Sample records for high temperature desulfurization

  1. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, W.A.; Healy, F.E.; Sapienza, R.S.

    1985-04-18

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  2. Low temperature aqueous desulfurization of coal

    DOEpatents

    Slegeir, William A.; Healy, Francis E.; Sapienza, Richard S.

    1985-01-01

    This invention describes a chemical process for desulfurizing coal, especially adaptable to the treatment of coal-water slurries, at temperatures as low as ambient, comprising treating the coal with aqueous titanous chloride whereby hydrogen sulfide is liberated and the desulfurized coal is separated with the conversion of titanous chloride to titanium oxides.

  3. High-Temperature Desulfurization of Heavy Fuel-Derived Reformate Gas Streams for SOFC Applications

    NASA Technical Reports Server (NTRS)

    Flytzani-Stephanopoulos, Maria; Surgenor, Angela D.

    2007-01-01

    Desulfurization of the hot reformate gas produced by catalytic partial oxidation or autothermal reforming of heavy fuels, such as JP-8 and jet fuels, is required prior to using the gas in a solid oxide fuel cell (SOFC). Development of suitable sorbent materials involves the identification of sorbents with favorable sulfidation equilibria, good kinetics, and high structural stability and regenerability at the SOFC operating temperatures (650 to 800 C). Over the last two decades, a major barrier to the development of regenerable desulfurization sorbents has been the gradual loss of sorbent performance in cyclic sulfidation and regeneration at such high temperatures. Mixed oxide compositions based on ceria were examined in this work as regenerable sorbents in simulated reformate gas mixtures and temperatures greater than 650 C. Regeneration was carried out with dilute oxygen streams. We have shown that under oxidative regeneration conditions, high regeneration space velocities (greater than 80,000 h(sup -1)) can be used to suppress sulfate formation and shorten the total time required for sorbent regeneration. A major finding of this work is that the surface of ceria and lanthanan sorbents can be sulfided and regenerated completely, independent of the underlying bulk sorbent. This is due to reversible adsorption of H2S on the surface of these sorbents even at temperatures as high as 800 C. La-rich cerium oxide formulations are excellent for application to regenerative H2S removal from reformate gas streams at 650 to 800 C. These results create new opportunities for compact sorber/regenerator reactor designs to meet the requirements of solid oxide fuel cell systems at any scale.

  4. Coal desulfurization by low temperature chlorinolysis, phase 3

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K.; Ernest, J.

    1981-01-01

    Laboratory scale, bench scale batch reactor, and minipilot plant tests were conducted on 22 bituminous, subbituminous, and lignite coals. Chemical pretreatment and post treatment of coals relative to the chlorination were tried as a means of enhancing desulfurization by the chlorinolysis process. Elevated temperature (500-700 C) hydrogen treatment of chlorinolysis-processed coal at atmospheric pressure was found to substantially increase coal desulfurization up to 90 percent. Sulfur forms, proximate and ultimate analyses of the processed coal are included. Minipilot plant operation indicates that the continuous flow reactor provides coal desulfurization results comparable to those obtained in the batch reactor. Seven runs were conducted at coal feed rates of 1.5 to 8.8 kg per hour using water and methylchloroform solvents, gaseous chlorine feed of 3 to 31.4 SCFH at 21 to 70 C, and atmospheric pressure for retention times of 20 to 120 minutes.

  5. Crude oil desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B. (Inventor)

    1982-01-01

    High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery.

  6. Low temperature oxidative desulfurization with hierarchically mesoporous titaniumsilicate Ti-SBA-2 single crystals.

    PubMed

    Shi, Chengxiang; Wang, Wenxuan; Liu, Ni; Xu, Xueyan; Wang, Danhong; Zhang, Minghui; Sun, Pingchuan; Chen, Tiehong

    2015-07-21

    Hierarchically porous Ti-SBA-2 with high framework Ti content (up to 5 wt%) was firstly synthesized by employing organic mesomorphous complexes of a cationic surfactant (CTAB) and an anionic polyelectrolyte (PAA) as templates. The material exhibited excellent performance in oxidative desulfurization of diesel fuel at low temperature (40 °C or 25 °C) due to the unique hierarchically porous structure and high framework Ti content.

  7. Ultrasound-assisted oxidative desulfurization of bitumen

    NASA Astrophysics Data System (ADS)

    Kamal, Wan Mohamad Ikhwan bin Wan; Okawa, Hirokazu; Kato, Takahiro; Sugawara, Katsuyasu

    2017-07-01

    Bitumen contains a high percentage of sulfur (about 4.6 wt %). A hydrodesulfurization method is used to remove sulfur from bitumen. The drawback of this method is the requirement for a high temperature of >300 °C. Most of the sulfur in bitumen exists as thiophene. Oxidative desulfurization (ODS), involving oxidizing sulfur using H2O2, then removing it using NaOH, allows the removal of sulfur in thiophene at low temperatures. We removed sulfur from bitumen using ODS treatment under ultrasound irradiation, and 52% of sulfur was successfully removed. Additionally, the physical action of ultrasound assisted the desulfurization of bitumen, even at low H2O2 concentrations.

  8. Spray-dry desulfurization of flue gas from heavy oil combustion.

    PubMed

    Scala, Fabrizio; Lancia, Amedeo; Nigro, Roberto; Volpicelli, Gennaro

    2005-01-01

    An experimental investigation on sulfur dioxide removal in a pilot-scale spray dryer from the flue gas generated by combustion of low-sulfur (S) heavy oil is reported. A limewater slurry was sprayed through an ultrasonic two-fluid atomizer in the spray-dry chamber, and the spent sorbent was collected downstream in a pulse-jet baghouse together with fly ash. Flue gas was sampled at different points to measure the desulfurization efficiency after both the spray-dry chamber and the baghouse. Parametric tests were performed to study the effect of the following variables: gas inlet temperature, difference between gas outlet temperature and adiabatic saturation temperature, lime-to-S ratio, and average size of lime particles in the slurry. Results indicated that spray drying is an effective technology for the desulfurization of low-S fuel oil flue gas, provided operating conditions are chosen carefully. In particular, the lowest gas inlet and outlet temperatures compatible with baghouse operation should be selected, as should a sufficiently high lime-to-S ratio. The attainment of a small lime particle size in the slurry is critical for obtaining a high desulfurization efficiency. A previously presented spray-dry flue gas desulfurization model was used to simulate the pilot-scale desulfurization tests, to check the ability of the model to predict the S capture data and its usefulness as a design tool, minimizing the need for pilot-scale experimentation. Comparison between model and experimental results was fairly good for the whole range of calcium/S ratios considered.

  9. Microbial desulfurization of coal

    NASA Technical Reports Server (NTRS)

    Dastoor, M. N.; Kalvinskas, J. J.

    1978-01-01

    Experiments indicate that several sulfur-oxidizing bacteria strains have been very efficient in desulfurizing coal. Process occurs at room temperature and does not require large capital investments of high energy inputs. Process may expand use of abundant reserves of high-sulfur bituminous coal, which is currently restricted due to environmental pollution. On practical scale, process may be integrated with modern coal-slurry transportation lines.

  10. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    PubMed

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  11. Ore sintering flue gas desulfurization and its resoureilization by using pyrolusite

    NASA Astrophysics Data System (ADS)

    Li, S. E.; Long, Z. G.; Wu, F. Z.; Li, H. Y.; Cui, T. M.; Zhou, X. Z.

    2017-11-01

    Flue gas desulfurization (FGD) has been implemented for sulfur dioxide gas emission reduction by pyrolusite in iron ore sintering. However, the mechanism of SO2 reduction through FGD is still not fully clear. And in present work, the effects of operating conditions on desulfurization rate and Mn2+ leaching rate of pyrolusite were investigated. Six hours later, the desulfurization rate and Mn2+ leaching rate all can be higher than 70%. And a higher absorption temperature was good for desulfurization rate, while a middle temperature was good for Mn2+ leaching rate. A higher manganese ore granularity and SO2 concentration were good for desulfurization rate and Mn2+ leaching rate. However, a higher liquid-solid rate was only good for desulfurization rate, but Mn2+ leaching rate. The results demonstrate that the pyrolusite is a kind of very promising adsorbent in industrial flue gas desulfurization application due to its low cost and good desulfurization capacity.

  12. Application of the desulfurization of phenothiazines for a sensitive detection method by high-performance liquid chromatography.

    PubMed

    Shimada, K; Mino, T; Nakajima, M; Wakabayashi, H; Yamato, S

    1994-11-04

    A simple and sensitive high-performance liquid chromatographic (HPLC) method for the determination of phenothiazine (PHE) is described. PHE is converted to diphenylamine (DIP) by desulfurization with Raney nickel catalyst. DIP is highly sensitive to electrochemical detection. The calibration graph for PHE quantification after desulfurization was linear between 0.1 and 2.0 ng per injection. The detection limit (signal-to-noise ratio = 3) of PHE after desulfurization was 10 pg, which is twenty times higher than that of the parent compound PHE. The proposed desulfurization technique was applied to other PHE-related compounds. The structural confirmation of the desulfurized product of PHE was carried out by LC-MS using atmospheric pressure chemical ionization.

  13. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas.

    PubMed

    Zhang, F M; Liu, B S; Zhang, Y; Guo, Y H; Wan, Z Y; Subhan, Fazle

    2012-09-30

    A series of mesoporous xCuyMn/SBA-15 sorbents with different Cu/Mn atomic ratios were prepared by wet impregnation method and their desulfurization performance in hot coal gas was investigated in a fixed-bed quartz reactor in the range of 700-850°C. The successive nine desulfurization-regeneration cycles at 800°C revealed that 1Cu9Mn/SBA-15 presented high performance with durable regeneration ability due to the high dispersion of Mn(2)O(3) particles incorporated with a certain amount of copper oxides. The breakthrough sulfur capacity of 1Cu9Mn/SBA-15 observed 800°C is 13.8 g S/100g sorbents, which is remarkably higher than these of 40 wt%LaFeO(3)/SBA-15 (4.8 g S/100g sorbents) and 50 wt%LaFe(2)O(x)/MCM-41 (5.58 g S/100g sorbents) used only at 500-550°C. This suggested that the loading of Mn(2)O(3) active species with high thermal stability to SBA-15 support significantly increased sulfur capacity at relatively higher sulfidation temperature. The fresh and used xCuyMn/SBA-15 sorbents were characterized by means of BET, XRD, XPS, XAES, TG/DSC and HRTEM techniques, confirmed that the structure of the sorbents remained intact before and after hot coal gas desulfurization. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Removal of Sulfur from CaF2 Containing Desulfurization Slag Exhausted from Secondary Steelmaking Process by Oxidation

    NASA Astrophysics Data System (ADS)

    Hiraki, Takehito; Kobayashi, Junichi; Urushibata, Satomi; Matsubae, Kazuyo; Nagasaka, Tetsuya

    2012-08-01

    The oxidation behavior of sulfur in desulfurization slag generated from the secondary steelmaking process with air has been investigated in the temperature range of 973 K to 1373 K (700 °C to 1100 °C). Although a high removal rate of sulfur is not achieved at temperatures lower than 1273 K (1000 °C) because of the formation of CaSO4, most of the sulfur is rapidly removed from slag as SO2 gas in the 1273 K to 1373 K (700 °C to 1100 °C) range. This finding indicates that the desulfurization slag generated from the secondary steelmaking process can be reused as a desulfurized flux through air oxidation, making it possible to reduce significantly the amount of desulfurization slag for disposal.

  15. Oxidative desulfurization of fuels catalyzed by Fenton-like ionic liquids at room temperature.

    PubMed

    Jiang, Yunqing; Zhu, Wenshuai; Li, Huaming; Yin, Sheng; Liu, Hua; Xie, Qingjie

    2011-03-21

    Oxidation of the sulfur-containing compounds benzothiophene (BT), dibenzothiophene (DBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been studied in a desulfurization system composed of model oil, hydrogen peroxide, and different types of ionic liquids [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3), [(C(8)H(17))(3)CH(3)N]Cl/CuCl(2), [(C(8)H(17))(3)CH(3)N]Cl/ZnCl(2), [(C(8)H(17))(3)CH(3)N]Cl/SnCl(2), [(C(4)H(9))(3)CH(3)N]Cl/FeCl(3), [C(10)H(21)(CH(3))(3)N]Cl/FeCl(3), [(C(10)H(21))(2)(CH(3))(2)N]Cl/FeCl(3). Deep desulfurization is achieved in the Fenton-like ionic liquid [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) at 25 °C for 1 h. The desulfurization of DBT reaches 97.9%, in consuming very low amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) (only 0.702 mmol). The reaction conditions, for example, the amount of [(C(8)H(17))(3)CH(3)N]Cl/FeCl(3) or H(2)O(2), the temperature, and the molar ratio of FeCl(3) to [(C(8)H(17))(3)CH(3)N]Cl, are investigated for this system. The oxidation reactivity of the different sulfur-containing compounds is found to decrease in the order of DBT>BT>4,6-DMDBT. The desulfurization system can be recycled six times without significant decrease in activity. The sulfur level of FCC gasoline could be reduced from 360 ppm to 110 ppm. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Oxidative desulfurization of fuel oil by pyridinium-based ionic liquids.

    PubMed

    Zhao, Dishun; Wang, Yanan; Duan, Erhong

    2009-10-28

    In this work, an N-butyl-pyridinium-based ionic liquid [BPy]BF(4) was prepared. The effect of extraction desulfurization on model oil with thiophene and dibenzothiophene (DBT) was investigated. Ionic liquids and hydrogen peroxide (30%) were tested in extraction-oxidation desulfurization of model oil. The results show that the ionic liquid [BPy]BF(4) has a better desulfurization effect. The best technological conditions are: V(IL)/V(Oil) /V(H(2)O(2)) = 1:1:0.4, temperature 55 degrees C, the time 30 min. The ratio of desulfurization to thiophene and DBT reached 78.5% and 84.3% respectively, which is much higher than extraction desulfurization with simple ionic liquids. Under these conditions, the effect of desulfurization on gasoline was also investigated. The used ionic liquids can be recycled up to four times after regeneration.

  17. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    NASA Astrophysics Data System (ADS)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  18. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Na; Li, Siwen; Wang, Jinyi

    2015-05-15

    M{sub 2}(PcAN){sub 2} (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M{sub 2}(PcAN){sub 2}–W-HZSM-5) or the M{sub 2}(PcTN){sub 2} doping W-HZSM-5 (M{sub 2}(PcTN){sub 2}/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 and Cu{sub 2}(PcTN){sub 2}/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV–Vis and calcination temperature was obtained by TG-DSC for Cu{sub 2}(PcTN){sub 2}/W-HZSM-5. Catalysts weremore » characterized by EA, IR, XRD, SEM, TEM, ICP, and N{sub 2} adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. - Graphical abstract: The ODS reaction schematic shows the reaction mechanism of ultra-deep desulfurization. The sulfur compounds are oxidized to their corresponding sulfoxides or sulfones through the use of oxygen and catalysts. The reaction process of ultra-deep desulfurization. - Highlights: • A kind of novel catalyst for deep desulfurization was synthesized. • Cu{sub 2}(PcAN){sub 2}–W-HZSM-5 exhibits excellent catalytic performance for desulfurization. • The reaction conditions that affect desulfurization efficiency are investigated. • The reaction process of model sulfur compounds is proposed.« less

  19. Fluidized bed coal desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.

    1983-01-01

    Laboratory scale experiments were conducted on two high volatile bituminous coals in a bench scale batch fluidized bed reactor. Chemical pretreatment and posttreatment of coals were tried as a means of enhancing desulfurization. Sequential chlorination and dechlorination cum hydrodesulfurization under modest conditions relative to the water slurry process were found to result in substantial sulfur reductions of about 80%. Sulfur forms as well as proximate and ultimate analyses of the processed coals are included. These studies indicate that a fluidized bed reactor process has considerable potential for being developed into a simple and economic process for coal desulfurization.

  20. Recovery of lead from lead paste in spent lead acid battery by hydrometallurgical desulfurization and vacuum thermal reduction.

    PubMed

    Ma, Yunjian; Qiu, Keqiang

    2015-06-01

    Lead sulfate, lead oxides and lead metal are the main component of lead paste in spent lead acid battery. When lead sulfate was desulfurized and transformed into lead carbonate by sodium carbonate, lead metal and lead oxides remained unchanged. Lead carbonate is easily decomposed to lead oxide and carbon dioxide under high temperature. Namely, vacuum thermal process is the reduction reaction of lead oxides. A compatible environmental process consisted of hydrometallurgical desulfurization and vacuum thermal reduction to recycle lead was investigated in this research. Lead paste was firstly desulfurized with sodium carbonate, by which, the content of sulfur declined from 7.87% to 0.26%. Then, the desulfurized lead paste was reduced by charcoal under vacuum. Under the optimized reaction conditions, i.e., vacuum thermal reduction at temperature 850°C under 20 Pa for 45 min, a 22.11×10(-2) g cm(-2) min(-1) reduction rate, and a 98.13% direct recovery ratio of fine lead (99.77%) had been achieved, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Coal desulfurization by aqueous chlorination

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K. (Inventor)

    1982-01-01

    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product.

  2. High temperature desulfurization of synthesis gas

    DOEpatents

    Najjar, Mitri S.; Robin, Allen M.

    1989-01-01

    The hot process gas stream from the partial oxidation of sulfur-containing heavy liquid hydrocarbonaceous fuel and/or sulfur-containing solid carbonaceous fuel comprising gaseous mixtures of H.sub.2 +CO, sulfur-containing gases, entrained particulate carbon, and molten slag is passed through the unobstructed central passage of a radiant cooler where the temperature is reduced to a temperature in the range of about 1800.degree. F. to 1200.degree. F. From about 0 to 95 wt. % of the molten slag and/or entrained material may be removed from the hot process gas stream prior to the radiant cooler with substantially no reduction in temperature of the process gas stream. In the radiant cooler, after substantially all of the molten slag has solidified, the sulfur-containing gases are contacted with a calcium-containing material to produce calcium sulfide. A partially cooled stream of synthesis gas, reducing gas, or fuel gas containing entrained calcium sulfide particulate matter, particulate carbon, and solidified slag leaves the radiant cooler containing a greatly reduced amount of sulfur-containing gases.

  3. Synthesis and application of different phthalocyanine molecular sieve catalyst for oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Li, Siwen; Wang, Jinyi; Zhang, Ronglan; Gao, Ruimin; Zhao, Jianshe; Wang, Junlong

    2015-05-01

    M2(PcAN)2 (M=Fe, Co, Ni, Cu, Zn and Mn) anchored onto W-HZSM-5 (M2(PcAN)2-W-HZSM-5) or the M2(PcTN)2 doping W-HZSM-5 (M2(PcTN)2/W-HZSM-5) were prepared and their catalytic performances were tested for oxidative desulfurization in the presence of oxygen. Thiophene (T), benzothiophene (BT), and dibenzothiophene (DBT) were considered as sulfur compounds. Among zeolite-based catalysts, the Cu2(PcAN)2-W-HZSM-5 and Cu2(PcTN)2/W-HZSM-5 showed superior desulfurization performance and the activity of selectivity followed the order: T>BT>DBT. The effects of phthalocyanine concentration were studied by UV-Vis and calcination temperature was obtained by TG-DSC for Cu2(PcTN)2/W-HZSM-5. Catalysts were characterized by EA, IR, XRD, SEM, TEM, ICP, and N2 adsorption. Reaction time, temperature and the amount of catalyst were investigated as the important parameters for optimization of the reaction. Furthermore, a possible process of oxidative desulfurization and the reaction products were proposed. The reaction process of ultra-deep desulfurization.

  4. Irradiation pretreatment for coal desulfurization

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.

    1979-01-01

    Process using highly-penetrating nuclear radiation (Beta and Gamma radiation) from nuclear power plant radioactive waste to irradiate coal prior to conventional desulfurization procedures increases total extraction of sulfur.

  5. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    PubMed

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  6. Improving the Desulfurization Degree of High-Grade Nickel Matte via a Two-Step Oxidation Roasting Process

    NASA Astrophysics Data System (ADS)

    Xi, Zhao; Wang, Zhixing; Li, Xinhai; Guo, Huajun; Yan, Guochun; Wang, Jiexi

    2018-05-01

    Generally, sulfur elimination from nickel matte was incomplete in the one-step oxidation roasting process. In this work, X-ray diffraction, scanning electron microscopy/energy-dispersive X-ray spectroscopy, and chemical analysis of the roasted products were carried out to explain this phenomenon. The results indicated that the melting of heazlewoodite was the main limiting factor. Thereafter, the oxidation mechanism of high-grade nickel matte from room temperature to 1000 °C was studied. It was found that the transformation from heazlewoodite (Ni3S2) to nickel sulfide (NiS) took place from 400 °C to 520 °C. Considering that the melting temperature of NiS was much higher than that of Ni3S2, a low-temperature roasting step was suggested to suppress the melting of heazlewoodite. Under the optimum conditions (520 °C for 120 minutes followed by 800 °C for 80 minutes), the degree of desulfurization reached 99.52 pct. These results indicated that the two-step oxidation roasting method could be a promising process for producing low-sulfur calcine from high-grade nickel matte.

  7. Desulfurization from thiophene by SO(4)(2-)/ZrO(2) catalytic oxidation at room temperature and atmospheric pressure.

    PubMed

    Wang, Bo; Zhu, Jianpeng; Ma, Hongzhu

    2009-05-15

    Thiophene, due to its poison, together with its combustion products which causes air pollution and highly toxic characteristic itself, attracted more and more attention to remove from gasoline and some high concentration systems. As the purpose of achieving the novel method of de-thiophene assisted by SO(4)(2-)/ZrO(2) (SZ), three reactions about thiophene in different atmosphere at room temperature and atmospheric pressure were investigated. SO(4)(2-)/ZrO(2) catalyst were synthesized and characterized by X-ray photoelectron spectroscopy (XPS), Fourier transformation infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The products were detected by gas chromatography-mass spectrometry (GC-MS). XP spectra show that ozone-catalyst system (SZO) have two forms of sulfur element (S(6+) and S(2-)) on the catalyst surface, which distinguished from that of air-catalyst system (SZA) and blank-catalyst system (SZB) (S(6+)). And the results of GC-MS exhibited that some new compounds has been produced under this extremely mild condition. Especially, many kinds of sulfur compounds containing oxygen, that is easier to be extracted by oxidative desulfurization (ODS), have been detected in the SZA-1.5h and SZB-3h system. In addition, some long chain hydrocarbons have also been detected. While in SZO-0.5h system, only long chain hydrocarbons were found. The results show that total efficiency of desulfurization from thiophene with ozone near to 100% can be obtained with the SO(4)(2-)/ZrO(2) catalytic oxidation reaction.

  8. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  9. Oxidative desulfurization of benzothiophene and thiophene with WOx/ZrO2 catalysts: effect of calcination temperature of catalysts.

    PubMed

    Hasan, Zubair; Jeon, Jaewoo; Jhung, Sung Hwa

    2012-02-29

    Oxidative desulfurization (ODS) of model fuel containing benzothiophene (BT) or thiophene (Th) has been carried out with WO(x)/ZrO2 catalyst, which was calcined at various temperatures. Based on the conversion of BT in the model fuel, it can be shown that the optimum calcination temperature of WOx/ZrO2 catalyst is around 700 °C. The most active catalyst is composed of tetragonal zirconia (ZrO2) with well dispersed polyoxotungstate species and it is necessary to minimize the contents of the crystalline WO3 and monoclinic ZrO2 for a high BT conversion. The oxidation rate was interpreted with the first-order kinetics, and it demonstrated the importance of electron density since the kinetic constant for BT was higher than that for Th even though the BT is larger than Th in size. A WOx/ZrO2 catalyst, treated suitably, can be used as a reusable active catalyst in the ODS. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Microbial desulfurization of coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, S.E. Jr.; Burgess, W.D.

    This patent describes a process for the microbial desulfurization of solid carbonaceous solids. The process comprising subjecting an aqueous slurry of carbonaceous solids to the desulfurizing action of microorganisms selected from the group consisting of Hansenula sydowiorum, Hansenula ciferii, Hansenula lynferdii, Cryptococcus albidus and mixtures thereof. Also described is the same process wherein the carbonaceous solids is coal.

  11. Highly efficient extraction and oxidative desulfurization system using Na7H2LaW10O36⋅32 H2O in [bmim]BF4 at room temperature.

    PubMed

    Xu, Junhua; Zhao, Shen; Chen, Wei; Wang, Miao; Song, Yu-Fei

    2012-04-10

    Highly efficient, deep desulfurization of model oil containing dibenzothiophene (DBT), benzothiophene (BT), or 4,6-dimethyldibenzothiophene (4,6-DMDBT) has been achieved under mild conditions by using an extraction and catalytic oxidative desulfurization system (ECODS) in which a lanthanide-containing polyoxometalate Na(7)H(2)LnW(10)O(36)⋅32 H(2)O (LnW(10); Ln = Eu, La) acts as catalyst, [bmim]BF(4) (bmim = 1-butyl-3-methylimidazolium) as extractant, and H(2)O(2) as oxidant. Sulfur removal follows the order DBT>4,6-DMDBT>BT at 30 °C. DBT can be completely oxidized to the corresponding sulfone in 25 min under mild conditions, and the LaW(10)/[bmim]BF(4) system could be recycled for ten times with only slight decrease in activity. Thus, LaW(10) in [bmim]BF(4) is one of the most efficient systems for desulfurization using ionic liquids as extractant reported so far. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Low-Cost Aqueous Coal Desulfurization

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Vasilakos, N.; Corcoran, W. H.; Grohmann, K.; Rohatgi, N. K.

    1982-01-01

    Water-based process for desulfurizing coal not only eliminates need for costly organic solvent but removes sulfur more effectively than an earlier solvent-based process. New process could provide low-cost commercial method for converting high-sulfur coal into environmentally acceptable fuel.

  13. Effect of calcium formate as an additive on desulfurization in power plants.

    PubMed

    Li, Zhenhua; Xie, Chunfang; Lv, Jing; Zhai, Ruiguo

    2018-05-01

    SO 2 in flue gas needs to be eliminated to alleviate air pollution. As the quality of coal decreases and environmental standard requirements become more stringent, the high-efficiency desulfurization of flue gas faces more and more challenges. As an economical and environmentally friendly solution, the effect of calcium formate as an additive on desulfurization efficiency in the wet flue gas desulfurization (WFGD) process was studied for the first time. Improvement of the desulfurization efficiency was achieved with limited change in pH after calcium formate was added into the reactor, and it was found to work better than other additives tested. The positive effects were further verified in a power plant, which showed that adding calcium formate could promote the dissolution of calcium carbonate, accelerate the growth of gypsum crystals and improve the efficiency of desulfurization. Thus, calcium formate was proved to be an effective additive and can potentially be used to reduce the amount of limestone slurry required, as well as the energy consumption and operating costs in industrial desulfurization. Copyright © 2017. Published by Elsevier B.V.

  14. Desulfurization: Critical step towards enhanced selenium removal from industrial effluents.

    PubMed

    Staicu, Lucian C; Morin-Crini, Nadia; Crini, Grégorio

    2017-04-01

    Selenium (Se) removal from synthetic solutions and from real Flue Gas Desulfurization (FGD) wastewater generated by a coal-fired power plant was studied for the first time using a commercial iron oxide impregnated strong base anion exchange resin, Purolite ® FerrIX A33E. In synthetic solutions, the resin showed high affinity for selenate and selenite, while sulfate exhibited a strong competition for both oxyanions. The FGD wastewater investigated is a complex system that contains Se (∼1200 μg L -1 ), SO 4 2- (∼1.1 g L -1 ), Cl - (∼9.5 g L -1 ), and Ca 2+ (∼5 g L -1 ), alongside a broad spectrum of toxic trace metals including Cd, Cr, Hg, Ni, and Zn. The resin performed poorly against Se in the raw FGD wastewater and showed moderate to good removal of several trace elements such as Cd, Cr, Hg, and Zn. In FGD effluent, sulfate was identified as a powerful competing anion for Se, having high affinity for the exchange active sites of the resin. The desulfurization of the FGD effluent using BaCl 2 led to the increase in Se removal from 3% (non-desulfurized effluent) to 80% (desulfurized effluent) by combined precipitation and ion exchange treatment. However, complete desulfurization using equimolar BaCl 2 could not be achieved due to the presence of bicarbonate that acts as a sulfate competitor for barium. In addition to selenium and sulfate removal, several toxic metals were efficiently removed (Cd: 91%; Cr: 100%; Zn: 99%) by the combined (desulfurization and ion exchange) treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. High temperature regenerable hydrogen sulfide removal agents

    DOEpatents

    Copeland, Robert J.

    1993-01-01

    A system for high temperature desulfurization of coal-derived gases using regenerable sorbents. One sorbent is stannic oxide (tin oxide, SnO.sub.2), the other sorbent is a metal oxide or mixed metal oxide such as zinc ferrite (ZnFe.sub.2 O.sub.4). Certain otherwise undesirable by-products, including hydrogen sulfide (H.sub.2 S) and sulfur dioxide (SO.sub.2) are reused by the system, and elemental sulfur is produced in the regeneration reaction. A system for refabricating the sorbent pellets is also described.

  16. Ultrasound-assisted oxidative desulfurization and denitrogenation of liquid hydrocarbon fuels: A critical review.

    PubMed

    Ja'fari, Mahsa; Ebrahimi, Seyedeh Leila; Khosravi-Nikou, Mohammad Reza

    2018-01-01

    Nowadays, a continuously worldwide concern for development of process to produce ultra-low sulfur and nitrogen fuels have been emerged. Typical hydrodesulfurization and hydrodenitrogenation technology deals with important difficulties such as high pressure and temperature operating condition, failure to treat some recalcitrant compounds and limitations to meet the stringent environmental regulations. In contrary an advanced oxidation process that is ultrasound assisted oxidative desulfurization and denitrogenation satisfies latest environmental regulations in much milder conditions with more efficiency. The present work deals with a comprehensive review on findings and development in the ultrasound assisted oxidative desulfurization and denitrogenation (UAOD) during the last decades. The role of individual parameters namely temperature, residence time, ultrasound power and frequency, pH, initial concentration and types of sulfur and nitrogen compounds on the efficiency are described. What's more another treatment properties that is role of phase transfer agent (PTA) and solvents of extraction step, reaction kinetics, mechanism of the ultrasound, fuel properties and recovery in UAOD are reviewed. Finally, the required future works to mature this technology are suggested. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ultrasound-assisted oxidative desulfurization process of liquid fuel by phosphotungstic acid encapsulated in a interpenetrating amine-functionalized Zn(II)-based MOF as catalyst.

    PubMed

    Afzalinia, Ahmad; Mirzaie, Abbas; Nikseresht, Ahmad; Musabeygi, Tahereh

    2017-01-01

    In this work, ultrasound-assisted oxidative desulfurization (UAOD) of liquid fuels performed with a novel heterogeneous highly dispersed Keggin-type phosphotungstic acid (H 3 PW 12 O 40 , PTA) catalyst that encapsulated into an amino-functionalized MOF (TMU-17-NH 2 ). The prepared composite exhibits high catalytic activity and reusability in oxidative desulfurization of model fuel. Ultrasound-assisted oxidative desulfurization (UAOD) is a new way to performed oxidation reaction of sulfur-contain compounds rapidly, economically, environment-friendly and safely, under mild conditions. Ultrasound waves can be apply as an efficient tool to decrease the reaction time and improves oxidative desulfurization system performance. PTA@TMU-17-NH 2 could be completely performed desulfurization of the model oil by 20mg of catalyst, O/S molar ratio of 1:1 in presence of MeCN as extraction solvent. The obtained results indicated that the conversions of DBT to DBTO 2 achieve 98% after 15min in ambient temperature. In this work, we prepared TMU-17-NH 2 and PTA/TMU-17-NH 2 composite by ultrasound irradiation for first time and employed in UAOD process. Prepared catalyst exhibit an excellent reusability without PTA leaching and loss of activity. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Removal of H{sub 2}S using molten carbonate at high temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawase, Makoto, E-mail: kawase@criepi.denken.or.jp; Otaka, Maromu

    2013-12-15

    Highlights: • The performance of molten carbonate for the removal of H{sub 2}S improves at higher temperatures. • The degree of H{sub 2}S removal is significantly affected by the CO{sub 2} concentration in syngas. • Addition of carbon elements, such as char and tar, decrease the negative effects of CO{sub 2}. • Continuous addition of carbon elements into molten carbonate enables continuous desulfurization. • Desulfurization using molten carbonate is suitable for gasification gas. - Abstract: Gasification is considered to be an effective process for energy conversion from various sources such as coal, biomass, and waste. Cleanup of the hot syngasmore » produced by such a process may improve the thermal efficiency of the overall gasification system. Therefore, the cleanup of hot syngas from biomass gasification using molten carbonate is investigated in bench-scale tests. Molten carbonate acts as an absorbent during desulfurization and dechlorination and as a thermal catalyst for tar cracking. In this study, the performance of molten carbonate for removing H{sub 2}S was evaluated. The temperature of the molten carbonate was set within the range from 800 to 1000 °C. It is found that the removal of H{sub 2}S is significantly affected by the concentration of CO{sub 2} in the syngas. When only a small percentage of CO{sub 2} is present, desulfurization using molten carbonate is inadequate. However, when carbon elements, such as char and tar, are continuously supplied, H{sub 2}S removal can be maintained at a high level. To confirm the performance of the molten carbonate gas-cleaning system, purified biogas was used as a fuel in power generation tests with a molten carbonate fuel cell (MCFC). The fuel cell is a high-performance sensor for detecting gaseous impurities. When purified gas from a gas-cleaning reactor was continuously supplied to the fuel cell, the cell voltage remained stable. Thus, the molten carbonate gas-cleaning reactor was found to afford

  19. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization.

    PubMed

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; Zhang, Jinshui; Zhang, Pengfei; Zhu, Huiyuan; Li, Changfeng; Chen, Zhigang; Li, Huaming; Dai, Sheng

    2016-01-04

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  20. Oxidative desulfurization of dibenzothiophene from model oil using ionic liquids as extracting agent

    NASA Astrophysics Data System (ADS)

    Taha, Mohd F.; Atikah, N.; Chong, F. K.; Shaharun, Maizatul S.

    2012-09-01

    The oxidative desulfurization of dibenzothiophene (DBT) from model oil (in n-dodecane) was carried out using ionic liquid as the extractant and catalyst, and hydrogen peroxide (H2O2) in combination with acetic acid (CH3COOH) and sulphuric acid (H2SO4) as the oxidant. The ionic liquids used were 1-butyl-3-methylimidazolium octyl sulphate ([Bmim][OcSO4]) and 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]). The effect of the amounts of H2O2 on oxidative desulphurization of model oil was first investigated without the usage of ionic liquids at room temperature. The results indicate that greater amount of H2O2 give higher desulfurization and the maximum desulfurization in this study, i.e. 34 %, was occurred when the molar ratio of H2O2 to sulfur was 5:1. With the usage of ionic liquid and the molar ratio of 5:1 (H2O2:sulfur), the efficiency of DBT removal from model oil was increased significantly in terms of percent removal and removal time. Ionic liquid of [Bmim][OcSO4] performed better than [Bmim][Ac] with 72 % DBT removal. When molar ratio of H2O2 to sulphur was 5:1, volume ratio of ionic liquid to model oil was 1:1 and mixing time was 60 min at room temperature. The results indicate the potential of ionic liquids as the extractant and catalyst for oxidative desulfurization of hydrocarbon fuels.

  1. Fluidized bed desulfurization

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kallvinskas, J. J. (Inventor)

    1985-01-01

    High sulfur content carbonaceous material, such as coal is desulfurized by continuous fluidized suspension in a reactor with chlorine gas, inert dechlorinating gas and hydrogen gas. A source of chlorine gas, a source of inert gas and a source of hydrogen gas are connected to the bottom inlet through a manifold and a heater. A flow controler operates servos in a manner to continuously and sequentially suspend coal in the three gases. The sulfur content is reduced at least 50% by the treatment.

  2. A template-free solvent-mediated synthesis of high surface area boron nitride nanosheets for aerobic oxidative desulfurization

    DOE PAGES

    Wu, Peiwen; Zhu, Wenshuai; Chao, Yanhong; ...

    2015-10-16

    Hexagonal boron nitride nanosheets (h-BNNs) with rather high specific surface area (SSA) are important two-dimensional layer-structured materials. Here in this study, a solvent-mediated synthesis of h-BNNs revealed a template-free lattice plane control strategy that induced high SSA nanoporous structured h-BNNs with outstanding aerobic oxidative desulfurization performance.

  3. Desulfurization by MOFs as Sorbents for Thiophene Sulfides

    NASA Astrophysics Data System (ADS)

    Xin, Chunling; Wang, Suqing

    2018-01-01

    Metal-organic frameworks UMCM-150 [Cu3(BHTC)2] and its heterobimetallic analogue Co1Cu2(BHTC)2 based on an asymmetrical ligand, biphenyl-3,4’,5-tricarboxylate (H3BHTC), were studied for desulfurization of model oils. The adsorption experiments were conducted under room temperature and atmospheric pressure. The total sulfur concentration of model oils was 250 ppmw determined by WK-2D coulomb integrated micro-analyzer through adding benzothiophene (BT) and dibenzothiophene (DBT) into liquid alkanes. Adsorptive desulfurization experiments were conducted in a consecutive fixed bed adsorption system. The results indicate that Cu3(BHTC)2 has a higher sulfur-capacity than Co1Cu2(BHTC)2. Taking DBT as an example, Cu3(BHTC)2 and Co1Cu2(BHTC)2 have breakthrough adsorption capacities of 10.6 and 5.8 g S/kg of sorbent for model oils.

  4. Sorbent for use in hot gas desulfurization

    DOEpatents

    Gasper-Galvin, Lee D.; Atimtay, Aysel T.

    1993-01-01

    A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.

  5. Ultrasound-assisted oxidative desulfurization of liquid fuels and its industrial application.

    PubMed

    Wu, Zhilin; Ondruschka, Bernd

    2010-08-01

    Latest environmental regulations require a very deep desulfurization to meet the ultra-low sulfur diesel (ULSD, 15 ppm sulfur) specifications. Due to the disadvantages of hydrotreating technology on the slashing production conditions, costs and safety as well as environmental protection, the ultrasound-assisted oxidative desulfurization (UAOD) as an alternative technology has been developed. UAOD process selectively oxidizes sulfur in common thiophenes in diesel to sulfoxides and sulfones which can be removed via selective adsorption or extractant. SulphCo has successfully used a 5000 barrel/day mobile "Sonocracking" unit to duplicate on a commercial scale its proprietary process that applies ultrasonics at relatively low temperatures and pressures. The UAOD technology estimate capital costs less than half the cost of a new high-pressure hydrotreater. The physical and chemical mechanisms of UAOD process are illustrated, and the effective factors, such as ultrasonic frequency and power, oxidants, catalysts, phase-transfer agent, extractant and adsorbent, on reaction kinetics and product recovery are discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  6. Simultaneous recovery and desulfurization of bitumen from oil sand using ultrasound irradiation

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Kamal, Wan Mohamad Ikhwan bin Wan; Akazawa, Nobuyuki; Kato, Takahiro; Sugawara, Katsuyasu

    2018-07-01

    Oil sand contains bitumen, which includes a high percentage of sulfur. Before using bitumen as a fuel, it must be recovered from oil sand and desulfurized. Currently, bitumen is recovered from oil sand using hot water (<100 °C), and sulfur is removed via hydrodesulfurization (>300 °C). Both of these processes consume significant amounts of energy. In this study, we demonstrate the simultaneous recovery and desulfurization of bitumen from oil sand using oxidative desulfurization with ultrasonic irradiation and tetrahydrofuran at 20 °C. We successfully recovered 88% of the bitumen from oil sand and removed 42% of the sulfur from the bitumen.

  7. Review of desulfurization process for biogas purification

    NASA Astrophysics Data System (ADS)

    Xiao, Cong; Ma, Yunqian; Ji, Dandan; Zang, Lihua

    2017-12-01

    Hydrogen sulfide (H2S) is a toxic and odorous compound present in biogas produced by the anaerobic digestion of biosolids and other organic materials. Elimination of H2S is necessary as it is extremely hazardous to human health, poisonous to process catalysts and corrosive to equipment. The desulfurization technology is an important part for efficient utilization of biogas. In this paper, the traditional wet and dry desulfurization technology for biogas was reviewed, and the new research progress of biological desulfurization technologies are also introduced.

  8. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    PubMed

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Effect of Silicon on Desulfurization of Aluminum-killed Steels

    NASA Astrophysics Data System (ADS)

    Roy, Debdutta

    controlled by mass transfer in the metal and slag phase mass transfer has a minor effect on the overall desulfurization kinetics. The model results are in agreement with the experimental data for the change in sulfur, silicon and aluminum contents with time which renders credibility to the underlying hypothesis of the kinetic model. Although the change of sulfur content with time is not very sensitive to the activity data source, the change of aluminum and silicon contents with time depend on the activity data source. The experimental results demonstrate that if the silicon content in the steel is high enough, the silicon can reduce the alumina from the slag and thus the steel melt will pick up aluminum. This can cause significant savings in aluminum consumption. For most of the slag compositions used in the experiments, the overall mass transfer is only limited by the steel phase and the slag phase mass transfer can be neglected for most practical cases. Mass balance calculations in the experiments support the basis of the model and also show that with respect to aluminum consumption, silica reduction is the main aluminum consuming (or production) reaction and the desulfurization reaction is only a secondary consumer of aluminum. Results from the plant trials conducted to test the effect of silicon on ladle desulfurization show that the rate and extent of desulfurization increase with the increase of the initial Si content, so in the ladle refining process, adding all the silicon in the beginning with the aluminum and the fluxes will be beneficial and could save considerable processing time at the ladle. The aluminum consumption for the heats with silicon added in the beginning (both in terms of the Al added to the steel and as slag deoxidants) is considerably lower compared to the cases where the silicon is added at the end. However, on a relative cost term, aluminum and silicon are similarly priced so substitution would not offer a major cost advantage.

  10. Coal Liquefaction desulfurization process

    DOEpatents

    Givens, Edwin N.

    1983-01-01

    In a solvent refined coal liquefaction process, more effective desulfurization of the high boiling point components is effected by first stripping the solvent-coal reacted slurry of lower boiling point components, particularly including hydrogen sulfide and low molecular weight sulfur compounds, and then reacting the slurry with a solid sulfur getter material, such as iron. The sulfur getter compound, with reacted sulfur included, is then removed with other solids in the slurry.

  11. Superoxide radical and UV irradiation in ultrasound assisted oxidative desulfurization (UAOD): A potential alternative for greener fuels

    NASA Astrophysics Data System (ADS)

    Chan, Ngo Yeung

    This study is aimed at improving the current ultrasound assisted oxidative desulfurization (UAOD) process by utilizing superoxide radical as oxidant. Research was also conducted to investigate the feasibility of ultraviolet (UV) irradiation-assisted desulfurization. These modifications can enhance the process with the following achievements: (1) Meet the upcoming sulfur standards on various fuels including diesel fuel oils and residual oils; (2) More efficient oxidant with significantly lower consumption in accordance with stoichiometry; (3) Energy saving by 90%; (4) Greater selectivity in petroleum composition. Currently, the UAOD process and subsequent modifications developed in University of Southern California by Professor Yen's research group have demonstrated high desulfurization efficiencies towards various fuels with the application of 30% wt. hydrogen peroxide as oxidant. The UAOD process has demonstrated more than 50% desulfurization of refractory organic sulfur compounds with the use of Venturella type catalysts. Application of quaternary ammonium fluoride as phase transfer catalyst has significantly improved the desulfurization efficiency to 95%. Recent modifications incorporating ionic liquids have shown that the modified UAOD process can produce ultra-low sulfur, or near-zero sulfur diesels under mild conditions with 70°C and atmospheric pressure. Nevertheless, the UAOD process is considered not to be particularly efficient with respect to oxidant and energy consumption. Batch studies have demonstrated that the UAOD process requires 100 fold more oxidant than the stoichiometic requirement to achieve high desulfurization yield. The expected high costs of purchasing, shipping and storage of the oxidant would reduce the practicability of the process. The excess use of oxidant is not economically desirable, and it also causes environmental and safety issues. Post treatments would be necessary to stabilize the unspent oxidant residual to prevent the waste

  12. Deep catalytic oxidative desulfurization (ODS) of dibenzothiophene (DBT) with oxalate-based deep eutectic solvents (DESs).

    PubMed

    Lü, Hongying; Li, Pengcheng; Deng, Changliang; Ren, Wanzhong; Wang, Shunan; Liu, Pan; Zhang, Han

    2015-07-07

    An oxalate-based DES with a tetrabutyl ammonium chloride and oxalate acid molar ratio of 1/2 (TBO1 : 2) exhibited high activity in oxidative desulfurization (ODS) of dibenzothiophene (DBT) under mild reaction conditions. It is potentially a promising and highly environmentally friendly approach for desulfurization of fuels.

  13. Removal of hazardous gaseous pollutants from industrial flue gases by a novel multi-stage fluidized bed desulfurizer.

    PubMed

    Mohanty, C R; Adapala, Sivaji; Meikap, B C

    2009-06-15

    Sulfur dioxide and other sulfur compounds are generated as primary pollutants from the major industries such as sulfuric acid plants, cupper smelters, catalytic cracking units, etc. and cause acid rain. To remove the SO(2) from waste flue gas a three-stage counter-current multi-stage fluidized bed adsorber was developed as desulfurization equipment and operated in continuous bubbling fluidization regime for the two-phase system. This paper represents the desulfurization of gas mixtures by chemical sorption of sulfur dioxide on porous granular calcium oxide particles in the reactor at ambient temperature. The advantages of the multi-stage fluidized bed reactor are of high mass transfer and high gas-solid residence time that can enhance the removal of acid gas at low temperature by dry method. Experiments were carried out in the bubbling fluidization regime supported by visual observation. The effects of the operating parameters such as sorbent (lime) flow rate, superficial gas velocity, and the weir height on SO(2) removal efficiency in the multistage fluidized bed are reported. The results have indicated that the removal efficiency of the sulfur dioxide was found to be 65% at high solid flow rate (2.0 kg/h) corresponding to lower gas velocity (0.265 m/s), wier height of 70 mm and SO(2) concentration of 500 ppm at room temperature.

  14. Desulfurization kinetics of molten copper by gas bubbling

    NASA Astrophysics Data System (ADS)

    Fukunaka, Y.; Nishikawa, K.; Sohn, H. S.; Asaki, Z.

    1991-02-01

    Molten copper with 0.74 wt pct sulfur content was desulfurized at 1523 K by bubbling Ar-O2 gas through a submerged nozzle. The reaction rate was significantly influenced not only by the oxygen partial pressure but also by the gas flow rate. Little evolution of SO2 gas was observed in the initial 10 seconds of the oxidation; however, this was followed by a period of high evolution rate of SO2 gas. The partial pressure of SO2 gas decreased with further progress of the desulfurization. The effect of the immersion depth of the submerged nozzle was negligible. The overall reaction is decomposed to two elementary reactions: the desulfurization and the dissolution rate of oxygen. The assumptions were made that these reactions are at equilibrium and that the reaction rates are controlled by mass transfer rates within and around the gas bubble. The time variations of sulfur and oxygen contents in the melt and the SO2 partial pressure in the off-gas under various bubbling conditions were well explained by the mathematical model combined with the reported thermodynamic data of these reactions. Based on the present model, it was anticipated that the oxidation rate around a single gas bubble was mainly determined by the rate of gas-phase mass transfer, but all oxygen gas blown into the melt was virtually consumed to the desulfurization and dissolution reactions before it escaped from the melt surface.

  15. DEEP DESULFURIZATION OF DIESEL FUELS BY A NOVEL INTEGRATED APPROACH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiaoliang Ma; Uday Turaga; Shingo Watanabe

    2004-05-01

    break-through point at 5.0 ppmw sulfur level is 0.35 mg-S/g-A. The spent A-5 can be regenerated by using H2 gas at a flowing rate of 40-50 ml/min, 500 C, and ambient pressure. Adsorption desulfurization of model diesel fuels over metal-sulfide-based adsorbents (A-6-1 and A-6-2) has been conducted at different temperatures to examine the capacity and selectivity of the adsorbents. A regeneration method for the spent metal-sulfide-based adsorbents has been developed. The spent A-6-1 can be easily regenerated by washing the spent adsorbent with a polar solvent followed by heating the adsorbent bed to remove the remainder solvent. Almost all adsorption capacity of the fresh A-6-1 can be recovered after the regeneration. On the other hand, a MCM-41-supported HDS catalyst was developed for deep desulfurization of the refractory sulfur compounds. The results show that the developed MCM-41-supported catalyst demonstrates consistently higher activity for the HDS of the refractory dibenzothiophenic sulfur compounds than the commercial catalyst. On the basis of the fundamental understanding of the adsorptive performance and regeneration natures of the adsorbents, the conceptual design of the novel PSU-SARS process for deep desulfurization of diesel fuel is confirmed and improved further.« less

  16. Enhancement of Oxidative Desulfurization Performance over UiO-66(Zr) by Titanium Ion Exchange.

    PubMed

    Ye, Gan; Qi, Hui; Li, Xiaolin; Leng, Kunyue; Sun, Yinyong; Xu, Wei

    2017-07-19

    Oxidative desulfurization is considered to be one of the most promising methods for producing ultra-low-sulfur fuels because it can effectively remove refractory sulfur-containing aromatic compounds under mild conditions. In this work, the oxidative desulfurization performance over UiO-66(Zr) is greatly enhanced by Ti ion exchange. This strategy is not only efficient for UiO-66(Zr) with crystal defects but also for UiO-66(Zr) with high crystallinity. In particular, the performance of UiO-66(Zr) with high crystallinity in the oxidative desulfurization of dibenzothiophene can be improved more than 11-fold, which can be mainly attributed to the introduction of active Ti sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly flexible sub-1 nm tungsten oxide nanobelts as efficient desulfurization catalysts.

    PubMed

    He, Jie; Liu, Huiling; Xu, Biao; Wang, Xun

    2015-03-01

    Ultrathin tungsten oxide nanobelts are successfully synthesized via a facile solvothermal method. Sub-1 nm thickness and hydrophobic surface property endow the nanobelts with flexibility, viscosity, gelation, and good catalytic performance in oxidative desulfurization. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Development of a portable, modular unit for the optimization of ultrasound-assisted oxidative desulfurization of diesel

    NASA Astrophysics Data System (ADS)

    Wan, Meng-Wei

    Due to the stringent rules requiring ultra-low sulfur content in diesel fuels, it is necessary to develop alternative methods of desulfurization of fossil fuel derived oil, such as diesel. Current technology is not sufficient to solve this problem. Ultrasound applied to oxidative desulfurization which combined three complementary techniques: ultrasonication, phase transfer catalysis (PTC) and transition metal catalyzed oxidation, has accomplished high sulfur removal in a short contact time at ambient temperature and atmospheric pressure. This research has successfully demonstrated that the higher oxidation efficiency of BT to BTO and free of any by-products by using tetraoctylammonium fluoride as phase transfer agent. The oxidation rate of BT to BTO increased with increasing the carbon chain length of QAS cations. Under the same length of carbon chain, the oxidation rate of BT to BTO increased with decreasing the molecular size of QAS anions. Moreover, for diesel fuels containing various levels of sulfur content, UAOD process followed by solvent extraction has demonstrated that the sulfur reduction can reach above 95 % removal efficiency or final sulfur content below 15 ppm in mild condition. For large-scale commercial production, this research has successfully developed and operated a continuous desulfurization unit, which consists of a sonoractor, an RF amplifier, a function generator, a pretreatment tank, and a pipeline system. A single unit only needed 2' x 4' x 1' space for installation. The results indicated that the remarkable 92% removal efficiency for the sulfur in marine logistic diesel, even at a treatment rate as high as 25 lb/hour which is approximately 2 barrels per day. Therefore, this sonoreactor demonstrated the feasibility of large-scale operation even in a relatively small installation with low capital investment and maintenance cost. It also ensures the safety considerations by operating with diluted hydrogen peroxide under ambient temperature

  19. Experimental Study on Hot Metal Desulfurization Using Sintered Red Mud-Based Flux

    NASA Astrophysics Data System (ADS)

    Li, Fengshan; Zhang, Yanling; Guo, Zhancheng

    2017-09-01

    This research presents the results of laboratory and pilot-scale tests conducted on the use of sintered red mud (RM)-based flux in the hot metal desulfurization (HMD) process. Al2O3/Na2O in RM can decrease the melting point of lime-based slag and can work as a flux in the HMD process. Good slag fluidity was observed throughout the process, and high desulfurization rates ( 80%) with a low final S content (<0.02%) were experimentally obtained when the RM:CaO ratio was between 1.2:1 and 2.4:1. The pilot-scale test results indicated that a desulfurization rate as high as 91% and a S content <0.0099% could be acquired when RM:lime = 1:1, verifying the feasibility of using sintered RM-based flux in HMD. The data obtained provide important information for promoting the large-scale application of sintered RM in steelmaking.

  20. Characteristics and reactivity of rapidly hydrated sorbent for semidry flue gas desulfurization.

    PubMed

    Zhang, Jie; You, Changfu; Zhao, Suwei; Chen, Changhe; Qi, Haiying

    2008-03-01

    Semidry flue gas desulfurization with a rapidly hydrated sorbent was studied in a pilot-scale circulating fluidized bed (CFB) experimental facility. The desulfurization efficiency was measured for various operating parameters, including the sorbent recirculation rate and the water spray method. The experimental results show that the desulfurization efficiencies of the rapidly hydrated sorbent were 1.5-3.0 times higher than a commonly used industrial sorbent for calcium to sulfur molar ratios from 1.2 to 3.0, mainly due to the higher specific surface area and pore volume. The Ca(OH)2 content in the cyclone separator ash was about 2.9% for the rapidly hydrated sorbent and was about 0.1% for the commonly used industrial sorbent, due to the different adhesion between the fine Ca(OH)2 particles and the fly ash particles, and the low cyclone separation efficiency for the fine Ca(OH)2 particles that fell off the sorbent particles. Therefore the actual recirculation rates of the active sorbent with Ca(OH)2 particles were higher for the rapidly hydrated sorbent, which also contributed to the higher desulfurization efficiency. The high fly ash content in the rapidly hydrated sorbent resulted in good operating stability. The desulfurization efficiency with upstream water spray was 10-15% higher than that with downstream water spray.

  1. Desulfurizing Coal With an Alkali Treatment

    NASA Technical Reports Server (NTRS)

    Ravindram, M.; Kalvinskas, J. J.

    1987-01-01

    Experimental coal-desulfurization process uses alkalies and steam in fluidized-bed reactor. With highly volatile, high-sulfur bituminous coal, process removed 98 percent of pyritic sulfur and 47 percent of organic sulfur. Used in coal liquefaction and in production of clean solid fuels and synthetic liquid fuels. Nitrogen or steam flows through bed of coal in reactor. Alkalies react with sulfur, removing it from coal. Nitrogen flow fluidizes bed while heating or cooling; steam is fluidizing medium during reaction.

  2. Pressurized fluidized-bed hydroretorting of Eastern oil shales -- Sulfur control. Topical report for Subtask 3.1, In-bed sulfur capture tests; Subtask 3.2, Electrostatic desulfurization; Subtask 3.3, Microbial desulfurization and denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, M.J.; Abbasian, J.; Akin, C.

    1992-05-01

    This topical report on ``Sulfur Control`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). The objective of the task on In-Bed Sulfur Capture was to determine the effectiveness of different sorbents (that is, limestone, calcined limestone, dolomite, and siderite)more » for capturing sulfur (as H{sub 2}S) in the reactor during hydroretorting. The objective of the task on Electrostatic Desulfurization was to determine the operating conditions necessary to achieve a high degree of sulfur removal and kerogen recovery in IIT`s electrostatic separator. The objectives of the task on Microbial Desulfurization and Denitrification were to (1) isolate microbial cultures and evaluate their ability to desulfurize and denitrify shale, (2) conduct laboratory-scale batch and continuous tests to improve and enhance microbial removal of these components, and (3) determine the effects of processing parameters, such as shale slurry concentration, solids settling characteristics, agitation rate, and pH on the process.« less

  3. Effect of Silicon on the Desulfurization of Al-Killed Steels: Part II. Experimental Results and Plant Trials

    NASA Astrophysics Data System (ADS)

    Roy, Debdutta; Pistorius, Petrus Christiaan; Fruehan, Richard J.

    2013-10-01

    Recent observations suggest that increased silicon levels improve ladle desulfurization of aluminum-killed steel. A kinetic model was developed and presented in part I of this paper, demonstrating that increased silicon levels in steel suppress the consumption of aluminum by parasitic reactions like silica reduction and FeO/MnO reduction, thus making more aluminum available at the interface for desulfurization. The results are increases in the rate and the extent of desulfurization. Predictions were compared with laboratory induction furnace melts using 1 kg of steel and 0.1 kg slag. The experimental results demonstrate the beneficial effect of silicon on the desulfurization reaction and that alumina can be reduced out of the slag and aluminum picked up by the steel, if the silicon content in the steel is high enough. The experimental results are in close agreement with the model predictions. Plant trials also show that with increased silicon content, both the rate and extent of desulfurization increase; incorporating silicon early into the ladle desulfurization process leads to considerable savings in aluminum consumption.

  4. Integrated photooxidative-extractive desulfurization system for fuel oil using Cu, Fe and Cu-Fe/TiO2 and eutectic based ionic liquids: Effect of calcination temperature and duration

    NASA Astrophysics Data System (ADS)

    Zaid, Hayyiratul Fatimah Mohd; Kait, Chong Fai; Mutalib, Mohamed Ibrahim Abdul

    2014-10-01

    Photocatalyts TiO2 doped with Cu, Fe and Cu-Fe metal at different calcination temperature and duration were successfully prepared and characterized. Photocatalytic oxidative desulfurization of model oil containing dibenzothiophene as the sulfur compound (100 ppm) using the prepared photocatalyst was investigated. The photocatalyst calcined at 500°C and duration of 1 h showed the best performance.

  5. Philippine refiner completes diesel desulfurization project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candido, S.S.; Crisostomo, E.V.

    1997-01-27

    In anticipation of tightening sulfur specifications on diesel fuel, Petron Corp. built a new 18,000 b/sd gas oil desulfurization unit (GODU) at its refinery in Bataan, Philippines. The GODU gives Petron sufficient diesel oil desulfurization capacity to meet demand for lower-sulfur diesel in the country. The project places the refinery in a pacesetter position to comply with the Philippine government`s moves to reduce air pollution, especially in urban centers, by reducing the sulfur specification for diesel to 0.5 wt% in 1996 from 0.7 wt% at the start of the project. Performance tests and initial operations of the unit have revealedmore » a desulfurization efficiency of 91% vs. a guaranteed efficiency of 90%. A feed sulfur content of 1.33 wt% is reduced to 0.12 wt% at normal operating conditions. Operating difficulties during start-up were minimized through use of a detailed prestartup check conducted during the early stages of construction work.« less

  6. Flue gas desulfurization gypsum agricultural network alabama (cotton)

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) is an excellent source of gypsum (CaSO4•2H2O) that can be beneficially used in agriculture. Research was conducted as part of the Flue Gas Desulfurization Gypsum Agricultural Network program sponsored by the Electric Power Research Institute in collaboration wi...

  7. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    PubMed

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  8. Plane flame furnace combustion tests on JPL desulfurized coal

    NASA Technical Reports Server (NTRS)

    Reuther, J. J.; Kim, H. T.; Lima, J. G. H.

    1982-01-01

    The combustion characteristics of three raw bituminous (PSOC-282 and 276) and subbituminous (PSOC-230) coals, the raw coals partially desulfurized (ca -60%) by JPL chlorinolysis, and the chlorinated coals more completely desulfurized (ca -75%) by JPL hydrodesulfurization were determined. The extent to which the combustion characteristics of the untreated coals were altered upon JPL sulfur removal was examined. Combustion conditions typical of utility boilers were simulated in the plane flame furnace. Upon decreasing the parent coal voltaile matter generically by 80% and the sulfur by 75% via the JPL desulfurization process, ignition time was delayed 70 fold, burning velocity was retarded 1.5 fold, and burnout time was prolonged 1.4 fold. Total flame residence time increased 2.3 fold. The JPL desulfurization process appears to show significant promise for producing technologically combustible and clean burning (low SO3) fuels.

  9. Experimental research on bypass evaporation tower technology for zero liquid discharge of desulfurization wastewater.

    PubMed

    Ma, Shuangchen; Chai, Jin; Wu, Kai; Xiang, Yajun; Jia, Shaoguang; Li, Qingsong

    2018-03-20

    Zero liquid discharge (ZLD) of wastewater has become the trend of environmental governance after the implementation of 'The Action Plan for Prevention and Treatment of Water Pollution' in China, desulfurization wastewater has gained more attention due to its complex composition and heavy metals. However, current technologies for ZLD have some shortcomings such as high cost and insufficient processing capacity, ZLD cannot be achieved actually. This paper proposes a new evaporation drying technology. An independent bypass evaporation tower was built, part of the hot flue gas before the air preheater was introduced into the evaporation tower for desulfurization wastewater evaporation, and the generated dust after evaporation was discharged back to the flue duct before electrostatic precipitator. This paper reports on the performance of desulfurization wastewater evaporation and the characteristics of evaporation products in depth and makes a comprehensive discussion of the impact on the existing equipment based on the self-designed evaporation tower. Research suggests that this technology has high system reliability and little effect on subsequent equipment and provides theoretical and practical data. Due to environmental policies and huge market demand for ZLD of desulfurization wastewater, bypass evaporation tower technology has a great application prospect in the future.

  10. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil.

    PubMed

    Bahuguna, Ashutosh; Lily, Madhuri K; Munjal, Ashok; Singh, Ravindra N; Dangwal, Koushalya

    2011-01-01

    A new bacterial strain DMT-7 capable of selectively desulfurizing dibenzothiophene (DBT) was isolated from diesel contaminated soil. The DMT-7 was characterized and identified as Lysinibacillus sphaericus DMT-7 (NCBI GenBank Accession No. GQ496620) using 16S rDNA gene sequence analysis. The desulfurized product of DBT, 2-hydroxybiphenyl (2HBP), was identified and confirmed by high performance liquid chromatography analysis and gas chromatography-mass spectroscopy analysis respectively. The desulfurization kinetics revealed that DMT-7 started desulfurization of DBT into 2HBP after the lag phase of 24 hr, exponentially increasing the accumulation of 2HBP up to 15 days leading to approximately 60% desulfurization of the DBT. However, further growth resulted into DBT degradation. The induced culture of DMT-7 showed shorter lag phase of 6 hr and early onset of stationary phase within 10 days for desulfurization as compared to that of non-induced culture clearly indicating the inducibility of the desulfurization pathway of DMT-7. In addition, Lysinibacillus sphaericus DMT-7 also possess the ability to utilize broad range of substrates as sole source of sulfur such as benzothiophene, 3,4-benzo DBT, 4,6-dimethyl DBT, and 4,6-dibutyl DBT. Therefore, Lysinibacillus sphaericus DMT-7 could serve as model system for efficient biodesulfurization of diesel and petrol.

  11. An integrated biodesulfurization process, including inoculum preparation, desulfurization and sulfate removal in a single step, for removing sulfur from oils.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangaromsuk, Jantana; Borole, Abhijeet P; Kruatrachue, Maleeya

    2008-01-01

    BACKGROUND: A single-stage reactor, in which the growth of bacterial culture, induction of desulfurizing enzymes, and desulfurization reaction are carried out in a single step, was adopted to investigate desulfurization of DBT at high cell densities. IGTS8 was used as the biocatalyst. Optimal condition for the bacterial growth and DBT desulfurization were also investigated. RESULTS: Optimization of fermentation conditions was necessary to obtain high cell densities including controlling accumulation of acetate. Under optimal operating conditions, the maximum OD600 was measured to be 26.6 at 118 h of cultivation. When biodesulfurization of DBT in model oil with a high cell densitymore » culture of IGTS8 was investigated, accumulation of sulfate was found to limit the extent of desulfurization. A sulfate removal step was added to obtain a single-stage integrated biodesulfurization process. Sulfate removal was achieved via an aqueous bleed stream and use of a separation unit to recycle the organic phase. CONCLUSION : A proof of principle of a complete system capable of biocatalyst growth, induction, desulfurization and by-product separation was demonstrated. This system enables simplification of the biodesulfurization process and has potential to lower the operating cost of the bioprocess.« less

  12. Desulfurization of Saudi Arabian crudes by oxidation-extraction method.

    PubMed

    Al Otaibi, Raja L; Liu, Dong; Hou, Xulian; Song, Linhua; Li, Qingyin; Li, Mengfei; Almigrin, Hamid O; Yan, Zifeng

    The oxidation-extraction desulfurization of Saudi Arabian crudes was conducted with hydrogen peroxide-acetic acid oxidation system. The selection of extractant, the optimization of oxidation-extraction conditions, and the exploration of desulfurization mechanism were studied. As DMF was used as the extractant, the optimal desulfurization rate of 35.11 % and oil recovery of 95 % were obtained at 70 °C with the molar ratio of peracetic acid to sulfur of 8:1, the molar ratio of acetic acid to hydrogen peroxide of 2:1 and the volume ratio of extractant to oil of 1:1. The desulfurization effect of different fractions in the treated Saudi Arabian crudes was found to obey the following order: gasoline-diesel fraction >VGO fraction >VR fraction, due to different types and structures of sulfur compounds. The oil quality was less affected and most sulfides were mainly extracted via DMF.

  13. Deep extractive and oxidative desulfurization of dibenzothiophene with C5H9NO·SnCl2 coordinated ionic liquid.

    PubMed

    Li, Fa-tang; Kou, Cheng-guang; Sun, Zhi-min; Hao, Ying-juan; Liu, Rui-hong; Zhao, Di-shun

    2012-02-29

    A new C5H9NO·SnCl2 coordinated ionic liquid (IL) was prepared by reacting N-methyl-pyrrolidone with anhydrous SnCl2. Desulfurization of dibenzothiophene (DBT) via extraction and oxidation with C5H9NO·SnCl2 IL as extractant, H2O2 and equal mol of CH3COOH as oxidants was investigated. The Nernst partition coefficients k(N) of C5H9NO·SnCl2 IL for the DBT in n-octane was above 5.0, showing its excellent extraction ability. During the oxidative desulfurization process, the optimal molar ratio of H2O2/DBT was six. Sulfur removal of DBT in n-octane was 94.8% in 30 min at 30 °C under the conditions of H2O2/DBT molar ratio of six and V (IL):V (oil)=1:3. Moreover, the sulfur removal increased with increasing temperature because of the high reaction rate constant, low viscosity, and high solubility of dibenzothiophene-sulfone in the IL. The kinetics of oxidative desulfurization of DBT was also investigated, and the apparent activation energy was found to be 32.5 kJ/mol. The IL could be recycled six times without a significant decrease in activity. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Radiation methods for demercaptanization and desulfurization of oil products

    NASA Astrophysics Data System (ADS)

    Zaykina, R. F.; Zaykin, Yu. A.; Mamonova, T. B.; Nadirov, N. K.

    2002-03-01

    A two-stage method for the desulfurization of oil is presented. The first stage strongly oxidizes sulfuric material to do away with its chemical aggressiveness and promote its removal. Desulfurization of the overall product is reached at the second stage by means of conventional methods.

  15. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  16. Simple biogas desulfurization by microaeration - Full scale experience.

    PubMed

    Jeníček, P; Horejš, J; Pokorná-Krayzelová, L; Bindzar, J; Bartáček, J

    2017-08-01

    Hydrogen sulfide in biogas is common problem during anaerobic treatment of wastewater with high sulfate concentration (breweries, distilleries, etc.) and needs to be removed before biogas utilization. Physico-chemical desulfurization methods are energetically demanding and expensive compare to biochemical methods. Microaeration, i.e. dosing of small amount of air, is suitable and cost effective biochemical method of sulfide oxidation to elemental sulfur. It has been widely used in biogas plants, but its application in anaerobic reactors for wastewater treatment has been rarely studied or tested. The lack of full-scale experience with microaeration in wastewater treatment plants has been overcome by evaluating the results of seven microaerobic digesters in central Europe. The desulfurization efficiency has been more than 90% in most of the cases. Moreover, microaeration improved the degradability of COD and volatile suspended solids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Characterization of a flavin reductase from a thermophilic dibenzothiophene-desulfurizing bacterium, Bacillus subtilis WU-S2B.

    PubMed

    Takahashi, Shusuke; Furuya, Toshiki; Ishii, Yoshitaka; Kino, Kuniki; Kirimura, Kohtaro

    2009-01-01

    Bacillus subtilis WU-S2B is a thermophilic dibenzothiophene (DBT)-desulfurizing bacterium and produces a flavin reductase (Frb) that couples with DBT and DBT sulfone monooxygenases. The recombinant Frb was purified from Escherichia coli cells expressing the frb gene and was characterized. The purified Frb exhibited high stability over wide temperature and pH ranges of 20-55 degrees C and 2-12, respectively. Frb contained FMN and exhibited both flavin reductase and nitroreductase activities.

  18. Red soil as a regenerable sorbent for high temperature removal of hydrogen sulfide from coal gas.

    PubMed

    Ko, Tzu-Hsing; Chu, Hsin; Lin, Hsiao-Ping; Peng, Ching-Yu

    2006-08-25

    In this study, hydrogen sulfide (H(2)S) was removed from coal gas by red soil under high temperature in a fixed-bed reactor. Red soil powders were collected from the northern, center and southern of Taiwan. They were characterized by XRPD, porosity analysis and DCB chemical analysis. Results show that the greater sulfur content of LP red soils is attributed to the higher free iron oxides and suitable sulfidation temperature is around 773K. High temperature has a negative effect for use red soil as a desulfurization sorbent due to thermodynamic limitation in a reduction atmosphere. During 10 cycles of regeneration, after the first cycle the red soil remained stable with a breakthrough time between 31 and 36 min. Hydrogen adversely affects sulfidation reaction, whereas CO exhibits a positive effect due to a water-shift reaction. COS was formed during the sulfidation stage and this was attributed to the reaction of H(2)S and CO. Results of XRPD indicated that, hematite is the dominant active species in fresh red soil and iron sulfide (FeS) is a product of the reaction between hematite and hydrogen sulfide in red soils. The spinel phase FeAl(2)O(4) was found during regeneration, moreover, the amount of free iron oxides decreased after regeneration indicating the some of the free iron oxide formed a spinel phase, further reducting the overall desulfurization efficiency.

  19. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization.

    PubMed

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-11-01

    An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO 2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO 2 from by-products was summarized. Results showed that the SO 2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO 2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900-1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO 2 as well as MgO, a temperature range of 900-927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries.

  20. 3D CFD Modeling of the LMF System: Desulfurization Kinetics

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Pitts, April; Zhang, Daojie; Nastac, Laurentiu; Williams, Robert

    A fully transient 3D CFD modeling approach capable of predicting the three phase (gas, slag and steel) fluid flow characteristics and behavior of the slag/steel interface in the argon gas bottom stirred ladle with two off-centered porous plugs (Ladle Metallurgical Furnace or LMF) has been recently developed. The model predicts reasonably well the fluid flow characteristics in the LMF system and the observed size of the slag eyes for both the high-stirring and low-stirring conditions. A desulfurization reaction kinetics model considering metal/slag interface characteristics is developed in conjunction with the CFD modeling approach. The model is applied in this study to determine the effects of processing time, and gas flow rate on the efficiency of desulfurization in the studied LMF system.

  1. TiO2-Containing Carbon Derived from a Metal-Organic Framework Composite: A Highly Active Catalyst for Oxidative Desulfurization.

    PubMed

    Bhadra, Biswa Nath; Song, Ji Yoon; Khan, Nazmul Abedin; Jhung, Sung Hwa

    2017-09-13

    A new metal-organic framework (MOF) composite consisting of Ti- and Zn-based MOFs (ZIF-8(x)@H 2 N-MIL-125; in brief, ZIF(x)@MOF) was designed and synthesized. The pristine MOF [H 2 N-MIL-125 (MOF)]- and an MOF-composite [ZIF(30)@MOF]-derived mesoporous carbons consisting of TiO 2 nanoparticles were prepared by pyrolysis (named MDC-P and MDC-C, respectively). MDC-C showed a higher surface area, larger pore sizes, and larger mesopore volumes than MDC-P. In addition, the TiO 2 nanoparticles on MDC-C have more uniform shapes and sizes and are smaller than those of MDC-P. The obtained MDC-C and MDC-P [together with MOF, ZIF(30)@MOF, pure/nanocrystalline TiO 2 , and activated carbon] were applied in the oxidative desulfurization reaction of dibenzothiophene in a model fuel. The MDC-C, even with a lower TiO 2 content than that of MDC-P, showed an outstanding catalytic performance, especially with a very low catalyst dose (i.e., a very high quantity of dibenzothiophene was converted per unit weight of the catalyst), fast kinetics (∼3 times faster than that for MDC-P), and a low activation energy (lower than that for any reported catalyst) for the oxidation of dibenzothiophene. The large mesopores of MDC-C and the well-dispersed/small TiO 2 might be the dominant factors for the superior catalytic conversions. The oxidative desulfurization of other sulfur-containing organic compounds with various electron densities was also studied with MDC-C to understand the mechanism of catalysis. Moreover, the MDC-C catalyst can be reused many times in the oxidative desulfurization reaction after a simple washing with acetone. Finally, composing MOFs and subsequent pyrolysis is suggested as an effective way to prepare a catalyst with well-dispersed active sites, large pores, and high mesoporosity.

  2. Producing ammonium sulfate from flue gas desulfurization by-products

    USGS Publications Warehouse

    Chou, I.-Ming; Bruinius, J.A.; Benig, V.; Chou, S.-F.J.; Carty, R.H.

    2005-01-01

    Emission control technologies using flue gas desulfurization (FGD) have been widely adopted by utilities burning high-sulfur fuels. However, these technologies require additional equipment, greater operating expenses, and increased costs for landfill disposal of the solid by-products produced. The financial burdens would be reduced if successful high-volume commercial applications of the FGD solid by-products were developed. In this study, the technical feasibility of producing ammonium sulfate from FGD residues by allowing it to react with ammonium carbonate in an aqueous solution was preliminarily assessed. Reaction temperatures of 60, 70, and 80??C and residence times of 4 and 6 hours were tested to determine the optimal conversion condition and final product evaluations. High yields (up to 83%) of ammonium sulfate with up to 99% purity were achieved under relatively mild conditions. The optimal conversion condition was observed at 60??C and a 4-hour residence time. The results of this study indicate the technical feasibility of producing ammonium sulfate fertilizer from an FGD by-product. Copyright ?? Taylor & Francis Inc.

  3. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions.

    PubMed

    Xu, Junhua; Zhao, Shen; Ji, Yuanchun; Song, Yu-Fei

    2013-01-07

    Amphiphilic lanthanide-containing polyoxometalates (POMs) were prepared by surfactant encapsulation. Investigation of these lanthanide-containing POMs in oxidative desulfurization (ODS) showed that highly efficient deep desulfurization could be achieved in only 14 min with 100% conversion of dibenzothiophene under mild conditions by using (DDA)(9)LaW(10)/[omim]PF(6) (DDA=dimethyldioctadecylammonium, omim=1-octyl-3-methyl-imidazolium) in the presence of H(2) O(2) . Furthermore, deep desulfurization proceeds smoothly in model oil with an S content as low as 50 ppm. A scaled-up experiment in which the volume of model oil was increased from 5 to 1000 mL with S content of 1000 ppm indicated that about 99% sulfur removal can be achieved in 40 mins in an ionic-liquid emulsion system. To the best of our knowledge, the (DDA)(9)LaW(10)/[omim]PF(6) catalyst system with H(2)O(2) as oxidant is one of the most efficient desulfurization systems reported so far. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis, Characterization and Application of 1-Butyl-3 Methylimidazolium Chloride as Green Material for Extractive Desulfurization of Liquid Fuel

    PubMed Central

    Dharaskar, Swapnil A.; Varma, Mahesh N.; Shende, Diwakar Z.; Yoo, Chang Kyoo; Wasewar, Kailas L.

    2013-01-01

    The possible application of imidazolium ionic liquids as energy-efficient green material for extractive deep desulfurization of liquid fuel has been investigated. 1-Butyl-3-methylimidazolium chloride [BMIM]Cl was synthesized by nucleophilic substitution reaction of n-methylimidazolium and 1-chlorobutane. Molecular structures of the ILs were confirmed by FTIR, 1H-NMR, and 13C-NMR. The thermal properties, conductivity, solubility, water content and viscosity analysis of [BMIM]Cl were carried out. The effects of reaction time, reaction temperature, sulfur compounds, and recycling of IL without regeneration on dibenzothiophene removal of liquid fuel were presented. In the extractive desulfurization process, the removal of dibenzothiophene in n-dodecane using [BMIM]Cl was 81% with mass ratio of 1 : 1, in 30 min at 30°C under the mild reaction conditions. Also, desulfurization of real fuels with IL and multistage extraction were studied. The results of this work might offer significant insights in the perceptive use of imidazoled ILs as energy-efficient green material for extractive deep desulfurization of liquid fuels as it can be reused without regeneration with considerable extraction efficiency. PMID:24307868

  5. Novel dry-desulfurization process using Ca(OH)2/fly ash sorbent in a circulating fluidized bed.

    PubMed

    Matsushima, Norihiko; Li, Yan; Nishioka, Masateru; Sadakata, Masayoshi; Qi, Haiying; Xu, Xuchang

    2004-12-15

    A dry-desulfurization process using Ca(OH)2/fly ash sorbent and a circulating fluidized bed (CFB) was developed. Its aim was to achieve high SO2 removal efficiency without humidification and production of CaSO4 as the main byproduct. The CaSO4 produced could be used to treat alkalized soil. An 83% SO2 removal rate was demonstrated, and a byproduct with a high CaSO4 content was produced through baghouse ash. These results indicated that this process could remove SO2 in flue gas with a high efficiency under dry conditions and simultaneously produce soil amendment. It was shown that NO and NO2 enhanced the SO2 removal rate markedly and that NO2 increased the amount of CaSO4 in the final product more than NO. These results confirmed that the significant effects of NO and NO2 on the SO2 removal rate were due to chain reactions that occurred under favorable conditions. The amount of baghouse ash produced increased as the reaction progressed, indicating that discharge of unreacted Ca(OH)2 from the reactor was suppressed. Hence, unreacted Ca(OH)2 had a long residence time in the CFB, resulting in a high SO2 removal rate. It was also found that 350 degrees C is the optimum reaction temperature for dry desulfurization in the range tested (320-380 degrees C).

  6. Recovery of SO2 and MgO from By-Products of MgO Wet Flue Gas Desulfurization

    PubMed Central

    Yan, Liyun; Lu, Xiaofeng; Wang, Quanhai; Guo, Qiang

    2014-01-01

    Abstract An industrial demonstration unit using natural gas as a heat source was built to calcine the by-products of MgO wet flue gas desulfurization from power plants; influencing factors on the SO2 content in calciner gas were comprehensively analyzed; and an advantageous recycling condition of MgO and SO2 from by-products was summarized. Results showed that the SO2 content in the calciner gas was increased by more than 10 times under a lower excess air coefficient, a higher feed rate, a lower crystal water in by-products, and a higher feed port position. For the tests conducted under the excess air coefficient above and below one, the effect of the furnace temperature on the SO2 content in the calciner gas was reversed. Results of activity analysis indicate that particles of MgO generated under the calcination temperature of 900–1,000°C had a high activity. In contrast, due to the slight sintering, MgO generated under the calcination temperature of 1,100°C had a low activity. To recycle SO2 as well as MgO, a temperature range of 900–927°C for TE103 is proposed. These studies will prompt the desulfurization market diversification, reduce the sulfur's dependence on imports for making sulfuric acid, be meaningful to balance the usage of the natural resource in China, and be regarded as a reference for the development of this technology for other similar developing countries. PMID:25371652

  7. Natural desulfurization in coal-fired units using Greek lignite.

    PubMed

    Konidaris, Dimitrios N

    2010-10-01

    This paper analyzes the natural desulfurization process taking place in coal-fired units using Greek lignite. The dry scrubbing capability of Greek lignite appears to be extremely high under special conditions, which can make it possible for the units to operate within the legislative limits of sulfur dioxide (SO2) emissions. According to this study on several lignite-fired power stations in northern Greece, it was found that sulfur oxide emissions depend on coal rank, sulfur content, and calorific value. On the other hand, SO2 emission is inversely proportional to the parameter gammaCO2(max), which is equal to the maximum carbon dioxide (CO2) content by volume of dry flue gas under stoichiometric combustion. The desulfurization efficiency is positively correlated to the molar ratio of decomposed calcium carbonate to sulfur and negatively correlated to the free calcium oxide content of fly ash.

  8. Flue Gas Desulfurization at Navy Bases, Navy Energy Guidance Study. Phase IV.

    DTIC Science & Technology

    1980-08-01

    WA08O9 146 BECHTEL NATIONAL INC SAN FRANCISCO CA FLUE GAS DESULFURIZATION AT NAVY BASES, NAVY ENERGY GUIDANCE ST-ETC(U) AUG 80 A I MCCONE N68305-77C... Flue gas desulfurization 10. ABSTRACT (C lno d. It -.4..,.d id-1, by 61-hb n-.1..) A study o e availability, costs, and operating perfor- nce of...industral-sized flue gas desulfurization (FGD) systems or coal-fired boilers 4...- mrfmmed for-the Civil Englneering- , - boratory at the Naval Construction

  9. The Gonzaga desulfurization flue gas process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixedmore » to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.« less

  10. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance.

    PubMed

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-12

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ∼98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  11. Gas-exfoliated porous monolayer boron nitride for enhanced aerobic oxidative desulfurization performance

    NASA Astrophysics Data System (ADS)

    Wu, Yingcheng; Wu, Peiwen; Chao, Yanhong; He, Jing; Li, Hongping; Lu, Linjie; Jiang, Wei; Zhang, Beibei; Li, Huaming; Zhu, Wenshuai

    2018-01-01

    Hexagonal boron nitride has been regarded to be an efficient catalyst in aerobic oxidation fields, but limited by the less-exposed active sites. In this contribution, we proposed a simple green liquid nitrogen gas exfoliation strategy for preparation of porous monolayer nanosheets (BN-1). Owing to the reduced layer numbers, decreased lateral sizes and artificially-constructed pores, increased exposure of active sites was expected, further contributed to an enhanced aerobic oxidative desulfurization (ODS) performance up to ˜98% of sulfur removal, achieving ultra-deep desulfurization. This work not only introduced an excellent catalyst for aerobic ODS, but also provided a strategy for construction of some other highly-efficient monolayer two-dimensional materials for enhanced catalytic performance.

  12. Study of variation grain size in desulfurization process of calcined petroleum coke

    NASA Astrophysics Data System (ADS)

    Pintowantoro, Sungging; Setiawan, Muhammad Arif; Abdul, Fakhreza

    2018-04-01

    Indonesia is a country with abundant natural resources, such as mineral mining and petroleum. In petroleum processing, crude oil can be processed into a source of fuel energy such as gasoline, diesel, oil, petroleum coke, and others. One of crude oil potentials in Indonesia is petroleum coke. Petroleum coke is a product from oil refining process. Sulfur reducing process in calcined petroleum cokes can be done by desulfurization process. The industries which have potential to become petroleum coke processing consumers are industries of aluminum smelting (anode, graphite block, carbon mortar), iron riser, calcined coke, foundry coke, etc. Sulfur reducing process in calcined petroleum coke can be done by thermal desulfurization process with alkaline substance NaOH. Desulfurization of petroleum coke process can be done in two ways, which are thermal desulfurization and hydrodesulphurization. This study aims to determine the effect of various grain size on sulfur, carbon, and chemical bond which contained by calcined petroleum coke. The raw material use calcined petroleum coke with 0.653% sulfur content. The grain size that used in this research is 50 mesh, then varied to 20 mesh and 100 mesh for each desulfurization process. Desulfurization are tested by ICP, UV-VIS, and FTIR to determine levels of sulfur, carbon, chemical bonding and sulfur dissolved water which contained in the residual washing of calcined petroleum coke. From various grain size that mentioned before, the optimal value is on 100 mesh grain size, where the sulfur content in petroleum coke is 0.24% and carbon content reaches the highest level of 97.8%. Meanwhile for grain size 100 mesh in the desulfurization process is enough to break the chemical bonds of organic sulfur in petroleum coke.

  13. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    PubMed

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE PAGES

    Wang, Sibo; Wu, Yunchao; Miao, Ran; ...

    2017-07-26

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  15. Scalable continuous flow synthesis of ZnO nanorod arrays in 3-D ceramic honeycomb substrates for low-temperature desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Sibo; Wu, Yunchao; Miao, Ran

    Scalable and cost-effective synthesis and assembly of technologically important nanostructures in three-dimensional (3D) substrates hold keys to bridge the demonstrated nanotechnologies in academia with industrially relevant scalable manufacturing. In this paper, using ZnO nanorod arrays as an example, a hydrothermal-based continuous flow synthesis (CFS) method is successfully used to integrate the nano-arrays in multi-channeled monolithic cordierite. Compared to the batch process, CFS enhances the average growth rate of nano-arrays by 125%, with the average length increasing from 2 μm to 4.5 μm within the same growth time of 4 hours. The precursor utilization efficiency of CFS is enhanced by 9more » times compared to that of batch process by preserving the majority of precursors in recyclable solution. Computational fluid dynamic simulation suggests a steady-state solution flow and mass transport inside the channels of honeycomb substrates, giving rise to steady and consecutive growth of ZnO nano-arrays with an average length of 10 μm in 12 h. The monolithic ZnO nano-array-integrated cordierite obtained through CFS shows enhanced low-temperature (200 °C) desulfurization capacity and recyclability in comparison to ZnO powder wash-coated cordierite. This can be attributed to exposed ZnO {101¯0} planes, better dispersion and stronger interactions between sorbent and reactant in the ZnO nanorod arrays, as well as the sintering-resistance of nano-array configurations during sulfidation–regeneration cycles. Finally, with the demonstrated scalable synthesis and desulfurization performance of ZnO nano-arrays, a promising, industrially relevant integration strategy is provided to fabricate metal oxide nano-array-based monolithic devices for various environmental and energy applications.« less

  16. [Investigation of bacterial diversity in the biological desulfurization reactor for treating high salinity wastewater by the 16S rDNA cloning method].

    PubMed

    Liu, Wei-Guo; Liang, Cun-Zhen; Yang, Jin-Sheng; Wang, Gui-Ping; Liu, Miao-Miao

    2013-02-01

    The bacterial diversity in the biological desulfurization reactor operated continuously for 1 year was studied by the 16S rDNA cloning and sequencing method. Forty clones were randomly selected and their partial 16S rDNA genes (ca. 1,400 bp) were sequenced and blasted. The results indicated that there were dominant bacterias in the biological desulfurization reactor, where 33 clones belonged to 3 different published phyla, while 1 clone belonged to unknown phylum. The dominant bacterial community in the system was Proteobacteria, which accounted for 85.3%. The bacterial community succession was as follows: the gamma-Proteobacteria(55.9%), beta-Proteobacteria(17.6%), Actinobacteridae (8.8%), delta-Proteobacteria (5.9%) , alpha-Proteobacteria(5.9%), and Sphingobacteria (2.9%). Halothiobacillus sp. ST15 and Thiobacillus sp. UAM-I were the major desulfurization strains.

  17. Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene.

    PubMed

    Dejaloud, Azita; Vahabzadeh, Farzaneh; Habibi, Alireza

    2017-07-01

    The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol g cell -1  h -1 ) were almost constant. By defining desulfurizing capacity (D DBT ) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% g cell L -1  h -1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  18. [Simultaneous desulfurization and denitrification by TiO2/ACF under different irradiation].

    PubMed

    Han, Jing; Zhao, Yi

    2009-04-15

    The supported TiO2 photocatalysts were prepared in laboratory, and the experiments of simultaneous desulfurization and denitrification were carried out by self-designed photocatalysis reactor. The optimal experimental conditions were achieved, and the efficiencies of simultaneous desulfurization and denitrification under two different light sources were compared. The results show that the oxygen content of flue gas, reaction temperature, flue gas humidity and irradiation intensity are most essential factors to photocatalysis. For TiO2/ACF, the removal efficiencies of 99.7% for SO2 and 64.3% for NO are obtained respectively at optimal experimental conditions under UV irradiation. For TiO2/ACF, the removal efficiencies of 97.5% for SO2 and 49.6% for NO are achieved respectively at optimal experimental conditions under the visible light irradiation. The results of five times parallel experiments indicate standard deviation S of parallel data is little. The mechanism of removal for SO2 and NO is proposed under two light sources by ion chromatography analysis of the absorption liquid.

  19. Two-stage coal gasification and desulfurization apparatus

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.

    1991-01-01

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  20. Simultaneous destraction and desulfurization of Illinois coals with supercritical ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, B.C.

    1983-01-01

    Various Illinois coals (with Illinois number6 being the main one) are liquefied with various supercritical solvents (ethanol being the main solvent) at 543-598 K, system pressures of 6.99-24.23 MPa, flow rates of 3.0-7.5 ml/min, reaction time of 0-180 minutes, and coal particle sizes of 0.36-0.85 mm to 1.00-2.36 mm to systematically investigate the effects of flow rates, reaction time, coal particle size, temperature, pressure, coal characteristics (by using different Illinois coals), supercritical medium (by using different solvents), and the addition of potassium hydroxide. The % weight loss of coal and the % sulfur removal during destraction and desulfurization of coalmore » are functions of the flow rate, the reaction time, the coal particle size, temperature, pressure and the supercritical solvent. Temperature, pressure and the supercritical medium are the most important parameters in controlling the % weight loss of coal and the % sulfur removal. The % weight loss of coal can be related to a power law and fits quite nicely into a second order kinetic model. The % sulfur removal also follows a second order kinetic model. A secondary reaction is observed during the destraction process, which implies that destraction, and possibly desulfurization, of coal is a multistep reaction including a physical extraction step where the major portion of the coal and sulfur was removed and then followed by a chemical reaction. Supercritical ethanol definitely enhances the removal of sulfur compounds from coal. The enhanced selectivity by supercritical ethanol is greatest at a pressure just above the critical pressure of ethanol. Finally, addition of a base such as potassium hydroxide enhances both % weight loss of coal and the % sulfur removal.« less

  1. Enhancing mercury removal across air pollution control devices for coal-fired power plants by desulfurization wastewater evaporation.

    PubMed

    Bin, Hu; Yang, Yi; Cai, Liang; Yang, Linjun; Roszak, Szczepan

    2017-10-09

    Desulfurization wastewater evaporation technology is used to enhance the removal of gaseous mercury (Hg) in conventional air pollution control devices (APCDs) for coal-fired power plants. Studies have affirmed that gaseous Hg is oxidized and removed by selective catalytic reduction (SCR), an electrostatic precipitator (ESP) and wet flue gas desulfurization (WFGD) in a coal-fired thermal experiment platform with WFGD wastewater evaporation. Effects of desulfurization wastewater evaporation position, evaporation temperature and chlorine ion concentration on Hg oxidation were studied as well. The Hg 0 oxidation efficiency was increased ranging from 30% to 60%, and the gaseous Hg removal efficiency was 62.16% in APCDs when wastewater evaporated before SCR. However, the Hg 0 oxidation efficiency was 18.99% and the gaseous Hg removal efficiency was 40.19% in APCDs when wastewater evaporated before ESP. The results show that WFGD wastewater evaporation before SCR is beneficial to improve the efficiency of Hg oxidized and removed in APCDs. Because Hg 2+ can be easily removed in ACPDs and WFGD wastewater in power plants is enriched with chlorine ions, this method realizes WFGD wastewater zero discharge and simultaneously enhances Hg removal in APCDs.

  2. Decreasing phosphorus loss in tile-drained landscapes using flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Elevated phosphorus (P) loading from agricultural non-point source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P...

  3. Differential desulfurization of dibenzothiophene by newly identified MTCC strains: Influence of Operon Array

    PubMed Central

    Bhanjadeo, Madhabi M.; Rath, Kalyani; Gupta, Dhirendra; Pradhan, Nilotpala; Biswal, Surendra K.; Mishra, Barada K.

    2018-01-01

    Since the sulfur specific cleavage is vital for the organic sulfur removal from fossil fuel, we explored potential bacterial strains of MTCC (Microbial Type Culture Collection) to desulfurize the Dibenzothiophene (DBT) through C-S bond cleavage (4-S pathway). MTCC strains Rhodococcus rhodochrous (3552), Arthrobacter sulfureus (3332), Gordonia rubropertincta (289), and Rhodococcus erythropolis (3951) capable of growing in 0.5 mM DBT were examined for their desulfurization ability. The presence of dsz genes as well as the metabolites was screened by polymerase chain reaction (PCR) and HPLC, respectively. All these strains showed > 99% DBT desulfurization with 10 days of incubation in minimal salt medium. From the HPLC analysis it was further revealed that these MTCC strains show differences in the end metabolites and desulfurize DBT differently following a variation in the regular 4-S pathway. These findings are also well corroborating with their respective organization of dszABC operons and their relative abundance. The above MTCC strains are capable of desulfurizing DBT efficiently and hence can be explored for biodesulfurization of petrochemicals and coal with an eco-friendly and energy economical process. PMID:29518089

  4. Removal of polychlorinated naphthalenes by desulfurization and emissions of polychlorinated naphthalenes from sintering plant

    PubMed Central

    Wang, Mengjing; Liu, Wenbin; Hou, Meifang; Li, Qianqian; Han, Ying; Liu, Guorui; Li, Haifeng; Liao, Xiao; Chen, Xuebin; Zheng, Minghui

    2016-01-01

    The sintering flue gas samples were collected at the inlets and outlets of the desulfurization systems to evaluate the influence of the systems on PCNs emission concentrations, profiles, and emission factors. The PCNs concentrations at the inlets and outlets were 27888–153672 pg m−3 and 11988–42245 pg m−3,respectively. Desulfurization systems showed excellent removal for PCNs, and the removal efficiencies of PCNs increase with increasing chlorination level. Lower chlorinated homologs are more sensitive to the desulfurization process than higher ones. High levels of PCNs were also detected in the gypsum (11600–29720 pg g−1) and fly ash samples (4946–64172 pg g−1). The annual total emissions of PCNs released to flue gas and gypsum from the sintering plants were about 394 kg, 48.5% of which was in gypsum. The surface area of the fly ash samples increased significantly from the first to the fourth stage of the series-connected electrostatic precipitator, accompanying obvious rising of concentration of PCNs in the fly ash samples. PMID:27197591

  5. Experimental Study on Semi-Dry Flue Gas Desulfurization Ash Used in Steel Slag Composite Material

    NASA Astrophysics Data System (ADS)

    Lu, Lijun; Fang, Honghui

    This article carried out the experimental study on using desulfurization ash in steel slag composite material. This was done by investigating the desulfurization ash content in formula one and formula two samples on the influence of setting time and strength of mortar. Through this study the following conclusions were reached for formula one: (1) a setting time of more than 10 hours is required, (2) a dosage of desulfurization ash of 1 2% is optimal, where flexural strength is reduced by 10% 23% and compressive strength reduced by 5.7% 16.4%. The conclusions of formula two were: (1) when the dosage of desulfurization ash is within 5%, the setting time is within 10 hours; (2) when the dosage of desulfurization ash is 1 2%, the flexural strength is increased by 5 7% and the compressive strength is reduced by 1 2%. The results show that the formula two is better.

  6. Desulfurization of phosphorothioate oligonucleotides via the sulfur-by-oxygen replacement induced by the hydroxyl radical during negative electrospray ionization mass spectrometry.

    PubMed

    Wu, Lianming; White, David E; Ye, Connie; Vogt, Frederick G; Terfloth, Gerald J; Matsuhashi, Hayao

    2012-07-01

    While the occurrence of desulfurization of phosphorothioate oligonucleotides in solution is well established, this study represents the first attempt to investigate the basis of the unexpected desulfurization via the net sulfur-by-oxygen (S-O) replacement during negative electrospray ionization (ESI). The current work, facilitated by quantitative mass deconvolution, demonstrates that considerable desulfurization can take place even under common negative ESI operating conditions. The extent of desulfurization is dependent on the molar phosphorothioate oligonucleotide-to-hydroxyl radical ratio, which is consistent with the corona discharge-induced origin of the hydroxyl radical leading to the S-O replacement. This hypothesis is supported by the fact that an increase of the high-performance liquid chromatography (HPLC) flow rate and the on-column concentration of a phosphorothioate oligonucleotide, as well as a decrease of the electrospray voltage reduce the degree of desulfurization. Comparative LC-tandem mass spectrometry (MS/MS) sequencing of a phosphorothioate oligonucleotide and its corresponding desulfurization product revealed evidence that the S-O replacement occurs at multiple phosphorothioate internucleotide linkage sites. In practice, the most convenient and effective strategy for minimizing this P = O artifact is to increase the LC flow rate and the on-column concentration of phosphorothioate oligonucleotides. Another approach to mitigate possible detrimental effects of the undesired desulfurization is to operate the ESI source at a very low electrospray voltage to diminish the corona discharge; however this will significantly compromise sensitivity when analyzing the low-level P = O impurities in phosphorothioate oligonucleotides. Copyright © 2012 John Wiley & Sons, Ltd.

  7. Analysis of Flue Gas Desulfurization (FGD) Processes for Potential Use on Army Coal-Fired Boilers

    DTIC Science & Technology

    1980-09-01

    TECHNICAL REPORT N-93 September 1980 ANALYSIS OF FLUE GAS DESULFURIZATION (FGD) PROCESSES FOR POTENTIAL USE ON ARMY COAL-FIRED BOILERS TECHNICAL LIBRARY...REFERENCE: Technical Report N-93, Analysis of Flue Gas Desulfurization (FGD) Ppooesses for Potential Use on Army Coal-Fired Boilers Please take a few...REPORT DOCUMENTATION PAGE 1. REPORT NUMBER CERL-TR-N-93 2. GOVT ACCESSION NO «. TITLE (end Subtitle) ANALYSIS OF FLUE GAS DESULFURIZATION (FGD

  8. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-03-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  9. Numerical Investigation of Desulfurization Kinetics in Gas-Stirred Ladles by a Quick Modeling Analysis Approach

    NASA Astrophysics Data System (ADS)

    Cao, Qing; Nastac, Laurentiu; Pitts-Baggett, April; Yu, Qiulin

    2018-06-01

    A quick modeling analysis approach for predicting the slag-steel reaction and desulfurization kinetics in argon gas-stirred ladles has been developed in this study. The model consists of two uncoupled components: (i) a computational fluid dynamics (CFD) model for predicting the fluid flow and the characteristics of slag-steel interface, and (ii) a multicomponent reaction kinetics model for calculating the desulfurization evolution. The steel-slag interfacial area and mass transfer coefficients predicted by the CFD simulation are used as the processing data for the reaction model. Since the desulfurization predictions are uncoupled from the CFD simulation, the computational time of this uncoupled predictive approach is decreased by at least 100 times for each case study when compared with the CFD-reaction kinetics fully coupled model. The uncoupled modeling approach was validated by comparing the evolution of steel and slag compositions with the experimentally measured data during ladle metallurgical furnace (LMF) processing at Nucor Steel Tuscaloosa, Inc. Then, the validated approach was applied to investigate the effects of the initial steel and slag compositions, as well as different types of additions during the refining process on the desulfurization efficiency. The results revealed that the sulfur distribution ratio and the desulfurization reaction can be promoted by making Al and CaO additions during the refining process. It was also shown that by increasing the initial Al content in liquid steel, both Al oxidation and desulfurization rates rapidly increase. In addition, it was found that the variation of the initial Si content in steel has no significant influence on the desulfurization rate. Lastly, if the initial CaO content in slag is increased or the initial Al2O3 content is decreased in the fluid-slag compositional range, the desulfurization rate can be improved significantly during the LMF process.

  10. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer.

    PubMed

    Sun, Tonghua; Shen, Yafei; Jia, Jinping

    2014-02-18

    This paper proposes a novel self-developed JTS-01 desulfurizer and JZC-80 alkaline adsorbent for H2S removal and gas cleaning of the COREX coal gas in small-scale and commercial desulfurizing devices. JTS-01 desulfurizer was loaded with metal oxide (i.e., ferric oxides) catalysts on the surface of activated carbons (AC), and the catalyst capacity was improved dramatically by means of ultrasonically assisted impregnation. Consequently, the sulfur saturation capacity and sulfur capacity breakthrough increased by 30.3% and 27.9%, respectively. The whole desulfurizing process combined selective adsorption with catalytic oxidation. Moreover, JZC-80 adsorbent can effectively remove impurities such as HCl, HF, HCN, and ash in the COREX coal gas, stabilizing the system pressure drop. The JTS-01 desulfurizer and JZC-80 adsorbent have been successfully applied for the COREX coal gas cleaning in the commercial plant at Baosteel, Shanghai. The sulfur capacity of JTS-01 desulfurizer can reach more than 50% in industrial applications. Compared with the conventional dry desulfurization process, the modified AC desulfurizers have more merit, especially in terms of the JTS-01 desulfurizer with higher sulfur capacity and low pressure drop. Thus, this sorption enhanced catalytic desulfurization has promising prospects for H2S removal and other gas cleaning.

  11. Peroxide-mediated desulfurization of phosphorothioate oligonucleotides and its prevention.

    PubMed

    Krotz, Achim H; Mehta, Rahul C; Hardee, Gregory E

    2005-02-01

    Desulfurization at the internucleotide phosphorothioate linkage of antisense oligonucleotides (ASOs) in dermatological formulations has been investigated using strong ion exchange chromatography and mass spectroscopy. The formation of phosphate diester linkages appeared to arise from a reaction between the phosphorothioate oligonucleotide and a potent oxidizing agent. Screening of excipients used in the formulation indicated that the cause of desulfurization was related to the presence of polyethylene glycol-derived nonionic surfactants MYRJ 52 or BRIJ 58. Autoxidation of the polyethylene glycol chain is suggested as the probable origin for the observed incompatibility. The ability of various antioxidants to prevent oxidative degradation of ASO-1 in simple test systems and in oil-in-water emulsions is described. It is found that in test systems both lipophilic and hydrophilic antioxidants are effective. However, in cream formulation (oil-in-water emulsions) of ASO-1 the addition of hydrophilic antioxidants L-cysteine or DL-alpha-lipoic acid has been shown to be superior in protecting the oligonucleotide from desulfurization upon storage. Copyright 2004 Wiley-Liss, Inc.

  12. Coal desulfurization by chlorinolysis production and combustion test evaluation of product coals

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Daly, D.

    1982-01-01

    Laboratory-scale screening tests were carried out on coal from Harrison County, Ohio to establish chlorination and hydrodesulfurization conditions for the batch reactor production of chlorinolysis and chlorinolysis-hydrodesulfurized coals. In addition, three bituminous coals, were treated on the lab scale by the chlorinolysis process to provide 39 to 62% desulfurization. Two bituminous coals and one subbituminous coal were then produced in 11 to 15 pound lots as chlorinolysis and hydrodesulfurized coals. The chlorinolysis coals had a desulfurization of 29-69%, reductions in voltatiles and hydrogen. Hydrodesulfurization provided a much greater desulfurization (56-86%), reductions in volatiles and hydrogen. The three coals were combustion tested in the Penn State ""plane flame furnace'' to determine ignition and burning characteristics. All three coals burned well to completion as: raw coals, chlorinolysis processed coals, and hydrodesulfurized coals. The hydrodesulfurized coals experienced greater ignition delays and reduced burning rates than the other coals because of the reduced volatile content. It is thought that the increased open pore volume in the desulfurized-devolatilized coals compensates in part for the decreased volatiles effect on ignition and burning.

  13. Utilization of a by-product produced from oxidative desulfurization process over Cs-mesoporous silica catalysts.

    PubMed

    Kim, Hyeonjoo; Jeong, Kwang-Eun; Jeong, Soon-Yong; Park, Young-Kwon; Kim, Do Heui; Jeon, Jong-Ki

    2011-02-01

    We investigated the use of Cs-mesoporous silica catalysts to upgrade a by-product of oxidative desulfurization (ODS). Cs-mesoporous silica catalysts were characterized through N2 adsorption, XRD, CO2-temperature-programmed desorption, and XRF. Cs-mesoporous silica prepared by the direct incorporation method showed higher catalytic performance than a Cs/MCM-41 catalyst by impregnation method for the catalytic decomposition of sulfone compounds produced from ODS process.

  14. Microbial communities associated with wet flue gas desulfurization systems

    PubMed Central

    Brown, Bryan P.; Brown, Shannon R.; Senko, John M.

    2012-01-01

    Flue gas desulfurization (FGD) systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal-fired electricity generation facilities were evaluated using culture-dependent and -independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems. PMID:23226147

  15. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, John; Piddington, Chris S.; Kovacevich, Brian R.; Young, Kevin D.; Denome, Sylvia A.

    1994-01-01

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous.

  16. [Domestication study about desulfuration microorganism from oxidation ditch by low concentration SO2].

    PubMed

    Huang, Bing; Shi, Zhe; Wang, Yan-Yan; Zhang, Shi-Ling

    2010-06-01

    An excellent desulfuration microorganism with a quick growth and propagation, high activation, high efficiency of removing SO2 is obtained from oxidation ditch of a city sewage treatment plant by inductive acclimatization over 6 d with low concentration SO2 gas (100-2 000 mg/m3). The desulfurition microorganism get their energy sources for growth from transforming SO2 (SO3(2-)) to SO4(2-). The predominant bacterium of the desulfuration microorganism has the same characteristic with Thiobacillus ferrooxidans (T. ferrooxidans), which showed that it was Gram negative, short rod bacteria with a single polar flagellum under a microscopic examination, and obtained its nourishment through the oxidation of inorganic compounds. The technology process condition of domestication and desulfuration of microorganism are particular studied, and the results showed that aerating time, SO2 flux and time to provide nutriment contained N, P, K to microorganism were very important. They have an ability with degradation rate of 160g/ (m3 x h) and degradation efficiency over 50% to transform sulfite to sulfate in liquid phase. The bacteria have a 98% of removing efficiency and over 80% of biodegradation efficiency for the 5 500 mg/m3 SO2 gas and the outlet concentration of SO2 is lower than 100 mg/m3, and also have a 95% of removing efficiency for 15 000 mg/m3 SO2 gas in the packed tower reactor with Raschig ring at 3s contact time.

  17. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    NASA Astrophysics Data System (ADS)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  18. Desulfurization of benzonaphthothiophenes and dibenzothiophene with a Raney nickel catalyst and its relationship to the. pi. -electron density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagai, M.; Urimoto, H.; Uetake, K.

    The hydrodesulfurization of heavy petroleum feedstocks and coal-derived liquids requires the conversion of high molecular weight compounds like dibenzothiophene and benzonaphthothiophenes. There are several studies in the literature which deal with the mechanism of the hydrodesulfurization of multi-ring thiophenic compounds on cobalt or nickel molybdenum catalysts at high pressure. However, there are only a few studies which relate the chemical reactivity of these compounds to their electronic structure. The reactivity of a multi-ring sulfur-containing compound is not determined solely by the size of the molecule. In addition, others studied the relationship between the first step in the hydrotreating reaction ofmore » benzonaphthothiophene and the Coulombic interaction term of the compounds using the CNDO/S method. Because there is competition between the different processes (hydrogenation and desulfurization) during reaction, it is difficult to understand the relationship between desulfurization and the electronic properties of the compounds under reaction conditions. The calculation of electronic structures necessarily involves many sigma bonds of hydrogenated aromatic rings as well as many electrons of high molecular weight compounds. For this reason, it is best to select a catalyst and reaction conditions under which desulfurization takes place without hydrogenation.« less

  19. Recombinant DNA encoding a desulfurization biocatalyst

    DOEpatents

    Rambosek, J.; Piddington, C.S.; Kovacevich, B.R.; Young, K.D.; Denome, S.A.

    1994-10-18

    This invention relates to a recombinant DNA molecule containing a gene or genes which encode a biocatalyst capable of desulfurizing a fossil fuel which contains organic sulfur molecules. For example, the present invention encompasses a recombinant DNA molecule containing a gene or genes of a strain of Rhodococcus rhodochrous. 13 figs.

  20. Exploring the Mechanism of Biocatalyst Inhibition in Microbial Desulfurization

    PubMed Central

    Abin-Fuentes, Andres; Mohamed, Magdy El-Said; Wang, Daniel I. C.

    2013-01-01

    Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation. PMID:24096431

  1. Desulfurization of Hydrocarbon Fuels at Ambient Conditions Using Supported Silver Oxide-Titania Sorbents

    DTIC Science & Technology

    2010-12-13

    required as a dopant in a two- component active metal matrix to generate surface defects. The use of high surface area supports has been demonstrated...B. S., Burton, J. F., Cullo, A. L. Supported cobalt sulfate desulfurization catalyst. US Patent No 74-483982 [110] Sivaraj, C., Contescu, C

  2. Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide.

    PubMed

    Tang, Qiong; Lin, Song; Cheng, Ying; Liu, Sujun; Xiong, Jun-Ru

    2013-09-01

    This work investigated the ultrasonic assisted oxidative desulfurization of bunker-C oil with TBHP/MoO3 system. The operational parameters for the desulfurization procedure such as ultrasonic irradiation time, ultrasonic wave amplitude, catalyst initial concentration and oxidation agent initial concentration were studied. The experimental results show that the present oxidation system was very efficient for the desulfurization of bunker-C oil and ~35% sulfur was removed which was dependent on operational parameters. The application of ultrasonic irradiation allowed sulfur removal in a shorter time. The stronger the solvent polarity is, the higher the sulfur removal rate, but the recovery rate of oil is lower. The sulfur compounds in bunker-C oil reacted with TBHP to produce corresponding sulfoxide, and further oxidation produced the corresponding sulfone. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Unraveling heavy oil desulfurization chemistry: targeting clean fuels.

    PubMed

    Choudhary, Tushar V; Parrott, Stephen; Johnson, Byron

    2008-03-15

    The sulfur removal chemistry of heavy oils has been unraveled by systematically investigating several heavy oils with an extremely wide range of properties. The heavy oil feed and product properties have been characterized by advanced analytical methods, and these properties have been related to the sulfur conversion data observed in pilot hydrotreating units. These studies coupled with kinetic treatment of the data have revealed that the desulfurization chemistry of heavy oils is essentially controlled by the strongly inhibiting three and larger ring aromatic hydrocarbon content and surprisingly not by the content of the "hard-to-remove" sulfur compounds. Such enhanced understanding of the heavy oil sulfur removal is expected to open new avenues for catalyst/process optimization for heavy oil desulfurization and thereby assist the efficent production of clean transporation fuels.

  4. Use of Flue Gas Desulfurization (FGD) Gypsum as a Heavy Metal Stabilizer in Contaminated Soils

    EPA Science Inventory

    Flue Gas Desulfurization (FGD) gypsum is a synthetic by-product generated from the flue gas desulfurization process in coal power plants. It has several beneficial applications such as an ingredient in cement production, wallboard production and in agricultural practice as a soil...

  5. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria

    PubMed Central

    Mohamed, Magdy El-Said; Al-Yacoub, Zakariya H.; Vedakumar, John V.

    2015-01-01

    Microorganisms possess enormous highly specific metabolic activities, which enable them to utilize and transform nearly every known chemical class present in crude oil. In this context, one of the most studied biocatalytic processes is the biodesulfurization (BDS) of thiophenic sulfur-containing compounds such as benzothiophene (BT) and dibenzothiophene (DBT) in crude oils and refinery streams. Three newly isolated bacterial strains, which were affiliated as Rhodococcus sp. strain SA11, Stenotrophomonas sp. strain SA21, and Rhodococcus sp. strain SA31, were enriched from oil contaminated soil in the presence of DBT as the sole S source. GC-FID analysis of DBT-grown cultures showed consumption of DBT, transient formation of DBT sulfone (DBTO2) and accumulation of 2-hydroxybiphenyl (2-HBP). Molecular detection of the plasmid-borne dsz operon, which codes for the DBT desulfurization activity, revealed the presence of dszA, dszB, and dszC genes. These results point to the operation of the known 4S pathway in the BDS of DBT. The maximum consumption rate of DBT was 11 μmol/g dry cell weight (DCW)/h and the maximum formation rate of 2-HBP formation was 4 μmol/g DCW/h. Inhibition of both cell growth and DBT consumption by 2-HBP was observed for all isolates but SA11 isolate was the least affected. The isolated biocatalysts desulfurized other model DBT alkylated homologs. SA11 isolate was capable of desulfurizing BT as well. Resting cells of SA11 exhibited 10% reduction in total sulfur present in heavy crude oil and 18% reduction in total sulfur present in the hexane-soluble fraction of the heavy crude oil. The capabilities of the isolated bacteria to survive and desulfurize a wide range of S compounds present in crude oil are desirable traits for the development of a robust BDS biocatalyst to upgrade crude oils and refinery streams. PMID:25762990

  6. Method for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, Thomas

    1989-01-01

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600.degree. to 1800.degree. F. and are partially quenched with water to 1000.degree. to 1200.degree. F. before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime/limestone.

  7. Desulfurization Activated Phosphorothioate DNAzyme for the Detection of Thallium.

    PubMed

    Huang, Po-Jung Jimmy; Vazin, Mahsa; Liu, Juewen

    2015-10-20

    Thallium (Tl) is a highly toxic heavy metal situated between mercury and lead in the periodic table. While its neighbors have been thoroughly studied for DNA-based sensing, little is known about thallium detection. In this work, in vitro selection of RNA-cleaving DNAzymes is carried out using Tl(3+) as the target metal cofactor. Both normal DNA and phosphorothioate (PS)-modified DNA are tested for this purpose. While no Tl(3+)-dependent DNAzymes are obtained, a DNA oligonucleotide containing a single PS-modified RNA nucleotide is found to cleave by ∼7% by Tl(3+) at the RNA position. The remaining 93% are desulfurized. By hybridization of this PS-modified oligonucleotide with the Tm7 DNAzyme, the cleavage yield increases to ∼40% in the presence of Tl(3+) and Er(3+). Tm7 is an Er(3+)-dependent RNA-cleaving DNAzyme. It cleaves only the normal substrate but is completely inactive using the PS-modified substrate. Tl(3+) desulfurizes the PS substrate to the normal substrate to be cleaved by Tm7 and Er(3+). This system is engineered into a catalytic beacon for Tl(3+) with a detection limit of 1.5 nM, which is below its maximal contamination limit defined by the U.S. Environmental Protection Agency (10 nM).

  8. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid.

    PubMed

    Lü, Hongying; Wang, Shunan; Deng, Changliang; Ren, Wanzhong; Guo, Baocun

    2014-08-30

    A novel and green carboxylate-anion-based protic ionic liquid (PIL), [Hnmp]HCOO, was prepared through a simple and atom economic neutralization reaction between N-methyl-2-pyrrolidonium (NMP) and formic acids. Both FT-IR spectra and (1)H NMR confirmed its simple salt structure. [Hnmp]HCOO exhibited so high catalytic activity that the dibenzothiophene (DBT) removal reached 99% at 50°C in 3h under conditions of VPIL/Vmodel oil=1:10 and H2O2/DBT (O/S, molar ratio)=5. The catalytic oxidation reactivity of S-compounds was found to be in the order of DBT>4,6-dimethyldibenzothiophene (4,6-DMDBT)>benzothiophene (BT). The investigation on mechanism showed that oxidative desulfurization was realized through dual activation of PIL. Moreover, [Hnmp]HCOO can be recycled for five times with an unnoticeable decrease in desulfurization activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Multiphase Modeling of Bottom-Stirred Ladle for Prediction of Slag-Steel Interface and Estimation of Desulfurization Behavior

    NASA Astrophysics Data System (ADS)

    Singh, Umesh; Anapagaddi, Ravikiran; Mangal, Saurabh; Padmanabhan, Kuppuswamy Anantha; Singh, Amarendra Kumar

    2016-06-01

    Ladle furnace is a key unit in which various phenomena such as deoxidation, desulfurization, inclusion removal, and homogenization of alloy composition and temperature take place. Therefore, the processes present in the ladle play an important role in determining the quality of steel. Prediction of flow behavior of the phases present in the ladle furnace is needed to understand the phenomena that take place there and accordingly control the process parameters. In this study, first a mathematical model is developed to analyze the transient three-phase flow present. Argon gas bottom-stirred ladle with off-centered plugs has been used in this study. Volume of fluid method is used in a computational fluid dynamics (CFD) model to capture the behavior of slag, steel, and argon interfaces. The results are validated with data from literature. Eye opening and slag-steel interfacial area are calculated for different operating conditions and are compared with experimental and simulated results cited in literature. Desulfurization rate is then predicted using chemical kinetic equations, interfacial area, calculated from CFD model, and thermodynamic data, obtained from the Thermo-Calc software. Using the model, it is demonstrated that the double plug purging is more suitable than the single plug purging for the same level of total flow. The advantage is more distinct at higher flow rates as it leads higher interfacial area, needed for desulfurization and smaller eye openings (lower oxygen/nitrogen pickup).

  10. SHAWNEE FLUE GAS DESULFURIZATION COMPUTER MODEL USERS MANUAL

    EPA Science Inventory

    The manual describes a Shawnee flue gas desulfurization (FGD) computer model and gives detailed instructions for its use. The model, jointly developed by Bechtel National, Inc. and TVA (in conjunction with the EPA-sponsored Shawnee test program), is capable of projecting prelimin...

  11. FLUE GAS DESULFURIZATION: THE STATE OF THE ART

    EPA Science Inventory

    The paper gives results of a review of commercially available flue gas desulfurization (FGD) technologies that have an established record of full-scale performance. (NOTE: Sulfur dioxide (SO2) scrubbers may be used by coal-fired electrcity generating units to meet the requiremen...

  12. Sulfur-selective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains.

    PubMed

    Castorena, Gladys; Suárez, Claudia; Valdez, Idania; Amador, Guadalupe; Fernández, Luis; Le Borgne, Sylvie

    2002-09-24

    New desulfurizing bacteria able to convert dibenzothiophene into 2-hydroxybiphenyl and sulfate were isolated from contaminated soils collected in Mexican refineries. Random amplified polymorphic DNA analysis showed they were different from previously reported Rhodococcus erythropolis desulfurizing strains. According to 16S rRNA gene sequencing and fatty acid analyses, these new isolates belonged to the genus Rhodococcus. These strains could desulfurize 4,6-dimethyldibenzothiophene which is one of the most difficult dibenzothiophene derivatives to remove by hydrodesulfurization. A deeply hydrodesulfurized diesel oil containing significant amounts of 4,6-dimethyldibenzothiophene was treated with Rhodococcus sp. IMP-S02 cells. Up to 60% of the total sulfur was removed and all the 4,6-dimethyldibenzothiophene disappeared as a result of this treatment.

  13. Formation of (FexMn(2-x))O3 solid solution and high sulfur capacity properties of Mn-based/M41 sorbents for hot coal gas desulfurization.

    PubMed

    Zhang, Y; Liu, B S; Zhang, F M; Zhang, Z F

    2013-03-15

    Several MCM-41 materials were synthesized at different conditions by hydrothermal procedure using cheap and easily available industrial water glass as silica source. Fe doped manganese-based oxide/MCM-41 sorbents were prepared by a sol-gel method. The effects of loadings of metal oxide, Fe/Mn molar ratios over MCM-41 and reaction temperature on the performance of sorbent for hot coal gas desulfurization were investigated. Various techniques such as BET, XRD, XPS, LRS and HRTEM were used to characterize the sorbents. The result indicated Fe(3+) ions could occupy a position of Mn(3+) in cubic lattice of Mn2O3 and the (FexMn2-x)O3 solid solution is mainly active phase of sorbent. Moreover, the result of nine successive sulfurization-regeneration cycles of sorbent showed high sulfur adsorption capacity and endurable stability of FeMn4Ox/MCM-41 for H2S removal. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. MARKETING OF BYPRODUCT GYPSUM FROM FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of an evaluation of the 1985 marketing potential of byproduct gypsum from utility flue gas desulfurization (FGD), for the area east of the Rocky Mountains, using the calculated gypsum production rates of 14 selected power plants. The 114 cement plants and...

  15. a Numerical Model for Flue Gas Desulfurization System.

    NASA Astrophysics Data System (ADS)

    Kim, Sung Joon

    The purpose of this work is to develop a reliable numerical model for spray dryer desulfurization systems. The shape of the spray dryer requires that a body fitted orthogonal coordinate system be used for the numerical model. The governing equations are developed in the general orthogonal coordinates and discretized to yield a system of algebraic equations. A turbulence model is also included in the numerical program. A new second order numerical scheme is developed and included in the numerical model. The trajectory approach is used to simulate the flow of the dispersed phase. Two-way coupling phenomena is modeled by this scheme. The absorption of sulfur dioxide into lime slurry droplets is simulated by a model based on gas -phase mass transfer. The program is applied to a typical spray dryer desulfurization system. The results show the capability of the program to predict the sensitivity of system performance to changes in operational parameters.

  16. Improving the desulfurization performance of CaCO3 with sodium humate

    NASA Astrophysics Data System (ADS)

    Feng, Run; Sun, Zhiguo; Zhang, Wenqing; Huang, Hao; Hu, Haihang; Zhang, Li; Xie, Hongyong

    2018-02-01

    The influence of these factors on desulphurization efficiency was studied by changing the amount of calcium carbonate, the concentration of sulfur dioxide, the liquid flow rate of absorbent and the air flow rate, the optimum working condition was determined by the research of limestone-gypsum desulphurization process commonly used in industry. By changing the amount of calcium carbonate, we conclude that the volume of water in the desulfurization efficiency does not increase with the adding amount of calcium carbonate. The optimum conditions were determined : at the condicion of the concentration of 500ppm of sulfur dioxide, 10g calcium carbonate, 150L/h liquid flow and the minimum air flow rate of 6.75m3/h, the highest desulfurization efficiency was close to 100% when sodium humate was not added, but the holding time was only about 5 minutes. After adding 3g of humic acid, the desulfurization efficiency was improved obviously, and the instantaneous efficiency of 100% lasting for about 40 minutes. It can be seen that, calcium carbonate in the addition of humic acid sodium can significantly improve the absorption of calcium carbonate performance of SO2.

  17. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8.

    PubMed Central

    Piddington, C S; Kovacevich, B R; Rambosek, J

    1995-01-01

    Dibenzothiophene (DBT), a model compound for sulfur-containing organic molecules found in fossil fuels, can be desulfurized to 2-hydroxybiphenyl (2-HBP) by Rhodococcus sp. strain IGTS8. Complementation of a desulfurization (dsz) mutant provided the genes from Rhodococcus sp. strain IGTS8 responsible for desulfurization. A 6.7-kb TaqI fragment cloned in Escherichia coli-Rhodococcus shuttle vector pRR-6 was found to both complement this mutation and confer desulfurization to Rhodococcus fascians, which normally is not able to desulfurize DBT. Expression of this fragment in E. coli also conferred the ability to desulfurize DBT. A molecular analysis of the cloned fragment revealed a single operon containing three open reading frames involved in the conversion of DBT to 2-HBP. The three genes were designated dszA, dszB, and dszC. Neither the nucleotide sequences nor the deduced amino acid sequences of the enzymes exhibited significant similarity to sequences obtained from the GenBank, EMBL, and Swiss-Prot databases, indicating that these enzymes are novel enzymes. Subclone analyses revealed that the gene product of dszC converts DBT directly to DBT-sulfone and that the gene products of dszA and dszB act in concert to convert DBT-sulfone to 2-HBP. PMID:7574582

  18. Radiation-induced desulfurization of Arabian crude oil and straight-run diesel

    NASA Astrophysics Data System (ADS)

    Basfar, A. A.; Mohamed, K. A.

    2011-11-01

    Radiation-induced desulfurization of four types of Arabian crude oils (heavy, medium, light and extra light) and straight-run diesel (SRD) was investigated over the range of 10-200 kGy. Results show that gamma radiation processing at absorbed doses up to 200 kGy without further treatment is not sufficient for desulfurization. However, the combination of gamma-irradiation with other physical/chemical processes (i.e. L/L extraction, adsorption and oxidation) may be capable of removing considerable levels of sulfur compounds in the investigated products. Currently, this approach of combined radiation/physical/chemical processes is under investigation. The findings of these attempts will be reported in the future.

  19. Numerical Simulation of Desulfurization Behavior in Gas-Stirred Systems Based on Computation Fluid Dynamics-Simultaneous Reaction Model (CFD-SRM) Coupled Model

    NASA Astrophysics Data System (ADS)

    Lou, Wentao; Zhu, Miaoyong

    2014-10-01

    A computation fluid dynamics-simultaneous reaction model (CFD-SRM) coupled model has been proposed to describe the desulfurization behavior in a gas-stirred ladle. For the desulfurization thermodynamics, different models were investigated to determine sulfide capacity and oxygen activity. For the desulfurization kinetic, the effect of bubbly plume flow, as well as oxygen absorption and oxidation reactions in slag eyes are considered. The thermodynamic and kinetic modification coefficients are proposed to fit the measured data, respectively. Finally, the effects of slag basicity and gas flow rate on the desulfurization efficiency are investigated. The results show that as the interfacial reactions (Al2O3)-(FeO)-(SiO2)-(MnO)-[S]-[O] simultaneous kinetic equilibrium is adopted to determine the oxygen activity, and the Young's model with the modification coefficient R th of 1.5 is adopted to determine slag sulfide capacity, the predicted sulfur distribution ratio LS agrees well with the measured data. With an increase of the gas blowing time, the predicted desulfurization rate gradually decreased, and when the modification parameter R k is 0.8, the predicted sulfur content changing with time in ladle agrees well with the measured data. If the oxygen absorption and oxidation reactions in slag eyes are not considered in this model, then the sulfur removal rate in the ladle would be overestimated, and this trend would become more obvious with an increase of the gas flow rate and decrease of the slag layer height. With the slag basicity increasing, the total desulfurization ratio increases; however, the total desulfurization ratio changes weakly as the slag basicity exceeds 7. With the increase of the gas flow rate, the desulfurization ratio first increases and then decreases. When the gas flow rate is 200 NL/min, the desulfurization ratio reaches a maximum value in an 80-ton gas-stirred ladle.

  20. o-Iodoxybenzoic acid mediated oxidative desulfurization initiated domino reactions for synthesis of azoles.

    PubMed

    Chaudhari, Pramod S; Pathare, Sagar P; Akamanchi, Krishnacharaya G

    2012-04-20

    A systematic exploration of thiophilic ability of o-iodoxybenzoic acid (IBX) for oxidative desulfurization to trigger domino reactions leading to new methodologies for synthesis of different azoles is described. A variety of highly substituted oxadiazoles, thiadiazoles, triazoles, and tetrazoles have been successfully synthesized in good to excellent yields, starting from readily accessible thiosemicarbazides, bis-diarylthiourea, 1,3-disubtituted thiourea, and thioamides. © 2012 American Chemical Society

  1. Methods, systems, and devices for deep desulfurization of fuel gases

    DOEpatents

    Li, Liyu [Richland, WA; King, David L [Richland, WA; Liu, Jun [Richland, WA; Huo, Qisheng [Richland, WA

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  2. Deep Desulfurization of Diesel Fuels with Plasma/Air as Oxidizing Medium, Diperiodatocuprate (III) as Catalyzer and Ionic Liquid as Extraction Solvent

    NASA Astrophysics Data System (ADS)

    Ban, Lili; Liu, Ping; Ma, Cunhua; Dai, Bin

    2013-12-01

    In this paper, the oxidative desulfurization (ODS) system is directly applied to deal with the catalytic oxidation of sulfur compounds of sulfur-containing model oil by dielectric barrier discharge (DBD) plasma in the presence of air plus an extraction step with the oxidation-treated fuel put over ionic liquid [BMIM]FeCl4 (1-butyl-3-methylimidazolium tetrachloroferrate). This new system exhibited an excellent desulfurization effect. The sulfur content of DBT in diesel oil decreased from 200 ppm to 4.92 ppm (S removal rate up to 97.5%) under the following optimal reaction conditions: air flow rate (ν) of 60 mL/min, amplitude of applied voltage (U) on DBD of 16 kV, input frequency (f) of 79 kHz, catalyst amount (ω) of 1.25 wt%, reaction time (t) of 10 min. Moreover, a high desulfurization rate was obtained during oxidation of benzothiophene (BT) or 4,6-DMDBT (4,6-dimethyl-dibenzothiophene) under the aforementioned conditions. The oxidation reactivity of different S compounds was decreased in the order of DBT, 4,6-DMDBT and BT. The remarkable advantage of the novel ODS system is that the desulfurization condition applies in the presence of air at ambient conditions without peroxides, aqueous solvent or biphasic oil-aqueous solution system.

  3. Method and apparatus for enhancing the desulfurization of hot coal gas in a fluid-bed coal gasifier

    DOEpatents

    Grindley, T.

    1988-04-05

    A process and apparatus for providing additional desulfurization of the hot gas produced in a fluid-bed coal gasifier, within the gasifier is described. A fluid-bed of iron oxide is located inside the gasifier above the gasification bed in a fluid-bed coal gasifier in which in-bed desulfurization by lime/limestone takes place. The product gases leave the gasification bed typically at 1600 to 1800 F and are partially quenched with water to 1000 to 1200 F before entering the iron oxide bed. The iron oxide bed provides additional desulfurization beyond that provided by the lime /limestone. 1 fig.

  4. L-proline-based deep eutectic solvents (DESs) for deep catalytic oxidative desulfurization (ODS) of diesel.

    PubMed

    Hao, Lingwan; Wang, Meiri; Shan, Wenjuan; Deng, Changliang; Ren, Wanzhong; Shi, Zhouzhou; Lü, Hongying

    2017-10-05

    A series of L-proline-based DESs was prepared through an atom economic reaction between L-proline (L-Pro) and four different kinds of organic acids. The DESs were characterized by Fourier transform infrared spectroscopy (FT-IR), H nuclear magnetic resonance ( 1 HNMR), cyclic voltammogram (CV) and the Hammett method. The synthesized DESs were used for the oxidative desulfurization and the L-Pro/p-toluenesultonic acid (L-Pro/p-TsOH) system shows the highest catalytic activity that the removal of dibenzothiophene (DBT) reached 99% at 60°C in 2h, which may involve the dual activation of the L-Pro/p-TsOH. The acidity of four different L-proline-based DESs was measured and the results show that it could not simply conclude that the correlation between the acidity of DESs and desulfurization capability was positive or negative. The electrochemical measurements evidences and recycling experiment indicate a good stability performance of L-Pro/p-TsOH in desulfurization. This work will provide a novel and potential method for the deep oxidation desulfurization. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Properties of Semi-dry Flue Gas Desulfurization Ash and Used for Phosphorus Removal

    NASA Astrophysics Data System (ADS)

    Yu, Y. P.; Fang, Y.; Chai, S. Y.; Zhuang, Z. Z.

    2018-05-01

    The composition of Semi-dry Flue Gas Desulfurization ash was as follows: CaSO3 · 0.5H2O and Ca(OH)2. Most of the particle size was about 8 µm particles were irregular and small, while the other part was rough and globular. CaSO3 strongly oxidized at about 466°C and Ca(OH)2 decomposed at ∼ 662°C. The maximum amount of phosphorus removal in Semi-dry Flue Gas Desulfurization ash was 79.898 mg/g.

  6. [Effects of desulfurization waste on calcium distribution, Ca(2+)-ATPase activity, and antioxidant characteristics of rice leaf under alkali stress].

    PubMed

    Mao, Gui-Lian; Xu, Xing; Zeng, Jin; Yue, Zi-Hui; Yang, Shu-Juan

    2012-02-01

    To approach the action mechanisms of desulfurization waste on alleviating alkali stress-induced injury of rice, a pot experiment was conducted to study the variations of leaf total calcium content, calcium distribution, plasma membrane Ca(2+)-ATPase activity, and reactive oxygen content of rice seedlings under alkali stress after the application of desulfurization waste. In the control, a few calcium particulates scattered in the cell wall and chloroplasts, while applying desulfurization waste or CaSO4 increased the calcium particulates in the plasma membrane, intercellular space, cell wall, and vacuole significantly. With the increasing application rate of desulfurization waste or CaSO4, the leaf total calcium content increased, Ca(2+)-ATPase activity in plasma membrane and tonoplast presented an increasing trend, plasma membrane relative permeability, MDA content, and O2 production rate decreased, and SOD and POD activities increased. The desulfurization waste could relieve the alkali stress to rice in some extent, and the main reactive compound in the waste could be CaSO4.

  7. STATUS OF COMMERCIAL UTILITY FGD (FLUE GAS DESULFURIZATION) TECHNOLOGY

    EPA Science Inventory

    The paper summarizes the status of FGD technology as of March 1983 and highlights recent trends in process selection, design, and performance of FGD systems. The information collected in the program is stored in the Flue Gas Desulfurization Information System (FGDIS), a collectio...

  8. CURRENT STATUS OF ADVACATE PROCESS FOR FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The following report discusses current bench- and pilot-plant advances in preparation of ADVAnced siliCATE (ADVACATE) calcium silicate sorbentsfor flue gas desulfurization. It also discusses current bench- and pilot-plant advances in sorbent preparation. Fly ash was ground in a l...

  9. Experimental study of the combined calcination and hydrodesulfurization of high-sulfur green petroleum coke

    NASA Astrophysics Data System (ADS)

    Kilic, Saliha Meltem

    The primary production of aluminum is done by means of the Hall-Heroult process where large amounts of carbon anodes are required and consumed. The quality of carbon anodes used in electrolysis is one of the most important parameters affecting the production of primary aluminum. The anode quality widely depends on the raw materials, one of which is the petroleum coke. Green petroleum coke is produced from the heavy residual fractions of petroleum. Petroleum cokes produced from sour crude oil sources contain high quantity of sulfur. A certain level of sulfur is needed to reduce the anode reactivities; however, the demand for anode-grade coke with acceptable sulfur content is increasing faster than the available supply. High sulfur levels in carbon anodes would have an adverse effect on environment; hence, the desulfurization of high sulfur green petroleum cokes is necessary. There are different ways of desulfurizing green petroleum cokes: solvent extraction, thermal desulfurization, and hydrodesulfurization. Coke produced by solvent extraction is prone to contamination. The thermal approach requires greater energy consumption and causes an increase in coke porosity. The global objective of this master project is to find an alternative solution for desulfurization that will produce quality calcined coke with minimum impact on environment. Hydrodesulfurization seems to be a viable option and was investigated in this study. Water was used for the hydrodesulfurization of commercially available high sulfur green petroleum coke. Different experimental systems were tried during the hydrodesulfurization experiments. A systematic approach was used to investigate the influence of hydrodesulfurization parameters including water injection temperature, duration, and water flow rate as well as coke particle size on the hydrodesulfurization of green petroleum coke. In addition to hydrodesulfurization, a number of thermal desulfurization experiments were carried out with the same

  10. Calculation and affection of pH value of different desulfurization and dehydration rates in the filling station based on Aspen Plus

    NASA Astrophysics Data System (ADS)

    Lv, J. X.; Wang, B. F.; Nie, L. H.; Xu, R. R.; Zhou, J. Y.; Hao, Y. J.

    2018-01-01

    The simulation process of the whole CNG filling station are established using Aspen Plus V7.2. The separator (Sep) was used to simulate the desulfurization and dehydration equipment in the gas station, and the flash module separator Flash 2 was used to simulate the gas storage well with proper temperature and environmental pressure. Furthermore, the sensitivity module was used to analyse the behaviour of the dehydration and desulfurization rate, and the residual pH value of the gas storage wells was between 2.2 and 3.3. The results indicated that the effect of water content on pH value is higher than that of hydrogen sulphide in the environment of gas storage wells, and the calculation process of the pH value is feasible. Additionally, the simulation process provides basic data for the subsequent anticorrosive mechanism and work of gas storage well and has great potential for practical applications.

  11. Catalysis in high-temperature fuel cells.

    PubMed

    Föger, K; Ahmed, K

    2005-02-17

    Catalysis plays a critical role in solid oxide fuel cell systems. The electrochemical reactions within the cell--oxygen dissociation on the cathode and electrochemical fuel combustion on the anode--are catalytic reactions. The fuels used in high-temperature fuel cells, for example, natural gas, propane, or liquid hydrocarbons, need to be preprocessed to a form suitable for conversion on the anode-sulfur removal and pre-reforming. The unconverted fuel (economic fuel utilization around 85%) is commonly combusted using a catalytic burner. Ceramic Fuel Cells Ltd. has developed anodes that in addition to having electrochemical activity also are reactive for internal steam reforming of methane. This can simplify fuel preprocessing, but its main advantage is thermal management of the fuel cell stack by endothermic heat removal. Using this approach, the objective of fuel preprocessing is to produce a methane-rich fuel stream but with all higher hydrocarbons removed. Sulfur removal can be achieved by absorption or hydro-desulfurization (HDS). Depending on the system configuration, hydrogen is also required for start-up and shutdown. Reactor operating parameters are strongly tied to fuel cell operational regimes, thus often limiting optimization of the catalytic reactors. In this paper we discuss operation of an authothermal reforming reactor for hydrogen generation for HDS and start-up/shutdown, and development of a pre-reformer for converting propane to a methane-rich fuel stream.

  12. Analysis on the Oversize Blast Furnace Desulfurization and a Sulfide Capacity Prediction Model Based on Congregated Electron Phase

    NASA Astrophysics Data System (ADS)

    Zhenyang, Wang; Jianliang, Zhang; Gang, An; Zhengjian, Liu; Zhengming, Cheng; Junjie, Huang; Jingwei, Zhang

    2016-02-01

    Through analyzed and regressed the actual productive desulfurization data from the oversize blast furnace (5500 m3) in north China, the relationship between the sulfur distribution parameters and the slag composition in actual production situation was investigated. As the slag and hot metal phases have their own balance sulfur content or sulfur partial pressure in gas phase, respectively, the non-equilibrium of sulfur among gas, slag, and metal phases leads to the transmission and distribution of sulfur. Combined with sulfur transmission reactions between gas, slag and metal phases, C/CO pairs equilibrium, and Wagner model, the measured sulfide capacity can be acquired using sulfur distribution ratio, sulfur activity coefficient, and oxygen activity in hot metal. Based on the theory of congregated electron phase, a new sulfide capacity prediction model (CEPM) has been developed, which has a good liner relationship with the measured sulfide capacity. Thus, using the burden structure for BF, the ironmaking slag composition can be obtained simply and can be used to reliably predict the ironmaking slag desulfurization ability a few hours later after charging under a certain temperature by CEPM.

  13. Proteomics and Metabolomics Analyses to Elucidate the Desulfurization Pathway of Chelatococcus sp.

    PubMed Central

    Chaudhuri, Mihir K.

    2016-01-01

    Desulfurization of dibenzothiophene (DBT) and alkylated DBT derivatives present in transport fuel through specific cleavage of carbon-sulfur (C-S) bonds by a newly isolated bacterium Chelatococcus sp. is reported for the first time. Gas chromatography-mass spectrometry (GC-MS) analysis of the products of DBT degradation by Chelatococcus sp. showed the transient formation of 2-hydroxybiphenyl (2-HBP) which was subsequently converted to 2-methoxybiphenyl (2-MBP) by methylation at the hydroxyl group of 2-HBP. The relative ratio of 2-HBP and 2-MBP formed after 96 h of bacterial growth was determined at 4:1 suggesting partial conversion of 2-HBP or rapid degradation of 2-MBP. Nevertheless, the enzyme involved in this conversion process remains to be identified. This production of 2-MBP rather than 2-HBP from DBT desulfurization has a significant metabolic advantage for enhancing the growth and sulfur utilization from DBT by Chelatococcus sp. and it also reduces the environmental pollution by 2-HBP. Furthermore, desulfurization of DBT derivatives such as 4-M-DBT and 4, 6-DM-DBT by Chelatococcus sp. resulted in formation of 2-hydroxy-3-methyl-biphenyl and 2-hydroxy –3, 3/- dimethyl-biphenyl, respectively as end product. The GC and X-ray fluorescence studies revealed that Chelatococcus sp. after 24 h of treatment at 37°C reduced the total sulfur content of diesel fuel by 12% by per gram resting cells, without compromising the quality of fuel. The LC-MS/MS analysis of tryptic digested intracellular proteins of Chelatococcus sp. when grown in DBT demonstrated the biosynthesis of 4S pathway desulfurizing enzymes viz. monoxygenases (DszC, DszA), desulfinase (DszB), and an NADH-dependent flavin reductase (DszD). Besides, several other intracellular proteins of Chelatococcus sp. having diverse biological functions were also identified by LC-MS/MS analysis. Many of these enzymes are directly involved with desulfurization process whereas the other enzymes/proteins support

  14. Alloying effect of copper on the corrosion properties of low-alloy steel for flue gas desulfurization system

    NASA Astrophysics Data System (ADS)

    Kim, Seon-Hong; Park, Sun-Ah; Kim, Jung-Gu; Shin, Kee-Sam; He, Yinsheng

    2015-03-01

    The alloying effect of Cu for a flue gas desulfurization materials was investigated using the electrochemical methods in the modified green death solution and the surface analyses. The test results demonstrated that the densely formed rust layer with high metallic Cu content improves the corrosion resistance of Cu-containing steel in the flue gas desulfurization (FGD) environment. The rust layer on the surface of the 0.02 wt% Cu steel, which has an insufficient Cu content, was less protective than others. The 0.05 wt% Cu steel represented the highest corrosion resistance due to the formation of the densely formed rust layer with optimum Cu content. Because the free standing Cu2S precipitates had the insoluble characteristic in highly acidic solution, it produced the relatively porous Cu-enriched layer on the 0.08 wt% Cu steel surface. From these phenomena, the corrosion resistance of specimen decreased as the Cu content of specimen increased from 0.05 wt% to 0.08 wt%.

  15. Effect of Flue Gas Desulfurization Waste on Corn Plants

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) is a by-product of conversion of sulfur dioxide into solid waste from coal combustion power generation plant. This by-product is rich in calcium, magnesium, and contains various other essential plant nutrients. The beneficial use of application of this waste as...

  16. Desulfurization of Dibenzothiophene and Diesel Oils by a Newly Isolated Gordona Strain, CYKS1

    PubMed Central

    Rhee, Sung-Keun; Chang, Je Hwan; Chang, Yong Keun; Chang, Ho Nam

    1998-01-01

    A dibenzothiophene (DBT)-desulfurizing bacterial strain was isolated and identified as Gordona strain CYKS1. Strain CYKS1 was found to transform DBT to 2-hydroxybiphenyl via the 4S pathway and to be able to also use organic sulfur compounds other than DBT as a sole sulfur source. Its desulfurization activity was susceptible to sulfate repression. Active resting cells for desulfurization could be prepared only in the early growth phase. When two types of diesel oils, middle distillate unit feed (MDUF) and light gas oil (LGO) containing various organic sulfur compounds including DBT, were treated with resting cells of strain CYKS1 for 12 h, the total sulfur content significantly decreased, from 0.15% (wt/wt) to 0.06% (wt/wt) for MDUF and from 0.3% (wt/wt) to 0.25% (wt/wt) for LGO. The newly isolated strain CYKS1 is considered to have good potential for application in the biodesulfurization of fossil fuels. PMID:9603863

  17. Polymeric carbon nitride nanomesh as an efficient and durable metal-free catalyst for oxidative desulfurization.

    PubMed

    Shen, Lijuan; Lei, Ganchang; Fang, Yuanxing; Cao, Yanning; Wang, Xinchen; Jiang, Lilong

    2018-03-06

    We report the first use of polymeric carbon nitride (CN) for the catalytic selective oxidation of H 2 S. The as-prepared CN with unique ultrathin "nanomeshes" structure exhibits excellent H 2 S conversion and high S selectivity. In particular, the CN nanomesh also displays better durability in the desulfurization reaction than traditional catalysts, such as carbon- and iron-based materials.

  18. Chemical profiling in Moutan Cortex after sulfuring and desulfuring processes reveals further insights into the quality control of TCMs by nontargeted metabolomic analysis.

    PubMed

    Zhan, Zhi-Lai; Deng, Ai-Ping; Kang, Li-Ping; Tang, Jin-Fu; Nan, Tie-Gui; Chen, Tong; He, Ya-Li; Guo, Lan-Ping; Huang, Lu-Qi

    2018-05-01

    As a traditional processing method, sulfuring has been used in the processing of many traditional Chinese medicines (TCMs). Desulfuring, which has emerged in recent years, is a new method applied to sulfured herbs so they can comply with regulations regarding residual SO 2 . Due to the chemical transformations and the residual SO 2 in the herbs, both sulfuring and desulfuring have negative effects on the safety and therapeutic effects of TCMs, and Moutan Cortex is one of the TCMs most susceptible to these effects. Here, a new strategy was developed to differentiate normal, sulfured and desulfured Moutan Cortex, and the transformations of compounds in sulfuring and desulfuring processes were analyzed using ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MSE) method based on metabolomic analysis. Our findings were as follows: (1) a total of 119 compounds were identified or tentatively identified, including 9 compounds that are being reported for the first time as natural products; (2) 15 sulfocompounds were generated during the sulfuring process; (3) these sulfocompounds could not be converted back into their corresponding glycosides by the desulfuring process, and the desulfuring decreased the residual SO 2 ,while also removing some soluble compounds in the sulfured Moutan Cortex; and (4) 28 compounds were screened and tentatively identified as markers for distinguishing normal, sulfured and desulfured Moutan Cortex. Our findings provide a new practical strategy for evaluating how sulfuring and desulfuring affect the quality of TCMs. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Carbonate Minerals with Magnesium in Triassic Terebratula Limestone in the Term of Limestone with Magnesium Application as a Sorbent in Desulfurization of Flue Gases

    NASA Astrophysics Data System (ADS)

    Stanienda-Pilecki, Katarzyna

    2017-09-01

    This article presents the results of studies of Triassic (Muschelkalk) carbonate rock samples of the Terebratula Beds taken from the area of the Polish part of the Germanic Basin. It is the area of Opole Silesia. The rocks were studied in the term of possibility of limestone with magnesium application in desulfurization of flue gases executed in power plants. Characteristic features of especially carbonate phases including magnesium-low-Mg calcite, high-Mg calcite, dolomite and huntite were presented in the article. They were studied to show that the presence of carbonate phases with magnesium, especially high-Mg calcite makes the desulfurization process more effective. Selected rock samples were examined using a microscope with polarized, transmitted light, X-ray diffraction, microprobe measurements and FTIR spectroscopy. The results of studies show a domination of low magnesium calcite in the limestones of the Terebratula Beds. In some samples dolomite and lower amounts of high-Mg calcite occurred. Moreover, huntite was identified. The studies were very important, because carbonate phases like high-Mg calcite and huntite which occurred in rocks of the Triassic Terebratula Beds were not investigated in details by other scientists but they presence in limestone sorbent could influence the effectiveness of desulfurization process.

  20. PET-modified red mud as catalysts for oxidative desulfurization reactions.

    PubMed

    do Prado, Nayara T; Heitmann, Ana P; Mansur, Herman S; Mansur, Alexandra A; Oliveira, Luiz C A; de Castro, Cinthia S

    2017-07-01

    This work describes the synthesis of catalysts based on red mud/polyethylene terephthalate (PET) composites and their subsequent heat treatment under N 2 atmosphere. The materials were characterized by scanning electron microscopy (SEM), temperature programmed reduction (TPR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric (TG) analysis and N 2 adsorption/desorption. The catalysts were evaluated in the oxidative desulfurization reaction of dibenzothiophene (DBT) in a biphasic system. The results indicated that the PET impregnation on red mud increased the affinity of the catalyst with the nonpolar phase (fuel), in which the contaminant was dissolved, allowing a higher conversion (up to 80%) and selectivity to the corresponding dibenzothiophene sulfone. The sulfone compound is more polar than DBT and diffused into the polar solvent as indicated by the data obtained via gas chromatography-mass spectrometry (GC-MS). Copyright © 2017. Published by Elsevier B.V.

  1. DISPOSAL OF BY-PRODUCTS FROM NONREGENERABLE FLUE GAS DESULFURIZATION SYSTEMS

    EPA Science Inventory

    The report gives results of a 4-year study to determine environmentally sound methods for disposing of wastes from nonregenerable flue gas desulfurization (FGD) systems. Data presented incorporates results obtained during the fourth year with material from report EPA-600/7-77-052...

  2. A New Dry Flue Gas Desulfurization Process-Underfeed Circulating Spouted Bed

    NASA Astrophysics Data System (ADS)

    Tao, M.; Jin, B. S.; Yang, Y. P.

    Applying an underfeed system, the underfeed circulating spouted bed was designed as a desulfurization reactor. The main objective of the technology is to improve the mixing effect and distribution uniformity of solid particles, and therefore to advance the desulfurization efficiency and calcium utility. In this article, a series of experimental studies were conducted to investigate the fluidization behavior of the solid-gas two-phase flow in the riser. The results show that the technology can distinctly improve the distribution of gas velocity and particle flux on sections compared with the facefeed style. Analysis of pressure fluctuation signals indicates that the operation parameters have significant influence on the flow field in the reaction bed. The existence of injecting flow near the underfeed nozzle has an evident effect on strengthening the particle mixing.

  3. Numerical Study on the Effect of Electrode Polarity on Desulfurization in Direct Current Electroslag Remelting Process

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Liu, Yu; Wang, Fang; Li, Guangqiang; Li, Baokuan; Qiao, Wenwei

    2017-10-01

    In order to clarify the influence of electrode polarity on desulfurization in direct current (DC) electroslag remelting process, a transient three-dimensional coupled mathematical model has been established. The finite volume method was invoked to simultaneously solve the mass, momentum, energy, and species conservation equations. The Joule heating and Lorentz force were fully coupled through calculating Maxwell's equations with the assistance of the magnetic potential vector. The motion of the metal-slag interface was described by using the volume of fluid approach. An auxiliary metallurgical kinetics module was introduced to determine the thermochemical and the electrochemical reaction rates. A reasonable agreement between the measured data and the simulated results are observed. A longer time and a larger area for the desulfurization can be provided by the metal pool-slag interface when compared with the metal droplet-slag interface. The electrochemical transfer rate at the metal pool-slag interface is positive in the DC reverse polarity (DCRP) remelting, while in the DC straight polarity (DCSP) remelting, the electrochemical transfer rate is negative at this interface. The desulfurization progress in the DCSP remelting thus is fall behind that in the DCRP remelting. The desulfurization rate of the DCRP remelting is around 70 pct and the rate of the DCSP remelting is about 40 pct.

  4. Investigation on mercury reemission from limestone-gypsum wet flue gas desulfurization slurry.

    PubMed

    Chen, Chuanmin; Liu, Songtao; Gao, Yang; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg(2+) to Hg(0) and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg(0) reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl(-) concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg(0) reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg(0) reemission rates decreased as the O2 concentration of flue gas and Cl(-) concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl(-) concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems.

  5. Investigation on Mercury Reemission from Limestone-Gypsum Wet Flue Gas Desulfurization Slurry

    PubMed Central

    Liu, Songtao; Liu, Yongchao

    2014-01-01

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (WFGD) systems caused by the reduction of Hg2+ to Hg0 and lead to a damping of the cobenefit mercury removal efficiency by WFGD systems. The experiment on Hg0 reemission from limestone-gypsum WFGD slurry was carried out by changing the operating conditions such as the pH, temperature, Cl− concentrations, and oxygen concentrations. The partitioning behavior of mercury in the solid and liquid byproducts was also discussed. The experimental results indicated that the Hg0 reemission rate from WFGD slurry increased as the operational temperatures and pH values increased. The Hg0 reemission rates decreased as the O2 concentration of flue gas and Cl− concentration of WFGD slurry increased. The concentrations of O2 in flue gas have an evident effect on the mercury retention in the solid byproducts. The temperature and Cl− concentration have a slight effect on the mercury partitioning in the byproducts. No evident relation was found between mercury retention in the solid byproducts and the pH. The present findings could be valuable for industrial application of characterizing and optimizing mercury control in wet FGD systems. PMID:24737981

  6. FLUE GAS DESULFURIZATION: THE STATE OF THE ART: JOURNAL ARTICLE

    EPA Science Inventory

    Srivastava*, R.K., and Jozewicz, W. Flue Gas Desulfurization: The State of the Art. Journal of Air and Waste Management Association (Air & Waste Management Asiciation) 51 (12):1676-88 (2001). EPA/600/J-01/391, Available: Journal of Air and Waste Management Association (journal)...

  7. Ionic liquids screening for desulfurization of natural gasoline by liquid-liquid extraction.

    PubMed

    Likhanova, Natalya V; Guzmán-Lucero, Diego; Flores, Eugenio A; García, Paloma; Domínguez-Aguilar, Marco A; Palomeque, Jorge; Martínez-Palou, Rafael

    2010-11-01

    Seventy five ionic liquids (ILs) were tested as a sequestering agent of sulfured compounds in natural gasoline (NG). Desulphurization of NG was performed by means of liquid-liquid extraction method at room temperature and atmospheric pressure. Experimental ILs containing imidazolium, pyridinium, and ammonium cations along with organic and inorganic anions were synthesized conventionally and under microwave and sonochemical conditions. The effect of the molecular structure of ILs on the desulfurization efficiency of NG with high sulfur content was evaluated. Analysis indicated that the anion type played a more important role than the cation on the desulphurization process. ILs based on halogen-ferrates and halogen-aluminates exhibited the highest efficiency in sulfur removal, and their efficiency is further improved when there is an excess of metallic salt in a ratio of at least 1:1.3 during the synthesis of the corresponding IL. An explanation for the ability of metallic ILs to remove sulfur-containing compounds from natural gasoline based on the ratio of the ionic charge to the atomic radius is proposed. Furthermore, a method to recover and reuse water-sensitive to halogenated precursors is described.

  8. Bench-scale demonstration of hot-gas desulfurization technology. Quarterly report, April 1 - June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-12-31

    The US Department of Energy (DOE) Morgantown Energy Technology Center (METC) is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal gas) streams of integrated gasification combined-cycle (IGCC) power systems. The programs focus on hot-gas particulate removal and desulfurization technologies that match or nearly match the temperatures and pressures of the gasifier, cleanup system, and power generator. The work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. The goal of this project is to continue further development of the zinc titanate desulfurizationmore » and direct sulfur recovery process (DSRP) technologies by (1) scaling up the zinc titanate reactor system; (2) developing an integrated skid-mounted zinc titanate desulfurization-DSRP reactor system; (3) testing the integrated system over an extended period with real coal-as from an operating gasifier to quantify the degradative effect, if any, of the trace contaminants present in cola gas; (4) developing an engineering database suitable for system scaleup; and (5) designing, fabricating and commissioning a larger DSRP reactor system capable of operating on a six-fold greater volume of gas than the DSRP reactor used in the bench-scale field test. The work performed during the April 1 through June 30, 1996 period is described.« less

  9. Applying ACF to Desulfurization Process from Flue Gas

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Zhigang; Tang, Qiang; Cao, Zidong

    2004-08-01

    Inasmuch as the status of environmental pollution caused by SO2 is more and more serious and the policy of environmental protection is executed more and more strictly, desulfurization from flue gas (FGD) is introduced to a wide-spread field of national economy. By a comparison with lime-limestone method, the application of adsorption method in FGD is more effective in desulfurization and more adapted to the situation of our country in respect of its more valuable byproduct. However, the technique of adsorption method is limited by the large amount of adsorbent used. In this paper, activated carbon fiber (ACF) is proposed as a new type of adsorbent to apply in FGD. A series of experiments have been made in order to compare the performances between ACF and granular activated carbon (GAC) which has been mostly used. Experiments show that under the same working conditions ACF's adsorption capacity is 16.6 times as high as that of GAC, mass loss rate is 1/12 of GAC's, desorption efficiency of ACF can reach 99.9%. The theory of micropore adsorption dynamics is adopted to analyze the characteristics of both adsorbents. It is indicated that adsorbability and perfectibility of desorption are tightly related to the distribution of pores and the surface micromechanism of adsorbent surface. The accessibility of pores for specified adsorptive and the effects of capillary condensation are crucial factors to influence the process of FGD. According to the research of different adsorbents, conclusion can be drawn that ACF is a kind of good material with a strong selectivity for SO2. Compared with the traditional methods of FGD, the use of ACF can greatly economize the consumption of adsorbent and obviously reduce the introduction of new adsorbent, and at the same time keep down the equipment investment and operating cost.

  10. Catalytic oxidative desulfurization of liquid hydrocarbon fuels using air

    NASA Astrophysics Data System (ADS)

    Sundararaman, Ramanathan

    Conventional approaches to oxidative desulfurization of liquid hydrocarbons involve use of high-purity, expensive water soluble peroxide for oxidation of sulfur compounds followed by post-treatment for removal of oxidized sulfones by extraction. Both are associated with higher cost due to handling, storage of oxidants and yield loss with extraction and water separation, making the whole process more expensive. This thesis explores an oxidative desulfurization process using air as an oxidant followed by catalytic decomposition of sulfones thereby eliminating the aforementioned issues. Oxidation of sulfur compounds was realized by a two step process in which peroxides were first generated in-situ by catalytic air oxidation, followed by catalytic oxidation of S compounds using the peroxides generated in-situ completing the two step approach. By this technique it was feasible to oxidize over 90% of sulfur compounds present in real jet (520 ppmw S) and diesel (41 ppmw S) fuels. Screening of bulk and supported CuO based catalysts for peroxide generation using model aromatic compound representing diesel fuel showed that bulk CuO catalyst was more effective in producing peroxides with high yield and selectivity. Testing of three real diesel fuels obtained from different sources for air oxidation over bulk CuO catalyst showed different level of effectiveness for generating peroxides in-situ which was consistent with air oxidation of representative model aromatic compounds. Peroxides generated in-situ was then used as an oxidant to oxidize sulfur compounds present in the fuel over MoO3/SiO2 catalyst. 81% selectivity of peroxides for oxidation of sulfur compounds was observed on MoO3/SiO2 catalyst at 40 °C and under similar conditions MoO3/Al2O3 gave only 41% selectivity. This difference in selectivity might be related to the difference in the nature of active sites of MoO3 on SiO2 and Al2O 3 supports as suggested by H2-TPR and XRD analyses. Testing of supported and bulk Mg

  11. Reactivity of metal oxide sorbents for removal of sulfur compounds from coal gases at high temperature and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, K.C.; Crowe, E.R.; Gangwal, S.K.

    1997-01-01

    Hot-gas desulfurization for the integrated gasification combined cycle (IGCC) process has been investigated to effectively remove hydrogen sulfide with various metal oxide sorbents at high temperatures and pressures. Metal oxide sorbents such as zinc titanate oxide, zinc ferrite oxide, copper oxide, manganese oxide and calcium oxide were found to be promising sorbents in comparison with other removal methods such as membrane separation and reactive membrane separation. The removal reaction of H{sub 2}S from coal gas mixtures with zinc titanate oxide sorbents was conducted in a batch reactor. The main objectives of this research are to formulate promising metal oxide sorbentsmore » for removal of hydrogen sulfide from coal gas mixtures, to compare reactivity of a formulated sorbent with a sorbent supplied by the Research Triangle Institute at high temperatures and pressures, and to determine effects of concentrations of moisture contained in coal gas mixtures on equilibrium absorption of H{sub 2}S into metal oxide sorbents. Promising durable metal oxide sorbents with high-sulfur-absorbing capacity were formulated by mixing active metal oxide powders with inert metal oxide powders and calcining these powder mixtures.« less

  12. [Diversity analysis of desulfuration bacterium from the oxidation ditch of city sewage treatment plant with SO2 gas].

    PubMed

    Huang, Bing; Zhang, Shi-Ling; Zhang, Jiang-Hong; Ao, Yong; Shi, Zhe

    2011-07-01

    A group of removing SO2 bacterium was obtained from the oxidation ditch of city sewage treatment plant by inductive domestication over 6 d with low concentration SO2 gas, and they have an ability with biodegradation rate of 888 mg x (L x h)(-1) and a degradation efficiency of 85% during 1.5 h for SO2 dissolved in water with their synergy. The clone library and two phylogenetic trees of the removing SO2 bacterium communities were obtained based on 16S rRNA DNA comparison by DNA extraction of the sample and in situ polymerase chain reaction (PCR). The phylogenetic analysis showed that 8 dominant desulfuration bacterium occupy about 69% of all removing SO2 bacterium, and some of them have a kindred with discovered desulfuration bacterium but not homogeneity, and there are four belong to alpha-Proteobacteria, another four belong to beta-Proteobacteria in them. The gene information about 16S rRNA sequence of the dominant desulfuration bacteria and domestication method provide a basic of looking for or domesticating removing SO2 bacterium for development microbial desulfurization technology of contained SO2 tail gas.

  13. Core-in-shell sorbent for hot coal gas desulfurization

    DOEpatents

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  14. Investigation Of A Mercury Speciation Technique For Flue Gas Desulfurization Materials

    EPA Science Inventory

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to bene...

  15. Microbial Desulfurization of Gasoline in a Mycobacterium goodii X7B Immobilized-Cell System

    PubMed Central

    Li, Fuli; Xu, Ping; Feng, Jinhui; Meng, Ling; Zheng, Yuan; Luo, Lailong; Ma, Cuiqing

    2005-01-01

    Mycobacterium goodii X7B, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl via the 4S pathway, was also found to desulfurize benzothiophene. The desulfurization product was identified as o-hydroxystyrene by gas chromatography (GC)-mass spectrometry analysis. This strain appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline. When Dushanzi straight-run gasoline (DSRG227) containing various organic sulfur compounds was treated with immobilized cells of strain X7B for 24 h, the total sulfur content significantly decreased, from 227 to 71 ppm at 40°C. GC flame ionization detection and GC atomic emission detection analysis were used to qualitatively evaluate the effects of M. goodii X7B treatment on the contents of gasoline. In addition, when immobilized cells were incubated at 40°C with DSRG275, the sulfur content decreased from 275 to 54 ppm in two consecutive reactions. With this excellent efficiency, strain X7B is considered a good potential candidate for industrial applications for the biodesulfurization of gasoline. PMID:15640198

  16. A recyclable ionic liquid-oxomolybdenum(vi) catalytic system for the oxidative desulfurization of model and real diesel fuel.

    PubMed

    Julião, Diana; Gomes, Ana C; Pillinger, Martyn; Valença, Rita; Ribeiro, Jorge C; Gonçalves, Isabel S; Balula, Salete S

    2016-10-14

    The oxidative desulfurization of model and real diesel has been studied using the complex [MoO2Cl2(4,4'-di-tert-butyl-2,2'-bipyridine)] as (pre)catalyst, aq. H2O2 as oxidant, and an ionic liquid as extraction solvent. Under moderate conditions (50 °C) and short reaction times (<3 h), dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene could be completely removed from the model diesel. The (pre)catalyst 1 was transformed in situ to the active catalyst [MoO(O2)2(di-tBu-bipy)]. By sequentially performing extractive desulfurization and ECODS steps, 76% sulfur removal was achieved for a real diesel (Sinitial = 2300 ppm). For both the model and real diesels, the catalyst/IL phase could be easily recycled and reused with no loss of desulfurization efficiency.

  17. Tests on a pilot plant for reheating desulfurized flue gases with the help of heat pipes

    NASA Astrophysics Data System (ADS)

    Schug, W.

    1982-02-01

    Desulfurized flue gases were reheated with a heat pipe heat exchanger. Finned heat pipes, with a coating or made of high quality steel were subjected to different operating conditions for 1000 hr. The coating proved to be unsuitable for heat transfer because it swells and detaches itself from the background material. The high quality steels showed pitting and surface corrosion. The possibilities of cleaning were also studied to prevent deposits forming on the heat pipes, but no solution was found.

  18. Mathematical Modeling Of Production Of Bio-surfactant Through Bio-desulfurization Of Hydrotreated Diesel In A Fermenter

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Sujaya; Chowdhury, Ranjana; Bhattacharjee, Chiranjib

    2010-10-01

    The conventional deep desulfurization must be followed by a suitable desulfurization process to achieve ultra low sulfur diesel (ULSD) with 10-15 ppm sulfur level which satisfies the strict environmental regulations. Bio-desulfurization is one of the potential routes for the above mentioned purpose. In this present investigation our major concern is production of Ultra Low sulfur diesel (ULSD) and production of biosurfactant simultaneously using Rhodococcus sp. The substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) get converted to 2-hydroxy biphenyl, which is a potential bio-surfactant. Kinetics of biodesulfurisation of deep desulfurized diesel using Rhodococcus sp. has been studied with special reference to removal of organo-sulfur compounds in diesel and production of 2-hydroxy biphenyl. The sulfur concentration of feed diesel is in the range of 200-540 mg/L. Aqueous phase to diesel ratios have been varied in the range of 9:1 to 1:9. The optimum ratio has been found to be 1:4 and the maximum conversion of sulfur of 95% has been achieved. The values of Monod kinetic parameters, μmax, maximum specific growth rate and Ks, saturation constant of the microbial growth and Yield coefficient of surfactant have been measured to be 0.096 h-1, 71 mg/L, and 17 μmol/g dry cell weights respectively by conducting batch type experiments. A deterministic mathematical model has been developed using the kinetic parameters and the experimental data have been compared with simulated ones satisfactorily.

  19. A fiber optics system for monitoring utilization of ZnO adsorbent beds during desulfurization for logistic fuel cell applications

    NASA Astrophysics Data System (ADS)

    Sujan, Achintya; Yang, Hongyun; Dimick, Paul; Tatarchuk, Bruce J.

    2016-05-01

    An in-situ fiber optic based technique for direct measurement of capacity utilization of ZnO adsorbent beds by monitoring bed color changes during desulfurization for fuel cell systems is presented. Adsorbents composed of bulk metal oxides (ZnO) and supported metal oxides (ZnO/SiO2 and Cusbnd ZnO/SiO2) for H2S removal at 22 °C are examined. Adsorbent bed utilization at breakthrough is determined by the optical sensor as the maximum derivative of area under UV-vis spectrum from 250 to 800 nm observed as a function of service time. Since the response time of the sensor due to bed color change is close to bed breakthrough time, a series of probes along the bed predicts utilization of the portion of bed prior to H2S breakthrough. The efficacy of the optical sensor is evaluated as a function of inlet H2S concentration, H2S flow rate and desulfurization in presence of CO, CO2 and moisture in feed. A 6 mm optical probe is employed to measure utilization of a 3/16 inch ZnO extrudate bed for H2S removal. It is envisioned that with the application of the optical sensor, desulfurization can be carried out at high adsorbent utilization and low operational costs during on-board miniaturized fuel processing for logistic fuel cell power systems.

  20. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION - NEW ORLEANS, MARCH 1976, VOLUME I

    EPA Science Inventory

    The proceedings document the presentation made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, nonregenerable, and advanced processes; process costs; and by-produc...

  1. Hydrodesulfurization of chlorinized coal

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Rohatgi, N. K. (Inventor)

    1983-01-01

    A method of desulfurization is described in which high sulfur coals are desulfurized by low temperature chlorinolysis of coal in liquid media, preferably water, followed by hydrodesulfurization at a temperature above 500 C. The coals are desulfurized to an extent of up to 90% by weight and simultaneously dechlorinated to a chlorine content below 0.1% by weight. The product coals have lower volatiles loss, lower oxygen and nitrogen content and higher fixed carbon than raw coals treated with hydrogen under the same conditions. Heating the chlorinated coal to a temperature above 500 C. in inert gas such as nitrogen results in significantly less desulfurization.

  2. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION-NEW ORLEANS, MARCH 1976. VOLUME II

    EPA Science Inventory

    The proceedings document the presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-prod...

  3. Hydrologic transport of fecal bacteria attenuated by flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization (FGD) gypsum is a byproduct of coal-fired power plants. As a soil amendment for crop and pasture production it may increase water infiltration, reduce soil erosion, and decrease nutrient losses from applications of animal manures. Broiler litter is used as a source of plan...

  4. Surface modification of calcium sulfate whisker prepared from flue gas desulfurization gypsum

    NASA Astrophysics Data System (ADS)

    Liu, Chengjun; Zhao, Qing; Wang, Yeguang; Shi, Peiyang; Jiang, Maofa

    2016-01-01

    In order to obtain hydrophobic whisker for preparing polymeric composite product, the calcium sulfate whisker (CSW) prepared from flue gas desulfurization (FGD) gypsum by hydrothermal synthesis was modified by various surfactants, and the effects of some modification conditions on the hydrophobic property of CSW were investigated in this study. Sodium stearate was considered to be a suitable surfactant and its reasonable dosage was 2% of ethanol solvent. Both physical and chemical absorptions were found in the surface modification process, and the later one was suggested to preferentially occur on the CSW surface. Moreover, modifying temperature, modifying duration, and agitation speed were experimentally found to have a remarkable influence on the modification behavior. Active ratio reached 0.845 when the modification process was conducted under reasonable conditions obtained in the current work. Finally, polypropylene sheet products were prepared from modified CSW showing an excellence mechanical property.

  5. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  6. Fundamental studies of desulfurization processes: reaction of methanethiol on ZnO and Cs/ZnO

    NASA Astrophysics Data System (ADS)

    Dvorak, Joseph; Jirsak, Tomas; Rodriguez, José A.

    2001-05-01

    The reaction of methanethiol on ZnO and Cs promoted ZnO surfaces has been studied with synchrotron based photoemission and thermal desorption spectroscopy. On ZnO, methanethiol undergoes selective reaction to produce carbon monoxide (37-58%), methane (23-38%), formaldehyde (12-15%), ethane (1-11%), and a mixture of ethylene and acetylene (3-13%). At low temperatures (<100 K), methanethiol reacts to yield thiolate intermediate bound to Zn 2+ cations. The thiolate is stable to 500 K. Above this temperature, C-S bond cleavage occurs to yield methyl intermediate and atomic S. Carbon is removed from the surface as gaseous products above 500 K, and atomic sulfur remains bound to the zinc sites of the surface. Submonolayer amounts of cesium do not have a significant promotional effect on C-S bond cleavage, whereas Cs multilayers are found to significantly lower the activation barrier for C-S bond cleavage. This study illustrates the chemistry associated with the desulfurization of thiols on a catalytically relevant oxide surface.

  7. Adsorptive on-board desulfurization over multiple cycles for fuel-cell-based auxiliary power units operated by different types of fuels

    NASA Astrophysics Data System (ADS)

    Neubauer, Raphael; Weinlaender, Christof; Kienzl, Norbert; Bitschnau, Brigitte; Schroettner, Hartmuth; Hochenauer, Christoph

    2018-05-01

    On-board desulfurization is essential to operate fuel-cell-based auxiliary power units (APU) with commercial fuels. In this work, both (i) on-board desulfurization and (ii) on-board regeneration performance of Ag-Al2O3 adsorbent is investigated in a comprehensive manner. The herein investigated regeneration strategy uses hot APU off-gas as the regeneration medium and requires no additional reagents, tanks, nor heat exchangers and thus has remarkable advantages in comparison to state-of-the-art regeneration strategies. The results for (i) show high desulfurization performance of Ag-Al2O3 under all relevant operating conditions and specify the influence of individual operation parameters and the combination of them, which have not yet been quantified. The system integrated regeneration strategy (ii) shows excellent regeneration performance recovering 100% of the initial adsorption capacity for all investigated types of fuels and sulfur heterocycles. Even the adsorption capacity of the most challenging dibenzothiophene in terms of regeneration is restored to 100% over 14 cycles of operation. Subsequent material analyses proved the thermal and chemical stability of all relevant adsorption sites under APU off-gas conditions. To the best of our knowledge, this is the first time 100% regeneration after adsorption of dibenzothiophene is reported over 14 cycles of operation for thermal regeneration in oxidizing atmospheres.

  8. Preparation of MoO2/g-C3N4 composites with a high surface area and its application in deep desulfurization from model oil

    NASA Astrophysics Data System (ADS)

    Hou, Liang-pei; Zhao, Rong-xiang; Li, Xiu-ping; Gao, Xiao-han

    2018-03-01

    A series of catalysts of composition X-MoO2/g-C3N4 (X = 0, 0.5, 1, 3, 5 wt.%) were successfully synthesized by calcination of a mixture of (NH4)6Mo7O24·4H2O and g-C3N4. Oxidative desulfurization experiments were conducted using X-MoO2/g-C3N4 as a catalyst, H2O2 as an oxidant, and ionic liquids (ILs) as extraction agents. Catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), and Brunauer-Emmett-Teller analysis (BET). Characterization results suggested that MoO2 was present in the catalyst and its crystallinity improved with increased Mo-loading. The catalysts had a larger specific surface area due to the presence of MoO2 dispersed on g-C3N4. Experimental results showed that 3%-MoO2/g-C3N4 had the highest catalytic activity among all the catalysts tested. A desulfurization rate of 96.0% was achieved under optimal conditions. Through gas chromatography-mass spectrometry (GC-MS) analysis, it was shown that dibenzothoiphene sulfone was the sole product of the oxidation desulfurization reaction. An apparent activation energy of 61.1 kJ/mol was estimated based on Arrhenius equation. The activity of 3%-MoO2/g-C3N4 slightly decreased after six runs. A possible mechanism for the reaction has been proposed.

  9. Enzymatic desulfurization of coal: Third quarterly report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquis, Judith K.; Kitchell, Judith P.

    Our current efforts to develop clean coal technology emphasize the advantages of enzymatic desulfurization techniques and have specifically addressed the potential of using partially-purified extracellular microbial enzymes or commercially available enzymes. Our work is focused on the treatment of ''model'' organic sulfur compounds such as dibenzothiophene (DBT) and ethylphenylsulfide (EPS). Furthermore, we are designing experiments to facilitate the enzymatic process by means of a hydrated organic solvent matrix. In this quarter we obtained important results both with the development of our understanding of the enzyme reaction systems and also with the microbial work at Woods Hole. 12 figs., 11 tabs.

  10. MODELING OF SO2 REMOVAL IN SPRAY-DRYER FLUE-GAS DESULFURIZATION SYSTEM

    EPA Science Inventory

    The report presents a comprehensive mathematical model of the SO2 removal process in a spray-dryer flue-gas desulfurization system. Simultaneous evaporation of a sorbent droplet and absorption/reaction of SO2 in the droplet are described by the corresponding heat- and mass-transf...

  11. SURVEY OF FLUE GAS DESULFURIZATION SYSTEMS: ST. CLAIR STATION, DETROIT EDISON CO

    EPA Science Inventory

    The report gives results of a survey of the flue gas desulfurization (FGD) system retrofitted on Unit 6 of Detroit Edison Co.'s St. Clair Station. The experimental FGD system, which operated through a 2-month (October 1976-January 1977) demonstration program, utilized a limestone...

  12. Hydrologic transport of fecal bacteria attenuated by flu gas desulfurized (FGD) gypsum

    USDA-ARS?s Scientific Manuscript database

    Background Flue gas desulfurized (FGD) gypsum is a byproduct of coal-fired power plants. As a soil amendment for crop production it has the potential of improving soil water infiltration, soil conservation, and decreasing nutrient losses from broiler litter applications. Because broiler litter is a ...

  13. Simultaneous desulfurization and denitrification of flue gas by ·OH radicals produced from O2+ and water vapor in a duct.

    PubMed

    Bai, Mindi; Zhang, Zhitao; Bai, Mindong

    2012-09-18

    In the present study, simultaneous flue gas desulfurization and denitrification are achieved with ·OH radicals generated from O(2)(+) reacting with water vapor in a duct. The O(2)(+) ions are generated by a strong ionization dielectric barrier discharge and then injected into the duct. Compared with conventional gas discharge treatment, the present method does not need a plasma reaction reactor, additional catalysts, reductants, or oxidants. The main recovered products are the liquids H(2)SO(4) and HNO(3), which can be used in many processes. Removal rates of 97% for NO and 82% for SO(2) are obtained under the following optimal experimental conditions: molar ratio of reactive oxygen species (O(2)(+), O(3)) to SO(2) and NO, 5; inlet flue gas temperature, 65 °C; reaction time, 0.94 s; and H(2)O volume fraction, 8%. Production of O(2)(+) and the plasma reaction mechanisms are discussed, and the recovered acid is characterized. The experimental results show that the present method performs better for denitrification than for desulfurization. Compared with conventional air discharge flue gas treatments, the present method has lower initial investment and operating costs, and the equipment is more compact.

  14. Reactions of VX, HD, and their simulants with NaY and AgY zeolites. Desulfurization of VX on AgY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, G.W.; Bartram, P.W.

    1999-11-09

    The room-temperature reactions of the chemical warfare agents VX (O-ethyl S-2-(diisopropylamino)-ethyl methylphosphonothioate), HD (2,2{prime}-dichloroethyl sulfide, or mustard), and their common simulants, O,S-diethyl phenylphosphonothioate (DEPPT) and 2-chloroethyl phenyl sulfide (CEPS), with NaY and silver-exchanged (AgY) zeolites have been studied using solid-state magic angle spinning NMR. VX hydrolyzes via exclusive cleavage of the P{single{underscore}bond}S bond on both NaY and AgY to yield ethyl methylphosphonate (EMPA). The reaction is significantly faster on AgY than on NaY, suggesting catalysis by silver. On AgY, an intermediate silver salt of EMPA is apparently formed which is slowly converted to ethyl 2-(diisopropylamino)ethyl methylphosphonate (QB, the desulfurized analoguemore » of VX) in about a 78% yield. DEPPT similarly hydrolyzes via P{single{underscore}bond}S cleavage on AgY to yield an apparent silver salt of ethyl phenylphosphonate, which does not undergo further reaction to the desulfurized analogue. No reaction is observed for DEPPT on NaY. HD on AgY forms both vinyl sulfide and the cyclic ether 1,4-thioxane. HD reacts faster on NaY to exclusively form the CH-TG sulfonium ion (HOCH{sub 2}CH{sub 2}SCH{sub 2}CH{sub 2}S{sup +}[CH{sub 2}CH{sub 2}OH]{sub 2}). CEPS also reacts faster on NaY, forming 2-hydroxyethyl phenyl sulfide. On AgY, CEPS does not give the vinyl product, but does yield the ether product PhSCH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}SPh. A mechanism is proposed for the silver-catalyzed hydrolysis of VX, the desulfurization of the cleaved thiol, and the formation of QB.« less

  15. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    USDA-ARS?s Scientific Manuscript database

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  16. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    PubMed

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  17. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  18. SURVEY OF FLUE GAS DESULFURIZATION SYSTEMS: WILL COUNTY STATION, COMMONWEALTH EDISON CO

    EPA Science Inventory

    The report gives results of a second survey of the flue gas desulfurization (FGD) system on Unit 1 of Commonwealth Edison Co.'s Will County Station. The FGD system, started up in February 1972, uses a limestone slurry in two parallel scrubbing trains. Each train includes a ventur...

  19. Advanced fuel gas desulfurization (AFGD) demonstration project. Technical progress report No. 19, July 1, 1994--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    The {open_quotes}Advanced Flue Gas Desulfurization (AFGD) Demonstration Project{close_quotes} is a $150.5 million cooperative effort between the U.S. Department of Energy and Pure Air, a general partnership of Air Products and Chemicals, Inc. and Mitsubishi Heavy Industries America, Inc. The AFGD process is one of several alternatives to conventional flue gas desulfurization (FGD) being demonstrated under the Department of Energy`s Clean Coal Technology Demonstration Program. The AFGD demonstration project is located at the Northern Indiana Public Service Company`s Bailly Generating Station, about 12 miles northeast of Gary, Indiana.

  20. Research on Identification and Screen of Microbial Desulfurization Strains for Petroleum

    NASA Astrophysics Data System (ADS)

    Xiaojuan, Tian; Lingtian, Tang; Li'e, Peng; Xinghong, Li

    The oil-contaminated soil sample was acquired from Shengli Oilfield and Jidong Oilfield and cultured with enrichment technology. Then 21 desulfurization strains were separated from the sample, from which a high efficiency desulfurization strain TV9704 was selected. The strain could neither grow with n-dodecane, n-hexadecane, liquid paraffin, naphthalene or diesel as a carbon source and energy source, nor obviously reduce oil combustion value. It could use thiophene or dibenzothiophene (DBT) as the sole sulfur source. In the experiment, the concentrations of thiophene and DBT were measured by UV spectrophotometer. After being cultured in the culture medium with an initial concentration of 63.2 mmol/L respectively for 48 h and 144 h, the degradation rates of the strain TV9704 on thiophene were 39.0% and 63.8%; the DBT with an initial concentration of 2.7 mmol/L was degraded by 1.46 mmol/L after cultured for 72 h. When sodium acetate and glycerol were chosen as carbon source, the ethanol could enhance the degradation rate of TV9704 on DBT significantly. Strain TV9704 was identified by China Industrial Culture Collection Center (CICC) as a Bacillus sp., Gram-positive, obligate aerobic, which forms a circular orange colony on the nutrition gravy plate. The 16SrDNA gene sequencing test and analysis was carried out on strain TV9704, finding that its homologies with the most similar species Bacillus aquimaris and Bacillus marisflavi were 99.2% and 98.2% respectively, but a larger difference existed between their cell morphological characteristics and physiological and biochemical characteristics, therefore strain TV9704 may be a new species because it was impossible to be categorized to any population.

  1. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT HOLLYWOOD, FLORIDA, NOVEMBER 1977. VOLUME II

    EPA Science Inventory

    The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...

  2. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT HOLLYWOOD, FLORIDA, NOVEMBER 1977. VOLUME I

    EPA Science Inventory

    The proceedings document presentations made during the symposium, which dealt with the status of flue gas desulfurization technology in the United States and abroad. Subjects considered included: regenerable, non-regenerable, and advanced processes; process costs; and by-product ...

  3. Investigations in physical mechanism of the oxidative desulfurization process assisted simultaneously by phase transfer agent and ultrasound.

    PubMed

    Bhasarkar, Jaykumar B; Chakma, Sankar; Moholkar, Vijayanand S

    2015-05-01

    This paper attempts to discern the physical mechanism of the oxidative desulfurization process simultaneously assisted by ultrasound and phase transfer agent (PTA). With different experimental protocols, an attempt is made to deduce individual beneficial effects of PTA and ultrasound on the oxidative desulfurization system, and also the synergy between the effects of PTA and ultrasound. Effect of PTA is more marked for mechanically stirred system due to mass transfer limitations, while intense emulsification due to ultrasound helps overcome the mass transfer limitations and reduces the extent of enhancement of oxidation by PTA. Despite application of PTA and ultrasound, the intrinsic factors and properties of the reactants such as polarity (and hence partition coefficient) and diffusivity have a crucial effect on the extent of oxidation. The intrinsic reactivity of the oxidant also plays a vital role, as seen from the extent of oxidation achieved with performic acid and peracetic acid. The interfacial transport of oxidant in the form of oxidant-PTA complex reduces the undesired consumption of oxidant by the reducing species formed during transient cavitation in organic medium, which helps effective utilization of oxidant towards desulfurization. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Desulfurization of 4-methyl dibenzothiophene using titanium supported Keggin type polyoxometalate

    NASA Astrophysics Data System (ADS)

    Lesbani, Aldes; Anggraini, Ana; Mohadi, Risfidian; Rohendi, Dedi; Said, Muhammad

    2017-03-01

    Titanium supported Keggin type polyoxometalate H5PV2Mo10O40.nH2O has been prepared using tetra isopropyl orthotitanate by sol-gel method and microemulsion to form H5PV2Mo10O40/TiO2. Compound H5PV2Mo10O40.nH2O/TiO2 was characterized using FTTR spectroscopy, X-Ray analysis, and acidity measurement. FTTR spectrum showed that all vibration of titanium and polyoxometalate were appeared in H5PV2Mo10O40.nH2O/TiO2 with decreasing crystallinity. The acidity of H5PV2Mo10O40.nH2O/TiO2 was higher than H5PV2Mo10O40.nH2O. Desulfurization of 4-methyl dibenzothiophene (4-MDBT) using H5PV2Mo10O40.nH2O/TiO2 as catalyst resulted conversion of 4-MDBT was 99% and higher than desulfurization using H5PV2Mo10O40.nH2O under mild conditions.

  5. [Application of activated carbon from waste tea in desulfurization and denitrification].

    PubMed

    Song, Lei; Zhang, Bin; Deng, Wen

    2014-10-01

    The effects of pore structure, graphite and surface structure of waste tea activated carbon on its desulfurization and denitrification performance were investigated. The adsorption kinetics and adsorption process were also studied. The results showed that less graphitization, lower micropore size and more nitrogenous basic group of adsorbent enhanced its desulfurization ability. When well- developed mesopores were present in adsorbent, the NO removal efficiency was decreased, while more nitrogenous basic groups promoted the removal rate of NO. When SO2 and NO were removed together, competing adsorption occurred. After oxygen and steam were introduced to the flue gas, the removal efficiencies of SO2 and NO were increased. The adsorption of SO2 and NO onto waste tea activated carbon was physical adsorption without O2 and H2O, while the vapor promoted chemical adsorption of SO2 in the presence of water and oxygen. The adsorption process of the material can be well described by Bangham's kinetic equation, and the value of R2 was no less than 0.989. O2 and water vapor slowed the adsorption rates of SO2 and NO.

  6. The dissolution kinetics of industrial brine sludge wastes from a chlor-alkali industry as a sorbent for wet flue gas desulfurization (FGD).

    PubMed

    Masilela, E; Lerotholi, L; Seodigeng, T; Rutto, H

    2018-02-01

    The disposal of industrial brine sludge waste (IBSW) in chlor-alkali plants can be avoided by utilization of IBSW as a sorbent in wet flue gas desulfurization (FGD). The shrinking core model was used to determine the dissolution kinetics of IBSW, which is a vital step in wet FGD. The effects of solid-to-liquid ratio (m/v), temperature, pH, particle size, and stirring speed on the conversion and dissolution rate constant are determined. The conversion and dissolution rate constant decreases as the pH, particle size, and solid-to-liquid ratio are increased and increases as the temperature, concentration of acid, and stirring speed are increased. The sorbents before and after dissolution were characterized using x-ray fluorescence (XRF), x-ray diffraction (XRD), and scanning electron microscopy (SEM). An activation energy of 7.195 kJ/mol was obtained and the product layer diffusion model was found to be the rate-controlling step. The use of industrial brine sludge waste as an alternative sorbent in wet flue gas desulfurization can reduce the amounts of industrial wastes disposed of in landfills. This study has proved that the sorbent can contain up to 91% calcium carbonate and trace amounts of sulfate, magnesium, and so on. This can be used as new sorbent to reduce the amount of sulfur dioxide in the atmosphere and the by-product gypsum can be used in construction, as a plaster ingredient, as a fertilizer, and for soil conditioning. Therefore, the sorbent has both economic and environmental benefits.

  7. Phosphotungstic acid encapsulated in the mesocages of amine-functionalized metal-organic frameworks for catalytic oxidative desulfurization.

    PubMed

    Wang, Xu-Sheng; Huang, Yuan-Biao; Lin, Zu-Jin; Cao, Rong

    2014-08-21

    Highly dispersed Keggin-type phosphotungstic acid (H3PW12O40, PTA) encapsulated in the mesocages of amine-functionalized metal-organic frameworks MIL-101(Cr)-NH2 has been prepared by an anion-exchange method. PTA anions (PW12O40(3-)) are stabilized in the mesocages via the electrostatic interaction with amino groups of the MIL-101(Cr)-NH2. The obtained catalyst (denoted PTA@MIL-101(Cr)-NH2) exhibits high catalytic activity in the extractive and catalytic oxidative desulfurization (ECODS) system under mild conditions. Moreover, it can be easily recovered and recycled several times without leaching and loss of activity.

  8. Numerical simulation of flow in the wet scrubber for desulfurization

    NASA Astrophysics Data System (ADS)

    Novosád, Jan; Vít, Tomáš

    2015-05-01

    This article deals with numerical simulation of flow and chemical reactions in absorber for desulfurization of flue-gas. The objective of the work is the investigation of effect of different nozzles types and their placement in spray layers. These nozzles distribute lime suspension into flue gas stream. The research includes two types of nozzles and four different arrangements of nozzles and spray layers. Conclusion describes the effect of nozzle types and their arrangements on the suspension concentration in absorber.

  9. Preparation of AAO-CeO2 nanotubes and their application in electrochemical oxidation desulfurization of diesel

    NASA Astrophysics Data System (ADS)

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2017-02-01

    The coaxial arrays of AAO-CeO2 NTs have been successfully galvanostatically deposited on an anode, characterized and adopted as a catalyst for removing organic sulfurs from diesel. The influence of the main electrochemical oxidation factors on the efficiency of desulfurization have also been investigated. The results show that the fabrication process of AAO-CeO2 NTs is accompanied by the formation of a new phase, namely Al3Ce, and the main oxidation products of the diesel are soluble inorganic sulphides, especially Ce2(SO4)3. When compared with dibenzothiophene and 4, 6-dimethyldibenzothiophene, benzothiophene is much more easily removed, with a removal efficiency that reaches 87.2%. Finally, a possible electrochemical oxidation desulfurization pathway for diesel is proposed.

  10. Study of Cleanliness of High Nitrogen Steel in ESR

    NASA Astrophysics Data System (ADS)

    Xuwei, Tang; Rong, Zhu

    This paper compares inclusions in high nitrogen steel before and after ESR process, analyzes the influence of slag systems and total oxygen content in consumable ingots. The total oxygen content is reduced apparently during ESR process, which indicates good effects on removal of inclusions. In the experiment, it shows that different slag systems will affect the result of inclusions removal significantly; proper w(CaO/Al2O3) will reduce the level of inclusions and total oxygen content in ESR ingots. In ESR process, the type and chemical composition of inclusions have no difference when oxygen content in consumable ingots is different, which means O content in consumable ingots have no direct relationship with cleanliness of ESR ingots. In typical inclusions, w(MnO)/w(MnO+Al2O3)≈0.23 0.32. The total oxygen content of ESR ingots keeps between 20 30ppm when the oxygen contents in consumable ingots are diverse from 40 to 100ppm. Meanwhile, this paper studies desulfurization process of high nitrogen steel in ESR, analyzes the influence of slag systems a nd remelting rates on desulfurization efficiency. The results indicate that the average size and quant ity of sulfide inclusion decrease after ESR process. The typical inclusion after ESR process is MnS+Al2O3. Slag system with proper CaO content has higher sulfur partition ratio, which leads to better desulfurization effect. The desulfurization rate changes greatly with different remelting rates, which indicates the kinetic parameter has more influence in desulfurization. The reason of this phenomenon is that the process of desulfurization can be considered as a non-equilibrium reaction, which differs with thermodynamic equilibrium. In kinetic study, it is founded that the desulfurization efficiency increases with higher remelting area, sulfur partition and lower remelting rate, which is different from experiment. The desulfurization efficiency decreases firstly and then recovers when remelting rate drops. The

  11. Flue gas desulfurization gypsum: Its effectiveness as an alternative bedding material for broiler production

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) may be a viable low-cost alternative bedding material for broiler production. In order to evaluate FGD gypsum’s viability, three consecutive trials were conducted to determine its influence on live performance (body weight, feed consumption, feed efficiency, an...

  12. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  13. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-08-18

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  14. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, Deborah A.; Farthing, George A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  15. Flue gas desulfurization method and apparatus

    DOEpatents

    Madden, D.A.; Farthing, G.A.

    1998-09-29

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  16. Desulfurization apparatus and method

    DOEpatents

    Rong, Charles; Jiang, Rongzhong; Chu, Deryn

    2013-06-18

    A method and system for desulfurization comprising first and second metal oxides; a walled enclosure having an inlet and an exhaust for the passage of gas to be treated; the first and second metal oxide being combinable with hydrogen sulfide to produce a reaction comprising a sulfide and water; the first metal oxide forming a first layer and the second metal oxide forming a second layer within the walled surroundings; the first and second layers being positioned so the first layer removes the bulk amount of the hydrogen sulfide from the treated gas prior to passage through the second layer, and the second layer removes substantially all of the remaining hydrogen sulfide from the treated gas; the first metal oxide producing a stoichiometrical capacity in excess of 500 mg sulfur/gram; the second metal oxide reacts with the hydrogen sulfide more favorably but has a stoichometrical capacity which is less than the first reactant; whereby the optimal amount by weight of the first and second metal oxides is achieved by utilizing two to three units by weight of the first metal oxide for every unit of the second metal oxide.

  17. Bicarbonate-induced activation of H₂O₂ for metal-free oxidative desulfurization.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2016-03-05

    Efficient oxidative desulfurization (ODS) of model oil containing dibenzothiophene (DBT) and aromatic thiophenic derivatives has been achieved at room temperature using hydrogen peroxide activation by inorganic bicarbonate (HCO3(-)). Using in-situ formation of peroxymonocarbonate as oxidant, the transformation of main model substrate DBT to corresponding DBT-sulfone was easily accomplished in biphasic reaction conditions. In the presence of water-acetonitrile polar phase, increasing the water content upto 50% decreased the extraction capacity more than 3 times, but ∼ 90% DBT oxidation was still achieved. The oxidizing capacity of bicarbonate catalyst was maintained during repeated ODS cycles, but DBT removal efficiency was critically dependent on the extraction capacity of the polar phase. Under heterogeneous reaction conditions, bicarbonate-modified ion-exchange resin achieved similar ODS activity compared to the homogeneous catalytic system. Additionally, the efficient formation of peroxymonocarbonate using gaseous CO2 precursor in alkaline conditions was also utilized for DBT oxidation. The present study proposes the NaHCO3/H2O2 catalytic system as an efficient and cheap metal-free alternative for the oxidative removal of aromatic sulfur compounds from fuel oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. THE EFFECT OF FLUE GAS DESULFURIZATION AVAILABILITY ON ELECTRIC UTILITIES. VOLUME II. TECHNICAL REPORT

    EPA Science Inventory

    The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...

  19. THE EFFECT OF FLUE GAS DESULFURIZATION AVAILABILITY ON ELECTRIC UTILITIES. VOLUME I. EXECUTIVE SUMMARY

    EPA Science Inventory

    The report gives results of an analysis of the effect of the availability of a flue gas desulfurization system on the ability of an individual power plant to generate electricity at its rated capacity. (The availability of anything is the fraction of time it is capable of service...

  20. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  1. Influence of Fe loadings on desulfurization performance of activated carbon treated by nitric acid.

    PubMed

    Guo, Jia-Xiu; Shu, Song; Liu, Xiao-Li; Wang, Xue-Jiao; Yin, Hua-Qiang; Chu, Ying-Hao

    2017-02-01

    A series of Fe supported on activated carbon treated by nitric acid are prepared by incipient wetness impregnation with ultrasonic assistance and characterized by N 2 adsorption-desorption, X-ray diffraction, Fourier transform infrared spectrum and X-ray photoelectron spectroscopy. It has shown that Fe loadings significantly influence the desulfurization activity. Fe/NAC5 exhibits an excellent removal ability of SO 2 , corresponding to breakthrough sulfur capacity of 323 mg/g. With the increasing Fe loadings, the generated Fe 3 O 4 and Fe 2 SiO 4 increase, but Fe 2 (SO 4 ) 3 is observed after desulfurization. Fe/NAC1 has a Brunauer-Emmett-Teller (BET) surface area of 925 m 2 /g with micropore surface area of 843 m 2 /g and total pore volume of 0.562 cm 3 /g including a micropore volume of 0.300 cm 3 /g. With the increasing Fe loadings, BET surface area and micropore volume decrease, and those of Fe/NAC10 decrease to 706 m 2 /g and 0.249 cm 3 /g. The Fe loadings influence the pore-size distribution, and SO 2 adsorption mainly reacts in micropores at about 0.70 nm. C=O and C-O are observed for all samples before SO 2 removal. After desulfurization, the C-O stretching is still detected, but the C=O stretching vibration of carbonyl groups disappears. The stretching of S-O or S=O in sulfate is observed at 592 cm -1 for the used sample, proving that the existence of [Formula: see text].

  2. Development of corrosion resistant heat exchangers for flue gas desulfurization

    NASA Astrophysics Data System (ADS)

    Ernst, E.; Lorentz, R.

    1984-12-01

    A glass lining as protection against corrosion in flue gas desulfurization plants was developed. Glasses were evaluated under corrosive attack of fluoride-containing acids. The corrosion properties of one-layer and two-layer glass enamels are optimized. Two-layer systems always show better resistance and longer life. The optimized glass linings were tested in a power plant. Manufacturing principles for glass-lined heat exchanger elements are derived. The optimized glasses may be used as protective lining design for heat exchangers or parts of them.

  3. Developing clean fuels: Novel techniques for desulfurization

    NASA Astrophysics Data System (ADS)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  4. A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source.

    PubMed

    Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao

    2013-10-01

    SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Method for desulfurization of coal

    DOEpatents

    Kelland, D.R.

    1987-07-07

    A process and apparatus are disclosed for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS[sub 2] to a troilite FeS form or a pyrrhotite form Fe[sub 1[minus]x]S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H[sub 2]S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents. 2 figs.

  6. Method for desulfurization of coal

    DOEpatents

    Kelland, David R.

    1987-01-01

    A process and apparatus for desulfurizing coal which removes sulfur in the inorganic and organic form by preferentially heating the inorganic iron sulfides in coal in a flowing gas to convert some of the inorganic iron sulfides from a pyrite form FeS.sub.2 to a troilite FeS form or a pyrrhotite form Fe.sub.1-x S and release some of the sulfur as a gaseous compound. The troilite and pyrrhotite forms are convenient catalyst for removing the organic sulfur in the next step, which is to react the coal with chemical agents such as alcohol, thus removing the organic sulfur as a liquid or a gas such as H.sub.2 S. The remaining inorganic sulfur is left in the predominantly higher magnetic form of pyrrhotite and is then removed by magnetic separation techniques. Optionally, an organic flocculant may be added after the organic sulfur has been removed and before magnetic separation. The flocculant attaches non-pyrite minerals with the pyrrhotite for removal by magnetic separation to reduce the ash-forming contents.

  7. DEVELOPMENT OF INFRARED METHODS FOR CHARACTERIZATION OF INORGANIC SULFUR SPECIES RELATED TO INJECTION DESULFURIZATION PROCESSES

    EPA Science Inventory

    Current methods designed to control and reduce the amount of sulfur dioxide emitted into the atmosphere from coal-fired power plants and factories rely upon the reaction between SO2 and alkaline earth compounds and are called flue gas desulfurization (FGD) processes. Of these met...

  8. Using stable isotopes to monitor forms of sulfur during desulfurization processes: A quick screening method

    USGS Publications Warehouse

    Liu, Chao-Li; Hackley, Keith C.; Coleman, D.D.; Kruse, C.W.

    1987-01-01

    A method using stable isotope ratio analysis to monitor the reactivity of sulfur forms in coal during thermal and chemical desulfurization processes has been developed at the Illinois State Geological Survey. The method is based upon the fact that a significant difference exists in some coals between the 34S/32S ratios of the pyritic and organic sulfur. A screening method for determining the suitability of coal samples for use in isotope ratio analysis is described. Making these special coals available from coal sample programs would assist research groups in sorting out the complex sulfur chemistry which accompanies thermal and chemical processing of high sulfur coals. ?? 1987.

  9. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  10. Biogas desulfurization and biogas upgrading using a hybrid membrane system--modeling study.

    PubMed

    Makaruk, A; Miltner, M; Harasek, M

    2013-01-01

    Membrane gas permeation using glassy membranes proved to be a suitable method for biogas upgrading and natural gas substitute production on account of low energy consumption and high compactness. Glassy membranes are very effective in the separation of bulk carbon dioxide and water from a methane-containing stream. However, the content of hydrogen sulfide can be lowered only partially. This work employs process modeling based upon the finite difference method to evaluate a hybrid membrane system built of a combination of rubbery and glassy membranes. The former are responsible for the separation of hydrogen sulfide and the latter separate carbon dioxide to produce standard-conform natural gas substitute. The evaluation focuses on the most critical upgrading parameters like achievable gas purity, methane recovery and specific energy consumption. The obtained results indicate that the evaluated hybrid membrane configuration is a potentially efficient system for the biogas processing tasks that do not require high methane recoveries, and allows effective desulfurization for medium and high hydrogen sulfide concentrations without additional process steps.

  11. PROCEEDINGS: SYMPOSIUM ON FLUE GAS DESULFURIZATION HELD AT LAS VEGAS, NEVADA, MARCH 1979; VOLUME II

    EPA Science Inventory

    The publication, in two volumes, contains the text of all papers presented at EPA's fifth flue gas desulfurization (FGD) symposium, March 5-8, 1979, at Las Vegas, Nevada. A partial listing of papers in Volume 2 includes the following: Basin Electric's involvement with dry flue ga...

  12. COMPARISON OF WEST GERMAN AND U.S. FLUE GAS DESULFURIZATION AND SELECTIVE CATALYTIC REDUCTION COSTS

    EPA Science Inventory

    The report documents a comparison of the actual cost retrofitting flue gas desulfurization (FGD) and selective catalytic reduction (SCR) on Federal Republic of German (FRG) boilers to cost estimating procedures used in the U.S. to estimate the retrofit of these controls on U.S. b...

  13. Use Of limestone resources in flue-gas desulfurization power plants in the Ohio River Valley

    USGS Publications Warehouse

    Foose, M.P.; Barsotti, A.F.

    1999-01-01

    In 1994, more than 41 of the approximately 160 coal-fired, electrical- power plants within the six-state Ohio River Valley region used flue-gas desulfurization (FGD) units to desulfurize their emissions, an approximately 100% increase over the number of plants using FGD units in 1989. This increase represents a trend that may continue with greater efforts to meet Federal Clean Air Act standards. Abundant limestone resources exist in the Ohio River Valley and are accessed by approximately 975 quarries. However, only 35 of these are believed to have supplied limestone for FGD electrical generating facilities. The locations of these limestone suppliers do not show a simple spatial correlation with FGD facilities, and the closest quarries are not being used in most cases. Thus, reduction in transportation costs may be possible in some cases. Most waste generated by FGD electrical-generating plants is not recycled. However, many FGD sites are relatively close to gypsum wallboard producers that may be able to process some of their waste.

  14. Efficient H2O2/CH3COOH oxidative desulfurization/denitrification of liquid fuels in sonochemical flow-reactors.

    PubMed

    Calcio Gaudino, Emanuela; Carnaroglio, Diego; Boffa, Luisa; Cravotto, Giancarlo; Moreira, Elizabeth M; Nunes, Matheus A G; Dressler, Valderi L; Flores, Erico M M

    2014-01-01

    The oxidative desulfurization/denitrification of liquid fuels has been widely investigated as an alternative or complement to common catalytic hydrorefining. In this process, all oxidation reactions occur in the heterogeneous phase (the oil and the polar phase containing the oxidant) and therefore the optimization of mass and heat transfer is of crucial importance to enhancing the oxidation rate. This goal can be achieved by performing the reaction in suitable ultrasound (US) reactors. In fact, flow and loop US reactors stand out above classic batch US reactors thanks to their greater efficiency and flexibility as well as lower energy consumption. This paper describes an efficient sonochemical oxidation with H2O2/CH3COOH at flow rates ranging from 60 to 800 ml/min of both a model compound, dibenzotiophene (DBT), and of a mild hydro-treated diesel feedstock. Four different commercially available US loop reactors (single and multi-probe) were tested, two of which were developed in the authors' laboratory. Full DBT oxidation and efficient diesel feedstock desulfurization/denitrification were observed after the separation of the polar oxidized S/N-containing compounds (S≤5 ppmw, N≤1 ppmw). Our studies confirm that high-throughput US applications benefit greatly from flow-reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Deep Desulfurization of Extensively Hydrodesulfurized Middle Distillate Oil by Rhodococcus sp. Strain ECRD-1

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Minak-Bernero, V.; George, G. N.; Pickering, I. J.

    2001-01-01

    Dibenzothiophene (DBT), and in particular substituted DBTs, are resistant to hydrodesulfurization (HDS) and can persist in fuels even after aggressive HDS treatment. Treatment by Rhodococcus sp. strain ECRD-1 of a middle distillate oil whose sulfur content was virtually all substituted DBTs produced extensive desulfurization and a sulfur level of 56 ppm. PMID:11282654

  16. Desulfurization of Cysteine-Containing Peptides Resulting from Sample Preparation for Protein Characterization by MS

    PubMed Central

    Wang, Zhouxi; Rejtar, Tomas; Zhou, Zhaohui Sunny; Karger, Barry L.

    2010-01-01

    In this paper, we have examined two cysteine modifications resulting from sample preparation for protein characterization by MS: (1) a previously observed conversion of cysteine to dehydroalanine, now found in the case of disulfide mapping and (2) a novel modification corresponding to conversion of cysteine to alanine. Using model peptides, the conversion of cysteine to dehydroalanine via β-elimination of a disulfide bond was seen to result from the conditions of typical tryptic digestion (37 °C, pH 7.0– 9.0) without disulfide reduction and alkylation.. Furthermore, the surprising conversion of cysteine to alanine was shown to occur by heating cysteine containing peptides in the presence of a phosphine (TCEP). The formation of alanine from cysteine, investigated by performing experiments in H2O or D2O, suggested a radical-based desulfurization mechanism unrelated to β-elimination. Importantly, an understanding of the mechanism and conditions favorable for cysteine desulfurization provides insight for the establishment of improved sample preparation procedures of protein analysis. PMID:20049891

  17. Potential Agricultural Uses of Flue Gas Desulfurization Gypsum in the Northern Great Plains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSutter, T.M.; Cihacek, L.J.

    2009-07-15

    Flue gas desulfurization gypsum (FGDG) is a byproduct from the combustion of coal for electrical energy production. Currently, FGDG is being produced by 15 electrical generating stations in Alabama, Florida, Indiana, Iowa, Kentucky, Ohio, North Carolina, South Carolina, Tennessee, Texas, and Wisconsin. Much of this byproduct is used in the manufacturing of wallboard. The National Network for Use of FGDG in Agriculture was initiated to explore alternative uses of this byproduct. In the northern Great Plains (North Dakota, South Dakota, and Montana), FGDG has the potential to be used as a Ca or S fertilizer, as an acid soil ameliorant,more » and for reclaiming or mitigating sodium-affected soils. Greater than 1.4 million Mg of FGDG could initially be used in these states for these purposes. Flue gas desulfurization gypsum can be an agriculturally important resource for helping to increase the usefulness of problem soils and to increase crop and rangeland production. Conducting beneficial use audits would increase the public awareness of this product and help identify to coal combustion electrical generating stations the agriculturally beneficial outlets for this byproduct.« less

  18. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.

    PubMed

    Niksa, Stephen; Fujiwara, Naoki

    2005-07-01

    This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.

  19. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization

    NASA Astrophysics Data System (ADS)

    Zhao, Rongxiang; Li, Xiuping; Su, Jianxun; Gao, Xiaohan

    2017-01-01

    WO3/graphitic carbon nitride (g-C3N4) composites were successfully synthesized through direct calcining of a mixture of WO3 and g-C3N4 at 400 °C for 2 h. The WO3 was prepared by calcination of phosphotungstic acid at 550 °C for 4 h, and the g-C3N4 was obtained by calcination of melamine at 520 °C for 4 h. The WO3/g-C3N4 composites were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Brunner-Emmett-Teller analysis (BET). The WO3/g-C3N4 composites exhibited stronger XRD peaks of WO3 and g-C3N4 than the WO3 and pure g-C3N4. In addition, two WO3 peaks at 25.7° and 26.6° emerged for the 36% -WO3/g-C3N4 composite. This finding indicated that WO3 was highly dispersed on the surface of the g-C3N4 nanosheets and interacted with the nanosheets, which resulted in the appearance of (012) and (022) planes of WO3. The WO3/g-C3N4 composite also exhibited a larger specific surface area and higher degree of crystallization than WO3 or pure g-C3N4, which resulted in high catalytic activity of the catalyst. Desulfurization experiments demonstrated that the desulfurization rate of dibenzothiophene (DBT) in model oil reached 91.2% under optimal conditions. Moreover, the activity of the catalyst was not significantly decreased after five recycles.

  20. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  1. Factors influencing gypsum crystal morphology within a flue gas desulfurization vessel

    NASA Astrophysics Data System (ADS)

    Lewis, Kinsey M.

    Flue gas desulfurization (FGD) is utilized by the coal--powered generating industry to safely eliminate sulfur dioxide. A FGD vessel (scrubber) synthetically creates gypsum crystals by combining limestone (CaCO3), SO2 flue gas, water and oxygen resulting in crystalline gypsum (CaSO4 · 2H2O), which can be sold for an economic return. Flat disk--like crystals, opposed to rod--like crystals, are hard to dewater, lowering economic return. The objectives were to investigate the cause of varying morphologies, understand the environment of precipitation, as well as identify correlations between operating conditions and resulting unfavorable gypsum crystal growth. Results show evidence supporting airborne impurities due to the onsite coal pile, the abundance and size of CaCO 3 and high Ca:SO4 ratios within the scrubber as possible factors controlling gypsum crystal morphology. In conclusion, regularly purging the system and incorporating a filter on the air intake valve will provide an economic byproduct avoiding costly landfill deposits.

  2. Comparison on surface properties and desulfurization of MnO2 and pyrolusite blended activated carbon by steam activation.

    PubMed

    Zhang, Guochen; Zhao, Xin; Ning, Ping; Yang, Danni; Jiang, Xia; Jiang, Wenju

    2018-04-18

    In this study, MnO 2 and pyrolusite were used as the catalysts to prepare modified activated carbon, i.e., AC-Mn and AC-P, respectively, from coals by blending method and steam activation. The BET results indicated that the AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The relative contents of basic functional groups (i.e. C = O, π-π*) on AC-P were slightly lower than those on AC-Mn, while both contained the same main metal species, i.e. MnO. The desulfurization results showed that with 3 wt% of blending ratio, AC-Mn3 and AC-P3 had higher sulfur capacities at 220 and 205 mg/g, respectively, which were much higher than blank one (149.6 mg/g). Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn, which might be attributed to the existence of other metals in pyrolusite. After desulfurization process, MnO were gradually transferred into MnSO 4 , and the relative contents of basic functional groups decreased evidently for both AC-Mn3 and AC-P3. The results demonstrated that pyrolusite could be one good alternative of MnO 2 to prepare modified activated carbon for desulfurization. Implication statement MnO 2 and pyrolusite were used as the additives to prepare the modified activated carbon from coals by blending method and steam activation, i.e., AC-Mn and AC-P, respectively. The AC-P had higher surface areas and micropore volumes than the AC-Mn with the same blending ratio. The AC-Mn and AC-P had higher sulfur capacities than blank one. Moreover, the AC-P had relatively higher sulfur capacity than the AC-Mn with the same contents of Mn. The results demonstrated that pyrolusite could be one good alternative of MnO 2 to prepare modified activated carbon for desulfurization.

  3. Synthesis of mesoporous TS-1 using a hybrid SiO{sub 2}–TiO{sub 2} xerogel for catalytic oxidative desulfurization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Seung-Tae; Jeong, Kwang-Eun; Jeong, Soon-Yong

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Meso-TS-1 catalyst was synthesized using a SiO{sub 2}–TiO{sub 2} xerogel with an organosilane precursor. ► Hierarchical pore structure was confirmed by characterization of the materials. ► Catalytic activity was tested using oxidative desulfurization of the model sulfur compounds. ► Meso-TS-1 demonstrated significantly improved catalytic activity than TS-1. -- Abstract: Mesoporous TS-1 (M-TS-1) was synthesized using a hybrid SiO{sub 2}–TiO{sub 2} xerogel combined with an organosilane precursor. Prepared samples were characterized by XRD, UV–vis spectroscopy, SEM, and N{sub 2} adsorption–desorption measurement. M-TS-1, prepared in 2 days, showed high crystallinity and the best textural properties amongmore » the samples. The N{sub 2} adsorption–desorption isotherms of M-TS-1 exhibited a hysteresis loop at pressure higher than P/P{sub 0} = 0.4, clearly indicating the existence of mesopores. M-TS-1 has significantly larger mesopore volume (0.48 cm{sup 3}/g) than that of conventional TS-1 (0.07 cm{sup 3}/g), and showed a narrow peak centered at ca. 6.3 nm. In the oxidative desulfurization reaction, M-TS-1 was more active than conventional TS-1 at the same Ti-loading; M-TS-1 produced a dibenzothiophene (DBT) conversion of 96%, whereas conventional TS-1 produced a final DBT conversion of 5.6% after a reaction time of 180 min. Oxidative desulfurization over TS-1 was influenced both by electron density and steric hindrance in the sulfur compounds tested.« less

  4. Sulfur-Specific Microbial Desulfurization of Sterically Hindered Analogs of Dibenzothiophene

    PubMed Central

    Lee, M. K.; Senius, J. D.; Grossman, M. J.

    1995-01-01

    Dibenzothiophenes (DBTs) bearing alkyl substitutions adjacent to the sulfur atom, such as 4,6-diethyldibenzothiophene (4,6-DEDBT), are referred to as sterically hindered with regard to access to the sulfur moiety. By using enrichment cultures with 4,6-DEDBT as the sole sulfur source, bacterial isolates which selectively remove sulfur from sterically hindered DBTs were obtained. The isolates were tentatively identified as Arthrobacter species. 4,6-DEDBT sulfone was shown to be an intermediate in the 4,6-DEDBT desulfurization pathway, and 2-hydroxy-3,3(prm1)-diethylbiphenyl (HDEBP) was identified as the sulfur-free end product. PMID:16535189

  5. Impact of Leaching Conditions on Constituents Release from Flue Gas Desulfurization Gypsum (FGDG) and FGDG-Soil Mixture

    EPA Science Inventory

    The interest in using Flue Gas Desulfurization Gypsum(FGDG) has increased recently. This study evaluates the leaching characteristics of trace elements in "modern" FGDG (produced after fly ash removal) and FGDG-mixed soil (SF) under different environmental conditions using rece...

  6. Desulfurization of 2-thiouracil nucleosides: conformational studies of 4-pyrimidinone nucleosides.

    PubMed

    Kraszewska, Karina; Kaczyńska, Iwona; Jankowski, Stefan; Karolak-Wojciechowska, Janina; Sochacka, Elzbieta

    2011-04-01

    4-Pyrimidinone ribofuranoside (H(2)o(4)U) and 4-pyrimidinone 2'-deoxyribofuranoside (dH(2)o(4)U) were synthesized by the oxidative desulfurization of parent 2-thiouracil nucleosides with m-chloroperbenzoic acid. The crystal structures of H(2)o(4)U and dH(2)o(4)U and their conformations in solution were determined and compared with corresponding 2-thiouracil and uracil nucleosides. The absence of a large 2-thiocarbonyl/2-carbonyl group in the nucleobase moiety results in C2'-endo puckering of the ribofuranose ring (S conformer) in the crystal structure of H(2)o(4)U, which is not typical of RNA nucleosides. Interestingly, the hydrogen bonding network in the crystals of dH(2)o(4)U stabilizes the sugar moiety conformation in the C3'-endo form (N conformer), rarely found in DNA nucleosides. In aqueous solution, dH(2)o(4)U reveals a similar population of the C2'-endo conformation (65%) to that of 2'-deoxy-2-thiouridine (62%), while the 62% population of the S conformer for H(2)o(4)U is significantly different from that of the parent 2-thiouridine, for which the N conformer is dominant (71%). Such a difference may be of biological importance, as the desulfurization process of natural tRNA 2-thiouridines may occur under conditions of oxidative stress in the cell and may influence the decoding process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  8. Controllability analysis and decentralized control of a wet limestone flue gas desulfurization plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perales, A.L.V.; Ortiz, F.J.G.; Ollero, P.

    2008-12-15

    Presently, decentralized feedback control is the only control strategy used in wet limestone flue gas desulfurization (WLFGD) plants. Proper tuning of this control strategy is becoming an important issue in WLFGD plants because more stringent SO{sub 2} regulations have come into force recently. Controllability analysis is a highly valuable tool for proper design of control systems, but it has not been applied to WLFGD plants so far. In this paper a decentralized control strategy is designed and applied to a WLFGD pilot plant taking into account the conclusions of a controllability analysis. The results reveal that good SO{sub 2} controlmore » in WLFGD plants can be achieved mainly because the main disturbance of the process is well-aligned with the plant and interactions between control loops are beneficial to SO{sub 2} control.« less

  9. Theoretical investigation of the interaction between aromatic sulfur compounds and [BMIM](+)[FeCl4](-) ionic liquid in desulfurization: A novel charge transfer mechanism.

    PubMed

    Li, Hongping; Zhu, Wenshuai; Chang, Yonghui; Jiang, Wei; Zhang, Ming; Yin, Sheng; Xia, Jiexiang; Li, Huaming

    2015-06-01

    In this work, interaction nature between a group of aromatic sulfur compounds and [BMIM](+)[FeCl4](-) have been investigated by density functional theory (DFT). A coordination structure is found to be critical to the mechanism of extractive desulfurization. Interaction energy and extractive selectivity follow the order: thiophene (TH)desulfurization is attributed to the charge transfer effect. During extractive desulfurization, electrons on aromatic sulfur compounds transfer into the Lewis part of ionic liquid, namely, [FeCl4](-). Furthermore, it is better to consider the Lewis acidity of Fe-containing ionic liquid by the whole unit (such as [FeCl4](-) and aromatic sulfur compounds (X)) rather than only Fe or S atom. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Advances on simultaneous desulfurization and denitrification using activated carbon irradiated by microwaves.

    PubMed

    Ma, Shuang-Chen; Gao, Li; Ma, Jing-Xiang; Jin, Xin; Yao, Juan-Juan; Zhao, Yi

    2012-06-01

    This paper describes the research background and chemistry of desulfurization and denitrification technology using microwave irradiation. Microwave-induced catalysis combined with activated carbon adsorption and reduction can reduce nitric oxide to nitrogen and sulfur dioxide to sulfur from flue gas effectively. This paper also highlights the main drawbacks of this technology and discusses future development trends. It is reported that the removal of sulfur dioxide and nitric oxide using microwave irradiation has broad prospects for development in the field of air pollution control.

  11. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  12. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  13. The chemical and oxidation characteristics of semi-dry flue gas desulfurization ash from a steel factory.

    PubMed

    Liu, Ren-ping; Guo, Bin; Ren, Ailing; Bian, Jing-feng

    2010-10-01

    Some samples of semi-dry flue gas desulfurization (FGD) ash were taken from sinter gas of a steel factory. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses were employed to identify the samples in order to investigate their physical and chemical characteristics. The results show that semi-dry FGD ash from a steel factory is stable under atmospheric conditions. It has irregular shape, a smooth surface and loose construction. The size of FGD ash particles is around 0.5-25 µm, the average size is about 5 µm and the median diameter is 4.18 µm. Semi-dry FGD ash from a steel factory consists of CaSO₃, CaSO₄, CaCO₃, some amorphous vitreous material and unburned carbon. An experimental method was found to study the oxidation characteristics of ash. A prediction model of the oxidation efficiency was obtained based on response surface methodology. The results show that not only the temperature, but also gas:solid ratio, play an important role in influencing the oxidation efficiency. The interactions of the gas:solid ratio with temperature play an essential role. An improved response surface model was obtained which can be helpful to describe the degree of oxidation efficiency of semi-dry FGD ash.

  14. GeoChip-based analysis of the microbial community functional structures in simultaneous desulfurization and denitrification process.

    PubMed

    Yu, Hao; Chen, Chuan; Ma, Jincai; Liu, Wenzong; Zhou, Jizhong; Lee, Duu-Jong; Ren, Nanqi; Wang, Aijie

    2014-07-01

    The elemental sulfur (S°) recovery was evaluated in the presence of nitrate in two development models of simultaneous desulfurization and denitrification (SDD) process. At the loading rates of 0.9 kg S/(m³·day) for sulfide and 0.4 kg N/(m³·day) for nitrate, S° conversion rate was 91.1% in denitrifying sulfide removal (DSR) model which was higher than in integrated simultaneous desulfurization and denitrification (ISDD) model (25.6%). A comprehensive analysis of functional diversity, structure and metabolic potential of microbial communities was examined in two models by using functional gene array (GeoChip 2.0). GeoChip data indicated that diversity indices, community structure, and abundance of functional genes were distinct between two models. Diversity indices (Simpson's diversity index (1/D) and Shannon-Weaver index (H')) of all detected genes showed that with elevated influent loading rate, the functional diversity decreased in ISDD model but increased in DSR model. In contrast to ISDD model, the overall abundance of dsr genes was lower in DSR model, while some functional genes targeting from nitrate-reducing sulfide-oxidizing bacteria (NR-SOB), such as Thiobacillus denitrificans, Sulfurimonas denitrificans, and Paracoccus pantotrophus were more abundant in DSR model which were highly associated with the change of S(0) conversion rate obtained in two models. The results obtained in this study provide additional insights into the microbial metabolic mechanisms involved in ISDD and DSR models, which in turn will improve the overall performance of SDD process. Copyright © 2014. Published by Elsevier B.V.

  15. Evaluation of flue-gas desulfurization gypsum in poultry litter as a substrate component for greenhouse horticultural crops

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to evaluate the growth response and consumer preference of three plant species to substrate blends containing flue gas desulfurization gypsum (FGDG). Substrate blends used in this study were derived from a previous experiment that evaluated the use of FGD Gas a bedding material...

  16. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  17. Experimental Determination of Sulfur Partition Ratio in the CaO-Al2O3-SiO2-CaF2-MgO Slag and Liquid Iron

    NASA Astrophysics Data System (ADS)

    Jinzhu, Z.; Yunsheng, Y.; Wei, F.; Jialiang, Z.; Yi, Z.

    2017-09-01

    The external desulphurization of molten iron has become an important step in the production of steel and iron. The desulfurization degree of the high calcium slag, which was mainly taken from Shougang Shuicheng Iron and Steel (Group) Co. Limited, was investigated on basis of the fundamental theory of slag metal equilibrium reaction. The initial content of sulfur in the slag was adjusted to 2.60% mass perdent by adding analytical reagent CaS. The results show that the desulfurization degree of the high calcium slag increases obviously with the increase of temperature in the range 1593-1743K, and so the sulfur partition ratio. When the holding time of the hot metal and slag at controlled temperature was extended from 120 min to 180 min in the furnace, both the sulfur partition ratio and the desulfurization degree increased markedly.

  18. Species Differences in the Oxidative Desulfurization of a Thiouracil-Based Irreversible Myeloperoxidase Inactivator by Flavin-Containing Monooxygenase Enzymes.

    PubMed

    Eng, Heather; Sharma, Raman; Wolford, Angela; Di, Li; Ruggeri, Roger B; Buckbinder, Leonard; Conn, Edward L; Dalvie, Deepak K; Kalgutkar, Amit S

    2016-08-01

    N1-Substituted-6-arylthiouracils, represented by compound 1 [6-(2,4-dimethoxyphenyl)-1-(2-hydroxyethyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one], are a novel class of selective irreversible inhibitors of human myeloperoxidase. The present account is a summary of our in vitro studies on the facile oxidative desulfurization in compound 1 to a cyclic ether metabolite M1 [5-(2,4-dimethoxyphenyl)-2,3-dihydro-7H-oxazolo[3,2-a]pyrimidin-7-one] in NADPH-supplemented rats (t1/2 [half-life = mean ± S.D.] = 8.6 ± 0.4 minutes) and dog liver microsomes (t1/2 = 11.2 ± 0.4 minutes), but not in human liver microsomes (t1/2 > 120 minutes). The in vitro metabolic instability also manifested in moderate-to-high plasma clearances of the parent compound in rats and dogs with significant concentrations of M1 detected in circulation. Mild heat deactivation of liver microsomes or coincubation with the flavin-containing monooxygenase (FMO) inhibitor imipramine significantly diminished M1 formation. In contrast, oxidative metabolism of compound 1 to M1 was not inhibited by the pan cytochrome P450 inactivator 1-aminobenzotriazole. Incubations with recombinant FMO isoforms (FMO1, FMO3, and FMO5) revealed that FMO1 principally catalyzed the conversion of compound 1 to M1. FMO1 is not expressed in adult human liver, which rationalizes the species difference in oxidative desulfurization. Oxidation by FMO1 followed Michaelis-Menten kinetics with Michaelis-Menten constant, maximum rate of oxidative desulfurization, and intrinsic clearance values of 209 μM, 20.4 nmol/min/mg protein, and 82.7 μl/min/mg protein, respectively. Addition of excess glutathione essentially eliminated the conversion of compound 1 to M1 in NADPH-supplemented rat and dog liver microsomes, which suggests that the initial FMO1-mediated S-oxygenation of compound 1 yields a sulfenic acid intermediate capable of redox cycling to the parent compound in a glutathione-dependent fashion or undergoing further oxidation to a more

  19. A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization.

    PubMed

    Du, Shuting; Li, Fen; Sun, Qiming; Wang, Ning; Jia, Mingjun; Yu, Jihong

    2016-02-25

    Hierarchical TS-1 zeolites with uniform intracrystalline mesopores have been successfully synthesized through the hydrothermal method by using the green and cheap surfactant Triton X-100 as the mesoporous template. The resultant materials exhibit remarkably enhanced catalytic activity in oxidative desulfurization reactions compared to the conventional TS-1 zeolite.

  20. Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.

    1987-07-01

    A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.

  1. Novel polyoxometalate silica nano-sized spheres: efficient catalysts for olefin oxidation and the deep desulfurization process.

    PubMed

    Nogueira, Lucie S; Ribeiro, Susana; Granadeiro, Carlos M; Pereira, Eulália; Feio, Gabriel; Cunha-Silva, Luís; Balula, Salete S

    2014-07-07

    A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.

  2. Dynamic High-temperature Testing of an Iridium Alloy in Compression at High-strain Rates: Dynamic High-temperature Testing

    DOE PAGES

    Song, B.; Nelson, K.; Lipinski, R.; ...

    2014-08-21

    Iridium alloys have superior strength and ductility at elevated temperatures, making them useful as structural materials for certain high-temperature applications. However, experimental data on their high-strain -rate performance are needed for understanding high-speed impacts in severe environments. Kolsky bars (also called split Hopkinson bars) have been extensively employed for high-strain -rate characterization of materials at room temperature, but it has been challenging to adapt them for the measurement of dynamic properties at high temperatures. In our study, we analyzed the difficulties encountered in high-temperature Kolsky bar testing of thin iridium alloy specimens in compression. We made appropriate modifications using themore » current high-temperature Kolsky bar technique in order to obtain reliable compressive stress–strain response of an iridium alloy at high-strain rates (300–10 000 s -1) and temperatures (750 and 1030°C). The compressive stress–strain response of the iridium alloy showed significant sensitivity to both strain rate and temperature.« less

  3. Coal desulfurization by a microwave process. Technical progress report, February 1981-May 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zavitsanos, P.D.; Golden, J.A.; Bleiler, K.W.

    1981-01-01

    Desulfurization experiments were carried out using the 6KW, 2450 MHz Flow Reactor System. The program has been directed toward the combination of physical separation and microwave exposure with NaOH to increase sulfur removal. The following treatment sequence has been used with good results: (1) expose 1/4 to 1 in. raw coal to microwaves; (2) crush the treated coal and separate the sample into float/sink fractions; (3) add NaOH to the float fraction and re-expose the sample to microwaves; and (4) wash, add NaOH and expose to microwaves. This procedure has produced up to 89% sulfur removal and as low asmore » 0.31 numberS/10/sup 6/ Btu. Ash analyses on these samples showed as high as 40% reduction. The calorific value was increased in almost all samples. Data on sulfur, ash and calorific values are summarized.« less

  4. Ultra-Deep Adsorptive Desulfurization of Light-Irradiated Diesel Fuel over Supported TiO 2-CeO 2 Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Jing; Wang, Xiaoxing; Chen, Yongsheng

    2014-02-13

    This study investigates ultra-deep adsorptive desulfurization (ADS) from light-irradiated diesel fuel over supported TiO 2–CeO 2 adsorbents. A 30-fold higher desulfurization capacity of 95 mL of fuel per gram of adsorbent (mL-F/g-sorb) or 1.143 mg of sulfur per gram of adsorbent (mg-S/g-sorb) was achieved from light-irradiated fuel over the original low-sulfur fuel containing about 15 ppm by weight (ppmw) of sulfur. The sulfur species on spent TiO 2–CeO 2/MCM-48 adsorbent was identified by sulfur K-edge XANES as sulfones and the adsorption selectivity to different compounds tested in a model fuel decreases in the order of indole > dibenzothiophenesulfone → dibenzothiophenemore » > 4-methyldibenzothiophene > benzothiophene > 4,6-dimethyldibenzothiophene > phenanthrene > 2-methylnaphthalene ~ fluorene > naphthalene. The results suggest that during ADS of light-irradiated fuel, the original sulfur species were chemically transformed to sulfones, resulting in the significant increase in desulfurization capacity. For different supports for TiO2–CeO2 oxides, the ADS capacity increases with a decrease in the point of zero charge (PZC) value; for silica-supported TiO 2–CeO 2 oxides (the lowest PZC value of 2–4) with different surface areas, the ADS capacity increases monotonically with increasing surface area. The supported TiO 2–CeO 2/MCM-48 adsorbent can be regenerated using oxidative air treatment. The present study provides an attractive new path to achieve ultraclean fuel more effectively.« less

  5. Desulfurization of coal by microbial column flotation.

    PubMed

    Ohmura, N; Saiki, H

    1994-06-05

    Twenty-three strains capable of oxidizing iron were isolated from coal and ore storage sites as well as coal and ore mines, volcanic areas, and hot spring. Four strains were found to have high iron-oxidizing activity. One strain (T-4) was selected for this experiment since the strain showed the fastest leaching rate of iron and sulfate from pyrite among the four strains. The T-4 strain was assigned for Thiobacillus ferrooxidans from its cultural and morphological characteristics.Bacterial treatment was applied to column flotation. An increase of cell density in the microbial column flotation resulted in the increase of pyrite removal from a coal-pyrite mixture (high sulfur imitated coal) with corresponding decrease of coal recovery. The addition of kerosene into the microbial column flotation increased the recovery of the imitated coal from 55% (without kerosene) to 81% (with 50 microL/L kerosene) with the reduction of pyrite sulfur content from 11% (feed coal) to 3.9% (product coal). The kerosene addition could reduce the pyritic sulfur content by collecting the coal in the recovery. However, the addition could not enhance separation of pyrite from the coal-pyrite mixture, since pyrite rejection was not affected by the increase of the kerosene addition. An excellent separation was obtained by the microbial flotation using a long column which had a length-diameter (L/D) ratio of 12.7. The long column flotation reduced the pyritic sulfur content from 11% (feed coal) to 1.8% (product coal) when 80% of the feed coal was recovered without the kerosene addition. The long column flotation not only attained an excellent separation but also reduced the amount of cells for desulfurization to as little as one-tenth of the reported amount.

  6. Study on optimum technological conditions of ore sintering flue gas desulfurization by using poor manganese

    NASA Astrophysics Data System (ADS)

    Li, H. Y.; Li, S. E.; Long, Z. G.; Wu, F. Z.; Cui, T. M.; Zhou, X. Z.

    2017-11-01

    Orthogonal experiments were conducted to study the effect of each single factor on the desulfurization rate and leaching rate of Mn2+ to obtain improved process parameters. The results showed that the use of pyrolusite flue gas and the process method of by-product MnSO4 can not only effectively remove the sulfur in the gas, thereby controlling environmental pollution, but can also recover sulfur.

  7. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  8. High temperature alloy

    NASA Technical Reports Server (NTRS)

    Frank, R. G.; Semmel, J. W., Jr.

    1968-01-01

    Molybdenum is substituted for tungsten on an atomic basis in a cobalt-based alloy, S-1, thus enabling the alloy to be formed into various mill products, such as tubing and steels. The alloy is weldable, has good high temperature strength and is not subject to embrittlement produced by high temperature aging.

  9. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1.

    PubMed Central

    Omori, T; Monna, L; Saiki, Y; Kodama, T

    1992-01-01

    Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS2, FeS2, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Resting cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed. PMID:1575493

  10. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  11. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  12. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  13. Flue gas desulfurization chemistry studies: limestone grindability. Volume 1. FGD reagent mapping. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richmann, D.L.; Rossi, J.P.; Rashin, E.B.

    1984-07-01

    The major objective of this project is to provide electric utilities with information concerning the availability of flue gas desulfurization (FGD) system reagents. Data presented in this report were obtained primarily from a comprehensive review of available literature. These were augmented by information gathered through interviews with knowledgeable individuals from industry, government, and academic institutions. Limestone data are presented on regional and state maps displaying, respectively, annual limestone production and number of active quarries by county; and areas most likely to contain potentially commercial deposits of high-Ca (greater than or equal to 90% CaCO/sub 3/) limestone. Lime data are presentedmore » on regional maps indicating ranges of annual production and number of active lime plants by county. Identification of commercial versus captive operations and estimates of lime availability on the open market are summarized in tables accompanying each map.« less

  14. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omori, Toshio; Monna, L.; Saiki, Yuko

    1992-03-01

    Strain SY1, identified as a Corynebacterium sp., was isolated on the basis of the ability to utilize dibenzothiophene (DBT) as a sole source of sulfur. Strain SY1 could utilize a wide range of organic and inorganic sulfur compounds, such as DBT sulfone, dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, CS{sub 2}, FeS{sub 2}, and even elemental sulfur. Strain SY1 metabolized DBT to dibenzothiophene-5-oxide, DBT sulfone, and 2-hydroxybiphenyl, which was subsequently nitrated to produce at least two different hydroxynitrobiphenyls during cultivation. These metabolites were separated by silica gel column chromatography and identified by nuclear magnetic resonance, UV, and mass spectral techniques. Restingmore » cells of SY1 desulfurized toluenesulfonic acid and released sulfite anion. On the basis of these results, a new DBT degradation pathway is proposed.« less

  15. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  16. Mercury emission and plant uptake of trace elements during early stage of soil amendment using flue gas desulfurization materials.

    USDA-ARS?s Scientific Manuscript database

    A pilot-scale field study was carried out to investigate the distribution of Hg and other selected elements in the three potential mitigation pathways, i.e., emission to ambient air, uptake by surface vegetation (i.e., grass), and rainfall infiltration, after flue gas desulfurization (FGD) material ...

  17. Desulfurization sorbent regeneration

    DOEpatents

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  18. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment.

    PubMed

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-12-26

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature.

  19. FEM Modeling of the Relationship between the High-Temperature Hardness and High-Temperature, Quasi-Static Compression Experiment

    PubMed Central

    Zhang, Tao; Jiang, Feng; Yan, Lan; Xu, Xipeng

    2017-01-01

    The high-temperature hardness test has a wide range of applications, but lacks test standards. The purpose of this study is to develop a finite element method (FEM) model of the relationship between the high-temperature hardness and high-temperature, quasi-static compression experiment, which is a mature test technology with test standards. A high-temperature, quasi-static compression test and a high-temperature hardness test were carried out. The relationship between the high-temperature, quasi-static compression test results and the high-temperature hardness test results was built by the development of a high-temperature indentation finite element (FE) simulation. The simulated and experimental results of high-temperature hardness have been compared, verifying the accuracy of the high-temperature indentation FE simulation.The simulated results show that the high temperature hardness basically does not change with the change of load when the pile-up of material during indentation is ignored. The simulated and experimental results show that the decrease in hardness and thermal softening are consistent. The strain and stress of indentation were analyzed from the simulated contour. It was found that the strain increases with the increase of the test temperature, and the stress decreases with the increase of the test temperature. PMID:29278398

  20. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  1. Metals in soil and runoff from a piedmont hayfield amended with broiler litter and flue gas desulfurization gypsum

    USDA-ARS?s Scientific Manuscript database

    Flue gas desulfurization gypsum (FGDG) from coal-fired power plants is available for agricultural use in many US regions. Broiler litter (BL) provides plant available N, P, and K but may be a source of unwanted arsenic (As), copper (Cu), and zinc (Zn). FGDG provides Ca and S and can reduce runoff lo...

  2. OH radicals generated by DC corona discharge for improving the pulsed discharge desulfuration efficiency.

    PubMed

    Li, Jie; Li, Guo-feng; Wu, Yan; Wang, Ning-hui; Huang, Qiu-nan

    2004-01-01

    Positive DC corona discharge is formed with needle-plate electrode configuration, in which the water vapor is ejected though the needle points. The purpose is to increase the numbers of the water-based radicals, ionize the water molecule and improve the desulfuration efficiency of pulsed corona reactor. The water ions were determined by four stages molecular beam mass spectrometer and diagnose the water-based radicals by emission spectrograph. A conclusion on formation of ions and radicals with DC corona discharges can be drawn.

  3. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, Hector M.; Scott, Timothy C.; Scott, Charles D.

    1995-01-01

    A method for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the "Sulfate Reducing Bacteria." These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing.

  4. Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver.

    PubMed

    Buratti, Franca M; Testai, Emanuela

    2007-11-20

    Dimethoate (DIM) is an organophosphorothionate (OPT) pesticide used worldwide as a systemic insecticide and acaricide. It is characterized by low-to-moderate acute mammalian toxicity; similarly to the other OPT pesticides, its mode of action is mediated by the inhibition of acetylcholinesterase (AChE), exerted by its toxic metabolite dimethoate-oxon or omethoate (OME), which is also used as a direct acting pesticide. Human hepatic DIM bioactivation to the toxic metabolite OME has been characterized by using c-DNA expressed human CYPs and human liver microsomes (HLM) also in the presence of CYP-specific chemical inhibitors, with a method based on AChE inhibition. The obtained kinetic parameters and AChE IC(50) have been compared with those previously obtained with other OPTs, indicating a lower efficiency in DIM desulfuration reaction and a lower potency in inhibiting AChE. Results showed that, similarly to the other OPTs tested so far, at low DIM concentration OME formation is mainly catalysed by CYP1A2, while the role of 3A4 is relevant at high DIM levels. Differently from the other OPTs, DIM desulfuration reaction showed an atypical kinetic profile, likely due to CYP3A4 autoactivation. The sigmoidicity degree of the activity curve increased with the level of CYP3A4 in HLM or disappeared in the presence of a CYP3A4 chemical inhibitor. This atypical kinetic behaviour can be considered one of the possible explanations for the recent findings that among patients hospitalized following OPT intoxication, DIM ingestion gave different symptoms and more severe poisoning (23.1% of fatal cases versus total) than chlorpyrifos (8% of deaths), which has a lower LD(50) value. Since DIM-poisoned patients poorly responded to pralidoxime, the possibility to use CYP3A4 inhibitors could be considered as a complementary treatment.

  5. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  6. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  7. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  8. High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen

    1994-01-01

    Resistance strain gauges developed for use at high temperatures in demanding applications like testing aircraft engines and structures. Measures static strains at temperatures up to 800 degrees C. Small and highly reproducible. Readings corrected for temperature within small tolerances, provided temperatures measured simultaneously by thermocouples or other suitable devices. Connected in wheatstone bridge.

  9. HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS

    EPA Science Inventory

    The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...

  10. Transport—Reaction process in the reaction of flue gas desulfurization

    NASA Astrophysics Data System (ADS)

    Yan, Yan; Peng, Xiaofeng; Lee, Duu Jong

    2000-12-01

    A theoretical investigation was conducted to study the transport-reaction process in the spray-drying flue gas desulfurization. A transport-reaction model of single particle was proposed, which considered the water evaporation from the surface of droplet and the reaction at the same time. Based on this model, the reaction rate and the absorbent utilization can be calculated. The most appropriate particle radius and the initial absorbent concentration can be deduced through comparing the wet lifetime with the residence time, the result shows in the case that the partial pressure of vapor in the bulk flue gas is 2000Pa, the optimum initial radius and absorbent concentration are 210 310 µ m and 23% respectively. The model can supply the optimum parameters for semi-dry FGD system designed.

  11. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  12. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  13. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    PubMed Central

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  14. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    NASA Astrophysics Data System (ADS)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  15. Adsorption and Desulfurization Mechanism of Thiophene on Layered FeS(001), (011), and (111) Surfaces: A Dispersion-Corrected Density Functional Theory Study

    PubMed Central

    2017-01-01

    Layered transition-metal chalcogenides have emerged as a fascinating new class of materials for catalysis. Here, we present periodic density functional theory (DFT) calculations of the adsorption of thiophene and the direct desulfurization reaction pathways on the (001), (011), and (111) surfaces of layered FeS. The fundamental aspects of the thiophene adsorption, including the initial adsorption geometries, adsorption energies, structural parameters, and electronic properties, are presented. From the calculated adsorption energies, we show that the flat adsorption geometries, wherein the thiophene molecule forms multiple π-bonds with the FeS surfaces, are energetically more favorable than the upright adsorption geometries, with the strength of adsorption decreasing in the order FeS(111) > FeS(011) > FeS(001). The adsorption of the thiophene onto the reactive (011) and (111) surfaces is shown to be characterized by charge transfer from the interacting Fe d-band to the π-system of the thiophene molecule, which causes changes of the intramolecular structure including loss of aromaticity and elongation of the C–S bonds. The thermodynamic and kinetic analysis of the elementary steps involved in the direct desulfurization of thiophene on the reactive FeS surfaces is also presented. Direct desulfurization of thiophene occurs preferentially on the (111) surface, as reflected by the overall exothermic reaction energy calculated for the process (ER = −0.15 eV), with an activation energy of 1.58 eV. PMID:29348782

  16. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  17. Microbial Desulfurization of a Crude Oil Middle-Distillate Fraction: Analysis of the Extent of Sulfur Removal and the Effect of Removal on Remaining Sulfur

    PubMed Central

    Grossman, M. J.; Lee, M. K.; Prince, R. C.; Garrett, K. K.; George, G. N.; Pickering, I. J.

    1999-01-01

    Rhodococcus sp. strain ECRD-1 was evaluated for its ability to desulfurize a 232 to 343°C middle-distillate (diesel range) fraction of Oregon basin (OB) crude oil. OB oil was provided as the sole source of sulfur in batch cultures, and the extent of desulfurization and the chemical fate of the residual sulfur in the oil after treatment were determined. Gas chromatography (GC), flame ionization detection, and GC sulfur chemiluminesce detection analysis were used to qualitatively evaluate the effect of Rhodococcus sp. strain ECRD-1 treatment on the hydrocarbon and sulfur content of the oil, respectively. Total sulfur was determined by combustion of samples and measurement of released sulfur dioxide by infrared absorption. Up to 30% of the total sulfur in the middle distillate cut was removed, and compounds across the entire boiling range of the oil were affected. Sulfur K-edge X-ray absorption-edge spectroscopy was used to examine the chemical state of the sulfur remaining in the treated OB oil. Approximately equal amounts of thiophenic and sulfidic sulfur compounds were removed by ECRD-1 treatment, and over 50% of the sulfur remaining after treatment was in an oxidized form. The presence of partially oxidized sulfur compounds indicates that these compounds were en route to desulfurization. Overall, more than two-thirds of the sulfur had been removed or oxidized by the microbial treatment. PMID:9872778

  18. Three annual flue gas desulfurization gypsum applications on macronutrient and micronutrient losses in runoff from bermudagrass fertilized with poultry litter

    USDA-ARS?s Scientific Manuscript database

    Considerable amounts of flue gas desulfurization (FGD) gypsum are being produced as a by-product of generating electricity. As a result, beneficial reuse of this by-product is being sought to reduce landfilling and its associated cost. The use of this byproduct as a low-cost soil amendment for suppl...

  19. High Temperature Semiconductor Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899

  20. Apparatus and method for the desulfurization of petroleum by bacteria

    DOEpatents

    Lizama, H.M.; Scott, T.C.; Scott, C.D.

    1995-10-17

    A method is described for treating petroleum with anaerobic microorganisms acting as biocatalysts that can remove sulfur atoms from hydrocarbon molecules, under anaerobic conditions, and then convert the sulfur atoms to hydrogen sulfide. The microorganisms utilized are from the family known as the ``Sulfate Reducing Bacteria``. These bacteria generate metabolic energy from the oxidation of organic compounds, but use oxidized forms of sulfur as an electron acceptor. Because the biocatalyst is present in the form of bacteria in an aqueous suspension, whereas the reacting substrate consists of hydrocarbon molecules in an organic phase, the actual desulfurization reaction takes place at the aqueous-organic interphase. To ensure adequate interfacial contacting and mass transfer, a biphasic electrostatic bioreactor system is utilized. The bioreactor is utilized to disperse and recoalesce a biocatalyst contained in the aqueous liquid phase into the organic liquid phase containing the sulfur. High-intensity electrical fields rupture the aqueous drops into a plurality of microdroplets and induce continuous coalescence and redispersion as the microdroplets travel through the organic phase, thus increasing surface area. As the aqueous microdroplets progress through the organic phase, the biocatalyst then reacts with the sulfur to produce hydrogen sulfide which is then removed from the bioreactor. The organic liquid, now free of the sulfur, is ready for immediate use or further processing. 5 figs.

  1. A non-chemically selective top-down approach towards the preparation of hierarchical TS-1 zeolites with improved oxidative desulfurization catalytic performance.

    PubMed

    Du, Shuting; Chen, Xiaoxin; Sun, Qiming; Wang, Ning; Jia, Mingjun; Valtchev, Valentin; Yu, Jihong

    2016-02-28

    Hierarchical TS-1 zeolites with secondary macropores have been successfully prepared by using two different fluoride-containing chemical etching post-treated routes. Hierarchical TS-1 zeolites exhibited a chemical composition similar to that of the parent material and showed remarkably enhanced catalytic activity in oxidative desulfurization reaction.

  2. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  3. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  4. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  5. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  6. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  7. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  8. Three-Dimensional Printable High-Temperature and High-Rate Heaters.

    PubMed

    Yao, Yonggang; Fu, Kun Kelvin; Yan, Chaoyi; Dai, Jiaqi; Chen, Yanan; Wang, Yibo; Zhang, Bilun; Hitz, Emily; Hu, Liangbing

    2016-05-24

    High temperature heaters are ubiquitously used in materials synthesis and device processing. In this work, we developed three-dimensional (3D) printed reduced graphene oxide (RGO)-based heaters to function as high-performance thermal supply with high temperature and ultrafast heating rate. Compared with other heating sources, such as furnace, laser, and infrared radiation, the 3D printed heaters demonstrated in this work have the following distinct advantages: (1) the RGO based heater can operate at high temperature up to 3000 K because of using the high temperature-sustainable carbon material; (2) the heater temperature can be ramped up and down with extremely fast rates, up to ∼20 000 K/second; (3) heaters with different shapes can be directly printed with small sizes and onto different substrates to enable heating anywhere. The 3D printable RGO heaters can be applied to a wide range of nanomanufacturing when precise temperature control in time, placement, and the ramping rate are important.

  9. Microstructural Evolution and Mechanical Behavior of High Temperature Solders: Effects of High Temperature Aging

    NASA Astrophysics Data System (ADS)

    Hasnine, M.; Tolla, B.; Vahora, N.

    2018-04-01

    This paper explores the effects of aging on the mechanical behavior, microstructure evolution and IMC formation on different surface finishes of two high temperature solders, Sn-5 wt.% Ag and Sn-5 wt.% Sb. High temperature aging showed significant degradation of Sn-5 wt.% Ag solder hardness (34%) while aging has little effect on Sn-5 wt.% Sb solder. Sn-5 wt.% Ag experienced rapid grain growth as well as the coarsening of particles during aging. Sn-5 wt.% Sb showed a stable microstructure due to solid solution strengthening and the stable nature of SnSb precipitates. The increase of intermetallic compound (IMC) thickness during aging follows a parabolic relationship with time. Regression analysis (time exponent, n) indicated that IMC growth kinetics is controlled by a diffusion mechanism. The results have important implications in the selection of high temperature solders used in high temperature applications.

  10. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  11. Process for the manufacture of an attrition resistant sorbent used for gas desulfurization

    DOEpatents

    Venkataramani, Venkat S.; Ayala, Raul E.

    2003-09-16

    This process produces a sorbent for use in desulfurization of coal gas. A zinc titanate compound and a metal oxide are mixed by milling the compounds in an aqueous medium, the resulting mixture is dried and then calcined, crushed, sleved and formed into pellets for use in a moving-bed reactor. Metal oxides suitable for use as an additive in this process include: magnesium oxide, magnesium oxide plus molybdenum oxide, calcium oxide, yttrium oxide, hafnium oxide, zirconium oxide, cupric oxide, and tin oxide. The resulting sorbent has a percentage of the original zinc or titanium ions substituted for the oxide metal of the chosen additive.

  12. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  13. Integrated Mg/TiO2-ionic liquid system for deep desulfurization

    NASA Astrophysics Data System (ADS)

    Yin, Yee Cia; Kait, Chong Fai; Fatimah, Hayyiratul; Wilfred, Cecilia

    2014-10-01

    A series of Mg/TiO2 photocatalysts were prepared using wet impregnation method followed by calcination at 300, 400 and 500°C for 1 h. The photocatalysts were characterized using Thermal Gravimetric Analysis, Fourier-Transform Infrared Spectroscopy, X-Ray Diffraction, and Field Emission Scanning Electron Microscopy. The performance for deep desulfurization was investigated using model oil with 100 ppm sulfur (in the form of dibenzothiophene). The integrated system involves photocatalytic oxidation followed by ionic liquid-extraction processes. The best performing photocatalyst was 0.25wt% Mg loaded on titania calcined at 400°C (0.25Mg400), giving 98.5% conversion of dibenzothiophene to dibenzothiophene sulfone. The highest extraction efficiency of 97.8% was displayed by 1,2-diethylimidazolium diethylphosphate. The overall total sulfur removal was 96.3%.

  14. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 62 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  15. High-temperature responses of North American cacti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.

    1984-04-01

    High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less

  16. Model A: High-Temperature Tribometer

    DTIC Science & Technology

    1992-02-01

    spring loaded collet which grips the pin. In previous machines Inconel 625 collets and sleeves with 450 contact angles were used without collet...Triboeter, high temperature, friction, wear 11 1 08__ 19 ABSTRACT (Continue on revere if necewry and identify by blck number) A high temperature...tribometer has been specifically designed and fabricated to accurately measure, in real time, friction and wear characteristics of materials at temperatures

  17. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  18. Copper Alloy For High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  19. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  20. Advanced High Temperature Structural Seals

    NASA Astrophysics Data System (ADS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-10-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  1. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  2. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  3. Activation of Noble Metals on Metal-Carbide Surfaces: Novel Catalysts for CO Oxidation, Desulfurization and Hydrogenation Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez J. A.; Illas, F.

    2012-01-01

    This perspective article focuses on the physical and chemical properties of highly active catalysts for CO oxidation, desulfurization and hydrogenation reactions generated by depositing noble metals on metal-carbide surfaces. To rationalize structure-reactivity relationships for these novel catalysts, well-defined systems are required. High-resolution photoemission, scanning tunneling microscopy (STM) and first-principles periodic density-functional (DF) calculations have been used to study the interaction of metals of Groups 9, 10 and 11 with MC(001) (M = Ti, Zr, V, Mo) surfaces. DF calculations give adsorption energies that range from 2 eV (Cu, Ag, Au) to 6 eV (Co, Rh, Ir). STM images show thatmore » Au, Cu, Ni and Pt grow on the carbide substrates forming two-dimensional islands at very low coverage, and three-dimensional islands at medium and large coverages. In many systems, the results of DF calculations point to the preferential formation of admetal-C bonds with significant electronic perturbations in the admetal. TiC(001) and ZrC(001) transfer some electron density to the admetals facilitating bonding of the adatom with electron-acceptor molecules (CO, O{sub 2}, C{sub 2}H{sub 4}, SO{sub 2}, thiophene, etc.). For example, the Cu/TiC(001) and Au/TiC(001) systems are able to cleave both S-O bonds of SO{sub 2} at a temperature as low as 150 K, displaying a reactivity much larger than that of TiC(001) or extended surfaces of bulk copper and gold. At temperatures below 200 K, Au/TiC is able to dissociate O{sub 2} and perform the 2CO + O{sub 2} {yields} 2CO{sub 2} reaction. Furthermore, in spite of the very poor hydrodesulfurization performance of TiC(001) or Au(111), a Au/TiC(001) surface displays an activity for the hydrodesulfurization of thiophene higher than that of conventional Ni/MoS{sub x} catalysts. In general, the Au/TiC system is more chemically active than systems generated by depositing Au nanoparticles on oxide surfaces. Thus, metal carbides are

  4. Deep Trek High Temperature Electronics Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  5. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  6. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  7. Application of Two Cobalt-Based Metal-Organic Frameworks as Oxidative Desulfurization Catalysts.

    PubMed

    Masoomi, Mohammad Yaser; Bagheri, Minoo; Morsali, Ali

    2015-12-07

    Two new porous cobalt-based metal-organic frameworks, [Co6(oba)5(OH)2(H2O)2(DMF)4]n · 5DMF (TMU-10) and [Co3(oba)3(O) (Py)0.5] n · 4DMF · Py (TMU-12) have been synthesized by solvothermal method using a nonlinear dicarboxylate ligand. Under mild reaction conditions, these compounds exhibited good catalytic activity and reusability in oxidative desulfurization (ODS) reaction of model oil which was prepared by dissolving dibenzothiophene (DBT) in n-hexane. FT-IR and Mass analysis showed that the main product of DBT oxidation is its corresponding sulfone, which was adsorbed on the surfaces of catalysts. The activation energy was obtained as 13.4 kJ/mol.

  8. Efficient removal of H2S at high temperature using the ionic liquid solutions of [C4mim]3PMo12O40-An organic polyoxometalate.

    PubMed

    Ma, Yunqian; Liu, Xinpeng; Wang, Rui

    2017-06-05

    An innovative approach to H 2 S capture and sulfur recovery via liquid redox at high temperature has been developed using [C 4 mim] 3 PMo 12 O 40 at temperatures ranging from 80 to 180°C, which is superior to the conventional water-based system with an upper limit of working temperature normally below 60°C. The ionic liquids used as solvents include [C 4 mim]Cl, [C 4 mim]BF 4 , [C 4 mim]PF 6 and [C 4 mim]NTf 2 . Microscopic observation and turbidity measurement were used to investigate the dissolution of [C 4 mim] 3 PMo 12 O 40 in the ionic liquids. Stabilization energy between H 2 S and the anion of ionic liquid as well as H 2 O was calculated to illustrate the interaction between H 2 S and the solvents. The cavity theory can be adopted to illustrate the mechanism for H 2 S absorption: the Cl - ion with small radius can be incorporated into the cavities of [C 4 mim] 3 PMo 12 O 40 , and interact with H 2 S strongly. The underlying mechanism for sulfur formation is the redox reaction between H 2 S and PMo 12 O 40 3- . H 2 S can be oxidized to elemental sulfur and Mo 6+ is partly reduced during absorption, according to UV-vis and FTIR spectra. The [C 4 mim] 3 PMo 12 O 40 -[C 4 mim]Cl after reaction can be readily regenerated by air and thus enabling its efficient and repeatitive use. The absorbent of [C 4 mim] 3 PMo 12 O 40 -ionic liquid system provides a new approach for wet oxidation desulfurization at high temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Understanding the high-temperature deformation

    NASA Astrophysics Data System (ADS)

    Gyurko, Angela M.; Vignoul, Gregory E.; Tien, John K.; Sanchez, Juan M.

    1992-11-01

    Engineering, University of Texas at Austin, Austin, TX 78712 While much of the high-temperature intermetallics research has centered around Ni3Al and other aluminum-based systems, the present study focuses on the Engel-Brewer Ll2 intermetallic Ir3Zr, which has a melting temperature approaching that of ceramics (2280 °C). Due to limited material availability, the technique of microindentation was used to study both the temperature and time dependence of strength. Because of the widely held belief that certain mechanical properties of intermetallics scale roughly with temperature, Ir3Zr was expected to exhibit high strength. The microhardness was observed to vary from 225 MPa at room temperature to 75 MPa at 1400 °C, which is significantly lower than the behavior of Ni3Al. The activation energy for creep was determined to be 467 kJ/mole, and the stress exponent was found to be 18.2. The ordering energy of this system was calculated to be 0.114 eV. If it can be assumed that high ordering energy correlates to a high antiphase boundary (APB) energy, then the behavior of this system is consistent with a model that predicts highly glissile dislocation cores.

  10. High performance aluminum–cerium alloys for high-temperature applications

    DOE PAGES

    Sims, Zachary C.; Rios, Orlando R.; Weiss, David; ...

    2017-08-01

    Light-weight high-temperature alloys are important to the transportation industry where weight, cost, and operating temperature are major factors in the design of energy efficient vehicles. Aluminum alloys fill this gap economically but lack high-temperature mechanical performance. Alloying aluminum with cerium creates a highly castable alloy, compatible with traditional aluminum alloy additions, that exhibits dramatically improved high-temperature performance. These compositions display a room temperature ultimate tensile strength of 400 MPa and yield strength of 320 MPa, with 80% mechanical property retention at 240 °C. A mechanism is identified that addresses the mechanical property stability of the Al-alloys to at least 300more » °C and their microstructural stability to above 500 °C which may enable applications without the need for heat treatment. Lastly, neutron diffraction under load provides insight into the unusual mechanisms driving the mechanical strength.« less

  11. Selective desulfurization of cysteine in the presence of Cys(Acm) in polypeptides obtained by native chemical ligation.

    PubMed

    Pentelute, Brad L; Kent, Stephen B H

    2007-02-15

    Increased versatility for the synthesis of proteins and peptides by native chemical ligation requires the ability to ligate at positions other than Cys. Here, we report that Raney nickel can be used under standard conditions for the selective desulfurization of Cys in the presence of Cys(Acm). This simple and practical tactic enables the more common Xaa-Ala junctions to be used as ligation sites for the chemical synthesis of Cys-containing peptides and proteins. [reaction: see text].

  12. Indium-Catalyzed Reductive Dithioacetalization of Carboxylic Acids with Dithiols: Scope, Limitations, and Application to Oxidative Desulfurization.

    PubMed

    Nishino, Kota; Minato, Kohei; Miyazaki, Takahiro; Ogiwara, Yohei; Sakai, Norio

    2017-04-07

    In this study an InI 3 -TMDS (1,1,3,3-tetramethyldisiloxane) reducing system effectively catalyzed the reductive dithioacetalization of a variety of aromatic and aliphatic carboxylic acids with 1,2-ethanedithiol or 1,3-propanedithiol leading to the one-pot preparation of either 1,3-dithiolane derivatives or a 1,3-dithiane derivative. Also, the intact indium catalyst continuously catalyzed the subsequent oxidative desulfurization of an in situ formed 1,3-dithiolane derivative, which led to the preparation of the corresponding aldehydes.

  13. Low temperature superconductor and aligned high temperature superconductor magnetic dipole system and method for producing high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Ramesh; Scanlan, Ronald; Ghosh, Arup K.

    A dipole-magnet system and method for producing high-magnetic-fields, including an open-region located in a radially-central-region to allow particle-beam transport and other uses, low-temperature-superconducting-coils comprised of low-temperature-superconducting-wire located in radially-outward-regions to generate high magnetic-fields, high-temperature-superconducting-coils comprised of high-temperature-superconducting-tape located in radially-inward-regions to generate even higher magnetic-fields and to reduce erroneous fields, support-structures to support the coils against large Lorentz-forces, a liquid-helium-system to cool the coils, and electrical-contacts to allow electric-current into and out of the coils. The high-temperature-superconducting-tape may be comprised of bismuth-strontium-calcium-copper-oxide or rare-earth-metal, barium-copper-oxide (ReBCO) where the rare-earth-metal may be yttrium, samarium, neodymium, or gadolinium. Advantageously, alignment of themore » large-dimension of the rectangular-cross-section or curved-cross-section of the high-temperature-superconducting-tape with the high-magnetic-field minimizes unwanted erroneous magnetic fields. Alignment may be accomplished by proper positioning, tilting the high-temperature-superconducting-coils, forming the high-temperature-superconducting-coils into a curved-cross-section, placing nonconducting wedge-shaped-material between windings, placing nonconducting curved-and-wedge-shaped-material between windings, or by a combination of these techniques.« less

  14. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  15. Direct synthesis of Ti-containing SBA-16-type mesoporous material by the evaporation-induced self-assembly method and its catalytic performance for oxidative desulfurization.

    PubMed

    Shah, Asma Tufail; Li, Baoshan; Abdalla, Zaki Eldin Ali

    2009-08-15

    A novel Ti-containing SBA-16-type mesoporous material (with various Ti loadings of 5, 10, and 15 wt%) was synthesized by an evaporation-induced self-assembly method using F127 copolymer as template. The materials were characterized by XRD, FTIR, TG-DTA, N(2) adsorption, SEM, HRTEM, and XPS. The characterization results show that the material possesses high thermal stability, thick pore walls (10.43-10.68 nm), and high surface area (642.26-691.5 m(2)/g) with a mesoporous worm-like structure, and titanium was successfully incorporated into the silica matrix with a tetrahedral environment. The material showed high activity in the oxidative desulfurization of DBT and its activity was not reduced even after three times recycling; further reuse resulted in a gradual decrease in its activity.

  16. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  17. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  18. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  19. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  20. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  1. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  2. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  3. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  4. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  5. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  6. Survey of flue gas desulfurization systems: Hawthorn Station, Kansas City Power and Light Co. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.; Zada, F.K.

    1975-09-01

    Results are given of a survey of the flue gas desulfurization (FGD) systems at Kansas City Power and Light Co.'s Hawthorn Power Station. The FGD systems on Hawthorn boilers 3 and 4 were designed to operate by injection of dry limestone in the boiler's furnace, followed by tail gas scrubbing. Because of tube plugging in boiler 4 the mode of operation of the FGD system on that boiler was modified: ground limestone is now introduced into the flue gas near the gas inlet to the scrubber tower. (GRA)

  7. Method for reducing sulfate formation during regeneration of hot-gas desulfurization sorbents

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.; Rockey, John M.

    1994-01-01

    The regeneration of sulfur sorbents having sulfate forming tendencies and used for desulfurizing hot product gas streams such as provided by coal gasification is provided by employing a two-stage regeneration method. Air containing a sub-stoichiometric quantity of oxygen is used in the first stage for substantially fully regenerating the sorbent without sulfate formation and then regeneration of the resulting partially regenerated sorbent is completed in the second stage with air containing a quantity of oxygen slightly greater than the stoichiometric amount adequate to essentially fully regenerate the sorbent. Sulfate formation occurs in only the second stage with the extent of sulfate formation being limited only to the portion of the sulfur species contained by the sorbent after substantially all of the sulfur species have been removed therefrom in the first stage.

  8. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  9. Self-sustained operation of a kW e-class kerosene-reforming processor for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yoon, Sangho; Bae, Joongmyeon; Kim, Sunyoung; Yoo, Young-Sung

    In this paper, fuel-processing technologies are developed for application in residential power generation (RPG) in solid oxide fuel cells (SOFCs). Kerosene is selected as the fuel because of its high hydrogen density and because of the established infrastructure that already exists in South Korea. A kerosene fuel processor with two different reaction stages, autothermal reforming (ATR) and adsorptive desulfurization reactions, is developed for SOFC operations. ATR is suited to the reforming of liquid hydrocarbon fuels because oxygen-aided reactions can break the aromatics in the fuel and steam can suppress carbon deposition during the reforming reaction. ATR can also be implemented as a self-sustaining reactor due to the exothermicity of the reaction. The kW e self-sustained kerosene fuel processor, including the desulfurizer, operates for about 250 h in this study. This fuel processor does not require a heat exchanger between the ATR reactor and the desulfurizer or electric equipment for heat supply and fuel or water vaporization because a suitable temperature of the ATR reformate is reached for H 2S adsorption on the ZnO catalyst beds in desulfurizer. Although the CH 4 concentration in the reformate gas of the fuel processor is higher due to the lower temperature of ATR tail gas, SOFCs can directly use CH 4 as a fuel with the addition of sufficient steam feeds (H 2O/CH 4 ≥ 1.5), in contrast to low-temperature fuel cells. The reforming efficiency of the fuel processor is about 60%, and the desulfurizer removed H 2S to a sufficient level to allow for the operation of SOFCs.

  10. Desulfurization of Thiophene on Au/TiC(001): Au−C Interactions and Charge Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; Liu, P; Takahashi, Y

    2009-01-01

    Photoemission and first-principles DF calculations were used to study the interaction of thiophene with TiC(001) and Au/TiC(001) surfaces. The adsorption strength of thiophene on TiC(001) is weak, and the molecule desorbs at temperatures below 200 K. The molecule binds to Ti centers of TiC(001) through its sulfur atom with negligible structural perturbations. In spite of the very poor desulfurization performance of TiC(001) or Au(111), a Au/TiC(001) system displays a hydrodesulfurization activity higher than that of conventional Ni/MoS{sub x} catalysts. The Au?TiC(001) interactions induce a polarization of electron density around Au which substantially increases the chemical reactivity of this metal. Aumore » nanoparticles drastically increase the hydrodesulfurization activity of TiC(001) by enhancing the bonding energy of thiophene and by helping in the dissociation of H{sub 2} to produce the hydrogen necessary for the hydrogenolysis of C-S bonds and the removal of sulfur. H{sub 2} spontaneously dissociates on small two-dimensional clusters of gold in contact with TiC(001). On these systems, the adsorption energy of thiophene is 0.45-0.65 eV larger than that on TiC(001) or Au(111). Thiophene binds in a ?5 configuration with a large elongation ({approx}0.2 {angstrom}) of the C-S bonds.« less

  11. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    PubMed

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  12. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  13. The Conference on High Temperature Electronics

    NASA Astrophysics Data System (ADS)

    Hamilton, D. J.; McCormick, J. B.; Kerwin, W. J.; Narud, J. A.

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  14. Synthesis of geminal difluorides by oxidative desulfurization-difluorination of alkyl aryl thioethers with halonium electrophiles in the presence of fluorinating reagents and its application for 18F-radiolabeling.

    PubMed

    Hugenberg, Verena; Wagner, Stefan; Kopka, Klaus; Schober, Otmar; Schäfers, Michael; Haufe, Günter

    2010-09-17

    Various ω-substituted 1,1-difluoroalkanes are synthesized in good yields from alkyl aryl thioethers by a new oxidative desulfurization-difluorination protocol with the reagents combination of 1,3-dibromo-5,5-dimethylhydantoin (DBH) as an oxidizer and pyridine·9HF (Py·9HF) as a fluoride source. The reaction proceeds via a fluoro-Pummerer-type rearrangement followed by an oxidative desulfurization-fluorination step. Starting from α-fluorinated thioethers, this reaction is promising for (18)F-labeling (τ(1/2) = 110 min) of ligands applicable for positron emission tomography (PET). Using the combination of DBH and carrier-added Py·9H[(18)F]F, an (18)F-labeled difluoride was synthesized from the corresponding α-fluoro thioether with a radiochemical yield of 9%.

  15. Shot noise at high temperatures

    NASA Astrophysics Data System (ADS)

    Gutman, D. B.; Gefen, Yuval

    2003-07-01

    We consider the possibility of measuring nonequilibrium properties of the current correlation functions at high temperatures (and small bias). Through the example of the third cumulant of the current (S3) we demonstrate that odd-order correlation functions represent nonequilibrium physics even at small external bias and high temperatures. We calculate S3=y(eV/T)e2I for a quasi-one-dimensional diffusive constriction. We calculate the scaling function y in two regimes: when the scattering processes are purely elastic and when the inelastic electron-electron scattering is strong. In both cases we find that y interpolates between two constants. In the low- (high-) temperature limit y is strongly (weakly) enhanced (suppressed) by the electron-electron scattering.

  16. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  17. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  18. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Condie, Keith G [Idaho Falls, ID; Wilkins, S Curt [Idaho Falls, ID

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  19. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  20. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  1. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  2. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  3. Major study reveals EEC gas oil desulfurization costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waller, G.J.; Conrad, M.C.; Cremer, G.

    1985-01-21

    The interest of the European Economic Community (EEC) Commission in the issue of acid rain has prompted a Concawe working group to make an independent study of the cost of achieving a reduction of average sulfur levels for gas oils consumed in the EEC. The need for desulfurization of gas oils should be seen in the context of their overall contribution to SO/sub 2/ emissions. The removal of sulfur from gas oil is apparently one of the most costly ways to reduce SO/sub 2/ emissions. The overall effect is apparently the smallest. A reduction of 0.1% sulfur for all gasmore » oil produced in the EEC would result in a reduction of only about 140,000 tons/year of sulfur, corresponding to less than 2% of the present total SO/sub 2/ emissions. The cost of the incremental ton of sulfur removed from the gas oil pool increases significantly for lower sulfur specifications. The overall conclusion is that sulfur reduction between 0.43% and 0.2% is comparable in cost to other methods of reducing SO/sub 2/ emissions. For a reduction below 0.2%, excessive costs can be expected and it would be more economical in most cases to consider another means.« less

  4. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  5. High-Power, High-Temperature Superconductor Technology Development

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.

    2005-01-01

    Since the first discovery of high-temperature superconductors (HTS) 10 years ago, the most promising areas for their applications in microwave systems have been as passive components for communication systems. Soon after the discovery, experiments showed that passive microwave circuits made from HTS material exceeded the performance of conventional devices for low-power applications and could be 10 times as small or smaller. However, for superconducting microwave components, high-power microwave applications have remained elusive until now. In 1996, DuPont and Com Dev Ltd. developed high-power superconducting materials and components for communication applications under a NASA Lewis Research Center cooperative agreement, NCC3-344 "High Power High Temperature Superconductor (HTS) Technology Development." The agreement was cost shared between the Defense Advanced Research Projects Agency's (DARPA) Technology Reinvestment Program Office and the two industrial partners. It has the following objectives: 1) Material development and characterization for high-power HTS applications; 2) Development and validation of generic high-power microwave components; 3) Development of a proof-of-concept model for a high-power six-channel HTS output multiplexer.

  6. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  7. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2017-12-09

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  8. Review on fatigue behavior of high-strength concrete after high temperature

    NASA Astrophysics Data System (ADS)

    Zhao, Dongfu; Jia, Penghe; Gao, Haijing

    2017-06-01

    The fatigue of high-strength concrete after high temperature has begun to attract attention. But so far the researches work about the fatigue of high-strength concrete after high temperature have not been reported. This article based on a large number of literature. The research work about the fatigue of high-strength concrete after high temperature are reviewed, analysed and expected, which can provide some reference for the experimental study of fatigue damage analysis.

  9. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  10. Simultaneous removal of SO2 and NOx from flue gas by wet scrubbing using a urea solution.

    PubMed

    Li, Ge; Wang, Baodong; Xu, Wayne Qiang; Li, Yonglong; Han, Yifan; Sun, Qi

    2018-03-27

    Nitrogen oxides (NO x ) and sulfur dioxide (SO 2 ) are major air pollutants, so simultaneously removing them from gases emitted during fossil fuel combustion in stationary systems is important. Wet denitrification using urea is used for a wide range of systems. Additives have strong effects on wet denitrification using urea, and different mechanisms are involved and different effects found using different additives. In this study, the effects of different additives, initial urea concentrations, reaction temperatures, initial pH values, gas flow rates, and reaction times on the simultaneous desulfurization and denitrification efficiencies achieved using wet denitrification using urea were studied in single factor experiment. The optimum reaction conditions for desulfurization and denitrification were found. Desulfurization and denitrification efficiencies of 97.5% and 96.3%, respectively, were achieved at a KMnO 4 concentration 5 mmol/L, a reaction temperature of 70°C, initial urea solution pH 8, a urea concentration of 9%, and a gas flow rate of 40 L/h. The concentrations of the desulfurization and denitrification reaction products in the solution were determined. NO x was mainly transformed into N 2 , and the [Formula: see text] and [Formula: see text] concentrations in the solution became very low. The reactions involved in SO 2 and NO x removal using urea were analyzed from the thermodynamic viewpoint. Increasing the temperature was not conducive to the reactions but increased the rate constant, so an optimum temperature was determined. The simultaneous desulfurization and denitrification kinetics were calculated. The urea consumption and [Formula: see text], [Formula: see text], and [Formula: see text] generation reactions were all zero order. The [Formula: see text] generation rate was greater than the [Formula: see text] generation rate. The simultaneous desulfurization and denitrification process and mechanism were studied. The results provide reference

  11. The arrival of high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Chu, Paul C. W.

    2011-03-01

    The attainment of high temperature superconductivity has been considered a major advancement of modern science. It was the seminal discovery of the first cuprate high temperature superconductor, the Ba-doped La 2 Cu O4 , with a Tc of 35 K in 1986 by Alex Müller and George Bednorz of IBM Zurich Lab, who were awarded the Nobel Prize in 1987, that ushered in the era of cuprate high temperature superconductivity. It was the first liquid nitrogen high temperature superconductor, YBa 2 Cu 3 O7 with a Tc of 93 K discovered in 1987 by Paul C. W. Chu, Maw-Kuen Wu and colleagues in the respective groups at the University of Houston and the University of Alabama at Huntsville that heralded the new era of high temperature superconductivity, drastically changing the psyche of superconductivity research and bringing superconductivity applications a giant step closer to reality. In the ensuing years, many high temperature superconductors have been found, leading to the current record Tc of 134 K which was observed by A. Schilling et al. of ETH in 1993 in HgBa 2 Ca 2 Cu 3 O9 - δ at ambient and later raised to 164 K under 30 GPa by L. Gao et al. In the present talk, I shall briefly recall a few events leading to and during the arrival of high temperature superconductivity. The prospects for future superconductors with higher Tc will also be discussed. Supported in part by U.S. AFOSR, U.S. DoE through ORNL, U.S. AFRL CONTACT through Rice University, the T. L. L. Temple Foundation, the John J. and Rebecca Moores Endowment, and the State of Texas through TCSUH.

  12. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  13. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  14. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  15. Adsorption and desorption of sulfur dioxide on novel adsorbents for flue gas desulfurization. Final report, September 1, 1993--August 31, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Y.S.

    Dry regenerative sorption processes have recently attracted increasing attention in flue gas desulfurization (FGD) because of their several advantages over the conventional wet-scrubbing processes. Dry sorbents are usually made by coating a transition or alkaline earth metal precursor on the surface of a porous support. Major disadvantages of these sorbents prepared by the conventional methods include relatively poor attrition resistance and low SO{sub 2} sorption capacity. The physical and especially chemical attrition (associated with the sulphation-oxidation-reduction cycles in the process) deteriorates the performance of the sorbents. The low SO{sub 2} sorption capacity is primarily due to the small surface areamore » of the support. Materials with a high surface area are not used as the supports for FGD sorbents because these materials usually are not thermally stable at high temperatures. In the past year, the research supported by Ohio Coal Development Office was focused on synthesis and properties of sol-gel derived alumina and zeolite sorbents with improved properties for FGD. The sol-gel derived alumina has large surface area, mesopore size and excellent mechanical strength. Some alumina-free zeolites not only posses the basic properties required as a sorbent for FGD (hydrophobicity, thermal and chemical stability, mechanical strength) but also have extremely large surface area and selective surface chemistry. The major objectives of this research program were to synthesize the sol-gel derived sorbents and to explore the use of the zeolites either directly as adsorbents or as sorbent support for FGD. The research was aimed at developing novel FGD sorbents possessing better sorption equilibrium and kinetic properties and improved physical and chemical attrition resistance.« less

  16. Guidelines for the use of fiberglass reinforced plastic in utility FGD systems. [Flue gas desulfurization (FGD); contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapoza, R.J.; Vollmer, H.R.; Haberly, K.L.

    1992-11-01

    Fiberglass reinforced plastic (FRP) materials offer excellent corrosion-resistant properties and long-term cost advantages compared to exotic alloys or organic lining systems. This guideline document provides potential buyers of FRP FGD (flue gas desulfurization) equipment with enough knowledge of FRP materials and methods to make informed decisions when procuring FRP equipment or services. It is divided into the following chapters: application criteria, procurement strategies, FRP basics, guidelines for designing FRP equipment, quality management. A glossary and manufacturers information/recommendations are included.

  17. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  19. High temperature solar receiver

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of a high temperature solar thermal receiver is described. A prototype receiver and associated test support (auxiliary) hardware was fabricated. Shakedown and initial performance tests of the prototype receiver were performed. Maximum outlet temperatures of 1600 F were achieved at 100% solar (70-75 kW) input power with 900 F inlet temperatures and a subsequent testing was concluded by a 2550 F outlet run. The window retaining assembly was modified to improve its tolerance for thermal distortion of the flanges. It is shown that cost effective receiver designs can be implemented within the framework of present materials technology.

  20. (High temperature flaw assessment procedure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, M.B.

    1990-06-01

    The Electric Power Research Institute (EPRI), the Japanese Central Research Institute of Electric Power Industry (CRIEPI), and the British Nuclear Electric (NE) are conducting joint studies in the field of liquid metal reactor development. The traveler is currently responsible for the EPRI/CRIEPI/NE High-Temperature Flaw Assessment Procedure activities at the Oak Ridge National Laboratory (ORNL). The traveler participated, on behalf of EPRI, in the EPRI/CRIEPI/NE specialist working session, the purpose of which was to produce the interim High-Temperature Flaw Assessment guide. The traveler also led discussions on the High-Temperature Flaw Assessment Procedure Phase 2 program plan, and on the plan formore » a new joint EPRI/CRIEPI/NE study in Inelastic Behavior and Failure Criteria for Modified 9Cr--1Mo Steel. The traveler visited Profs. K. Ikegami, Y. Asada, N. Ohno, T. Inoue, and K. Kaneko at the Tokyo Institute of Technology, the University of Tokyo, Nagoya University, Kyoto University, and Science University of Tokyo, respectively to hold discussions on research advances in the areas of high-temperature fracture mechanics, inelastic material behavior, and constitutive modeling. In addition, the traveler visited Kajima Corp. and Ohbayashi Corp. Technical Research Institute to collect information on research in the area of fiber reinforced concrete.« less

  1. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, J.A.

    1997-12-02

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  2. Reduction of spalling in mixed metal oxide desulfurization sorbents by addition of a large promoter metal oxide

    DOEpatents

    Poston, James A.

    1997-01-01

    Mixed metal oxide pellets for removing hydrogen sulfide from fuel gas mixes derived from coal are stabilized for operation over repeated cycles of desulfurization and regeneration reactions by addition of a large promoter metal oxide such as lanthanum trioxide. The pellets, which may be principally made up of a mixed metal oxide such as zinc titanate, exhibit physical stability and lack of spalling or decrepitation over repeated cycles without loss of reactivity. The lanthanum oxide is mixed with pellet-forming components in an amount of 1 to 10 weight percent.

  3. U. S. (United States) Air Force Fuel Cell Application Analysis.

    DTIC Science & Technology

    1982-01-01

    Desulfurizer and shift cata- lyst temperatures are maintained by controlling the amount of gas entering or by-passing the external water vaporizer. If...rich gas . The sul- fur content of the desulfurized fuel gas must be less than 1 ppm. Reforming takes place in a nickel catalyst bed, operating at... Control Supplemental Firing Fuel Cell Temperature Recirculation Air Temperature Control via Cooler Fan Speed Exhaust Gas Water Load Following damper

  4. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  5. Method for the desulfurization of hot product gases from coal gasifier

    DOEpatents

    Grindley, Thomas

    1988-01-01

    The gasification of sulfur-bearing coal produces a synthesis gas which contains a considerable concentration of sulfur compounds especially hydrogen sulfide that renders the synthesis gas environmentally unacceptable unless the concentration of the sulfur compounds is significantly reduced. To provide for such a reduction in the sulfur compounds a calcium compound is added to the gasifier with the coal to provide some sulfur absorption. The synthesis gas from the gasifier contains sulfur compounds and is passed through an external bed of a regenerable solid absorbent, preferably zinc ferrite, for essentially completed desulfurizing the hot synthesis gas. This absorbent is, in turn, periodically or continuously regenerated by passing a mixture of steam and air or oxygen through the bed for converting absorbed hydrogen sulfide to sulfur dioxide. The resulting tail gas containing sulfur dioxide and steam is injected into the gasifier where the sulfur dioxide is converted by the calcium compound into a stable form of sulfur such as calcium sulfate.

  6. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  7. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  8. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  9. Reusing effluent of flue gas desulfurization wastewater treatment process as an economical calcium source for phosphorus removal.

    PubMed

    Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun

    2017-09-01

    Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.

  10. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  11. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  12. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  13. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  14. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnquist, Norman; Qi, Xuele; Raminosoa, Tsarafidy

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard tomore » their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been

  15. Coal desulfurization by low temperature chlorinolysis, phase 2

    NASA Technical Reports Server (NTRS)

    Kalvinskas, J. J.; Grohmann, K.; Rohatgi, N.; Ernest, J.; Feller, D.

    1980-01-01

    An engineering scale reactor system was constructed and operated for the evaluation of five high sulfur bituminous coals obtained from Kentucky, Ohio, and Illinois. Forty-four test runs were conducted under conditions of 100 by 200 mesh coal,solvents - methlychloroform and water, 60 to 130 C, 0 to 60 psig, 45 to 90 minutes, and gaseous chlorine flow rate of up to 24 SCFH. Sulfur removals demonstrated for the five coals were: maximum total sulfur removal of 46 to 89% (4 of 5 coals with methylchloroform) and 0 to 24% with water. In addition, an integrated continuous flow mini-pilot plant was designed and constructed for a nominal coal rate of 2 kilograms/hour which will be operated as part of the follow-on program. Equipment flow sheets and design drawings are included for both the batch and continuous flow mini-pilot plants.

  16. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  17. Survey of flue gas desulfurization systems: Duck Creek Station, Central Illinois Light Co. Final report, Jul-Dec 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laseke, B.A. Jr.

    The report presents the results of a survey of operational flue gas desulfurization (FGD) systems on coal-fired utility boilers in the United States. The FGD system installed on Unit 1 at the Duck Creek Station of Central Illinois Light Company is described in terms of design and performance. The system consists of four parallel, wet-limestone, rod-deck scrubber modules designed for 25% capacity each, providing a total sulfur dioxide removal efficiency of 85%. The bottom ash, fly ash, and scrubbing wastes are disposed of in a sludge pond lined with a natural impermeable material. The first module of this four modulemore » FGD system was placed in service on July 1, 1976, and operated intermittently throughout the remainder of the year and for approximately one month in early 1977. On July 23, 1978, the three remaining modules were completed and all four modules were placed in the gas path for treatment of high sulfur flue gas.« less

  18. Nuclear fuels for very high temperature applications

    NASA Astrophysics Data System (ADS)

    Lundberg, L. B.; Hobbins, R. R.

    The success of the development of nuclear thermal propulsion devices and thermionic space nuclear power generation systems depends on the successful utilization of nuclear fuel materials at temperatures in the range 2000 to 3500 K. Problems associated with the utilization of uranium bearing fuel materials at these very high temperatures while maintaining them in the solid state for the required operating times are addressed. The critical issues addressed include evaporation, melting, reactor neutron spectrum, high temperature chemical stability, fabrication, fission induced swelling, fission product release, high temperature creep, thermal shock resistance, and fuel density, both mass and fissile atom. Candidate fuel materials for this temperature range are based on UO2 or uranium carbides. Evaporation suppression, such as a sealed cladding, is required for either fuel base. Nuclear performance data needed for design are sparse for all candidate fuel forms in this temperature range, especially at the higher temperatures.

  19. Tough, Microcracking-Resistant, High-Temperature Polymer

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Razon, Pert; Smith, Ricky; Working, Dennis; Chang, Alice; Gerber, Margaret

    1990-01-01

    Simultaneous synthesis from thermosetting and thermoplastic components yields polyimide with outstanding properties. Involves process in which one polymer cross-linked in immediate presence of other, undergoing simultaneous linear chain extension. New material, LaRC-RP40 synthesized from high-temperature thermosetting imide prepolymer and from thermoplastic monomer. Three significantly improved properties: toughness, resistance to microcracking, and glass-transition temperature. Shows promise as high-temperature matrix resin for variety of components of aircraft engines and for use in other aerospace structures.

  20. Investigation of High Temperature Battery Systems

    DTIC Science & Technology

    1975-12-01

    8217I Research and Development Technical Report ECOM- 74-0587-F -44 INVESTIGATION OF HIGH TEMPERATURE BATTERY SYSTEMS I R.R. SAYANO M. L. MCCLANAHAN J...OF : HIGH TEMPERATURE BATTERY SYSTEMS S R. R. SAYANO S M. L. MCCLANAHAN S J. A. MALE S N. FRIED TRW SYSTEMS GROUP One Spam Park Redondo Beach, CA...500 0C 3. The maximum temperature which the braze will survive (1000 °C). These conditions must in some way be reconciled with the requirements of

  1. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  2. Deep oxidative desulfurization of dibenzothiophene in simulated oil and real diesel using heteropolyanion-substituted hydrotalcite-like compounds as catalysts.

    PubMed

    Yu, Fengli; Wang, Rui

    2013-11-05

    Three heteropolyanion substituted hydrotalcite-like compounds (HPA-HTLcs) including Mg₉Al₃(OH)₂₄[PW₁₂O₄₀](MgAl-PW₁₂), Mg₉Al₃(OH)₂₄[PMo₁₂O₄₀] (MgAl-PMo₁₂) and Mg₁₂Al₄(OH)₃₂[SiW₁₂O₄₀] (MgAl-SiW₁₂), were synthesized, characterized and used as catalysts for the oxidative desulfurization of simulated oil (dibenzothiophene, DBT, in n-octane). MgAl-PMo₁₂ was identified as an effective catalyst for the oxidative removal of DBT under very mild conditions of atmospheric pressure and 60 °C in a biphasic system using hydrogen peroxide as oxidant and acetonitrile as extractant. The conversion of DBT was nearly 100%. As a result, because of the influence of the electron density and the space steric hindrance, the oxidation reactivity of the different sulfur compounds in simulated oil followed the order DBT > 4,6-dimethyldibenzothiophene (4,6-DMDBT) > benzothiophene (BT) > thiophene (TH). When the reaction is finished, the catalysts can be recovered from the acetonitrile phase by filtration. The recovered MgAl-PMo₁₂ retains nearly the same catalytic activity as the fresh material. Moreover, MgAl-PMo₁₂ was found to exhibit an ideal catalytic activity in the oxidative desulfurization of real diesel resulting in a total remaining sulfur content of 9.12 ppm(w).

  3. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  4. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  5. Structural application of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    The operation of rocket engine turbine pumps is limited by the temperature restrictions of metallic components used in the systems. Mechanical strength and stability of these metallic components decrease drastically at elevated temperatures. Ceramic materials that retain high strength at high temperatures appear to be a feasible alternate material for use in the hot end of the turbopumps. This project identified and defined the processing parameters that affected the properties of Si3N4, one of candidate ceramic materials. Apparatus was assembled and put into operation to hot press Si3N4 powders into bulk material for in house evaluation. A work statement was completed to seek outside contract services to design, manufacture, and evaluate Si3N4 components in the service environments that exists in SSME turbopumps.

  6. High-temperature ductility of electro-deposited nickel

    NASA Technical Reports Server (NTRS)

    Dini, J. W.; Johnson, H. R.

    1977-01-01

    Work done during the past several months on high temperature ductility of electrodeposited nickel is summarized. Data are presented which show that earlier measurements made at NASA-Langley erred on the low side, that strain rate has a marked influence on high temperature ductility, and that codeposition of a small amount of manganese helps to improve high temperature ductility. Influences of a number of other factors on nickel properties were also investigated. They included plating solution temperature, current density, agitation, and elimination of the wetting agent from the plating solution. Repair of a large nozzle section by nickel plating is described.

  7. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  8. High-Temperature, High-Load-Capacity Radial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Provenza, Andrew; Montague, Gerald; Kascak, Albert; Palazzolo, Alan; Jansen, Ralph; Jansen, Mark; Ebihara, Ben

    2005-01-01

    A radial heteropolar magnetic bearing capable of operating at a temperature as high as 1,000 F (=540 C) has been developed. This is a prototype of bearings for use in gas turbine engines operating at temperatures and speeds much higher than can be withstood by lubricated rolling-element bearings. It is possible to increase the maximum allowable operating temperatures and speeds of rolling-element bearings by use of cooling-air systems, sophisticated lubrication systems, and rotor-vibration- damping systems that are subsystems of the lubrication systems, but such systems and subsystems are troublesome. In contrast, a properly designed radial magnetic bearing can suspend a rotor without contact, and, hence, without need for lubrication or for cooling. Moreover, a magnetic bearing eliminates the need for a separate damping system, inasmuch as a damping function is typically an integral part of the design of the control system of a magnetic bearing. The present high-temperature radial heteropolar magnetic bearing has a unique combination of four features that contribute to its suitability for the intended application: 1. The wires in its electromagnet coils are covered with an insulating material that does not undergo dielectric breakdown at high temperature and is pliable enough to enable the winding of the wires to small radii. 2. The processes used in winding and potting of the coils yields a packing factor close to 0.7 . a relatively high value that helps in maximizing the magnetic fields generated by the coils for a given supplied current. These processes also make the coils structurally robust. 3. The electromagnets are of a modular C-core design that enables replacement of components and semiautomated winding of coils. 4. The stator is mounted in such a manner as to provide stable support under radial and axial thermal expansion and under a load as large as 1,000 lb (.4.4 kN).

  9. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  10. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  11. The High Temperature Tensile and Creep Behaviors of High Entropy Superalloy.

    PubMed

    Tsao, Te-Kang; Yeh, An-Chou; Kuo, Chen-Ming; Kakehi, Koji; Murakami, Hideyuki; Yeh, Jien-Wei; Jian, Sheng-Rui

    2017-10-04

    This article presents the high temperature tensile and creep behaviors of a novel high entropy alloy (HEA). The microstructure of this HEA resembles that of advanced superalloys with a high entropy FCC matrix and L1 2 ordered precipitates, so it is also named as "high entropy superalloy (HESA)". The tensile yield strengths of HESA surpass those of the reported HEAs from room temperature to elevated temperatures; furthermore, its creep resistance at 982 °C can be compared to those of some Ni-based superalloys. Analysis on experimental results indicate that HESA could be strengthened by the low stacking-fault energy of the matrix, high anti-phase boundary energy of the strengthening precipitate, and thermally stable microstructure. Positive misfit between FCC matrix and precipitate has yielded parallel raft microstructure during creep at 982 °C, and the creep curves of HESA were dominated by tertiary creep behavior. To the best of authors' knowledge, this article is the first to present the elevated temperature tensile creep study on full scale specimens of a high entropy alloy, and the potential of HESA for high temperature structural application is discussed.

  12. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  13. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  14. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  15. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  16. Chemical and physical properties of dry flue gas desulfurization products.

    PubMed

    Kost, David A; Bigham, Jerry M; Stehouwer, Richard C; Beeghly, Joel H; Fowler, Randy; Traina, Samuel J; Wolfe, William E; Dick, Warren A

    2005-01-01

    Beneficial and environmentally safe recycling of flue gas desulfurization (FGD) products requires detailed knowledge of their chemical and physical properties. We analyzed 59 dry FGD samples collected from 13 locations representing four major FGD scrubbing technologies. The chemistry of all samples was dominated by Ca, S, Al, Fe, and Si and strong preferential partitioning into the acid insoluble residue (i.e., coal ash residue) was observed for Al, Ba, Be, Cr, Fe, Li, K, Pb, Si, and V. Sulfur, Ca, and Mg occurred primarily in water- or acid-soluble forms associated with the sorbents or scrubber reaction products. Deionized water leachates (American Society for Testing and Materials [ASTM] method) and dilute acetic acid leachates (toxicity characteristic leaching procedure [TCLP] method) had mean pH values of >11.2 and high mean concentrations of S primarily as SO(2-)4 and Ca. Concentrations of Ag, As, Ba, Cd, Cr, Hg, Pb, and Se (except for ASTM Se in two samples) were below drinking water standards in both ASTM and TCLP leachates. Total toxicity equivalents (TEQ) of dioxins, for two FGD products used for mine reclamation, were 0.48 and 0.53 ng kg(-1). This was similar to the background level of the mine spoil (0.57 ng kg(-1)). The FGD materials were mostly uniform in particle size. Specific surface area (m2 g(-1)) was related to particle size and varied from 1.3 for bed ash to 9.5 for spray dryer material. Many of the chemical and physical properties of these FGD samples were associated with the quality of the coal rather than the combustion and SO2 scrubbing processes used.

  17. ASD-1000: High-resolution, high-temperature acetylene spectroscopic databank

    NASA Astrophysics Data System (ADS)

    Lyulin, O. M.; Perevalov, V. I.

    2017-11-01

    We present a high-resolution, high-temperature version of the Acetylene Spectroscopic Databank called ASD-1000. The databank contains the line parameters (position, intensity, Einstein coefficient for spontaneous emission, term value of the lower states, self- and air-broadening coefficients, temperature dependence exponents of the self- and air-broadening coefficients) of the principal isotopologue of C2H2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-27 cm-1/(molecule cm-2) at 1000 K. The databank has 33,890,981 entries and covers the 3-10,000 cm-1 spectral range. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as their temperature dependence exponents were calculated using the empirical equations. The databank is useful for studying high-temperature radiative properties of C2H2. ASD-1000 is freely accessible via the Internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/ASD1000/.

  18. Evaluation of high temperature dielectric films for high voltage power electronic applications

    NASA Technical Reports Server (NTRS)

    Suthar, J. L.; Laghari, J. R.

    1992-01-01

    Three high temperature films, polyimide, Teflon perfluoroalkoxy and poly-P-xylene, were evaluated for possible use in high voltage power electronic applications, such as in high energy density capacitors, cables and microelectronic circuits. The dielectric properties, including permittivity and dielectric loss, were obtained in the frequency range of 50 Hz to 100 kHz at temperatures up to 200 C. The dielectric strengths at 60 Hz were determined as a function of temperature to 250 C. Confocal laser microscopy was performed to diagnose for voids and microimperfections within the film structure. The results obtained indicate that all films evaluated are capable of maintaining their high voltage properties, with minimal degradation, at temperatures up to 200 C. However, above 200 C, they lose some of their electrical properties. These films may therefore become viable candidates for high voltage power electronic applications at high temperatures.

  19. High-Temperature Rocket Engine

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Rosenberg, Sanders D.; Chazen, Melvin L.

    1994-01-01

    Two rocket engines that operate at temperature of 2,500 K designed to provide thrust for station-keeping adjustments of geosynchronous satellites, for raising and lowering orbits, and for changing orbital planes. Also useful as final propulsion stages of launch vehicles delivering small satellites to low orbits around Earth. With further development, engines used on planetary exploration missions for orbital maneuvers. High-temperature technology of engines adaptable to gas-turbine combustors, ramjets, scramjets, and hot components of many energy-conversion systems.

  20. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  1. Decreasing Phosphorus Loss in Tile-Drained Landscapes Using Flue Gas Desulfurization Gypsum.

    PubMed

    King, K W; Williams, M R; Dick, W A; LaBarge, G A

    2016-09-01

    Elevated phosphorus (P) loading from agricultural nonpoint-source pollution continues to impair inland waterbodies throughout the world. The application of flue gas desulfurization (FGD) gypsum to agricultural fields has been suggested to decrease P loading because of its high calcium content and P sorbing potential. A before-after control-impact paired field experiment was used to examine the water quality effects of successive FGD gypsum applications (2.24 Mg ha; 1 ton acre each) to an Ohio field with high soil test P levels (>480 ppm Mehlich-3 P). Analysis of covariance was used to compare event discharge, dissolved reactive P (DRP), and total P (TP) concentrations and loadings in surface runoff and tile discharge between the baseline period (86 precipitation events) and Treatment Period 1 (42 precipitation events) and Treatment Period 2 (84 precipitation events). Results showed that, after the first application of FGD gypsum, event mean DRP and TP concentrations in treatment field tile water were significantly reduced by 21 and 10%, respectively, and DRP concentrations in surface runoff were significantly reduced by 14%; however, no significant reductions were noted in DRP or TP loading. After the second application, DRP and TP loads were significantly reduced in surface runoff (DRP, 41%; TP 40%), tile discharge (DRP, 35%; TP, 15%), and combined (surface + tile) discharge (DRP, 36%; TP, 38%). These findings indicate that surface application of FGD gypsum can be used as a tool to address elevated P concentrations and loadings in drainage waters. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. High temperature oxidation behavior of ODS steels

    NASA Astrophysics Data System (ADS)

    Kaito, T.; Narita, T.; Ukai, S.; Matsuda, Y.

    2004-08-01

    Oxide dispersion strengthened (ODS) steels are being developing for application as advanced fast reactor cladding and fusion blanket materials, in order to allow increased operation temperature. Oxidation testing of ODS steel was conducted under a controlled dry air atmosphere to evaluate the high temperature oxidation behavior. This showed that 9Cr-ODS martensitic steels and 12Cr-ODS ferritic steels have superior high temperature oxidation resistance compared to 11 mass% Cr PNC-FMS and 17 mass% Cr ferritic stainless steel. This high temperature resistance is attributed to earlier formation of the protective α-Cr 2O 3 on the outer surface of ODS steels.

  3. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  4. O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

  5. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    PubMed

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  6. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  7. DEVELOPMENT OF A HIGH-TEMPERATURE/HIGH-PRESSURE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report gives results of a laboratory test demonstrating the feasibility of electrostatic precipitation at high temperatures (to 1366 K) and pressures (to 3550 kPa): corona currents were stable at all temperatures. Detailed current/voltage characteristics under negative and po...

  8. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  9. Nonlinear Constitutive Relations for High Temperature Application, 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Nonlinear constitutive relations for high temperature applications were discussed. The state of the art in nonlinear constitutive modeling of high temperature materials was reviewed and the need for future research and development efforts in this area was identified. Considerable research efforts are urgently needed in the development of nonlinear constitutive relations for high temperature applications prompted by recent advances in high temperature materials technology and new demands on material and component performance. Topics discussed include: constitutive modeling, numerical methods, material testing, and structural applications.

  10. Advanced Materials for High Temperature, High Performance, Wide Bandgap Power Modules

    NASA Astrophysics Data System (ADS)

    O'Neal, Chad B.; McGee, Brad; McPherson, Brice; Stabach, Jennifer; Lollar, Richard; Liederbach, Ross; Passmore, Brandon

    2016-01-01

    Advanced packaging materials must be utilized to take full advantage of the benefits of the superior electrical and thermal properties of wide bandgap power devices in the development of next generation power electronics systems. In this manuscript, the use of advanced materials for key packaging processes and components in multi-chip power modules will be discussed. For example, to date, there has been significant development in silver sintering paste as a high temperature die attach material replacement for conventional solder-based attach due to the improved thermal and mechanical characteristics as well as lower processing temperatures. In order to evaluate the bond quality and performance of this material, shear strength, thermal characteristics, and void quality for a number of silver sintering paste materials were analyzed as a die attach alternative to solder. In addition, as high voltage wide bandgap devices shift from engineering samples to commercial components, passivation materials become key in preventing premature breakdown in power modules. High temperature, high dielectric strength potting materials were investigated to be used to encapsulate and passivate components internal to a power module. The breakdown voltage up to 30 kV and corresponding leakage current for these materials as a function of temperature is also presented. Lastly, high temperature plastic housing materials are important for not only discrete devices but also for power modules. As the operational temperature of the device and/or ambient temperature increases, the mechanical strength and dielectric properties are dramatically reduced. Therefore, the electrical characteristics such as breakdown voltage and leakage current as a function of temperature for housing materials are presented.

  11. High skin temperature and hypohydration impair aerobic performance.

    PubMed

    Sawka, Michael N; Cheuvront, Samuel N; Kenefick, Robert W

    2012-03-01

    This paper reviews the roles of hot skin (>35°C) and body water deficits (>2% body mass; hypohydration) in impairing submaximal aerobic performance. Hot skin is associated with high skin blood flow requirements and hypohydration is associated with reduced cardiac filling, both of which act to reduce aerobic reserve. In euhydrated subjects, hot skin alone (with a modest core temperature elevation) impairs submaximal aerobic performance. Conversely, aerobic performance is sustained with core temperatures >40°C if skin temperatures are cool-warm when euhydrated. No study has demonstrated that high core temperature (∼40°C) alone, without coexisting hot skin, will impair aerobic performance. In hypohydrated subjects, aerobic performance begins to be impaired when skin temperatures exceed 27°C, and even warmer skin exacerbates the aerobic performance impairment (-1.5% for each 1°C skin temperature). We conclude that hot skin (high skin blood flow requirements from narrow skin temperature to core temperature gradients), not high core temperature, is the 'primary' factor impairing aerobic exercise performance when euhydrated and that hypohydration exacerbates this effect.

  12. NDSD-1000: High-resolution, high-temperature Nitrogen Dioxide Spectroscopic Databank

    NASA Astrophysics Data System (ADS)

    Lukashevskaya, A. A.; Lavrentieva, N. N.; Dudaryonok, A. C.; Perevalov, V. I.

    2016-11-01

    We present a high-resolution, high-temperature version of the Nitrogen Dioxide Spectroscopic Databank called NDSD-1000. The databank contains the line parameters (positions, intensities, self- and air-broadening coefficients, exponents of the temperature dependence of self- and air-broadening coefficients) of the principal isotopologue of NO2. The reference temperature for line intensity is 296 K and the intensity cutoff is 10-25 cm-1/molecule cm-2 at 1000 K. The broadening parameters are presented for two reference temperatures 296 K and 1000 K. The databank has 1,046,808 entries, covers five spectral regions in the 466-4776 cm-1 spectral range and is designed for temperatures up to 1000 K. The databank is based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The parameters of the effective Hamiltonian and the effective dipole moment operator have been fitted to the observed values of the line positions and intensities collected from the literature. The broadening coefficients as well as the temperature exponents are calculated using the semi-empirical approach. The databank is useful for studying high-temperature radiative properties of NO2. NDSD-1000 is freely accessible via the internet site of V.E. Zuev Institute of Atmospheric Optics SB RAS ftp://ftp.iao.ru/pub/NDSD/.

  13. Ultrasonic/Sonic Drill for High Temperature Application

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Scott, James; Sherrit, Stewart; Widholm, Scott; Badescu, Mircea; Shrout, Tom; Jones, Beth

    2010-01-01

    Venus is one of the many significant scientific targets for NASA. New rock sampling tools with the ability to be operated at high temperatures of the order of 460 deg C are required for surface in-situ sampling/analysis missions. Piezoelectric materials such as LiNbO? crystals and Bismuth Titanate are potentially operational at the temperature range found on the surface of Venus. A study of the feasibility of producing piezoelectric drills for a temperature up to 500 deg C was conducted. The study includes investigation of the high temperature properties of piezoelectric crystals and ceramics with different formulas and doping. Several prototypes of Ultrasonic/Sonic Drill/Corers (USDC) driven by transducers using the high temperate piezoelectric ceramics and single LiNbO? crystal were fabricated. The transducers were analyzed by scanning the impedance at room temperature and 500 deg C under both low and high voltages. The drilling performances were tested at temperature up to 500 deg C. Preliminary results were previously reported [Bao et al, 2009]. In this paper, the progress is presented and the future works for performance improvements are discussed.

  14. New Temperature Monitoring Devices for High-Temperature Irradiation Experiments in the High Flux Reactor Petten

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Futterer, M. A.; Lapetite, J. M.; Fourrez, S.; Morice, R.

    2011-10-01

    Within the European High Temperature Reactor Technology Network (HTR-TN) and related projects a number of HTR fuel irradiations are planned in the High Flux Reactor Petten (HFR), The Netherlands, with the objective to explore the potential of recently produced fuel for even higher temperature and burn-up. Irradiating fuel under defined conditions to extremely high burn-ups will provide a better understanding of fission product release and failure mechanisms if particle failure occurs. After an overview of the irradiation rigs used in the HFR, this paper sums up data collected from previous irradiation tests in terms of thermocouple data. Some R&D for further improvement of thermocouples and other on-line instrumentation will be outlined.

  15. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  16. High temperature adhesives for bonding Kapton

    NASA Technical Reports Server (NTRS)

    Saint Clair, A. K.; Slemp, W. S.; Saint Clair, T. L.

    1978-01-01

    Experimental polyimide resins have been developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of 'Kapton'/'Kapton' bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/'Kapton' bondlines were monitored by thermomechanical analysis.

  17. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  18. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  19. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  20. Adsorptive desulfurization with metal-organic frameworks: A density functional theory investigation

    NASA Astrophysics Data System (ADS)

    Chen, Zhiping; Ling, Lixia; Wang, Baojun; Fan, Huiling; Shangguan, Ju; Mi, Jie

    2016-11-01

    The contribution of each fragment of metal-organic frameworks (MOFs) to the adsorption of sulfur compounds were investigated using density functional theory (DFT). The involved sulfur compounds are dimethyl sulfide (CH3SCH3), ethyl mercaptan (CH3CH2SH) and hydrogen sulfide (H2S). MOFs with different organic ligands (NH2-BDC, BDC and NDC), metal centers structures (M, M-M and M3O) and metal ions (Zn, Cu and Fe) were used to study their effects on sulfur species adsorption. The results revealed that, MOFs with coordinatively unsaturated sites (CUS) have the strongest binding strength with sulfur compounds, MOFs with NH2-BDC substituent group ligand comes second, followed by that with saturated metal center, and the organic ligands without substituent group has the weakest adsorption strength. Moreover, it was also found that, among different metal ions (Fe, Zn and Cu), MOFs with unsaturated Fe has the strongest adsorption strength for sulfur compounds. These results are consistent with our previous experimental observations, and therefore provide insights on the better design of MOFs for desulfurization application.

  1. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, Cressie E.; Pfeiler, William A.

    1996-01-01

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation.

  2. Non-graphite crucible for high temperature applications

    DOEpatents

    Holcombe, C.E.; Pfeiler, W.A.

    1996-01-09

    A multi-piece crucible for high temperature applications comprises a tubular side wall member having a lip on the inside surface and a bottom member or members forming a container for containing a melt of a material during a high temperature melt-casting operations. The multi-piece design prevents cracking of the crucible or leakage of the melt from the crucible during the melt-casting operation. The lip of the tubular member supports the bottom member. The contacting surfaces where the lip of the tubular side wall member contacts the bottom member of the multi-piece crucible contains a ceramic sealing material. The ceramic sealing material forms a seal sufficient to prevent the melt of the material from leaking out of the multi-piece crucible during the melt-casting process. The multi-piece crucible is made of a material which is chemically inert to the melt and has structural integrity at the melting point temperature of the melt, or of a material coated with such a material. The multi-piece crucible is contained in a thermal can assembly of a high temperature induction furnace during a high temperature melt-casting operation. One embodiment of the multi-piece crucible comprises a tubular member having a vertical slot filled with a ceramic sealing material to provide expansion of the tubular member without cracking during the high temperature melt-casting operation. 9 figs.

  3. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  4. High-Temperature Cyclic Oxidation Data, Volume 1

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Garlick, R. G.; Lowell, C. E.

    1984-01-01

    This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.

  5. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  6. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  7. High-temperature testing of glass/ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Mandell, John F.; Grande, Dodd H.; Dannemann, Kathryn A.

    1989-01-01

    Recent advances in ceramic and other high-temperature composites have created a need for test methods that can be used at 1000 C and above. Present test methods usually require adhesively bonded tabs that cannot be used at high temperatures. This paper discusses some of the difficulties with high-temperature test development and describes several promising test methods. Stress-strain data are given for Nicalon ceramic fiber reinforced glass and glass-ceramic matrix composites tested in air at temperatures up to 1000 C.

  8. Effect of In-situ Cure on Measurement of Glass Transition Temperatures in High-temperature Thermosetting Polymers

    DTIC Science & Technology

    2015-01-01

    TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING POLYMERS 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...illustrated the difficulties inherent in measurement of the glass transition temperature of this high-temperature thermosetting polymer via dynamic...copyright protection in the United States. EFFECT OF IN-SITU CURE ON MEASUREMENT OF GLASS TRANSITION TEMPERATURES IN HIGH-TEMPERATURE THERMOSETTING

  9. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  10. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  11. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  12. High-temperature molten salt solar thermal systems

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.; Leach, J. W.; Stern, G.

    Conceptual designs of a solar thermal central receiver and a thermal storage subsystem were analyzed to estimate thermal losses and to assess the economics of high-temperature applications with molten salt transport fluids. Modifications to a receiver design being developed by the Martin Marietta Corporation were studied to investigate possible means for improving efficiency at high temperatures. Computations were made based on conceptual design of internally insulated high temperature storage tanks to estimate cost and performance. A study of a potential application of the system for thermochemical production of hydrogen indicates that thermal storage at 1100 C will be economically attractive.

  13. Material Problems in Using High-Temperature Thermocouples

    NASA Astrophysics Data System (ADS)

    Edler, F.

    2011-08-01

    The material compatibility and thermal stability of ceramic-composite coatings of different oxide ceramics deposited on alumina tubes to prevent the reduction of the alumina were investigated in the high-temperature range between 1750 °C and 1850 °C. It turned out that the coatings were thermally unstable and did not provide adequate protection against the reduction of the alumina tubes. The oxide ceramics formed eutectic compositions with low melting temperatures and were also prone to reduction to elementary metals by carbon. A new type of high-temperature thermocouple on the basis of refractory and noble metals was tested in the temperature range between 1325 °C and 1800 °C. Two metal-sheathed prototypes were constructed. The thermoelectric behavior of the tungsten5%rhenium/iridium thermocouples (W5%Re/Ir) was investigated by different high-temperature exposures, and the thermoelectric stability was checked by repeated measurements at the ice point.

  14. High temperature molten salt containment

    NASA Astrophysics Data System (ADS)

    Wang, K. Y.; West, R. E.; Kreith, F.; Lynn, P. P.

    1985-05-01

    The feasibility of several design options for high-temperature, sensible heat storage containment is examined. The major concerns for a successful containment design include heat loss, corrosive tolerance, structural integrity, and cost. This study is aimed at identifying the most promising high-temperature storage tank among eight designs initially proposed. The study is based on the heat transfer calculations and the structure study of the tank wall and the tank foundation and the overall cost analyses. The results indicate that the single-tank, two-media sloped wall tank has the potential of being lowest in cost. Several relevant technical uncertainties that warrant further research efforts are also identified.

  15. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  16. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  17. High pressure/high temperature thermogravimetric apparatus. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calo, J.M.; Suuberg, E.M.

    1999-12-01

    The purpose of this instrumentation grant was to acquire a state-of-the-art, high pressure, high temperature thermogravimetric apparatus (HP/HT TGA) system for the study of the interactions between gases and carbonaceous solids for the purpose of solving problems related to coal utilization and applications of carbon materials. The instrument that we identified for this purpose was manufactured by DMT (Deutsche Montan Technologies)--Institute of Cokemaking and Coal Chemistry of Essen, Germany. Particular features of note include: Two reactors: a standard TGA reactor, capable of 1100 C at 100 bar; and a high temperature (HT) reactor, capable of operation at 1600 C andmore » 100 bar; A steam generator capable of generating steam to 100 bar; Flow controllers and gas mixing system for up to three reaction gases, plus a separate circuit for steam, and another for purge gas; and An automated software system for data acquisition and control. The HP/TP DMT-TGA apparatus was purchased in 1996 and installed and commissioned during the summer of 1996. The apparatus was located in Room 128 of the Prince Engineering Building at Brown University. A hydrogen alarm and vent system were added for safety considerations. The system has been interfaced to an Ametek quadruple mass spectrometer (MA 100), pumped by a Varian V250 turbomolecular pump, as provided for in the original proposed. With this capability, a number of gas phase species of interest can be monitored in a near-simultaneous fashion. The MS can be used in a few different modes. During high pressure, steady-state gasification experiments, it is used to sample, measure, and monitor the reactant/product gases. It can also be used to monitor gas phase species during nonisothermal temperature programmed reaction (TPR) or temperature programmed desorption (TPD) experiments.« less

  18. Gonad Transcriptome Analysis of High-Temperature-Treated Females and High-Temperature-Induced Sex-Reversed Neomales in Nile Tilapia

    PubMed Central

    Sun, Li Xue; Teng, Jian; Zhao, Yan; Li, Ning; Wang, Hui

    2018-01-01

    Background: Nowadays, the molecular mechanisms governing TSD (temperature-dependent sex determination) or GSD + TE (genotypic sex determination + temperature effects) remain a mystery in fish. Methods: We developed three all-female families of Nile tilapia (Oreochromis niloticus), and the family with the highest male ratio after high-temperature treatment was used for transcriptome analysis. Results: First, gonadal histology analysis indicated that the histological morphology of control females (CF) was not significantly different from that of high-temperature-treated females (TF) at various development stages. However, the high-temperature treatment caused a lag of spermatogenesis in high-temperature-induced neomales (IM). Next, we sequenced the transcriptome of CF, TF, and IM Nile tilapia. 79, 11,117, and 11,000 differentially expressed genes (DEGs) were detected in the CF–TF, CF–IM, and TF–IM comparisons, respectively, and 44 DEGs showed identical expression changes in the CF–TF and CF–IM comparisons. Principal component analysis (PCA) indicated that three individuals in CF and three individuals in TF formed a cluster, and three individuals in IM formed a distinct cluster, which confirmed that the gonad transcriptome profile of TF was similar to that of CF and different from that of IM. Finally, six sex-related genes were validated by qRT-PCR. Conclusions: This study identifies a number of genes that may be involved in GSD + TE, which will be useful for investigating the molecular mechanisms of TSD or GSD + TE in fish. PMID:29495590

  19. Gonad Transcriptome Analysis of High-Temperature-Treated Females and High-Temperature-Induced Sex-Reversed Neomales in Nile Tilapia.

    PubMed

    Sun, Li Xue; Teng, Jian; Zhao, Yan; Li, Ning; Wang, Hui; Ji, Xiang Shan

    2018-02-28

    Nowadays, the molecular mechanisms governing TSD (temperature-dependent sex determination) or GSD + TE (genotypic sex determination + temperature effects) remain a mystery in fish. We developed three all-female families of Nile tilapia ( Oreochromis niloticus ), and the family with the highest male ratio after high-temperature treatment was used for transcriptome analysis. First, gonadal histology analysis indicated that the histological morphology of control females (CF) was not significantly different from that of high-temperature-treated females (TF) at various development stages. However, the high-temperature treatment caused a lag of spermatogenesis in high-temperature-induced neomales (IM). Next, we sequenced the transcriptome of CF, TF, and IM Nile tilapia. 79, 11,117, and 11,000 differentially expressed genes (DEGs) were detected in the CF-TF, CF-IM, and TF-IM comparisons, respectively, and 44 DEGs showed identical expression changes in the CF-TF and CF-IM comparisons. Principal component analysis (PCA) indicated that three individuals in CF and three individuals in TF formed a cluster, and three individuals in IM formed a distinct cluster, which confirmed that the gonad transcriptome profile of TF was similar to that of CF and different from that of IM. Finally, six sex-related genes were validated by qRT-PCR. This study identifies a number of genes that may be involved in GSD + TE, which will be useful for investigating the molecular mechanisms of TSD or GSD + TE in fish.

  20. High-temperature fusion of a multielectron leviton

    NASA Astrophysics Data System (ADS)

    Moskalets, Michael

    2018-04-01

    The state of electrons injected onto the surface of the Fermi sea depends on temperature. The state is pure at zero temperature and is mixed at finite temperature. In the case of a single-electron injection, such a transformation can be detected as a decrease in shot noise with increasing temperature. In the case of a multielectron injection, the situation is subtler. The mixedness helps the development of quantum-mechanical exchange correlations between injected electrons, even if such correlations are absent at zero temperature. These correlations enhance the shot noise, which in part counteracts the reduction of noise with temperature. Moreover, at sufficiently high temperatures, the correlation contribution to noise predominates over the contribution of individual particles. As a result, in the system of N electrons, the apparent charge (which is revealed via the shot noise) is changed from e at zero temperature to N e at high temperatures. It looks like the exchange correlations glue electrons into one particle of total charge and energy. This point of view is supported by both charge noise and heat noise. Interestingly, in the macroscopic limit, N →∞ , the correlation contribution completely suppresses the effect of temperature on noise.

  1. HIGH TEMPERATURE REACTOR

    DOEpatents

    Kulsrud, R.M.; Spitzer, L. Jr.

    1961-12-12

    An apparatus of the stellarator type for heating a plasma to high temperatures is designed. Circularizers at the end of then helical windings produce a circular magnetic surface and provide improved confining and heating of the plasma. Reverse curvature sections formed in the end loops of the reaction tube provide increased plasma pressure for a given magnetic field pressure and thereby minimize the current flow in the helical windings. (AEC)

  2. Survey of flue gas desulfurization systems: Dickerson Station, Potomac Electric Power Co. Final report, Feb--Aug 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.

    1975-09-01

    Results are given of a survey of a flue gas desulfurization system, utilizing the Chemico/Basic MgO-SO2 removal/recovery process, that has been retrofitted to handle approximately half of the exhaust gas from the 190 MW unit 3 at Potomac Electric Power Company's Dickerson Station. The system was installed at a cost of SO.5 million. The boiler burns 2% sulfur coal and is equipped with a 94% efficient electrostatic precipitator. A single two-stage scrubber/absorber is used. The liquor streams for the two stages are separate, both operating in a closed-loop mode. Magnesium oxide (MgO) is regenerated off-site. (GRA)

  3. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  4. High-temperature durability considerations for HSCT combustor

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1992-01-01

    The novel combustor designs for the High Speed Civil Transport will require high temperature materials with long term environmental stability. Higher liner temperatures than in conventional combustors and the need for reduced weight necessitates the use of advanced ceramic matrix composites. The combustor environment is defined at the current state of design, the major degradation routes are discussed for each candidate ceramic material, and where possible, the maximum use temperatures are defined for these candidate ceramics.

  5. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  6. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  7. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  8. High-temperature flooding injury

    USDA-ARS?s Scientific Manuscript database

    This problem, also called scald, is most serious in the hot desert valleys of the southwestern United States, subtropical regions in eastern Australia, and western Asia and northern Africa (Middle East) where fields are established and irrigated under high temperatures. The disorder also occurs to...

  9. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  10. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  11. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  12. Amorphization of Serpentine at High Pressure and High Temperature

    PubMed

    Irifune; Kuroda; Funamori; Uchida; Yagi; Inoue; Miyajima

    1996-06-07

    Pressure-induced amorphization of serpentine was observed at temperatures of 200° to 300°C and pressures of 14 to 27 gigapascals with a combination of a multianvil apparatus and synchrotron radiation. High-pressure phases then crystallized rapidly when the temperature was increased to 400°C. These results suggest that amorphization of serpentine is an unlikely mechanism for generating deep-focus earthquakes, as the temperatures of subducting slabs are significantly higher than those of the rapid crystallization regime.

  13. Study Progress of Physiological Responses in High Temperature Environment

    NASA Astrophysics Data System (ADS)

    Li, K.; Zheng, G. Z.; Bu, W. T.; Wang, Y. J.; Lu, Y. Z.

    2017-10-01

    Certain workers are exposed to high temperatures for a long time. Heat stress will result in a series of physiological responses, and cause adverse effects on the health and safety of workers. This paper summarizes the physiological changes of cardiovascular system, core temperature, skin temperature, water-electrolyte metabolism, alimentary system, neuroendocrine system, reaction time and thermal fatigue in high temperature environments. It can provide a theoretical guidance for labor safety in high temperature environment.

  14. Spectroscopy for Industrial Applications: High-Temperature Processes

    NASA Astrophysics Data System (ADS)

    Fateev, Alexander; Grosch, Helge; Clausen, Sonnik; Barton, Emma J.; Yurchenko, Sergei N.; Tennyson, Jonathan

    2014-06-01

    The continuous development of the spectroscopic databases brings new perspectives in the environmental and industrial on-line process control, monitoring and stimulates further optical sensor developments. This is because no calibration gases are needed and, in general, temperature-dependent spectral absorption features gases of interest for a specific instrument can in principle be calculated by knowing only the gas temperature and pressure in the process under investigation/monitoring. The latest HITRAN-2012 database contains IR/UV spectral data for 47 molecules and it is still growing. However use of HITRAN is limited to low-temperature processes (< 400 K) and therefor can be used for absorption spectra calculations at limited temperature/pressure ranges. For higher temperatures, the HITEMP-2010 database is available. Only a few molecules CO2, H2O, CO and NO are those of interest for e.g. various combustion and astronomical applications are included. In the recent few years, several efforts towards a development of hot line lists have been made; those have been implemented in the latest HITRAN2012 database1. High-resolution absorption measurements of NH3 (IR, 0.1 cm-1) and phenol (UV, 0.019 nm) on a flow gas cell2 up to 800 K are presented. Molecules are of great interest in various high-temperature environments including exoplanets, combustion and gasification. Measured NH3 hot lines have been assigned and spectra have been compared with that obtained by calculations based on the BYTe hot line list1. High-temperature NH3 absorption spectra have been used in the analysis of in situ high-resolution IR absorption measurements on the producer gas in low-temperature gasification process on a large scale. High-resolution UV temperature-dependent absorption cross-sections of phenol are reported for the first time. All UV data have been calibrated by relevant GC/MS measurements. Use of the data is demonstrated by the analysis of in situ UV absorption measurements on a

  15. Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

    NASA Astrophysics Data System (ADS)

    Cui, Bo-chuan; Wang, Jian-li; Yao, Kai-nan; Chen, Tao

    2018-03-01

    An approach to measure a high-dynamic two-dimensional (2D) temperature field using a high-speed quadriwave lateral shearing interferometer (QWLSI) is proposed. The detailed theoretical derivation to express the wavefront reconstruct principle of the proposed method is presented. The comparison experiment with thermocouples shows that the temperature field measurement using QWLSI has a precision of ±0.5 °C. An experiment for measuring the highdynamic temperature field generated by an electrical heater is carried out. A 200 frame rate temperature field video with 512 × 512 resolution is obtained finally. Experimental results show that the temperature field measurement system using a QWLSI has the advantage of high sensitivity and high resolution.

  16. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    PubMed

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  17. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling

    PubMed Central

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-01-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase. PMID:24763088

  18. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  19. High temperature superconductors applications in telecommunications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data formore » such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c

  20. Hydrogen Production from Nuclear Energy via High Temperature Electrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Carl M. Stoots; J. Stephen Herring

    2006-04-01

    This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.

  1. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Jiang; Zheng, Hai-Fei

    2012-04-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320°C in the pressure range of 1.0-1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T-0.7126 (250°C<=T<=320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.

  2. Polyimide/Glass Composite High-Temperature Insulation

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Vasquez, Peter; Chatlin, Richard L.; Smith, Donald L.; Skalski, Thomas J.; Johnson, Gary S.; Chu, Sang-Hyon

    2009-01-01

    Lightweight composites of RP46 polyimide and glass fibers have been found to be useful as extraordinarily fire-resistant electrical-insulation materials. RP46 is a polyimide of the polymerization of monomeric reactants (PMR) type, developed by NASA Langley Research Center. RP46 has properties that make it attractive for use in electrical insulation at high temperatures. These properties include high-temperature resistance, low relative permittivity, low dissipation factor, outstanding mechanical properties, and excellent resistance to moisture and chemicals. Moreover, RP46 contains no halogen or other toxic materials and when burned it does not produce toxic fume or gaseous materials. The U. S. Navy has been seeking lightweight, high-temperature-resistant electrical-insulation materials in a program directed toward reducing fire hazards and weights in ship electrical systems. To satisfy the requirements of this program, an electrical-insulation material must withstand a 3-hour gas-flame test at 1,600 F (about 871 C). Prior to the development reported here, RP46 was rated for use at temperatures from -150 to +700 F (about -101 to 371 C), and no polymeric product - not even RP46 - was expected to withstand the Navy 3-hour gas-flame test.

  3. High Temperature Near-Field NanoThermoMechanical Rectification

    PubMed Central

    Elzouka, Mahmoud; Ndao, Sidy

    2017-01-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures. PMID:28322324

  4. High Temperature Near-Field NanoThermoMechanical Rectification

    NASA Astrophysics Data System (ADS)

    Elzouka, Mahmoud; Ndao, Sidy

    2017-03-01

    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation (NFTR) to achieve thermal rectification at high temperatures, which can be used to build high-temperature thermal diodes for performing logic operations in harsh environments. We achieved rectification through the coupling between NFTR and the size of a micro/nano gap separating two terminals, engineered to be a function of heat flow direction. We fabricated and tested a proof-of-concept NanoThermoMechanical device that has shown a maximum rectification of 10.9% at terminals’ temperatures of 375 and 530 K. Experimentally, we operated the microdevice in temperatures as high as about 600 K, demonstrating this technology’s suitability to operate at high temperatures.

  5. High-Temperature High-Power Packaging Techniques for HEV Traction Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, F.D.; Elshabini, A.

    significant cost reduction of these systems could be achieved is through the use of a single coolant loop for both the power electronics as well as the internal combustion engine (ICE) [2]. This change would reduce the complexity of the cooling system which currently relies on two loops to a single loop [3]. However, the current nominal coolant temperature entering these inverters is 65 C [3], whereas a normal ICE coolant temperature would be much higher at approximately 100 C. This change in coolant temperature significantly increases the junction temperatures of the devices and creates a number of challenges for both device fabrication and the assembly of these devices into inverters and converters for HEV and PHEV applications. With this change in mind, significant progress has been made on the use of SiC devices for inverters that can withstand much higher junction temperatures than traditional Si based inverters [4,5,6]. However, a key problem which the single coolant loop and high temperature devices is the effective packaging of these devices and related components into a high temperature inverter. The elevated junction temperatures that exist in these modules are not compatible with reliable inverters based on existing packaging technology. This report seeks to provide a literature survey of high temperature packaging and to highlight the issues related to the implementation of high temperature power electronic modules for HEV and PHEV applications. For purposes of discussion, it will be assumed in this report that 200 C is the targeted maximum junction temperature.« less

  6. Ultrasonic Al₂O₃ Ceramic Thermometry in High-Temperature Oxidation Environment.

    PubMed

    Wei, Yanlong; Gao, Yubin; Xiao, Zhaoqian; Wang, Gao; Tian, Miao; Liang, Haijian

    2016-11-11

    In this study, an ultrasonic temperature measurement system was designed with Al₂O₃ high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C-1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.

  7. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  8. More About High-Temperature Resistance Strain Gauges

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Williams, W. D.; Lei, Jih-Fen; Hulse, C. O.

    1994-01-01

    Two reports present additional information on electrical-resistance strain gauges described in "High-Temperature Resistance Strain Gauges" (LEW-15379). For protection against oxidation at high temperatures, gauges covered, by flame spraying, with coats of alumina containing up to 1 weight percent of yttria or, perferably, containing 4 to 6 weight percent of zirconia.

  9. Ultra-High Temperature Materials Characterization for Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Rogers, Jan; Hyers, Robert

    2007-01-01

    Propulsion system efficiency increases as operating temperatures are increased. Some very high-temperature materials are being developed, including refractory metal alloys, carbides, borides, and silicides. System design requires data for materials properties at operating temperatures. Materials property data are not available for many materials of interest at the desired operating temperatures (up to approx. 3000 K). The objective of this work is to provide important physical property data at ultra-high temperatures. The MSFC Electrostatic levitation (ESL) facility can provide measurements of thermophysical properties which include: creep strength, density and thermal expansion for materials being developed for propulsion applications. The ESL facility uses electrostatic fields to position samples between electrodes during processing and characterization studies. Because the samples float between the electrodes during studies, they are free from any contact with a container or test apparatus. This provides a high purity environment for the study of high-temperature, reactive materials. ESL can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. The MSFC ESL has provided non-contact measurements of properties of materials up to 3400 C. Density and thermal expansion are measured by analyzing digital images of the sample at different temperatures. Our novel, non-contact method for measuring creep uses rapid rotation to deform the sample. Digital images of the deformed samples are analyzed to obtain the creep properties, which match those obtained using ASTM Standard E-139 for Nb at 1985 C. Data from selected ESL-based characterization studies will be presented. The ESL technique could support numerous propulsion technologies by advancing the knowledge base and the technology readiness level for ultra-high temperature materials. Applications include non-eroding nozzle materials and lightweight, high-temperature

  10. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  11. Generating high temperature tolerant transgenic plants: Achievements and challenges.

    PubMed

    Grover, Anil; Mittal, Dheeraj; Negi, Manisha; Lavania, Dhruv

    2013-05-01

    Production of plants tolerant to high temperature stress is of immense significance in the light of global warming and climate change. Plant cells respond to high temperature stress by re-programming their genetic machinery for survival and reproduction. High temperature tolerance in transgenic plants has largely been achieved either by over-expressing heat shock protein genes or by altering levels of heat shock factors that regulate expression of heat shock and non-heat shock genes. Apart from heat shock factors, over-expression of other trans-acting factors like DREB2A, bZIP28 and WRKY proteins has proven useful in imparting high temperature tolerance. Besides these, elevating the genetic levels of proteins involved in osmotic adjustment, reactive oxygen species removal, saturation of membrane-associated lipids, photosynthetic reactions, production of polyamines and protein biosynthesis process have yielded positive results in equipping transgenic plants with high temperature tolerance. Cyclic nucleotide gated calcium channel proteins that regulate calcium influxes across the cell membrane have recently been shown to be the key players in induction of high temperature tolerance. The involvement of calmodulins and kinases in activation of heat shock factors has been implicated as an important event in governing high temperature tolerance. Unfilled gaps limiting the production of high temperature tolerant transgenic plants for field level cultivation are discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Synthesis of 2-azaindolizines by using an iodine-mediated oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides and an investigation of their photophysical properties.

    PubMed

    Shibahara, Fumitoshi; Kitagawa, Asumi; Yamaguchi, Eiji; Murai, Toshiaki

    2006-11-23

    Iodine-mediated, oxidative desulfurization promoted cyclization of N-2-pyridylmethyl thioamides serves as an efficient and versatile method for the preparation of 2-azaindolizines (imidazo[1,5-a]pyridines) and rare 2-azaindolizine sulfur-bridged dimers. The 2-azaindolizines prepared in this manner are readily converted to a variety of fluorescent compounds by using transition-metal-catalyzed cross-coupling reactions. [reaction: see text].

  13. Analysis of the high-temperature particulate collection problem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Razgaitis, R.

    1977-10-01

    Particulate agglomeration and separation at high temperatures and pressures are examined, with particular emphasis on the unique features of the direct-cycle application of fluidized-bed combustion. The basic long-range mechanisms of aerosol separation are examined, and the effects of high temperature and high pressure on usable collection techniques are assessed. Primary emphasis is placed on those avenues that are not currently attracting widespread research. The high-temperature, particulate-collection problem is surveyed, together with the peculiar requirements associated with operation of turbines with particulate-bearing gas streams. 238 references.

  14. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  15. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  16. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  17. Strain-induced high-temperature perovskite ferromagnetic insulator.

    PubMed

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J; Knize, Randy; Lu, Yalin

    2018-03-20

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO 3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high T C of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain-induced ferromagnetism which does not exist in bulk LaCoO 3 The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co 2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. Copyright © 2018 the Author(s). Published by PNAS.

  18. Strain-induced high-temperature perovskite ferromagnetic insulator

    PubMed Central

    Meng, Dechao; Guo, Hongli; Cui, Zhangzhang; Ma, Chao; Zhao, Jin; Lu, Jiangbo; Xu, Hui; Wang, Zhicheng; Hu, Xiang; Fu, Zhengping; Peng, Ranran; Guo, Jinghua; Zhai, Xiaofang; Brown, Gail J.; Knize, Randy; Lu, Yalin

    2018-01-01

    Ferromagnetic insulators are required for many new magnetic devices, such as dissipationless quantum-spintronic devices, magnetic tunneling junctions, etc. Ferromagnetic insulators with a high Curie temperature and a high-symmetry structure are critical integration with common single-crystalline oxide films or substrates. So far, the commonly used ferromagnetic insulators mostly possess low-symmetry structures associated with a poor growth quality and widespread properties. The few known high-symmetry materials either have extremely low Curie temperatures (≤16 K), or require chemical doping of an otherwise antiferromagnetic matrix. Here we present compelling evidence that the LaCoO3 single-crystalline thin film under tensile strain is a rare undoped perovskite ferromagnetic insulator with a remarkably high TC of up to 90 K. Both experiments and first-principles calculations demonstrate tensile-strain–induced ferromagnetism which does not exist in bulk LaCoO3. The ferromagnetism is strongest within a nearly stoichiometric structure, disappearing when the Co2+ defect concentration reaches about 10%. Significant impact of the research includes demonstration of a strain-induced high-temperature ferromagnetic insulator, successful elevation of the transition over the liquid-nitrogen temperature, and high potential for integration into large-area device fabrication processes. PMID:29507211

  19. Carvacrol suppresses high pressure high temperature inactivation of Bacillus cereus spores.

    PubMed

    Luu-Thi, Hue; Corthouts, Jorinde; Passaris, Ioannis; Grauwet, Tara; Aertsen, Abram; Hendrickx, Marc; Michiels, Chris W

    2015-03-16

    The inactivation of bacterial spores generally proceeds faster and at lower temperatures when heat treatments are conducted under high pressure, and high pressure high temperature (HPHT) processing is, therefore, receiving an increased interest from food processors. However, the mechanisms of spore inactivation by HPHT treatment are poorly understood, particularly at moderately elevated temperature. In the current work, we studied inactivation of the spores of Bacillus cereus F4430/73 by HPHT treatment for 5 min at 600MPa in the temperature range of 50-100°C, using temperature increments of 5°C. Additionally, we investigated the effect of the natural antimicrobial carvacrol on spore germination and inactivation under these conditions. Spore inactivation by HPHT was less than about 1 log unit at 50 to 70°C, but gradually increased at higher temperatures up to about 5 log units at 100°C. DPA release and loss of spore refractility in the spore population were higher at moderate (≤65°C) than at high (≥70°C) treatment temperatures, and we propose that moderate conditions induced the normal physiological pathway of spore germination resulting in fully hydrated spores, while at higher temperatures this pathway was suppressed and replaced by another mechanism of pressure-induced dipicolinic acid (DPA) release that results only in partial spore rehydration, probably because spore cortex hydrolysis is inhibited. Carvacrol strongly suppressed DPA release and spore rehydration during HPHT treatment at ≤65°C and also partly inhibited DPA release at ≥65°C. Concomitantly, HPHT spore inactivation was reduced by carvacrol at 65-90°C but unaffected at 95-100°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf