Science.gov

Sample records for high temperature joint

  1. High temperature ceramic/metal joint structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  2. Evaluation of High Temperature Properties and Microstructural Characterization of Resistance Spot Welded Steel Lap Shear Joints

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.; Panicker, Paul G.

    2016-02-01

    Joining of thin sheets (0.5 mm) of stainless steel 304 and 17-4PH through resistance spot welding is highly challenging especially when joint is used for high temperature applications. Various combinations of stainless steel sheets of thickness 0.5 mm are spot welded and tested at room temperature as well as at high temperatures (800 K, 1,000 K, 1,200 K). Parent metal as well as spot welded joints are tested and characterized. It is observed that joint strength of 17-4PH steel is highest and then dissimilar steel joint of 17-4PH with SS-304 is moderate and of SS-304 is lowest at all the temperatures. Joint strength of 17-4PH steel is found to be >80% of parent metal properties up to 1,000 K then drastic reduction in strength is noted at 1,200 K. Gradual reduction in strength of SS-304 joint with increase in temperature from 800 to 1,200 K is noted. At 1,200 K, joint strength of all combinations of joints is found to be nearly same. Microstructural evaluation of weld nugget after testing at different temperatures shows presence of tempered martensite in 17-4PH containing welds and homogenized structure in stainless steel 304 weld.

  3. Design, Fabrication, and Characterization of High Temperature Joints in Ceramic Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1999-01-01

    Ceramic joining has been recognized as one of the enabling technologies for the successful utilization of ceramic components in a number of demanding, high temperature applications. Various joint design philosophies and design issues have been discussed along with an affordable, robust ceramic joining technology (ARCJoinT). A wide variety of silicon carbide-based composite materials, in different shapes and sizes, have been joined using this technology. This technique is capable of producing joints with tailorable thickness and composition. The room and high temperature mechanical properties and fractography of ceramic joints have been reported. These joints maintain their mechanical strength up to 1200C in air. This technology is suitable for the joining of large and complex shaped ceramic composite components and with certain modifications, can be applied to repair of ceramic components damaged in service.

  4. High temperature joint properties with palladium alloys for SUS316L and Inconel 600

    SciTech Connect

    Izui, Hiroshi; Suezawa, Yoshifumi

    1995-12-31

    Newly developed Pd-Ag-Mn system braze alloys were considered for use in brazing stainless steel SUS316L or Ni-based alloy Inconel 600 for engine applications. Palladium braze alloys were selected because of their oxidation resistance, ductility, relatively high melting points, and lower cost than gold-based braze alloys. The reactions and microstructures were studied in experimental brazed joints between these base metals and the braze alloys. Tensile tests of the joints were carried out at room temperature, 473K, 673K, 873K, and 1,073K. The maximum tensile strengths of the joints brazed with 30Pd-60Ag-10Co at room temperature were 445MPa in the SUS316L joints and 456MPa in the Inconel 600 brazed joints. The SUS316L joints brazed with the braze alloys had tensile strengths of 320MPa to 200MPa from 473K to 1,73K. The Inconel 600 joints brazed with the 30Pd-50Ag-10Mn-10Co alloy had tensile strengths of 289MPa to 162MPa from 473K to 1,073K.

  5. High-Temperature Resistant Intermetallic Compound Joints for Si Chips and Cu Substrates

    NASA Astrophysics Data System (ADS)

    Takahashi, Toshihide; Komatsu, Shuichi; Nishikawa, Hiroshi; Takemoto, Tadashi

    2010-10-01

    A thin-film joining method utilizing evaporated films as the joining material was newly developed for power semiconductor die attachment. When the evaporated films are completely transformed into intermetallic compounds (IMCs) with high melting points, the joint can exhibit the required high-temperature strength. In this study, a joint consisting of Cu6Sn5, (Ag,Cu)3Sn, and Cu3Sn IMCs was achieved at 573 K after 30 s. Results of nanoindentation tests revealed the hardness and elastic moduli of each IMC. In accelerated tests, a high-temperature strength of at least 15 MPa was shown for 3.6 Ms at 423 K or 500 cycles between 223 K and 403 K. These results suggest that the IMC joint has great potential as a die-attach material.

  6. Analytical and experimental methods for adhesively bonded joints subjected to high temperatures

    NASA Astrophysics Data System (ADS)

    Gustafson, Peter A.

    2008-10-01

    Recent advances in material systems have expanded the temperature range over which adhesively bonded composite joints can be used. In this work, several tools are developed for use in modeling joints over a broad range of temperatures. First, a set of dimensionless parameters is established which can be used for analysis of joint performance for an orthotropic symmetric double lap joint. A critical dimensionless ratio of mechanical and thermal loads is identified. The ratio predicts characteristics of the resulting stress distribution. A bonded joint finite element is also developed, wherein a joint-specific finite element is formulated based on an analytical solution. The resulting element allows for mesh-independent joint evaluation and multi-joint simulation at a system or vehicle level. As a mid-level analysis technique, the element has significant predictive and cost advantages over the previously available methods. An advanced analysis technique, the discrete cohesive zone method, is developed and demonstrated in a general element formulation. Initially, the element is examined from the perspective of computational efficiency and robustness. Two efficient traction laws are formulated and are compared to a traction law that is in common use. The element is subsequently used to investigate the interactions of adhesive parameters in standard adhesive characterization experiments. This quantification of experimental sensitivities allows for a deliberate mapping of cumulative experimental results to an appropriate set of model constitutive parameters. With knowledge of the parameter interactions, a set of experimental results are interpreted to determine a set of adhesive constitutive parameters for T650/AFR-PE-4/FM680-1, a high temperature material system of current interest.

  7. Electron microscopy and microanalysis of steel weld joints after long time exposures at high temperatures

    NASA Astrophysics Data System (ADS)

    Jandová, D.; Kasl, J.; Rek, A.

    2010-02-01

    The structural changes of three trial weld joints of creep resistant modified 9Cr-1Mo steels and low alloyed chromium steel after post-weld heat treatment and long-term creep tests were investigated. Smooth cross-weld specimens ruptured in different zones of the weld joints as a result of different structural changes taking place during creep exposures. The microstructure of the weld joint is heterogeneous and consequently microstructural development can be different in the weld metal, the heat affected zone, and the base material. Precipitation reactions, nucleation and growth of some particles and dissolution of others, affect the strengthening of the matrix, recovery at high temperatures, and the resulting creep resistance. Therefore, a detailed study of secondary phase's development in individual zones of weld joints can elucidate mechanism of cracks propagation in specific regions and the causes of creep failure. Type I and II fractures in the weld metal and Type IV fractures in the fine prior austenite grain heat affected zones occurred after creep tests at temperatures ranging from 525 to 625 °C and under stresses from 40 to 240 MPa. An extended metallographic study of the weld joints was carried out using scanning and transmission electron microscopy, energy-dispersive and wave-dispersive X-ray microanalysis. Carbon extraction replicas and thin foils were prepared from individual weld joint regions and quantitative evaluation of dislocation substructure and particles of secondary phases has been performed.

  8. High Temperature Joining and Characterization of Joint Properties in Silicon Carbide-Based Composite Materials

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    Advanced silicon carbide-based ceramics and composites are being developed for a wide variety of high temperature extreme environment applications. Robust high temperature joining and integration technologies are enabling for the fabrication and manufacturing of large and complex shaped components. The development of a new joining approach called SET (Single-step Elevated Temperature) joining will be described along with the overview of previously developed joining approaches including high temperature brazing, ARCJoinT (Affordable, Robust Ceramic Joining Technology), diffusion bonding, and REABOND (Refractory Eutectic Assisted Bonding). Unlike other approaches, SET joining does not have any lower temperature phases and will therefore have a use temperature above 1315C. Optimization of the composition for full conversion to silicon carbide will be discussed. The goal is to find a composition with no remaining carbon or free silicon. Green tape interlayers were developed for joining. Microstructural analysis and preliminary mechanical tests of the joints will be presented.

  9. Development of High Temperature Dissimilar Joint Technology for Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Bowman, Cheryl L.; Gabb, Timothy P.

    2009-01-01

    NASA is developing fission surface power (FSP) system technology as a potential option for use on the surface of the moon or Mars. The goal is to design a robust system that takes full advantage of existing materials data bases. One of the key components of the power conversion system is the hot-side Heat Exchanger (HX). One possible design for this heat exchanger requires a joint of the dissimilar metals 316L stainless steel and Inconel 718, which must sustain extended operation at high temperatures. This study compares two joining techniques, brazing and diffusion bonding, in the context of forming the requisite stainless steel to superalloy joint. The microstructures produced by brazing and diffusion bonding, the effect of brazing cycle on the mechanical tensile properties of the alloys, and the strength of several brazed joints will be discussed.

  10. High Temperature Strength of YSZ Joints Brazed with Palladium Silver Copper Oxide Filler Metals

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2010-06-09

    The Ag-CuOx system is being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. The current study examines the effects of palladium addition on the high temperature joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with the binary Ag-CuOx, and 15Pd-Ag-CuO. It was found that while the binary Ag-CuOx system exhibits stronger room temperature strength than the 15Pd system the strength is reduced to values equivalent of the 15Pd system at 800°C. The 15Pd system exhibits a lower ambient temperature strength that is retained at 800°C. In both systems the failure mechanism at high temperature appears to be peeling of the noble metal component from the oxide phases and tearing through the noble metal phase whereas sufficient adhesion is retained at lower temperatures to cause fracture of the YSZ substrate.

  11. Reliability of Sn-3.5Ag Solder Joints in High Temperature Packaging Applications

    SciTech Connect

    Muralidharan, Govindarajan; Kurumaddali, Nalini Kanth; Kercher, Andrew K; Leslie, Dr Scott

    2010-01-01

    There is a significant need for next generation, high performance power electronic packages and systems with wide band gap devices to operate at high temperatures in automotive and electricity transmission applications. Sn-3.5Ag solder is a candidate for use in such packages with potential operating temperatures up to 200oC. However, there is a need to understand thermal cycling reliability of Sn-3.5Ag solders subject to such operating conditions. The results of a study on the damage evolution occurring in large area Sn-3.5Ag solders joints between silicon dies and DBC substrates subject to thermal cycling between 200oC and 5oC is presented in this paper. Damage accumulation was followed using high resolution X-ray radiography techniques while nonlinear finite element models were developed based on the mechanical property data available in literature to understand the relationship between the stress state within the solder joint and the damage evolution occurring under thermal cycling conditions. It was observed that regions of damage observed in the experiments do not correspond to the finite element predictions of the location of regions of maximum plastic work.

  12. Mechanical characteristics and microstructure of weld joint of high-temperature martensitic steel containing 9% Cr

    NASA Astrophysics Data System (ADS)

    Shakhova, Ya. E.; Belyakov, A. N.; Kaibyshev, R. O.

    2016-04-01

    The structure and mechanical characteristics of a weld joint of 10Kh9K3V2MFBR steel (0.097 C, 0.17.Si, 0.54 Mn, 8.75 Cr, 0.21 Ni, 0.51 Mo, 0.07 Nb, 0.23 V, 0.004 N, 0.003 B, 1.6 W, 0.15 Cu, and Fe for balance, wt %) have been studied; the joint was produced by hand welding in an argon atmosphere using 03Kh20N45M7G6B welding wire (0.3 C, 20 Cr, 45 Ni, 7 Mo, 6 Mn, and 1 Nb, wt %). The weld joint is divided into the zone of the base metal, a thermal effect zone, which consists of zones that contain fine and coarse original austenitic grains, and the zone of seam metal. It has been shown that the weld joint of 10Kh9K3V2MFBR steel possesses high strength characteristics at the room temperature under static loading and a satisfactorily impact toughness, which has the minimum value of 30 J/cm2 in the zone of the seam metal and does not depend on the temperature. With a decrease in the temperature from the room temperature to 253 K, a ductile-brittle transition occurs in the thermal effect zone. Creep tests carried out at the temperature of 923 K have shown that the long-term strength of the weld seam is lower than that of the base material in the entire stress range being tested. At stresses of 140 MPa or higher, the acceleration of creep in the weld seam is observed, while at low stresses of about 120 MPa, the rates of creep in the weld seam and in the base metal remain similar until the transition to the stage of accelerated fracture occurs. The difference in the values of the long-term strength is due to premature fracture, which occurs in the thermal effect zone with the finegrained structure.

  13. The Effect of High Temperature Exposure in Reducing or Oxidizing Atmosphere on Ceramic Joints Brazed with Silver-Copper Oxide

    SciTech Connect

    Kim, Jin Yong Y.; Weil, K. Scott; Hardy, John S.

    2005-07-20

    Recently a new technique, referred to as reactive air brazing (RAB), has been developed for use in hermetically sealing high temperature solid state electrochemical devices such as planar solid oxide fuel cells and gas separation devices. Ceramic joints used in these devices are usually exposed to oxidizing and/or reducing atmospheres at high operating temperature. In this paper, we report the effect of the exposure to these atmospheres at high temperature on the mechanical properties and microstructural morphology of ceramic joints brazed with silver-copper oxide braze

  14. Design, Fabrication, and Testing of Ceramic Joints for High Temperature SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Lara-Curzio, Edgar

    2000-01-01

    Various issues associated with the design and mechanical evaluation of joints of ceramic matrix composites are discussed. The specific case of an affordable, robust ceramic joining technology (ARCJoinT) to join silicon carbide (CG-Nicalon(sup TM)) fiber-reinforced-chemically vapor infiltrated (CVI) silicon carbide matrix composites is addressed. Experimental results are presented for the time and temperature dependence of the shear strength of these joints in air up to 1200 C. From compression testing of double-notched joint specimens with a notch separation of 4 mm, it was found that the apparent shear strength of the joints decreased from 92 MPa at room temperature to 71 MPa at 1200 C. From shear stress-rupture testing in air at 1200 C it was found that the shear strength of the joints decreased rapidly with time from an initial shear strength of 71 to 17.5 MPa after 14.3 hr. The implications of these results in relation to the expected long-term service life of these joints in applications at elevated temperatures are discussed.

  15. Review on Joint Shear Strength of Nano-Silver Paste and Its Long-Term High Temperature Reliability

    NASA Astrophysics Data System (ADS)

    Khazaka, R.; Mendizabal, L.; Henry, D.

    2014-07-01

    Soldering has been the main die attach technology for several decades. Recently, in order to meet the high temperature electronic requirements (high temperature-operating SiC and GaN devices) as well as the health recommendations (replacing the toxic lead present in common solder alloys with lead-free alternatives), several new attach technologies have been developed. Among others, the sintering of nano-silver particles seems to be one of the most interesting choices, and has been extensively investigated during recent years. The emergence of this technology is mainly due to the desired high electrical and high thermal conductivities of the sintered joint, its low elastic modulus offering a good thermo-mechanical reliability, its low process temperature, and its high operating temperature. In this paper, a review of parameters affecting the initial shear strength of the sintered silver joint will be summarized as well as the high temperature long-term reliability issues. The sintering cycle (bonding pressure, bonding temperature, sintering dwell time, heating rate, and the sintering atmosphere), the joint size, and the attached materials properties (nature, roughness), are found to closely affect the initially measured shear strength of the joint. The long-term reliability of the joint has been shown to suffer initially from three phenomena: the silver electro-migration, the decrease of shear strength under harsh thermo-mechanical stresses, and the swelling of the sintered layer. While the latter phenomenon is observed during the storage at temperatures above 350°C, the electro-migration and thermo-mechanical stresses can influence the package reliability at temperatures as low as 250°C. However, some suggested precautions during the module fabrication can lead to the minimizing of the effects of these phenomena and the achievem a more reliable joint.

  16. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications

    NASA Astrophysics Data System (ADS)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  17. High pressure ceramic joint

    DOEpatents

    Ward, Michael E.; Harkins, Bruce D.

    1993-01-01

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures.

  18. High pressure ceramic joint

    DOEpatents

    Ward, M.E.; Harkins, B.D.

    1993-11-30

    Many recuperators have components which react to corrosive gases and are used in applications where the donor fluid includes highly corrosive gases. These recuperators have suffered reduced life, increased service or maintenance, and resulted in increased cost. The present joint when used with recuperators increases the use of ceramic components which do not react to highly corrosive gases. Thus, the present joint used with the present recuperator increases the life, reduces the service and maintenance, and reduces the increased cost associated with corrosive action of components used to manufacture recuperators. The present joint is comprised of a first ceramic member, a second ceramic member, a mechanical locking device having a groove defined in one of the first ceramic member and the second ceramic member. The joint and the mechanical locking device is further comprised of a refractory material disposed in the groove and contacting the first ceramic member and the second ceramic member. The present joint mechanically provides a high strength load bearing joint having good thermal cycling characteristics, good resistance to a corrosive environment and good steady state strength at elevated temperatures. 4 figures.

  19. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    SciTech Connect

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-30

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  20. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  1. Highly Conductive Cu-Cu Joint Formation by Low-Temperature Sintering of Formic Acid-Treated Cu Nanoparticles.

    PubMed

    Liu, Jingdong; Chen, Hongtao; Ji, Hongjun; Li, Mingyu

    2016-12-07

    Highly conductive Cu-Cu interconnections of SiC die with Ti/Ni/Cu metallization and direct bonded copper substrate for high-power semiconductor devices are achieved by the low-temperature sintering of Cu nanoparticles with a formic acid treatment. The Cu-Cu joints formed via a long-range sintering process exhibited good electrical conductivity and high strength. When sintered at 260 °C, the Cu nanoparticle layer exhibited a low resistivity of 5.65 μΩ·cm and the joints displayed a high shear strength of 43.4 MPa. When sintered at 320 °C, the resistivity decreased to 3.16 μΩ·cm and the shear strength increased to 51.7 MPa. The microstructure analysis demonstrated that the formation of Cu-Cu joints was realized by metallurgical bonding at the contact interface between the Cu pad and the sintered Cu nanoparticle layer, and the densely sintered layer was composed of polycrystals with a size of hundreds of nanometers. In addition, high-density twins were found in the interior of the sintered layer, which contributed to the improvement of the performance of the Cu-Cu joints. This bonding technology is suitable for high-power devices operating under high temperatures.

  2. Fatigue Life of Lead Free Solder BGA Joints Against Vibration Stress under High Temperature Circumstance

    NASA Astrophysics Data System (ADS)

    Matsushima, Michiya; Furusawa, Takeshi; Fukuda, Kyohei; Egusa, Minoru; Yasuda, Kiyokazu; Fujimoto, Kozo

    Recently, the wave of car computerizing is surging such as electronic control unit, car navigation system, electronic toll collection system, car to car communication system, etc. The use environment of in-car devices is under combined environmental stresses such as thermal stress, vibration, and humidity. In general, the reliability of the joints of the devices is individually tested by the evaluation methods for each stress. Our main purpose of this study is to construct the evaluation method for the damages of solder joints under multiple environmental stresses. We investigated the relationship between the plastic strain caused by one cycle vibration stress calculated with FEM analysis considering the temperature dependency of the elasto-plasticity and the fatigue life obtained by the vibration experiment. We indicated the adequacy of the analysis by the correspondence of the resonance frequency of the BGA package mounting board with the experimental result. We also showed that the plastic strain concentrating position corresponded to the crack position. We clarified that the creep strain rate in the total strain was less than 1 percent. We demonstrated that we could apply the power-law equation to predict the fatigue life of the vibration stress from plastic strain rate under 80°C and 125°C as well as the room temperature.

  3. Interdiffusion of high-Sn/high-Pb (SnPb) solders in low-temperature flip chip joints during reflow

    NASA Astrophysics Data System (ADS)

    Zuruzi, A. S.; Chiu, C.-h.; Chen, W. T.; Lahiri, S. K.; Tu, K. N.

    1999-12-01

    We carried out experiments and numerical simulations to investigate the transport of Sn in a composite solder joint, comprising of high-Pb and high-Sn (SnPb) alloys, in a chip-composite solder-organic substrate package during the reflow process. Both the experimental and simulation results demonstrate that surface diffusion causes the transport of Sn on the surface to be faster than that inside the solder joint. Surface diffusion also accelerates the homogenization process of the composite solder joint.

  4. Durability of polyimide adhesives and their bonded joints for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Parvatareddy, Hari

    The objective of this study was to evaluate and develop an understanding of durability of an adhesive bonded system, for application in a future high speed civil transport (HSCT) aircraft structure. The system under study was comprised of Ti-6Al-4V metal adherends and a thermosetting polyimide adhesive, designated as FM-5, supplied by Cytec Engineered Materials, Inc. An approach based on fracture mechanics was employed to assess Ti-6Al-4V/FM-5 bond durability. Initially, wedge tests were utilized to find a durable surface pretreatment for the titanium adherends. Based on an extensive screening study, chromic acid anodization (CAA) was chosen as the standard pretreatment for this research project. Double cantilever beam specimens (DCB) were then made and aged at 150sp°C, 177sp°C, and 204sp°C in three different environments; ambient atmospheric air (14.7 psia), and reduced air pressures of 2 psia (13.8 KPa) and 0.2 psia (1.38 KPa). Joints were aged for up to 18 months (including several intermediate aging times) in the above environments. The strain energy release rate (G) of the adhesive joints was monitored as a function of exposure time in the different environments. A 40% drop in fracture toughness was noted over the 18 month period, with the greatest degradation observed in samples aged at 204sp°C in ambient atmospheric air pressure. The loss in adhesive bond performance with time was attributable to a combination of physical and chemical aging phenomena in the FM-5 resin, and possible degradation of the metal-adhesive interface(s). Several mechanical and material tests, performed on the bonded joints and neat FM-5 resin specimens, confirmed the above statement. It was also noted that physical aging could be "erased" by thermal rejuvenation, partially restoring the toughness of the FM-5 adhesive material. The FM-5 adhesive material displayed good chemical resistance towards organic solvents and other aircraft fluids such as jet fuel and hydraulic fluid. The

  5. Effect of temperature on leg kinematics in sprinting tarantulas (Aphonopelma hentzi): high speed may limit hydraulic joint actuation

    PubMed Central

    Booster, N. A.; Su, F. Y.; Adolph, S. C.; Ahn, A. N.

    2015-01-01

    ABSTRACT Tarantulas extend the femur–patella (proximal) and tibia–metatarsal (distal) joints of their legs hydraulically. Because these two hydraulically actuated joints are positioned in series, hemolymph flow within each leg is expected to mechanically couple the movement of the joints. In the current study, we tested two hypotheses: (1) at lower temperatures, movement of the two in-series hydraulic joints within a leg will be less coupled because of increased hemolymph viscosity slowing hemolymph flow; and (2) at higher temperatures, movement of the two in-series hydraulic joints will be less coupled because the higher stride frequencies limit the time available for hemolymph flow. We elicited maximal running speeds at four ecologically relevant temperatures (15, 24, 31 and 40°C) in Texas Brown tarantulas (Aphonopelma hentzi). The spiders increased sprint speed 2.5-fold over the temperature range by changing their stride frequency but not stride length. The coefficient of determination for linear regression (R2) of the proximal and distal joint angles was used as the measure of the degree of coupling between the two joints. This coupling coefficient between the proximal and distal joint angles, for both forelegs and hind­legs, was significantly lowest at the highest temperature at which the animals ran the fastest with the highest stride frequencies. The coordination of multiple, in-series hydraulically actuated joints may be limited by operating speed. PMID:25833132

  6. Corrosion behavior in high-temperature pressurized water of Zircaloy-4 joints brazed with Zr-Cu-based amorphous filler alloys

    NASA Astrophysics Data System (ADS)

    Lee, Jung Gu; Lee, Gyoung-Ja; Park, Jin-Ju; Lee, Min-Ku

    2017-05-01

    The compositional effects of ternary Zr-Cu-X (X: Al, Fe) amorphous filler alloys on galvanic corrosion susceptibility in high-temperature pressurized water were investigated for Zircaloy-4 brazed joints. Through an Al-induced microgalvanic reaction that deteriorated the overall nobility of the joint, application of the Zr-Cu-Al filler alloy caused galvanic coupling to develop readily between the Al-bearing joint and the Al-free base metal, finally leading to massive localized corrosion of the joint. Contrastingly, joints prepared with a Zr-Cu-Fe filler alloy showed excellent corrosion resistance comparable to that of the Zircaloy-4 base metal, since the Cu and Fe elements forming fine intermetallic particles with Zr did not influence the electrochemical stability of the resultant joints. The present results demonstrate that Fe is a more suitable alloying element than Al for brazing filler alloys subjected to high-temperature corrosive environments.

  7. Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Ito, S.; Terazaki, Y.; Seino, Y.; Hamaguchi, S.; Tamura, H.; Miyazawa, J.; Mito, T.; Hashizume, H.; Sagara, A.

    2015-05-01

    An innovative winding method is developed by connecting high-temperature superconducting (HTS) conductors to enable efficient construction of a magnet system for the helical fusion reactor FFHR-d1. A large-current capacity HTS conductor, referred to as STARS, is being developed by the incorporation of several innovative ideas, such as the simple stacking of state-of-the-art yttrium barium copper oxide tapes embedded in a copper jacket, surrounded by electrical insulation inside a conductor, and an outer stainless-steel jacket cooled by helium gas. A prototype conductor sample was fabricated and reached a current of 100 kA at a bias magnetic field of 5.3 T with the temperature at 20 K. At 4.2 K, the maximum current reached was 120 kA, and a current of 100 kA was successfully sustained for 1 h. A low-resistance bridge-type mechanical lap joint was developed and a joint resistance of 2 nΩ was experimentally confirmed for the conductor sample.

  8. Half a century of continuous shock interaction investigations in the Joint Institute for High Temperatures of Russian Academy of Sciences

    NASA Astrophysics Data System (ADS)

    Bazhenova, T. V.; Golub, V. V.; Gvozdeva, L. G.; Kotelnikov, A. L.

    2014-07-01

    This article describes the history of the investigations of shock wave interactions at the Physical Gasdynamic Department, starting from the early 50s of the last century, when the first research related to missile reentry was made. The review focuses on a number of topics studied over more than 50 years and includes the study of strong shock waves, where it is necessary to take into account the physicochemical transformations in gases, shock wave reflection, diffraction, interaction with the boundary layer and with the nozzle, as well as detonation wave formation and interactions. The investigation of shock wave interactions is a current topic at the Joint Institute for High Temperatures of the Russian Academy of Sciences. Some new results are observed: the formation of impulse jets and the self-ignition of a cold hydrogen jet, diffraction of 3D shock waves, and the effect of an impulse jet and diffracted shock wave on an obstacle.

  9. HIGH TEMPERATURE BRAZING ALLOY FOR JOINT Fe-Cr-Al MATERIALS AND AUSTENITIC AND FERRITIC STAINLESS STEELS

    DOEpatents

    Cost, R.C.

    1958-07-15

    A new high temperature brazing alloy is described that is particularly suitable for brazing iron-chromiumaluminum alloys. It consists of approximately 20% Cr, 6% Al, 10% Si, and from 1.5 to 5% phosphorus, the balance being iron.

  10. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1990-01-01

    A high temperature turbine engine includes a hybrid ceramic/metallic rotor member having ceramic/metal joint structure. The disclosed joint is able to endure higher temperatures than previously possible, and aids in controlling heat transfer in the rotor member.

  11. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  12. Wide temperature range seal for demountable joints

    DOEpatents

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  13. Time- and temperature-dependent failures of a bonded joint

    NASA Astrophysics Data System (ADS)

    Sihn, Sangwook

    This dissertation summarizes my study of time- and temperature-dependent behavior of a tubular lap bonded joint to provide a design methodology for windmill blade structures. The bonded joint is between a cast-iron rod and a GFRP composite pipe. The adhesive material is an epoxy containing chopped glass fibers. We proposed a new fabrication method to make concentric and void-less specimens of the tubular joint with a thick adhesive bondline to stimulate the root bond of a blade. The thick bondline facilitates the joint assembly of actual blades. For a better understanding of the behavior of the bonded joint, we studied viscoelastic behavior of the adhesive materials by measuring creep compliance at several temperatures during loading period. We observed that the creep compliance depends highly on the period of loading and the temperature. We applied time-temperature equivalence to the creep compliance of the adhesive material to obtain time-temperature shift factors. We also performed constant-rate of monotonically increased uniaxial tensile tests to measure static strength of the tubular lap joint at several temperatures and different strain-rates. We observed two failure modes from load-deflection curves and failed specimens. One is the brittle mode, which was caused by weakness of the interfacial strength occurring at low temperature and short period of loading. The other is the ductile mode, which was caused by weakness of the adhesive material at high temperature and long period of loading. Transition from the brittle to the ductile mode appeared as the temperature or the loading period increased. We also performed tests under uniaxial tensile-tensile cyclic loadings to measure fatigue strength of the bonded joint at several temperatures, frequencies and stress ratios. The fatigue data are analyzed statistically by applying the residual strength degradation model to calculate statistical distribution of the fatigue life. Combining the time-temperature

  14. Rapid formation of Ni3Sn4 joints for die attachment of SiC-based high temperature power devices using ultrasound-induced transient liquid phase bonding process.

    PubMed

    Li, Z L; Dong, H J; Song, X G; Zhao, H Y; Feng, J C; Liu, J H; Tian, H; Wang, S J

    2017-05-01

    High melting point Ni3Sn4 joints for the die attachment of SiC-based high temperature power devices was successfully achieved using an ultrasound-induced transient liquid phase (TLP) bonding process within a remarkably short bonding time of 8s. The formed intermetallic joints, which are completely composed of the refined equiaxial Ni3Sn4 grains with the average diameter of 2μm, perform the average shear strength of 26.7MPa. The sonochemical effects of ultrasonic waves dominate the mechanism and kinetics of the rapid formation of Ni3Sn4 joints.

  15. High temperature future

    SciTech Connect

    Sheinkopf, K.

    1994-09-01

    During the past few years, there have been dramatic accomplishments and success of high temperature solar thermal systems and significant development of these systems. High temperature technologies, about 500 F and higher, such as dish engines, troughs, central receiver power towers and solar process heat systems, have been tested, demonstrated and used in an array of applications, including many cost-effective utility bulk power production and demand side supply projects in the United States. Large systems provide power and hot water to prisons, schools, nursing homes and other institutions. Joint ventures with industry, utility projects, laboratory design assistance and other activities are building a solid industry of US solar thermal systems ready for use today.

  16. Impact welding: a superior method of producing joints with high thermal conductivity between metals at very low temperatures

    NASA Astrophysics Data System (ADS)

    Willekers, R. W.; Bosch, W. A.; Mathu, F.; Meijer, H. C.; Postma, H.

    1989-09-01

    To improve the connection between copper and aluminium for use in a superconducting heat switch, three layer Cu-Al-Cu sandwiches have been produced by impact welding. An upper limit of the low-temperature specific thermal Cu-Al contact resistance of 1.3 × 10 -4T K m 2W -1 was found. This is less than half of the lowest specific thermal press contact resistance between two gold plated copper strips, of which electrical resistances at 4.2 K were measured under various surface and clamping conditions. Clamping of clean, smooth surfaces with brass bolts gave almost as good results as soldering with indium.

  17. High temperature turbine engine structure

    DOEpatents

    Boyd, Gary L.

    1991-01-01

    A high temperature turbine engine includes a rotor portion having axially stacked adjacent ceramic rotor parts. A ceramic/ceramic joint structure transmits torque between the rotor parts while maintaining coaxial alignment and axially spaced mutually parallel relation thereof despite thermal and centrifugal cycling.

  18. Temperature effects of cement joints in ceramic-stack resonators

    NASA Astrophysics Data System (ADS)

    Goodhart, C. L.

    1983-06-01

    A temperature-related performance degradation has been observed in certain sonar transducers that employ ceramic-stack 33-mode resonators that contain joints. This study sought to identify the cause of this performance degradation and to determine resonator design or assembly methods that limit or eliminate this degradation. Experimental and computer modeling results show that the performance degradation is extreme for little or no final stress bias on the resonators and does not appear to be affected by the initial stress bias (the bias during cement curing). The degradation results from a temperature sensitivity of the stiffness of the cement/electrode joints. A high final stress bias of 28 million Pa essentially eliminates the performance degradation.

  19. High strength concrete provides joint protection

    SciTech Connect

    Pool, P. )

    1991-12-01

    This paper reports on a joint fill material applied on the 24-in. pipe used by Iroquois Gas Transmission Project for its 26-mile Long Island Sound crossing which provides effective joint protection. The 3.35-in. joint fill, made of high instant strength concrete, met stringent requirements for both strength and weight coating, and is environmentally clean to protect the sensitive marine ecosystem. The offshore section, from Bridgeport, Conn., to Long Island, was laid by McDermott, Inc. The high instant strength concrete supplied joint strength and protection during the laying operation, and on the barge itself, where pipe joints are most vulnerable to damage. With joint fill density the same as the concrete already on the pipe, the submerged weight was uniform along the entire length of the marine line, for an essentially seamless coating.

  20. Time- and temperature-dependent failures of a bonded joint

    SciTech Connect

    Sihn, Sangwook; Miyano, Yasushi; Tsai, S.W.

    1997-07-01

    Time and temperature dependent properties of a tubular lap bonded joint are reported. The joint bonds a cast iron rod and a composite pipe together with an epoxy type of an adhesive material containing chopped glass fiber. A new fabrication method is proposed.

  1. High temperature furnace

    DOEpatents

    Borkowski, Casimer J.

    1976-08-03

    A high temperature furnace for use above 2000.degree.C is provided that features fast initial heating and low power consumption at the operating temperature. The cathode is initially heated by joule heating followed by electron emission heating at the operating temperature. The cathode is designed for routine large temperature excursions without being subjected to high thermal stresses. A further characteristic of the device is the elimination of any ceramic components from the high temperature zone of the furnace.

  2. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  3. High temperature superconductors

    NASA Technical Reports Server (NTRS)

    Wu, Maw-Kuen

    1987-01-01

    The two principle objectives are to develop materials that superconduct at higher temperatures and to better understand the mechanisms behind high temperature superconductivity. Experiments on the thermal reaction, structure, and physical properties of materials that exhibit superconductivity at high temperatures are discussed.

  4. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  5. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  6. High-temperature thermodynamics.

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1967-01-01

    High temperature thermodynamics requiring species and phases identification, crystal structures, molecular geometries and vibrational, rotational and electronic energy levels and equilibrium constants

  7. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  8. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  9. Behavior of noncompacted high strength bolted joints

    NASA Astrophysics Data System (ADS)

    Huckelbridge, A. A., Jr.; Miller, C. J.; Burkhart, R. A.; Asante, K.

    1980-03-01

    All tests were continued until failure of the joint; all joints were of a butt type utilizing double lap plates and 3/4 inch A325 high strength bolts. Noncompaction ranged from the fully compacted state up to 1/8 inch difference in thickness of connected plates. Noncompaction was observed to significantly reduce the load level at which joints slip into bearing. Ultimate static loads were not affected by noncompaction, however. Under repeated loads the joints tended to slip into bearing even though nominally designed as friction connections. Fatigue failures were observed to occur through the minimum net section, usually, though not always, in the lap plates. The greatest reduction in slip load was in the shorter non-compacted joints; those with two or three bolts/row only. It is recommended that non-compaction be accounted for in these types of joints if it is necessary to maintain a friction-type connection. Non-compaction would not seem to be significant for bearing type connections.

  10. High Temperature Semiconductor Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    A sputtering deposition system capable of depositing large areas of high temperature superconducting materials was developed by CVC Products, Inc. with the support of the Jet Propulsion Laboratory SBIR (Small Business Innovative Research) program. The system was devleoped for NASA to produce high quality films of high temperature superconducting material for microwave communication system components. The system is also being used to deposit ferroelectric material for capacitors and the development of new electro-optical materials.2002103899

  11. Joint effect of ferromagnetic and non-ferromagnetic cations for adjusting room temperature ferromagnetism of highly luminescent CuNiInS quaternary nanocrystals

    NASA Astrophysics Data System (ADS)

    Shen, Jin; Wang, Chunlei; Xu, Shuhong; Lv, Changgui; Zhang, Ruohu; Cui, Yiping

    2017-01-01

    In this work, highly luminescent quaternary CuNiInS nanocrystals (NCs) are put forward as a good prototype for investigating defect-induced room temperature ferromagnetism. A ferromagnetic Ni cation can preserve the strong luminescence of NCs without introducing intermediate energy levels in the center of the forbidden band. The strong luminescence of NCs is used as an indicator for monitoring the concentration of vacancy defects inside them, facilitating the investigation of the origin of room temperature ferromagnetism in CuNiInS NCs. Our results reveal that the patching of Cu vacancies ({{{{V}}}{{Cu}}}-) with Ni will result in bound magnetic polarons composed of both {{{{V}}}{{Cu}}}- and a substitution of Cu by Ni ({{{{Ni}}}{{Cu}}}+), giving rise to the room temperature ferromagnetism of CuNiInS NCs. Either the ferromagnetic Ni or the non-ferromagnetic Cu cation can tune the magnetism of CuNiInS NCs because of the change of bound magnetic polaron concentration at the altered concentration ratio of {{{{V}}}{{Cu}}}- and {{{{Ni}}}{{Cu}}}+.

  12. Solder joint fatigue analysis under low temperature Martian conditions

    NASA Technical Reports Server (NTRS)

    Tudryn, Carissa

    2006-01-01

    Electronics, without requiring heater power or enclosure in a centralized 'warm electronics box,' will need to survive mean surface temperatures of -120 degrees Celsius to +20 degrees Celsius for an extended Martian mission and an operational temperature up to 85 degrees Celsisus. Since these electronics will need to survive extended cycles under these conditions, fatigue is a significant concern. The solder joint reliability of connectors on a printed wiring board was investigated.

  13. Solder joint fatigue analysis under low temperature Martian conditions

    NASA Technical Reports Server (NTRS)

    Tudryn, Carissa

    2006-01-01

    Electronics, without requiring heater power or enclosure in a centralized 'warm electronics box,' will need to survive mean surface temperatures of -120 degrees Celsius to +20 degrees Celsius for an extended Martian mission and an operational temperature up to 85 degrees Celsisus. Since these electronics will need to survive extended cycles under these conditions, fatigue is a significant concern. The solder joint reliability of connectors on a printed wiring board was investigated.

  14. High-Temperature Superconductivity

    SciTech Connect

    Peter Johnson

    2008-11-05

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  15. High Temperature Capacitor Development

    SciTech Connect

    John Kosek

    2009-06-30

    The absence of high-temperature electronics is an obstacle to the development of untapped energy resources (deep oil, gas and geothermal). US natural gas consumption is projected to grow from 22 trillion cubic feet per year (tcf) in 1999 to 34 tcf in 2020. Cumulatively this is 607 tcf of consumption by 2020, while recoverable reserves using current technology are 177 tcf. A significant portion of this shortfall may be met by tapping deep gas reservoirs. Tapping these reservoirs represents a significant technical challenge. At these depths, temperatures and pressures are very high and may require penetrating very hard rock. Logistics of supporting 6.1 km (20,000 ft) drill strings and the drilling processes are complex and expensive. At these depths up to 50% of the total drilling cost may be in the last 10% of the well depth. Thus, as wells go deeper it is increasingly important that drillers are able to monitor conditions down-hole such as temperature, pressure, heading, etc. Commercial off-the-shelf electronics are not specified to meet these operating conditions. This is due to problems associated with all aspects of the electronics including the resistors and capacitors. With respect to capacitors, increasing temperature often significantly changes capacitance because of the strong temperature dependence of the dielectric constant. Higher temperatures also affect the equivalent series resistance (ESR). High-temperature capacitors usually have low capacitance values because of these dielectric effects and because packages are kept small to prevent mechanical breakage caused by thermal stresses. Electrolytic capacitors do not operate at temperatures above 150oC due to dielectric breakdown. The development of high-temperature capacitors to be used in a high-pressure high-temperature (HPHT) drilling environment was investigated. These capacitors were based on a previously developed high-voltage hybridized capacitor developed at Giner, Inc. in conjunction with a

  16. High Temperature Superconducting Underground Cable

    SciTech Connect

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  17. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Seng, Gary T.

    1990-01-01

    To meet the needs of the aerospace propulsion and space power communities, the high temperature electronics program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. This program supports a major element of the Center's mission - to perform basic and developmental research aimed at improving aerospace propulsion systems. Research is focused on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of SiC devices.

  18. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  19. High temperature electronics

    NASA Astrophysics Data System (ADS)

    Seng, Gary T.

    1991-03-01

    In recent years, the aerospace propulsion and space power communities have acknowledged a growing need for electronic devices that are capable of sustained high-temperature operation. Aeropropulsion applications for high-temperature electronic devices include engine ground test instrumentation such as multiplexers, analog-to-digital converters, and telemetry systems capable of withstanding hot section engine temperatures in excess of 600 C. Uncooled operation of control and condition monitoring systems in advanced supersonic aircraft would subject the electronics to temperatures in excess of 300 C. Similarly, engine-mounted integrated electronic sensors could reach temperatures which exceed 500 C. In addition to aeronautics, there are many other areas that could benefit from the existence of high-temperature electronic devices. Space applications include power electronic devices for space platforms and satellites. Since power electronics require radiators to shed waste heat, electronic devices that operate at higher temperatures would allow a reduction in radiator size. Terrestrial applications include deep-well drilling instrumentation, high power electronics, and nuclear reactor instrumentation and control. To meet the needs of the applications mentioned previously, the high-temperature electronics (HTE) program at the Lewis Research Center is developing silicon carbide (SiC) as a high-temperature semiconductor material. Research is focused on developing the crystal growth, growth modeling, characterization, and device fabrication technologies necessary to produce a family of SiC devices. Interest in SiC has grown dramatically in recent years due to solid advances in the technology. Much research remains to be performed, but SiC appears ready to emerge as a useful semiconductor material.

  20. High temperature structural silicides

    SciTech Connect

    Petrovic, J.J.

    1997-03-01

    Structural silicides have important high temperature applications in oxidizing and aggressive environments. Most prominent are MoSi{sub 2}-based materials, which are borderline ceramic-intermetallic compounds. MoSi{sub 2} single crystals exhibit macroscopic compressive ductility at temperatures below room temperature in some orientations. Polycrystalline MoSi{sub 2} possesses elevated temperature creep behavior which is highly sensitive to grain size. MoSi{sub 2}-Si{sub 3}N{sub 4} composites show an important combination of oxidation resistance, creep resistance, and low temperature fracture toughness. Current potential applications of MoSi{sub 2}-based materials include furnace heating elements, molten metal lances, industrial gas burners, aerospace turbine engine components, diesel engine glow plugs, and materials for glass processing.

  1. High Temperature ESP Monitoring

    SciTech Connect

    Jack Booker; Brindesh Dhruva

    2011-06-20

    The objective of the High Temperature ESP Monitoring project was to develop a downhole monitoring system to be used in wells with bottom hole well temperatures up to 300°C for measuring motor temperature, formation pressure, and formation temperature. These measurements are used to monitor the health of the ESP motor, to track the downhole operating conditions, and to optimize the pump operation. A 220 ºC based High Temperature ESP Monitoring system was commercially released for sale with Schlumberger ESP motors April of 2011 and a 250 ºC system with will be commercially released at the end of Q2 2011. The measurement system is now fully qualified, except for the sensor, at 300 °C.

  2. High temperature probe

    DOEpatents

    Swan, Raymond A.

    1994-01-01

    A high temperature probe for sampling, for example, smokestack fumes, and is able to withstand temperatures of 3000.degree. F. The probe is constructed so as to prevent leakage via the seal by placing the seal inside the water jacket whereby the seal is not exposed to high temperature, which destroys the seal. The sample inlet of the probe is also provided with cooling fins about the area of the seal to provide additional cooling to prevent the seal from being destroyed. Also, a heated jacket is provided for maintaining the temperature of the gas being tested as it passes through the probe. The probe includes pressure sensing means for determining the flow velocity of an efficient being sampled. In addition, thermocouples are located in various places on the probe to monitor the temperature of the gas passing there through.

  3. Time-temperature effect in adhesively bonded joints

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    The viscoelastic analysis of an adhesively bonded lap joint was reconsidered. The adherends are approximated by essentially Reissner plates and the adhesive is linearly viscoelastic. The hereditary integrals are used to model the adhesive. A linear integral differential equations system for the shear and the tensile stress in the adhesive is applied. The equations have constant coefficients and are solved by using Laplace transforms. It is shown that if the temperature variation in time can be approximated by a piecewise constant function, then the method of Laplace transforms can be used to solve the problem. A numerical example is given for a single lap joint under various loading conditions.

  4. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  5. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Scott, James; Boudreau, Kate; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom; Zhang, Shujun

    2009-01-01

    The current NASA Decadal mission planning effort has identified Venus as a significant scientific target for a surface in-situ sampling/analyzing mission. The Venus environment represents several extremes including high temperature (460 deg C), high pressure (9 MPa), and potentially corrosive (condensed sulfuric acid droplets that adhere to surfaces during entry) environments. This technology challenge requires new rock sampling tools for these extreme conditions. Piezoelectric materials can potentially operate over a wide temperature range. Single crystals, like LiNbO3, have a Curie temperature that is higher than 1000 deg C and the piezoelectric ceramics Bismuth Titanate higher than 600 deg C. A study of the feasibility of producing piezoelectric drills that can operate in the temperature range up to 500 deg C was conducted. The study includes the high temperature properties investigations of engineering materials and piezoelectric ceramics with different formulas and doping. The drilling performances of a prototype Ultrasonic/Sonic Drill/Corer (USDC) using high temperate piezoelectric ceramics and single crystal were tested at temperature up to 500 deg C. The detailed results of our study and a discussion of the future work on performance improvements are presented in this paper.

  6. High-Temperature Lubricants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    In the early 1980's, Lewis Research Center began a program to develop high-temperature lubricants for use on future aircraft flying at three or more times the speed of sound, which can result in vehicle skin temperatures as high as 1,600 degrees Fahrenheit. A material that emerged from this research is a plasma-sprayed, self-lubricating metal- glass-fluoride coating able to reduce oxidation at very high temperatures. Technology is now in commercial use under the trade name Surf-Kote C-800, marketed by Hohman Plating and Manufacturing Inc. and manufactured under a patent license from NASA. Among its uses are lubrication for sliding contact bearings, shaft seals for turbopumps, piston rings for high performance compressors and hot glass processing machinery; it is also widely used in missile and space applications.

  7. High temperature storage loop :

    SciTech Connect

    Gill, David Dennis; Kolb, William J.

    2013-07-01

    A three year plan for thermal energy storage (TES) research was created at Sandia National Laboratories in the spring of 2012. This plan included a strategic goal of providing test capability for Sandia and for the nation in which to evaluate high temperature storage (>650ÀC) technology. The plan was to scope, design, and build a flow loop that would be compatible with a multitude of high temperature heat transfer/storage fluids. The High Temperature Storage Loop (HTSL) would be reconfigurable so that it was useful for not only storage testing, but also for high temperature receiver testing and high efficiency power cycle testing as well. In that way, HTSL was part of a much larger strategy for Sandia to provide a research and testing platform that would be integral for the evaluation of individual technologies funded under the SunShot program. DOEs SunShot program seeks to reduce the price of solar technologies to 6/kWhr to be cost competitive with carbon-based fuels. The HTSL project sought to provide evaluation capability for these SunShot supported technologies. This report includes the scoping, design, and budgetary costing aspects of this effort

  8. Human-modified temperatures induce species changes: Joint attribution.

    PubMed

    Root, Terry L; MacMynowski, Dena P; Mastrandrea, Michael D; Schneider, Stephen H

    2005-05-24

    Average global surface-air temperature is increasing. Contention exists over relative contributions by natural and anthropogenic forcings. Ecological studies attribute plant and animal changes to observed warming. Until now, temperature-species connections have not been statistically attributed directly to anthropogenic climatic change. Using modeled climatic variables and observed species data, which are independent of thermometer records and paleoclimatic proxies, we demonstrate statistically significant "joint attribution," a two-step linkage: human activities contribute significantly to temperature changes and human-changed temperatures are associated with discernible changes in plant and animal traits. Additionally, our analyses provide independent testing of grid-box-scale temperature projections from a general circulation model (HadCM3).

  9. High Temperature Structural Foam

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S.; Baillif, Faye F.; Grimsley, Brian W.; Marchello, Joseph M.

    1997-01-01

    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties.

  10. High-Temperature Superconductivity

    ScienceCinema

    Peter Johnson

    2016-07-12

    Like astronomers tweaking images to gain a more detailed glimpse of distant stars, physicists at Brookhaven National Laboratory have found ways to sharpen images of the energy spectra in high-temperature superconductors — materials that carry electrical c

  11. HIGH TEMPERATURE THERMOCOUPLE

    DOEpatents

    Eshayu, A.M.

    1963-02-12

    This invention contemplates a high temperature thermocouple for use in an inert or a reducing atmosphere. The thermocouple limbs are made of rhenium and graphite and these limbs are connected at their hot ends in compressed removable contact. The rhenium and graphite are of high purity and are substantially stable and free from diffusion into each other even without shielding. Also, the graphite may be thick enough to support the thermocouple in a gas stream. (AEC)

  12. High temperature thermometric phosphors

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.y) wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  13. High temperature thermometric phosphors

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1999-03-23

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub x},Eu{sub y} wherein: 0.1 wt % {<=} x {<=} 20 wt % and 0.1 wt % {<=} y {<=} 20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  14. Substrate Dissolution and Shear Properties of the Joints between Bi-Ag Alloys and Cu Substrates for High-Temperature Soldering Applications

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Chuang, Hsin-Yi; Wu, Zong-Mou

    2007-11-01

    The present study investigated interfacial reactions between Cu substrates and Bi-Ag alloys during soldering. Without forming intermetallic compounds (IMCs), the molten solder grooved and further penetrated along the grain boundaries (GBs) of the Cu substrate. An increase in Ag content enhanced GB grooving, raised the dissolution rate and also the amount of dissolved Cu in molten Bi. A stoichiometric Cu-Bi phase formed isothermally in liquid solders and considerably affected the Cu dissolution kinetics. The results also show that Bi-Ag/Cu joints possessed a better shear strength than the Pb-Sn/Cu, which implies that mechanical bonding by grain-boundary grooves was strong enough to withstand shear deformation.

  15. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-01-24

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with superheated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200 °C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220 °C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: 1. At relative pressures over 0.6 the capillarity forces are very important. 2. There is no significant temperature effect. 3. Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. 4. Pores smaller than 15 Å do not contribute to the adsorbed mass.

  16. High temperature adsorption measurements

    SciTech Connect

    Bertani, R.; Parisi, L.; Perini, R.; Tarquini, B.

    1996-12-31

    Adsorption phenomena are a rich and rather new field of study in geothermal research, in particular at very high temperature. ENEL is interested in the exploitation of geothermal regions with super-heated steam, and it is important to understand the behavior of water-rock interaction. We have analyzed in the 170-200{degrees}C temperature range four samples of Monteverdi cuttings; the next experimental effort will be at 220{degrees}C and over in 1996. The first results of the 1995 runs are collected in this paper. We can highlight four main items: (1) At relative pressures over 0.6 the capillarity forces are very important. (2) There is no significant temperature effect. (3) Adsorbed water can be present, and it is able to multiply by a factor of 15 the estimated reserve of super-heated steam only. (4) Pores smaller than 15 {Angstrom} do not contribute to the adsorbed mass.

  17. High temperature control rod assembly

    DOEpatents

    Vollman, Russell E.

    1991-01-01

    A high temperature nuclear control rod assembly comprises a plurality of substantially cylindrical segments flexibly joined together in succession by ball joints. The segments are made of a high temperature graphite or carbon-carbon composite. The segment includes a hollow cylindrical sleeve which has an opening for receiving neutron-absorbing material in the form of pellets or compacted rings. The sleeve has a threaded sleeve bore and outer threaded surface. A cylindrical support post has a threaded shaft at one end which is threadably engaged with the sleeve bore to rigidly couple the support post to the sleeve. The other end of the post is formed with a ball portion. A hollow cylindrical collar has an inner threaded surface engageable with the outer threaded surface of the sleeve to rigidly couple the collar to the sleeve. the collar also has a socket portion which cooperates with the ball portion to flexibly connect segments together to form a ball and socket-type joint. In another embodiment, the segment comprises a support member which has a threaded shaft portion and a ball surface portion. The threaded shaft portion is engageable with an inner threaded surface of a ring for rigidly coupling the support member to the ring. The ring in turn has an outer surface at one end which is threadably engageably with a hollow cylindrical sleeve. The other end of the sleeve is formed with a socket portion for engagement with a ball portion of the support member. In yet another embodiment, a secondary rod is slidably inserted in a hollow channel through the center of the segment to provide additional strength. A method for controlling a nuclear reactor utilizing the control rod assembly is also included.

  18. High Temperature Thermosets

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.

    1999-01-01

    A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.

  19. High temperature materials characterization

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    A lab facility for measuring elastic moduli up to 1700 C was constructed and delivered. It was shown that the ultrasonic method can be used to determine elastic constants of materials from room temperature to their melting points. The ease in coupling high frequency acoustic energy is still a difficult task. Even now, new coupling materials and higher power ultrasonic pulsers are being suggested. The surface was only scratched in terms of showing the full capabilities of either technique used, especially since there is such a large learning curve in developing proper methodologies to take measurements into the high temperature region. The laser acoustic system does not seem to have sufficient precision at this time to replace the normal buffer rod methodology.

  20. High-temperature superconductivity

    SciTech Connect

    Burns, G.

    1992-01-01

    Review of conventional superconductors. Structures. Normal-state properties. Superconducting properties. Vortex behavior, J[sub c], and applications. Index. An introductory presentation of high-temperature superconductivity, with emphasis on the experimental approach. Intended as a supplementary text for undergraduate solid state physics courses, assumes some background in physics and applicable technologies. Chapters contain unsolved problems. Bibliography and chapter notes appear at end of text.

  1. Improvement in Joint Strength of Spray-Deposited Al-Zn-Mg-Cu Alloy in Underwater Friction Stir Welding by Altered Temperature of Cooling Water

    NASA Astrophysics Data System (ADS)

    Liang, Haimei; Yan, Keng; Wang, Qingzhao; Zhao, Yong; Liu, Chuan; Zhang, Hao

    2016-12-01

    We improved the joint properties of spray-deposited Al-Zn-Mg-Cu alloy during underwater friction stir welding at cooling media temperatures of 8.6, 24.8 and 58.6 °C, respectively. The joint welded at high temperature (58.6 °C) showed a high tensile strength (467.18 MPa) and improved elongation. Its thermal cycle indicates preheating and slow cooling, which created a mild and uniform temperature gradient on both sides of the joint. DSC, SEM and EDS, and XRD analyses indicate that high-temperature cooling medium facilitated re-dissolution of the strengthening phases in the matrix, to strengthen the joint. Al32(Mg,Zn)49 exhibited a semi-coherent structure with matrix detected in the joint welded in a high-temperature medium. The high-temperature cooling medium is most efficient for joint optimization.

  2. High temperature superconducting compounds

    NASA Astrophysics Data System (ADS)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  3. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  4. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  5. High temperature acoustic levitator

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1984-01-01

    A system is described for acoustically levitating an object within a portion of a chamber that is heated to a high temperature, while a driver at the opposite end of the chamber is maintained at a relatively low temperature. The cold end of the chamber is constructed so it can be telescoped to vary the length (L sub 1) of the cold end portion and therefore of the entire chamber, so that the chamber remains resonant to a normal mode frequency, and so that the pressure at the hot end of the chamber is maximized. The precise length of the chamber at any given time, is maintained at an optimum resonant length by a feedback loop. The feedback loop includes an acoustic pressure sensor at the hot end of the chamber, which delivers its output to a control circuit which controls a motor that varies the length (L) of the chamber to a level where the sensed acoustic pressure is a maximum.

  6. High Temperature Piezoelectric Drill

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Bar-Cohen, Yoseph; Sherrit, Stewart; Badescu, Mircea; Shrout, Tom

    2012-01-01

    Venus is one of the planets in the solar systems that are considered for potential future exploration missions. It has extreme environment where the average temperature is 460 deg C and its ambient pressure is about 90 atm. Since the existing actuation technology cannot maintain functionality under the harsh conditions of Venus, it is a challenge to perform sampling and other tasks that require the use of moving parts. Specifically, the currently available electromagnetic actuators are limited in their ability to produce sufficiently high stroke, torque, or force. In contrast, advances in developing electro-mechanical materials (such as piezoelectric and electrostrictive) have enabled potential actuation capabilities that can be used to support such missions. Taking advantage of these materials, we developed a piezoelectric actuated drill that operates at the temperature range up to 500 deg C and the mechanism is based on the Ultrasonic/Sonic Drill/Corer (USDC) configuration. The detailed results of our study are presented in this paper

  7. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1990-10-01

    usual substrates, SrTiO3 , YSZ, MgO, and LaA103, it has been possible to deposit films on Si substrates without any buffer layer. A bolometer has been...new opportunities for the study of superconductor-insulator transitions and the investigation of photo- doping with carriers of high temperature super... SrTiO3 (00), SrTiO3 (l 10), LaA103 (100), MgO(100), and yttria stabilized zirconia (YSZ). The surfaces of these films could be imaged with a scanning

  8. High temperature geophysical instrumentation

    SciTech Connect

    Hardee, H.C.

    1988-06-01

    The instrumentation development program was to proceed in parallel with scientific research and was driven by the needs of researchers. The development of these instruments has therefore included numerous geophysical field tests, many of which have resulted in the publication of scientific articles. This paper is a brief summary of some of the major geophysical instruments that have been developed and tested under the High Temperature Geophysics Program. These instruments are briefly described and references are given for further detailed information and for scientific papers that have resulted from the use of these instruments. 9 refs., 14 figs.

  9. High temperature detonator

    DOEpatents

    Johnson, James O.; Dinegar, Robert H.

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  10. High-strength braze joints between copper and steel

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  11. High Temperature Protonic Conductors

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Berger, Marie-Helen; Sayir, Ali

    2007-01-01

    High Temperature Protonic Conductors (HTPC) with the perovskite structure are envisioned for electrochemical membrane applications such as H2 separation, H2 sensors and fuel cells. Successive membrane commercialization is dependent upon addressing issues with H2 permeation rate and environmental stability with CO2 and H2O. HTPC membranes are conventionally fabricated by solid-state sintering. Grain boundaries and the presence of intergranular second phases reduce the proton mobility by orders of magnitude than the bulk crystalline grain. To enhanced protonic mobility, alternative processing routes were evaluated. A laser melt modulation (LMM) process was utilized to fabricate bulk samples, while pulsed laser deposition (PLD) was utilized to fabricate thin film membranes . Sr3Ca(1+x)Nb(2-x)O9 and SrCe(1-x)Y(x)O3 bulk samples were fabricated by LMM. Thin film BaCe(0.85)Y(0.15)O3 membranes were fabricated by PLD on porous substrates. Electron microscopy with chemical mapping was done to characterize the resultant microstructures. High temperature protonic conduction was measured by impedance spectroscopy in wet air or H2 environments. The results demonstrate the advantage of thin film membranes to thick membranes but also reveal the negative impact of defects or nanoscale domains on protonic conductivity.

  12. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Apart from the hydrogeological conditions, high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. After one year of planning, construction, and the successful drilling of a research well to 495 m b.s.l. the first large scale heat storage test in the Malm aquifer was finished just before Christmas 2014. An enormous technical challenge was the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10-50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye. Injection and production rates were 15 L/s. About 4 TJ of heat energy were necessary to achieve the desired water temperatures. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for the analysis of the concentration of the tracers and the cation concentrations at sampling intervals of down to 15 minutes. Additional water samples were taken and analyzed for major ions and trace elements in the laboratory. The disassembled heat exchanger proved that precipitation was successfully prevented by adding CO2 to the water before heating

  13. High Temperature Aquifer Storage

    NASA Astrophysics Data System (ADS)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2016-04-01

    Combined heat and power generation (CHP) is highly efficient because excess heat is used for heating and/or process energy. However, the demand of heat energy varies considerably throughout the year while the demand for electrical energy is rather constant. It seems economically and ecologically highly beneficial for municipalities and large power consumers such as manufacturing plants to store excess heat in groundwater aquifers and to recuperate this energy at times of higher demand. Within the project High Temperature Aquifer Storage, scientists investigate storage and recuperation of excess heat energy into the bavarian Malm aquifer. Apart from high transmissivity and favorable pressure gradients, the hydrochemical conditions are crucial for long-term operation. An enormous technical challenge is the disruption of the carbonate equilibrium - modeling results indicated a carbonate precipitation of 10 - 50 kg/d in the heat exchangers. The test included five injection pulses of hot water (60 °C up to 110 °C) and four tracer pulses, each consisting of a reactive and a conservative fluorescent dye, into a depth of about 300 m b.s.l. resp. 470 m b.s.l. Injection and production rates were 15 L/s. To achieve the desired water temperatures, about 4 TJ of heat energy were necessary. Electrical conductivity, pH and temperature were recorded at a bypass where also samples were taken. A laboratory container at the drilling site was equipped for analysing the concentration of the dyes and the major cations at sampling intervals of down to 15 minutes. Additional water samples were taken and analysed in the laboratory. The disassembled heat exchanger prooved that precipitation was successfully prevented by adding CO2 to the water before heating. Nevertheless, hydrochemical data proved both, dissolution and precipitation processes in the aquifer. This was also suggested by the hydrochemical modelling with PhreeqC and is traced back to mixture dissolution and changing

  14. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  15. JOINING OF ADVANCED HIGH-TEMPERATURE MATERIALS

    SciTech Connect

    Weil, K. Scott; Darsell, Jens T.

    2009-05-14

    Various compositions in the Ag-CuOx system are being investigated as potential filler metals for use in air brazing high-temperature electrochemical devices such as solid oxide fuel cells and gas concentrators. Prior work has shown that the melting temperature, and therefore the potential operational temperature, of these materials can be increased by alloying with palladium. The current study examines the effects of palladium addition on the joint strength of specimens prepared from yttria stabilized zirconia (YSZ) bars brazed with three different families of filler metals: Ag-CuO, 5Pd-Ag-CuO, and 15Pd-Ag-CuO. In general it was found that palladium leads to a small-to-moderate decrease in joint strength, particularly in low copper oxide compositions filler metals. However the effect is likely acceptable if a higher temperature air braze filler metal is desired. In addition, a composition was found for each filler metal series in which the joint failure mechanism undergoes a transition, typically from ductile to brittle failure. In each case, this composition corresponds approximately to the silver-rich boundary composition of the liquid miscibility gap in each system at the temperature of brazing.

  16. Joining of ceramics for high temperature applications

    NASA Technical Reports Server (NTRS)

    Vilpas, Martti

    1987-01-01

    Summarized is a literature survey of the methods for joining ceramics to ceramics or ceramics to metals for high temperature applications. Also mechanical properties and potential applications of the joints are considered. The joining of ceramics is usually carried out by brazing or diffusion bonding. Especially the latter has been found useful, increasing the application of bonded ceramics. The possibility of using electron beam and laser beam welding for joining ceramics has also recently been investigated. The bonding of ceramics has found numerous applications typical for high operating temperatures, i.e., sensors and thermocouples.

  17. High Temperature Superconducting Materials Database

    National Institute of Standards and Technology Data Gateway

    SRD 149 NIST High Temperature Superconducting Materials Database (Web, free access)   The NIST High Temperature Superconducting Materials Database (WebHTS) provides evaluated thermal, mechanical, and superconducting property data for oxides and other nonconventional superconductors.

  18. Highly viscous sodium hyaluronate and joint lubrication.

    PubMed

    Mori, S; Naito, M; Moriyama, S

    2002-01-01

    We studied the natural lubrication mechanism of synovial joints. We determined the effect of sodium hyaluronate (HA) on lubricating joints without the normal lubrication mechanism. The coefficient of friction (CF) of fresh pig hip joints was measured with the cartilage intact, washed, scoured with gauze and finally with sandpaper, to model cartilage degradation. Three formulas of HA (8 x 10(5) daltons 1%, 20 x 10(5) daltons 1%, 20 x 10(5) daltons 1.5%) and physiologic saline were used as lubricants. We observed the cartilage using light microscopy (LM) and scanning electron microscopy (SEM). The latter showed that the most superficial layer observed in the washed joint was disrupted after gauze scouring. Compared with intact cartilage the CF did not increase with washing. CF increased more after scouring with sandpaper than with gauze. Each formula of HA decreased the CF of joints scoured with gauze, but only the two more viscous HA formulas decreased the CF of sandpaper-scoured joints. A negative correlation was found between the CF of the sandpaper-scoured joints and the logHA viscosity (r = -0.733, P = 0.0001), suggesting that HA with higher viscosity was more effective in lubricating the joints.

  19. High temperature nanoplasmonics

    NASA Astrophysics Data System (ADS)

    Alabastri, Alessandro; Toma, Andrea; Malerba, Mario; De Angelis, Francesco; Proietti Zaccaria, Remo

    2016-09-01

    Metallic nanostructures can be utilized as heat nano-sources which can find application in different areas such as photocatalysis, nanochemistry or sensor devices. Here we show how the optical response of plasmonic structures is affected by the increase of temperature. In particular we apply a temperature dependent dielectric function model to different nanoparticles finding that the optical responses are strongly dependent on shape and aspect-ratio. The idea is that when metallic structures interact with an electromagnetic field they heat up due to Joule effect. The corresponding temperature increase modifies the optical response of the particle and thus the heating process. The key finding is that, depending on the structures geometry, absorption efficiency can either increase or decrease with temperature. Since absorption relates to thermal energy dissipation and thus to temperature increase, the mechanism leads to positive or negative loops. Consequently, not only an error would be made by neglecting temperature but it would be not even possible to know, a priori, if the error is towards higher or lower values.

  20. The Alternating Surface Segmented Lap Joint: a Design for Thin Highly Loaded Joints

    NASA Technical Reports Server (NTRS)

    Watkins, V. E., Jr.; Firth, G. C.

    1985-01-01

    The combination of thin airfoil sections and high aerodynamic loads on many wind tunnel models presents a major problem for attachment of flap elements. Conventional methods of attaching fixed control elements such as lap and tongue-in-groove joints are not rigid enough to provide surface continuity required in high Reynolds number research. For the extreme cases, the solution has been to fabricate separate wings for each flap setting with the flap element being and integral part of the wing. Here an attractive solution to this problem, the alternating surface segmented lap joint, is discussed. This joint provides increased rigidity and lower stress levels than conventional joints. Additionally, attachment fastener loading is low and the joint can be designed to accommodate high shear levels due to bending without the use of dowel pins.

  1. Top Joint Study on Temperature Stress for Super-Long Slab-Column Structure

    NASA Astrophysics Data System (ADS)

    Dong, Minghai; Song, Li; Shao, Ying

    In this paper, top joint method is proposed to solve a practical engineering problem of temperature stress and temperature crack of super-long slab-column structure bearing temperature difference. From the study, it is shown that as for super-long slab-column structure undergoing temperature difference of inside and outside, joint located in bottom stories nearly has no influence on temperature stress and deformation while joint in top stories can significantly reduce temperature stress and deformation of super-long slab-column structures. In addition, comparison of joints located in top one story, top several stories and from bottom to top stories indicates that influences of them on temperature stress and deformation are similar. As for top joint method, among which cantilever plate method, double column method and corbel method are discussed and results indicate that influence effects of these methods on structures are similar.

  2. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  3. Laser Brazing of High Temperature Braze Alloy

    NASA Technical Reports Server (NTRS)

    Gao, Y. P.; Seaman, R. F.; McQuillan, T. J.; Martiens, R. F.

    2000-01-01

    The Space Shuttle Main Engine (SSME) consists of 1080 conical tubes, which are furnace brazed themselves, manifolds, and surrounding structural jacket making almost four miles of braze joints. Subsequent furnace braze cycles are performed due to localized braze voids between the coolant tubes. SSME nozzle experiences extremely high heat flux (180 mW/sq m) during hot fire. Braze voids between coolant tubes may result in hot combustion gas escape causing jacket bulges. The nozzle can be disqualified for flight or result in mission failure if the braze voids exceed the limits. Localized braze processes were considered to eliminate braze voids, however, damage to the parent materials often prohibited use of such process. Being the only manned flight reusable rocket engine, it has stringent requirement on the braze process. Poor braze quality or damage to the parent materials limits the nozzle service life. The objective of this study was to develop a laser brazing process to provide quality, localized braze joints without adverse affect on the parent materials. Gold (Au-Cu-Ni-Pd-Mn) based high temperature braze alloys were used in both powder and wire form. Thin section iron base superalloy A286 tube was used as substrate materials. Different Laser Systems including CO2 (10.6 micrometers, 1kW), ND:YAG (1.06 micrometers, 4kW). and direct diode laser (808nm. 150W) were investigated for brazing process. The laser process variables including wavelength. laser power, travel speed and angle of inclination were optimized according to bead geometry and braze alloy wetting at minimum heat input level, The properties of laser brazing were compared to that of furnace brazing. Microhardness profiles were used for braze joint property comparison between laser and furnace brazing. The cooling rate of laser brazing was compared to furnace brazing based on secondary dendritic arm spacing, Both optical and Scanning Electron Microscope (SEM) were used to evaluate the microstructures of

  4. High temperature lubricating process

    DOEpatents

    Taylor, Robert W.; Shell, Thomas E.

    1982-01-01

    It has been difficult to provide adaquate lubrication for load bearing, engine components when such engines are operating in excess of about 475.degree. C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface (14), such as in an engine (10) being operated at temperatures in excess of about 475.degree. C. The process comprises contacting and maintaining steps. A gas phase (42) is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant. The gas phase is contacted with the load bearing surface. The load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant. The solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  5. High temperature lubricating process

    DOEpatents

    Taylor, R.W.; Shell, T.E.

    1979-10-04

    It has been difficult to provide adequate lubrication for load bearing, engine components when such engines are operating in excess of about 475/sup 0/C. The present invention is a process for providing a solid lubricant on a load bearing, solid surface, such as in an engine being operated at temperatures in excess of about 475/sup 0/C. The process comprises contacting and maintaining the following steps: a gas phase is provided which includes at least one component reactable in a temperature dependent reaction to form a solid lubricant; the gas phase is contacted with the load bearing surface; the load bearing surface is maintained at a temperature which causes reaction of the gas phase component and the formation of the solid lubricant; and the solid lubricant is formed directly on the load bearing surface. The method is particularly suitable for use with ceramic engines.

  6. High-temperature piezoelectric sensing.

    PubMed

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2013-12-20

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented.

  7. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  8. High-temperature bearing lubricants

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.; Parker, R. J.; Zaretsky, E. V.

    1968-01-01

    Synthetic paraffinic oil lubricates ball bearings at temperatures in the 600 degrees F range. The lubricant contains antiwear and antifoam additives, is thermally stable in the high temperature range, but requires protection from oxygen.

  9. High Temperature Superconducting Compounds

    DTIC Science & Technology

    1992-11-30

    power spectral density measurements as a function of temperature, frequency, current, and magnetic field on DyBa2Cu3O7.x ( DBCO ) thin films have been...proceeding. The goals has been to understand the "intrinsic" noise present in DBCO thin films grown on SrTiO3 or LaAlO2 substrates, namely: the

  10. High Temperature Surface Interactions

    DTIC Science & Technology

    1989-11-01

    yttrium sulfide. Surface segregation studies were conducted employing Auger Electron Spectroscopy (AES) coupled with cyclic oxidation experiments...temperature (530*C) in air. The early stages of oxidation were studied by Auger electron spectroscopy (AES) with depth profiling using inert gas ion...basicity at 927 ’C are shown in Figure 7 . The purpose of such studies is to mfnlmize hot corrosion reactions by selection of an alloy or coating which is

  11. High temperature LSI

    NASA Technical Reports Server (NTRS)

    Dening, D. C.; Ragonese, L. J.; Lee, C. Y.

    1982-01-01

    Integrated injection logic (1,2) technology for reliable operation under a -55 C to +300 C, temperature range is discussed. Experimental measurements indicate that an 80 mv signal swing is available at 300 C with 100 micro A injection current per gate. In addition, modeling results predict how large gate fan-ins can decrease the maximum thermal operational limits. These operational limits and the longterm reliability factors associated with device metallization are evaluated via specialized test mask.

  12. Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini,Benjamin; Young, Daniel

    1990-01-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite bonded joints below the cryogenic temperature of 30K (-405 F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to M55J/954-6 and T300/954-6 hybrid composite tubes (75mm square). Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  13. High-temperature constitutive modeling

    NASA Technical Reports Server (NTRS)

    Robinson, D. N.; Ellis, J. R.

    1984-01-01

    Thermomechanical service conditions for high-temperature levels, thermal transients, and mechanical loads severe enough to cause measurable inelastic deformation are studied. Structural analysis in support of the design of high-temperature components depends strongly on accurate mathematical representations of the nonlinear, hereditary, inelastic behavior of structural alloys at high temperature, particularly in the relatively small strain range. Progress is discussed in the following areas: multiaxial experimentation to provide a basis for high-temperature multiaxial constitutive relationships; nonisothermal testing and theoretical development toward a complete thermomechanically path dependent formulation of viscoplasticity; and development of viscoplastic constitutive model accounting for initial anisotropy.

  14. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  15. Effect of Temperature on Microstructure and Fracture Mechanisms in Friction Stir Welded Al6061 Joints

    NASA Astrophysics Data System (ADS)

    Dorbane, A.; Ayoub, G.; Mansoor, B.; Hamade, R. F.; Imad, A.

    2017-05-01

    Aluminum and its alloys are widely used in different industries due to such attractive properties as adequate strength, ductility, and low density. It is desirable to characterize welds of aluminum alloys obtained using "friction stir welding" at high temperatures. Al-to-Al (both 6061-T6) butt joints are produced by friction stir welding at tool rotation speed of 1600 rpm and four levels of tool advancing speeds: 250, 500, 750, and 1000 mm/min. Microstructural properties of the different welds are investigated. Observed are noticeable differences in microstructure characteristics between the various weld zones. Mechanical properties of these welded joints are characterized under tensile tests at temperatures of 25, 100, 200, and 300 °C, at a constant strain rate of 10-3/s. The optimum microstructural and mechanical properties were obtained for the samples FS welded with 1600 rpm tool rotation speed at 1000 mm/min tool advancing speed. The studied welds exhibited yield strength, ultimate tensile strength, and strain to failure with values inferior of those of the base material. Observations of postmortem samples revealed that in the temperature range of 25-200 °C the locus of failure originates at the region between the thermo-mechanically affected zone and the heat-affected zones. However, at higher temperatures (300 °C), the failure occurs in the stir zone. A change in the crack initiation mechanism with temperature is suggested to explain this observation.

  16. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2017-02-01

    Conventional superconductors are described well by the Bardeen – Cooper – Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature Tc. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at Tc = 200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high Tc superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing Tc to room temperature are also discussed.

  17. High-temperature conventional superconductivity

    NASA Astrophysics Data System (ADS)

    Eremets, M. I.; Drozdov, A. P.

    2016-11-01

    Conventional superconductors are described well by the Bardeen - Cooper - Schrieffer (BCS) theory (1957) and its related theories, all of which importantly put no explicit limit on transition temperature T_c. While this allows, in principle, room-temperature superconductivity, no such phenomenon has been observed. Since the discovery of superconductivity in 1911, the measured critical temperature of BCS superconductors has not until recently exceeded 39 K. In 2014, hydrogen sulfide under high pressure was experimentally found to exhibit superconductivity at T_c=200 K, a record high value which greatly exceeds that of the previous class of high-temperature superconductors, the cuprates. The superconductivity mechanism in cuprates has not yet been explained. Over a period of 25 years, the critical temperature of cuprates has not been increased above 164 K. The paper reviews research on record-high T_c superconductivity in hydrogen sulphide and other hydrides. Prospects for increasing T_c to room temperature are also discussed.

  18. The fretting damage and effect of temperature in typical joint of aircraft construction

    NASA Astrophysics Data System (ADS)

    Tian, T. Z.

    The fatigue test results and the fatigue fracture for three types of joints, i.e., bolted joints, set-head rivet joints and countersunk rivet joints of the aluminum alloy, have been studied on the basis of more than 200 joints test at both elevated temperature and room temperature. It is revealed that the cracks initiated in the places where fretting had taken place and led to the failure of fretting fatigue. Different types of joints cause different modes of transmitting loads so that the places of cracks changed, which result in difference of fatigue strength. In this paper, the effect of fretting damage on fatigue strength and the effect of elevated temperature on fatigue strength and fracture appearance are also presented.

  19. High temperature interface superconductivity

    DOE PAGES

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, wemore » conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.« less

  20. High temperature interface superconductivity

    SciTech Connect

    Gozar, A.; Bozovic, I.

    2016-01-20

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. Here, we conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  1. High temperature interface superconductivity

    NASA Astrophysics Data System (ADS)

    Gozar, A.; Bozovic, I.

    2016-02-01

    High-Tc superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-Tc Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both 'passive' hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  2. High-temperature ceramic receivers

    SciTech Connect

    Jarvinen, P. O.

    1980-01-01

    An advanced ceramic dome cavity receiver is discussed which heats pressurized gas to temperatures above 1800/sup 0/F (1000/sup 0/C) for use in solar Brayton power systems of the dispersed receiver/dish or central receiver type. Optical, heat transfer, structural, and ceramic material design aspects of the receiver are reported and the development and experimental demonstration of a high-temperature seal between the pressurized gas and the high-temperature silicon carbide dome material is described.

  3. High temperature be panel development

    NASA Technical Reports Server (NTRS)

    Hardesty, R.; Jensen, M.; Grant, L.

    1989-01-01

    Beryllium materials have been used for many aerospace applications over the years. Most of these applications have been fairly ambient environments. The possibility of fabricating beryllium panels for high temperature applications up to 1200 F is investigated. Joining alloys were reviewed, tested and evaluated for high temperature applications.

  4. High Temperature Adhesive Systems

    DTIC Science & Technology

    1988-02-01

    only XLVI need be disqualified from the group of silane- functional molecules in Figure 2- 15 . However, the authors also postulated that R2SiH 2 and...Hydrosilation Reaction 2-41 2-14. Commercially Available Silane Monomers 2-42 2- 15 . Phthalocyanine-containing Silane Monomers 2-42 2-16. High Polymer by...Solutions Using FEAP 3- 15 4. Preliminary Test Specimen 3-18 5. Preliminary Test Loading Device with Specimen 3-18 6. Preliminary Test Results. Plot of

  5. High Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The majority of satellites and near-earth probes developed to date have used photovoltaic arrays for power generation. If future mission to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. In this paper, we derive the optimum bandgap as a function of the operating temperature.

  6. Studies of high temperature superconductors

    SciTech Connect

    Narlikar, A. )

    1990-01-01

    With the pioneering discovery of high temperature superconductors in 1986 superconductivity has ceased to remain an area of mere academic curiosity and a preserve of a small community of low temperature physicists and cryogenists. Renouncing their cold confines freed from the grip of liquid helium, superconductors have stepped into the realm of high temperatures. The area has transformed into a rich field of intensive and highly competitive research, encompassing diverse disciplines such as: structural chemistry, ceramic engineering, metallurgy, solid state electronics, experimental and theoretical, and condensed matter physics.

  7. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Rorabaugh, Michael; Shorey, Mark

    2002-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 pound payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs.

  8. Ceramic Adhesive for High Temperatures

    NASA Technical Reports Server (NTRS)

    Stevens, Everett G.

    1987-01-01

    Fused-silica/magnesium-phosphate adhesive resists high temperatures and vibrations. New adhesive unaffected by extreme temperatures and vibrations. Assuring direct bonding of gap filters to tile sidewalls, adhesive obviates expensive and time-consuming task of removal, treatment, and replacement of tiles.

  9. Development of high strength, high temperature ceramics

    NASA Technical Reports Server (NTRS)

    Hall, W. B.

    1982-01-01

    Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.

  10. Advanced High Temperature Structural Seals

    NASA Technical Reports Server (NTRS)

    Newquist, Charles W.; Verzemnieks, Juris; Keller, Peter C.; Shorey, Mark W.; Steinetz, Bruce (Technical Monitor)

    2000-01-01

    This program addresses the development of high temperature structural seals for control surfaces for a new generation of small reusable launch vehicles. Successful development will contribute significantly to the mission goal of reducing launch cost for small, 200 to 300 lb payloads. Development of high temperature seals is mission enabling. For instance, ineffective control surface seals can result in high temperature (3100 F) flows in the elevon area exceeding structural material limits. Longer sealing life will allow use for many missions before replacement, contributing to the reduction of hardware, operation and launch costs. During the first phase of this program the existing launch vehicle control surface sealing concepts were reviewed, the aerothermal environment for a high temperature seal design was analyzed and a mock up of an arc-jet test fixture for evaluating seal concepts was fabricated.

  11. High temperature structural insulating material

    DOEpatents

    Chen, W.Y.

    1984-07-27

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800/sup 0/C), low thermal conductivity (below about 0.2 W/m/sup 0/C), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800/sup 0/C, a diameter within the range of 20-200 ..mu..m, and a wall thickness in the range of about 2 to 4 ..mu..m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  12. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-06

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  13. High temperature structural insulating material

    DOEpatents

    Chen, Wayne Y.

    1987-01-01

    A high temperature structural insulating material useful as a liner for cylinders of high temperature engines through the favorable combination of high service temperature (above about 800.degree. C.), low thermal conductivity (below about 0.2 W/m.degree. C.), and high compressive strength (above about 250 psi). The insulating material is produced by selecting hollow ceramic beads with a softening temperature above about 800.degree. C., a diameter within the range of 20-200 .mu.m, and a wall thickness in the range of about 2-4 .mu.m; compacting the beads and a compatible silicate binder composition under pressure and sintering conditions to provide the desired structural form with the structure having a closed-cell, compact array of bonded beads.

  14. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  15. The Very High Temperature Reactor

    SciTech Connect

    Hans D. Gougar; David A. Petti

    2011-06-01

    The High Temperature Reactor (HTR) and Very High Temperature Reactor (VHTR) are types of nuclear power plants that, as the names imply, operate at temperatures above those of the conventional nuclear power plants that currently generate electricity in the US and other countries. Like existing nuclear plants, heat generated from the fission of uranium or plutonium atoms is carried off by a working fluid and can be used generate electricity. The very hot working fluid also enables the VHTR to drive other industrial processes that require high temperatures not achievable by conventional nuclear plants (Figure 1). For this reason, the VHTR is being considered for non-electrical energy applications. The reactor and power conversion system are constructed using special materials that make a core meltdown virtually impossible.

  16. High temperature NASP engine seal development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Melis, Matthew E.; Orletski, Dirk; Test, Mark G.

    1991-01-01

    Key to the development of advanced hypersonic engines such as those being considered for the National Aerospace Plane (NASP) is the development and evaluation of high temperature, flexible seals that must seal the many feet of gaps between the articulating and stationary engine panels. Recent seal progress made at NASA-Lewis is reviewed in the areas of seal concept maturation, test rig development, and performance tests. A test fixture was built at NASA capable of subjecting candidate 3 ft long seals to engine simulated temperatures (up to 1500 F), pressures (up to 100 psi), and engine wall distortions (up to 0.15 in only 18 in span). Leakage performance test results at high temperatures are presented for an innovative high temperature, flexible ceramic wafer seal. Also described is a joint Pratt and Whitney/NASA planned test program to evaluate thermal performance of a braided rope seal under engine simulated heat flux rates (up to 400 Btu/sq ft s), and supersonic flow conditions. These conditions are produced by subjecting the seal specimen to hydrogen oxygen rocket exhaust that flows tangent to the specimen.

  17. High temperature Seebeck coefficient metrology

    SciTech Connect

    Martin, J.; Tritt, T.; Uher, C.

    2010-12-15

    We present an overview of the challenges and practices of thermoelectric metrology on bulk materials at high temperature (300 to 1300 K). The Seebeck coefficient, when combined with thermal and electrical conductivity, is an essential property measurement for evaluating the potential performance of novel thermoelectric materials. However, there is some question as to which measurement technique(s) provides the most accurate determination of the Seebeck coefficient at high temperature. This has led to the implementation of nonideal practices that have further complicated the confirmation of reported high ZT materials. To ensure meaningful interlaboratory comparison of data, thermoelectric measurements must be reliable, accurate, and consistent. This article will summarize and compare the relevant measurement techniques and apparatus designs required to effectively manage uncertainty, while also providing a reference resource of previous advances in high temperature thermoelectric metrology.

  18. Gallium phosphide high temperature diodes

    NASA Technical Reports Server (NTRS)

    Chaffin, R. J.; Dawson, L. R.

    1981-01-01

    High temperature (300 C) diodes for geothermal and other energy applications were developed. A comparison of reverse leakage currents of Si, GaAs, and GaP was made. Diodes made from GaP should be usable to 500 C. A Liquid Phase Epitaxy (LPE) process for producing high quality, grown junction GaP diodes is described. This process uses low vapor pressure Mg as a dopant which allows multiple boat growth in the same LPE run. These LPE wafers were cut into die and metallized to make the diodes. These diodes produce leakage currents below ten to the -9th power A/sq cm at 400 C while exhibiting good high temperature rectification characteristics. High temperature life test data is presented which shows exceptional stability of the V-I characteristics.

  19. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  20. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  1. High temperature electronic gain device

    DOEpatents

    McCormick, J. Byron; Depp, Steven W.; Hamilton, Douglas J.; Kerwin, William J.

    1979-01-01

    An integrated thermionic device suitable for use in high temperature, high radiation environments. Cathode and control electrodes are deposited on a first substrate facing an anode on a second substrate. The substrates are sealed to a refractory wall and evacuated to form an integrated triode vacuum tube.

  2. Temperature optimization of high con

    NASA Astrophysics Data System (ADS)

    Sabry, M.

    2016-06-01

    Active cooling is essential for solar cells operating under high optical concentration ratios. A system comprises four solar cells that are in thermal contact on top of a copper tube is proposed. Water is flowing inside the tube in order to reduce solar cells temperature for increasing their performance. Computational Fluid Dynamics (CFD) simulation of such system has been performed in order to investigate the effect of water flow rate, tube internal diameter, and convective heat transfer coefficient on the temperature of the solar cells. It is found that increasing convective heat transfer coefficient has a significant effect on reducing solar cells temperatures operating at low flow rates and high optical concentration ratios. Also, a further increase of water flow rate has no effect on reducing cells temperatures.

  3. HIgh Temperature Photocatalysis over Semiconductors

    NASA Astrophysics Data System (ADS)

    Westrich, Thomas A.

    Due in large part to in prevalence of solar energy, increasing demand of energy production (from all sources), and the uncertain future of petroleum energy feedstocks, solar energy harvesting and other photochemical systems will play a major role in the developing energy market. This dissertation focuses on a novel photochemical reaction process: high temperature photocatalysis (i.e., photocatalysis conducted above ambient temperatures, T ≥ 100°C). The overarching hypothesis of this process is that photo-generated charge carriers are able to constructively participate in thermo-catalytic chemical reactions, thereby increasing catalytic rates at one temperature, or maintaining catalytic rates at lower temperatures. The photocatalytic oxidation of carbon deposits in an operational hydrocarbon reformer is one envisioned application of high temperature photocatalysis. Carbon build-up during hydrocarbon reforming results in catalyst deactivation, in the worst cases, this was shown to happen in a period of minutes with a liquid hydrocarbon. In the presence of steam, oxygen, and above-ambient temperatures, carbonaceous deposits were photocatalytically oxidized over very long periods (t ≥ 24 hours). This initial experiment exemplified the necessity of a fundamental assessment of high temperature photocatalytic activity. Fundamental understanding of the mechanisms that affect photocatalytic activity as a function of temperatures was achieved using an ethylene photocatalytic oxidation probe reaction. Maximum ethylene photocatalytic oxidation rates were observed between 100 °C and 200 °C; the maximum photocatalytic rates were approximately a factor of 2 larger than photocatalytic rates at ambient temperatures. The loss of photocatalytic activity at temperatures above 200 °C is due to a non-radiative multi-phonon recombination mechanism. Further, it was shown that the fundamental rate of recombination (as a function of temperature) can be effectively modeled as a

  4. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae).

    PubMed

    Liu, Jia; Lincoln, Tamra; An, Jingjie; Gao, Zhanlin; Dang, Zhihong; Pan, Wenliang; Li, Yaofa

    2016-08-01

    The effect of temperature on the cotoxicity coefficient (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15 to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint toxicity of same temperature coefficient insecticide (TCI) types were unaffected by temperature. This means that even when temperatures change, the mixture ratios of the highest CTC values remained the same, and the effect of temperature on the joint toxicity of same TCI types was only on the CTC values. However, the effect of temperature was variable when considering the joint toxicity of different TCI types. The effect of temperature on the joint toxicity of both strong positive and strong negative TCI types was clear, and the highest CTC values of mixture ratios changed with temperature regularly. When comparing the influence of temperature between strong/slight positive/negative insecticides, the results indicated a greater influence of the strong TCI. Paradoxically, the highest CTC value of the imidacloprid and methomyl mixture did not change with temperature changes consistently, even with the variance of imidacloprid ratios, a strong TCI. These results will guide pest managers in choosing the most effective insecticide mixtures for A. lucorum control under given environmental conditions. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Prediction of Fatigue Life for CFRP/Metal Bolted Joint under Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Sekine, Naoyuki; Nakada, Masayuki; Miyano, Yasushi; Kuraishi, Akira; Tsai, Stephen W.

    In 1997, we proposed a prediction method of fatigue failure load for polymer composite structures under an arbitrary frequency, load ratio (minimum load/maximum load), and temperature from the data measured by constant elongation-rate (CER) tests under various temperatures and loading rates, and by fatigue tests at a single frequency under various temperatures. In this paper, tensile CER and fatigue tests of CFRP/metal bolted joint were conducted for various temperatures and loading rates. The applicability of the proposed method was experimentally proven for the tensile fatigue failure load for this CFRP/metal bolted joint.

  6. High Temperature Transparent Furnace Development

    NASA Technical Reports Server (NTRS)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  7. Interface high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  8. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  9. Effects of Brazing Time and Temperature on the Microstructure and Mechanical Properties of Aluminum Air Brazed Joints

    SciTech Connect

    Kim, Jin Yong Y; Weil, K Scott

    2007-12-01

    High purity aluminum foil was used to join alumina substrates directly in air at temperatures ranging from 800 - 1200ºC and soak times of 1 – 100 hours. It was found that the bend strengths of the resulting Al2O3/Al/Al2O3 joints generally increase with increasing brazing temperature and time; with a maximum bend strength of 135 MPa on average achieved in samples joined at 1200ºC for 100h. Additionally it was determined that measurable ductility is retained in the joint even after exposure to 1200ºC for 100hrs. During joining, an Al2O3 scale forms along the interface between the aluminum and the adjacent substrates. An increase in brazing temperature and/or time leads to intergrowth and sintering between this thermally grown oxide layer and the substrate surface, which appears to be the primary source of improved joint strength. Fracture analysis indicates that the Al2O3/Al/Al2O3 joints generally fail via one of three mechanisms, either: (1) by de-bonding along the foil/substrate interface in specimens that were joined at lower temperature or held at temperature for an insufficient period of time; (2) by ductile rupture in specimens that were joined at conditions that promoted sintering between the oxidized foil and adjacent alumina faying surfaces, but left behind a continuous residual aluminum layer within the joint; or (3) by mixed-mode fracture in specimens joined at high temperature and long exposure times, in which the thermally grown alumina that forms between the two substrates is interrupted by dispersed pockets of residual aluminum metal.

  10. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  11. Temporomandibular joints: high-resolution computed tomographic evaluation

    SciTech Connect

    Thompson, J.R.; Christiansen, E.; Hasso, A.N.; Hinshaw, D.B. Jr.

    1984-01-01

    High-resolution computed tomography of the temporomandibular joint (TMJ) was performed in 43 patients. Exquisite detail of the face, skull base, and TMJs was obtained with CT using soft tissue and bone algorithms, narrow collimation, and multiplanar images. In 10 patients clinically suspected of joint derangement, CT results were in close agreement with surgical findings and arthrography in 13/15 joints. CT showed indirect signs of disc dislocation, and the dislocated disc itself in 81% of affected joints. In two patients, arthrography with CT proved to be more helpful than conventional arthrography alone. CT without intra-articular contrast material provided information not appreciated on conventional radiogaphs in 28 patients (65%) and was particularly helpful in evaluating patients with disc pathosis and trauma. Early experience with CT of the TMJ shows that it is an excellent method of evaluation at acceptable radiation exposure levels that adds essential information not seen on standard radiographs.

  12. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  13. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  14. High temperature solar thermal technology

    NASA Technical Reports Server (NTRS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-01-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  15. "Green" High-Temperature Polymers

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1998-01-01

    PMR-15 is a processable, high-temperature polymer developed at the NASA Lewis Research Center in the 1970's principally for aeropropulsion applications. Use of fiber-reinforced polymer matrix composites in these applications can lead to substantial weight savings, thereby leading to improved fuel economy, increased passenger and payload capacity, and better maneuverability. PMR-15 is used fairly extensively in military and commercial aircraft engines components seeing service temperatures as high as 500 F (260 C), such as the outer bypass duct for the F-404 engine. The current world-wide market for PMR-15 materials (resins, adhesives, and composites) is on the order of $6 to 10 million annually.

  16. High temperature solar thermal technology

    NASA Astrophysics Data System (ADS)

    Leibowitz, L. P.; Hanseth, E. J.; Peelgren, M. L.

    1980-11-01

    Some advanced technology concepts under development for high-temperature solar thermal energy systems to achieve significant energy cost reductions and performance gains and thus promote the application of solar thermal power technology are presented. Consideration is given to the objectives, current efforts and recent test and analysis results in the development of high-temperature (950-1650 C) ceramic receivers, thermal storage module checker stoves, and the use of reversible chemical reactions to transport collected solar energy. It is pointed out that the analysis and testing of such components will accelerate the commercial deployment of solar energy.

  17. High Temperature Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) characterization; (4) environmental effects; and (5) applications.

  18. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  19. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Serafini, Tito T. (Editor)

    1987-01-01

    These are the proceedings of the High Temperature Polymer Matrix Composites Conference held at the NASA Lewis Research Center on March 16 to 18, 1983. The purpose of the conference is to provide scientists and engineers working in the field of high temperature polymer matrix composites an opportunity to review, exchange, and assess the latest developments in this rapidly expanding area of materials technology. Technical papers are presented in the following areas: (1) matrix development; (2) adhesive development; (3) Characterization; (4) environmental effects; and (5) applications.

  20. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2017-01-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  1. Nonlinear plasmonics at high temperatures

    NASA Astrophysics Data System (ADS)

    Sivan, Yonatan; Chu, Shi-Wei

    2016-10-01

    We solve the Maxwell and heat equations self-consistently for metal nanoparticles under intense continuous wave (CW) illumination. Unlike previous studies, we rely on experimentally-measured data for metal permittivity for increasing temperature and for the visible spectral range. We show that the thermal nonlinearity of the metal can lead to substantial deviations from the predictions of the linear model for the temperature and field distribution and, thus, can explain qualitatively the strong nonlinear scattering from such configurations observed experimentally. We also show that the incompleteness of existing data of the temperature dependence of the thermal properties of the system prevents reaching a quantitative agreement between the measured and calculated scattering data. This modeling approach is essential for the identification of the underlying physical mechanism responsible for the thermo-optical nonlinearity of the metal and should be adopted in all applications of high-temperature nonlinear plasmonics, especially for refractory metals, for both CW and pulsed illumination.

  2. High temperature in absorption measurements

    NASA Astrophysics Data System (ADS)

    Krech, R. H.; Pugh, E. R.

    1981-09-01

    The temperature dependence of the absorption coefficient of water vapor was measured to determine the feasibility of using water vapor as a molecular seed to couple 10.6 micrometer CO2 laser radiation into a propellant for use in a high performance laser heated rocket thruster. A series of shock tube experiments were performed to determine the temperature dependence of the absorption coefficient of water vapor at high temperatures on the P(16), P(18) and P(20) 10.6 micrometer CO2 laser transitions. Measurements were made behind both incident and reflected shock waves encompassing a temperature range from 600 K to 3700 K at pressures from 1 to 40 atmospheres in 2, 5, and 10 mole percent water vapor in argon gas mixtures. Within the spectral range (944 to 948 cm) covered, no significant variation in the absorption coefficient was observed as a function of laser wavelength, water concentration, total pressure, or collision partner. Observations suggest that the water lines are sufficiently broadened to act as a continuum absorber under conditions to be found in a laser-heated rocket thruster. The measured laser high temperature absorption coefficients are 50 percent lower than the values obtained from the Ludwig empirical curve fit to low resolution data.

  3. Low-cost high-temperature brazing material

    NASA Technical Reports Server (NTRS)

    Repas, G. A.; Tulisiak, G.

    1970-01-01

    Commercially available nickel-copper wire containing 6 and 12 percent nickel is used in high temperature furnace brazing of rocket engine parts. Brazed joints have properties comparable to or better than those brazed with more expensive materials, and cost savings are substantial.

  4. High Temperature SHM/NDE

    DTIC Science & Technology

    2009-09-04

    durability and reliability Integrated Sensors High Temperature network (e.g. silicon carbide) AFOSR-MURI Functionally Graded Hybrid Composites...Strain under voltage potential •  Produce potential when strained + + + + - - - - + + + + - - - - STANDARD PZTs Sensors...PI/ PZT /SWNT   Texas A&M (SO) AFOSR-MURI Functionally Graded Hybrid Composites Sensors Development: Nanomaterials Conductivity changes Strain

  5. High-temperature plasma physics

    SciTech Connect

    Furth, H.P.

    1988-03-01

    Both magnetic and inertial confinement research are entering the plasma parameter range of fusion reactor interest. This paper reviews the individual and common technical problems of these two approaches to the generation of thermonuclear plasmas, and describes some related applications of high-temperature plasma physics.

  6. A solar high temperature kiln

    NASA Astrophysics Data System (ADS)

    Huettenhoelscher, N.; Bergmann, K.

    1981-11-01

    The feasibility of using solar energy in developing countries for baking ceramic construction materials was investigated. The solar high temperature kiln is described. It uses two parabolic concentrators which direct available radiation into the baking chamber. The Sun tracker has only one axis. Preliminary test results with the prototype kiln were satisfactory.

  7. Containerless high temperature property measurements

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Weber, J. K. Richard; Krishnan, Shankar; Anderson, Collin D.

    1991-01-01

    Containerless processing in the low gravity environment of space provides the opportunity to increase the temperature at which well controlled processing of and property measurements on materials is possible. This project was directed towards advancing containerless processing and property measurement techniques for application to materials research at high temperatures in space. Containerless high temperature material property studies include measurements of the vapor pressure, melting temperature, optical properties, and spectral emissivities of solid boron. The reaction of boron with nitrogen was also studied by laser polarimetric measurement of boron nitride film growth. The optical properties and spectral emissivities were measured for solid and liquid silicon, niobium, and zirconium; liquid aluminum and titanium; and liquid Ti-Al alloys of 5 to 60 atomic pct. titanium. Alternative means for noncontact temperature measurement in the absence of material emissivity data were evaluated. Also, the application of laser induced fluorescence for component activity measurements in electromagnetic levitated liquids was studied, along with the feasibility of a hybrid aerodynamic electromagnetic levitation technique.

  8. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  9. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  10. High Temperature Sorbents for Oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1996-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C is introduced. The sorbent comprises a porous alumina silicate support such as zeolite containing from 1 to 10 percent by weight of ion exchanged transition metal such as copper or cobalt ions and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum. The activation temperature, oxygen sorption and reducibility are all improved by the presence of the platinum activator.

  11. High temperature sorbents for oxygen

    NASA Technical Reports Server (NTRS)

    Sharma, Pramod K. (Inventor)

    1994-01-01

    A sorbent capable of removing trace amounts of oxygen (ppt) from a gas stream at a high temperature above 200 C comprising a porous alumina silicate support, such as zeolite, containing from 1 to 10 percent by weight of ion exchanged transition metal, such as copper or cobalt ions, and 0.05 to 1.0 percent by weight of an activator selected from a platinum group metal such as platinum is described. The activation temperature, oxygen sorption, and reducibility are all improved by the presence of the platinum activator.

  12. High temperature strain gage evaluation

    NASA Technical Reports Server (NTRS)

    Gonzalez, J. I.

    1977-01-01

    The structural thermal test of an advanced ramjet missile section required strain measurements as high as 922 K (1200 F). Since there is relatively little experience in the use of strain gages above the 700-755 K (800-900 F) level, a program was initiated to select and evaluate the best available gage. Candidate gages suitable for measurements up to 922 K (1200 F) were selected. This involved the determination of their operating characteristics, availability, cost, installation aspects, etc. The evaluation involved the following tests: strain as a function of load at room temperature and apparent strain as a function of temperature.

  13. High Temperature Mechanisms for Venus Exploration

    NASA Astrophysics Data System (ADS)

    Ji, Jerri; Narine, Roop; Kumar, Nishant; Singh, Sase; Gorevan, Steven

    Future Venus missions, including New Frontiers Venus In-Situ Explorer and three Flagship Missions - Venus Geophysical Network, Venus Mobile Explorer and Venus Surface Sample Return all focus on searching for evidence of past climate change both on the surface and in the atmospheric composition as well as in the interior dynamics of the planet. In order to achieve these goals and objectives, many key technologies need to be developed for the Venus extreme environment. These key technologies include sample acquisition systems and other high-temperature mechanisms and mobility systems capable of extended operation when directly exposed to the Venus surface or lower atmosphere environment. Honeybee Robotics has developed two types of high temperature motors, the materials and components in both motors were selected based on the requirement to survive temperatures above a minimum of 460° C, at earth atmosphere. The prototype Switched Reluctance Motor (SRM) has been operated non-continuously for over 20 hours at Venus-like conditions (460° C temperature, mostly CO2 gas environment) and it remains functional. A drilling system, actuated by two SRMs was tested in Venus-like conditions, 460° C temperature and mostly CO2 gas environment, for more than 15 hours. The drill successfully completed three tests by drilling into chalk up to 6 inches deep in each test. A first generation Brushless DC (BLDC) Motor and high temperature resolver were also tested and the feasibility of the designs was demonstrated by the extended operation of both devices under Venus-like condition. Further development of the BLDC motor and resolver continues and these devices will, ultimately, be integrated into the development of a high temperature sample acquisition scoop and high temperature joint (awarded SBIR Phase II in October, 2007). Both the SR and BLDC motors will undergo extensive testing at Venus temperature and pressure (TRL6) and are expected to be mission ready before the next New

  14. The Joint Toxicity of Different Temperature Coefficient Insecticides on Apolygus lucorum (Hemiptera: Miridae)

    USDA-ARS?s Scientific Manuscript database

    The effect of temperature on the co-toxicity coefficients (CTC) value was used to evaluate mixture efficacy of different temperature coefficient chemicals from 15°C to 35°C by exposing third-instar Apolygus lucorum (Meyer-Dür) to dip-treated asparagus bean pods. The results indicated the joint actio...

  15. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  16. High temperature superconducting magnetic refrigeration

    NASA Astrophysics Data System (ADS)

    Blumenfeld, P. E.; Prenger, F. C.; Sternberg, A.; Zimm, C.

    2002-05-01

    A near-room temperature active magnetic regenerative refrigerator (AMRR) was designed and built using a high-temperature superconducting (HTS) magnet in a charge-discharge cycle and a gadolinium-packed regenerative bed as the magnetocaloric component. Current to the HTS magnet was ramped periodically from zero to 100 amperes, which generated a ramp in field strength from zero to 1.7 tesla. Water was moved periodically through the bed and through hot and cold heat exchangers to accomplish a continuous refrigeration cycle. Cycle periods as short as 30 seconds were realized. Refrigerator performance was measured in terms of cooling capacity as a function of temperature span and in terms of efficiency expressed as a percentage of maximum obtainable (Carnot) efficiency. A three-watt cooling capacity was measured over a temperature span of 15 degrees C between hot and cold end temperatures of 25 degrees C and 10 degrees C. This experiment is directed to two possible applications for magnetic refrigeration: a no-moving part cryogenic refrigerator for space applications, and a compact permanent magnet refrigerator for commercial and consumer applications.

  17. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  18. High temperature loop heat pipes

    SciTech Connect

    Anderson, W.G.; Bland, J.J.; Fershtater, Y.; Goncharov, K.A.; Nikitkin, M.; Juhasz, A.

    1995-12-31

    Advantages of loop heat pipes over conventional heat pipes include self-priming during start-up, improved tolerance for noncondensible gas, and ability for ground testing in any orientation. The applications for high temperature, alkali-metal working fluid loop heat pipes include space radiators, and bimodal systems. A high temperature loop heat pipe was fabricated and tested at 850 K, using cesium as the working fluid. Previous loop heat pipes were tested with ambient temperature working fluids at temperatures below about 450 K. The loop heat pipe had a titanium envelope, and a titanium aluminide wick. The maximum cesium loop heat pipe power was only about 600 watts, which was lower the predicted 1,000 W power. The power limitation may be due to a wettability problem with the cesium not completely wetting the titanium aluminide wick. This would reduce the pumping capability of the wick, and the maximum power that the heat pipe could carry. This problem could be solved by using a refractory metal powder wick, since the alkali metals are known to wet refractory metal wicks.

  19. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups (p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters

  20. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several

  1. High Temperature Heat Exchanger Project

    SciTech Connect

    Anthony E. Hechanova, Ph.D.

    2008-09-30

    The UNLV Research Foundation assembled a research consortium for high temperature heat exchanger design and materials compatibility and performance comprised of university and private industry partners under the auspices of the US DOE-NE Nuclear Hydrogen Initiative in October 2003. The objectives of the consortium were to conduct investigations of candidate materials for high temperature heat exchanger componets in hydrogen production processes and design and perform prototypical testing of heat exchangers. The initial research of the consortium focused on the intermediate heat exchanger (located between the nuclear reactor and hydrogen production plan) and the components for the hydrogen iodine decomposition process and sulfuric acid decomposition process. These heat exchanger components were deemed the most challenging from a materials performance and compatibility perspective

  2. Motor for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Roopnarine (Inventor)

    2013-01-01

    A high temperature motor has a stator with poles formed by wire windings, and a rotor with magnetic poles on a rotor shaft positioned coaxially within the stator. The stator and rotor are built up from stacks of magnetic-alloy laminations. The stator windings are made of high temperature magnet wire insulated with a vitreous enamel film, and the wire windings are bonded together with ceramic binder. A thin-walled cylinder is positioned coaxially between the rotor and the stator to prevent debris from the stator windings from reaching the rotor. The stator windings are wound on wire spools made of ceramic, thereby avoiding need for mica insulation and epoxy/adhesive. The stator and rotor are encased in a stator housing with rear and front end caps, and rear and front bearings for the rotor shaft are mounted on external sides of the end caps to keep debris from the motor migrating into the bearings' races.

  3. HIGH TEMPERATURE MICROSCOPE AND FURNACE

    DOEpatents

    Olson, D.M.

    1961-01-31

    A high-temperature microscope is offered. It has a reflecting optic situated above a molten specimen in a furnace and reflecting the image of the same downward through an inert optic member in the floor of the furnace, a plurality of spaced reflecting plane mirrors defining a reflecting path around the furnace, a standard microscope supported in the path of and forming the end terminus of the light path.

  4. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1993-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  5. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1992-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  6. High temperature turbine engine structure

    DOEpatents

    Carruthers, William D.; Boyd, Gary L.

    1994-01-01

    A high temperature ceramic/metallic turbine engine includes a metallic housing which journals a rotor member of the turbine engine. A ceramic disk-like shroud portion of the engine is supported on the metallic housing portion and maintains a close running clearance with the rotor member. A ceramic spacer assembly maintains the close running clearance of the shroud portion and rotor member despite differential thermal movements between the shroud portion and metallic housing portion.

  7. High-temperature geothermal cableheads

    SciTech Connect

    Coquat, J.A.; Eifert, R.W.

    1981-11-01

    Two high-temperature, corrosion-resistant logging cableheads which use metal seals and a stable fluid to achieve proper electrical terminations and cable-sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable-sonde interface were absent during demonstration hostile-environment loggings in which these cableheads were used.

  8. High-Temperature Test Technology

    DTIC Science & Technology

    1987-03-01

    Center ............. las Cruces, NM White Sands Test Facility NASA-Kennedy Space Center.................... FL NASA-Langley Research Center...We believe that two former suppliers, Pyro -Metrics and lunar Infrared, are no longer in business. In addition, the Hi-Shear product line is now...nitrogen through them for cooling. High-temperature test specimen materials have included Rene’ 41, Inconel, metal matrix composites , etc. The major

  9. High temperature solar thermal receiver

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A design concept for a high temperature solar thermal receiver to operate at 3 atmospheres pressure and 2500 F outlet was developed. The performance and complexity of windowed matrix, tube-header, and extended surface receivers were evaluated. The windowed matrix receiver proved to offer substantial cost and performance benefits. An efficient and cost effective hardware design was evaluated for a receiver which can be readily interfaced to fuel and chemical processes or to heat engines for power generation.

  10. High-Temperature Structural Ceramics

    NASA Astrophysics Data System (ADS)

    Katz, R. Nathan

    1980-05-01

    The unique properties of ceramics based on silicon carbide and silicon nitride make them prime candidates for use in advanced energy conversion systems. These compounds are the bases for broad families of engineering materials, whose properties are reviewed. The relationships between processing, microstructure, and properties are discussed. A review and assessment of recent progress in the use of these materials in high-temperature engineering systems, and vehicular engines in particular, is presented.

  11. High temperature catalytic membrane reactors

    SciTech Connect

    Not Available

    1990-03-01

    Current state-of-the-art inorganic oxide membranes offer the potential of being modified to yield catalytic properties. The resulting modules may be configured to simultaneously induce catalytic reactions with product concentration and separation in a single processing step. Processes utilizing such catalytically active membrane reactors have the potential for dramatically increasing yield reactions which are currently limited by either thermodynamic equilibria, product inhibition, or kinetic selectivity. Examples of commercial interest include hydrogenation, dehydrogenation, partial and selective oxidation, hydrations, hydrocarbon cracking, olefin metathesis, hydroformylation, and olefin polymerization. A large portion of the most significant reactions fall into the category of high temperature, gas phase chemical and petrochemical processes. Microporous oxide membranes are well suited for these applications. A program is proposed to investigate selected model reactions of commercial interest (i.e. dehydrogenation of ethylbenzene to styrene and dehydrogenation of butane to butadiene) using a high temperature catalytic membrane reactor. Membranes will be developed, reaction dynamics characterized, and production processes developed, culminating in laboratory-scale demonstration of technical and economic feasibility. As a result, the anticipated increased yield per reactor pass economic incentives are envisioned. First, a large decrease in the temperature required to obtain high yield should be possible because of the reduced driving force requirement. Significantly higher conversion per pass implies a reduced recycle ratio, as well as reduced reactor size. Both factors result in reduced capital costs, as well as savings in cost of reactants and energy.

  12. High-temperature sand consolidation

    SciTech Connect

    Friedman, R.H.; Suries, B.W.; Kleke, D.E.

    1987-05-01

    A sand consolidation system has been developed that is stable to wellbore temperatures of 700/sup 0/F (371/sup 0/C). Two improvements in technique have contributed to this development. First, a controlled quantity of catalyst is absorbed on the sand. Consequently, consolidation occurs only on or very near the sand grains, resulting in a high-permeability consolidation. Second, the reaction is driven to completion by avoiding, insofar as possible, the adverse effect of water. The resin used for the consolidation is a very viscous derivative of furfuryl alcohol that requires a diluent to make it injectable. The diulent used to reduce viscosity is a hydrolyzable ester. The diluted fluid, which is sill more viscous than water, displaces much of the water present in the pore space. During the catalyzed consolidation, water produced by the polymerization is removed by reaction with the diluent (hydrolysis of the ester). The high-molecular-weight polymeric consolidation is better able to resist the high temperatures encountered in steam-displacement producing wells. Adaptation of the technology has been made so that the process can also be used in low-temperature wells. Because of the catalysis method, long shelf life is guaranteed for the consolidating formation.

  13. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  14. [Santa Maria Joint Union High School Handbook. Student Behavior Code.

    ERIC Educational Resources Information Center

    Santa Maria Joint Union High School District, CA.

    Designed to be read by parents and children together, this handbook outlines the standards of behavior, discipline, attendance, and academics established at the Santa Maria Joint Union High School in California. Following a letter of introduction to parents, the student code is divided into four sections. Students' legal and educational rights are…

  15. High-temperature oxide thermoelectrics

    NASA Astrophysics Data System (ADS)

    Terasaki, Ichiro

    2011-09-01

    We have evaluated the power factor of transition metal oxides at high temperatures using the Heikes formula and the Ioffe-Regel conductivity. The evaluated power factor is found to be nearly independent of carrier concentration in a wide range of doping, and explains the experimental data for cobalt oxides well. This suggests that the same power factor can be obtained with a thermopower larger than 2kB/e, and also suggests a reasonably high value of the dimensionless figure of merit ZT. We propose an oxide thermoelectric power generator by using materials having a thermopower larger than 300 μV/K.

  16. Fracture toughness of low activation ferritic steel (JLF-1) weld joint at room temperature

    NASA Astrophysics Data System (ADS)

    Nishimura, A.; Inoue, N.; Muroga, T.

    1998-10-01

    A low activation ferritic steel has been developed for a candidate of a structural material of nuclear fusion reactors. Since welding must be performed when the support structures are constructed, fracture toughness of the weld joint has to be characterized as well as the base metal in an engineering sense. In this report, 25 mm thick plates of JLF-1, which contains 9% Cr and 2% W, are butt-welded by a tungsten inert gas (TIG) procedure, and the fracture toughness of the base plate and the weld metal is investigated at room temperature using 1T and 0.5T CT specimens. The base metal reveals high fracture toughness of about 430 kJ/m 2. However, the weld metal showed unstable big pop-ins. One sample fractured in a nearly elastic condition and another sample showed a toughness of over 400 kJ/m 2.

  17. High temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1987-01-01

    With the increased emphasis on high performance aircraft the need for lightweight, thermal/oxidatively stable materials is growing. Because of their ease of fabrication, high specific strength, and ability to be tailored chemically to produce a variety of mechanical and physical properties, polymers and polymer matrix composites present themselves as attractive materials for a number of aeropropulsion applications. In the early 1970s researchers at the NASA Lewis Research Center developed a highly processable, thermally stable (600 F) polyimide, PMR-15. Since that time, PMR-15 has become commercially available and has found use in military aircraft, in particular, the F-404 engine for the Navy's F/A-18 strike fighter. The NASA Lewis'contributions to high temperature polymer matrix composite research will be discussed as well as current and future directions.

  18. High-temperature flaw assessment procedure

    SciTech Connect

    Ruggles, M.B. ); Takahashi, Y. ); Ainsworth, R.A. )

    1991-08-01

    Described is the background work performed jointly by the Electric Power Research Institute in the United States, the Central Research Institute of Electric Power Industry in Japan and Nuclear Electric plc in the United Kingdom with the purpose of developing a high-temperature flaw assessment procedure for reactor components. Existing creep-fatigue crack-growth models are reviewed, and the most promising methods are identified. Sources of material data are outlined, and results of the fundamental deformation and crack-growth tests are discussed. Results of subcritical crack-growth exploratory tests, creep-fatigue crack-growth tests under repeated thermal transient conditions, and exploratory failure tests are presented and contrasted with the analytical modeling. Crack-growth assessment methods are presented and applied to a typical liquid-metal reactor component. The research activities presented herein served as a foundation for the Flaw Assessment Guide for High-Temperature Reactor Components Subjected to Creep-Fatigue Loading published separately. 30 refs., 108 figs., 13 tabs.

  19. High temperature lined conduits, elbows and tees

    DOEpatents

    De Feo, Angelo; Drewniany, Edward

    1982-01-01

    A high temperature lined conduit comprising, a liner, a flexible insulating refractory blanket around and in contact with the liner, a pipe member around the blanket and spaced therefrom, and castable rigid refractory material between the pipe member and the blanket. Anchors are connected to the inside diameter of the pipe and extend into the castable material. The liner includes male and female slip joint ends for permitting thermal expansion of the liner with respect to the castable material and the pipe member. Elbows and tees of the lined conduit comprise an elbow liner wrapped with insulating refractory blanket material around which is disposed a spaced elbow pipe member with castable refractory material between the blanket material and the elbow pipe member. A reinforcing band is connected to the elbow liner at an intermediate location thereon from which extend a plurality of hollow tubes or pins which extend into the castable material to anchor the lined elbow and permit thermal expansion. A method of fabricating the high temperature lined conduit, elbows and tees is also disclosed which utilizes a polyethylene layer over the refractory blanket after it has been compressed to maintain the refractory blanket in a compressed condition until the castable material is in place. Hot gases are then directed through the interior of the liner for evaporating the polyethylene and setting the castable material which permits the compressed blanket to come into close contact with the castable material.

  20. Joint variability of global runoff and global sea surface temperatures

    USGS Publications Warehouse

    McCabe, G.J.; Wolock, D.M.

    2008-01-01

    Global land surface runoff and sea surface temperatures (SST) are analyzed to identify the primary modes of variability of these hydroclimatic data for the period 1905-2002. A monthly water-balance model first is used with global monthly temperature and precipitation data to compute time series of annual gridded runoff for the analysis period. The annual runoff time series data are combined with gridded annual sea surface temperature data, and the combined dataset is subjected to a principal components analysis (PCA) to identify the primary modes of variability. The first three components from the PCA explain 29% of the total variability in the combined runoff/SST dataset. The first component explains 15% of the total variance and primarily represents long-term trends in the data. The long-term trends in SSTs are evident as warming in all of the oceans. The associated long-term trends in runoff suggest increasing flows for parts of North America, South America, Eurasia, and Australia; decreasing runoff is most notable in western Africa. The second principal component explains 9% of the total variance and reflects variability of the El Ni??o-Southern Oscillation (ENSO) and its associated influence on global annual runoff patterns. The third component explains 5% of the total variance and indicates a response of global annual runoff to variability in North Aflantic SSTs. The association between runoff and North Atlantic SSTs may explain an apparent steplike change in runoff that occurred around 1970 for a number of continental regions.

  1. High temperature size selective membranes

    SciTech Connect

    Yates, S.F.; Swamikannu, A.X.

    1993-09-01

    The high temperature membrane, capable of operation above 550{degree}C, is designed to be a composite membrane composed of a thin layer of a size selective membrane supported by a microporous ceramic support. The kinetic diameters of H{sub 2} and CO{sub 2} are 2.96 {Angstrom} and 4.00 {Angstrom}. The thin layer will be made from CMS whose pore size will be controlled to be less than 4 {Angstrom}. The membrane will be truly size selective and be impermeable to carbon dioxide. The membrane will have higher selectivity than membranes which operate on Knudsen diffusion mechanism. The ceramic support will be fabricated from Allied Signal`s proprietary Blackglas{trademark} resin. The ceramic material, noted for its high thermal and oxidative resistance, has a coefficient of thermal expansion which matches closely that of CMS. The close match will insure mechanical integrity when the membrane is subjected to thermal cycles. The CMS layer will be produced by controlled pyrolysis of polymeric precursors. Pore size will be suitably modified by post-treatments to the carbon. The composite membrane will be tested for its permeation properties at 550{degree}C or higher. Thermal, mechanical and chemical stability of the membrane will be assessed. We have produced several samples of CMS from polymeric precursors. We have initiated work also on the preparation of microporous supports from Blackglas{trademark} resin. We have completed the design of the high temperature membrane pilot plant. The membrane cell was fabricated out of two kinds of stainless steel. The inner parts are made of SS 316 and the outer ring made of SS 420. The greater thermal expansion of the SS 316 will help obtain a leak free seal at the operating temperatures.

  2. High temperature insulation barrier composite

    NASA Technical Reports Server (NTRS)

    Onstott, Joseph W. (Inventor)

    1989-01-01

    A composite material suitable for providing insulation for the nozzle structure of the Space Shuttle and other similar surfaces is disclosed. The composite layer is comprised of an outer skin layer of nickel chromium and an interleaved inner region comprising a top layer of nickel chromium foil which acts as a primary convective shield. There are at least two layers of alumina batting adjacent to the layers of silicon carbide fabric. An additional layer of nickel chromium foil is used as a secondary convective shield. The composite is particularly advantageous for use as nozzle insulation because of its ability to withstand high reentry temperatures, its flexibility, oxidation resistance, low conductivity, and light weight.

  3. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  4. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1980-09-01

    Department of Commerce 23 -1A , /7 National Bureau of Standards A102 Washington, D.C. 20234 ______________ I I. CONTROLLING OFFICE NAME AND ADDRESS Air...DISTRIBUTION STATEMENT (of this Report) r ~Appro-,’. f’or public re r-: e ; 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from...8SOLETE SCRT SEUIYCLASSIFICATION OF TNIS PAGE " e aoEtr AEOST.1-0443 THERMODYNAMICS OF HIGH TEMPERATURE MATERIALS Annual Report for the Period of 1 October

  5. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  6. CONFINEMENT OF HIGH TEMPERATURE PLASMA

    DOEpatents

    Koenig, H.R.

    1963-05-01

    The confinement of a high temperature plasma in a stellarator in which the magnetic confinement has tended to shift the plasma from the center of the curved, U-shaped end loops is described. Magnetic means are provided for counteracting this tendency of the plasma to be shifted away from the center of the end loops, and in one embodiment this magnetic means is a longitudinally extending magnetic field such as is provided by two sets of parallel conductors bent to follow the U-shaped curvature of the end loops and energized oppositely on the inside and outside of this curvature. (AEC)

  7. High temperature sealed electrochemical cell

    SciTech Connect

    Valentin Chung, Brice Hoani; Burke, Paul J.; Sadoway, Donald R.

    2015-10-06

    A cell for high temperature electrochemical reactions is provided. The cell includes a container, at least a portion of the container acting as a first electrode. An extension tube has a first end and a second end, the extension tube coupled to the container at the second end forming a conduit from the container to said first end. A second electrode is positioned in the container and extends out of the container via the conduit. A seal is positioned proximate the first end of the extension tube, for sealing the cell.

  8. Thermal conductance measurements of bolted copper to copper joints at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Didschuns, I.; Woodcraft, A. L.; Bintley, D.; Hargrave, P. C.

    2004-05-01

    We have measured the thermal contact conductance of several demountable copper joints below 1 K. Joints were made by bolting together either two flat surfaces or a clamp around a rod. Surfaces were gold plated, and no intermediate materials were used. A linear dependence on temperature was seen. Most of the measured conductance values fell into a narrow range: 0.1-0.2 W K -1 at 1 K. Results in the literature for similar joints consist of predictions based on electrical resistance measurements using the Wiedemann-Franz law. There is little evidence of the validity of this law in the case of joints. Nevertheless, our results are in good agreement with the literature predictions, suggesting that such predictions are a reasonable approximation.

  9. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  10. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.; Koetzing, B.

    1994-12-31

    Titanium and its alloys are of main interest for several fields of application. Because of rising demands on permanent structural parts and increasing complexity of components, it is important to obtain an adequate joining technique, which on the one hand does not restrict the mechanical properties of the parent metal too much and on the other hand is inexpensive and flexible. These requirements can be fulfilled best by application of high-temperature brazing technology, employing titanium base filler metals. Among existing joining techniques, the vacuum brazing process conducted in a vacuum furnace and the induction brazing process are of practical relevance. The mechanical properties of high-temperature brazed titanium materials are strongly dependent on process parameters, such as brazing time and brazing temperature and even more crucially on brazing gap size. Under optimized brazing conditions, the tensile strength of high-temperature brazed TiAl6V4-joints, for example, reach about 950 MPa, where the Pd-containing alloy is slightly superior to TiCu20Ni20 filler metal. Most of the tensile specimens break in the base metal at some distance to the brazing zone, indicating that the tensile strength of the joint is comparable to that of the bulk material. The thermal stability of the brazed titanium joints has been investigated by doing tensile tests at elevated temperatures. These experiments have shown that the tensile strength of TiAl6VA- joints for example are going to be reduced by 30% when exposing the brazed samples to 300{degrees}C. However, the tensile specimen broke in the bulk material, indicating that the tensile strength of bulk TiAl6V4 is also reduced at elevated temperatures.

  11. High modulus high temperature glass fibers

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1973-01-01

    The search for a new high-modulus, high-temperature glass fiber involved the preparation of 500 glass compositions lying in 12 glass fields. These systems consisted primarily of low atomic number oxides and rare-earth oxides. Direct optical measurements of the kinetics of crystallization of the cordierite-rare earth system, for example, showed that the addition of rare-earth oxides decreased the rate of formation of cordierite crystals. Glass samples prepared from these systems proved that the rare-earth oxides made large specific contributions to the Young's modulus of the glasses. The best glasses have moduli greater than 21 million psi, the best glass fibers have moduli greater than 18 million psi, and the best glass fiber-epoxy resin composites have tensile strengths of 298,000 psi, compressive strengths of at least 220,000 psi, flexural strengths of 290,000 psi, and short-beam shear strengths of almost 17,000 psi.

  12. Understanding the joint behavior of temperature and precipitation for climate change impact studies

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid; Qin, Yueyue

    2016-04-01

    The multiple downscaled scenario products allow us to assess the uncertainty of the variations of precipitation and temperature in the current and future periods. Probabilistic assessments of both climatic variables help better understand the interdependence of the two and thus, in turn, help in assessing the future with confidence. In the present study, we use ensemble of statistically downscaled precipitation and temperature from various models. The dataset used is multi-model ensemble of 10 global climate models (GCMs) downscaled product from CMIP5 daily dataset using the Bias Correction and Spatial Downscaling (BCSD) technique, generated at Portland State University. The multi-model ensemble of both precipitation and temperature is evaluated for dry and wet periods for 10 sub-basins across Columbia River Basin (CRB). Thereafter, copula is applied to establish the joint distribution of two variables on multi-model ensemble data. The joint distribution is then used to estimate the change in trends of said variables in future, along with estimation of the probabilities of the given change. The joint distribution trends vary, but certainly positive, for dry and wet periods in sub-basins of CRB. Dry season, generally, is indicating a higher positive change in precipitation than temperature (as compared to historical) across sub-basins with wet season inferring otherwise. Probabilities of changes in future, as estimated from the joint distribution, indicate varied degrees and forms during dry season whereas the wet season is rather constant across all the sub-basins.

  13. Understanding the joint behavior of temperature and precipitation for climate change impact studies

    NASA Astrophysics Data System (ADS)

    Rana, Arun; Moradkhani, Hamid; Qin, Yueyue

    2017-07-01

    The multiple downscaled scenario products allow us to assess the uncertainty of the variations of precipitation and temperature in the current and future periods. Probabilistic assessments of both climatic variables help better understand the interdependence of the two and thus, in turn, help in assessing the future with confidence. In the present study, we use ensemble of statistically downscaled precipitation and temperature from various models. The dataset used is multi-model ensemble of 10 global climate models (GCMs) downscaled product from CMIP5 daily dataset using the Bias Correction and Spatial Downscaling (BCSD) technique, generated at Portland State University. The multi-model ensemble of both precipitation and temperature is evaluated for dry and wet periods for 10 sub-basins across Columbia River Basin (CRB). Thereafter, copula is applied to establish the joint distribution of two variables on multi-model ensemble data. The joint distribution is then used to estimate the change in trends of said variables in future, along with estimation of the probabilities of the given change. The joint distribution trends vary, but certainly positive, for dry and wet periods in sub-basins of CRB. Dry season, generally, is indicating a higher positive change in precipitation than temperature (as compared to historical) across sub-basins with wet season inferring otherwise. Probabilities of changes in future, as estimated from the joint distribution, indicate varied degrees and forms during dry season whereas the wet season is rather constant across all the sub-basins.

  14. Multifunctional, High-Temperature Nanocomposites

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Smith, Joseph G.; Siochi, Emilie J.; Working, Dennis C.; Criss, Jim M.; Watson, Kent A.; Delozier, Donavon M.; Ghose, Sayata

    2007-01-01

    In experiments conducted as part of a continuing effort to incorporate multifunctionality into advanced composite materials, blends of multi-walled carbon nanotubes and a resin denoted gPETI-330 h (wherein gPETI h is an abbreviation for gphenylethynyl-terminated imide h) were prepared, characterized, and fabricated into moldings. PETI-330 was selected as the matrix resin in these experiments because of its low melt viscosity (<10 poise at a temperature of 280 C), excellent melt stability (lifetime >2 hours at 280 C), and high temperature performance (>1,000 hours at 288 C). The multi-walled carbon nanotubes (MWCNTs), obtained from the University of Kentucky, were selected because of their electrical and thermal conductivity and their small diameters. The purpose of these experiments was to determine the combination of thermal, electrical, and mechanical properties achievable while still maintaining melt processability. The PETI-330/MWCNT mixtures were prepared at concentrations ranging from 3 to 25 weight-percent of MWCNTs by dry mixing of the constituents in a ball mill using zirconia beads. The resulting powders were characterized for degree of mixing and thermal and rheological properties. The neat resin was found to have melt viscosity between 5 and 10 poise. At 280 C and a fixed strain rate, the viscosity was found to increase with time. At this temperature, the phenylethynyl groups do not readily react and so no significant curing of the resin occurred. For MWCNT-filled samples, melt viscosity was reasonably steady at 280 C and was greater in samples containing greater proportions of MWCNTs. The melt viscosity for 20 weightpercent of MWCNTs was found to be .28,000 poise, which is lower than the initial estimated allowable maximum value of 60,000 poise for injection molding. Hence, MWCNT loadings of as much as 20 percent were deemed to be suitable compositions for scale-up. High-resolution scanning electron microscopy (HRSEM) showed the MWCNTs to be well

  15. Sialons as high temperature insulators

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.; Kuo, Y. S.

    1978-01-01

    Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.

  16. High Temperature Particle Filtration Technology

    SciTech Connect

    Besmann, T.M.

    2001-11-13

    High temperature filtration can serve to improve the economic, environmental, and energy performance of chemical processes. This project was designed to evaluate the stability of filtration materials in the environments of the production of dimethyldichlorosilane (DDS). In cooperation with Dow Corning, chemical environments for the fluidized bed reactor where silicon is converted to DDS and the incinerator where vents are cornbusted were characterized. At Oak Ridge National Laboratory (ORNL) an exposure system was developed that could simulate these two environments. Filter samples obtained from third parties were exposed to the environments for periods up to 1000 hours. Mechanical properties before and after exposure were determined by burst-testing rings of filter material. The results indicated that several types of filter materials would likely perform well in the fluid bed environment, and two materials would be good candidates for the incinerator environment.

  17. Faraday imaging at high temperatures

    DOEpatents

    Hackel, L.A.; Reichert, P.

    1997-03-18

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs.

  18. Faraday imaging at high temperatures

    DOEpatents

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  19. Effects of prestrain, rate of prestrain, and temperature on the stress-relaxation behavior of eutectic Sn-3.5Ag solder joints

    NASA Astrophysics Data System (ADS)

    Rhee, H.; Subramanian, K. N.

    2003-11-01

    Stress-relaxation studies on eutectic Sn-Ag solder (Sn-3.5Ag in wt.%) joints were carried out at various temperatures after imposing different amounts and rates of simple shear strain. Stress-relaxation parameters were evaluated by subjecting geometrically realistic solder joints with a nominal joint thickness of ˜100 µm and a 1 mm × 1 mm solder-joint area. The peak shear stress during preloading and residual shear stress resulting from stress relaxation were higher at the low-temperature extremes than those at high-temperature extremes. Also, those values increased with increasing simple shear strain and the rate of simple shear strain imposed prior to the stress-relaxation events. The relaxation stress is insensitive to simple shear strain at 150°C, but at lower temperatures, a faster rate of simple shear strain causes a higher relaxed-stress value. The resulting deformation structures observed from the solder-joint side surfaces were also strongly affected by these parameters. At high temperature, grain-boundary sliding effects were commonly observed. At low temperature, intense shear bands dominated, and no grain-boundary sliding effects were observed.

  20. High temperature capacitive strain gage

    NASA Astrophysics Data System (ADS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  1. High Temperature Capacitive Strain Gage

    NASA Technical Reports Server (NTRS)

    Wnuk, Stephen P., Jr.; Wnuk, Stephen P., III; Wnuk, V. P.

    1990-01-01

    Capacitive strain gages designed for measurements in wind tunnels to 2000 F were built and evaluated. Two design approaches were followed. One approach was based on fixed capacitor plates with a movable ground plane inserted between the plates to effect differential capacitive output with strain. The second approach was based on movable capacitor plates suspended between sapphire bearings, housed in a rugged body, and arranged to operate as a differential capacitor. A sapphire bearing gage (1/4 in. diameter x 1 in. in size) was built with a range of 50,000 and a resolution of 200 microstrain. Apparent strain on Rene' 41 was less than + or - 1000 microstrain from room temperature to 2000 F. Three gage models were built from the Ground Plane Differential concept. The first was 1/4 in. square by 1/32 in. high and useable to 700 F. The second was 1/2 in. square by 1/16 in. high and useable to 1440 F. The third, also 1/2 in. square by 1/16 in. high was expected to operate in the 1600 to 2000 F range, but was not tested because time and funding ended.

  2. STATUS OF HIGH FLUX ISOTOPE REACTOR IRRADIATION OF SILICON CARBIDE/SILICON CARBIDE JOINTS

    SciTech Connect

    Katoh, Yutai; Koyanagi, Takaaki; Kiggans, Jim; Cetiner, Nesrin; McDuffee, Joel

    2014-09-01

    Development of silicon carbide (SiC) joints that retain adequate structural and functional properties in the anticipated service conditions is a critical milestone toward establishment of advanced SiC composite technology for the accident-tolerant light water reactor (LWR) fuels and core structures. Neutron irradiation is among the most critical factors that define the harsh service condition of LWR fuel during the normal operation. The overarching goal of the present joining and irradiation studies is to establish technologies for joining SiC-based materials for use as the LWR fuel cladding. The purpose of this work is to fabricate SiC joint specimens, characterize those joints in an unirradiated condition, and prepare rabbit capsules for neutron irradiation study on the fabricated specimens in the High Flux Isotope Reactor (HFIR). Torsional shear test specimens of chemically vapor-deposited SiC were prepared by seven different joining methods either at Oak Ridge National Laboratory or by industrial partners. The joint test specimens were characterized for shear strength and microstructures in an unirradiated condition. Rabbit irradiation capsules were designed and fabricated for neutron irradiation of these joint specimens at an LWR-relevant temperature. These rabbit capsules, already started irradiation in HFIR, are scheduled to complete irradiation to an LWR-relevant dose level in early 2015.

  3. High temperature autoclave vacuum seals

    NASA Technical Reports Server (NTRS)

    Hoffman, J. R.; Simpson, W. G.; Walker, H. M.

    1971-01-01

    Aluminum sheet forms effective sealing film at temperatures up to 728 K. Soft aluminum wire rings provide positive seal between foil and platen. For applications at temperatures above aluminum's service temperature, stainless steel is used as film material and copper wire as sealant.

  4. Reconstructing Interlaced High-Dynamic-Range Video Using Joint Learning.

    PubMed

    Choi, Inchang; Baek, Seung-Hwan; Kim, Min H

    2017-11-01

    For extending the dynamic range of video, it is a common practice to capture multiple frames sequentially with different exposures and combine them to extend the dynamic range of each video frame. However, this approach results in typical ghosting artifacts due to fast and complex motion in nature. As an alternative, video imaging with interlaced exposures has been introduced to extend the dynamic range. However, the interlaced approach has been hindered by jaggy artifacts and sensor noise, leading to concerns over image quality. In this paper, we propose a data-driven approach for jointly solving two specific problems of deinterlacing and denoising that arise in interlaced video imaging with different exposures. First, we solve the deinterlacing problem using joint dictionary learning via sparse coding. Since partial information of detail in differently exposed rows is often available via interlacing, we make use of the information to reconstruct details of the extended dynamic range from the interlaced video input. Second, we jointly solve the denoising problem by tailoring sparse coding to better handle additive noise in low-/high-exposure rows, and also adopt multiscale homography flow to temporal sequences for denoising. We anticipate that the proposed method will allow for concurrent capture of higher dynamic range video frames without suffering from ghosting artifacts. We demonstrate the advantages of our interlaced video imaging compared with the state-of-the-art high-dynamic-range video methods.

  5. Thermal disconnect for high-temperature batteries

    DOEpatents

    Jungst, Rudolph George; Armijo, James Rudolph; Frear, Darrel Richard

    2000-01-01

    A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

  6. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2017-08-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  7. Temperature Dependent Residual Stress Models for Ultra-High-Temperature Ceramics on High Temperature Oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Ruzhuan; Li, Weiguo

    2016-11-01

    The strength of SiC-depleted layer of ultra-high-temperature ceramics on high temperature oxidation degrades seriously. The research for residual stresses developed within the SiC-depleted layer is important and necessary. In this work, the residual stress evolutions in the SiC-depleted layer and the unoxidized substrate in various stages of oxidation are studied by using the characterization models. The temperature and oxidation time dependent mechanical/thermal properties of each phase in SiC-depleted layer are considered in the models. The study shows that the SiC-depleted layer would suffer from large tensile stresses due to the great temperature changes and the formation of pores on high temperature oxidation. The stresses may lead to the cracking and even the delamination of the oxidation layer.

  8. High Temperature Solid Lubricant Coating for High Temperature Wear Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher (Inventor); Edmonds, Brian J (Inventor)

    2014-01-01

    A self-lubricating, friction and wear reducing composite useful over a wide temperature range is described herein. The composite includes metal bonded chromium oxide dispersed in a metal binder having a substantial amount of nickel. The composite contains a fluoride of at least one Group I, Group II, or rare earth metal, and optionally a low temperature lubricant metal.

  9. Charpy impact test of Ti-6Al-4V joints diffusion welded at low temperature

    SciTech Connect

    Salazar, J.M.G. de; Urena, A.; Carrion, J.G.

    1996-08-15

    The Diffusion Welding (DW) of two or more sheets of Ti-6Al-4V alloy is particularly interesting for aerospace parts manufacturing. In some cases, DW can be carried out together with Superplastic Forming (SPF), because they can share a single facility and the same processing parameters, such as temperature, pressure, time, surface condition and vacuum. The overall manufacturing process is known as SPF/DW, by which it is possible to obtain honeycomb structures in a range of designs. Temperature requirements for industrial SPF of Ti-6Al-4V are very restrictive and a temperature of 1,023 K is needed. However, temperature is not so critical for DW, and the bond can be produced at lower temperatures, when other DW parameters, mainly pressure and time, are changed in a suitable way. The DW parameters for this research were chosen in order to produce DW joints below 1,023 K. The differences between DW at SPF temperatures and other lower temperatures would thus be revealed. Mechanical tests were used as a tool to check DW joints obtained at the temperatures used in the research (1,123 K and 1,023 K), and were complemented with metallographic studies. The results obtained form shear and peel tests have been already discussed. In the present work the results of impact energy tests are also presented.

  10. High Temperature Polyimide Materials in Extreme Temperature Environments

    NASA Technical Reports Server (NTRS)

    Johnson, Theodore F.; Gates, Thomas S.

    2001-01-01

    At the end of the NASA High Speed Research (HSR) Program, NASA Langley Research Center (LaRC) began a program to screen the high-temperature Polymeric Composite Materials (PMCs) characterized by the HSR Durability Program for possible use in Reusable Launch Vehicles (RLVs) operating under extreme temperature conditions. The HSR Program focused on developing material-related technologies to enable a High Speed Civil Transport (HSCT) capable of operating temperatures ranging from 54 C (-65 F) to 177 C (350 F). A high-temperature polymeric resin, PETI-5 was used in the HSR Program to satisfy the requirements for performance and durability for a PMC. For RLVs, it was anticipated that this high temperature material would contribute to reducing the overall weight of a vehicle by eliminating or reducing the thermal protection required to protect the internal structural elements of the vehicle and increasing the structural strain limits. The tests were performed to determine temperature-dependent mechanical and physical proper-ties of IM7/PETI-5 composite over a temperature range from cryogenic temperature -253 C (-423F) to the material's maximum use temperature of 230 C (450 F). This paper presents results from the test program for the temperature-dependent mechanical and physical properties of IM7/PETI-5 composite in the temperature range from -253 C (-423 F) to 27 C (80 F).

  11. Integrated High-Speed Torque Control System for a Robotic Joint

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  12. High-temperature thermocouples and related methods

    DOEpatents

    Rempe, Joy L [Idaho Falls, ID; Knudson, Darrell L [Firth, ID; Condie, Keith G [Idaho Falls, ID; Wilkins, S Curt [Idaho Falls, ID

    2011-01-18

    A high-temperature thermocouple and methods for fabricating a thermocouple capable of long-term operation in high-temperature, hostile environments without significant signal degradation or shortened thermocouple lifetime due to heat induced brittleness.

  13. High-temperature borehole instrumentation

    SciTech Connect

    Dennis, B.R.; Koczan, S.P.; Stephani, E.L.

    1985-10-01

    A new method of extracting natural heat from the earth's crust was invented at the Los Alamos National Laboratory in 1970. It uses fluid pressures (hydraulic fracturing) to produce cracks that connect two boreholes drilled into hot rock formations of low initial permeability. Pressurized water is then circulated through this connected underground loop to extract heat from the rock and bring it to the surface. The creation of the fracture reservior began with drilling boreholes deep within the Precambrian basement rock at the Fenton Hill Test Site. Hydraulic fracturing, flow testing, and well-completion operations required unique wellbore measurements using downhole instrumentation systems that would survive the very high borehole temperatures, 320/sup 0/C (610/sup 0/F). These instruments were not available in the oil and gas industrial complex, so the Los Alamos National Laboratory initiated an intense program upgrading existing technology where applicable, subcontracting materials and equipment development to industrial manufactures, and using the Laboratory resource to develop the necessary downhole instruments to meet programmatic schedules. 60 refs., 11 figs.

  14. High temperature suppression of dioxins.

    PubMed

    Zhan, Ming-Xiu; Chen, Tong; Fu, Jian-Ying; Lin, Xiao-Qing; Lu, Sheng-Yong; Li, Xiao-Dong; Yan, Jian-Hua; Buekens, Alfons

    2016-03-01

    Combined Sulphur-Nitrogen inhibitors, such as sewage sludge decomposition gases (SDG), thiourea and amidosulphonic acid have been observed to suppress the de novo synthesis of dioxins effectively. In this study, the inhibition of PCDD/Fs formation from model fly ash was investigated at unusually high temperatures (650 °C and 850 °C), well above the usual range of de novo tests (250-400 °C). At 650 °C it was found that SDG evolving from dried sewage sludge could suppress the formation of 2,3,7,8-substituted PCDD/Fs with high efficiency (90%), both in weight units and in I-TEQ units. Additionally, at 850 °C, three kinds of sulphur-amine or sulphur-ammonium compounds were tested to inhibit dioxins formation during laboratory-scale tests, simulating municipal solid waste incineration. The suppression efficiencies of PCDD/Fs formed through homogeneous gas phase reactions were all above 85% when 3 wt. % of thiourea (98.7%), aminosulphonic acid (96.0%) or ammonium thiosulphate (87.3%) was added. Differences in the ratio of PCDFs/PCDDs, in weight average chlorination level and in the congener distribution of the 17 toxic PCDD/Fs indicated that the three inhibitors tested followed distinct suppression pathways, possibly in relation to their different functional groups of nitrogen. Furthermore, thiourea reduced the (weight) average chlorinated level. In addition, the thermal decomposition of TUA was studied by means of thermogravimetry-fourier transform infrared spectroscopy (TG-FTIR) and the presence of SO2, SO3, NH3 and nitriles (N≡C bonds) was shown in the decomposition gases; these gaseous inhibitors might be the primary dioxins suppressants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  16. High temperature power electronics for space

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad N.; Baumann, Eric D.; Myers, Ira T.; Overton, Eric

    1991-01-01

    A high temperature electronics program at NASA Lewis Research Center focuses on dielectric and insulating materials research, development and testing of high temperature power components, and integration of the developed components and devices into a demonstrable 200 C power system, such as inverter. An overview of the program and a description of the in-house high temperature facilities along with experimental data obtained on high temperature materials are presented.

  17. High Temperature Chemistry at NASA: Hot Topics

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    2014-01-01

    High Temperature issues in aircraft engines Hot section: Ni and Co based Superalloys Oxidation and Corrosion (Durability) at high temperatures. Thermal protection system (TPS) and RCC (Reinforced Carbon-Carbon) on the Space Shuttle Orbiter. High temperatures in other worlds: Planets close to their stars.

  18. Permeameter for high-temperature magnetic measurements

    NASA Technical Reports Server (NTRS)

    Barranger, J. P.

    1972-01-01

    A permeameter is described that measures the magnetizing force and the corresponding magnetic induction up to 1000 C. The two symmetrical yokes are made of an alloy of 9 percent iron, 91 percent cobalt. A coil surrounding the specimen supplies a magnetizing force of up to 100 oersteds. The instrument uses the magnetic potentiometer principle to cancel the effects of the reluctance of the yoke and the joint gaps. Very close agreement was obtained at room temperature when compared to an MH type permeameter. The effect of temperature on the normal induction curves for the yoke material is also presented.

  19. A New Approach to Joining of Silicon Carbide-Based Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    1998-01-01

    Ceramic joining is recognized as one of the enabling technologies for the application of silicon carbide-based materials in a number of high temperature applications. An affordable, robust technique for the joining of silicon carbide-based ceramics has been developed. This technique is capable of producing joints with tailorable thickness and composition. Microstructure and mechanical properties of reaction formed joints in a reaction bonded silicon carbide have been reported. These joints maintain their mechanical strengths at high temperatures (up to 1350 C) in air. This technique is capable of joining large and complex shaped ceramic components.

  20. Measurement of small temperature fluctuations at high average temperature

    NASA Technical Reports Server (NTRS)

    Scholl, James W.; Scholl, Marija S.

    1988-01-01

    Both absolute and differential temperature measurements were simultaneously performed as a function of time for a pixel on a high-temperature, multi-spectral, spatially and temporally varying infrared target simulator. A scanning laser beam was used to maintain a pixel at an on-the-average constant temperature of 520 K. The laser refresh rate of up to 1 kHz resulted in small-amplitude temperature fluctuations with a peak-to-peak amplitude of less than 1 K. The experimental setup to accurately measure the differential and the absolute temperature as a function of time is described.

  1. Covariance modulates the effect of joint temperature and food variance on ectotherm life-history traits.

    PubMed

    Koussoroplis, Apostolos-Manuel; Wacker, Alexander

    2015-11-27

    Understanding animal performance in heterogeneous or variable environments is a central question in ecology. We combine modelling and experiments to test how temperature and food availability variance jointly affect life-history traits of ectotherms. The model predicts that as mean temperatures move away from the ectotherm's thermal optimum, the effect size of joint thermal and food variance should become increasingly sensitive to their covariance. Below the thermal optimum, performance should be positively correlated with food-temperature covariance and the opposite is predicted above it. At lower temperatures, covariance should determine whether food and temperature variance increases or decreases performance compared to constant conditions. Somewhat stronger than predicted, the covariance effect below the thermal optimum was confirmed experimentally on an aquatic ectotherm (Daphnia magna) exposed to diurnal food and temperature variance with different amounts of covariance. Our findings have important implications for understanding ectotherm responses to climate-driven alterations of thermal mean and variance. © 2015 John Wiley & Sons Ltd/CNRS.

  2. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  3. High-Sensitivity Temperature Measurement

    ERIC Educational Resources Information Center

    Leadstone, G. S.

    1978-01-01

    Describes a method of measuring small temperature differences that amount to a .01K, using an arrangement of a copper-constantan thermocouple, a microamplifier and a galvanometer, as an indirect way of measuring heat energy. (GA)

  4. The Joint Statistics of California Temperature and Precipitation as a Function of the Large-scale State of the Climate

    NASA Astrophysics Data System (ADS)

    OBrien, J. P.; O'Brien, T. A.

    2015-12-01

    Single climatic extremes have a strong and disproportionate effect on society and the natural environment. However, the joint occurrence of two or more concurrent extremes has the potential to negatively impact these areas of life in ways far greater than any single event could. California, USA, home to nearly 40 million people and the largest agricultural producer in the United States, is currently experiencing an extreme drought, which has persisted for several years. While drought is commonly thought of in terms of only precipitation deficits, above average temperatures co-occurring with precipitation deficits greatly exacerbate drought conditions. The 2014 calendar year in California was characterized both by extremely low precipitation and extremely high temperatures, which has significantly deepened the already extreme drought conditions leading to severe water shortages and wildfires. While many studies have shown the statistics of 2014 temperature and precipitation anomalies as outliers, none have demonstrated a connection with large-scale, long-term climate trends, which would provide useful relationships for predicting the future trajectory of California climate and water resources. We focus on understanding non-stationarity in the joint distribution of California temperature and precipitation anomalies in terms of large-scale, low-frequency trends in climate such as global mean temperature rise and oscillatory indices such as ENSO and the Pacific Decadal Oscillation among others. We consider temperature and precipitation data from the seven distinct climate divisions in California and employ a novel, high-fidelity kernel density estimation method to directly infer the multivariate distribution of temperature and precipitation anomalies conditioned on the large-scale state of the climate. We show that the joint distributions and associated statistics of temperature and precipitation are non-stationary and vary regionally in California. Further, we show

  5. High Temperature Catalytically Assisted Combustion.

    DTIC Science & Technology

    1983-01-28

    entrance. The model also shows that the heat release producing these gradients occurs primarily at the entrance is due to heterogeneous reactions and is...running at low tem- perature is to insure that all of the heat release is due to surface reactions . Therefore the maximum substrate temperature in these...runs was kept below 8000C. Even at low temperatures, however it is important that the overall process be surface reaction rate controlled and not

  6. Measurement of thermodynamic temperature of high temperature fixed points

    SciTech Connect

    Gavrilov, V. R.; Khlevnoy, B. B.; Otryaskin, D. A.; Grigorieva, I. A.; Samoylov, M. L.; Sapritsky, V. I.

    2013-09-11

    The paper is devoted to VNIIOFI's measurements of thermodynamic temperature of the high temperature fixed points Co-C, Pt-C and Re-C within the scope of the international project coordinated by the Consultative Committee for Thermometry working group 5 'Radiation Thermometry'. The melting temperatures of the fixed points were measured by a radiance mode radiation thermometer calibrated against a filter radiometer with known irradiance spectral responsivity via a high temperature black body. This paper describes the facility used for the measurements, the results and estimated uncertainties.

  7. Joint spatiotemporal variability of global sea surface temperatures and global Palmer drought severity index values

    USGS Publications Warehouse

    Apipattanavis, S.; McCabe, G.J.; Rajagopalan, B.; Gangopadhyay, S.

    2009-01-01

    Dominant modes of individual and joint variability in global sea surface temperatures (SST) and global Palmer drought severity index (PDSI) values for the twentieth century are identified through a multivariate frequency domain singular value decomposition. This analysis indicates that a secular trend and variability related to the El Niño–Southern Oscillation (ENSO) are the dominant modes of variance shared among the global datasets. For the SST data the secular trend corresponds to a positive trend in Indian Ocean and South Atlantic SSTs, and a negative trend in North Pacific and North Atlantic SSTs. The ENSO reconstruction shows a strong signal in the tropical Pacific, North Pacific, and Indian Ocean regions. For the PDSI data, the secular trend reconstruction shows high amplitudes over central Africa including the Sahel, whereas the regions with strong ENSO amplitudes in PDSI are the southwestern and northwestern United States, South Africa, northeastern Brazil, central Africa, the Indian subcontinent, and Australia. An additional significant frequency, multidecadal variability, is identified for the Northern Hemisphere. This multidecadal frequency appears to be related to the Atlantic multidecadal oscillation (AMO). The multidecadal frequency is statistically significant in the Northern Hemisphere SST data, but is statistically nonsignificant in the PDSI data.

  8. High Temperature Filler for Tile Gaps

    NASA Technical Reports Server (NTRS)

    Holt, J. W.; Wang, D. S.

    1983-01-01

    Gaps between ceramic tiles filled with ceramic-coated fabric that withstands temperatures as high as 2,000 degrees F (1,300 degrees C). Reusable high-temperature gap filler is made of fabric coated with ceramic slurry and bonded in place with room-temperature-vulcanized adhesive. Procedure used in kilns and furnaces.

  9. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  10. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  11. Niobium Oxide-Metal Based Seals for High Temperature Applications

    SciTech Connect

    Ivar Reimanis

    2006-08-14

    The present final report describes technical progress made in regards to evaluating niobium oxide/alumina as a high temperature seal material. Fabrication and characterization of specimens comprising niobium oxide and alumina composites of various compositions was performed. The goal was to identify regions where a glass formed. There were no experimental conditions where a glassy phase was unequivocally identified. However, the results led to the formation of an interesting class of fibrous composites which may have applications where high compliance and high toughness are needed. It is clear that vapor phase sintering is an active mass transport mechanism in Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} composites (Figure 1), and it may be possible to design porous materials by utilizing vapor phase sintering. The compositions evaluated in the present work are 52, 60, 73, 82 and 95 mol. % Nb{sub 2}O{sub 5} with the remainder Al{sub 2}O{sub 3}. These were chosen so that some eutectic composition was present during cooling, in an attempt to encourage glass formation. However, the presence of large, elongated crystals, both in the slow cool and the quench experiments indicates that the driving force for crystallization is very high. Several joints were formed between high purity alumina with two compositions (60 and 82 mol. %) forming the joint. These were created by grinding and polishing alumina surfaces and stacking them end-to-end with the powdered Nb{sub 2}O{sub 5}-Al{sub 2}O{sub 3} material in between. Joining was accomplished in air at temperatures between 1400 C and 1450 C. The joints failed during subsequent machining for strength bars, indicating low strength. It may be possible to use the compositions evaluated here as a joint material, but it seems unlikely that a glassy phase could be produced while joining.

  12. Risk Mitigation for High Temperature Superconducting Generators

    DTIC Science & Technology

    2009-01-01

    and Technology Division Background: High temperature superconduct- ing (HTS) motors and generators will enable high- efficiency , high power density...naval propulsion, and compact electrical generators for weapons and ship systems. The second-generation high temperature superconductors (2G-HTS...manufacturability of long lengths of these materials, sufficient for demonstrations of large motors and generators. Ensuring superior fatigue prop- erties

  13. High Temperature Strain Measurements Using Digital Optics

    DTIC Science & Technology

    1991-09-01

    Eae Melting and Boiling Temperatures for Several Metals ................ 3 2 Comparison of Micrometer and Camera Readings at Room Temperature...over-all accuracy. For materials at or near melting or ablation temperatures any contact with the test sample is an undesirable and often unacceptable... melting and boiling temperatures for several metals 3. In addition to high metals, carbon in the form of graphite sublimes at temperatures near 7000’F in

  14. ALUMINUM NITRIDE AS A HIGH TEMPERATURE TRANSDUCER

    SciTech Connect

    Parks, D. A.; Tittmann, B. R.; Kropf, M. M.

    2010-02-22

    The high temperature capabilities of bulk single crystal aluminum nitride are investigated experimentally. Temperatures in excess of 1100 deg. Celsius are obtained and held for eight hours. Variation in the performance of single crystal samples is demonstrated.

  15. High temperature ceramic interface study

    NASA Technical Reports Server (NTRS)

    Lindberg, L. J.

    1984-01-01

    Monolithic SiC and Si3N4 are susceptible to contact stress damage at static and sliding interfaces. Transformation-toughened zirconia (TTZ) was evaluated under sliding contact conditions to determine if the higher material fracture toughness would reduce the susceptibility to contact stress damage. Contact stress tests were conducted on four commercially available TTZ materials at normal loads ranging from 0.455 to 22.7 kg (1 to 50 pounds) at temperatures ranging from room temperature to 1204C (2200 F). Static and dynamic friction were measured as a function of temperature. Flexural strength measurements after these tests determined that the contact stress exposure did not reduce the strength of TTZ at contact loads of 0.455, 4.55, and 11.3 kg (1, 10, and 25 pounds). Prior testing with the lower toughness SiC and Si3N4 materials resulted in a substantial strength reduction at loads of only 4.55 and 11.3 kg (10 and 25 pounds). An increase in material toughness appears to improve ceramic material resistance to contact stress damage. Baseline material flexure strength was established and the stress rupture capability of TTZ was evaluated. Stress rupture tests determined that TTZ materials are susceptible to deformation due to creep and that aging of TTZ materials at elevated temperatures results in a reduction of material strength.

  16. Change features and regional distribution of temperature trend and variability joint mode in mainland China

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye

    2017-05-01

    Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.

  17. Deep Trek High Temperature Electronics Project

    SciTech Connect

    Bruce Ohme

    2007-07-31

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop high-temperature electronics. Objects of this development included Silicon-on-Insulator (SOI) wafer process development for high temperature, supporting design tools and libraries, and high temperature integrated circuit component development including FPGA, EEPROM, high-resolution A-to-D converter, and a precision amplifier.

  18. High temperature tensile testing of ceramic composites

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Hemann, John H.

    1988-01-01

    The various components of a high temperature tensile testing system are evaluated. The objective is the high temperature tensile testing of SiC fiber reinforced reaction bonded Si3N4 specimens at test temperatures up to 1650 C (3000 F). Testing is to be conducted in inert gases and air. Gripping fixtures, specimen configurations, furnaces, optical strain measuring systems, and temperature measurement techniques are reviewed. Advantages and disadvantages of the various techniques are also noted.

  19. CARS thermometry in high temperature gradients

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Dunn-Rankin, D.

    1993-01-01

    CARS is an effective non-intrusive technique for measuring gas temperature in combustion environments. In regions of high temperature gradient, however, the CARS signal is complicated by contributions from gas at different temperature. This paper examines theoretically the uncertainty associated with CARS thermometry in steep temperature gradients. In addition, the work compares the temperature predicted from CARS with the adiabatic mixed temperature of the gas resident in the measurement volume. This comparison helps indicate the maximum sample volume size allowed for accurate temperature measurements.

  20. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the

  1. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the

  2. Do "premium" joint implants add value?: analysis of high cost joint implants in a community registry.

    PubMed

    Gioe, Terence J; Sharma, Amit; Tatman, Penny; Mehle, Susan

    2011-01-01

    Numerous joint implant options of varying cost are available to the surgeon, but it is unclear whether more costly implants add value in terms of function or longevity. We evaluated registry survival of higher-cost "premium" knee and hip components compared to lower-priced standard components. Premium TKA components were defined as mobile-bearing designs, high-flexion designs, oxidized-zirconium designs, those including moderately crosslinked polyethylene inserts, or some combination. Premium THAs included ceramic-on-ceramic, metal-on-metal, and ceramic-on-highly crosslinked polyethylene designs. We compared 3462 standard TKAs to 2806 premium TKAs and 868 standard THAs to 1311 premium THAs using standard statistical methods. The cost of the premium implants was on average approximately $1000 higher than the standard implants. There was no difference in the cumulative revision rate at 7-8 years between premium and standard TKAs or THAs. In this time frame, premium implants did not demonstrate better survival than standard implants. Revision indications for TKA did not differ, and infection and instability remained contributors. Longer followup is necessary to demonstrate whether premium implants add value in younger patient groups. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  3. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  4. Dynamic, High-Temperature, Flexible Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Sirocky, Paul J.

    1989-01-01

    New seal consists of multiple plies of braided ceramic sleeves filled with small ceramic balls. Innermost braided sleeve supported by high-temperature-wire-mesh sleeve that provides both springback and preload capabilities. Ceramic balls reduce effect of relatively high porosity of braided ceramic sleeves by acting as labyrinth flow path for gases and thereby greatly increasing pressure gradient seal can sustain. Dynamic, high-temperature, flexible seal employed in hypersonic engines, two-dimensional convergent/divergent and vectorized-thrust exhaust nozzles, reentry vehicle airframes, rocket-motor casings, high-temperature furnaces, and any application requiring non-asbestos high-temperature gaskets.

  5. High temperature durable catalyst development

    NASA Technical Reports Server (NTRS)

    Snow, G. C.; Tong, H.

    1981-01-01

    A program has been carried out to develop a catalytic reactor capable of operation in environments representative of those anticipated for advanced automotive gas turbine engines. A reactor consisting of a graded cell honeycomb support with a combination of noble metal and metal oxide catalyst coatings was built and successfully operated for 1000 hr. At an air preheat temperature of 740 K and a propane/air ratio of 0.028 by mass, the adiabatic flame temperature was held at about 1700 K. The graded cell monolithic reaction measured 5 cm in diameter by 10.2 cm in length and was operated at a reference velocity of 14.0 m/s at 1 atm. Measured NOx levels remained below 5 ppm, while unburned hydrocarbon concentrations registered near zero and carbon monoxide levels were nominally below 20 ppm.

  6. Electrodeposition of High Temperature Superconductors

    DTIC Science & Technology

    1992-08-11

    temperatures (300-5500C). The approach entails establishing a sequence of electrochemical steps for the layered deposition of Y, Ba and Cu oxide...positive of that required for Ba oxide deposition , and monolayer amounts of Cu and Y are injected (by electrodissolution of individual metal electrodes...and electrodeposited in sequence. A cell of very small volume is used to ensure that complete deposition of the injected metal occurs in a short time

  7. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-12-24

    Specific Heat: Non-Metallic Solids, In Thormophysical Properties of Matter, The TPRC Data Series, Touloukian , Y.S., and Ho, C.Y. (Eds.), IFI, Plenum, New...heating method. Thermodynamic properties of silicon nitride (a, b) and boron nitride (hex, cub) have been determined to 1300K. Calculational...I. ’Research on Therophy/ical Properties . ......... a. Preliminary Measurements oft -"riple Point Temperature of Graphite 1 i_- ng Technique

  8. Temperature dependence of Vortex Charges in High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Ting, C. S.; Chen, Yan; Wang, Z. D.

    2003-03-01

    By considering of competition between antiferromagnetic (AF) and d-wave superconductivity orders, the temperature dependence of the vortex charge in high Tc superconductors is investigated by solving self-consistently the Bogoliubov-de Gennes equations. The magnitude of induced antiferromagnetic order inside the vortex core is temperature dependent. The vortex charge is always negative when a sufficient strength of AF order presents at low temperature while the AF order may be suppressed at higher temperature and there the vortex charge becomes positive. A first order like transition from negative to the positive vortex charges occurs at certain temperature TN which is very close to the temperature for the disappearence of the local AF order. The vortex charges at various doping levels will also going to be examined. We show that the temperature dependence of the vortex core radius with induced AF order exhibits a weak Kramer-Pesch effect. The local density of states spectrum has a broad peak pattern at higher temperature while it exhibits two splitting peak at lower temperature. This temperature evolution may be detected by the future scanning-tunnel-microscope experiment. In addition, the effect of the vortex charge on the mixed state Hall effect will be discussed.

  9. A technique for brazing graphite/graphite and stainless steel/high-carbon steel joints

    SciTech Connect

    Ohmura, H.; Kawashiri, K. . Dept. of Metals and Inorganic Materials); Yoshida, T. . Vehicle Machine Engineering Dept.); Yoshimoto, O. . Quality Control Dept.)

    1994-10-01

    A new brazing technique for joining graphite to itself or to metals such as Mo, W, or Cu, with conventional brazing filler metals has been developed. Essentially, it is impossible to braze graphite with Cu filler metal because no wetting occurs. However, when a graphite base material is combined with an Fe base metal in Cu brazing, the Fe base metal dissolves in molten Cu. Simultaneously, the dissolved Fe grows as part of a columnar Fe-9 [approximately] 6Cu-1.6C alloy phase at the graphite interface at a constant brazing temperature, that is, the dissolution and deposit of base metal takes place. By placing an Fe foil insert between both graphite base materials, therefore, the columnar phase is formed at both graphite faces and grows toward the Fe foil during heating. As a result, both graphite base materials are united by the columnar phase through the Fe foil. In the same way, a graphite/Mo or /W joint can be produced. Moreover, when using BAu-1, which has a lower melting point than that of BCu-1, it is also possible to braze graphite to Cu. The shear strength of a graphite/graphite joint with a 0.12-mm thick Fe foil at room temperature was about 32 MPa. Further, the bending strength of the graphite/graphite and /Cu joints at 873 K (1,112 F), as measured using the four-point bending test, was 35 and 11 MPa, respectively. In addition, the technique can be applied to the brazing of AISI 304 stainless steel to high-C steel with BCu-1 where, normally, Cr[sub 23]C[sub 6] and Cr[sub 7]C[sub 3] layers are formed at the high-C steel braze interface; these carbide layers result in the loss of mechanical properties of the joint.

  10. Effect of Temperature Field on Formation of Friction Stir Welding Joints of Ti-6Al-4V Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Yue, Yumei; Wen, Quan; Ji, Shude; Ma, Lin; Lv, Zan

    2017-07-01

    In order to investigate the formation mechanism of tunnel defect produced near the bottom of stir zone (SZ) in friction stir welding joint of Ti-6Al-4V titanium alloy, the temperature distribution during welding process was analyzed by numerical simulation and experiment. Results show that macrostructure morphology of SZ in cross section presents "bowl" shape owing to the characteristic of temperature distribution. Obvious temperature gradient appears along the thickness direction of joint. Decreasing rotational velocity reduces peak temperature and temperature gradient, which is beneficial to eliminate tunnel defect.

  11. SiC Die Attach for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Drevin-Bazin, A.; Lacroix, F.; Barbot, J.-F.

    2013-11-01

    Eutectic solders AuIn19 and AuGe12 and nanosilver paste were investigated for SiC die attach in high-temperature (300°C) applications. The soldering or sintering conditions were optimized through die shear tests performed at room temperature. In particular, application of static pressure (3.5 MPa) during sintering resulted in greatly improved mechanical behavior of the nanosilver-based joint. Microstructural study of the eutectic solders showed formation of Au-rich grains in AuGe die attach and significant diffusion of Au and In through the Ni layer in AuIn19 die attach, which could lead to formation of intermetallic compounds. Die shear tests versus temperature showed that the behaviors of the studied die attaches are different; nevertheless they present suitable shear strengths required for high-temperature applications. The mechanical behavior of joints under various levels of thermal and mechanical stress was also studied. Creep experiments were carried out on the eutectic solders to describe the thermomechanical behavior of the complete module; only one creep mechanism was observed in the working range.

  12. Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.

    SciTech Connect

    Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

    2009-09-01

    A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

  13. Technological Evolution of High Temperature Superconductors

    DTIC Science & Technology

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH...AND SUBTITLE TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS 5. FUNDING NUMBERS 6. AUTHOR(S) Jordan R. White 7. PERFORMING ORGANIZATION...Approved for public release; distribution is unlimited TECHNOLOGICAL EVOLUTION OF HIGH TEMPERATURE SUPERCONDUCTORS Jordan R. White Lieutenant

  14. High temperature silicon carbide impregnated insulating fabrics

    NASA Technical Reports Server (NTRS)

    Schomburg, C.; Dotts, R. L. (Inventor)

    1982-01-01

    High temperature insulating articles having improved performance characteristics are described. The articles comprise fabrics of closely woven refractory or heat resistant fibers having particles of silicon carbide dispersed at least partially through the fabric and bonded to the fibers with an emulsifiable polyethylene wax. Such articles exhibit significantly increased high temperature emittance characteristics and an improved retention of integrity and flexibility after prolonged exposure to high temperature.

  15. Evaluation of fatigue properties of 316FR stainless steel welded joints at elevated temperature

    SciTech Connect

    Kaguchi, Hitoshi; Koto, Hiroyuki; Fujioka, Terutaka; Taguchi, Kosei; Sukekawa, Masayuki

    1996-12-01

    316FR is an improved version of type 316 stainless steel for elevated temperature use with lower carbon content than conventional type 316 stainless steel. Fatigue properties of GTAW joints of 316FR stainless steel have been investigated. Heat affected zone (HAZ) of 316FR becomes harder than base metal. A method based on the stress-strain relationship of three elements, which are base metal, HAZ and weld portions, has been proposed and applied to the evaluations of fatigue tests. The tri-metal analysis model gives good agreements between experimental results and predicted fatigue lives of the 316FR welded joints. This material is to be used in the DFBR reactor in Japan.

  16. High Temperature Heterojunction Bipolar Transistors

    DTIC Science & Technology

    1994-04-15

    2700 cmW/V-s at room temperature, a far higher value than ever found for GaN or AlGaN. Thus a GaN/ InGaN HEMT would be analogous to InP/InGaAs HEMTs...Spire’s ECR plasma source modif led as a crystal growth reactor. 8 The substrate for the film deposition is mounted on a sample holder which is...The three samples from the second growth run were also characterized. One sample was found to have a very even frosty white haze on it. The other

  17. Two-axis hydraulic joint for high speed, heavy lift robotic operations

    SciTech Connect

    Vaughn, M.R.; Robinett, R.D.; Phelan, J.R.; VanZuiden, D.M.

    1994-04-01

    A hydraulically driven universal joint was developed for a heavy lift, high speed nuclear waste remediation application. Each axis is driven by a simple hydraulic cylinder controlled by a jet pipe servovalve. Servovalve behavior is controlled by a force feedback control system, which damps the hydraulic resonance. A prototype single joint robot was built and tested. A two joint robot is under construction.

  18. Time And Temperature Dependent Micromechanical Properties Of Solder Joints For 3D-Package Integration

    NASA Astrophysics Data System (ADS)

    Roellig, Mike; Meier, Karsten; Metasch, Rene

    2010-11-01

    The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.

  19. Current Progress on the Design and Analysis of the JWST ISIM Bonded Joints for survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Kaprelion, Charles; Kunt, Cengiz; Proebstle, Joel; Rodini, Ben; Young, Daniel; Bartoszyk, Andrew

    2005-01-01

    Viewgraphs on the material characterization and design of the James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) metal/composite bonded joints for its survivability at cryogenic temperatures is presented.

  20. High Temperature Adhesives for Bonding Kapton

    NASA Technical Reports Server (NTRS)

    Stclair, A. K.; Slemp, W. S.; Stclair, T. L.

    1978-01-01

    Experimental polyimide resins were developed and evaluated as potential high temperature adhesives for bonding Kapton polyimide film. Lap shear strengths of Kapton/Kapton bonds were obtained as a function of test temperature, adherend thickness, and long term aging at 575K (575 F) in vacuum. Glass transition temperatures of the polyimide/Kapton bondlines were monitored by thermomechanical analysis.

  1. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1989-12-01

    Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  2. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    Recent results for Li-Al/FeS sub 2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  3. Alloys developed for high temperature applications

    NASA Astrophysics Data System (ADS)

    Basuki, Eddy Agus; Prajitno, Djoko Hadi; Muhammad, Fadhli

    2017-01-01

    Alloys used for high temperatures applications require combinations of mechanical strength, microstructural stability and corrosion/oxidation resistance. Nickel base superalloys have been traditionally the prime materials utilized for hot section components of aircraft turbine engines. Nevertheless, due to their limited melting temperatures, alloys based on intermetallic compounds, such as TiAl base alloys, have emerged as high temperature materials and intensively developed with the main aim to replace nickel based superalloys. For applications in steam power plants operated at lower temperatures, ferritic high temperature alloys still attract high attention, and therefore, development of these alloys is in progress. This paper highlights the important metallurgical parameters of high temperature alloys and describes few efforts in the development of Fe-Ni-Al based alloys containing B2-(Fe,Ni)Al precipitates, oxide dispersion strengthening (ODS) ferritic steels and titanium aluminide based alloys include important protection system of aluminide coatings.

  4. Investigations into High Temperature Components and Packaging

    SciTech Connect

    Marlino, L.D.; Seiber, L.E.; Scudiere, M.B.; M.S. Chinthavali, M.S.; McCluskey, F.P.

    2007-12-31

    The purpose of this report is to document the work that was performed at the Oak Ridge National Laboratory (ORNL) in support of the development of high temperature power electronics and components with monies remaining from the Semikron High Temperature Inverter Project managed by the National Energy Technology Laboratory (NETL). High temperature electronic components are needed to allow inverters to operate in more extreme operating conditions as required in advanced traction drive applications. The trend to try to eliminate secondary cooling loops and utilize the internal combustion (IC) cooling system, which operates with approximately 105 C water/ethylene glycol coolant at the output of the radiator, is necessary to further reduce vehicle costs and weight. The activity documented in this report includes development and testing of high temperature components, activities in support of high temperature testing, an assessment of several component packaging methods, and how elevated operating temperatures would impact their reliability. This report is organized with testing of new high temperature capacitors in Section 2 and testing of new 150 C junction temperature trench insulated gate bipolar transistor (IGBTs) in Section 3. Section 4 addresses some operational OPAL-GT information, which was necessary for developing module level tests. Section 5 summarizes calibration of equipment needed for the high temperature testing. Section 6 details some additional work that was funded on silicon carbide (SiC) device testing for high temperature use, and Section 7 is the complete text of a report funded from this effort summarizing packaging methods and their reliability issues for use in high temperature power electronics. Components were tested to evaluate the performance characteristics of the component at different operating temperatures. The temperature of the component is determined by the ambient temperature (i.e., temperature surrounding the device) plus the

  5. Development of high temperature strain gages

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1973-01-01

    High temperature electric resistance wire strain gages were developed and evaluated for use at temperatures exceeding 922 K (1200 F). A special high temperature strain gage alloy (Fe-25Cr-7.5A1), designated BCL-3, was used to fabricate the gages. Pertinent gage characteristics were determined at temperatures up to 1255 K (1800 F). The results of the evaluation were reported in graphical and tabular form. It was concluded that the gages will perform satisfactorily at temperatures to at least 1089 K (1500 F) for at least one hour.

  6. High temperature skin friction measurement

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Holmes, Harlan K.; Supplee, Frank H., Jr.

    1989-01-01

    Skin friction measurement in the NASA Langley hypersonic propulsion facility is described. The sensor configuration utilized an existing balance, modified to provide thermal isolation and an increased standoff distance. For test run times of about 20 sec and ambient-air cooling of the test section and balance, the modified balance performed satisfactorily, even when it was subjected to acoustic and structural vibration. The balance is an inertially balanced closed-loop servo system where the current to a moving-coil motor needed to restore or null the output from the position sensor is a measure of the force or skin friction tending to displace the moving element. The accuracy of the sensor is directly affected by the position sensor in the feedback loop, in this case a linear-variable differential transformer which has proven to be influenced by temperature gradients.

  7. Spin Hall magnetoresistance at high temperatures

    SciTech Connect

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  8. Advanced high-temperature batteries

    NASA Astrophysics Data System (ADS)

    Nelson, P. A.

    1990-02-01

    Recent results for Li-Al/FeS2 cells and a bipolar battery design have shown the possibility of achieving high specific energy (210 W h/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.

  9. [Joint effects of water temperature and salinity on the expression of gill Hsp70 gene in Pinctada martensii (Dunker)].

    PubMed

    Wang, Ya-Nan; Wang, Hui; Zhu, Xiao-Wen; Luo, Ming-Ming; Liu, Zhi-Gang; Du, Xiao-Dong

    2012-12-01

    By using central composite experimental design and response surface method, the joint effects of water temperature (16-40 degrees C) and salinity (10-50) on the expression of gill Hsp70 gene in Pinctada martensii (Dunker) were studied under laboratory conditions. The results showed that the linear and quadratic effects of temperature on the expression of gill Hsp70 gene were significant, the linear effect of salinity was not significant, while the quadratic effect of salinity was significant. The interactive effect of temperature and salinity was not significant, and the effect of temperature was greater than that of salinity. The model equation of the gill Hsp70 gene expression was established, with the R2, Adj. R2, and Pred. R2 as high as 98.7%, 97.4%, and 89.2%, respectively, suggesting that the overarching predictive capability of the model was very satisfactory, and could be practicably applied for prediction. Through the optimization of the model, the expression of the gill Hsp70 gene reached its minimum (0.5276) when the temperature was 26.78 degrees C and the salinity was 29.33, with the desirability value being 98%. These experimental results could offer theoretical reference for the high expression of gill Hsp70 gene in P. martensii, the maintenance of cell internal environment stability, and the enhancement of P. martensii stress resistance.

  10. High resolution Thomson scattering for Joint European Torus (JET)

    SciTech Connect

    Pasqualotto, R.; Nielsen, P.; Gowers, C.; Beurskens, M.; Kempenaars, M.; Carlstrom, T.; Johnson, D.

    2004-10-01

    A Thomson scattering system is being developed for Joint European Torus with 15 mm spatial resolution and a foreseen accuracy for temperature better than 15% at a density of 10{sup 19} m{sup -3}. This resolution is required at the internal transport barrier and edge pedestal and it can not be fully achieved with the present light detection and ranging systems. The laser for this system is Nd:YAG, 5 Joule, 20 Hz. Scattering volumes from R=2.9 m to R=3.9 m are imaged onto 1 mm diameter fibers, with F/25 collection aperture. Two fibers are used per scattering volume. Using optical delay lines, three scattering volumes are combined in each of the 21 filter polychromators. The signals are recorded with transient digitizers, which allow the combined time delayed signals to be resolved. Knowledge of the time delay between signals allows the use of correlation techniques in determining signal levels. The ac output of the amplifier is used, which tolerates a higher level of background signal without affecting dynamic range. The noise resulting from plasma light is determined directly.

  11. Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments

    NASA Technical Reports Server (NTRS)

    Phelps, James E.

    1999-01-01

    Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.

  12. High-Temperature Passive Power Electronics

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In many future NASA missions - such as deep-space exploration, the National AeroSpace Plane, minisatellites, integrated engine electronics, and ion or arcjet thrusters - high-power electrical components and systems must operate reliably and efficiently in high-temperature environments. The high-temperature power electronics program at the NASA Lewis Research Center focuses on dielectric and insulating material research, the development and characterization of high-temperature components, and the integration of the developed components into a demonstrable 200 C power system - such as an inverter. NASA Lewis has developed high-temperature power components through collaborative efforts with the Air Force Wright Laboratory, Northrop Grumman, and the University of Wisconsin. Ceramic and film capacitors, molypermalloy powder inductors, and a coaxially wound transformer were designed, developed, and evaluated for high-temperature operation.

  13. Buckling of carbon nanotubes at high temperatures.

    PubMed

    Zhang, Y Y; Wang, C M; Tan, V B C

    2009-05-27

    Presented herein is an investigation into the buckling behavior of single-walled carbon nanotubes (SWCNT) subjected to axial compression and torsion at high temperatures. This study is carried out by performing molecular dynamics (MD) simulations at both room temperature and extremely high temperatures. It is observed that the SWCNT becomes more susceptible to buckling in a higher temperature environment, especially when the SWCNT is subject to axial compression. The high thermal energy enhances the vibration of carbon atoms in the SWCNT significantly, which leads to bond breaking and the formation of sp(3) bonds as well as Stone-Wales (SW) defects in the postbuckling stage.

  14. High-temperature miniature blackbody radiation sources.

    PubMed

    Chernin, S M

    1997-03-01

    Various high-temperature blackbody sources for quantitative energy measurements in the IR spectral region are developed. Techniques that ensure a stable operation of the sources at high temperatures are described. The developed blackbody models with maximum temperatures of 2000, 2500, and 3000 K can also operate at other temperatures. Graphite is used as a material for radiators. These blackbodies can be used successfully in radiometric measurements in UV and visible spectral ranges. Blackbodies as high-brightness sources may find wide application in solving the problems of multipass spectroscopy. The blackbody sources developed as rocket engineering has progressed have remained outside the knowledge of foreign scientists.

  15. Active Region Loops: Temperature Measurements as a Function of Time from Joint TRACE and SOHO CDS Observations

    NASA Astrophysics Data System (ADS)

    Cirtain, J. W.; Del Zanna, G.; DeLuca, E. E.; Mason, H. E.; Martens, P. C. H.; Schmelz, J. T.

    2007-01-01

    In this paper, we aim to quantitatively investigate the structure and time variation of quiescent active region loop structures. We coordinated a joint program of observations (JOP 146) using TRACE, to obtain high-cadence EUV images, and SOHO CDS, to obtain spectroscopic data. Loop intensities are used to determine temperature as a function of time for a single loop, taking full account of the background emission. In many locations, the emission measure loci are consistent with an isothermal structure. However, the results indicate significant changes in the loop temperature (between 1 and 2 MK) over the 6 hr observing period. It is possible that the loop structures are composed of multiple, independently heated strands with sizes less than the resolution of the imager and spectrometer.

  16. High temperature resistant cermet and ceramic compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1978-01-01

    Cermet compositions having high temperature oxidation resistance, high hardness and high abrasion and wear resistance, and particularly adapted for production of high temperature resistant cermet insulator bodies are presented. The compositions are comprised of a sintered body of particles of a high temperature resistant metal or metal alloy, preferably molybdenum or tungsten particles, dispersed in and bonded to a solid solution formed of aluminum oxide and silicon nitride, and particularly a ternary solid solution formed of a mixture of aluminum oxide, silicon nitride and aluminum nitride. Also disclosed are novel ceramic compositions comprising a sintered solid solution of aluminum oxide, silicon nitride and aluminum nitride.

  17. Copper Alloy For High-Temperature Uses

    NASA Technical Reports Server (NTRS)

    Dreshfield, Robert L.; Ellis, David L.; Michal, Gary

    1994-01-01

    Alloy of Cu/8Cr/4Nb (numbers indicate parts by atom percent) improved over older high-temperature copper-based alloys in that it offers enhanced high temperature strength, resistance to creep, and ductility while retaining most of thermal conductivity of pure copper; in addition, alloy does not become embrittled upon exposure to hydrogen at temperatures as high as 705 degrees C. Designed for use in presence of high heat fluxes and active cooling; for example, in heat exchangers in advanced aircraft and spacecraft engines, and other high-temperature applications in which there is need for such material. High conductivity and hardness of alloy exploited in welding electrodes and in high-voltage and high-current switches and other applications in which wear poses design problem.

  18. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  19. Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961-2011

    NASA Astrophysics Data System (ADS)

    Miao, Chiyuan; Sun, Qiaohong; Duan, Qingyun; Wang, Yafeng

    2016-11-01

    The Loess Plateau is particularly sensitive to climate change owing to its fragile ecological environment and geographic features. Here, we present a comprehensive analysis of the joint probabilistic characteristics and tendencies for bivariate and trivariate precipitation and temperature indices across the plateau, based on copula theory. The results show that the southeast region of the plateau had a higher potential for flooding: the 10-year return levels for the number of days with heavy and very heavy precipitation (R10mm, R20mm) and for the maximum 5-day precipitation value (RX5day) were higher in this region. The northwest region of the plateau, however, had a higher potential for drought, as reflected in the high and increasing 10-year return levels for the number of consecutive dry days (CDD) and the number of days with low precipitation (R1mm). In a joint analysis of precipitation indices, large areas of the Loess Plateau showed a relatively high risk of concurrent extreme precipitation events. However, the risk of concurrent extreme wet and dry events did not increase over the past half century, as demonstrated by nonsignificant changes in the probability of concurrently long CDD and long consecutive wet days (CWD). A trivariate copula analysis showed that some grid locations in the southeast of the plateau had an increasing risk of extreme precipitation events occurring at a high frequency and a high intensity, and forming a large percentage of the annual precipitation. Joint analysis of precipitation and temperature indices showed that the risk of higher temperatures and longer spells of consecutive dry days had increased over the past 50 years in grid locations scattered in the northern and southern regions: there were negative trends in the bivariate return periods for warm days (TX90p) and CDD. In addition, there was a decreased probability of concurrent long spells of consecutive wet days and colder temperatures, as demonstrated by the positive

  20. High temperature solar selective coatings

    DOEpatents

    Kennedy, Cheryl E

    2014-11-25

    Improved solar collectors (40) comprising glass tubing (42) attached to bellows (44) by airtight seals (56) enclose solar absorber tubes (50) inside an annular evacuated space (54. The exterior surfaces of the solar absorber tubes (50) are coated with improved solar selective coatings {48} which provide higher absorbance, lower emittance and resistance to atmospheric oxidation at elevated temperatures. The coatings are multilayered structures comprising solar absorbent layers (26) applied to the meta surface of the absorber tubes (50), typically stainless steel, topped with antireflective Savers (28) comprising at least two layers 30, 32) of refractory metal or metalloid oxides (such as titania and silica) with substantially differing indices of refraction in adjacent layers. Optionally, at least one layer of a noble metal such as platinum can be included between some of the layers. The absorbent layers cars include cermet materials comprising particles of metal compounds is a matrix, which can contain oxides of refractory metals or metalloids such as silicon. Reflective layers within the coating layers can comprise refractory metal silicides and related compounds characterized by the formulas TiSi. Ti.sub.3SiC.sub.2, TiAlSi, TiAN and similar compounds for Zr and Hf. The titania can be characterized by the formulas TiO.sub.2, Ti.sub.3O.sub.5. TiOx or TiO.sub.xN.sub.1-x with x 0 to 1. The silica can be at least one of SiO.sub.2, SiO.sub.2x or SiO.sub.2xN.sub.1-x with x=0 to 1.

  1. High-temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Merritt, Danielle; Raffaelle, Ryne P.; Scheiman, David

    2005-01-01

    The vast majority of space probes to date have relied upon photovoltaic power generation. If future missions designed to probe environments close to the sun (Figure 1) will be able to use such power generation, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. The significant problem is that solar cells lose performance at high temperatures.

  2. Cryogenic/high temperature structural adhesives. [for space shuttle

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.

    1974-01-01

    Studies were conducted to develop a structural adhesive system possessing useful properties over a 20 to 589 K temperature range. Adhesive systems based on polyimide, polyphenylquinoxaline, polyquinoxaline, polybenzothiazole and polybenzimidazole polymers first were screened for suitability. Detailed evaluation of two polyimide adhesive systems, BR34/FM34 and P4/A5F or P4A/A5FA, and one polyphenylquinoxaline adhesive system, PPQ (IMW), then was performed. Property information was generated over the full temperature range for shear strength, stressed and unstressed thermal aging, thermal shock, and coefficient of thermal expansion. Both polyimide adhesive systems were identified as being capable of providing structural adhesive joints for cryogenic/high temperature service.

  3. Cryogenic/high temperature structural adhesives. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Vaughan, R. W.; Sheppard, C. H.

    1974-01-01

    Results are described of the work performed to develop a structural adhesive system which possesses useful properties over a 20K (-423 F) to 589 K (600 F) temperature range. Adhesives systems based on polyimide, polyphenylquinoxaline polyquinoxaline, polybenzothiazole and polybenzimidazole polymers first were screened for suitability. Detailed evaluation of two polyimide adhesive sytems, Br34/FM34 and P4/A5F or P4A/A5FA, and one polyphenylquinoxaline adhesive system, PPQ II (IMW), then was performed. Property information was generated over the full temperature range for shear strength, stressed and unstressed thermal aging, thermal shock and coefficient of thermal expansion. Both polyimide adhesive systems were identified as being capable of providing structural adhesive joints for cryogenic/high temperature service.

  4. Structural evolution of calcite at high temperatures: Phase V unveiled

    PubMed Central

    Ishizawa, Nobuo; Setoguchi, Hayato; Yanagisawa, Kazumichi

    2013-01-01

    The calcite form of calcium carbonate CaCO3 undergoes a reversible phase transition between Rc and Rm at ~1240 K under a CO2 atmosphere of ~0.4 MPa. The joint probability density function obtained from the single-crystal X-ray diffraction data revealed that the oxygen triangles of the CO3 group in the high temperature form (Phase V) do not sit still at specified positions in the space group Rm, but migrate along the undulated circular orbital about carbon. The present study also shows how the room temperature form (Phase I) develops into Phase V through an intermediate form (Phase IV) in the temperature range between ~985 K and ~1240 K. PMID:24084871

  5. Thermodynamics of High Temperature Materials.

    DTIC Science & Technology

    1985-03-15

    C.W. Beckett, J. Res. Nat. Bur. Stand. (U.S.) 74A: 65 (1970). 3. F. Righini, A. Cibraria, and A. Rosso, Rappporto Interno 5/173, Instituto di...al., [1979], have indicated the utility of short pulse time, high power lasers (e.g., Nd/YAG) for controlled surface vaporization studies. The laser...using an estimated emissivity. This is one of the few graphite vaporization studies where controllable CW laser radia- tion was used and direct surface

  6. Evaluation of high temperature polymers

    NASA Technical Reports Server (NTRS)

    Jayaraj, K.; Dorogy, W.; Farrell, B.; Landrau, N.

    1995-01-01

    The purpose of this paper is to identify and develop arc-track resistant insulation materials that can operate reliably at 300 C. In the first phase, high performance polymers are evaluated based on structure, thermal stability and electrical properties. Next, the polymers are ranked according to performance and experimental characterization. Then, experimental evaluations in wire configuration are conducted. And selection is made based on performance and commerical potential.

  7. Recrystallization of high temperature superconductors

    SciTech Connect

    Kouzoudis, Dimitris

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  8. Pathological Knee Joint Motion Analysis By High Speed Cinephotography

    NASA Astrophysics Data System (ADS)

    Baumann, Jurg U.

    1985-02-01

    The use of cinephotography for evaluation of disturbed knee joint function was compared in three groups of patients. While a sampling rate of 50 images per second was adequate for patients with neuromuscular disorders, a higher frequency of around 300 i.p.s. is necessary in osteoarthritis and ligamentous knee joint injuries, but the task of digitizing is prohibitive unless automated.

  9. Structural characterization of high temperature composites

    NASA Technical Reports Server (NTRS)

    Mandell, J. F.; Grande, D. H.

    1991-01-01

    Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.

  10. A batteryless temperature sensor based on high temperature sensitive material

    NASA Astrophysics Data System (ADS)

    Bakkali, Asma; Pelegri-Sebastia, José; Laghmich, Youssef; Lyhyaoui, Abdelouahid

    2016-05-01

    The major challenge in wireless sensor networks is the reduction of energy consumption. Passive wireless sensor network is an attractive solution for measuring physical parameters in harsh environment for large range of applications requiring sensing devices with low cost of fabrication, small size and long term measurement stability. Batteryless temperature sensing techniques are an active research field. The approach developed in our work holds a promising future for temperature sensor applications in order to successfully reduce the energy consumption. The temperature sensor presented in this paper is based on the electromagnetic transduction principle using the integration of the high temperature sensitive material into a passive structure. Variation in temperature makes the dielectric constant of this material changing, and such modification induces variation in the resonant frequencies of high-Q whispering-gallery modes (WGM) in the millimeter-wave frequency range. Following the results achieved, the proposed device shows a linear response to the increasing temperature and these variations can be remotely detected from a radar interrogation. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  11. Joint Assimilation of Piezometric Heads and Groundwater Temperatures with the Ensemble Kalman Filter for Managed River-Aquifer Systems

    NASA Astrophysics Data System (ADS)

    Kurtz, W.; Hendricks Franssen, H.; Kaiser, H.; Vereecken, H.

    2013-12-01

    Data assimilation techniques, like the ensemble Kalman filter (EnKF), are increasingly applied to groundwater systems to improve the (real-time) prediction of groundwater states and the estimation of uncertain hydraulic subsurface parameters. The most commonly assimilated data types for managed groundwater systems are groundwater levels and, less frequently, tracer test data. Especially for managed groundwater systems that are affected by river-aquifer exchange, measured groundwater temperature data can provide an additional source of information for the identification of hydraulic subsurface parameters. Additionally, an improved prediction of the temperature field itself is often desirable for groundwater management, e.g. in order to regulate the temperature of extracted drinking water. The scope of this study is to investigate the worth of a joint assimilation of hydraulic and thermal observation data on the state and parameter estimation with EnKF. Two different model setups were applied: (i) a simple synthetic model of a river-aquifer system where the parameters and simulation conditions were perfectly known (ii) a model of the Limmat aquifer in Zurich (Switzerland) where an exhaustive set of real-world observations of groundwater levels and temperatures was available for assimilation and verification. High-performance computing using a parallel implementation of EnKF made it possible to cope with the high computational burden that is associated with the stochastic simulation of heat transport processes that was applied in this study. Results for the synthetic case suggest that a joint assimilation of piezometric heads and groundwater temperatures together with updating of uncertain hydraulic conductivities and leakage coefficients gives the best estimation of states and hydraulic properties of the model. Focusing on the river streambed, we found that the assimilated piezometric head data mainly gave information on the magnitude of river-aquifer exchange fluxes

  12. High temperature antenna pointing mechanism for BepiColombo mission

    NASA Astrophysics Data System (ADS)

    Mürer, Johan A.; Harper, Richard; Anderson, Mike

    2005-07-01

    This paper describes the two axis Antenna Pointing Mechanism (APM) with dual frequency (X-Ka bands) Rotary Joint (RJ) developed by Kongsberg Defence and Aerospace and BAE Systems, in the frame of the ESA BepiColombo mission to the planet Mercury. The extreme environmental conditions induced by Mercury's proximity to the Sun (up to 14.500 W/m2 direct solar fluxes, up to 5000 W/m2 infrared flux and up to 1200 W/m2 albedo shine form the planet surface), have dictated the need for a specific high temperature development of the pointing mechanism and of its integrated RF Rotary Joint. Global thermal analysis of the antenna predicts qualification temperature for the elevation stage APM between 250°C and 295°C. In addition, the mechanism shall survive extreme cold temperatures during the interplanetary cruise phase. Beside the harsh environment, the stringent pointing accuracy required by the antenna high frequency operations, and the extreme dimensional stability demanded by a radio science experiment (which is using the antenna for range and range rate measurements), have introduced additional, specific challenges to the mechanism design. Innovative solutions have been deemed necessary at system architecture level, in the design of the mechanisms critical areas and in the selection of high temperature compatible materials and processes. The very high working temperature of the mechanism ruled out use of aluminium alloys, which is replaced by Titanium alloy and stainless steels. Special heat treatments of the steel are applied for minimum loss of hardness. The structures are optimised for minimum mass. To handle thermal stresses and distortion, a very compact design of the APM was performed integrating the bearings, position sensor and drive chain within minimum structural length. The Rotary Joint is a unique design tailored to the APM using a common main bearing support. Special manufacturing processes have been tested and applied for manufacture of the very compact

  13. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  14. Sandia_HighTemperatureComponentEvaluation_2015

    SciTech Connect

    Cashion, Avery T.

    2015-03-01

    The objective of this project is to perform independent evaluation of high temperature components to determine their suitability for use in high temperature geothermal tools. Development of high temperature components has been increasing rapidly due to demand from the high temperature oil and gas exploration and aerospace industries. Many of these new components are at the late prototype or first production stage of development and could benefit from third party evaluation of functionality and lifetime at elevated temperatures. In addition to independent testing of new components, this project recognizes that there is a paucity of commercial-off-the-shelf COTS components rated for geothermal temperatures. As such, high-temperature circuit designers often must dedicate considerable time and resources to determine if a component exists that they may be able to knead performance out of to meet their requirements. This project aids tool developers by characterization of select COTS component performances beyond published temperature specifications. The process for selecting components includes public announcements of project intent (e.g., FedBizOps), direct discussions with candidate manufacturers,and coordination with other DOE funded programs.

  15. High-resolution urban flood modelling - a joint probability approach

    NASA Astrophysics Data System (ADS)

    Hartnett, Michael; Olbert, Agnieszka; Nash, Stephen

    2017-04-01

    The hydrodynamic modelling of rapid flood events due to extreme climatic events in urban environment is both a complex and challenging task. The horizontal resolution necessary to resolve complexity of urban flood dynamics is a critical issue; the presence of obstacles of varying shapes and length scales, gaps between buildings and the complex geometry of the city such as slopes affect flow paths and flood levels magnitudes. These small scale processes require a high resolution grid to be modelled accurately (2m or less, Olbert et al., 2015; Hunter et al., 2008; Brown et al., 2007) and, therefore, altimetry data of at least the same resolution. Along with availability of high-resolution LiDAR data and computational capabilities, as well as state of the art nested modelling approaches, these problems can now be overcome. Flooding and drying, domain definition, frictional resistance and boundary descriptions are all important issues to be addressed when modelling urban flooding. In recent years, the number of urban flood models dramatically increased giving a good insight into various modelling problems and solutions (Mark et al., 2004; Mason et al., 2007; Fewtrell et al., 2008; Shubert et al., 2008). Despite extensive modelling work conducted for fluvial (e.g. Mignot et al., 2006; Hunter et al., 2008; Yu and Lane, 2006) and coastal mechanisms of flooding (e.g. Gallien et al., 2011; Yang et al., 2012), the amount of investigations into combined coastal-fluvial flooding is still very limited (e.g. Orton et al., 2012; Lian et al., 2013). This is surprising giving the extent of flood consequences when both mechanisms occur simultaneously, which usually happens when they are driven by one process such as a storm. The reason for that could be the fact that the likelihood of joint event is much smaller than those of any of the two contributors occurring individually, because for fast moving storms the rainfall-driven fluvial flood arrives usually later than the storm surge

  16. Categorizing High Energy Laser Effects for the Joint Munitions Effectiveness Manual

    DTIC Science & Technology

    2005-06-01

    CATEGORIZING HIGH ENERGY LASER EFFECTS FOR THE JOINT MUNITIONS EFFECTIVENESS MANUAL THESIS...AFIT/GOR/ENS/05-11 CATEGORIZING HIGH ENERGY LASER EFFECTS FOR THE JOINT MUNITIONS EFFECTIVENESS MANUAL THESIS Presented to the Faculty...Captain, USAF June 2005 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GOR/ENS/05-11 CATEGORIZING HIGH ENERGY LASER EFFECTS FOR

  17. Ultrarapid formation of homogeneous Cu6Sn5 and Cu3Sn intermetallic compound joints at room temperature using ultrasonic waves.

    PubMed

    Li, Zhuolin; Li, Mingyu; Xiao, Yong; Wang, Chunqing

    2014-05-01

    Homogeneous intermetallic compound joints are demanded by the semiconductor industry because of their high melting point. In the present work, ultrasonic vibration was applied to Cu/Sn foil/Cu interconnection system at room temperature to form homogeneous Cu6Sn5 and Cu3Sn joints. Compared with other studies based on transient-liquid-phase soldering, the processing time of our method was dramatically reduced from several hours to several seconds. This ultrarapid intermetallic phase formation process resulted from accelerated interdiffusion kinetics, which can be attributed to the sonochemical effects of acoustic cavitation at the interface between the liquid Sn and the solid Cu during the ultrasonic bonding process.

  18. Viscoelastic creep of high-temperature concrete

    SciTech Connect

    Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.

    1985-01-01

    Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme.

  19. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  20. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  1. Fabrication of Titanium Bonded Joint Specimens for High Temperature Testing

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Kovach, Michael P.; Hudson, Wanda

    2005-01-01

    Four sets of adhesively bonded, titanium lap-shear coupon specimens were fabricated for ultimate strength testing according to the ASTM D1002 and D3165 standards. Important features of the fabrication methods, processing details, and lap-shear test results are presented for specimens fabricated using a modified bismaleimide adhesive, EA 9673, on titanium. Surface treatment of the titanium was performed using surface abrasion followed by one of two separate chemical etching processes. Although cure cycle requirements are different among most adhesives, a single surface preparation method was sought as the preferred method for conditioning the titanium specimens prior to bonding and curing. A fabrication process using a combination of low-pressure grit-blasting of the titanium surface followed by anodization with a sodium hydroxide solution applied to the D1002 specimen geometry provided the highest lapshear strengths in the study. Additionally, difficulties documented during the fabrication process of the D3165 specimens along with features of the D3165 geometry were identified as factors that contributed to lower lap-shear strength results for the D3165 specimens as compared to the results for the D1002 specimens.

  2. High temperature tolerance of the silver-copper oxide braze in reducing and oxidizing atmospheres

    SciTech Connect

    Kim, Jin Yong Y.; Hardy, John S.; Weil, K. Scott

    2006-06-01

    Silver-copper oxide based reactive air brazing (RAB) technique was developed as an alternative technique for joining complex-shaped ceramic parts. To examine the feasibility of this braze for various high temperature applications, brazed alumina joints were exposed to oxidizing and reducing atmospheres at high temperature. Brazed joints, which were exposed to 800ºC in air for 100 h, maintained good bend strength similar to the as-brazed samples. Microstructural analysis also revealed no significant change after exposing the joints to the oxidizing atmosphere at high temperature. This result indicate the excellent high-temperature tolerance of the Ag-CuO based braze in oxidizing atmosphere. On the other hand, heat treatment of the brazed alumina joints in hydrogen at 800°C for 100 h resulted in significant decrease in bend strength. SEM analysis on fracture surfaces showed that the main fracture mechanism of the samples exposed to the reducing atmosphere was the debonding between the braze and the alumina substrate. This result indicates that the bond strength of the braze/alumina interface is sensitive to the atmosphere where the brazed joint is exposed. CuO in the braze was also reduced to Cu and diffused into the Ag matrix. This reduction of CuO created the pores at the interface as well as in the braze matrix where CuO was originally located, especially at a high CuO content.

  3. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  4. High temperature solid state storage cell

    DOEpatents

    Rea, Jesse R.; Kallianidis, Milton; Kelsey, G. Stephen

    1983-01-01

    A completely solid state high temperature storage cell comprised of a solid rechargeable cathode such as TiS.sub.2, a solid electrolyte which remains solid at the high temperature operating conditions of the cell and which exhibits high ionic conductivity at such elevated temperatures such as an electrolyte comprised of lithium iodide, and a solid lithium or other alkali metal alloy anode (such as a lithium-silicon alloy) with 5-50% by weight of said anode being comprised of said solid electrolyte.

  5. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  6. Dimensionality of high temperature superconductivity in oxides

    NASA Technical Reports Server (NTRS)

    Chu, C. W.

    1989-01-01

    Many models have been proposed to account for the high temperature superconductivity observed in oxide systems. Almost all of these models proposed are based on the uncoupled low dimensional carrier Cu-O layers of the oxides. Results of several experiments are presented and discussed. They suggest that the high temperature superconductivity observed cannot be strictly two- or one-dimensional, and that the environment between the Cu-O layers and the interlayer coupling play an important role in the occurrence of such high temperature superconductivity. A comment on the very short coherence length reported is also made.

  7. The high temperature superconductivity space experiment

    NASA Technical Reports Server (NTRS)

    Webb, Denis C.; Nisenoff, M.

    1991-01-01

    The history and the current status of the high temperature superconductivity space experiment (HTSSE) initiated in 1988 are briefly reviewed. The goal of the HTSSE program is to demonstrate the feasibility of incorporating high temperature superconductivity (HTS) technology into space systems. The anticipated payoffs include the development of high temperature superconductor devices for space systems; preparation and space qualification of a cryogenically cooled experimental package containing HTS devices and components; and acquisition of data for future space experiments using more complex HTS devices and subsystems. The principal HTSSE systems and devices are described.

  8. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-12-31

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed ``cyclodehydrogenation reactions`` which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  9. High temperature chemistry of aromatic hydrocarbons

    SciTech Connect

    Scott, L.T.

    1991-01-01

    We have not only gained new insight into the mechanism and generality of Polycyclic Aromatic Hydrocarbon (PAH) thermal automerization reactions, we have also uncovered several new high temperature reactions and added a third dimension to our program by applying high temperature chemistry to problems in organic synthesis. Our synthesis of corannulene has attracted much recent attention; however, we believe that the uncatalyzed cyclodehydrogenation reactions'' which form 5-membered rings and 6-membered rings at high temperatures may prove to be of greater general importance in the long term. This bias is reflected in the accompanying proposal.

  10. Aeronautical applications of high-temperature superconductors

    NASA Technical Reports Server (NTRS)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  11. Symposium on high temperature and materials chemistry

    SciTech Connect

    Not Available

    1989-10-01

    This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

  12. Silicon Carbide Nanotube Oxidation at High Temperatures

    NASA Technical Reports Server (NTRS)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  13. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  14. High Temperature Thermographic Phosphor Coatings Development

    NASA Technical Reports Server (NTRS)

    Goedeke, Shawn; Allison, S. W.; Beshears, D. L.; Bencic, T.; Cates, M. R.; Hollerman, W. A.; Guidry, R.

    2003-01-01

    For many years, phosphor thermometry has been used for non-contact temperature measurements. A large number of applications have been associated with high temperatures, especially for aerospace systems where blackbody radiation backgrounds are large and in challenging environments, such as vibration, rotation, flame, or noise. These environments restrict the use of more common thermocouples or infrared thermometric techniques. In particular, temperature measurements inside jet turbines, rocket engines, or similar devices are especially amenable to phosphor techniques. Often the fluorescent materials are used as powders, either suspended in binders and applied like paint or applied as high-temperature sprays. Thin coatings that are less than 50 m thick are used on the surfaces of interest. These coatings will quickly assume the same temperature as the surface to which they are applied. The temperature dependence of fluorescent materials is a function of the base matrix atoms and a small quantity of added activator or dopant ions. Often for high temperature applications, the selected materials are refractory and include rare earth ions. Phosphors like Y3Al5O12 (YAG) doped with Eu, Dy, or Tm, Y2O3 doped with Eu, or similar rare earth compounds, will survive high temperatures and can be configured to emit light that changes rapidly in lifetime and intensity. For example, researchers at Oak Ridge National Laboratory recently observed fluorescence from YAG:Dy and YAG:Tm at temperatures above 1400 C. One of the biggest challenges is to locate a binder material that can withstand tremendous variations in temperature in an adverse aerospace environment. This poster will provide an overview into our attempt to utilize phosphors for thermometry purposes. Emphasis will be placed on the use of selected binder materials that can withstand high temperatures. This research was completed for the National Aeronautics and Space Administration's Glenn Research Center in Cleveland

  15. Development of high temperature capable piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Suprock, Andrew D.; Tittmann, Bernhard R.

    2017-02-01

    The objective of the project was to investigate the influence of the temperature effect on ultrasonic transducers based on a comparison of the effects of high temperature conditions versus those of high temperature and irradiation on the transducer system. There was also a preliminary move towards the establishment of the means for optimizing the bulk single crystal transducer fabrication process in order to achieve peak efficiency and maximum effectiveness in both irradiated and non-irradiated high temperature applications. Optimization of the material components within the transducer will greatly increase non-destructive testing abilities for industry, structural health monitoring. Here is presented a progress report on the testing of several different piezoelectric materials under high temperature conditions. The viability of aluminum nitride (AlN) as a transducer material in high temperature conditions has been previously explored [1] and has been further tested to ensure reliability. Bistmuth Titanate (BiT) has also been tested and has displayed excellent effectiveness for high temperature application.

  16. Thermal stress in high temperature cylindrical fasteners

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.

    1988-01-01

    Uninsulated structures fabricated from carbon or silicon-based materials, which are allowed to become hot during flight, are attractive for the design of some components of hypersonic vehicles. They have the potential to reduce weight and increase vehicle efficiency. Because of manufacturing contraints, these structures will consist of parts which must be fastened together. The thermal expansion mismatch between conventional metal fasteners and carbon or silicon-based structural materials may make it difficult to design a structural joint which is tight over the operational temperature range without exceeding allowable stress limits. In this study, algebraic, closed-form solutions for calculating the thermal stresses resulting from radial thermal expansion mismatch around a cylindrical fastener are developed. These solutions permit a designer to quickly evaluate many combinations of materials for the fastener and the structure. Using the algebraic equations developed, material properties and joint geometry were varied to determine their effect on thermal stresses. Finite element analyses were used to verify that the closed-form solutions derived give the correct thermal stress distribution around a cylindrical fastener and to investigate the effect of some of the simplifying assumptions made in developing the closed-form solutions for thermal stresses.

  17. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  18. RADIATIVE PROPERTIES OF HIGH TEMPERATURE GASES

    DTIC Science & Technology

    DENSITY, *GAS IONIZATION, *GASES, *HIGH TEMPERATURE, *QUANTUM THEORY , *THERMODYNAMICS, ABSORPTION, CONTINUUM MECHANICS, EQUATIONS OF STATE, HEAT...HYDRODYNAMICS, HYDROGEN, INEQUALITIES, INTEGRAL EQUATIONS, IONS, MATRICES(MATHEMATICS), MEASUREMENT, NITROGEN, NUMBER THEORY , OXYGEN, PHOTOELECTRIC...CELLS (SEMICONDUCTOR), PHOTOTUBES, PROBABILITY, STATISTICAL FUNCTIONS, TEMPERATURE, THEORY

  19. Electrical Properties Of Capacitors At High Temperatures

    NASA Technical Reports Server (NTRS)

    Baumann, E. D.; Myers, I. T.; Overton, E.; Hammoud, A. N.

    1994-01-01

    Brief report describes results of experiments in which capacitance and dielectric loss of glass, metallized-polytetrafluoroethylene, and solid-tantalum capacitor measured at temperatures from 20 degrees C to 200 degrees C. Conclusions drawn concerning suitability of capacitors for use at high temperatures; such as in nuclear powerplants, aircraft, equipment for extracting geothermal energy, switching power supplies, and automotive integrated engine electronics.

  20. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  1. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  2. Electromigration and thermomigration studies in composite high lead and eutectic tin-lead flip chip solder joint

    NASA Astrophysics Data System (ADS)

    Huang, Annie Tzuyu

    The effect of thermomigration and the combination effect of thermomigration and electromigration have been studied in composite SnPb flip chip solder joints. Because Al line on the silicon chip side is the major heat source exerted on flip chip solder joint, temperature gradient across the joint is induced when a long Al line is stressed with high current density. Under a estimated temperature gradient of 1000°C/cm, Sn-rich and Pb-rich phase separation is found to occur. Experimental results have shown that Sn-rich phase accumulates at the hot side and Pb-rich phase accumulates at the cold side after thermomigration. When solder bumps are current high current density, thermomigration was found to accompany electromigration. Not only Pb-rich phase migrated toward the anode side and Sn-rich phase migrated toward the cathode side due to electromigration, Sn-rich phase was found to migrate along the top of solder joint due to thermomigration. It was found that as void propagates along the top of the solder joint, current crowding region shifts with the tip of the void. This created a local hot spot and thus a lateral temperature gradient was induced for thermomigration to occur. To isolate the thermal effect from the current effect, ac stressing at 60 Hz was also utilized. Interestingly, ac seems to have an effect other than thermal effect due to the difference in microstructure evolution between pure thermomigration and ac case after stressing. Further investigation at different frequency is needed to fully understand the effect of ac. Furthermore, analysis was performed to explain the phenomena of phase separation and phase reversal in the solder joint considering a constraint volume within underfill. Both Kirkendall effect and back stress were considered. Finally, detail morphological change after thermomigration and electromigration were investigated. Grain refinement was found to occur at a certain stressing condition. Production of entropy and morphological

  3. Metallographic anlaysis and strength investigation of different Be-Cu joints in the temperature range RT-3500C

    SciTech Connect

    Gervash, A.A.; Giniatouline, R.N.; Mazul, I.V.

    1995-09-01

    The goal of this work is to estimate the strength and structure of different Be-Cu joining techniques. Brazing, diffusion bonding and joint rolling methods were chosen as ITER Be-Cu joint method candidates. Selected for ITER application Be-Cu joints were produced as technological plates (30-50 mm x 50-100 mm x thickness). AR samples for farther investigations were cutted out from initial technological plates. To compare mechanical strength of selected Be-Cu joints tensile and shearing tests of chosen candidates were carried out in the temperature range RT - 350{degrees}C. The metallographic analysis of Be-Cu crosssection was also done. Preliminary results of these tests as well as metallographic analysis data are presented. The industrial possibilities of producing required for ITER full scale Be-Cu joints are discussed.

  4. Soldered joints—an essential component of demountable high temperature superconducting fusion magnets

    NASA Astrophysics Data System (ADS)

    Tsui, Yeekin; Surrey, Elizabeth; Hampshire, Damian

    2016-07-01

    Demountable superconducting magnet coils would offer significant benefits to commercial nuclear fusion power plants. Whether large pressed joints or large soldered joints provide the solution for demountable fusion magnets, a critical component or building block for both will be the many, smaller-scale joints that enable the supercurrent to leave the superconducting layer, cross the superconducting tape and pass into the solder that lies between the tape and the conductor that eventually provides one of the demountable surfaces. This paper considers the electrical and thermal properties of this essential component part of demountable high temperature superconducting (HTS) joints by considering the fabrication and properties of jointed HTSs consisting of a thin layer of solder (In52Sn48 or Pb38Sn62) sandwiched between two rare-earth-Ba2Cu3O7 (REBCO) second generation HTS coated conductors (CCs). The HTS joints are analysed using numerical modelling, critical current and resistivity measurements on the joints from 300 to 4.2 K in applied magnetic fields up to 12 T, as well as scanning electron microscopy studies. Our results show that the copper/silver layers significantly reduce the heating in the joints to less than a few hundred mK. When the REBCO alone is superconducting, the joint resistivity (R J) predominantly has two sources, the solder layer and an interfacial resistivity at the REBCO/silver interface (∼25 nΩ cm2) in the as-supplied CCs which together have a very weak magnetoresistance in fields up to 12 T. We achieved excellent reproducibility in the R J of the In52Sn48 soldered joints of better than 10% at temperatures below T c of the REBCO layer which can be compared to variations of more than two orders of magnitude in the literature. We also show that demountable joints in fusion energy magnets are viable and need only add a few percent to the total cryogenic cost for a fusion tokamak.

  5. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  6. Quasipermanent magnets of high temperature superconductor - Temperature dependence

    NASA Technical Reports Server (NTRS)

    Chen, In-Gann; Liu, Jianxiong; Ren, Yanru; Weinstein, Roy; Kozlowski, Gregory; Oberly, Charles E.

    1993-01-01

    We report on persistent field in quasi-permanent magnets of high temperature superconductors. Magnets composed of irradiated Y(1+)Ba2Cu3O7 trapped field Bt = 1.52 T at 77 K and 1.9 T at lower temperature. However, the activation magnet limited Bt at lower temperature. We present data on Jc(H,T) for unirradiated materials, and calculate Bt at various T. Based upon data at 65 K, we calculate Bt in unirradiated single grains at 20 K and find that 5.2 T will be trapped for grain diameter d about 1.2 cm, and 7.9 T for d = 2.3 cm. Irradiated grains will trap four times these values.

  7. Apparatus and method for high temperature viscosity and temperature measurements

    DOEpatents

    Balasubramaniam, Krishnan; Shah, Vimal; Costley, R. Daniel; Singh, Jagdish P.

    2001-01-01

    A probe for measuring the viscosity and/or temperature of high temperature liquids, such as molten metals, glass and similar materials comprises a rod which is an acoustical waveguide through which a transducer emits an ultrasonic signal through one end of the probe, and which is reflected from (a) a notch or slit or an interface between two materials of the probe and (b) from the other end of the probe which is in contact with the hot liquid or hot melt, and is detected by the same transducer at the signal emission end. To avoid the harmful effects of introducing a thermally conductive heat sink into the melt, the probe is made of relatively thermally insulative (non-heat-conductive) refractory material. The time between signal emission and reflection, and the amplitude of reflections, are compared against calibration curves to obtain temperature and viscosity values.

  8. NEW APPROACHES: High temperature superconductor levitation motor

    NASA Astrophysics Data System (ADS)

    Abd-Shukor, R.; Lee, K. H.

    1998-01-01

    We show how it is possible to construct a high temperature superconductor levitation motor in an introductory physics laboratory. It is suitable for classroom demonstration and uses a simple yet efficient cooling method.

  9. High-temperature superconductivity: A conventional conundrum

    DOE PAGES

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  10. Altering high temperature subterranean formation permeability

    SciTech Connect

    Moradi-Araghi, A.

    1991-02-19

    This patent describes a delayed acrylamide containing polymer crosslinker having stability in an aqueous solution at high temperatures. It comprises: a combination of an aldehyde and a salicylic acid derivative selected from salicylamide and acetysalicylic acid.

  11. DEVELOPMENT OF HIGH TEMPERATURE HYDROCARBON JET FUELS

    DTIC Science & Technology

    AIRCRAFT ENGINE OILS, *AVIATION FUELS, *HYDROCARBONS, *JET ENGINE FUELS, *LUBRICANTS, *POLYCYCLIC COMPOUNDS, ALKYL RADICALS, BENZENE, CATALYSIS...CHEMICAL REACTIONS , COMBUSTION, CUMENES, DECOMPOSITION, ETHYLENES, FORMALDEHYDE, FRAGMENTATION, HIGH TEMPERATURE, HYDROGENATION, NAPHTHALENES, PHYSICAL

  12. Specimen for high-temperature tensile tests

    NASA Technical Reports Server (NTRS)

    Coulbert, C. D.

    1972-01-01

    Split nut with internal taper to hold specially formed specimen composed of filaments of refractory material provides means for holding at high temperature and under tension so that performance evaluations may be made.

  13. High-temperature superconductivity in perspective

    NASA Astrophysics Data System (ADS)

    1990-04-01

    The technology of superconductivity and its potential applications are discussed; it is warned that U.S companies are investing less than their main foreign competitors in both low- and high-temperature superconductivity R and D. This is by far the most critical issue affecting the future U.S. competitive position in superconductivity, and in many other emerging technologies. The major areas covered include: Executive summary; High-temperature superconductivity - A progress report; Applications of superconductivity; The U.S. response to high-temperature superconductivity; High-temperature superconductivity programs in other countries; Comparison of industrial superconductivity R and D efforts in the United States and Japan - An OTA survey; Policy issues and options.

  14. Measuring Moduli Of Elasticity At High Temperatures

    NASA Technical Reports Server (NTRS)

    Wolfenden, Alan

    1993-01-01

    Shorter, squatter specimens and higher frequencies used in ultrasonic measurement technique. Improved version of piezo-electric ultrasonic composite oscillator technique used to measure moduli of elasticity of solid materials at high temperatures.

  15. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  16. High-temperature superconductivity: A conventional conundrum

    SciTech Connect

    Božović, Ivan

    2016-01-07

    High-temperature superconductivity in ultrathin films of iron selenide deposited on strontium titanate has been attributed to various exotic mechanisms, and new experiments indicate that it may be conventional, with broader implications.

  17. The Conference on High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Hamilton, D. J.; Mccormick, J. B.; Kerwin, W. J.; Narud, J. A.

    1981-01-01

    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment.

  18. A sharp knife for high temperatures

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1978-01-01

    Electrically heated nickel-chrome-steel alloy knife may be used to cut heat resistant plastic felt and similar materials with relative ease. Blade made of commercially available alloy RA 330 retains edge at temperatures as high as 927 C.

  19. High-Temperature Optical Window Design

    NASA Technical Reports Server (NTRS)

    Roeloffs, Norman; Taranto, Nick

    1995-01-01

    A high-temperature optical window is essential to the optical diagnostics of high-temperature combustion rigs. Laser Doppler velocimetry, schlieren photography, light sheet visualization, and laser-induced fluorescence spectroscopy are a few of the tests that require optically clear access to the combustor flow stream. A design was developed for a high-temperature window that could withstand the severe environment of the NASA Lewis 3200 F Lean Premixed Prevaporized (LPP) Flame Tube Test Rig. The development of this design was both time consuming and costly. This report documents the design process and the lessons learned, in an effort to reduce the cost of developing future designs for high-temperature optical windows.

  20. High Temperature Self-Healing Metallic Composite

    NASA Astrophysics Data System (ADS)

    Kutelia, E. R.; Bakhtiyarov, S. I.; Tsurtsumia, O. O.; Bakhtiyarov, A. S.; Eristavi, B.

    2012-01-01

    This work presents the possibility to realize the self healing mechanisms for heterogeneous architectural metal/ceramic high temperature sandwich thermal barrier coating systems on the surfaces refractory metals by analogy of wound healing in the skin.

  1. Corrosion Inhibition in High Temperature Environment

    DTIC Science & Technology

    1993-06-28

    resistant coatings is optional. Further 5 examples of high temperature corrosion-resistant coatings are the 6 " aluminides " and "silicides", which are...produced by diffusing 7 aluminum and silicon, respectively, into the surface of superalloys 8 or other substrates. Other metallic or ceramic coatings can... superalloys to form 9 nonprotective NaAlO 2 which causes catastrophic hot corrosion. High 10 temperature chromium-containing metals which rely on chromia

  2. Materials for high-temperature thermoelectric conversion

    NASA Technical Reports Server (NTRS)

    Feigelson, R. S.; Elwell, D.; Auld, B. A.

    1984-01-01

    The development of materials for high temperature thermoelectric energy conversion devices was investigated. The development of new criteria for the selection of materials which is based on understanding of the fundamental principles governing the behavior of high temperature thermoelectric materials is discussed. The synthesis and characterization of promising new materials and the growth of single crystals to eliminate possible problems associated with grain boundaries and other defects in polycrystalline materials are outlined.

  3. PLA recycling by hydrolysis at high temperature

    SciTech Connect

    Cristina, Annesini Maria; Rosaria, Augelletti; Sara, Frattari Fausto, Gironi

    2016-05-18

    In this work the process of PLA hydrolysis at high temperature was studied, in order to evaluate the possibility of chemical recycling of this polymer bio-based. In particular, the possibility to obtain the monomer of lactic acid from PLA degradation was investigated. The results of some preliminary tests, performed in a laboratory batch reactor at high temperature, are presented: the experimental results show that the complete degradation of PLA can be obtained in relatively low reaction times.

  4. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  5. Structural ceramics for high temperature applications

    SciTech Connect

    Dapkunas, S.J.

    1995-12-31

    Structural ceramics, primarily silicon nitride and silicon carbide, are recognized as offering significant performance benefits in heat engine and other high temperature applications. These benefits accrue from superior high temperature mechanical properties, corrosion and wear resistance and lower density. Improved processing and understanding of the phenomena determining properties and performance have made these materials viable replacements for metallic components in some applications. Cost barriers hinder more widespread use.

  6. Preparation Of High-Temperature Reactive Oligomers

    NASA Technical Reports Server (NTRS)

    Ottenbrite, Raphael M.

    1990-01-01

    Very reactive materials form very-heat-stable polymers. Recent research directed toward synthesis of polyimides soluble in common organic solvents, melt-processable, and thermally curable without evolution of volatile by-products. Diels-Alder polymerization yields compounds that maintain integrities and toughnesses during long exposure times at high temperatures. High-temperature polymers synthesized by use of technique. Films and perhaps fibers fabricated from prepolymer in solution. Major potential at this stage of research limited to aerospace applications.

  7. Recent developments in high temperature organic polymers

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.

    1991-01-01

    Developments in high temperature organic polymers during the last 5 years with major emphasis on polyimides and poly(arylene ether)s are discussed. Specific polymers or series of polymers have been selected to demonstrate unique properties or the effect chemical structure has upon certain properties. This article is not intended to be a comprehensive review of high temperature polymer advancements during the last 5 years.

  8. Developments on high temperature fiber optic microphone

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Zuckerwar, Allan J.

    1992-01-01

    A fiber optic microphone, based on the principle of the fiber optic lever, features small size, extended bandwidth, and capability to operate at high temperatures. These are requirements for measurements in hypersonic flow. This paper describes the principles of operation of fiber optic sensors, a discussion of the design of a fiber optic microphone, the functional elements and packaging techniques of the optoelectronic circuitry, and the calibration techniques used in the development of the high temperature fiber optic microphone.

  9. High temperature energy harvester for wireless sensors

    NASA Astrophysics Data System (ADS)

    Köhler, J. E.; Heijl, R.; Staaf, L. G. H.; Zenkic, S.; Svenman, E.; Lindblom, A.; Palmqvist, A. E. C.; Enoksson, P.

    2014-09-01

    Implementing energy harvesters and wireless sensors in jet engines will simplify development and decrease costs by reducing the need for cables. Such a device could include a small thermoelectric generator placed in the cooling channels of the jet engine where the temperature is between 500-900 °C. This paper covers the synthesis of suitable thermoelectric materials, design of module and proof of concept tests of a thermoelectric module. The materials and other design variables were chosen based on an analytic model and numerical analysis. The module was optimized for 600-800 °C with the thermoelectric materials n-type Ba8Ga16Ge30 and p-type La-doped Yb14MnSb11, both with among the highest reported figure-of-merit values, zT, for bulk materials in this region. The materials were synthesized and their structures confirmed by x-ray diffraction. Proof of concept modules containing only two thermoelectric legs were built and tested at high temperatures and under high temperature gradients. The modules were designed to survive an ambient temperature gradient of up to 200 °C. The first measurements at low temperature showed that the thermoelectric legs could withstand a temperature gradient of 123 °C and still be functional. The high temperature measurement with 800 °C on the hot side showed that the module remained functional at this temperature.

  10. Ionization of NO at high temperature

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1991-01-01

    Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.

  11. Phonon spectra of plutonium at high temperatures

    NASA Astrophysics Data System (ADS)

    Dorado, Boris; Bottin, François; Bouchet, Johann

    2017-03-01

    Ab initio molecular dynamics calculations are used to investigate the vibrational properties of the high-temperature δ and ɛ phases of plutonium. We combine the local-density approximation (LDA)+U for strong electron correlations and the temperature-dependent effective potential method in order to calculate the phonon spectra of the two phases, as well as their dependence on temperature. Our results show that the ɛ phase can only be stabilized when temperature and correlations are simultaneously accounted for. We are also able to quantify the degree of anharmonicity of the two phases. While the δ phase is fairly harmonic up to 1000 K, we find that the ɛ phase is strongly anharmonic, which explains why this structure dominates the phase diagram at high temperature.

  12. High-temperature discontinuously reinforced aluminum

    NASA Astrophysics Data System (ADS)

    Zedalis, M. S.; Bryant, J. D.; Gilman, P. S.; Das, S. K.

    1991-08-01

    High-temperature discontinuously reinforced aluminum (HTDRA) composites have been developed for elevated-temperature applications by incorporating SiC particulate reinforcement into a rapidly solidified, high-temperature Al-Fe-V-Si (alloy 8009) matrix. HTDRA combines the superior elevated-temperature strength, stability and corrosion resistance of the 8009 matrix with the excellent specific stiffness and abrasion resistance of the discontinuous SiC particulate reinforcement. On a specific stiffness basis, HTDRA is competitive with Ti-6-Al-4V and 17-4 PH stainless steel to temperatures approaching 480°C. Potential aerospace applications being considered for HTDRA include aircraft wing skins, missile bodies, and miscellaneous engine, spacecraft and hypersonic vehicle components.

  13. High temperature structural fibers: Status and needs

    NASA Technical Reports Server (NTRS)

    Dicarlo, James A.

    1991-01-01

    The key to high temperature structural composites is the selection and incorporation of continuous fiber reinforcement with optimum mechanical, physical, and chemical properties. Critical fiber property needs are high strength, high stiffness, and retention of these properties during composite fabrication and use. However, unlike polymeric composites where all three requirements are easily achieved with a variety of commercially available carbon-based fibers, structural fibers with sufficient stiffness and strength retention for high temperature metal, intermetallic, and ceramic composites are not available. The objective here is to discuss in a general manner the thermomechanical stability problem for current high performance fibers which are based on silicon and alumina compositions. This is accomplished by presenting relevant fiber property data with a brief discussion of potential underlying mechanisms. From this general overview, some possible materials engineering approaches are suggested which may lead to minimization and/or elimination of this critical stability problem for current high temperature fibers.

  14. Joint Assimilation of MODIS Land Surface Temperature and Airbone L-band Microwave Brightness Temperature into Land Surface Model in Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Cao, Yongpan; Huang, Chunlin

    2017-04-01

    Both surface soil moisture and soil temperature are input variables for microwave transmission model which is as observation operator in a land surface data assimilation system. And the optimal estimation of soil moisture in irrigation fields is restricted by a lack of accurate irrigation information. The objective of this study was to evaluate the impact of the joint assimilation of passive microwave brightness temperature and land surface temperature data in a land surface model on soil moisture characterization under unknown (or known) irrigation conditions. A series of data assimilation experiments was conducted to evaluate the joint assimilation of MODIS land surface temperature and airborne Polarimetric L-band Multi-beam Radiometer (PLMR) brightness temperature into the Common Land Model (CoLM) using the Ensemble Kalman Smoother (EnKS). The Daman station, which is located at an irrigated maize farmland in the middle reaches of the Heihe River Basin, is selected in this study to investigate the performance of the proposed assimilation scheme. The following three tests were performed for unknown irrigation and known irrigation conditions: (1) assimilating brightness temperature observations only; (2) assimilating surface temperature observations only; and (3) assimilating both surface temperature and brightness temperature observations. The results show that the joint assimilation of surface temperature and brightness temperature results in the best characterization of soil moisture profiles under unknown irrigation conditions. The intake of irrigation information maintains good agreement with the true values, and tremendously reduce the RMSE exceed 50%. However, the single brightness temperature assimilation outperform the joint assimilation scheme under known irrigation conditions. Meanwhile, surface temperature assimilation resulted in improved estimation of soil moisture profiles.

  15. Laser Plasma Coupling for High Temperature Hohlraums

    SciTech Connect

    Kruer, W.

    1999-11-04

    Simple scaling models indicate that quite high radiation temperatures can be achieved in hohlraums driven with the National Ignition Facility. A scaling estimate for the radiation temperature versus pulse duration for different size NIF hohlraums is shown in Figure 1. Note that a radiation temperature of about 650 ev is projected for a so-called scale 1 hohlraum (length 2.6mm, diameter 1.6mm). With such high temperature hohlraums, for example, opacity experiments could be carried out using more relevant high Z materials rather than low Z surrogates. These projections of high temperature hohlraums are uncertain, since the scaling model does not allow for the very strongly-driven laser plasma coupling physics. Lasnex calculations have been carried out to estimate the plasma and irradiation conditions in a scale 1 hohlraum driven by NIF. Linear instability gains as high as exp(100) have been found for stimulated Brillouin scattering, and other laser-driven instabilities are also far above their thresholds. More understanding of the very strongly-driven coupling physics is clearly needed in order to more realistically assess and improve the prospects for high temperature hohlraums. Not surprisingly, this regime has been avoided for inertial fusion applications and so is relatively unexplored.

  16. O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

  17. High temperature crystalline superconductors from crystallized glasses

    DOEpatents

    Shi, Donglu

    1992-01-01

    A method of preparing a high temperature superconductor from an amorphous phase. The method involves preparing a starting material of a composition of Bi.sub.2 Sr.sub.2 Ca.sub.3 Cu.sub.4 Ox or Bi.sub.2 Sr.sub.2 Ca.sub.4 Cu.sub.5 Ox, forming an amorphous phase of the composition and heat treating the amorphous phase for particular time and temperature ranges to achieve a single phase high temperature superconductor.

  18. Attachment Techniques for High Temperature Strain

    DTIC Science & Technology

    1993-01-01

    3.6.6.1 Pull Tests on Ceramic Cements and Flame Sprayed Coatings 26 3.6.6.2 Effect of Cement Age on Bond Strength. 29 3.6.6.3 Effect of Cure...Temperature on Bond Strength. 29 3.6.6.4 Effect of High Temperature Cure on Cement Strength . 29 3.7 THEORY OF ADHESION 33 3.7.1 High...broke rather than pull out of the coating 28 Figure 16 Effect of Cement Age 30 Figure 17 Cure Temperature vs. Strength 31 Figure 18

  19. Insulation Blankets for High-Temperature Use

    NASA Technical Reports Server (NTRS)

    Goldstein, H.; Leiser, D.; Sawko, P. M.; Larson, H. K.; Estrella, C.; Smith, M.; Pitoniak, F. J.

    1986-01-01

    Insulating blanket resists temperatures up to 1,500 degrees F (815 degrees C). Useful where high-temperature resistance, flexibility, and ease of installation are important - for example, insulation for odd-shaped furnaces and high-temperature ducts, curtains for furnace openings and fire control, and conveyor belts in hot processes. Blanket is quilted composite consisting of two face sheets: outer one of silica, inner one of silica or other glass cloth with center filling of pure silica glass felt sewn together with silica glass threads.

  20. Seismic performance of steel reinforced ultra high-strength concrete composite frame joints

    NASA Astrophysics Data System (ADS)

    Yan, Changwang; Jia, Jinqing

    2010-09-01

    To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirrup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.

  1. High Temperature MEMS for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The presentation will discuss Microelectromechanical Systems (MEMS) research and development activities and technologies being conducted at NASA Glenn Research Center to address the needs of harsh environment applications. The focus will be on silicon carbide based h4EMS for high temperature, high power and high radiation environment as well as high temperature sensor technologies which are made possible by MEMS processing techniques. These technologies can enable new measurements and capabilities for future turbine engines. All the presentation materials are publicly available and have been presented/published before.

  2. Ultra-High Temperature Ceramics for solar receivers: spectral and high-temperature emittance characterization

    NASA Astrophysics Data System (ADS)

    Sani, E.; Mercatelli, L.; Jafrancesco, D.; Sans, J. L.; Sciti, D.

    2012-12-01

    We report on the preparation, room temperature spectral reflectance and high-temperature thermal emittance characterization of different boride and carbide Ultra-High Temperature Ceramics (UHTCs). The investigated samples are compared with a reference material for solar absorber applications, i.e. silicon carbide. We show that spectral and thermal emittance properties of UHTCs are promising for novel solar receivers.

  3. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  4. Fast vortex core switching at high temperatures

    NASA Astrophysics Data System (ADS)

    Lebecki, Kristof M.; Legut, Dominik

    2016-08-01

    Fast ferromagnetic vortex core switching is investigated employing micromagnetic simulations. Short pulse (in the range of a few hundreds of picoseconds) of an in-plane oscillating magnetic field is applied to a thin disk (diameter 200 nm and thickness 20 nm) with material parameters resembling permalloy. Fundamental frequency of this excitation field is close to the resonance with the material spin waves. Thermal effects are introduced by replacing the Landau-Lifshitz-Gilbert equation by the Landau-Lifshitz-Bloch equation. Temperature from 300 K to 850 K is considered, just below the Curie temperature TC = 870 K. Calculations are done within the OOMMF simulation framework. We find that: (i) Period of the field necessary to switch the vortex increases approximately from 141 ps at 300 K to 572 ps for the high-temperature limit. (ii) Amplitude of the field necessary to switch the vortex core decreases roughly from 60 mT to 15 mT - even at high temperatures this amplitude is nonzero, contrary to the case of quasi-static switching. (iii) Time span between the excitation and switching (switching time) seems not to depend on the temperature. (iv) Duration of the switching itself (movement of the Bloch point in the sample) increases from a few picoseconds at low temperatures to tens of picoseconds at high temperatures.

  5. Joint Estimation of Multiple High-dimensional Precision Matrices

    PubMed Central

    Cai, T. Tony; Li, Hongzhe; Liu, Weidong; Xie, Jichun

    2017-01-01

    Motivated by analysis of gene expression data measured in different tissues or disease states, we consider joint estimation of multiple precision matrices to effectively utilize the partially shared graphical structures of the corresponding graphs. The procedure is based on a weighted constrained ℓ∞/ℓ1 minimization, which can be effectively implemented by a second-order cone programming. Compared to separate estimation methods, the proposed joint estimation method leads to estimators converging to the true precision matrices faster. Under certain regularity conditions, the proposed procedure leads to an exact graph structure recovery with a probability tending to 1. Simulation studies show that the proposed joint estimation methods outperform other methods in graph structure recovery. The method is illustrated through an analysis of an ovarian cancer gene expression data. The results indicate that the patients with poor prognostic subtype lack some important links among the genes in the apoptosis pathway.

  6. High-entropy alloys as high-temperature thermoelectric materials

    SciTech Connect

    Shafeie, Samrand; Guo, Sheng; Hu, Qiang; Fahlquist, Henrik; Erhart, Paul; Palmqvist, Anders

    2015-11-14

    Thermoelectric (TE) generators that efficiently recycle a large portion of waste heat will be an important complementary energy technology in the future. While many efficient TE materials exist in the lower temperature region, few are efficient at high temperatures. Here, we present the high temperature properties of high-entropy alloys (HEAs), as a potential new class of high temperature TE materials. We show that their TE properties can be controlled significantly by changing the valence electron concentration (VEC) of the system with appropriate substitutional elements. Both the electrical and thermal transport properties in this system were found to decrease with a lower VEC number. Overall, the large microstructural complexity and lower average VEC in these types of alloys can potentially be used to lower both the total and the lattice thermal conductivity. These findings highlight the possibility to exploit HEAs as a new class of future high temperature TE materials.

  7. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    SciTech Connect

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  8. High-temperature superconducting conductors and cables

    SciTech Connect

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  9. The low salinity effect at high temperatures

    DOE PAGES

    Xie, Quan; Brady, Patrick V.; Pooryousefy, Ehsan; ...

    2017-04-05

    The mechanism(s) of low salinity water flooding (LSWF) must be better understood at high temperatures and pressures if the method is to be applied in high T/P kaolinite-bearing sandstone reservoirs. We measured contact angles between a sandstone and an oil (acid number, AN = 3.98 mg KOH/g, base number, BN = 1.3 mg KOH/g) from a reservoir in the Tarim Field in western China in the presence of various water chemistries. We examined the effect of aqueous ionic solutions (formation brine, 100X diluted formation brine, and softened water), temperature (60, 100 and 140 °C) and pressure (20, 30, 40, andmore » 50 MPa) on the contact angle. We also measured the zeta potential of the oil/water and water/rock interfaces to calculate oil/brine/rock disjoining pressures. A surface complexation model was developed to interpret contact angle measurements and compared with DLVO theory predictions. Contact angles were greatest in formation water, followed by the softened water, and low salinity water at the same pressure and temperature. Contact angles increased slightly with temperature, whereas pressure had little effect. DLVO and surface complexation modelling predicted similar wettability trends and allow reasonably accurate interpretation of core-flood results. Water chemistry has a much larger impact on LSWF than reservoir temperature and pressure. As a result, low salinity water flooding should work in high temperature and high pressure kaolinite-bearing sandstone reservoirs.« less

  10. High Temperature Calibration Furnace System user's guide

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The High Temperature Calibration Furnace System (HTCFS) was developed by Summitec Corporation. It is a high precision instrument providing a constant temperature which can be used to calibrate high temperature thermocouples. Incorporating the many recent technological advances from the fields of optical fiber thermometry, material science, computer systems interfacing, and process control, the engineers at Summitec Corporation have been able to create a system that can reach a steady operating temperature of 1700 C. The precision for the system requires the measurement of temperature to be within 1 C in two hours and within 2 C in 24 hours. As documented, the experimental result shows that this system has been able to stay within .5 C in 5 hours. No other systems commercially available have been able to achieve such high temperature precision. This manual provides an overview of the system design, instructions for instrument setup, and operation procedures. Also included are a vendor list and the source codes for the custom-designed software.

  11. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime

    PubMed Central

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-01-01

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin2ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement. PMID:28773920

  12. Improvement in Fatigue Performance of Aluminium Alloy Welded Joints by Laser Shock Peening in a Dynamic Strain Aging Temperature Regime.

    PubMed

    Su, Chun; Zhou, Jianzhong; Meng, Xiankai; Huang, Shu

    2016-09-26

    As a new treatment process after welding, the process parameters of laser shock peening (LSP) in dynamic strain aging (DSA) temperature regimes can be precisely controlled, and the process is a non-contact one. The effects of LSP at elevated temperatures on the distribution of the surface residual stress of AA6061-T6 welded joints were investigated by using X-ray diffraction technology with the sin²ϕ method and Abaqus software. The fatigue life of the welded joints was estimated by performing tensile fatigue tests. The microstructural evolution in surface and fatigue fractures of the welded joints was presented by means of surface integrity and fracture surface testing. In the DSA temperature regime of AA6061-T6 welded joints, the residual compressive stress was distributed more stably than that of LSP at room temperature. The thermal corrosion resistance and fatigue properties of the welded joints were also improved. The experimental results and numerical analysis were in mutual agreement.

  13. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  14. High-temperature helium-loop facility

    SciTech Connect

    Tokarz, R.D.

    1981-09-01

    The high-temperature helium loop is a facility for materials testing in ultrapure helium gas at high temperatures. The closed loop system is capable of recirculating high-purity helium or helium with controlled impurities. The gas loop maximum operating conditions are as follows: 300 psi pressure, 500 lb/h flow rate, and 2100/sup 0/F temperature. The two test sections can accept samples up to 3.5 in. diameter and 5 ft long. The gas loop is fully instrumented to continuously monitor all parameters of loop operation as well as helium impurities. The loop is fully automated to operate continuously and requires only a daily servicing by a qualified operator to replenish recorder charts and helium makeup gas. Because of its versatility and high degree of parameter control, the helium loop is applicable to many types of materials research. This report describes the test apparatus, operating parameters, peripheral systems, and instrumentation system.

  15. High Temperature VARTM of Phenylethynyl Terminated Imides

    NASA Technical Reports Server (NTRS)

    Ghose, Sayata; Watson, Kent A.; Cano, Roberto J.; Britton, Sean M.; Jensen, Brian J.; Connell, John W.; Herring, Helen M.; Linberry, Quentin J.

    2009-01-01

    LaRC phenylethynyl terminated imide (PETI) resins were processed into composites using high temperature vacuum assisted resin transfer molding (VARTM). Although initial runs yielded composites with high void content, process modifications reduced voids to <3%. Photomicrographs were taken and void contents and T(sub g)s of the panels were determined.

  16. Reactive Plasticizers for High Temperature Quinoxaline Thermoplastics

    DTIC Science & Technology

    1976-06-01

    involves essentially two steps, consolidation of boardy prepreg into sheet stock and thermoforming the sheet stock into structural components. A...problem associated with the fabrication process is the high temperatures required in both the consolidation and thermoforming operations. High processing

  17. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  18. MAS-NMR at very high temperatures.

    PubMed

    van Wüllen, Leo; Schwering, Georg; Naumann, Ernst; Jansen, Martin

    2004-09-01

    We report MAS-NMR experiments at temperatures of approx. 1200 K using a CO(2) laser as the heating device. An internal NMR thermometer based on the (7)Li T1 data of Li(0.24)La(0.54)TiO(3) is used for temperature calibration. Using this setup, temperatures as high as 1191 K could be reached under MAS conditions as confirmed by the melting of Li(2)B(4)O(7) at 1191 K which could be followed by (7)Li-MAS-NMR.

  19. A Road Towards High Temperature Superconductors

    DTIC Science & Technology

    2013-08-01

    issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also...behavior of the cuprates under applied fields can be made by using an unconventional pinning mechanism directly based on the Bond Contraction...Pairing (BCP) mechanism proposed by Deutscher and de Gennes. In the second part a new mechanism for superconductivity that we may have uncovered in

  20. Modeling of concrete response at high temperature

    SciTech Connect

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results.

  1. High temperature stress-strain analysis

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.

    1985-01-01

    The objectives of the high temperature structures program are threefold: to assist in the development of analytical tools needed to improve design analysis and procedures for the efficient and accurate prediction of the nonlinear structural response of hot-section components; to aid in the calibration, validation, and evaluation of the analytical tools by comparing predictions with experimental data; and to evaluate existing as well as advanced temperature and strain measurement instrumentation.

  2. High Temperature Studies of La-Monazite

    DTIC Science & Technology

    2004-07-01

    Alumina/alumina composite with a porous [55] Callender RL, Barron AR. Facile synthesis of aluminum con- zirconia interphase - processing, properties ...temperature propertie of LaPO4, with a view to its application in high-temperature structural composites. Previous studies at Rockwell and the Air Force...established that LaPO4 has a unique set of properties that make it suitable as a weakly bonded interphase material that enables damage tolerance by

  3. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  4. Composite Die-Attach Materials for High-Temperature Packaging Applications

    SciTech Connect

    Muralidharan, Govindarajan; Tiegs, Terry N; Johnson, R Wayne

    2006-01-01

    Devices based on SiC can potentially be used at temperature up to 600oC. However, technology is needed to package SiC devices such that they can be reliably operated at these high temperatures. Materials that are typically used in low temperature packages are not suitable for high temperature use. Also stresses from mismatched coefficients of thermal expansion (CTE) increase with larger thermal cycles and so the potential for fatigue failure is greater with higher temperature operation. This paper focuses on the processing of selected composite solder joints based on Au-Sn with the potential to achieve tailored thermal expansion coefficients. Microstructure of the joints and the effect of processing on the microstructure are outlined.

  5. Solar Selective Coatings for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Shumway, Dean A.

    2003-01-01

    Solar selective coatings are envisioned for use on minisatellites, for applications where solar energy is to be used to power heat engines or to provide thermal energy for remote regions in the interior of the spacecraft. These coatings are designed to have the combined properties of high solar absorptance and low infrared emittance. The coatings must be durable at elevated temperatures. For thermal bus applications, the temperature during operation is likely to be near 100 C. For heat engine applications. the temperature is expected to be much greater. The objective of this work was to screen candidate solar selective coatings for their high temperature durability. Candidate solar selective coatings were composed of molecular mixtures of metal and dielectric, including: nickel and aluminum oxide, titanium and aluminum oxide, and platinum and aluminum oxide. To identify high temperature durability, the solar absorptance and infrared emittance of the candidate coatings were evaluated initially, and after heating to temperatures in the range of 400 C to 700 C. The titanium and aluminum oxide molecular mixture was found to be the most durable.

  6. A new generation of high temperature oxygen sensors

    NASA Astrophysics Data System (ADS)

    Spirig, John V.

    Potentiometric internal reference oxygen sensors were created by embedding a metal/metal oxide mixture within an yttria-stabilized zirconia oxygen-conducting ceramic superstructure. A static internal reference oxygen pressure was produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber was sealed within the stabilized zirconia ceramic superstructure by a high pressure (3-6 MPa) and high temperature (1200-1300°C) bonding method that initiated grain boundary sliding between the ceramic components. The bonding method created ceramic joints that were pore-free and indistinguishable from the bulk ceramic. The oxygen sensor presented in this study is capable of long-term operation and is resistant to the strains of thermal cycling. The temperature ceiling of this device was limited to 800°C by the glass used to seal the sensor package where the lead wire breached the inner-to-outer environment. Were it possible to create a gas-tight joint between an electron carrier and stabilized zirconia, additional sealing agents would not be necessary during sensor construction. In order to enable this enhancement it is necessary to make a gas-tight joint between two dissimilar materials: a ceramic electrolyte and an efficient ceramic electron carrier. Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr 0.20Al0.9Mn0.1O3, was joined to stabilized tetragonal zirconia polymorph YTZP (ZrO2)0.97(Y 2O3)0.03 by a uniaxial stress (3-6 MPa) and high-temperature (1250-1350°C) bonding method that initiated grain-boundary sliding between the ceramic components. An analysis of reactivity between different Al-dopings of LaxSr1-xAlyMn1-yO3 indicated that the Al:Mn ratio must be high to diminish the reaction between LaxSr1-xAlyMn1-yO3 and stabilized zirconia. While the resulting compound, La0.77Sr 0.20Al0.9Mn0.1O3, was an inefficient electron carrier, the successful bond between an aluminum

  7. High-Temperature Solar Cell Development

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Raffaelle, Ryne P.; Merritt, Danielle

    2004-01-01

    The vast majority of satellites and near-earth probes developed to date have relied upon photovoltaic power generation. If future missions to probe environments close to the sun will be able to use photovoltaic power, solar cells that can function at high temperatures, under high light intensity, and high radiation conditions must be developed. For example, the equilibrium temperature of a Mercury surface station will be about 450 C, and the temperature of solar arrays on the proposed "Solar Probe" mission will extend to temperatures as high as 2000 C (although it is likely that the craft will operate on stored power rather than solar energy during the closest approach to the sun). Advanced thermal design principles, such as replacing some of the solar array area with reflectors, off-pointing, and designing the cells to reflect rather than absorb light out of the band of peak response, can reduce these operating temperature somewhat. Nevertheless, it is desirable to develop approaches to high-temperature solar cell design that can operate under temperature extremes far greater than today's cells. Solar cells made from wide bandgap (WBG) compound semiconductors are an obvious choice for such an application. In order to aid in the experimental development of such solar cells, we have initiated a program studying the theoretical and experimental photovoltaic performance of wide bandgap materials. In particular, we have been investigating the use of GaP, SiC, and GaN materials for space solar cells. We will present theoretical results on the limitations on current cell technologies and the photovoltaic performance of these wide-bandgap solar cells in a variety of space conditions. We will also give an overview of some of NASA's cell developmental efforts in this area and discuss possible future mission applications.

  8. Ethylammonium nitrate in high temperature stable microemulsions.

    PubMed

    Zech, Oliver; Thomaier, Stefan; Kolodziejski, Agnes; Touraud, Didier; Grillo, Isabelle; Kunz, Werner

    2010-07-15

    The increasing number of publications reflects the still growing interest in nonaqueous microemulsions containing room-temperature ionic liquids. Recently, we characterized microemulsions composed of the room-temperature ionic liquid ethylammonium nitrate (EAN) as polar phase, dodecane as continuous phase and 1-hexadecyl-3-methyl imidazolium chloride ([C(16)mim][Cl]), an IL that exhibits surfactant properties, and decanol as cosurfactant at ambient temperature. We demonstrate here the high thermal stability of these microemulsions. Along an experimental path, no phase change could be observed visually within a temperature range between 30 degrees C and 150 degrees C. The microemulsions are characterized with quasi-elastic light scattering measurements at ambient temperature and temperature dependent small angle neutron scattering (SANS) experiments between 30 degrees C and 150 degrees C. DLS measurements at ambient temperature indicate a swelling of the formed structures with increasing amount of EAN up to a certain threshold. The SANS experiments were performed below this threshold. The data evaluation of such concentrated systems like microemulsions is possible with the "generalized indirect Fourier transformation" method (GIFT). We evaluated the small angle scattering data via the GIFT method, for comparison we also applied the model of Teubner and Strey (TS) which was often used to describe scattering curves of microemulsions. The GIFT method gives good fits throughout the experimental path, while the TS model gives relatively poor fits. Both, light scattering and SANS results are in agreement with the existence of EAN droplets stabilized by surfactant with dodecane as continuous phase along the whole investigated temperature range. Moreover, these results clearly demonstrate the possibility to formulate high temperature stable microemulsions with ionic liquids at ambient pressure. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Towards simulation of high temperature methane spectra

    NASA Astrophysics Data System (ADS)

    Borysov, A.; Champion, J. P.; Jørgensen, U. G.; Wenger, C.

    Methane plays a central role in gas layers of temperatures up to around 3000K in a number of astrophysical objects ranging from giant planets to brown dwarfs, over proto-solar nebulae, to several classes of cool stars. In order to model and analyse these objects correctly, an accurate and complete list of spectral lines at high temperature is demanded. Predicting high temperature spectra implies, however, predicting hot bands and thus modelling highly excited vibrational states. This is a real challenge in the case of methane. We report the preliminary results of a theoretical study combining the global effective Hamiltonian approach and its computational implementation (STDS package: http://www.u-bourgogne.fr/LPUB/ shTDS.html) with semi-quantitative statistical considerations.

  10. High temperature thrust chamber for spacecraft

    NASA Technical Reports Server (NTRS)

    Chazen, Melvin L. (Inventor); Mueller, Thomas J. (Inventor); Kruse, William D. (Inventor)

    1998-01-01

    A high temperature thrust chamber for spacecraft (20) is provided herein. The high temperature thrust chamber comprises a hollow body member (12) having an outer surface and an internal surface (16) defining the high temperature chamber (10). The body member (12) is made substantially of rhenium. An alloy (18) consisting of iridium and at least alloying metal selected of the group consisting of rhodium, platinum and palladium is deposited on at least a portion of the internal surface (16) of the body member (12). The iridium and the alloying metal are electrodeposited onto the body member (12). A HIP cycle is performed upon the body member (12) to cause the coating of iridium and the alloying metal to form the alloy (18) which protects the body member (12) from oxidation.

  11. Controlled thermonuclear fusion, high temperature plasma physics

    NASA Astrophysics Data System (ADS)

    1985-05-01

    The primary source of nuclear energy comes from the fission process of heavy nuclei. To utilize the energy released by a thermonuclear fusion process, methods of controlling the fusion reaction were studied. This is controlled thermonuclear fusion technology. The fuel used in a thermonuclear fusion process are isotopes of hydrogen: deuterium and tritium. They can be extracted from the almost unlimited seawater. Nuclear fusion also produces very little radioactive waste. Thermonuclear fusion is a promising energy source with an almost unlimited supply; it is economical, safe, and relatively clean. Ways to raise plasma temperature to a very high level and to maintain it to allow fusion reactions to take place are studied. The physical laws of high temperature plasma was studied to reach this goal which resulted in the development of high temperature plasma physics.

  12. High Temperature Membrane & Advanced Cathode Catalyst Development

    SciTech Connect

    Protsailo, Lesia

    2006-04-20

    Current project consisted of three main phases and eighteen milestones. Short description of each phase is given below. Table 1 lists program milestones. Phase 1--High Temperature Membrane and Advanced Catalyst Development. New polymers and advanced cathode catalysts were synthesized. The membranes and the catalysts were characterized and compared against specifications that are based on DOE program requirements. The best-in-class membranes and catalysts were downselected for phase 2. Phase 2--Catalyst Coated Membrane (CCM) Fabrication and Testing. Laboratory scale catalyst coated membranes (CCMs) were fabricated and tested using the down-selected membranes and catalysts. The catalysts and high temperature membrane CCMs were tested and optimized. Phase 3--Multi-cell stack fabrication. Full-size CCMs with the down-selected and optimized high temperature membrane and catalyst were fabricated. The catalyst membrane assemblies were tested in full size cells and multi-cell stack.

  13. Low toxicity high temperature PMR polyimide

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H. (Inventor)

    1992-01-01

    In-situ polymerization of monomer reactants (PMR) type polyimides constitute an important class of ultra high performance composite matrix resins. PMR-15 is the best known and most widely used PMR polyimide. An object of the present invention is to provide a substantially improved high temperature PMR-15 system that exhibits better processability, toughness, and thermo-oxidative stability than PMR-15, as well as having a low toxicity. Another object is to provide new PMR polyimides that are useful as adhesives, moldings, and composite matrices. By the present invention, a new PMR polyimide comprises a mixture of the following compounds: 3,4'-oxydianiline (3,4'-ODA), NE, and BTDE which are then treated with heat. This PMR was designated LaRC-RP46 and has a broader processing window, better reproducibility of high quality composite parts, better elevated temperature mechanical properties, and higher retention of mechanical properties at an elevated temperature, particularly, at 371 C.

  14. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The current status of knowledge and ability to predict high-temperature environmental attack of metals is reviewed with particular reference to the gas turbine engine. Environmental attack is caused by high temperatures, combustion products, and impurities. A schematic representation of life-limiting factors of turbine components shows that environmental attack can lead to very early failures. Attention is given to high-temperature oxidation with prevailing modes of oxidation attack, and to hot corrosion and other impurity effects. Erosion attack results from the direct mechanical removal of component material by impact of hard substances like ash, sand, or dirt. Solutions to hot-corrosion problems can be found semiempirically by using improved alloys or ceramics, protective surface coatings, additives to the engine environment, and air/fuel cleanup to eliminate detrimental impurities.

  15. Containerless measurements on liquids at high temperatures

    NASA Technical Reports Server (NTRS)

    Weber, Richard

    1993-01-01

    The application of containerless techniques for measurements of the thermophysical properties of high temperature liquids is reviewed. Recent results obtained in the materials research laboratories at Intersonics are also presented. Work to measure high temperature liquid properties is motivated by both the need for reliable property data for modeling of industrial processes involving molten materials and generation of data form basic modeling of materials behavior. The motivation for this work and examples of variations in thermophysical property values from the literature are presented. The variations may be attributed to changes in the specimen properties caused by chemical changes in the specimen and/or to measurement errors. The two methods used to achieve containerless conditions were aeroacoustic levitation and electromagnetic levitation. Their qualities are presented. The accompanying slides show the layout of levitation equipment and present examples of levitated metallic and ceramic specimens. Containerless techniques provide a high degree of control over specimen chemistry, nucleation and allow precise control of liquid composition to be achieved. Effects of minor additions can thus be measured in a systematic way. Operation in reduced gravity enables enhanced control of liquid motion which can allow measurement of liquid transport properties. Examples of nucleation control, the thermodynamics of oxide contamination removal, and control of the chromium content of liquid aluminum oxide by high temperature containerless processes are presented. The feasibility of measuring temperature, emissivity, liquidus temperature, enthalpy, surface tension, density, viscosity, and thermal diffusivity are discussed in the final section of the paper.

  16. Nernst effect in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yayu

    This thesis presents a study of the Nernst effect in high temperature superconductors. The vortex Nernst measurements have been carried out on various high Tc cuprates to high magnetic fields. These results provide vital information about the properties and relations of the pseudogap phase and superconducting phase in high Tc superconductors. Our first finding is the existence of vortex-like excitations at temperatures much higher than Tc0, the zero filed transition temperature, in the underdoped cuprates. This result suggests that in the putative normal state of cuprates, although bulk Meissner effect is absent and resistivity looks normal, the amplitude of the Cooper pairing is still sizable. The transition at Tc0 is driven by the loss of long range phase coherence rather than the disappearance of superconducting condensate. The high field Nernst effect offers a reliable way to determine the upper critical field Hc2 of high Tc cuprates and many unusual properties are uncovered. For cuprates with relatively large hole density (x > 0.15), we found that H c2 is almost temperature independent for T < Tc0. This is in strong contrast to the Hc2 - T relation of conventional superconductors. Moreover, using a scaling analysis, we have demonstrated that H c2 increases with decreasing hole density x in this doping range, implying a stronger pairing potential at lower doping. In the severely underdoped regime (x < 0.12), some new features become apparent and they imply that the vortex Nernst signal is comprised of two distinct contributions. The first is from coherent regions with long range phase coherence and relatively low upper critical field, more like the superconducting phase; the second is from phase incoherent regions with much larger field scales, indicative of the pseudogap phase. As temperature rises, the superconducting phase gives weight to the pseudogap phase. Moreover, the upper critical field Hc2 of the superconducting phase scales with the onset

  17. Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini, Benjamin; Young, Daniel

    2005-01-01

    Contents include the following: JWST/ISIM introduction. Design and analysis challenges for ISIM bonded joints. JWST/ISIM joint designs. Bonded joint analysis. Finite element modeling. Failure criteria and margin calculation. Analysis/test correlation procedure. Example of test data and analysis.

  18. High temperature environmental effects on metals

    NASA Technical Reports Server (NTRS)

    Grisaffe, S. J.; Lowell, C. E.; Stearns, C. A.

    1977-01-01

    The gas turbine engine was used as an example to predict high temperature environmental attack on metals. Environmental attack in a gas turbine engine derives from high temperature, combustion products of the air and fuel burned, and impurities. Of all the modes of attack associated with impurity effects, hot corrosion was the most complicated mechanistically. Solutions to the hot corrosion problem were sought semi-empirically in: (1) improved alloys or ceramics; (2) protective surface coating; (3) use of additives to the engine environment; and (4) air/fuel cleanup to eliminate harmful impurities.

  19. Frustrated phase separation and high temperature superconductivity

    SciTech Connect

    Emery, V.J. ); Kivelson, S.A. . Dept. of Physics)

    1992-01-01

    A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

  20. Frustrated phase separation and high temperature superconductivity

    SciTech Connect

    Emery, V.J.; Kivelson, S.A.

    1992-09-01

    A dilute system of neutral holes in an antiferromagnet separates into a hole-rich and a hole-poor phase. The phase separation is frustrated by long-range Coulomb interactions but, provided the dielectric constant is sufficiently large, there remain large-amplitude low-energy fluctuations in the hole density at intermediate length scales. The extensive experimental evidence showing that this behavior giver, a reasonable picture of high temperature superconductors is surveyed. Further, it is shown that the scattering of mobile holes from the local density fluctuations may account for the anomalous normal-state properties of high temperature superconductors and also provide the mechanism of pairing.

  1. Joint Assimilation of MODIS Surface Temperature and Airbone L-band Microwave Brightness Temperature into Land Surface Model in Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Huang, C.; Wang, W.

    2016-12-01

    Both surface soil moisture and soil temperature are input variables for microwave transmission model which is as observation operator in a land surface data assimilation system. And the optimal estimation of soil moisture in irrigation fields is restricted by a lack of accurate irrigation information. The objective of this study was to evaluate the impact of the joint assimilation of passive microwave brightness temperature and land surface temperature data in a land surface model on soil moisture characterization under unknown (or known) irrigation conditions. A series of data assimilation experiments was conducted to evaluate the joint assimilation of MODIS land surface temperature and airborne Polarimetric L-band Multi-beam Radiometer (PLMR) brightness temperature into the Common Land Model (CoLM) using the Ensemble Kalman Smoother (EnKS). The Daman station, which is located at an irrigated maize farmland in the middle reaches of the Heihe River Basin, is selected in this study to investigate the performance of the proposed assimilation scheme. The following three tests were performed for unknown irrigation and known irrigation conditions: (1) assimilating brightness temperature observations only; (2) assimilating surface temperature observations only; and (3) assimilating both surface temperature and brightness temperature observations. The results show that the joint assimilation of surface temperature and brightness temperature results in the best characterization of soil moisture profiles under unknown irrigation conditions. The joint assimilation RMSE decreases from 0.183 m3/m3 to 0.089 m3/m3 in the 4cm layer, while only brightness temperature assimilation decreases to 0.113 m3/m3. The intake of irrigation information maintains good agreement with the true values, and tremendously reduce the RMSE from 0.183 m3/m3 to 0.065 m3/m3, exceed 50%. However, the single brightness temperature assimilation outperform the joint assimilation scheme under known

  2. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  3. Temperature measurements of high power LEDs

    NASA Astrophysics Data System (ADS)

    Badalan (Draghici), Niculina; Svasta, Paul; Drumea, Andrei

    2016-12-01

    Measurement of a LED junction temperature is very important in designing a LED lighting system. Depending on the junction temperature we will be able to determine the type of cooling system and the size of the lighting system. There are several indirect methods for junction temperature measurement. The method used in this paper is based on the thermal resistance model. The aim of this study is to identify the best device that would allow measuring the solder point temperature and the temperature on the lens of power LEDs. For this purpose four devices for measuring temperature on a high-power LED are presented and compared according to the acquired measurements: an infrared thermal camera from FLIR Systems, a multimeter with K type thermocouple (Velleman DVM4200), an infrared-spot based noncontact thermometer (Raynger ST) and a measurement system based on a digital temperature sensor (DS1821 type) connected to a PC. The measurements were conducted on an 18W COB (chip-on-board) LED. The measurement points are the supply terminals and the lens of the LED.

  4. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    NASA Astrophysics Data System (ADS)

    Baran, Sándor; Möller, Annette

    2017-02-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  5. Bivariate ensemble model output statistics approach for joint forecasting of wind speed and temperature

    NASA Astrophysics Data System (ADS)

    Baran, Sándor; Möller, Annette

    2016-06-01

    Forecast ensembles are typically employed to account for prediction uncertainties in numerical weather prediction models. However, ensembles often exhibit biases and dispersion errors, thus they require statistical post-processing to improve their predictive performance. Two popular univariate post-processing models are the Bayesian model averaging (BMA) and the ensemble model output statistics (EMOS). In the last few years, increased interest has emerged in developing multivariate post-processing models, incorporating dependencies between weather quantities, such as for example a bivariate distribution for wind vectors or even a more general setting allowing to combine any types of weather variables. In line with a recently proposed approach to model temperature and wind speed jointly by a bivariate BMA model, this paper introduces an EMOS model for these weather quantities based on a bivariate truncated normal distribution. The bivariate EMOS model is applied to temperature and wind speed forecasts of the 8-member University of Washington mesoscale ensemble and the 11-member ALADIN-HUNEPS ensemble of the Hungarian Meteorological Service and its predictive performance is compared to the performance of the bivariate BMA model and a multivariate Gaussian copula approach, post-processing the margins with univariate EMOS. While the predictive skills of the compared methods are similar, the bivariate EMOS model requires considerably lower computation times than the bivariate BMA method.

  6. Combinatorial and High Throughput Discovery of High Temperature Piezoelectric Ceramics

    DTIC Science & Technology

    2011-10-10

    new proposed compounds based on our work nearly doubles the known candidate piezoelectric ferroelectric perovskites . Unlike most computational...potential new high temperature ferroelectric piezoelectric perovskite compounds. Our predictions of the Curie temperature (Tc) ranging from 700C...1100C are the highest reported in either experimental or theoretical studies and the number of new proposed compounds based on our work nearly doubles

  7. High temperature experiment for accelerator inertial fusion

    SciTech Connect

    Lee, E.P.

    1985-05-01

    The High Temperature Experiment (HTE) is intended to produce temperatures of 50 to 100 eV in solid density targets driven by heavy ion beams from a multiple beam induction linac. The fundamental variables (particle species, energy, number of beamlets, current and pulse length) must be fixed to achieve the temperature at minimum cost, subject to criteria of technical feasibility and relevance to the development of a Fusion Driver. The conceptual design begins with an assumed (radiation-limited) target temperature and uses limitations due to particle range, beamlet perveance, and target disassembly to bound the allowable values of mass number (A) and energy (E). An accelerator model is then applied to determine the minimum length accelerator, which is a guide to total cost. The accelerator model takes into account limits on transportable charge, maximum gradient, core mass per linear meter, and head-to-tail momentum variation within a pulse.

  8. On-wafer high temperature characterization system

    NASA Astrophysics Data System (ADS)

    Teodorescu, L.; ǎghici, F., Dr; Rusu, I.; Brezeanu, G.

    2016-12-01

    In this work a on-wafer high temperature characterization system for wide bandgap semiconductor devices and circuits has been designed, implemented and tested. The proposed system can perform the wafer temperature adjustment in a large domain, from the room temperature up to 3000C with a resolution better than +/-0.50C. In order to obtain both low-noise measurements and low EMI, the heating element of the wafer chuck is supplied in two ways: one is from a DC linear power supply connected to the mains electricity, another one is from a second DC unit powered by batteries. An original temperature control algorithm, different from classical PID, is used to modify the power applied to the chuck.

  9. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  10. High-Temperature Capacitor Polymer Films

    NASA Astrophysics Data System (ADS)

    Tan, Daniel; Zhang, Lili; Chen, Qin; Irwin, Patricia

    2014-12-01

    Film capacitor technology has been under development for over half a century to meet various applications such as direct-current link capacitors for transportation, converters/inverters for power electronics, controls for deep well drilling of oil and gas, direct energy weapons for military use, and high-frequency coupling circuitry. The biaxially oriented polypropylene film capacitor remains the state-of-the-art technology; however, it is not able to meet increasing demand for high-temperature (>125°C) applications. A number of dielectric materials capable of operating at high temperatures (>140°C) have attracted investigation, and their modifications are being pursued to achieve higher volumetric efficiency as well. This paper highlights the status of polymer dielectric film development and its feasibility for capacitor applications. High-temperature polymers such as polyetherimide (PEI), polyimide, and polyetheretherketone were the focus of our studies. PEI film was found to be the preferred choice for high-temperature film capacitor development due to its thermal stability, dielectric properties, and scalability.

  11. Bimodular high temperature planar oxygen gas sensor

    PubMed Central

    Sun, Xiangcheng; Liu, Yixin; Gao, Haiyong; Gao, Pu-Xian; Lei, Yu

    2014-01-01

    A bimodular planar O2 sensor was fabricated using NiO nanoparticles (NPs) thin film coated yttria-stabilized zirconia (YSZ) substrate. The thin film was prepared by radio frequency (r.f.) magnetron sputtering of NiO on YSZ substrate, followed by high temperature sintering. The surface morphology of NiO NPs film was characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). X-ray diffraction (XRD) patterns of NiO NPs thin film before and after high temperature O2 sensing demonstrated that the sensing material possesses a good chemical and structure stability. The oxygen detection experiments were performed at 500, 600, and 800°C using the as-prepared bimodular O2 sensor under both potentiometric and resistance modules. For the potentiometric module, a linear relationship between electromotive force (EMF) output of the sensor and the logarithm of O2 concentration was observed at each operating temperature, following the Nernst law. For the resistance module, the logarithm of electrical conductivity was proportional to the logarithm of oxygen concentration at each operating temperature, in good agreement with literature report. In addition, this bimodular sensor shows sensitive, reproducible and reversible response to oxygen under both sensing modules. Integration of two sensing modules into one sensor could greatly enrich the information output and would open a new venue in the development of high temperature gas sensors. PMID:25191652

  12. High Summer Temperatures and Mortality in Estonia

    PubMed Central

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    Background On-going climate change is predicted to result in a growing number of extreme weather events—such as heat waves—throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. Methods We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. Results We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. Discussion We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed. PMID:27167851

  13. High Summer Temperatures and Mortality in Estonia.

    PubMed

    Oudin Åström, Daniel; Åström, Christofer; Rekker, Kaidi; Indermitte, Ene; Orru, Hans

    2016-01-01

    On-going climate change is predicted to result in a growing number of extreme weather events-such as heat waves-throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.

  14. First-degree relatives of patients with rheumatoid arthritis exhibit high prevalence of joint symptoms.

    PubMed

    Smolik, Irene; Robinson, David B; Bernstein, Charles N; El-Gabalawy, Hani S

    2013-06-01

    The preclinical period of rheumatoid arthritis (RA) is characterized by the presence of autoantibodies such as anticitrullinated protein antibodies (ACPA) and rheumatoid factor (RF). Little is known about the joint symptom profile preceding onset of RA, and whether symptoms are associated with RA autoantibodies. Because first-degree relatives (FDR) of North American Native (NAN) RA probands exhibit multiple risk factors for development of future RA, we investigated the prevalence of joint symptoms in this high-risk population. We studied 306 FDR of NAN patients with RA, 323 NAN controls (NC), and 293 white controls (WC) having no family history of autoimmune diseases. Study subjects completed a questionnaire that asked whether they had pain, swelling, or morning stiffness in their hand joints, or in other joints. Serum samples were gathered at the same time and tested for the presence of ACPA, RF, and high-sensitivity C-reactive protein levels. In all cases, FDR were significantly more likely to report experiencing joint symptoms compared to the 2 control groups. FDR also exhibited a significantly higher prevalence of RA autoantibodies than the control groups. There were modest trends for joint symptoms to associate with RA autoantibodies, and individuals who were both ACPA-positive and RF-positive had the highest prevalence of joint symptoms. FDR of NAN patients with RA have a higher prevalence of joint symptoms compared to individuals with no family history of autoimmune disease. This finding is only partially explained by a high prevalence of RA autoantibodies in the FDR.

  15. Behaviour of fibre-reinforced high-performance concrete in exterior beam-column joint

    NASA Astrophysics Data System (ADS)

    Muthupriya, P.; Boobalan, S. C.; Vishnuram, B. G.

    2014-09-01

    This paper presents the effect of reinforced high performance concrete (HPC) in exterior beam-column joint with and without fibre under monotonic loading. In this experimental investigation, cross-diagonal bars have been provided at the joint for reducing the congestion of reinforcement in joints, and also M75 grade of concrete with optimum mix proportion of 10 % silica fume and 0.3 % glass fibre was used. Four exterior beam-column joint sub-assemblages were tested. The specimens were divided into two types based on the reinforcement detailing. Type A comprises two joint sub-assemblages with joint detailing as per construction code of practice in India (IS 456-2000), and Type B comprises two joint sub-assemblages with joint detailing as per ductile detailing code of practice in India (IS 13920-1993). In each group there was one specimen of control mix and the remaining one specimen of fibre-reinforced mix. All the test specimens were designed to satisfy the strong column-weak beam concept. The performances of specimens were compared with the control mix and the fibre-reinforced mix. The results show that exterior beam-column joint specimens with silica fume and glass fibre in the HPC mix showed better performance.

  16. High-Temperature Adhesive Strain Gage Developed

    NASA Technical Reports Server (NTRS)

    Pereira, J. Michael; Roberts, Gary D.

    1997-01-01

    Researchers at the NASA Lewis Research Center have developed a unique strain gage and adhesive system for measuring the mechanical properties of polymers and polymer composites at elevated temperatures. This system overcomes some of the problems encountered in using commercial strain gages and adhesives. For example, typical commercial strain gage adhesives require a postcure at temperatures substantially higher than the maximum test temperature. The exposure of the specimen to this temperature may affect subsequent results, and in some cases may be higher than the glass-transition temperature of the polymer. In addition, although typical commercial strain gages can be used for short times at temperatures up to 370 C, their long-term use is limited to 230 C. This precludes their use for testing some high-temperature polyimides near their maximum temperature capability. Lewis' strain gage and adhesive system consists of a nonencapsulated, unbacked gage grid that is bonded directly to the polymer after the specimen has been cured but prior to the normal postcure cycle. The gage is applied with an adhesive specially formulated to cure under the specimen postcure conditions. Special handling, mounting, and electrical connection procedures were developed, and a fixture was designed to calibrate each strain gage after it was applied to a specimen. A variety of tests was conducted to determine the performance characteristics of the gages at elevated temperatures on PMR-15 neat resin and titanium specimens. For these tests, which included static tension, thermal exposure, and creep tests, the gage and adhesive system performed within normal strain gage specifications at 315 C. An example of the performance characteristics of the gage can be seen in the figure, which compares the strain gage measurement on a polyimide specimen at 315 C with an extensometer measurement.

  17. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  18. Gravimeter using high-temperature superconductor bearing.

    SciTech Connect

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  19. High Temperature Materials Interim Data Qualification Report

    SciTech Connect

    Nancy Lybeck

    2010-08-01

    ABSTRACT Projects for the very high temperature reactor (VHTR) Technology Development Office provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. The VHTR program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are qualified for use, stored in a readily accessible electronic form, and analyzed to extract useful results. This document focuses on the first NDMAS objective. It describes the High Temperature Materials characterization data stream, the processing of these data within NDMAS, and reports the interim FY2010 qualification status of the data. Data qualification activities within NDMAS for specific types of data are determined by the data qualification category assigned by the data generator. The High Temperature Materials data are being collected under NQA-1 guidelines, and will be qualified data. For NQA-1 qualified data, the qualification activities include: (1) capture testing, to confirm that the data stored within NDMAS are identical to the raw data supplied, (2) accuracy testing to confirm that the data are an accurate representation of the system or object being measured, and (3) documenting that the data were collected under an NQA-1 or equivalent Quality Assurance program. Currently, data from two test series within the High Temperature Materials data stream have been entered into the NDMAS vault: 1. Tensile Tests for Sm (i.e., Allowable Stress) Confirmatory Testing – 1,403,994 records have been inserted into the NDMAS database. Capture testing is in process. 2. Creep-Fatigue Testing to Support Determination of Creep-Fatigue Interaction Diagram – 918,854 records have been processed and inserted into the NDMAS database. Capture testing is in process.

  20. Performance testing of elastomeric seal materials under low and high temperature conditions: Final report

    SciTech Connect

    BRONOWSKI,DAVID R.

    2000-06-01

    The US Department of Energy Offices of Defense Programs and Civilian Radioactive Waste Management jointly sponsored a program to evaluate elastomeric O-ring seal materials for radioactive material shipping containers. The report presents the results of low- and high-temperature tests conducted on 27 common elastomeric compounds.

  1. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  2. Improved high-temperature silicide coatings

    NASA Technical Reports Server (NTRS)

    Klopp, W. D.; Stephens, J. R.; Stetson, A. R.; Wimber, R. T.

    1969-01-01

    Special technique for applying silicide coatings to refractory metal alloys improves their high-temperature protective capability. Refractory metal powders mixed with a baked-out organic binder and sintered in a vacuum produces a porous alloy layer on the surface. Exposing the layer to hot silicon converts it to a silicide.

  3. Lightweight High-Temperature Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Wagner, W. R.; Fasheh, J. I.

    1985-01-01

    Fine Ni/Cr fibers sintered into corrosion-resistant, fireproof batt. Possible applications include stoves, furnaces, safes, fire clothing, draperies in public buildings, wall firebreaks, airplane walls, and jetengine components. New insulation takes advantage of some of same properties of nickel/chromium alloy useful in heating elements in toasters, namely, corrosion and oxidation resistance even at high temperatures.

  4. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  5. High temperature oxidation resistant cermet compositions

    NASA Technical Reports Server (NTRS)

    Phillips, W. M. (Inventor)

    1976-01-01

    Cermet compositions are designed to provide high temperature resistant refractory coatings on stainless steel or molybdenum substrates. A ceramic mixture of chromium oxide and aluminum oxide form a coating of chromium oxide as an oxidation barrier around the metal particles, to provide oxidation resistance for the metal particles.

  6. High-temperature adhesives for polyimide films

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Slemp, W. S.

    1979-01-01

    Linear condensation polyimides which are high-temperature polymers show promise as adhesives which form flexible film coatings compatible with polyimide films. Materials are advantageous since they can be supplied as flexible tape, already B-staged and ready for bonding.

  7. Nuclear and quark matter at high temperature

    NASA Astrophysics Data System (ADS)

    Biró, Tamás S.; Jakovác, Antal; Schram, Zsolt

    2017-03-01

    We review important ideas on nuclear and quark matter description on the basis of high-temperature field theory concepts, like resummation, dimensional reduction, interaction scale separation and spectral function modification in media. Statistical and thermodynamical concepts are spotted in the light of these methods concentrating on the -partially still open- problems of the hadronization process.

  8. High-temperature carbidization of carboniferous rocks

    NASA Astrophysics Data System (ADS)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  9. Enamel for high-temperature superalloys

    NASA Technical Reports Server (NTRS)

    Levin, H.; Lent, W. E.

    1977-01-01

    Desired optical and high temperature enamel properties are obtained with glasses prepared from the system Li2O-ZrO2-nSiO2. Molar compositions range from n=4 to n=1.3, to which are added minor amounts in varying combinations of alumina, alkali fluorides, boric oxide, alkali oxides, and akaline earth oxides.

  10. Space applications of high temperature superconductivity technology

    NASA Technical Reports Server (NTRS)

    Connolly, D. J.; Aron, P. R.; Leonard, R. F.; Wintucky, E. G.

    1991-01-01

    A review is presented of the present status of high temperature superconductivity (HTS) technology and related areas of potential space application. Attention is given to areas of application that include microwave communications, cryogenic systems, remote sensing, and space propulsion and power. Consideration is given to HTS phase shifters, miniaturization of microwave filters, far-IR bolometers, and magnetic refrigeration using flux compression.

  11. HYFIRE: fusion-high temperature electrolysis system

    SciTech Connect

    Fillo, J A; Powell, J R; Steinberg, M; Benenati, R; Dang, V D; Horn, F; Isaacs, H; Lazareth, O; Makowitz, H; Usher, J

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400/sup 0/C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800/sup 0/C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H/sub 2/ and O/sub 2/, electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%.

  12. Braze alloys for high temperature service

    NASA Technical Reports Server (NTRS)

    Lindberg, R. A.; Mckisson, R. L.; Erwin, G., Jr.

    1973-01-01

    Two groups of refractory metal compositions have been developed that are very useful as high temperature brazing alloys for sealing between ceramic and metal parts. Each group consists of various compositions of three selected refractory metals which, when combined, have characteristics required of good braze alloys.

  13. High-temperature pump-motor assembly

    NASA Technical Reports Server (NTRS)

    Colker, C.; Waldron, W.

    1971-01-01

    Assembly pumps liquid sodium-potassium /NaK/ eutectic at 950 K for up to 20,000 hours. Design features include - high operating-temperature capability, zero leakage, process fluid lubricant/coolant, insulation system compatible with ionizing radiation environments, and reliability and long life without maintenance.

  14. Helium-cooled high temperature reactors

    SciTech Connect

    Trauger, D.B.

    1985-01-01

    Experience with several helium cooled reactors has been favorable, and two commercial plants are now operating. Both of these units are of the High Temperature Graphite Gas Cooled concept, one in the United States and the other in the Federal Republic of Germany. The initial helium charge for a reactor of the 1000 MW(e) size is modest, approx.15,000 kg.

  15. Oxidation-Strengthened High-Temperature Rivets

    NASA Technical Reports Server (NTRS)

    Mclemore, R. L.

    1982-01-01

    Shear strength of titanium-niobium rivets improves with oxidation. Ti-Nb rivets developed for fastening parts of Space Shuttle thrustors may be suitable also for other high-temperature applications in oxidizing environments--for example, in burner cans of commercial jet engines and boilers and retorts for coal gasification systems.

  16. High Temperature Langasite SAW Oxygen Sensor

    SciTech Connect

    Zheng, Peng; Chin, Tao-Lun; Greve, David; Oppenheim, Irving; Malone, Vanessa; Cao, Limin

    2011-08-01

    High-temperature langasite SAW oxygen sensors using sputtered ZnO as a resistive gas-sensing layer were fabricated and tested. Sensitivity to oxygen gas was observed between 500°C to 700°C, with a sensitivity peak at about 625°C, consistent with the theoretical predictions of the acoustoelectric effect.

  17. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  18. Robust Joining and Assembly of Ceramic Matrix Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2003-01-01

    Advanced ceramic matrix composites (CMCs) are under active consideration for use in a wide variety of high temperature applications within the aerospace, energy, and nuclear industries. The engineering designs of CMC components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in ceramic matrix composites will be presented. A wide variety of ceramic composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and mechanical properties of joints in melt infiltrated and CVI Sic matrix composites will be reported. Various joint design philosophies and design issues in joining of composites will be discussed.

  19. Substrates For High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1988-01-01

    Proposed hot-dipping process prepares materials well suited to serve as substrates for high-temperature superconductors. Makes it possible to produce substrates combining properties needed for given application, such as flexibility, strength, long grains, and <001> crystal orientation. Properties favor growth of superconductive films carrying high current and fabricated in variety of useful shapes. Used in making solar cells, described in "Hot-Dipped Metal Films as Epitaxial Substrates" (NPO-15904).

  20. High temperature well bore cement slurry

    SciTech Connect

    Nahm, J.J.W.; Vinegar, H.J.; Karanikas, J.M.; Wyant, R.E.

    1993-07-13

    A low density well bore cement slurry composition is described suitable for cementing well bores with high reservoir temperatures comprising: (a) a high alumina cement in an amount of about 40 pounds per barrel of slurry or greater: (b) graphite in an amount greater than about one quarter, by volume, of the solids in the cement slurry; and (c) and a carrier fluid comprising drilling mud.

  1. High pressure and high temperature behaviour of ZnO

    SciTech Connect

    Thakar, Nilesh A.; Bhatt, Apoorva D.; Pandya, Tushar C.

    2014-04-24

    The thermodynamic properties with the wurtzite (B4) and rocksalt (B1) phases of ZnO under high pressures and high temperatures have been investigated using Tait's Equation of state (EOS). The effects of pressures and temperatures on thermodynamic properties such as bulk modulus, thermal expansivity and thermal pressure are explored for both two structures. It is found that ZnO material gradually softens with increase of temperature while it hardens with the increment of the pressure. Our predicted results of thermodynamics properties for both the phases of ZnO are in overall agreement with the available data in the literature.

  2. Urania vapor composition at very high temperatures

    SciTech Connect

    Pflieger, Rachel; Colle, Jean-Yves; Iosilevskiy, Igor; Sheindlin, Michael

    2011-02-01

    Due to the chemically unstable nature of uranium dioxide its vapor composition at very high temperatures is, presently, not sufficiently studied though more experimental knowledge is needed for risk assessment of nuclear reactors. We used laser vaporization coupled to mass spectrometry of the produced vapor to study urania vapor composition at temperatures in the vicinity of its melting point and higher. The very good agreement between measured melting and freezing temperatures and between partial pressures measured on the temperature increase and decrease indicated that the change in stoichiometry during laser heating was very limited. The evolutions with temperature (in the range 2800-3400 K) of the partial pressures of the main vapor species (UO{sub 2}, UO{sub 3}, and UO{sub 2}{sup +}) were compared with theoretically predicted evolutions for equilibrium noncongruent gas-liquid and gas-solid phase coexistences and showed very good agreement. The measured main relative partial pressure ratios around 3300 K all agree with calculated values for total equilibrium between condensed and vapor phases. It is the first time the three main partial pressure ratios above stoichiometric liquid urania have been measured at the same temperature under conditions close to equilibrium noncongruent gas-liquid phase coexistence.

  3. High temperature annealing of ion irradiated tungsten

    DOE PAGES

    Ferroni, Francesco; Yi, Xiaoou; Arakawa, Kazuto; ...

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source andmore » were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.« less

  4. High temperature annealing of ion irradiated tungsten

    SciTech Connect

    Ferroni, Francesco; Yi, Xiaoou; Fitzgerald, Steven P.; Edmondson, Philip D.; Roberts, Steve G.

    2015-03-21

    In this study, transmission electron microscopy of high temperature annealing of pure tungsten irradiated by self-ions was conducted to elucidate microstructural and defect evolution in temperature ranges relevant to fusion reactor applications (500–1200°C). Bulk isochronal and isothermal annealing of ion irradiated pure tungsten (2 MeV W+ ions, 500°C, 1014 W+/cm2) with temperatures of 800, 950, 1100 and 1400°C, from 0.5 to 8 h, was followed by ex situ characterization of defect size, number density, Burgers vector and nature. Loops with diameters larger than 2–3 nm were considered for detailed analysis, among which all loops had View the MathML source and were predominantly of interstitial nature. In situ annealing experiments from 300 up to 1200°C were also carried out, including dynamic temperature ramp-ups. These confirmed an acceleration of loop loss above 900°C. At different temperatures within this range, dislocations exhibited behaviour such as initial isolated loop hopping followed by large-scale rearrangements into loop chains, coalescence and finally line–loop interactions and widespread absorption by free-surfaces at increasing temperatures. An activation energy for the annealing of dislocation length was obtained, finding Ea=1.34±0.2 eV for the 700–1100°C range.

  5. New Waste Calciner High Temperature Operation

    SciTech Connect

    Swenson, M.C.

    2000-09-01

    A new Calciner flowsheet has been developed to process the sodium-bearing waste (SBW) in the INTEC Tank Farm. The new flowsheet increases the normal Calciner operating temperature from 500 C to 600 C. At the elevated temperature, sodium in the waste forms stable aluminates, instead of nitrates that melt at calcining temperatures. From March through May 2000, the new high-temperature flowsheet was tested in the New Waste Calcining Facility (NWCF) Calciner. Specific test criteria for various Calciner systems (feed, fuel, quench, off-gas, etc.) were established to evaluate the long-term operability of the high-temperature flowsheet. This report compares in detail the Calciner process data with the test criteria. The Calciner systems met or exceeded all test criteria. The new flowsheet is a visible, long-term method of calcining SBW. Implementation of the flowsheet will significantly increase the calcining rate of SBW and reduce the amount of calcine produced by reducing the amount of chemical additives to the Calciner. This will help meet the future waste processing milestones and regulatory needs such as emptying the Tank Farm.

  6. Dynamic high-temperature-phosphor thermometry

    SciTech Connect

    Tobin, K.W.; Capps, G.J.; Muhs, J.D.; Smith, D.B.; Cates, M.R.

    1990-08-01

    Dynamic surface phosphor thermometry is being investigated as part of a continuing effort by the Applied Technology Division (ATD) at Oak Ridge National Laboratory (ORNL) to develop and apply thermographic phosphor technology to an ever expanding thermometry field. The purpose of this program is to develop dynamic surface phosphor thermometry to a stage where funding proposals can be strengthened by establishing a strong information base and demonstrating a sound capability. As a new technology development in an area well established by ATD/ORNL, dynamic thermometry is extremely important for high-temperature materials, superconducting materials, advanced turbomachinery, space vehicles, industrial process equipment, and other development areas. This laboratory project illustrated the technique of continuously monitoring dynamic temperature excursions using phosphor thermography. Temperature-increase rates on the order of 100 or more degrees centigrade per millisecond were measured, which illustrated a temporal response of >0.001 s. This exceeded by a factor of ten the goal or the project and gave strong encouragement for further development of the technology. Important to the project, too, was the establishment of a clear analytical base for fluorescent-ratio data. Using the results of this study, specific solutions to dynamic-temperature-measurement problems in many application areas can be developed. In addition, the dynamic-thermographic technology can be coupled with strain measurement, two-dimensional analysis, and thermometry at very high temperatures to add interrelating remote measurement tools for systems that currently cannot be effectively studied. 13 refs., 11 figs.

  7. High temperature intermetallic binders for HVOF carbides

    SciTech Connect

    Shaw, K.G.; Gruninger, M.F.; Jarosinski, W.J.

    1994-12-31

    Gas turbines technology has a long history of employing the desirable high temperature physical attributes of ceramic-metallic (cermet) materials. The most commonly used coatings incorporate combinations of WC-Co and Cr{sub 3}C{sub 2}-NiCr, which have also been successfully utilized in other non-turbine coating applications. Increased turbine operating temperatures and other high temperature service conditions have made apparent the attractive notion of increasing the temperature capability and corrosion resistance of these coatings. In this study the intermetallic binder NiAl has been used to replace the cobalt and NiCr constituents of conventional WC and Cr{sub 3}C{sub 2} cermet powders. The composite carbide thermal spray powders were fabricated for use in the HVOF coating process. The structure of HVOF deposited NiAl-carbide coatings are compared directly to the more familiar WC-Co and Cr{sub 3}C{sub 2}-NiCr coatings using X-ray diffraction, back-scattered electron imaging (BEI) and electron dispersive spectroscopy (EDS). Hardness variations with temperature are reported and compared between the NiAl and Co/NiCr binders.

  8. Advanced high temperature thermoelectrics for space power

    NASA Technical Reports Server (NTRS)

    Lockwood, A.; Ewell, R.; Wood, C.

    1981-01-01

    Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.

  9. High temperature furnace modeling and performance verifications

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.

    1992-01-01

    Analytical, numerical, and experimental studies were performed on two classes of high temperature materials processing sources for their potential use as directional solidification furnaces. The research concentrated on a commercially available high temperature furnace using a zirconia ceramic tube as the heating element and an Arc Furnace based on a tube welder. The first objective was to assemble the zirconia furnace and construct parts needed to successfully perform experiments. The 2nd objective was to evaluate the zirconia furnace performance as a directional solidification furnace element. The 3rd objective was to establish a data base on materials used in the furnace construction, with particular emphasis on emissivities, transmissivities, and absorptivities as functions of wavelength and temperature. A 1-D and 2-D spectral radiation heat transfer model was developed for comparison with standard modeling techniques, and were used to predict wall and crucible temperatures. The 4th objective addressed the development of a SINDA model for the Arc Furnace and was used to design sample holders and to estimate cooling media temperatures for the steady state operation of the furnace. And, the 5th objective addressed the initial performance evaluation of the Arc Furnace and associated equipment for directional solidification. Results of these objectives are presented.

  10. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect

    J. C. Crepeau; J. L. Rempe; J. E. Daw; D. L. Knudson; K. G. Condie; S. C. Wilkins

    2008-03-01

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped lybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 °C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  11. Enhancements to High Temperature In-Pile Thermocouple Performance

    SciTech Connect

    J.C. Crepeau; J.L. Rempe; J.E. Daw; D.L. Knudson: K.G. Condie; S.C. Wilkins

    2008-03-31

    A joint University of Idaho (UI) and Idaho National Laboratory (INL) University Nuclear Research Initiative (UNERI) was to initiated to extend initial INL efforts to develop doped molybdenum/niobium alloy High Temperature Irradiation Resistant Thermocouples (HTIR-TCs). The overall objective of this UNERI was to develop recommendations for an optimized thermocouple design for high temperature, long duration, in-pile testing by expanding upon results from initial INL efforts. Tasks to quantify the impact of candidate enhancements, such as alternate alloys, alternate geometries, and alternate thermocouple fabrication techniques, on thermocouple performance were completed at INL's High Temperature Test Laboratory (HTTL), a state of the art facility equipped with specialized equipment and trained staff in the area of high temperature instrumentation development and evaluation. Key results of these evaluations, which are documented in this report, are as follows. The doped molybdenum and Nb-1%Zr, which were proposed in the initial INL HTIR-TC design, were found to retain ductility better than the developmental molybdenum-low niobium alloys and the niobium-low molybdenum alloys evaluated. Hence, the performance and lower cost of the commercially available KW-Mo makes a thermocouple containing KW-Mo and Nb-1%Zr the best option at this time. HTIR-TCs containing larger diameter wires offer the potential to increase HTIR-TC stability and reliability at higher temperatures. HTIR-TC heat treatment temperatures and times should be limited to not more than 100 C above the proposed operating temperatures and to durations of at least 4 to 5 hours. Preliminary investigations suggest that the performance of swaged and loose assembly HTIR-TC designs is similar. However, the swaged designs are less expensive and easier to construct. In addition to optimizing HTIR-TC performance, This UNERI project provided unique opportunities to several University of Idaho students, allowing them to

  12. High temperature superconductors applications in telecommunications

    SciTech Connect

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  13. High temperature superconductors applications in telecommunications

    NASA Technical Reports Server (NTRS)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  14. Temperature and CO2 emission scenarios from high latitude peatlands

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Hartland, A.; Mariethoz, G.

    2013-12-01

    Soil organic carbon (OC) represents the largest terrestrial carbon store (~twice the mass of atmospheric C), plays a key role in the carbon cycle, and is thought to be susceptible to anthropogenic climate change, yet the sensitivity of this carbon reservoir to potential temperature rises remains poorly quantified. Current estimates are mostly based upon incubation studies in specific locations and for relatively short time periods. Thus, the geographic heterogeneity in soil compositions, microbial plasticity and local climate variation are not always well captured. Thermodynamic theory of soil carbon assimilation suggests that microbial sensitivity to warming is only significant for low quality (i.e. less decomposable) OC, suggesting that changes in OC processing during the warming trend of the last ~40 years will have been facilitated mostly by very low quality carbon. We apply this kinetic theory of OC quality to estimate the likely response of high lattitude peatlands and mires in the Northern Hemipshere to warming scenarios of 0.5-1.5 °C by deriving a joint probability distribution of soil respiration and temperature values from a database of over 100 studies. Our data imply that although a feedback between CO2 efflux from northern peatlands and temperature exists, the potential increases in CO2 efflux from peatlands in high latitude climates due to global warming may have been overstated.

  15. High-temperature polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    1990-01-01

    Polymers research at the NASA Lewis Research Center has produced high-temperature, easily processable resin systems, such as PMR-15. In addition, the Polymers Branch has investigated ways to improve the mechanical properties of polymers and the microcracking resistance of polymer matrix composites in response to industry need for new and improved aeropropulsion materials. Current and future research in the Polymers Branch is aimed at advancing the upper use temperature of polymer matrix composites to 700 F and beyond by developing new resins, by examining the use of fiber reinforcements other than graphite, and by developing coatings for polymer matrix composites to increase their oxidation resistance.

  16. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  17. Coal transformation under high-temperature catagenesis

    SciTech Connect

    Melenevsky, V.N.; Sokol, E.V.; Fomin, A.N.

    2006-07-01

    In this paper we consider products of natural pyrolysis of lignite, which resulted from the high-temperature spontaneous combustion of spoil heaps of the Chelyabinsk coal basin. These products were studied by pyrolysis, element and petrographic analyses, chromatomass spectrometry, and X-ray diffraction method. We have established that under reducing conditions, the degree of pyrogenic coal transformation and the composition of pyrolysis products vary greatly, from graphite-like phases to bitumens, and depend on the temperature and degree of the system openness.

  18. The moon as a high temperature condensate

    NASA Technical Reports Server (NTRS)

    Anderson, D. L.

    1972-01-01

    The accretion during condensation mechanism is used to explain the differences in composition of the terrestrial planets and the moon. Many of the properties of the moon, including the enrichment in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the depletion in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula. Thermodynamic calculations show that Ca, Al and Ti rich compounds condense first in a cooling nebula. The high temperature mineralogy is gehlenite, spinel perovskite, Ca-Al-rich pyroxenes and anorthite. The model is consistent with extensive early melting, shallow melting at 3 A.E. and with presently high speed internal temperatures. It is predicted that the outer 250 km is rich in plagioclase and FeO. The low iron content of the interior in this model raises the interior temperatures estimated from electrical conductivity by some 800 C. The lunar crust is 80 percent gabbroic anorthosite, 20 percent basalt and is about 250-270 km thick. The lunar mantle is probably composed of spinel, merwinite and diopside with a density of 3.4 g/cu cm.

  19. High temperature dynamic engine seal technology development

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Dellacorte, Christopher; Machinchick, Michael; Mutharasan, Rajakkannu; Du, Guang-Wu; Ko, Frank; Sirocky, Paul J.; Miller, Jeffrey H.

    1992-01-01

    Combined cycle ramjet/scramjet engines being designed for advanced hypersonic vehicles, including the National Aerospace Plane (NASP), require innovative high temperature dynamic seals to seal the sliding interfaces of the articulated engine panels. New seals are required that will operate hot (1200 to 2000 F), seal pressures ranging from 0 to 100 psi, remain flexible to accommodate significant sidewall distortions, and resist abrasion over the engine's operational life. This report reviews the recent high temperature durability screening assessments of a new braided rope seal concept, braided of emerging high temperature materials, that shows promise of meeting many of the seal demands of hypersonic engines. The paper presents durability data for: (1) the fundamental seal building blocks, a range of candidate ceramic fiber tows; and for (2) braided rope seal subelements scrubbed under engine simulated sliding, temperature, and preload conditions. Seal material/architecture attributes and limitations are identified through the investigations performed. The paper summarizes the current seal technology development status and presents areas in which future work will be performed.

  20. High-temperature microphone system. [for measuring pressure fluctuations in gases at high temperature

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1979-01-01

    Pressure fluctuations in air or other gases in an area of elevated temperature are measured using a condenser microphone located in the area of elevated temperature and electronics for processing changes in the microphone capacitance located outside the area the area and connected to the microphone by means of high-temperature cable assembly. The microphone includes apparatus for decreasing the undesirable change in microphone sensitivity at high temperatures. The high temperature cable assembly operates as a half-wavelength transmission line in an AM carrier system and maintains a large temperature gradient between the two ends of the cable assembly. The processing electronics utilizes a voltage controlled oscillator for automatic tuning thereby increasing the sensitivity of the measuring apparatus.

  1. The metallurgy of high temperature alloys

    NASA Technical Reports Server (NTRS)

    Tien, J. K.; Purushothaman, S.

    1976-01-01

    Nickel-base, cobalt-base, and high nickel and chromium iron-base alloys are dissected, and their microstructural and chemical components are assessed with respect to the various functions expected of high temperature structural materials. These functions include the maintenance of mechanical integrity over the strain-rate spectrum from creep resistance through fatigue crack growth resistance, and such alloy stability expectations as microstructural coarsening resistance, phase instability resistance and oxidation and corrosion resistance. Special attention will be given to the perennial conflict and trade-off between strength, ductility and corrosion and oxidation resistance. The newest developments in the constitution of high temperature alloys will also be discussed, including aspects relating to materials conservation.

  2. High temperature aircraft research furnace facilities

    NASA Technical Reports Server (NTRS)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  3. Innovations in high-temperature particulate filtration

    SciTech Connect

    Lippert, T.

    1997-05-01

    Fluidized-bed combustion and coal gasification expose sensitive equipment, such as high-speed turbines, to hot combustion offgases. In order to prevent erosion, corrosion, and other damage to sensitive equipment, such systems now incorporate high-temperature particulate filters. One device often considered for such applications uses a design similar to a baghouse (i.e., multiple banks of porous filter bags that remove particulate from gas streams). In this case, however, instead of polyester or teflon fabric, the filter elements are made of rigid ceramic or similar materials. These devices are sometimes called `candle filters,` and the individual ceramic filter elements are frequently called `candles.` Three high-temperature applications of candle filters are described here. 2 refs., 3 figs.

  4. High temperature strategy for oxide nanoparticle synthesis.

    PubMed

    Mialon, Geneviève; Gohin, Morgan; Gacoin, Thierry; Boilot, Jean-Pierre

    2008-12-23

    Compared with noble metals and quantum dots, dielectric complex oxide nanoparticles are significantly less popular due to their high crystallization temperature, making difficult their synthesis in the 10-100 nm range for which surface effects are reduced. We report here an original process permitting thermal annealing of complex oxide nanoparticles at high temperature without aggregation and growth. Thus, after thermal treatment, these annealed particles can be dispersed in water, leading to concentrated aqueous colloidal dispersions containing isolated highly crystalline particles. This contrasts with usual colloidal techniques for which the production of particles in the 10-100 nm range generally leads to poorly crystallized particles, especially for multicomponent oxides. From two examples, we show some possibilities offered by this type of process. This concerns the synthesis of lanthanide-doped oxide nanoparticles exhibiting a bulk behavior for their luminescence properties and the control of the composition in nitrogen-doped titanium oxide particles without sintering and size change.

  5. High-Temperature Graphite/Phenolic Composite

    NASA Technical Reports Server (NTRS)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  6. Knee joint distraction compared with high tibial osteotomy: a randomized controlled trial.

    PubMed

    van der Woude, J A D; Wiegant, K; van Heerwaarden, R J; Spruijt, S; van Roermund, P M; Custers, R J H; Mastbergen, S C; Lafeber, F P J G

    2017-03-01

    Both, knee joint distraction as a relatively new approach and valgus-producing opening-wedge high tibial osteotomy (HTO), are knee-preserving treatments for knee osteoarthritis (OA). The efficacy of knee joint distraction compared to HTO has not been reported. Sixty-nine patients with medial knee joint OA with a varus axis deviation of <10° were randomized to either knee joint distraction (n = 23) or HTO (n = 46). Questionnaires were assessed at baseline and 3, 6, and 12 months. Joint space width (JSW) as a surrogate measure for cartilage thickness was determined on standardized semi-flexed radiographs at baseline and 1-year follow-up. All patient-reported outcome measures (PROMS) improved significantly over 1 year (at 1 year p < 0.02) in both groups. At 1 year, the HTO group showed slightly greater improvement in 4 of the 16 PROMS (p < 0.05). The minimum medial compartment JSW increased 0.8 ± 1.0 mm in the knee joint distraction group (p = 0.001) and 0.4 ± 0.5 mm in the HTO group (p < 0.001), with minimum JSW improvement in favour of knee joint distraction (p = 0.05). The lateral compartment showed a small increase in the knee joint distraction group and a small decrease in the HTO group, leading to a significant increase in mean JSW for knee joint distraction only (p < 0.02). Cartilaginous repair activity, as indicated by JSW, and clinical outcome improvement occurred with both, knee joint distraction and HTO. These findings suggest that knee joint distraction may be an alternative therapy for medial compartmental OA with a limited mechanical leg malalignment. Randomized controlled trial, Level I.

  7. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylene used in total joint replacements.

    PubMed

    Kurtz, S M; Villarraga, M L; Herr, M P; Bergström, J S; Rimnac, C M; Edidin, A A

    2002-09-01

    Three series of uniaxial tension and compression tests were conducted on two conventional and two highly crosslinked ultra-high molecular weight polyethylenes (UHMWPEs) all prepared from the same lot of medical grade GUR 1050. The conventional materials were unirradiated (control) and gamma irradiated in nitrogen with a dose of 30 kGy. The highly crosslinked UHMWPEs were gamma irradiated at room temperature with 100 kGy and then thermally processed by either annealing below the melt transition at 100 degrees C or by remelting above the melt transition at 150 degrees C. The true stress-strain behavior of the four UHMWPE materials was characterized as a function of strain rate (between 0.02 and 0.10 s(-1)) and test temperature (20-60 degrees C). Although annealing and remelting of UHMWPE are primarily considered as methods of improving oxidation resistance, thermal processing was found to significantly impact the crystallinity, and hence the mechanical behavior, of the highly crosslinked UHMWPE. The crystallinity and radiation dose were key predictors of the uniaxial yielding, plastic flow, and failure properties of conventional and highly crosslinked UHMWPEs. The thermomechanical behavior of UHMWPE was accurately predicted using an Arrhenius model, and the associated activation energies for thermal softening were related to the crystallinity of the polymers. The conventional and highly crosslinked UHMWPEs exhibited low strain rate dependence in power law relationships, comparable to metals. In light of the unifying trends observed in the true stress-strain curves of the four materials investigated in this study, both crosslinking (governed by the gamma radiation dose) and crystallinity (governed by the thermal processing) were found to be useful predictors of the mechanical behavior of UHMWPE for a wide range of test temperatures and rates. The data collected in this study will be used to develop constitutive models based on the physics of polymer systems for

  8. High Temperature Fluoride Salt Test Loop

    SciTech Connect

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  9. Improved high-temperature resistant matrix resins

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Chang, G. E.; Wright, W. F.; Ueda, K.; Orell, M. K.

    1989-01-01

    A study was performed with the objective of developing matrix resins that exhibit improved thermo-oxidative stability over state-of-the-art high temperature resins for use at temperatures up to 644 K (700 F) and air pressures up to 0.7 MPa (100 psia). The work was based upon a TRW discovered family of polyimides currently licensed to and marketed by Ethyl Corporation as EYMYD(R) resins. The approach investigated to provide improved thermo-oxidative properties was to use halogenated derivatives of the diamine, 2, 2-bis (4-(4-aminophenoxy)phenyl) hexafluoropropane (4-BDAF). Polyimide neat resins and Celion(R) 12,000 composites prepared from fluorine substituted 4-BDAF demonstrated unexpectedly lower glass transition temperatures (Tg) and thermo-oxidative stabilities than the baseline 4-BDAF/PMDA polymer.

  10. Opacification of high temperature fibrous insulation

    NASA Technical Reports Server (NTRS)

    Miller, W. C.; Collins, J. O.

    1984-01-01

    A study was conducted to determine the merits of adding particulate materials to silica fiber felts to increase their resistance to the passage of thermal radiation. Laboratory samples containing 5, 10, and 15 percent of chromium oxide, silicon carbide, and titanium dioxide were prepared and evaluated in accordance with ASTM C-518 thermal conductivity test method at 425 C (800 F) mean temperature. The titania particles averaging 3-4 micrometers in diameter were found to be the most effective. This was followed by a short plant run, in order to confirm the initial results on the laboratory samples. These samples were tested according to ASTM C-201 High Temperature Calorimeter from 93 C to 760 C (200 F to 1400 F) mean temperature. The ten percent by weight of titania resulted in an optimum effectiveness, and reduced the conductivity over 20% at 760 C (1400 F).

  11. Strain sensing technology for high temperature applications

    NASA Technical Reports Server (NTRS)

    Williams, W. Dan

    1993-01-01

    This review discusses the status of strain sensing technology for high temperature applications. Technologies covered are those supported by NASA such as required for applications in hypersonic vehicles and engines, advanced subsonic engines, as well as material and structure development. The applications may be at temperatures of 540 C (1000 F) to temperatures in excess of 1400 C (2500 F). The most promising technologies at present are the resistance strain gage and remote sensing schemes. Resistance strain gages discussed include the BCL gage, the LaRC compensated gage, and the PdCr gage. Remote sensing schemes such as laser based speckle strain measurement, phase-shifling interferometry, and x-ray extensometry are discussed. Present status and limitations of these technologies are presented.

  12. Toroidal microinstability studies of high temperature tokamaks

    SciTech Connect

    Rewoldt, G.; Tang, W.M.

    1989-07-01

    Results from comprehensive kinetic microinstability calculations are presented showing the effects of toroidicity on the ion temperature gradient mode and its relationship to the trapped-electron mode in high-temperature tokamak plasmas. The corresponding particle and energy fluxes have also been computed. It is found that, although drift-type microinstabilities persist over a wide range of values of the ion temperature gradient parameter /eta//sub i/ /equivalent to/ (dlnT/sub i//dr)/(dlnn/sub i//dr), the characteristic features of the dominant mode are those of the /eta//sub i/-type instability when /eta//sub i/ > /eta//sub ic/ /approximately/1.2 to 1.4 and of the trapped-electron mode when /eta//sub i/ < /eta//sub ic/. 16 refs., 7 figs.

  13. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  14. High temperatures in the early solar nebula

    NASA Technical Reports Server (NTRS)

    Boss, Alan P.

    1988-01-01

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  15. High temperatures in the early solar nebula.

    PubMed

    Boss, A P

    1988-07-29

    One fundamental controversy about terrestrial planet and asteroid formation is the discrepancy between meteoritical evidence for high temperatures (1500 K to 2000 K) in the inner solar nebula, and much lower theoretical temperature predictions on the basis of models of viscous accretion disks that neglect compressional heating of infalling gas. It is shown here that rigorous numerical calculations of the collapse of a rotating, three-dimensional presolar nebula are capable of producing temperatures on the order of 1500 K in the asteroid region (2.5 astronomical units), in either nearly axisymmetric or strongly nonaxisymmetric nebula models. The latter models may permit significant thermal cycling of solid components in the early inner solar nebula.

  16. Compliant high temperature seals for dissimilar materials

    DOEpatents

    Rynders, Steven Walton; Minford, Eric; Tressler, Richard Ernest; Taylor, Dale M.

    2001-01-01

    A high temperature, gas-tight seal is formed by utilizing one or more compliant metallic toroidal ring sealing elements, where the applied pressure serves to activate the seal, thus improving the quality of the seal. The compliant nature of the sealing element compensates for differences in thermal expansion between the materials to be sealed, and is particularly useful in sealing a metallic member and a ceramic tube art elevated temperatures. The performance of the seal may be improved by coating the sealing element with a soft or flowable coating such as silver or gold and/or by backing the sealing element with a bed of fine powder. The material of the sealing element is chosen such that the element responds to stress elastically, even at elevated temperatures, permitting the seal to operate through multiple thermal cycles.

  17. Thermoelectric properties by high temperature annealing

    NASA Technical Reports Server (NTRS)

    Ren, Zhifeng (Inventor); Chen, Gang (Inventor); Kumar, Shankar (Inventor); Lee, Hohyun (Inventor)

    2009-01-01

    The present invention generally provides methods of improving thermoelectric properties of alloys by subjecting them to one or more high temperature annealing steps, performed at temperatures at which the alloys exhibit a mixed solid/liquid phase, followed by cooling steps. For example, in one aspect, such a method of the invention can include subjecting an alloy sample to a temperature that is sufficiently elevated to cause partial melting of at least some of the grains. The sample can then be cooled so as to solidify the melted grain portions such that each solidified grain portion exhibits an average chemical composition, characterized by a relative concentration of elements forming the alloy, that is different than that of the remainder of the grain.

  18. The high temperature structural evolution of hafnia

    NASA Astrophysics Data System (ADS)

    Haggerty, Ryan Paul

    The transformations of HfO2 are often described as analogous with the transformations in ZrO2 because of the similar crystal structures; however the phase transformations in HfO2 occur at higher temperatures. Even though this phase transformation has been extensively studied in ZrO2, the respective transformation in HfO2 is relatively unstudied and the properties that are reported are inconsistent. Much of the difficulty associated with studying HfO2 is related to the high temperatures needed and the sensitivity of the crystal to the environmental partial pressure of O2. HfO2 is expected to be capable of producing the same level of transformation toughening as ZrO2 at temperatures beyond 1000°C, the thermodynamic limit for toughened ZrO2. Despite significant effort the toughening acquired has not met with expectation. By providing information on the structure of HfO2 as it undergoes transformation, this study makes a significant step towards solving this problem. Significant advancements in experimentation have enabled a systematic study of the structure of HfO2 in its monoclinic and tetragonal phases in air. Using a quadrupole lamp furnace and a novel curved image plate detector the structure of HfO2 and ZrO 2 have been characterized by high temperature x-ray diffraction. The structural information provided by these experiments allows the properties of the transformation to be further investigated. Using phenomenological theory of martensite crystallography, the strain associated with the transformation from the tetragonal to the monoclinic phase has been described and provides insight into the lack of transformation toughening found in HfO2. Further characterization includes determination of the transformation temperature in air, the change in volume associated with the transformation and the temperature hysteresis of the transformation. In addition to transformation properties, the thermal expansion of HfO2 and ZrO2 has been thoroughly described as a function

  19. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  20. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.