this program is to develop dynamic surface phosphor thermometry to a stage where funding proposals can be strengthened by establishing a strong information base and demonstrating a sound capability. As a new technology development in an area well established by ATD/ORNL, dynamic thermometry is extremely important for high-temperature materials, superconducting materials, advanced turbomachinery, space vehicles, industrial process equipment, and other development areas. This laboratory project illustrated the technique of continuously monitoring dynamic temperature excursions using phosphor thermography. Temperature-increase rates on the order of 100 or more degrees centigrade per millisecond were measured, which illustrated a temporal response of >0.001 s. This exceeded by a factor of ten the goal or the project and gave strong encouragement for further development of the technology. Important to the project, too, was the establishment of a clear analytical base for fluorescent-ratio data. Using the results of this study, specific solutions to dynamic-temperature-measurement problems in many application areas can be developed. In addition, the dynamic-thermographic technology can be coupled with strain measurement, two-dimensional analysis, and thermometry at very high temperatures to add interrelating remote measurement tools for systems that currently cannot be effectively studied. 13 refs., 11 figs.

  18. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  19. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  20. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  1. High temperature superconductors applications in telecommunications

    SciTech Connect

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  2. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  3. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  4. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  5. Coal transformation under high-temperature catagenesis

    SciTech Connect

    Melenevsky, V.N.; Sokol, E.V.; Fomin, A.N.

    2006-07-01

    In this paper we consider products of natural pyrolysis of lignite, which resulted from the high-temperature spontaneous combustion of spoil heaps of the Chelyabinsk coal basin. These products were studied by pyrolysis, element and petrographic analyses, chromatomass spectrometry, and X-ray diffraction method. We have established that under reducing conditions, the degree of pyrogenic coal transformation and the composition of pyrolysis products vary greatly, from graphite-like phases to bitumens, and depend on the temperature and degree of the system openness.

  6. High temperature NASP engine seal development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Melis, Matthew E.; Orletski, Dirk; Test, Mark G.

    1991-01-01

    Key to the development of advanced hypersonic engines such as those being considered for the National Aerospace Plane (NASP) is the development and evaluation of high temperature, flexible seals that must seal the many feet of gaps between the articulating and stationary engine panels. Recent seal progress made at NASA-Lewis is reviewed in the areas of seal concept maturation, test rig development, and performance tests. A test fixture was built at NASA capable of subjecting candidate 3 ft long seals to engine simulated temperatures (up to 1500 F), pressures (up to 100 psi), and engine wall distortions (up to 0.15 in only 18 in span). Leakage performance test results at high temperatures are presented for an innovative high temperature, flexible ceramic wafer seal. Also described is a joint Pratt and Whitney/NASA planned test program to evaluate thermal performance of a braided rope seal under engine simulated heat flux rates (up to 400 Btu/sq ft s), and supersonic flow conditions. These conditions are produced by subjecting the seal specimen to hydrogen oxygen rocket exhaust that flows tangent to the specimen.

  7. The moon as a high temperature condensate

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    The accretion during condensation mechanism is used to explain the differences in composition of the terrestrial planets and the moon. Many of the properties of the moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 A.E. and with presently high speed internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C. The lunar crust is 80 percent gabbroic anorthosite, 20 percent basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g/cu cm.

  8. High temperature dynamic engine seal technology development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  9. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  10. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  11. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  12. Innovations in high-temperature particulate filtration

    SciTech Connect

    Lippert, T.

    1997-05-01

    Fluidized-bed combustion and coal gasification expose sensitive equipment, such as high-speed turbines, to hot combustion offgases. In order to prevent erosion, corrosion, and other damage to sensitive equipment, such systems now incorporate high-temperature particulate filters. One device often considered for such applications uses a design similar to a baghouse (i.e., multiple banks of porous filter bags that remove particulate from gas streams). In this case, however, instead of polyester or teflon fabric, the filter elements are made of rigid ceramic or similar materials. These devices are sometimes called `candle filters,` and the individual ceramic filter elements are frequently called `candles.` Three high-temperature applications of candle filters are described here. 2 refs., 3 figs.

  13. High temperature strategy for oxide nanoparticle synthesis.

    PubMed

    Mialon, Geneviève; Gohin, Morgan; Gacoin, Thierry; Boilot, Jean-Pierre

    2008-12-23

    Compared with noble metals and quantum dots, dielectric complex oxide nanoparticles are significantly less popular due to their high crystallization temperature, making difficult their synthesis in the 10-100 nm range for which surface effects are reduced. We report here an original process permitting thermal annealing of complex oxide nanoparticles at high temperature without aggregation and growth. Thus, after thermal treatment, these annealed particles can be dispersed in water, leading to concentrated aqueous colloidal dispersions containing isolated highly crystalline particles. This contrasts with usual colloidal techniques for which the production of particles in the 10-100 nm range generally leads to poorly crystallized particles, especially for multicomponent oxides. From two examples, we show some possibilities offered by this type of process. This concerns the synthesis of lanthanide-doped oxide nanoparticles exhibiting a bulk behavior for their luminescence properties and the control of the composition in nitrogen-doped titanium oxide particles without sintering and size change.

  14. High-Temperature Graphite/Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  15. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  16. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  17. Opacification of high temperature fibrous insulation

    NASA Technical Reports Server (NTRS)

    Miller, W. C.; Collins, J. O.

    1984-01-01

    A study was conducted to determine the merits of adding particulate materials to silica fiber felts to increase their resistance to the passage of thermal radiation. Laboratory samples containing 5, 10, and 15 percent of chromium oxide, silicon carbide, and titanium dioxide were prepared and evaluated in accordance with ASTM C-518 thermal conductivity test method at 425 C (800 F) mean temperature. The titania particles averaging 3-4 micrometers in diameter were found to be the most effective. This was followed by a short plant run, in order to confirm the initial results on the laboratory samples. These samples were tested according to ASTM C-201 High Temperature Calorimeter from 93 C to 760 C (200 F to 1400 F) mean temperature. The ten percent by weight of titania resulted in an optimum effectiveness, and reduced the conductivity over 20% at 760 C (1400 F).

  18. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  19. Toroidal microinstability studies of high temperature tokamaks

    SciTech Connect

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  20. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  1. High temperatures in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  2. High temperatures in the early solar nebula.

    PubMed

    Boss, A P

    1988-07-29

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 K to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  3. Compliant high temperature seals for dissimilar materials

    DOEpatents

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  4. Thermoelectric properties by high temperature annealing

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  5. The high temperature structural evolution of hafnia

    NASA Astrophysics Data System (ADS)

    Haggerty, Ryan Paul

    The transformations of HfO2 are often described as analogous with the transformations in ZrO2 because of the similar crystal structures; however the phase transformations in HfO2 occur at higher temperatures. Even though this phase transformation has been extensively studied in ZrO2, the respective transformation in HfO2 is relatively unstudied and the properties that are reported are inconsistent. Much of the difficulty associated with studying HfO2 is related to the high temperatures needed and the sensitivity of the crystal to the environmental partial pressure of O2. HfO2 is expected to be capable of producing the same level of transformation toughening as ZrO2 at temperatures beyond 1000°C, the thermodynamic limit for toughened ZrO2. Despite significant effort the toughening acquired has not met with expectation. By providing information on the structure of HfO2 as it undergoes transformation, this study makes a significant step towards solving this problem. Significant advancements in experimentation have enabled a systematic study of the structure of HfO2 in its monoclinic and tetragonal phases in air. Using a quadrupole lamp furnace and a novel curved image plate detector the structure of HfO2 and ZrO 2 have been characterized by high temperature x-ray diffraction. The structural information provided by these experiments allows the properties of the transformation to be further investigated. Using phenomenological theory of martensite crystallography, the strain associated with the transformation from the tetragonal to the monoclinic phase has been described and provides insight into the lack of transformation toughening found in HfO2. Further characterization includes determination of the transformation temperature in air, the change in volume associated with the transformation and the temperature hysteresis of the transformation. In addition to transformation properties, the thermal expansion of HfO2 and ZrO2 has been thoroughly described as a function

  6. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  7. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  8. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  9. High-Temperature Piezoelectric Ceramic Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Farmer, Serene C.; Dynys, Frederick W.

    2005-01-01

    Active combustion control of spatial and temporal variations in the local fuel-to-air ratio is of considerable interest for suppressing combustion instabilities in lean gas turbine combustors and, thereby, achieving lower NOx levels. The actuator for fuel modulation in gas turbine combustors must meet several requirements: (1) bandwidth capability of 1000 Hz, (2) operating temperature compatible with the fuel temperature, which is in the vicinity of 400 F, (3) stroke of approximately 4 mils (100 m), and (4) force of 300 lb-force. Piezoelectric actuators offer the fastest response time (microsecond time constants) and can generate forces in excess of 2000 lb-force. The state-of-the-art piezoceramic material in industry today is Pb(Zr,Ti)O3, called PZT. This class of piezoelectric ceramic is currently used in diesel fuel injectors and in the development of high-response fuel modulation valves. PZT materials are generally limited to operating temperatures of 250 F, which is 150 F lower than the desired operating temperature for gas turbine combustor fuel-modulation injection valves. Thus, there is a clear need to increase the operating temperature range of piezoceramic devices for active combustion control in gas turbine engines.

  10. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  11. Plasma synthesis of high temperature ceramic films

    SciTech Connect

    Brown, I.G.; Monteiro, O.R.

    1998-11-01

    Thin films of alumina, chromia, mullite, yttria and zirconia have been synthesized using a plasma-based method called metal plasma immersion ion implantation and deposition (Mepiiid)--a highly versatile plasma deposition technique with ion energy control. Monolithic films (a single ceramic component) and multilayer films (individual layers of different ceramic materials) were formed. The films were characterized for their composition and structure in a number of different ways, and the high temperature performance of the films was explored, particularly for their ability to maintain their integrity and adhesion when subjected to repetitive high temperature thermal cycling up 1100 C. We found that the films retain their adhesion and quality without any apparent degradation with time, even after a large number of cycles; (the tests were extended out to a total of 40 cycles each of 24 hours duration). After repetitive high temperature thermal cycling, the film-substrate adhesion was greater than {approx}70 Mpa, the instrumental limit of measurement, and the interface toughness was approximately 0.8 MPa m{sup 1/2}.

  12. Deformation of high-temperature superconductors

    SciTech Connect

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa{sub 2}Cu{sub 3}O{sub x} (Y-123), YBa{sub 2}Cu{sub 4}O{sub x} (Y-124), TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed.

  13. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  14. Classical behavior in high temperature chromodynamics

    SciTech Connect

    Sivers, D.

    1984-01-01

    In searching for tools to describe physical systems consisting of hadronic matter at high temperature, it is worthwhile to consider the application of classical chromodynamics. Classical non-Abelian gauge theories have been extensively studied and continue to attract theoretical interest. However, the thrust of most work has been to consider classical dynamics as merely a guide to the quantum mechanical path integral. Attention has therefore focussed on particle-like field configurations or on topological structures which may be important in the presence of color confinement. Confinement in low-temperature QCD provides a substantial barrier to the use of any classical approximations. With color fields confined to isolated spatial regions, it is vey implausible that any classical approximation can be made for bulk hadronic matter. However, at temperatures above the postulated deconfining phase transition there are reasons to believe that classical physics would be a valid approximation. Statistical fluctuations at high temperature can dominate quantum fluctuations and it is possible that the behavior of a large system can be described by averaged fields which obey classical equations. The use of the classical approximation for the non-Abelian dynamics is discussed. (WHK)

  15. Evaluation of high temperature capacitor dielectrics

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Myers, Ira T.

    1992-01-01

    Experiments were carried out to evaluate four candidate materials for high temperature capacitor dielectric applications. The materials investigated were polybenzimidazole polymer and three aramid papers: Voltex 450, Nomex 410, and Nomex M 418, an aramid paper containing 50 percent mica. The samples were heat treated for six hours at 60 C and the direct current and 60 Hz alternating current breakdown voltages of both dry and impregnated samples were obtained in a temperature range of 20 to 250 C. The samples were also characterized in terms of their dielectric constant, dielectric loss, and conductivity over this temperature range with an electrical stress of 60 Hz, 50 V/mil present. Additional measurements are underway to determine the volume resistivity, thermal shrinkage, and weight loss of the materials. Preliminary data indicate that the heat treatment of the films slightly improves the dielectric properties with no influence on their breakdown behavior. Impregnation of the samples leads to significant increases in both alternating and direct current breakdown strength. The results are discussed and conclusions made concerning their suitability as high temperature capacitor dielectrics.

  16. High temperature structure in cool binary stars

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Brickhouse, Nancy S.; Hanson, G. J.

    1995-01-01

    Strong high temperature emission lines in the EUVE spectra of binary stars containing cool components (Alpha Aur (Capella), 44 iota Boo, Lambda And, and VY Ari) provide the basis to define reliably the differential emission measure of hot plasma. The emission measure distributions for the short-period (P less than or equal to 13 d) binary systems show a high temperature enhancement over a relatively narrow temperature region similar to that originally found in Capella (Dupree et al. 1993). The emission measure distributions of rapidly rotating single stars 31 Com and AB Dor also contain a local enhancement of the emission measure although at different temperatures and width from Capella, suggesting that the enhancement in these objects may be characteristic of rapid rotation of a stellar corona. This feature might be identified with a (polar) active region, although its density and absolute size are unknown; in the binaries Capella and VY Ari, the feature is narrow and it may arise from an interaction region between the components.

  17. Medium Deep High Temperature Heat Storage

    NASA Astrophysics Data System (ADS)

    Bär, Kristian; Rühaak, Wolfram; Schulte, Daniel; Welsch, Bastian; Chauhan, Swarup; Homuth, Sebastian; Sass, Ingo

    2015-04-01

    Heating of buildings requires more than 25 % of the total end energy consumption in Germany. Shallow geothermal systems for indirect use as well as shallow geothermal heat storage systems like aquifer thermal energy storage (ATES) or borehole thermal energy storage (BTES) typically provide low exergy heat. The temperature levels and ranges typically require a coupling with heat pumps. By storing hot water from solar panels or thermal power stations with temperatures of up to 110 °C a medium deep high temperature heat storage (MDHTS) can be operated on relatively high temperature levels of more than 45 °C. Storage depths of 500 m to 1,500 m below surface avoid conflicts with groundwater use for drinking water or other purposes. Permeability is typically also decreasing with greater depth; especially in the crystalline basement therefore conduction becomes the dominant heat transport process. Solar-thermal charging of a MDHTS is a very beneficial option for supplying heat in urban and rural systems. Feasibility and design criteria of different system configurations (depth, distance and number of BHE) are discussed. One system is designed to store and supply heat (300 kW) for an office building. The required boreholes are located in granodioritic bedrock. Resulting from this setup several challenges have to be addressed. The drilling and completion has to be planned carefully under consideration of the geological and tectonical situation at the specific site.

  18. Noise temperature in graphene at high frequencies

    NASA Astrophysics Data System (ADS)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  19. Thermometry of a high temperature high speed micro heater.

    PubMed

    Xu, M; Slovin, G; Paramesh, J; Schlesinger, T E; Bain, J A

    2016-02-01

    A high temperature high-speed tungsten micro heater was fabricated and tested for application in phase change switches to indirectly heat and transform phase change material. Time domain transmissometry was used to measure heater temperature transients for given electrical inputs. Finite element modeling results on heater temperature transients show a good consistency between experiments and simulations with 0.2% mismatch in the best case and 13.1% in the worst case. The heater described in this work can reliably reach 1664 K at a rate of 1.67 × 10(10) K/s and quench to room temperature with a thermal RC time constant (time for T to fall by a factor of e) of less than 40 ns.

  20. Amorphization of Serpentine at High Pressure and High Temperature

    PubMed

    Irifune; Kuroda; Funamori; Uchida; Yagi; Inoue; Miyajima

    1996-06-07

    Pressure-induced amorphization of serpentine was observed at temperatures of 200° to 300°C and pressures of 14 to 27 gigapascals with a combination of a multianvil apparatus and synchrotron radiation. High-pressure phases then crystallized rapidly when the temperature was increased to 400°C. These results suggest that amorphization of serpentine is an unlikely mechanism for generating deep-focus earthquakes, as the temperatures of subducting slabs are significantly higher than those of the rapid crystallization regime.

  1. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  2. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1988-01-01

    Analytical, numerical and experimental studies were performed on two classes of high temperature materials processing furnaces. The research concentrates on a commercially available high temperature furnace using zirconia as the heating element and an arc furnace based on a ST International tube welder. The zirconia furnace was delivered and work is progressing on schedule. The work on the arc furnace was initially stalled due to the unavailability of the NASA prototype, which is actively being tested aboard the KC-135 experimental aircraft. A proposal was written and funded to purchase an additional arc welder to alleviate this problem. The ST International weld head and power supply were received and testing will begin in early November. The first 6 months of the grant are covered.

  3. High temperature superconductors for magnetic suspension applications

    NASA Technical Reports Server (NTRS)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  4. High-temperature property data: Ferrous alloys

    SciTech Connect

    Rothman, M.F.

    1987-01-01

    In this book over 250 alloys are organized by AISI number into 10 major sections: Irons, Carbon Steels, Alloy Steels, Low Alloy Constructional Steels, Ultra High Strength Steels, Tool Steels, Maraging Steels, Wrought Stainless Steels, Heat Resistnat Casting Alloys, and Iron Based Rought Superalloys. Each alloy record lists the designation, specifications, UNS number, composition, product forms and a comment on the high-temperature properties and applications. Referenced data is then given for physical properties such as density, specific heat, thermal conductivity, thermal expansion, electrical conductivity, Poisson's ratio, moduli of elasticity and rigidity, etc. Mechanical properties follow, and include tensile properties, shearing and bearing properties, impact properties, creep, stress rupture and stress relaxation and fatigue properties. The last part of the alloy record gives other effects of temperature, such as hot hardness, corrosion, and growth.

  5. Hole-doped cuprate high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, C. W.; Deng, L. Z.; Lv, B.

    2015-07-01

    Hole-doped cuprate high temperature superconductors have ushered in the modern era of high temperature superconductivity (HTS) and have continued to be at center stage in the field. Extensive studies have been made, many compounds discovered, voluminous data compiled, numerous models proposed, many review articles written, and various prototype devices made and tested with better performance than their nonsuperconducting counterparts. The field is indeed vast. We have therefore decided to focus on the major cuprate materials systems that have laid the foundation of HTS science and technology and present several simple scaling laws that show the systematic and universal simplicity amid the complexity of these material systems, while referring readers interested in the HTS physics and devices to the review articles. Developments in the field are mostly presented in chronological order, sometimes with anecdotes, in an attempt to share some of the moments of excitement and despair in the history of HTS with readers, especially the younger ones.

  6. Magnetic suspension using high temperature superconducting cores

    NASA Technical Reports Server (NTRS)

    Scurlock, R. G.

    1992-01-01

    The development of YBCO high temperature superconductors, in wire and tape forms, is rapidly approaching the point where the bulk transport current density j vs magnetic field H characteristics with liquid nitrogen cooling will enable its use in model cores. On the other hand, BSCCO high temperature superconductor in wire form has poor j-H characteristics at 77 K today, although with liquid helium or hydrogen cooling, it appears to be superior to NbTi superconductor. Since liquid nitrogen cooling is approx. 100 times cheaper than liquid helium cooling, the use of YBCO is very attractive for use in magnetic suspension. The design is discussed of a model core to accommodate lift and drag loads up to 6000 and 3000 N respectively. A comparison is made between the design performance of a liquid helium cooled NbTi (or BSCCO) superconducting core and a liquid nitrogen cooled YBCO superconducting core.

  7. High temperature seal for large structural movements

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Dunlap, Jr., Patrick H. (Inventor)

    2004-01-01

    A high temperature sealing system is operative to seal an interface between adjacent hot structures and to minimize parasitic flow between such structures that move relative to one another in-plane or out-of-plane. The sealing system may be used to seal thrust-directing ramp structures of a reusable launch vehicle and includes a channel and a plurality of movable segmented sealing elements. Adjacent ramp structures include edge walls which extend within the channel. The sealing elements are positioned along the sides of the channel and are biased to engage with the inner surfaces of the ramp structures. The segmented sealing elements are movable to correspond to the contour of the thrust-directing ramp structures. The sealing system is operative to prevent high temperature thrust gases that flow along the ramp structures from infiltrating into the interior of the vehicle.

  8. Trends in Surface Temperature at High Latitudes

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The earliest signal of a climate change is expected to be found in the polar regions where warming is expected to be amplified on account of ice-albedo feedbacks associated with the high reflectivity of snow and ice. Because of general inaccessibility, there is a general paucity of in situ data and hence the need to use satellite data to observe the large-scale variability and trends in surface temperature in the region. Among the most important sensors for monitoring surface temperature has been the Advanced Very High Resolution Radiometer (AVHRR) which was first launched in 1978 and has provided continuous thermal infrared data since 1981. The top of the atmosphere data are converted to surface temperature data through various schemes that accounts for the unique atmospheric and surface conditions in the polar regions. Among the highest source of error in the data is cloud masking which is made more difficult in the polar region because of similar Signatures of clouds and snow lice covered areas. The availability of many more channels in the Moderate Resolution Imaging Spectroradiometer (MODIS) launched on board Terra satellite in December 1999 and on board Aqua in May 2002 (e.g., 36 visible and infrared channels compared to 5 for AVHRR) made it possible to minimize the error. Further capabilities were introduced with the Advanced Microwave Scanning Radiometer (AMSR) which has the appropriate frequency channels for the retrieval of sea surface temperature (SST). The results of analysis of the data show an amplified warming in the Arctic region, compared with global warming. The spatial distribution of warming is, however, not uniform and during the last 3 decades, positive temperature anomalies have been most pronounced in North America, Greenland and the Arctic basin. Some regions of the Arctic such as Siberia and the Bering Sea surprisingly show moderate cooling but this may be because these regions were anomalously warm in the 1980s when the satellite record

  9. Thermodynamic Temperatures of High-Temperature Fixed Points: Uncertainties Due to Temperature Drop and Emissivity

    NASA Astrophysics Data System (ADS)

    Castro, P.; Machin, G.; Bloembergen, P.; Lowe, D.; Whittam, A.

    2014-07-01

    This study forms part of the European Metrology Research Programme project implementing the New Kelvin to assign thermodynamic temperatures to a selected set of high-temperature fixed points (HTFPs), Cu, Co-C, Pt-C, and Re-C. A realistic thermal model of these HTFPs, developed in finite volume software ANSYS FLUENT, was constructed to quantify the uncertainty associated with the temperature drop across the back wall of the cell. In addition, the widely applied software package, STEEP3 was used to investigate the influence of cell emissivity. The temperature drop, , relates to the temperature difference due to the net loss of heat from the aperture of the cavity between the back wall of the cavity, viewed by the thermometer, defining the radiance temperature, and the solid-liquid interface of the alloy, defining the transition temperature of the HTFP. The actual value of can be used either as a correction (with associated uncertainty) to thermodynamic temperature evaluations of HTFPs, or as an uncertainty contribution to the overall estimated uncertainty. In addition, the effect of a range of furnace temperature profiles on the temperature drop was calculated and found to be negligible for Cu, Co-C, and Pt-C and small only for Re-C. The effective isothermal emissivity is calculated over the wavelength range from 450 nm to 850 nm for different assumed values of surface emissivity. Even when furnace temperature profiles are taken into account, the estimated emissivities change only slightly from the effective isothermal emissivity of the bare cell. These emissivity calculations are used to estimate the uncertainty in the temperature assignment due to the uncertainty in the emissivity of the blackbody.

  10. Insulation system for high temperature superconductor cables

    NASA Astrophysics Data System (ADS)

    Michael, P. C.; Haight, A. E.; Bromberg, L.; Kano, K.

    2015-12-01

    Large-scale superconductor applications, like fusion magnets, require high-current capacity conductors to limit system inductance and peak operating voltage. Several cabling methods using high temperature superconductor (HTS) tapes are presently under development so that the unique high-field, high-current-density, high operating temperature characteristics of 2nd generation REBCO coated conductors can be utilized in next generation fusion devices. Large-scale magnets are generally epoxy impregnated to support and distribute electromagnetic stresses through the magnet volume. However, the present generation of REBCO coated conductors are prone to delamination when tensile stresses are applied to the broad surface of REBCO tapes; this can occur during epoxy cure, cooldown, or magnet energization. We present the development of an insulation system which effectively insulates HTS cabled conductors at high withstand voltage while simultaneously preventing the intrusion of the epoxy impregnant into the cable, eliminating degradation due to conductor delamination. We also describe a small-scale coil test program to demonstrate the cable insulation scheme and present preliminary test results.

  11. High temperature thermomechanical analysis of ceramic coatings

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Braun, M. J.; Chung, B. T. F.; Dougherty, D.; Hendricks, R.

    1984-01-01

    This paper investigates the thermomechanical response of ceramically coated metal parts in elevated thermal environments. This is made possible through the development of an improved finite element algorithm that enables the efficient and stable solution of the inherently nonlinear elastic-creep (inelastic) type thermomechanical field equations associated with high temperature. Based on the improved algorithm, the results of several numerical experiments are presented. These illustrate the significant influence of inelastic behavior in generating residual stress fields.

  12. Hydrogen dominant metallic alloys: high temperature superconductors?

    PubMed

    Ashcroft, N W

    2004-05-07

    The arguments suggesting that metallic hydrogen, either as a monatomic or paired metal, should be a candidate for high temperature superconductivity are shown to apply with comparable weight to alloys of metallic hydrogen where hydrogen is a dominant constituent, for example, in the dense group IVa hydrides. The attainment of metallic states should be well within current capabilities of diamond anvil cells, but at pressures considerably lower than may be necessary for hydrogen.

  13. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  14. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  15. Establishment of Harrop, High-Temperature Viscometer

    SciTech Connect

    Schumacher, R.F.

    1999-11-05

    This report explains how the Harrop, High-Temperature Viscometer was installed, calibrated, and operated. This report includes assembly and alignment of the furnace, viscometer, and spindle, and explains the operation of the Brookfield Viscometer, the Harrop furnace, and the UDC furnace controller. Calibration data and the development of the spindle constant from NIST standard reference glasses is presented. A simple operational procedure is included.

  16. High temperature composites. Status and future directions

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1982-01-01

    A summary of research investigations of manufacturing methods, fabrication methods, and testing of high temperature composites for use in gas turbine engines is presented. Ceramic/ceramic, ceramic/metal, and metal/metal composites are considered. Directional solidification of superalloys and eutectic alloys, fiber reinforced metal and ceramic composites, ceramic fibers and whiskers, refractory coatings, metal fiber/metal composites, matrix metal selection, and the preparation of test specimens are discussed.

  17. High temperature, flexible, fiber-preform seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Strocky, Paul J. (Inventor)

    1992-01-01

    A seal is mounted in a rectangular groove in a movable structural panel. The seal comprises a fiber preform constructed of multiple layers of fiber having a uniaxial core. Helical fibers are wound over the core. The fibers are of materials capable of withstanding high temperatures and are both left-hand and right-hand wound. An outer layer wrapped over said helical fibers prevents abrasion damage.

  18. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2005-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  19. High Temperature Decomposition of Hydrogen Peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydropemxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  20. Thermal fuse for high-temperature batteries

    DOEpatents

    Jungst, Rudolph G.; Armijo, James R.; Frear, Darrel R.

    2000-01-01

    A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

  1. High Temperature Protonic Conductors by Melt Growth

    DTIC Science & Technology

    2006-11-21

    produce a family of single crystal and multiphase materials that exhibit high temperature protonic conductance, and superior mechanical properties at...with x = 0.05, 0.2, were ball-milled (WC ball and bottle) for 5 min. The resulting slurry was then dried at 70 ºC. The dried powders were heated 1000...explained taking into account the redistribution of the intercellular amorphous phase, and assuming that viscous flow plays a role at low strains. To

  2. High Temperature Magnetics for Power Conversion

    DTIC Science & Technology

    2005-06-01

    report. This document is the final report. 5 2.5 MAGNETICS, INC APPROACH TO MATERIAL DEVELOPMENT Background Manganese- zinc ferrites exist...density, high Curie temperatures and low core loss under specified conditions were the most desired properties. While manganese- zinc ferrites possess...in our laboratory from a blend of iron, manganese, and zinc oxides. Standard ferrite powder processing techniques were used. The starting

  3. High-temperature technological processes: Thermophysical principles

    NASA Astrophysics Data System (ADS)

    Rykalin, N. N.; Uglov, A. A.; Anishchenko, L. M.

    The book is concerned with the principles of thermodynamics and heat transfer theory underlying high-temperature technological processes. Some characteristics of electromagnetic radiation and heat transfer in solids, liquids, and gases are reviewed, and boundary layer theory, surface phenomena, and phase transitions are examined. The discussion includes an analysis of a number of specific processes, such as treatment by concentrated energy fluxes (electron-beam and laser processing) and plasma machining.

  4. A high temperature superconductivity communications flight experiment

    NASA Technical Reports Server (NTRS)

    Ngo, P.; Krishen, K.; Arndt, D.; Raffoul, G.; Karasack, V.; Bhasin, K.; Leonard, R.

    1992-01-01

    The proposed high temperature superconductivity (HTSC) millimeter-wave communications flight experiment from the payload bay of the Space Shuttle Orbiter to the Advanced Communications Technology Satellite (ACTS) in geosynchronous orbit is described. The experiment will use a Ka-band HTSC phased array antenna and front-end electronics to receive a downlink communications signal from the ACTS. The discussion covers the system configuration, a description of the ground equipment, the spacecraft receiver, link performance, thermal loading, and the superconducting antenna array.

  5. High temperature corrosion of engineering alloys

    SciTech Connect

    Lai, G.Y.

    1990-01-01

    This book describes a treatment of all forms of high temperature corrosion problems encountered in industry, especially gas turbine and aerospace; heat treating; mineral and metallurgical processing; ceramic, electronic and glass manufacturing; automotive; pulp and paper; waste incineration; fossil fuel power generation; coal gasification; and nuclear. Materials problems discussed include those due to oxidation, carburization and metal dusting, nitridation, halogen corrosion, sulfidation, ash/salt deposit corrosion, molten salt corrosion, and molten metal corrosion.

  6. High-Temperature Thermoelectric Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  7. High-Temperature Thermoelectric Energy Conversion

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1987-01-01

    Theory of thermoelectric energy conversion at high temperatures and status of research on conversion materials reviewed in report. Shows highest values of thermoelectric figure of merit, Z, found in semiconductor materials. Semiconductors keep wide choice of elements and compounds. Electrical properties tailored to particular application by impurity doping and control of stoichiometry. Report develops definition of Z useful for comparing materials and uses it to evaluate potentials of different classes of materialsmetals, semiconductors, and insulators.

  8. Intermetallic-Based High-Temperature Materials

    SciTech Connect

    Sikka, V.K.

    1999-04-25

    The intermetallic-based alloys for high-temperature applications are introduced. General characteristics of intermetallics are followed by identification of nickel and iron aluminides as the most practical alloys for commercial applications. An overview of the alloy compositions, melting processes, and mechanical properties for nickel and iron aluminizes are presented. The current applications and commercial producers of nickel and iron aluminizes are given. A brief description of the future prospects of intermetallic-based alloys is also given.

  9. Self Healing in Coatings at High Temperatures

    NASA Astrophysics Data System (ADS)

    Sloof, Wim G.

    Alloys for high temperature applications in an oxidizing environment depend on the formation of a protective and slow growing oxide scale. The composition of these alloys is such that a continuous layer of a thermodynamically stable oxide is formed through selective oxidation of one of the constituting elements. Then, the oxide layer forms a barrier between the environment and the underlying alloy. The alloys for high temperature applications can be divided into alumina (Al2O3), silica (SiO2), or chromia (Cr2O3) formers, such as stainless steels, superalloys (Reed 2006), and intermetallics (MX, where M is Ti, Fe, Co or Ni, and X denotes Al, Si, or Cr). These materials are successfully applied in for example gas turbine engines (aero, marine, and industrial), heating equipment and automotive converters etc. In this chapter, the focus will be on alumina forming alloys encountered as coating material for blades and vanes in gas turbine engines. However, the principles addressed also apply to the other mentioned classes of high temperature alloys.

  10. High-temperature superconductivity: the explanation

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. S.

    2011-03-01

    Soon after the discovery of the first high-temperature superconductor by Georg Bednorz and Alex Müller in 1986, the late Sir Nevill Mott in answering his own question 'Is there an explanation?' (1987 Nature 327 185) expressed the view that the Bose-Einstein condensation (BEC) of small bipolarons, predicted by us in 1981, could be the one. Several authors then contemplated BEC of real-space tightly bound pairs, but with a purely electronic mechanism of pairing rather than with an electron-phonon interaction (EPI). However, a number of other researchers criticized the bipolaron (or any real-space pairing) scenario as incompatible with some angle-resolved photoemission spectra, with experimentally determined effective masses of carriers and unconventional symmetry of the superconducting order parameter in cuprates. Since then, the controversial issue of whether EPI is crucial for high-temperature superconductivity or is weak and inessential has been one of the most challenging problems of contemporary condensed matter physics. Here I outline some developments in the bipolaron theory suggesting that the true origin of high-temperature superconductivity is found in a proper combination of strong electron-electron correlations with a significant finite-range (Fröhlich) EPI, and that the theory is fully compatible with key experiments.

  11. High temperature inorganic membranes for separating hydrogen

    SciTech Connect

    Fain, D.E.; Roettger, G.E.

    1995-08-01

    Effort has continued to accumulate data on the transport of gases over the temperature range from room temperature to 275{degrees}C with inorganic membranes having a range of pore radii from approximately 0.25 nm to 3 mn. An experimental alumina membrane having an estimated mean pore radius of 0.25 nm has been fabricated and tested. Extensive testing of this membrane indicated that the separation factor for helium and carbon tetrafluoride at 250{degrees}C was 59 and the extrapolated high temperature separation factor was 1,193. For safety reasons, earlier flow measurements concentrated on helium, carbon dioxide, and carbon tetrafluoride. New data have been acquired with hydrogen to verify the agreement with the other gases. During the measurements with hydrogen, it was noted that a considerable amount of moisture was present in the test gas. The source of this moisture and its effect on permeance was examined. Improvements were implemented to the flow test system to minimize the water content of the hydrogen test gas, and subsequent flow measurements have shown excellent results with hydrogen. The extrapolation of separation factors as a function of temperature continues to show promise as a means of using the hard sphere model to determine the pore size of membranes. The temperature dependence of helium transport through membranes appears to be considerably greater than other gases for the smallest pore sizes. The effort to extend temperature dependence to the hard sphere model continues to be delayed, primarily because of a lack of adequate adsorption data.

  12. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Cano, Roberto J.; Watson, Kent A.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    Depending on the part type and quantity, fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) can be more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at temperature up to 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. This finding was unexpected as high quality composite laminates have been fabricated under higher pressures using these resin systems. The amount of weight loss experienced during the thermal cycle was only about 1% by weight, but this leads to a significant amount of volatiles in a closed system. By modifying the thermal cycle used in laminate fabrication, the void content was significantly reduced (typically 3% or less). The results of this work are presented herein.

  13. High temperature aqueous stress corrosion testing device

    DOEpatents

    Bornstein, A.N.; Indig, M.E.

    1975-12-01

    A description is given of a device for stressing tensile samples contained within a high temperature, high pressure aqueous environment, thereby permitting determination of stress corrosion susceptibility of materials in a simple way. The stressing device couples an external piston to an internal tensile sample via a pull rod, with stresses being applied to the sample by pressurizing the piston. The device contains a fitting/seal arrangement including Teflon and weld seals which allow sealing of the internal system pressure and the external piston pressure. The fitting/seal arrangement allows free movement of the pull rod and the piston.

  14. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  15. Hydrogen at high pressure and temperatures

    SciTech Connect

    Nellis, W J

    1999-09-30

    Hydrogen at high pressures and temperatures is challenging scientifically and has many real and potential applications. Minimum metallic conductivity of fluid hydrogen is observed at 140 GPa and 2600 K, based on electrical conductivity measurements to 180 GPa (1.8 Mbar), tenfold compression, and 3000 K obtained dynamically with a two-stage light-gas gun. Conditions up to 300 GPa, sixfold compression, and 30,000 K have been achieved in laser-driven Hugoniot experiments. Implications of these results for the interior of Jupiter, inertial confinement fusion, and possible uses of metastable solid hydrogen, if the metallic fluid could be quenched from high pressure, are discussed.

  16. Easily Processable High-Temperature Polyimide

    NASA Technical Reports Server (NTRS)

    Sutter, James K.; Meador, Mary Ann; Meador, Michael A.; Waters, John F.; Baldwin, Larry J.

    1994-01-01

    Polymerization without volatile gases leads to high-quality resins. N-CYCAP (amiNe substituted CYClophane Addition Polyimide) is thermoset polyimide developed containing 4-amino{2.2}paracyclophane as end cap. Current improvements in synthesis of end cap include increasing yield to 60 percent overall and decreasing manufacturing time by simplifying synthetic procedure. Enables large-scale production and increases viability of cyclophane end caps for polymers for high-temperature applications. In comparison with neat resin moldings and composite matrix resins made of PMR-II-50, those made of N-CYCAP polymers found to be processable with lower void content and higher thermo-oxidative stability.

  17. High temperature superconducting digital circuits and subsystems

    SciTech Connect

    Martens, J.S.; Pance, A.; Whiteley, S.R.; Char, K.; Johansson, M.F.; Lee, L.; Hietala, V.M.; Wendt, J.R.; Hou, S.Y.; Phillips, J.

    1993-10-01

    The advances in the fabrication of high temperature superconducting devices have enabled the demonstration of high performance and useful digital circuits and subsystems. The yield and uniformity of the devices is sufficient for circuit fabrication at the medium scale integration (MSI) level with performance not seen before at 77 K. The circuits demonstrated to date include simple gates, counters, analog to digital converters, and shift registers. All of these are mid-sized building blocks for potential applications in commercial and military systems. The processes used for these circuits and blocks will be discussed along with observed performance data.

  18. High Temperature Wear of Advanced Ceramics

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.

    2005-01-01

    It was initially hypothesized that advanced ceramics would exhibit favorable high te- friction and wear properties because of their high hot hardness and low achievable surface roughness welding observed in metals does not occur in ceramics. More recent tribological studies of many nitride, carbide, oxide and composite ceramics, however, have revealed that ceramics often exhibit high friction and wear in non-lubricated, high temperature sliding contacts. A summary is given to measure friction and wear factor coefficients for a variety of ceramics from self mated ceramic pin-on-disk tests at temperatures from 25 to up to 1200 C. Observed steady state friction coefficients range from about 0.5 to 1.0 or above. Wear factor coefficients are also very high and range from about to 10(exp -5) to 10(exp -2) cubic millimeters per N-m. By comparison, oil lubricated steel sliding results in friction coefficients of 0.1 or less and wear factors less than 10(exp -9) cubic millimeters per N-m.

  19. Improved Seals for High Temperature Airframe Applications

    NASA Technical Reports Server (NTRS)

    DeMange, Jeffrey J.; Dunlap, Patrick H.; Steinetz, Bruce M.

    2006-01-01

    Current thermal barrier seals, such as those used on the Space Shuttle, are insufficient to fully meet the demands of future hypersonic vehicles and reentry spacecraft. Previous investigations have demonstrated limited usage temperatures, as evidenced by a decreased ability to maintain sealing effectiveness at high temperatures (i.e., inadequate resiliency). In order to improve resiliency at elevated temperatures, Rene 41 (Allvac) was substituted for Inconel X-750 (Special Metals Corp.) as the spring tube material in the existing seal design. A seal construction incorporating the Rene 41 spring tube was fabricated and tested against the baseline Inconel X-750 spring tube seal. Although resiliency improvements were not as dramatic as in previous tests with the spring tubes alone, seals incorporating the Rene 41 spring tube exhibited an average 20 percent resiliency enhancement up to 1750 F when compared to seals containing the Inconel spring tube. In addition, the seals with the Rene 41 spring tubes showed less reduction in resiliency as temperatures increased above 1200 F. Results also indicated the Saffil (Saffil Ltd.) insulation in the core of the seal contributed more to resiliency than previously thought. Leakage data did not demonstrate an improvement with the seal containing the Rene 41 spring tube. However, based upon resiliency results, one could reasonably expect the Rene 41 version of the seal to track gap openings over a wider range. Therefore it would exhibit lower leakage than the Inconel X-750 version as the seal gap opens during a typical mission.

  20. High temperature measurement of water vapor absorption

    NASA Technical Reports Server (NTRS)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  1. High Temperature Materials for Chemical Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Elam, Sandra; Hickman, Robert; O'Dell, Scott

    2007-01-01

    Radiation or passively cooled thrust chambers are used for a variety of chemical propulsion functions including apogee insertion, reaction control for launch vehicles, and primary propulsion for planetary spacecraft. The performance of these thrust chambers is limited by the operating temperature of available materials. Improved oxidation resistance and increased operating temperatures can be achieved with the use of thermal barrier coatings such as zirconium oxide (ZrO2) and hafnium oxide (HfO2). However, previous attempts to include these materials showed cracking and spalling of the oxide layer due to poor bonding. Current research at NASA's Marshall Space Flight Center (MSFC) has generated unique, high temperature material options for in-space thruster designs that are capable of up to 2500 C operating temperatures. The research is focused on fabrication technologies to form low cost Iridium,qF_.henium (Ir/Re) components with a ceramic hot wall created as an integral, functionally graded material (FGM). The goal of this effort is to further de?celop proven technologies for embedding a protective ceramic coating within the Ir/Re liner to form a robust functional gradient material. Current work includes the fabrication and testing of subscale samples to evaluate tensile, creep, thermal cyclic/oxidation, and thermophysical material properties. Larger test articles have also being fabricated and hot-fire tested to demonstrate the materials in prototype thrusters at 1O0 lbf thrust levels.

  2. Electron attachment to halomethanes at high temperatures

    NASA Astrophysics Data System (ADS)

    Miller, T. M.; Friedman, J. F.; Schaffer, L. C.; Viggiano, A. A.

    2009-10-01

    We have modified our high-temperature flowing-afterglow apparatus to include a movable Langmuir probe, a 4-needle reactant gas inlet, and a microwave discharge plasma source for the purpose of measuring electron attachment rate constants at high temperatures. We have focused initially on molecules which have very small attachment rate constants, ka, at room temperature to see if their behavior at high temperatures can be described in Arrhenius fashion. We have reported ka for CH3Cl, but only above 600 K, because the value at 600 K was quite small: 5.8 x10-12 cm^3 s-1. The Arrhenius plot for these data imply ka = 10-17 cm^3 s-1 at 300 K, a value that is so small as to be immeasurable with any current apparatus. We now have ka for other halomethanes, CF3Cl, CF2Cl2, and CH2Cl2. The halomethane data cover seven orders-of-magnitude in ka. Electron attachment to CF3Cl is endothermic by 143 meV at 300 K, but our measurements indicate that there is a barrier of about 400 meV, probably related to the energy at which the anion surface crosses that of the neutral. The reactions for CH3Cl, CF2Cl2, and CH2Cl2 are exothermic, but our data again indicate large barriers to attachment which accounts for the extremely slow attachment at 300 K. From these data and literature measurements at 300 K, one can make educated guesses as to the behavior of ka for other halomethanes.

  3. Electrical resistivity of iron at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Deng, L.; Seagle, C.; Fei, Y.; Shahar, A.

    2011-12-01

    Knowledge of thermal conductivity of iron under high-pressure and temperature conditions is crucial to understand the heat transport and the thermal evolution of planetary interior. However, measurements of thermal conductivity at high pressure and temperature are challenging and experimental data are limited. In this study, we report the measured electrical resistivity of iron at high pressure and temperature. The data are then translated to thermal conductivity through Wiedemann-Franz law. A four-probe method was employed to measure the resistances of a cylindrical wire during heating cycles at high pressure. Experiments at 5, 7 and 13 GPa were performed on an iron wire sample by using a multi-anvil apparatus at the Geophysical Laboratory. At 5, 7 and 13 GPa, the measured electrical resistivity of iron at room temperature are 9.06 mΩ-cm (bcc phase), 8.85 mΩ-cm (bcc phase) and 12.72 mΩ-cm (hcp phase), respectively. The results are in a good agreement with reported room-temperature data. The kinks in electrical resistivity associated with the phase transitions of iron were clearly observed in each run. At 5 and 7 GPa, kinks in the electrical resistivity can be noticed at 677 oC and 652 oC, respectively, due to the bcc to fcc phase transition. At 5 GPa and 1687 oC, melting led to a discontinuous change in electrical resistivity. The temperature dependence of the electrical resistivity for bcc, fcc, and hcp iron are well constrained from these measurements. The hcp iron displays the strongest temperature dependence compared with that of the bcc and fcc phases. Our results provide critical thermodynamic parameters to constrain heat transport in the planetary cores.

  4. LHDAC setup for high temperature and high pressure studies

    SciTech Connect

    Patel, Nishant N. Meenakshi, S. Sharma, Surinder M.

    2014-04-24

    A ytterbium fibre laser (λ = 1.07 μm) based laser heated diamond anvil cell (LHDAC) facility has been recently set up at HP and SRPD, BARC for simultaneous high temperature and high pressure investigation of material properties. Synthesis of GaN was carried out at pressure of ∼9 GPa and temperature of ∼1925 K in a Mao-Bell type diamond anvil cell (DAC) using the LHDAC facility. The retrieved sample has been characterized using our laboratory based micro Raman setup.

  5. High-temperature alloys for high-power thermionic systems

    SciTech Connect

    Shin, Kwang S.; Jacobson, D.L.; D'cruz, L.; Luo, Anhua; Chen, Bor-Ling.

    1990-08-01

    The need for structural materials with useful strength above 1600 k has stimulated interest in refractory-metal alloys. Tungsten possesses an extreme high modulus of elasticity as well as the highest melting temperature among metals, and hence is being considered as one of the most promising candidate materials for high temperature structural applications such as space nuclear power systems. This report is divided into three chapters covering the following: (1) the processing of tungsten base alloys; (2) the tensile properties of tungsten base alloys; and (3) creep behavior of tungsten base alloys. Separate abstracts were prepared for each chapter. (SC)

  6. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.; Ghose, Sayata; Watson, Kent A.

    2009-01-01

    Fabrication of composite structures using vacuum assisted resin transfer molding (VARTM) is generally more affordable than conventional autoclave techniques. Recent efforts have focused on adapting VARTM for the fabrication of high temperature composites. Due to their low melt viscosity and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature VARTM (HT-VARTM). However, one of the disadvantages of the current HT-VARTM resin systems has been the high porosity of the resultant composites. For aerospace applications, the desired void fraction of less than 2% has not yet been achieved. In the current study, two PETI resins, LaRC PETI-330 and LaRC PETI-8 have been used to make test specimens using HT-VARTM. The resins were infused into ten layers of IM7-6K carbon fiber 5-harness satin fabric at 260 C or 280 C and cured at 371 C. Initial runs yielded composites with high void content, typically greater than 7% by weight. A thermogravimetric-mass spectroscopic study was conducted to determine the source of volatiles leading to high porosity. It was determined that under the thermal cycle used for laminate fabrication, the phenylethynyl endcap was undergoing degradation leading to volatile evolution. By modifying the thermal cycle used in laminate fabrication, the void content was reduced significantly (typically approximately 3%). Densities of the composites were determined using a density gradient column and the glass transition temperatures of the cured composites were measured by dynamic mechanical analysis. Photomicrographs of the panels were taken and void contents were determined by acid digestion. The results of this work are presented herein.

  7. High-temperature brushless DC motor controller

    DOEpatents

    Cieslewski, Crzegorz; Lindblom, Scott C.; Maldonado, Frank J.; Eckert, Michael Nathan

    2017-05-16

    A motor control system for deployment in high temperature environments includes a controller; a first half-bridge circuit that includes a first high-side switching element and a first low-side switching element; a second half-bridge circuit that includes a second high-side switching element and a second low-side switching element; and a third half-bridge circuit that includes a third high-side switching element and a third; low-side switching element. The motor controller is arranged to apply a pulse width modulation (PWM) scheme to switch the first half-bridge circuit, second half-bridge circuit, and third half-bridge circuit to power a motor.

  8. High temperature behavior of zirconium germanates

    SciTech Connect

    Utkin, A.V.; Baklanova, N.I.; Vasilyeva, I.G.

    2013-05-01

    The high temperature behavior of zirconium germanates ZrGeO₄ and Zr₃GeO₈ up to 2300 °C has been studied using the original photoemission thermal analysis technique with the comprehensive physicochemical study of solid and gaseous intermediate and final products. The two-stage process of incongruent sublimation of GeO₂ was established and the phase boundary of the homogeneity range for ZrGeO₄ and Zr₃GeO₈ were deduced from the thermal analysis, X-ray diffraction and Raman spectroscopy studies. A high tendency to sintering of the final ZrO₂ product is discussed. - Graphical abstract: The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂ and occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. Highlights: •Thermal behavior of ZrGeO₄ and Zr₃GeO₈ was studied using the original thermal analysis technique in wide temperature range. •The decomposition occurs via two stages with the formation of intermediate ZrO₂-rich solid solution. •The decomposition of zirconium germanates leads to the formation of gaseous GeO₂ and solid sintered ZrO₂. •The temperature of decomposition is strongly depended on the total gas pressure.

  9. Aerospace Applications Of High Temperature Superconductivity

    NASA Astrophysics Data System (ADS)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  10. The NASA high temperature superconductivity program

    NASA Technical Reports Server (NTRS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  11. The NASA high temperature superconductivity program

    NASA Astrophysics Data System (ADS)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-04-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  12. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  13. Creep resistant high temperature martensitic steel

    DOEpatents

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  14. High temperature stress-strain analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Moorhead, Paul E.

    1986-01-01

    The objectives of the high-temperature structures program are threefold: to assist in the development of analytical tools needed to improve design analyses and procedures for the efficient and accurate prediction of the nonlinear structural response of hot-section components; to aid in the calibration, validation, and evaluation of the analytical tools by comparing predictions with experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation. As the analytical tools, test methods, tests, instrumentations, as well as data acquisition, management, and analysis methods are developed and evaluated, a proven, integrated analysis and experiment method will result in a more accurate prediction of the cyclic life of hot section components.

  15. Diamond switches for high temperature electronics

    SciTech Connect

    Prasad, R.R.; Rondeau, G.; Qi, Niansheng

    1996-04-25

    Diamond switches are well suited for use in high temperature electronics. Laboratory feasibility of diamond switching at 1 kV and 18 A was demonstrated. DC blocking voltages up to 1 kV were demonstrated. A 50 {Omega} load line was switched using a diamond switch, with switch on-state resistivity {approx}7 {Omega}-cm. An electron beam, {approx}150 keV energy, {approx}2 {mu}s full width at half maximum was used to control the 5 mm x 5 mm x 100 {mu}m thick diamond switch. The conduction current temporal history mimics that of the electron beam. These data were taken at room temperature.

  16. Graphite thermal expansion reference for high temperature

    NASA Technical Reports Server (NTRS)

    Gaal, P. S.

    1974-01-01

    The design requirements of the aerospace and high-temperature nuclear reactor industries necessitate reliable thermal expansion data for graphite and other carbonaceous materials. The feasibility of an acceptable reference for calibration of expansion measuring systems that operate in carbon-rich atmospheres at temperatures ranging to 2500 C is the prime subject of this work. Present-day graphite technology provides acceptable materials for stable, reproducible references, as reflected by some of the candidate materials. The repeatability for a single specimen in a given expansion measuring system was found to be plus or minus 1%, while the combined results of several tests made on a number of samples fell within a plus or minus 2.5% band.

  17. High temperature NASP engine seal development

    NASA Astrophysics Data System (ADS)

    This video details research being conducted at the Lewis Research Center on high temperature engine seal design for the National Aerospace Plane. To maximize the speed, the jets on the NASP extract oxygen from the air rather than carry large liquid fuel tanks; this creates temperatures within the jet of over 5000 F. To prevent these potentially explosive gases from escaping, researchers are developing new technologies for use in the engine seals. Two examples explained are the ceramic wafer seal and the braided ceramic rope seal. Computer simulations and laboratory footage are used to illustrate the workings of these seals. Benefits for other aerospace and industrial applications, as well as for the space shuttle, are explored.

  18. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  19. High Temperature Battery for Drilling Applications

    SciTech Connect

    Josip Caja

    2009-12-31

    In this project rechargeable cells based on the high temperature electrochemical system Na/beta''-alumina/S(IV) in AlCl3/NaCl were developed for application as an autonomous power source in oil/gas deep drilling wells. The cells operate in the temperature range from 150 C to 250 C. A prototype DD size cell was designed and built based on the results of finite element analysis and vibration testing. The cell consisted of stainless steel case serving as anode compartment with cathode compartment installed in it and a seal closing the cell. Critical element in cell design and fabrication was hermetically sealing the cell. The seal had to be leak tight, thermally and vibration stable and compatible with electrode materials. Cathode compartment was built of beta''-alumina tube which served as an electrolyte, separator and cathode compartment.

  20. Structural characteristics of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.

    1985-01-01

    A progress report is presented for research carried from March 1984 through February 1985. A tensile test method has been developed which should give tensile and simulated shear (+ or - 45 deg) data for fiber composites up to 1000 C. Longitudinal and some transverse stress-strain data have been obtained for a glass matrix/Nicalon fiber system up to the matrix limiting temperature of 600 C. This demonstrates the functioning of the test method and the high temperature test facility which has been established on this grant. Transverse and longitudinal compression tests have been run, mostly in an end loaded configuration. A more satisfactory compression test is still required, and is under development.

  1. FY16 ASME High Temperature Code Activities

    SciTech Connect

    Swindeman, M. J.; Jetter, R. I.; Sham, T. -L.

    2016-09-01

    One of the objectives of the ASME high temperature Code activities is to develop and validate both improvements and the basic features of Section III, Division 5, Subsection HB, Subpart B (HBB). The overall scope of this task is to develop a computer program to be used to assess whether or not a specific component under specified loading conditions will satisfy the elevated temperature design requirements for Class A components in Section III, Division 5, Subsection HB, Subpart B (HBB). There are many features and alternative paths of varying complexity in HBB. The initial focus of this task is a basic path through the various options for a single reference material, 316H stainless steel. However, the program will be structured for eventual incorporation all the features and permitted materials of HBB. Since this task has recently been initiated, this report focuses on the description of the initial path forward and an overall description of the approach to computer program development.

  2. Permanent magnets composed of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  3. Operator manual: high temperature heat pump

    SciTech Connect

    Dyer, D.F.; Maples, G.; Burch, T.E.; Chancellor, P.D.

    1980-03-04

    Experimental data is being obtained from operating a high temperature heat pump system. The use of methanol as a working fluid will necessitate careful monitoring of refrigerant temperatures and pressures with chemical analysis performed on the working fluid during scheduled down time. Materials sent to vendors by Auburn University and quotes received by Auburn concerning equipment (compressor, evaporator, condensor, air heater, dryer, two accumulator tanks, and three expansion valves) are discussed. The simulated dryer and two accumulator tanks were designed by Auburn. The detailed design and pricing estimates are included. Additional information is presented on layout and construction; start-up; testing; shut down; scheduled maintenance and inspection; safety precautions; control system; and trouble shooting.

  4. High Temperature Geothermal Elastomer Compund Development

    SciTech Connect

    Hirasuna, A. R.

    1981-01-01

    Reliable casting packer seal elastomers for the unusually severe geothermal environment at 260 C (500 F) did not exist in 1976. L'Garde, Inc., was awarded a contract to fulfill this need by the US Department of Energy. Successful development was completed in 1979. Compounds based on four different polymer systems were developed, all of which exceed the contract requirements. Successful laboratory tests above 300 C (575 F) have been performed with packer seals. Field tests to temperatures as high as 317 C (603 F) have been performed on static O-rings in a cablehead. Successful, dynamic, drill bit seal tests were run with a presoak temperature of 288 C (550 F). The successful compounds are based on the following polymer systems: EPDM; FKM; EPDM/FKM blend, and propylene-TFE.

  5. Highly sensitive microwave temperature-jump apparatus.

    PubMed

    Aubard, J; Nozeran, J M; Levoir, P; Meyer, J J; Dubois, J E

    1979-01-01

    A temperature-jump apparatus with repetitive microwave heating and spectrophotometric detection is described. Temperature jumps of 1.5 degrees C are achieved in a flow microcell within 1.5 mus (two shorter heating times of 0.5 and 0.25 mus are also available) at a repetition rate up to 50 Hz. On-line accumulation of the relaxation signals is performed with a PDP 11 processor, leading to very short recording times (more than 1000 signals accumulated in less than 50 s) and to a sensitivity better than 10(-4) optical density (OD) units. Nonlinear identification treatment permits processing the summed signal even when it is strongly blurred by noise. To demonstrate the capabilities of our apparatus, highly shifted fast prototropic equilibria in aqueous solutions of pyrimidine base have been studied.

  6. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  7. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    SciTech Connect

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy; Salas, Ken; Samudrala, Omprakash; Shah, Manoj; Van Dam, Jeremy; Yin, Weijun; Zia, Jalal

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  9. Diamond based detectors for high temperature, high radiation environments

    NASA Astrophysics Data System (ADS)

    Metcalfe, A.; Fern, G. R.; Hobson, P. R.; Smith, D. R.; Lefeuvre, G.; Saenger, R.

    2017-01-01

    Single crystal CVD diamond has many desirable properties as a radiation detector; exceptional radiation hardness and physical hardness, chemical inertness, low Z (close to human tissue, good for dosimetry and transmission mode applications), wide bandgap (high temperature operation with low noise and solar blind), an intrinsic pathway to fast neutron detection through the 12C(n,α)9Be reaction. This combination of radiation hardness, temperature tolerance and ability to detect mixed radiation types with a single sensor makes diamond particularly attractive as a detector material for harsh environments such as nuclear power station monitoring (fission and fusion) and oil well logging. Effective exploitation of these properties requires the development of a metallisation scheme to give contacts that remain stable over extended periods at elevated temperatures (up to 250°C in this instance). Due to the cost of the primary detector material, computational modelling is essential to best utilise the available processing methods for optimising sensor response through geometry and conversion media configurations and to fully interpret experimental data. Monte Carlo simulations of our diamond based sensor have been developed, using MCNP6 and FLUKA2011, assessing the sensor performance in terms of spectral response and overall efficiency as a function of the detector and converter geometry. Sensors with varying metallisation schemes for high temperature operation have been fabricated at Brunel University London and by Micron Semiconductor Limited. These sensors have been tested under a varied set of conditions including irradiation with fast neutrons and alpha particles at high temperatures. The presented study indicates that viable metallisation schemes for high temperature contacts have been successfully developed and the modelling results, supported by preliminary experimental data from partners, indicate that the simulations provide a reasonable representation of

  10. Fail Safe, High Temperature Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Minihan, Thomas; Palazzolo, Alan; Kim, Yeonkyu; Lei, Shu-Liang; Kenny, Andrew; Na, Uhn Joo; Tucker, Randy; Preuss, Jason; Hunt, Andrew; Carter, Bart; hide

    2002-01-01

    This paper contributes to the magnetic bearing literature in two distinct areas: high temperature and redundant actuation. Design considerations and test results are given for the first published combined 538 C (1000 F) high speed rotating test performance of a magnetic bearing. Secondly, a significant extension of the flux isolation based, redundant actuator control algorithm is proposed to eliminate the prior deficiency of changing position stiffness after failure. The benefit of the novel extension was not experimentally demonstrated due to a high active stiffness requirement. In addition, test results are given for actuator failure tests at 399 C (750 F), 12,500 rpm. Finally, simulation results are presented confirming the experimental data and validating the redundant control algorithm.

  11. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.

    1983-01-01

    High boron materials of high efficiency for thermoelectric power generation and capable of prolonged operation at temperatures over 1200 C are discussed. Background theoretical studies indicated that the low carrier mobility of materials with beta boron and related structures is probably associated with the high density of traps. Experimental work was mainly concerned with silicon borides in view of promising data from European laboratories. A systematic study using structure determination and lattice constant measurements failed to confirm the existence of an SiBn phase. Only SiB6 and a solid solution of silicon in beta boron with a maximum solid solubility of 5.5-6 at % at 1650 C were found.

  12. Development of high temperature, high radiation resistant silicon semiconductors

    NASA Technical Reports Server (NTRS)

    Whorl, C. A.; Evans, A. W.

    1972-01-01

    The development of a hardened silicon power transistor for operation in severe nuclear radiation environments at high temperature was studied. Device hardness and diffusion techniques are discussed along with the geometries of hardened power transistor chips. Engineering drawings of 100 amp and 5 amp silicon devices are included.

  13. Design Considerations for High Temperature Power Inductors

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.

    2005-01-01

    A uniform B-field approximation model is used to develop design formulas for single-layer wound, toroidal core, ac power inductors that must handle a specified current. Such a geometry is well suited for high temperature, high frequency inductors, where removal of heat from the core becomes critical. Explicit expressions are derived for core radii, core and winding volumes, winding turns and core permeability as functions of a dimensional scaling ratio (S). A limit on the maximum allowed core B-field leads to the result that the minimum core volume is proportional to the permeability, which has a lower bound. Plots versus S are provided for a specific case, to show that good designs can be picked in the overlap regions around the minima in mass and overall size, where the mass and size are relatively flat. Data to 250 C are presented for an MPP core based inductor to show that a quasi-linear, high temperature inductor can be constructed with available materials. A similar development is applied to a toroidal air-core geometry, showing that for the same ratings, such an inductor is considerably bigger and more massive, at least in the single-layer version.

  14. High temperature deactivation of coal chars

    SciTech Connect

    Beeley, T.J.; Gibbins, J.R.; Man, C.K.

    1994-12-31

    High levels of char burnout, typically to less than 5% by weight of residual carbon in the fly ash, are desirable in large, multi-burner utility boilers fired with pulverised coal in order to optimise plant efficiency and allow the ash to be incorporated in building materials. Achieving high levels of char burnout can be a particular problem with air-staged low-NOx combustors, where air/fuel ratios (and flame temperatures) have to be constrained to give satisfactory emission levels. Switching to imported low-sulphur coals can also be associated with a need to at least assess the potential for burnout problems. In general the levels of carbon in ash required represent very high overall fuel conversion. For example, a coal with 10%w/w ash dry basis giving 5% carbon in ash will still achieve 99.4% conversion. The difference between satisfactory and unsatisfactory burnout thus depends on whether a very small fraction of the coal does or does not burn. This study examined the effect of time and temperature on char reactivity. Fly ash samples containing char were obtained from plant trials.

  15. High temperature barrier coatings for refractory metals

    SciTech Connect

    Malone, G.A.; Walech, T.

    1995-06-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined); (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  16. High temperature barrier coatings for refractory metals

    NASA Technical Reports Server (NTRS)

    Malone, G. A.; Walech, T.

    1995-01-01

    Improvements in high temperature oxidation resistant metal coating technology will allow NASA and commercial entities to develop competitive civil space transport and communication systems. The success of investigations completed in this program will have a positive impact on broadening the technology base for high temperature materials. The work reported herein describes processes and procedures for successfully depositing coherent oxidation barrier coatings on refractory metals to prevent degradation under very severe operating environments. Application of the new technology developed is now being utilized in numerous Phase 3 applications through several prominent aerospace firms. Major achievements have included: (1) development of means to deposit thick platinum and rhodium coatings with lower stress and fewer microcracks than could be previously achieved; (2) development of processes to deposit thick adherent coatings of platinum group metals on refractory substrates that remain bonded through high temperature excursions and without need for intermediate coatings (bonding processes unique to specific refractory metals and alloys have been defined; (3) demonstration that useful alloys of refractory and platinum coatings can be made through thermal diffusion means; (4) demonstration that selected barrier coatings on refractory substrates can withstand severe oxidizing environments in the range of 1260 deg and 1760 deg C for long time periods essential to the life requirements of the hardware; and (5) successful application of the processes and procedures to prototype hardware. The results of these studies have been instrumental in improved thermal oxidation barrier coatings for the NASP propulsion system. Other Phase 3 applications currently being exploited include small uncooled thrusters for spacecraft and microsatellite maneuvering systems.

  17. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2004-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  18. High temperature decomposition of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2011-01-01

    Nitric oxide (NO) is oxidized into nitrogen dioxide (NO.sub.2) by the high temperature decomposition of a hydrogen peroxide solution to produce the oxidative free radicals, hydroxyl and hydroperoxyl. The hydrogen peroxide solution is impinged upon a heated surface in a stream of nitric oxide where it decomposes to produce the oxidative free radicals. Because the decomposition of the hydrogen peroxide solution occurs within the stream of the nitric oxide, rapid gas-phase oxidation of nitric oxide into nitrogen dioxide occurs.

  19. NEW APPROACHES: High temperature superconductors take off

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    1998-01-01

    This article describes the progress made towards real engineering applications of high temperature superconductors (HTS) in the ten years following the Nobel Prize winning discovery by Bednorz and Müller in August 1986. Examples include HTS wires and tapes for more efficient and powerful electric motors and for increasing the electrical power into the heart of modern cities, HTS permanent magnets for levitation, microwave filters for cellular telephone networks, SQUIDs (superconducting quantum interference devices) to monitor foetal heart and brain signals, and a new generation of superfast logic devices based on the flux quantum.

  20. Applications of bulk high-temperature superconductors

    SciTech Connect

    Hull, J.R.

    1995-06-01

    The development of high-temperature superconductors (HTSs) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTSs to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTSs cooled to 77 K, and the properties of the bulk HTSs are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTSs includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  1. High-temperature superconducting transformer evaluation

    SciTech Connect

    DeSteese, J.G.; Dagle, J.E.; Dirks, J.A.

    1995-04-01

    The advancing development of high-temperature superconducting (HTS) materials is encouraging the evaluation of many practical applications. This paper summarizes a study that examined the future potential of HTS power transformers in the 30-MVA to 1000-MVA capacity range. Transformer performance was characterized on the basis of potentially achievable HTS materials capabilities and dominant transformer design parameters. Life-cycle costs were estimated and compared with those of conventional transformers to evaluate the economic viability and market potential of HTS designs. HTS transformers are projected to have both capital and energy cost advantages attributable to their ability to be intrinsically smaller and lighter than conventional transformers of comparable capacity.

  2. Development of high temperature gallium phosphide rectifiers

    NASA Technical Reports Server (NTRS)

    Craford, M. G.; Keune, D. L.

    1972-01-01

    Large area high performance, GaP rectifiers were fabricated by means of Zn diffusion into vapor phase epitaxial GaP. Devices with an active area of 0.01 sq cm typically exhibit forward voltages of 3 volts for a bias current of 1 ampere and have reverse breakdown voltages of 300 volts for temperatures from 27 C to 400 C. Typical device reverse saturation current at a reverse bias of 150 volts is less than 10 to the minus 9th power amp at 27 C and less than 0.000050 amp at 400 C.

  3. High-Temperature, Oxidation-Resistant Thermocouples

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Gedwill, Michael A.

    1994-01-01

    Aluminum substituted for rhodium, which is scarce and expensive. Electromotive force increases with aluminum content in Pt/Al leg of Pt(Pt/Al) thermocouple. Wires baked longer in aluminizing bed produce larger voltages. Thermocouples containing platinum/aluminum legs used instead of thermocouples of type R in furnaces, heat engines, and chemical reactors. Expecially suited to high-velocity oxidizing environments. Constructed as thin-film sensors on turbine blades and vanes, where pre-oxidation provides insulating film needed between thermocouple legs. Because aluminum content slowly depleted by oxidation, long-term use recommended only where maximum temperature is 1,200 degrees C or less.

  4. High Temperature Oxidation-Resistant Thruster Research

    DTIC Science & Technology

    1990-02-01

    Worrell, "An Investigation of High Temperature Thermodynamic Properties in the Pt-Zr and Pt- Hf Systems," Metal. Trans. A, 8A(1977)503-509. 40. A.R...impulse improvement over conventional designs in which the use of disilicide coated columbium chambers limit operation to 1300’C (2400’F). Aooession For...pulsing modes. In Phase I, an iridium-coated rhenium material system was the leading candidate selected based on the physical and mechanical properties

  5. Encapsulation of high temperature molten salts

    DOEpatents

    Oxley, James D.; Mathur, Anoop Kumar

    2017-05-16

    The present disclosure relates to a method of encapsulating microcapsules containing relatively high temperature phase change materials and the microcapsules so produced. The microcapsules are coated with an inorganic binder, film former and an inorganic filler. The microcapsules may include a sacrificial layer that is disposed between the particle and the coating. The microcapsules may also include an inner coating layer, sacrificial layer and outer coating layer. The microcapsules are particularly useful for thermal energy storage in connection with, e.g., heat collected from concentrating solar collectors.

  6. High temperature ion channels and pores

    NASA Technical Reports Server (NTRS)

    Kang, Xiaofeng (Inventor); Gu, Li Qun (Inventor); Cheley, Stephen (Inventor); Bayley, Hagan (Inventor)

    2011-01-01

    The present invention includes an apparatus, system and method for stochastic sensing of an analyte to a protein pore. The protein pore may be an engineer protein pore, such as an ion channel at temperatures above 55.degree. C. and even as high as near 100.degree. C. The analyte may be any reactive analyte, including chemical weapons, environmental toxins and pharmaceuticals. The analyte covalently bonds to the sensor element to produce a detectable electrical current signal. Possible signals include change in electrical current. Detection of the signal allows identification of the analyte and determination of its concentration in a sample solution. Multiple analytes present in the same solution may also be detected.

  7. Multichannel euv spectroscopy of high temperature plasmas

    SciTech Connect

    Fonck, R.J.

    1983-11-01

    Spectroscopy of magnetically confined high temperature plasmas in the visible through x-ray spectral ranges deals primarily with the study of impurity line radiation or continuum radiation. Detailed knowledge of absolute intensities, temporal behavior, and spatial distributions of the emitted radiation is desired. As tokamak facilities become more complex, larger, and less accessible, there has been an increased emphasis on developing new instrumentation to provide such information in a minimum number of discharges. The availability of spatially-imaging detectors for use in the vacuum ultraviolet region (especially the intensified photodiode array) has generated the development of a variety of multichannel spectrometers for applications on tokamak facilities.

  8. Aerospace applications of high temperature superconductivity

    NASA Technical Reports Server (NTRS)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  9. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  10. High temperature surface protection. [10 gas turbines

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1978-01-01

    Alloys of the MCrAlX type are the basis for high temperature surface protection systems in gas turbines. M can be one or more of Ni, Co, or Fe and X denotes a reactive metal added to enhance oxide scale adherence. The selection and formation as well as the oxidation, hot corrosion and thermal fatigue performance of MCrAlX coatings are discussed. Coatings covered range from simple aluminides formed by pack cementation to the more advanced physical vapor deposition overlay coatings and developmental plasma spray deposited thermal barrier coatings.

  11. Experimental needs of high temperature concrete

    SciTech Connect

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370/sup 0/C for operating reactor conditions and to about 900/sup 0/C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs.

  12. Search for new high temperature thermoelectric materials

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry; Borshchevsky, Alex; Fleurial, Jean-Pierre

    1992-01-01

    Although important efforts are actually devoted to improve Si-Ge materials, their thermoelectric energy conversion efficiency remains relatively low and the nondimensional ZT value does not exceed 1. Higher values can be obtained by investigating new materials. A search for new high temperature thermoelectric materials identified a certain number of compounds between transition metals and bismuth, antimony and germanium as potential candidates. Results of the preliminary synthesis of samples by a variety of techniques (Bridgman, mechanical alloying) are presented as well as some electrical measurements. Some compounds showed interesting properties and need to be investigated in more details.

  13. Applications of bulk high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  14. High Temperature Materials Laboratory third annual report

    SciTech Connect

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  15. Dynamic Response of High Temperature Uranium Phases

    SciTech Connect

    Zaretsky, E.; Herrmann, B.; Shvarts, D.

    2006-07-28

    Unalloyed uranium and uranium-0.78 wt%Ti alloy were studied in planar impact experiments with initial sample temperature ranging from 27 to 860 degree sign C. The velocity of the free surface of the samples was monitored by VISAR. It was found that the dynamic compressive strength of both the materials undergoes two-fold increase in the narrow temperature interval corresponding to the domain of beta-phase of uranium. The increase is followed by abrupt, factor of 3-4, strength drop when the initial state of the tested material is gamma-uranium. Such strength behavior explains the uranium susceptibility to adiabatic shear banding. The spall strength of both the alloys is characterized by similar temperature variations. The strength mechanism (phonon viscosity) acting in gamma-phase of pure uranium seems inherited from its alpha-structure while the strength of beta-uranium is controlled by high resistance to shearing characteristic for material having the structure of intermetallic sigma-phase.

  16. High-temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  17. The moon as a high temperature condensate.

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  18. High power densities from high-temperature material interactions

    SciTech Connect

    Morris, J.F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs) offer important and unique advantages in terrestrial and space energy processing. And they are well suited to serve together synergistically. TEC and MFHPs operate through working-fluid vaporization, condensation cycles that accept great thermal power densities at high temperatures. TEC and MFHPs have apparently simple, isolated performance mechanisms that are somewhat similar. And they also have obviously difficult, complected material problems that again are somewhat similar. Intensive investigation reveals that aspects of their operating cycles and material problems tend to merge: high-temperature material effects determine the level and lifetime of performance. Simplified equations verify the preceding statement for TEC and MFHPs. Material properties and interactions exert primary influences on operational effectiveness. And thermophysicochemical stabilities dictate operating temperatures which regulate the thermoemissive currents of TEC and the vaporization flow rates of MFHPs. Major high-temperature material problems of TEC and MFHPs have been solved. These solutions lead to productive, cost-effective applications of current TEC and MFHPs - and point to significant improvements with anticipated technological gains.

  19. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  20. HIGH-TEMPERATURE IONIZATION IN PROTOPLANETARY DISKS

    SciTech Connect

    Desch, Steven J.; Turner, Neal J.

    2015-10-01

    We calculate the abundances of electrons and ions in the hot (≳500 K), dusty parts of protoplanetary disks, treating for the first time the effects of thermionic and ion emission from the dust grains. High-temperature ionization modeling has involved simply assuming that alkali elements such as potassium occur as gas-phase atoms and are collisionally ionized following the Saha equation. We show that the Saha equation often does not hold, because free charges are produced by thermionic and ion emission and destroyed when they stick to grain surfaces. This means the ionization state depends not on the first ionization potential of the alkali atoms, but rather on the grains’ work functions. The charged species’ abundances typically rise abruptly above about 800 K, with little qualitative dependence on the work function, gas density, or dust-to-gas mass ratio. Applying our results, we find that protoplanetary disks’ dead zone, where high diffusivities stifle magnetorotational turbulence, has its inner edge located where the temperature exceeds a threshold value ≈1000 K. The threshold is set by ambipolar diffusion except at the highest densities, where it is set by Ohmic resistivity. We find that the disk gas can be diffusively loaded onto the stellar magnetosphere at temperatures below a similar threshold. We investigate whether the “short-circuit” instability of current sheets can operate in disks and find that it cannot, or works only in a narrow range of conditions; it appears not to be the chondrule formation mechanism. We also suggest that thermionic emission is important for determining the rate of Ohmic heating in hot Jupiters.