Sample records for high temperature sensor

  1. High temperature sensor

    DOEpatents

    Tokarz, Richard D.

    1982-01-01

    A high temperature sensor includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1,000 to 2,000 K.). When required, the sensor can be encased within a ceramic protective coating.

  2. High-temperature sensor

    DOEpatents

    Not Available

    1981-01-29

    A high temperature sensor is described which includes a pair of electrical conductors separated by a mass of electrical insulating material. The insulating material has a measurable resistivity within the sensor that changes in relation to the temperature of the insulating material within a high temperature range (1000 to 2000/sup 0/K). When required, the sensor can be encased within a ceramic protective coating.

  3. High-Temperature Optical Sensor

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Juergens, Jeffrey R.; Varga, Donald J.; Floyd, Bertram M.

    2010-01-01

    A high-temperature optical sensor (see Figure 1) has been developed that can operate at temperatures up to 1,000 C. The sensor development process consists of two parts: packaging of a fiber Bragg grating into a housing that allows a more sturdy thermally stable device, and a technological process to which the device is subjected to in order to meet environmental requirements of several hundred C. This technology uses a newly discovered phenomenon of the formation of thermally stable secondary Bragg gratings in communication-grade fibers at high temperatures to construct robust, optical, high-temperature sensors. Testing and performance evaluation (see Figure 2) of packaged sensors demonstrated operability of the devices at 1,000 C for several hundred hours, and during numerous thermal cycling from 400 to 800 C with different heating rates. The technology significantly extends applicability of optical sensors to high-temperature environments including ground testing of engines, flight propulsion control, thermal protection monitoring of launch vehicles, etc. It may also find applications in such non-aerospace arenas as monitoring of nuclear reactors, furnaces, chemical processes, and other hightemperature environments where other measurement techniques are either unreliable, dangerous, undesirable, or unavailable.

  4. Electrochemical high-temperature gas sensors

    NASA Astrophysics Data System (ADS)

    Saruhan, B.; Stranzenbach, M.; Yüce, A.; Gönüllü, Y.

    2012-06-01

    Combustion produced common air pollutant, NOx associates with greenhouse effects. Its high temperature detection is essential for protection of nature. Component-integration capable high-temperature sensors enable the control of combustion products. The requirements are quantitative detection of total NOx and high selectivity at temperatures above 500°C. This study reports various approaches to detect NO and NO2 selectively under lean and humid conditions at temperatures from 300°C to 800°C. All tested electrochemical sensors were fabricated in planar design to enable componentintegration. We suggest first an impedance-metric gas sensor for total NOx-detection consisting of NiO- or NiCr2O4-SE and PYSZ-electrolyte. The electrolyte-layer is about 200μm thickness and constructed of quasi-single crystalline columns. The sensing-electrode (SE) is magnetron sputtered thin-layers of NiO or NiCr2O4. Sensor sensitivity for detection of total NOx has been measured by applying impedance analysis. The cross-sensitivity to other emission gases such as CO, CO2, CH4 and oxygen (5 vol.%) has been determined under 0-1000ppm NO. Sensor maintains its high sensitivity at temperatures up to 550°C and 600°C, depending on the sensing-electrode. NiO-SE yields better selectivity to NO in the presence of oxygen and have shorter response times comparing to NiCr2O4-SE. For higher temperature NO2-sensing capability, a resistive DC-sensor having Al-doped TiO2-sensing layers has been employed. Sensor-sensitivity towards NO2 and cross-sensitivity to CO has been determined in the presence of H2O at temperatures 600°C and 800°C. NO2 concentrations varying from 25 to 100ppm and CO concentrations from 25 to 75ppm can be detected. By nano-tubular structuring of TiO2, NO2 sensitivity of the sensor was increased.

  5. Advanced high temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W.; Hobart, H. F.; Strange, R. R.

    1983-01-01

    To fully characterize advanced high temperature heat flux sensors, calibration and testing is required at full engine temperature. This required the development of unique high temperature heat flux test facilities. These facilities were developed, are in place, and are being used for advanced heat flux sensor development.

  6. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  7. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  8. High Temperature, Wireless Seismometer Sensor for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Meredith, Roger D.; Beheim, Glenn M.; Hunter Gary W.; Kiefer, Walter S.

    2012-01-01

    Space agency mission plans state the need to measure the seismic activity on Venus. Because of the high temperature on Venus (462? C average surface temperature) and the difficulty in placing and wiring multiple sensors using robots, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents the description and proof of concept measurements of a high temperature, wireless seismometer sensor for Venus. A variation in inductance of a coil caused by the movement of an aluminum probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 700 Hz in the transmitted signal from the oscillator/sensor system at 426? C. This result indicates that the concept may be used on Venus.

  9. Sapphire Fabry-Perot high-temperature sensor study

    NASA Astrophysics Data System (ADS)

    Yao, Yi-qiang; Liang, Wei-long; Gui, Xinwang; Fan, Dian

    2017-04-01

    A new structure sapphire fiber Fabry-Perot (F-P) high-temperature sensor based on sapphire wafer was proposed and fabricated. The sensor uses the sapphire fiber as a transmission waveguide, the sapphire wafer as an Fabry-Perot (F-P) interferometer and the new structure of "Zirconia ferrule-Zirconia tube" as the sensor fixing structure of the sensor. The reflection spectrum of the interferometer was demodulated by a serial of data processing including FIR bandpass filter, FFT (Fast Fourier Transformation) estimation and LSE (least squares estimation) compensation to obtain more precise OPD. Temperature measurement range is from 20 to 1000°C in experiment. The experimental results show that the sensor has the advantages of small size, low cost, simple fabrication and high repeatability. It can be applied for longterm, stable and high-precision high temperature measurement in harsh environments.

  10. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-07-22

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations.

  11. Passive Resistor Temperature Compensation for a High-Temperature Piezoresistive Pressure Sensor

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Li, Wangwang; Zhang, Diya; Xiong, Jijun

    2016-01-01

    The main limitation of high-temperature piezoresistive pressure sensors is the variation of output voltage with operating temperature, which seriously reduces their measurement accuracy. This paper presents a passive resistor temperature compensation technique whose parameters are calculated using differential equations. Unlike traditional experiential arithmetic, the differential equations are independent of the parameter deviation among the piezoresistors of the microelectromechanical pressure sensor and the residual stress caused by the fabrication process or a mismatch in the thermal expansion coefficients. The differential equations are solved using calibration data from uncompensated high-temperature piezoresistive pressure sensors. Tests conducted on the calibrated equipment at various temperatures and pressures show that the passive resistor temperature compensation produces a remarkable effect. Additionally, a high-temperature signal-conditioning circuit is used to improve the output sensitivity of the sensor, which can be reduced by the temperature compensation. Compared to traditional experiential arithmetic, the proposed passive resistor temperature compensation technique exhibits less temperature drift and is expected to be highly applicable for pressure measurements in harsh environments with large temperature variations. PMID:27455271

  12. Active Temperature Compensation Using a High-Temperature, Fiber Optic, Hybrid Pressure and Temperature Sensor

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Palmer, Matthew E.; Davis, Matthew A.; Engelbrecht, Gordon P.

    2006-01-01

    Luna Innovations has developed a novel, fiber optic, hybrid pressure-temperature sensor system for extremely high-temperature environments that is capable of reliable operation up to 1050 °C. This system is based on the extremely high-temperature fiber optic sensors already demonstrated during previous work. The novelty of the sensors presented here lies in the fact that pressure and temperature are measured simultaneously with a single fiber and a single transducer. This hybrid approach will enable highly accurate active temperature compensation and sensor self-diagnostics not possible with other platforms. Hybrid pressure and temperature sensors were calibrated by varying both pressure and temperature. Implementing active temperature compensation resulted in a ten-fold reduction in the temperature-dependence of the pressure measurement. Sensors were tested for operability in a relatively high neutron dose environment up to 6.9×1017 n/cm2. In addition to harsh environment survivability, fiber optic sensors offer a number of intrinsic advantages for space nuclear power applications including extremely low mass, immunity to electromagnetic interference, self diagnostics / prognostics, and smart sensor capability. Deploying fiber optic sensors on future space exploration missions would provide a substantial improvement in spacecraft instrumentation. Additional development is needed, however, before these advantages can be realized. This paper will highlight recent demonstrations of fiber optic sensors in environments relevant to space nuclear applications. Successes and lessons learned will be highlighted. Additionally, development needs will be covered which will suggest a framework for a coherent plan to continue work in this area.

  13. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500 C silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chip-level packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550 C. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500 C for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500 C are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  14. Packaging Technologies for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liangyu; Hunter, Gary W.; Neudeck, Philip G.; Beheim, Glenn M.; Spry, David J.; Meredith, Roger D.

    2013-01-01

    This paper reviews ceramic substrates and thick-film metallization based packaging technologies in development for 500degC silicon carbide (SiC) electronics and sensors. Prototype high temperature ceramic chip-level packages and printed circuit boards (PCBs) based on ceramic substrates of aluminum oxide (Al2O3) and aluminum nitride (AlN) have been designed and fabricated. These ceramic substrate-based chiplevel packages with gold (Au) thick-film metallization have been electrically characterized at temperatures up to 550degC. A 96% alumina based edge connector for a PCB level subsystem interconnection has also been demonstrated recently. The 96% alumina packaging system composed of chip-level packages and PCBs has been tested with high temperature SiC devices at 500degC for over 10,000 hours. In addition to tests in a laboratory environment, a SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE-7 suite to the International Space Station via a Shuttle mission. This packaged SiC transistor was successfully tested in orbit for eighteen months. A spark-plug type sensor package designed for high temperature SiC capacitive pressure sensors was developed. This sensor package combines the high temperature interconnection system with a commercial high temperature high pressure stainless steel seal gland (electrical feed-through). Test results of a packaged high temperature capacitive pressure sensor at 500degC are also discussed. In addition to the pressure sensor package, efforts for packaging high temperature SiC diode-based gas chemical sensors are in process.

  15. State of the art in high-temperature fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Fielder, Robert S.; Stinson-Bagby, Kelly L.; Palmer, Matthew E.

    2004-12-01

    The objective of the work presented was to develop a suite of sensors for use in high-temperature aerospace environments, including turbine engine monitoring, hypersonic vehicle skin friction measurements, and support ground and flight test operations. A fiber optic sensor platform was used to construct the sensor suite. Successful laboratory demonstrations include calibration of pressure sensors to 500psi at a gas temperature of 800°C. Additionally, pressure sensors were demonstrated at 800°C in combination with a high-speed (1.0MHz) fiber optic readout system enabling previously unobtainable dynamic measurements at high-temperatures. Temperature sensors have been field tested up to 1400°C and as low as -195°C. The key advancement that enabled the operation of these novel harsh environment sensors was a fiber optic packaging methodology that allowed the coupling of alumina and sapphire transducer components, optical fiber, and high-temperature alloy housing materials. The basic operation of the sensors and early experimental results are presented. Each of the sensors described here represent a quantifiable advancement in the state of the art in high-temperature physical sensors and will have a significant impact on the aerospace propulsion instrumentation industry.

  16. The Evolution of High Temperature Gas Sensors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garzon, F. H.; Brosha, E. L.; Mukundan, R.

    2001-01-01

    Gas sensor technology based on high temperature solid electrolytes is maturing rapidly. Recent advances in metal oxide catalysis and thin film materials science has enabled the design of new electrochemical sensors. We have demonstrated prototype amperometric oxygen sensors, nernstian potentiometric oxygen sensors that operate in high sulfur environments, and hydrocarbon and carbon monoxide sensing mixed potentials sensors. Many of these devices exhibit part per million sensitivities, response times on the order of seconds and excellent long-term stability.

  17. 3D printed high performance strain sensors for high temperature applications

    NASA Astrophysics Data System (ADS)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  18. Fiber Optic High Temperature Sensors for Re-Entry Vehicles

    NASA Astrophysics Data System (ADS)

    Haddad, E.; Kruzelecky, R.; Zou, J.; Wong, B.; Jamroz, W.; Sayeed, F.; Muylaert, J.-M.; McKenzie, I.

    2009-01-01

    MPB, within an ESA contract, is developing high temperature Fiber sensors (up to 1100°C) for re- ntry experiments, with direct application to the Thermo Protection Surface (TPS) of SHEFEX II. It addresses the challenges of obtaining high reflectivity FBG sensors, and integrating the fiber sensors within the selected TPS host material (C/SiC). Feasibility was demonstrated using free fiber sensors that showed the formation of the Chemical Composition Grating (CCG), with 80 % reflection at temperatures >750°C. The CCG grating was stable at high temperature (1000°C) for more than 50 hours, as well as after cycling between room temperature and 1000°C, with better than 0.5 % temperature accuracy (FBG central wavelength). Small FBG sensor packages were prepared and attached to C/SiC tiles. The calibration of the packaged fibers showed similar response to temperature as the free fiber sensor. The fiber sensor package was designed to maximize contact with the C/SiC surface to provide fast response to transients. Three- imension modeling with Ansys finite element analysis shows a time constant of 15-20 ms to reach 1200°C. A modular design will be implemented where a dedicated fiber line with 3 sensors and its own connector is used for each C/SiC tile. Small coupons of packaged sensors attached to C/SiC tiles will be tested in a re-entry environment at Von Karman Institute (Belgium) In a recently completed project with ESA, MPB developed and ground qualified a fiber sensor network, the "Fiber Sensor Demonstrator", that was successfully integrated as a payload with ESA's Proba-2. The system includes a central interrogation system that can be used to measure multiple parameters including a high temperature sensor for the Proba-2 thruster (up to 500°C).

  19. High-temperature optical fiber sensors for characterization of advanced composite aerospace materials

    NASA Astrophysics Data System (ADS)

    Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.

    1999-01-01

    Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.

  20. Wide-Range Temperature Sensors with High-Level Pulse Train Output

    NASA Technical Reports Server (NTRS)

    Hammoud, Ahmad; Patterson, Richard L.

    2009-01-01

    Two types of temperature sensors have been developed for wide-range temperature applications. The two sensors measure temperature in the range of -190 to +200 C and utilize a thin-film platinum RTD (resistance temperature detector) as the temperature-sensing element. Other parts used in the fabrication of these sensors include NPO (negative-positive- zero) type ceramic capacitors for timing, thermally-stable film or wirewound resistors, and high-temperature circuit boards and solder. The first type of temperature sensor is a relaxation oscillator circuit using an SOI (silicon-on-insulator) operational amplifier as a comparator. The output is a pulse train with a period that is roughly proportional to the temperature being measured. The voltage level of the pulse train is high-level, for example 10 V. The high-level output makes the sensor less sensitive to noise or electromagnetic interference. The output can be read by a frequency or period meter and then converted into a temperature reading. The second type of temperature sensor is made up of various types of multivibrator circuits using an SOI type 555 timer and the passive components mentioned above. Three configurations have been developed that were based on the technique of charging and discharging a capacitor through a resistive element to create a train of pulses governed by the capacitor-resistor time constant. Both types of sensors, which operated successfully over the wide temperature range, have potential use in extreme temperature environments including jet engines and space exploration missions.

  1. Alumina ceramic based high-temperature performance of wireless passive pressure sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wu, Guozhu; Guo, Tao; Tan, Qiulin

    2016-12-01

    A wireless passive pressure sensor equivalent to inductive-capacitive (LC) resonance circuit and based on alumina ceramic is fabricated by using high temperature sintering ceramic and post-fire metallization processes. Cylindrical copper spiral reader antenna and insulation layer are designed to realize the wireless measurement for the sensor in high temperature environment. The high temperature performance of the sensor is analyzed and discussed by studying the phase-frequency and amplitude-frequency characteristics of reader antenna. The average frequency change of sensor is 0.68 kHz/°C when the temperature changes from 27°C to 700°C and the relative change of twice measurements is 2.12%, with high characteristic of repeatability. The study of temperature-drift characteristic of pressure sensor in high temperature environment lays a good basis for the temperature compensation methods and insures the pressure signal readout accurately.

  2. Development of High Temperature Gas Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    The measurement of engine emissions is important for their monitoring and control. However, the ability to measure these emissions in-situ is limited. We are developing a family of high temperature gas sensors which are intended to operate in harsh environments such as those in an engine. The development of these sensors is based on progress in two types of technology: (1) The development of SiC-based semiconductor technology; and (2) Improvements in micromachining and microfabrication technology. These technologies are being used to develop point-contact sensors to measure gases which are important in emission control especially hydrogen, hydrocarbons, nitrogen oxides, and oxygen. The purpose of this paper is to discuss the development of this point-contact sensor technology. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. Of particular importance is sensor sensitivity, selectivity, and stability in long-term, high temperature operation. An overview is presented of each sensor type with an evaluation of its stage of development. It is concluded that this technology has significant potential for use in engine applications but further development is necessary.

  3. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  4. High-temperature fiber-optic Fabry-Perot interferometric sensors

    NASA Astrophysics Data System (ADS)

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  5. Fiber optic photoelastic pressure sensor for high temperature gases

    NASA Technical Reports Server (NTRS)

    Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.

    1990-01-01

    A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.

  6. Development of advanced high-temperature heat flux sensors

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Strange, R. R.

    1982-01-01

    Various configurations of high temperature, heat flux sensors were studied to determine their suitability for use in experimental combustor liners of advanced aircraft gas turbine engines. It was determined that embedded thermocouple sensors, laminated sensors, and Gardon gauge sensors, were the most viable candidates. Sensors of all three types were fabricated, calibrated, and endurance tested. All three types of sensors met the fabricability survivability, and accuracy requirements established for their application.

  7. High-sensitivity temperature sensor based on highly-birefringent microfiber

    NASA Astrophysics Data System (ADS)

    Sun, Li-Peng; Li, Jie; Jin, Long; Gao, Shuai; Tian, Zhuang; Ran, Yang; Guan, Bai-Ou

    2013-09-01

    We demonstrate an ultrasensitive temperature sensor by sealing a highly-birefringent microfiber into an alcoholinfiltrated copper capillary. With a Sagnac loop configuration, the interferometric spectrum is strongly dependent on the external refractive index (RI) with sensitivity of 36800nm/RIU around RI=1.356. As mainly derived from the ultrahigh RI sensitivity, the temperature response can reach as high as -14.72 nm/°C in the range of 30.9-36.9 °C. The measured response time is ~8s, as determined by the heat-conducting characteristic of the device and the diameter of the copper capillary. Our sensor is featured with low cost, easy fabrication and robustness.

  8. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    PubMed Central

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-01-01

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures. PMID:24113685

  9. Silicon carbide-based hydrogen gas sensors for high-temperature applications.

    PubMed

    Kim, Seongjeen; Choi, Jehoon; Jung, Minsoo; Joo, Sungjae; Kim, Sangchoel

    2013-10-09

    We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS) structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5) layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC) was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  10. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  11. Development of a fiber optic high temperature strain sensor

    NASA Technical Reports Server (NTRS)

    Rausch, E. O.; Murphy, K. E.; Brookshire, S. P.

    1992-01-01

    From 1 Apr. 1991 to 31 Aug. 1992, the Georgia Tech Research Institute conducted a research program to develop a high temperature fiber optic strain sensor as part of a measurement program for the space shuttle booster rocket motor. The major objectives of this program were divided into four tasks. Under Task 1, the literature on high-temperature fiber optic strain sensors was reviewed. Task 2 addressed the design and fabrication of the strain sensor. Tests and calibration were conducted under Task 3, and Task 4 was to generate recommendations for a follow-on study of a distributed strain sensor. Task 4 was submitted to NASA as a separate proposal.

  12. Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Kristie L.; Wang, Anbo; Pickrell, Gary R.

    2006-11-14

    This report summarizes technical progress during the program “Optical Fiber High Temperature Sensor Instrumentation for Energy Intensive Industries”, performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. The objective of this program was to use technology recently invented at Virginia Tech to develop and demonstrate the application of self-calibrating optical fiber temperature and pressure sensors to several key energy-intensive industries where conventional, commercially available sensors exhibit greatly abbreviated lifetimes due primarily to environmental degradation. A number of significant technologies were developed under this program, including • a laser bonded silicamore » high temperature fiber sensor with a high temperature capability up to 700°C and a frequency response up to 150 kHz, • the world’s smallest fiber Fabry-Perot high temperature pressure sensor (125 x 20 μm) with 700°C capability, • UV-induced intrinsic Fabry-Perot interferometric sensors for distributed measurement, • a single crystal sapphire fiber-based sensor with a temperature capability up to 1600°C. These technologies have been well demonstrated and laboratory tested. Our work plan included conducting major field tests of these technologies at EPRI, Corning, Pratt & Whitney, and Global Energy; field validation of the technology is critical to ensuring its usefulness to U.S. industries. Unfortunately, due to budget cuts, DOE was unable to follow through with its funding commitment to support Energy Efficiency Science Initiative projects and this final phase was eliminated.« less

  13. Fiber Optic Distributed Sensors for High-resolution Temperature Field Mapping.

    PubMed

    Lomperski, Stephen; Gerardi, Craig; Lisowski, Darius

    2016-11-07

    The reliability of computational fluid dynamics (CFD) codes is checked by comparing simulations with experimental data. A typical data set consists chiefly of velocity and temperature readings, both ideally having high spatial and temporal resolution to facilitate rigorous code validation. While high resolution velocity data is readily obtained through optical measurement techniques such as particle image velocimetry, it has proven difficult to obtain temperature data with similar resolution. Traditional sensors such as thermocouples cannot fill this role, but the recent development of distributed sensing based on Rayleigh scattering and swept-wave interferometry offers resolution suitable for CFD code validation work. Thousands of temperature measurements can be generated along a single thin optical fiber at hundreds of Hertz. Sensors function over large temperature ranges and within opaque fluids where optical techniques are unsuitable. But this type of sensor is sensitive to strain and humidity as well as temperature and so accuracy is affected by handling, vibration, and shifts in relative humidity. Such behavior is quite unlike traditional sensors and so unconventional installation and operating procedures are necessary to ensure accurate measurements. This paper demonstrates implementation of a Rayleigh scattering-type distributed temperature sensor in a thermal mixing experiment involving two air jets at 25 and 45 °C. We present criteria to guide selection of optical fiber for the sensor and describe installation setup for a jet mixing experiment. We illustrate sensor baselining, which links readings to an absolute temperature standard, and discuss practical issues such as errors due to flow-induced vibration. This material can aid those interested in temperature measurements having high data density and bandwidth for fluid dynamics experiments and similar applications. We highlight pitfalls specific to these sensors for consideration in experiment design

  14. Cooperative implementation of a high temperature acoustic sensor

    NASA Technical Reports Server (NTRS)

    Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.

    1991-01-01

    The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.

  15. Ultrasonic High-Temperature Sensors: Past Experiments and Prospects for Future Use

    NASA Astrophysics Data System (ADS)

    Laurie, M.; Magallon, D.; Rempe, J.; Wilkins, C.; Pierre, J.; Marquié, C.; Eymery, S.; Morice, R.

    2010-09-01

    Ultrasonic thermometry sensors (UTS) have been intensively studied in the past to measure temperatures from 2080 K to 3380 K. This sensor, which uses the temperature dependence of the acoustic velocity in materials, was developed for experiments in extreme environments. Its major advantages, which are (a) capability of measuring a temperature profile from multiple sensors on a single probe and (b) measurement near the sensor material melting point, can be of great interest when dealing with on-line monitoring of high-temperature safety tests. Ultrasonic techniques were successfully applied in several severe accident related experiments. With new developments of alternative materials, this instrument may be used in a wide range of experimental areas where robustness and compactness are required. Long-term irradiation experiments of nuclear fuel to extremely high burn-ups could benefit from this previous experience. After an overview of UTS technology, this article summarizes experimental work performed to improve the reliability of these sensors. The various designs, advantages, and drawbacks are outlined and future prospects for long-term high-temperature irradiation experiments are discussed.

  16. Temperature sensor based on high-Q polymethylmethacrylate optical microbubble

    NASA Astrophysics Data System (ADS)

    He, Chunhong; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    A new flexible method to fabricate a temperature sensor based on polymethylmethacrylate (PMMA) optical microbubbles, using a volume-controllable pipette, is demonstrated. The high quality factor of the cavity is guaranteed by the smooth wall of the microbubble. The shape and refractive index of the microbubbles change with the surrounding temperature, which leads to the obvious displacement of the whispering gallery mode transmission spectrum. As the surrounding temperature increases, the spectrum undergoes a significant blue shift, hence the microresonator can be used for temperature sensing. A sensitivity of 39 pm °C‑1 is obtained in a PMMA microbubble with a diameter of 740 µm. This work suggests a new convenient approach to achieving high-quality flexible microscale sensors.

  17. Fiber Bragg Grating Filter High Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Brass, Eric D.; Pencil, Eric (Technical Monitor)

    2001-01-01

    We present a scaled-down method for determining high temperatures using fiber-based Bragg gratings. Bragg gratings are distributed along the length of the optical fiber, and have high reflectivities whenever the optical wavelength is twice the grating spacing. These spatially distinct Bragg regions (located in the core of a fiber) are sensitive to local temperature changes. Since these fibers are silica-based they are easily affected by localized changes in temperature, which results in changes to both the grating spacing and the wavelength reflectivity. We exploit the shift in wavelength reflectivity to measure the change in the local temperature. Note that the Bragg region (sensing area) is some distance away from where the temperature is being measured. This is done so that we can measure temperatures that are much higher than the damage threshold of the fiber. We do this by affixing the fiber with the Bragg sensor to a material with a well-known coefficient of thermal expansion, and model the heat gradient from the region of interest to the actual sensor. The research described in this paper will culminate in a working device as well as be the second portion of a publication pending submission to Optics Letters.

  18. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  19. A high-temperature shape memory alloy sensor for combustion monitoring and control

    NASA Astrophysics Data System (ADS)

    Shaw, Greg S.; Snyder, Joseph T.; Prince, Troy S.; Willett, Michael C.

    2005-05-01

    Innovations in the use of thin film SMA materials have enabled the development of a harsh environment pressure sensor useful for combustion monitoring and control. Development of such active combustion control has been driven by rising fuel costs and environmental pressures. Active combustion control, whether in diesel, spark ignited or turbine engines requires feedback to the engine control system in order to adjust the quantity, timing, and placement of fuel charges. To be fully effective, sensors must be integrated into each engine in a manner that will allow continuous combustion monitoring (turbine engines) or monitoring of each discrete combustion event (diesel and SI engines). To date, the sensors available for detection of combustion events and processes have suffered from one or more of three problems: 1) Low sensitivity: The sensors are unable to provide and adequate signal-to-noise ratio in the high temperature and electrically noisy environment of the engine compartment. Attempts to overcome this difficulty have focused on heat removal and/or temperature compensation or more challenging high temperature electronics. 2) Low reliability: Sensors and/or sensor packages have been unable to withstand the engine environment for extended periods of time. Issues have included gross degradation and more subtle issues such as migration of dopants in semiconductor sensor materials. 3) High cost: The materials that have been used, the package concepts employed, and the required support electronics have all contributed to the high cost of the few sensor systems available. Prices have remained high due to the limited demand associated with the poor reliability and the high price itself. Ternary titanium nickel alloys, with platinum group metal substitution for the nickel, are deposited as thin films on MEMS-based diaphragms and patterned to form strain gages of a standard metal film configuration. The strain induced phase transformation of the SMA is used as a

  20. An Overview of the Development of High Temperature Wireless Smart Sensor Technology

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2014-01-01

    The harsh environment inherent in propulsion systems is especially challenging for Smart Sensor Systems; this paper addresses technology development for such applications. A basic sensing system for high temperature wireless pressure monitoring composed of a sensor, electronics, and wireless communication with scavenged power developed for health monitoring of aircraft engines and other high temperature applications has been demonstrated at 475 C. Other efforts will be discussed including a brief overview of the status of high temperature electronics and sensors, as well as their use and applications.

  1. High temperature sensor/microphone development for active noise control

    NASA Technical Reports Server (NTRS)

    Shrout, Thomas R.

    1993-01-01

    The industrial and scientific communities have shown genuine interest in electronic systems which can operate at high temperatures, among which are sensors to monitor noise, vibration, and acoustic emissions. Acoustic sensing can be accomplished by a wide variety of commercially available devices, including: simple piezoelectric sensors, accelerometers, strain gauges, proximity sensors, and fiber optics. Of the several sensing mechanisms investigated, piezoelectrics were found to be the most prevalent, because of their simplicity of design and application and, because of their high sensitivity over broad ranges of frequencies and temperature. Numerous piezoelectric materials are used in acoustic sensors today; but maximum use temperatures are imposed by their transition temperatures (T(sub c)) and by their resistivity. Lithium niobate, in single crystal form, has the highest operating temperature of any commercially available material, 650 C; but that is not high enough for future requirements. Only two piezoelectric materials show potential for use at 1000 C; AlN thin film reported to be piezoactive at 1150 C, and perovskite layer structure (PLS) materials, which possess among the highest T(sub c) (greater than 1500 C) reported for ferroelectrics. A ceramic PLS composition was chosen. The solid solution composition, 80% strontium niobate (SN) and 20% strontium tantalate (STa), with a T(sub c) approximately 1160 C, was hot forged, a process which concurrently sinters and renders the plate-like grains into a highly oriented configuration to enhance piezo properties. Poled samples of this composition showed coupling (k33) approximately 6 and piezoelectric strain constant (d33) approximately 3. Piezoactivity was seen at 1125 C, the highest temperature measurement reported for a ferroelectric ceramic. The high temperature piezoelectric responses of this, and similar PLS materials, opens the possibility of their use in electronic devices operating at temperatures up to

  2. Temperature Sensor

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Weed Instrument Inc. produces a line of thermocouples - temperature sensors - for a variety of industrial and research uses. One of the company's newer products is a thermocouple specially designed for high accuracy at extreme temperatures above 3,000 degrees Fahrenheit. Development of sensor brought substantial increases in Weed Instrument sales and employment.

  3. Fabrication of High-Sensitivity Skin-Attachable Temperature Sensors with Bioinspired Microstructured Adhesive.

    PubMed

    Oh, Ju Hyun; Hong, Soo Yeong; Park, Heun; Jin, Sang Woo; Jeong, Yu Ra; Oh, Seung Yun; Yun, Junyeong; Lee, Hanchan; Kim, Jung Wook; Ha, Jeong Sook

    2018-02-28

    In this study, we demonstrate the fabrication of a highly sensitive flexible temperature sensor with a bioinspired octopus-mimicking adhesive. A resistor-type temperature sensor consisting of a composite of poly(N-isopropylacrylamide) (pNIPAM)-temperature sensitive hydrogel, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, and carbon nanotubes exhibits a very high thermal sensitivity of 2.6%·°C -1 between 25 and 40 °C so that the change in skin temperature of 0.5 °C can be accurately detected. At the same time, the polydimethylsiloxane adhesive layer of octopus-mimicking rim structure coated with pNIPAM is fabricated through the formation of a single mold by utilizing undercut phenomenon in photolithography. The fabricated sensor shows stable and reproducible detection of skin temperature under repeated attachment/detachment cycles onto skin without any skin irritation for a long time. This work suggests a high potential application of our skin-attachable temperature sensor to wearable devices for medical and health-care monitoring.

  4. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit.

    PubMed

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-06-18

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of -50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor's output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments.

  5. Optical and mechanical response of high temperature optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Sirkis, Jim

    1991-01-01

    The National Aerospace Plane (NASP) will experience temperatures as high as 2500 F at critical locations in its structure. Optical fiber sensors were proposed as a means of monitoring the temperature in these critical regions by either bonding the optical fiber to, or embedding the optical fiber in, metal matrix composite (MMC) components. Unfortunately, the anticipated NASP temperature ranges exceed the glass transition region of the optical fiber glass. The attempt is made to define the operating temperature range of optical fiber sensors from both optical and mechanical perspectives. A full non-linear optical analysis was performed by modeling the optical response of an isolated sensor cyclically driven through the glass transition region.

  6. A new generation of high temperature oxygen sensors

    NASA Astrophysics Data System (ADS)

    Spirig, John V.

    Potentiometric internal reference oxygen sensors were created by embedding a metal/metal oxide mixture within an yttria-stabilized zirconia oxygen-conducting ceramic superstructure. A static internal reference oxygen pressure was produced inside the reference chamber of the sensor at the target application temperature. The metal/metal oxide-containing reference chamber was sealed within the stabilized zirconia ceramic superstructure by a high pressure (3-6 MPa) and high temperature (1200-1300°C) bonding method that initiated grain boundary sliding between the ceramic components. The bonding method created ceramic joints that were pore-free and indistinguishable from the bulk ceramic. The oxygen sensor presented in this study is capable of long-term operation and is resistant to the strains of thermal cycling. The temperature ceiling of this device was limited to 800°C by the glass used to seal the sensor package where the lead wire breached the inner-to-outer environment. Were it possible to create a gas-tight joint between an electron carrier and stabilized zirconia, additional sealing agents would not be necessary during sensor construction. In order to enable this enhancement it is necessary to make a gas-tight joint between two dissimilar materials: a ceramic electrolyte and an efficient ceramic electron carrier. Aluminum-doped lanthanum strontium manganese oxide, La0.77Sr 0.20Al0.9Mn0.1O3, was joined to stabilized tetragonal zirconia polymorph YTZP (ZrO2)0.97(Y 2O3)0.03 by a uniaxial stress (3-6 MPa) and high-temperature (1250-1350°C) bonding method that initiated grain-boundary sliding between the ceramic components. An analysis of reactivity between different Al-dopings of LaxSr1-xAlyMn1-yO3 indicated that the Al:Mn ratio must be high to diminish the reaction between LaxSr1-xAlyMn1-yO3 and stabilized zirconia. While the resulting compound, La0.77Sr 0.20Al0.9Mn0.1O3, was an inefficient electron carrier, the successful bond between an aluminum

  7. High temperature sensor properties of a specialty double cladding fiber

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Pang, Fufei; Wang, Tingyun

    2011-12-01

    A simple high temperature fiber sensor is proposed and demonstrated. The sensor head is made of a short section of specialty double cladding fiber (DCF). The DCF consists of a depressed inner cladding which is boron (B)-doped silica. Through an evanescent wave, the cladding mode can be excited, and thus the transmission presents a resonant spectral dip. The high temperature sensing properties was studied according to the shift of the transmission spectrum shifts. With increasing the temperature from 28 °C to 850 °C, the resonant spectrum shifts to longer wavelengths. The sensitivity is 0.112 nm / °C.

  8. High Temperature Electronics for Intelligent Harsh Environment Sensors

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2008-01-01

    The development of intelligent instrumentation systems is of high interest in both public and private sectors. In order to obtain this ideal in extreme environments (i.e., high temperature, extreme vibration, harsh chemical media, and high radiation), both sensors and electronics must be developed concurrently in order that the entire system will survive for extended periods of time. The semiconductor silicon carbide (SiC) has been studied for electronic and sensing applications in extreme environment that is beyond the capability of conventional semiconductors such as silicon. The advantages of SiC over conventional materials include its near inert chemistry, superior thermomechanical properties in harsh environments, and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  9. Optical fiber sensors for high temperature harsh environment applications

    NASA Astrophysics Data System (ADS)

    Xiao, Hai; Wei, Tao; Lan, Xinwei; Zhang, Yinan; Duan, Hongbiao; Han, Yukun; Tsai, Hai-Lung

    2010-04-01

    This paper summarizes our recent research progresses in developing optical fiber harsh environment sensors for various high temperature harsh environment sensing applications such as monitoring of the operating conditions in a coal-fired power plant and in-situ detection of key gas components in coal-derived syngas. The sensors described in this paper include a miniaturized inline fiber Fabry-Perot interferometer (FPI) fabricated by one-step fs laser micromachining, a long period fiber grating (LPFG) and a fiber inline core-cladding mode interferometer (CMMI) fabricated by controlled CO2 laser irradiations. Their operating principles, fabrication methods, and applications for measurement of various physical and chemical parameters in a high temperature and high pressure coexisting harsh environment are presented.

  10. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    PubMed Central

    Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel

    2014-01-01

    A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771

  11. Birefringence-balanced polarimetric optical fiber sensor for high-temperature measurements

    NASA Technical Reports Server (NTRS)

    Wang, Anbo; Wang, George Z.; Murphy, Kent A.; Claus, Richard O.

    1992-01-01

    A birefringence-balanced polarimetric multimode fiber temperature sensor is proposed and demonstrated. Two single-crystal sapphire rods are incorporated into the sensor head. They are connected end to end in such a way that the slow axis of the first rod is aligned with the fast axis of the second rod, referred to as the referencing rod. Since the lengths of the two rods are chosen to be almost the same, the original birefringence of the first rod is balanced by that of the second rod. A light-emitting diode serves as the light source. This sensor has been experimentally demonstrated for high-temperature measurements as high as 1500 C. A sensitivity of 5 C has been obtained.

  12. High temperature and frequency pressure sensor based on silicon-on-insulator layers

    NASA Astrophysics Data System (ADS)

    Zhao, Y. L.; Zhao, L. B.; Jiang, Z. D.

    2006-03-01

    Based on silicon on insulator (SOI) technology, a novel high temperature pressure sensor with high frequency response is designed and fabricated, in which a buried silicon dioxide layer in the silicon material is developed by the separation by implantation of oxygen (SIMOX) technology. This layer can isolate leak currents between the top silicon layer for the detecting circuit and body silicon at a temperature of about 200 °C. In addition, the technology of silicon and glass bonding is used to create a package of the sensor without internal strain. A structural model and test data from the sensor are presented. The experimental results showed that this kind of sensor possesses good static performance in a high temperature environment and high frequency dynamic characteristics, which may satisfy the pressure measurement demands of the oil industry, aviation and space, and so on.

  13. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit

    PubMed Central

    Yao, Zong; Liang, Ting; Jia, Pinggang; Hong, Yingping; Qi, Lei; Lei, Cheng; Zhang, Bin; Xiong, Jijun

    2016-01-01

    This paper focuses on the design and fabrication of a high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit, which consists of an encapsulated pressure-sensitive chip, a temperature compensation circuit and a signal-conditioning circuit. A silicon on insulation (SOI) material and a standard MEMS process are used in the pressure-sensitive chip fabrication, and high-temperature electronic components are adopted in the temperature-compensation and signal-conditioning circuits. The entire pressure sensor achieves a hermetic seal and can be operated long-term in the range of −50 °C to 220 °C. Unlike traditional pressure sensor output voltage ranges (in the dozens to hundreds of millivolts), the output voltage of this sensor is from 0 V to 5 V, which can significantly improve the signal-to-noise ratio and measurement accuracy in practical applications of long-term transmission based on experimental verification. Furthermore, because this flexible sensor’s output voltage is adjustable, general follow-up pressure transmitter devices for voltage converters need not be used, which greatly reduces the cost of the test system. Thus, the proposed high-temperature piezoresistive pressure sensor with an integrated signal-conditioning circuit is expected to be highly applicable to pressure measurements in harsh environments. PMID:27322288

  14. Embedded infrared fiber-optic sensor for thermometry in a high temperature/pressure environment

    NASA Astrophysics Data System (ADS)

    Yoo, Wook Jae; Jang, Kyoung Won; Moon, Jinsoo; Han, Ki-Tek; Jeon, Dayeong; Lee, Bongsoo; Park, Byung Gi

    2012-11-01

    In this study, we developed an embedded infrared fiber-optic temperature sensor for thermometry in high temperature/pressure and water-chemistry environments by using two identical silver-halide optical fibers. The performance of the fabricated temperature sensor was assessed in an autoclave filled with an aqueous coolant solution containing boric acid and lithium hydroxide. We carried out real-time monitoring of the infrared radiation emitted from the signal and reference probes for various temperatures over a temperature range from 95 to 225 °C. In order to decide the temperature of the synthetic coolant solution, we measured the difference between the infrared radiation emitted from the two temperature-sensing probes. Thermometry with the proposed sensor is immune to any changes in the physical conditions and the emissivity of the heat source. From the experimental results, the embedded infrared fiber-optic temperature sensor can withstand, and normally operate in a high temperature/pressure test loop system corresponding to the coolant system used for nuclear power plant simulation. We expect that the proposed sensor can be developed to accurately monitor temperatures in harsh environments.

  15. Advanced Packaging Technology Used in Fabricating a High-Temperature Silicon Carbide Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn M.

    2003-01-01

    The development of new aircraft engines requires the measurement of pressures in hot areas such as the combustor and the final stages of the compressor. The needs of the aircraft engine industry are not fully met by commercially available high-temperature pressure sensors, which are fabricated using silicon. Kulite Semiconductor Products and the NASA Glenn Research Center have been working together to develop silicon carbide (SiC) pressure sensors for use at high temperatures. At temperatures above 850 F, silicon begins to lose its nearly ideal elastic properties, so the output of a silicon pressure sensor will drift. SiC, however, maintains its nearly ideal mechanical properties to extremely high temperatures. Given a suitable sensor material, a key to the development of a practical high-temperature pressure sensor is the package. A SiC pressure sensor capable of operating at 930 F was fabricated using a newly developed package. The durability of this sensor was demonstrated in an on-engine test. The SiC pressure sensor uses a SiC diaphragm, which is fabricated using deep reactive ion etching. SiC strain gauges on the surface of the diaphragm sense the pressure difference across the diaphragm. Conventionally, the SiC chip is mounted to the package with the strain gauges outward, which exposes the sensitive metal contacts on the chip to the hostile measurement environment. In the new Kulite leadless package, the SiC chip is flipped over so that the metal contacts are protected from oxidation by a hermetic seal around the perimeter of the chip. In the leadless package, a conductive glass provides the electrical connection between the pins of the package and the chip, which eliminates the fragile gold wires used previously. The durability of the leadless SiC pressure sensor was demonstrated when two 930 F sensors were tested in the combustor of a Pratt & Whitney PW4000 series engine. Since the gas temperatures in these locations reach 1200 to 1300 F, the sensors were

  16. High-temperature sensor instrumentation with a thin-film-based sapphire fiber.

    PubMed

    Guo, Yuqing; Xia, Wei; Hu, Zhangzhong; Wang, Ming

    2017-03-10

    A novel sapphire fiber-optic high-temperature sensor has been designed and fabricated based on blackbody radiation theory. Metallic molybdenum has been used as the film material to develop the blackbody cavity, owing to its relatively high melting point compared to that of sapphire. More importantly, the fabrication process for the blackbody cavity is simple, efficient, and economical. Thermal radiation emitted from such a blackbody cavity is transmitted via optical fiber to a remote place for detection. The operating principle, the sensor structure, and the fabrication process are described here in detail. The developed high-temperature sensor was calibrated through a calibration blackbody furnace at temperatures from 900°C to 1200°C and tested by a sapphire crystal growth furnace up to 1880°C. The experimental results of our system agree well with those from a commercial Rayteck MR1SCCF infrared pyrometer, and the maximum residual is approximately 5°C, paving the way for high-accuracy temperature measurement especially for extremely harsh environments.

  17. High Precision Temperature Insensitive Strain Sensor Based on Fiber-Optic Delay

    PubMed Central

    Yang, Ning; Su, Jun; Fan, Zhiqiang; Qiu, Qi

    2017-01-01

    A fiber-optic delay based strain sensor with high precision and temperature insensitivity was reported, which works on detecting the delay induced by strain instead of spectrum. In order to analyze the working principle of this sensor, the elastic property of fiber-optic delay was theoretically researched and the elastic coefficient was measured as 3.78 ps/km·με. In this sensor, an extra reference path was introduced to simplify the measurement of delay and resist the cross-effect of environmental temperature. Utilizing an optical fiber stretcher driven by piezoelectric ceramics, the performance of this strain sensor was tested. The experimental results demonstrate that temperature fluctuations contribute little to the strain error and that the calculated strain sensitivity is as high as 4.75 με in the range of 350 με. As a result, this strain sensor is proved to be feasible and practical, which is appropriate for strain measurement in a simple and economical way. Furthermore, on basis of this sensor, the quasi-distributed measurement could be also easily realized by wavelength division multiplexing and wavelength addressing for long-distance structure health and security monitoring. PMID:28468323

  18. Fiber specklegram sensors sensitivities at high temperatures

    NASA Astrophysics Data System (ADS)

    Rodriguez-Cobo, L.; Lomer, M.; Lopez-Higuera, J. M.

    2015-09-01

    In this work, the sensitivity of Fiber Specklegram Sensors to high temperatures (up to 800ºC) have been studied. Two multimode silica fibers have been introduced into a tubular furnace while a HeNe laser source was launched into a fiber edge, projecting speckle patterns to a commercial webcam. A computer generated different heating and cooling sweeps while the specklegram evolution was recorded. The achieved results exhibit a remarkably linearity in FSS's sensitivity for temperatures under 800ºC, following the thermal expansion of fused silica.

  19. Diaphragm-Free Fiber-Optic Fabry-Perot Interferometric Gas Pressure Sensor for High Temperature Application.

    PubMed

    Liang, Hao; Jia, Pinggang; Liu, Jia; Fang, Guocheng; Li, Zhe; Hong, Yingping; Liang, Ting; Xiong, Jijun

    2018-03-28

    A diaphragm-free fiber-optic Fabry-Perot (FP) interferometric gas pressure sensor is designed and experimentally verified in this paper. The FP cavity was fabricated by inserting a well-cut fiber Bragg grating (FBG) and hollow silica tube (HST) from both sides into a silica casing. The FP cavity length between the ends of the SMF and HST changes with the gas density. Using temperature decoupling method to improve the accuracy of the pressure sensor in high temperature environments. An experimental system for measuring the pressure under different temperatures was established to verify the performance of the sensor. The pressure sensitivity of the FP gas pressure sensor is 4.28 nm/MPa with a high linear pressure response over the range of 0.1-0.7 MPa, and the temperature sensitivity is 14.8 pm/°C under the range of 20-800 °C. The sensor has less than 1.5% non-linearity at different temperatures by using temperature decoupling method. The simple fabrication and low-cost will help sensor to maintain the excellent features required by pressure measurement in high temperature applications.

  20. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  1. Thin Film Ceramic Strain Sensor Development for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M.; Laster, Kimala L.

    2008-01-01

    The need for sensors to operate in harsh environments is illustrated by the need for measurements in the turbine engine hot section. The degradation and damage that develops over time in hot section components can lead to catastrophic failure. At present, the degradation processes that occur in the harsh hot section environment are poorly characterized, which hinders development of more durable components, and since it is so difficult to model turbine blade temperatures, strains, etc, actual measurements are needed. The need to consider ceramic sensing elements is brought about by the temperature limits of metal thin film sensors in harsh environments. The effort at the NASA Glenn Research Center (GRC) to develop high temperature thin film ceramic static strain gauges for application in turbine engines is described, first in the fan and compressor modules, and then in the hot section. The near-term goal of this research effort was to identify candidate thin film ceramic sensor materials and provide a list of possible thin film ceramic sensor materials and corresponding properties to test for viability. A thorough literature search was conducted for ceramics that have the potential for application as high temperature thin film strain gauges chemically and physically compatible with the NASA GRCs microfabrication procedures and substrate materials. Test results are given for tantalum, titanium and zirconium-based nitride and oxynitride ceramic films.

  2. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  3. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    NASA Astrophysics Data System (ADS)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  4. Magnetic sensor for high temperature using a laminate composite of magnetostrictive material and piezoelectric material

    NASA Astrophysics Data System (ADS)

    Ueno, Toshiyuki; Higuchi, Toshiro

    2005-05-01

    A high sensitive and heat-resistive magnetic sensor using a magnetostrictive/piezoelectric laminate composite is investigated. The sensing principle is based on the magnetostrictive- and piezoelectric effect, whereby a detected yoke displacement is transduced into a voltage on the piezoelectric materials. The sensor is intended to detect the displacement of a ferromagnetic object in a high temperature environment, where conventional magnetic sensors are not useful. Such applications include sensors in engine of automobile and machinery used in material processing. The sensor features combination of a laminate composite of magnetostrictive/piezoelectric materials with high Curie temperatures and an appropriate magnetic circuit to convert mechanical displacement to sensor voltages and suppress temperature fluctuation. This paper describes the sensing principle and shows experimental results using a composite of Terfenol-D and Lithium Niobate to assure high sensitivity of 50V/mm at bias gap of 0.1mm and a temperature operating range over 200 °C.

  5. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Kevin P.

    2015-02-13

    This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the

  6. Highly sensitive long-period fiber-grating strain sensor with low temperature sensitivity

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ping; Xiao, Limin; Wang, D. N.; Jin, Wei

    2006-12-01

    A long-period fiber-grating sensor with a high strain sensitivity of -7.6 pm/μɛ and a low temperature sensitivity of 3.91 pm/°C is fabricated by use of focused CO2 laser beam to carve periodic grooves on a large- mode-area photonic crystal fiber. Such a strain sensor can effectively reduce the cross-sensitivity between strain and temperature, and the temperature-induced strain error obtained is only 0.5 μɛ/°C without using temperature compensation.

  7. Hollow glass microsphere-structured Fabry-Perot interferometric sensor for highly sensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Cheng, Junna; Zhou, Ciming; Fan, Dian; Ou, Yiwen

    2017-04-01

    We propose and demonstrate a miniature Fabry-Perot (F-P) interferometric sensor based on a hollow glass microsphere (HGM) for highly sensitive temperature measurement. The sensor head is fabricated by sticking a HGM on the end face of a single-mode fiber, and it consists of a short air F-P cavity between the front and the rear surfaces of the HGM. A sensor with 135.7280-μm cavity length was tested for temperature measurement from -5 °C to 50 °C. The obtained sensitivity reached up to 24.5 pm/°C and the variation rate of the HGM- F-P's cavity length was2.1 nm/°C. The advantages of compact size, easy fabrication and low cost make the sensor suitable for highly sensitive temperature sensing.

  8. High spatial resolution fiber optical sensors for simultaneous temperature and chemical sensing for energy industries

    NASA Astrophysics Data System (ADS)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Zaghloul, Mohamed; Ohodnicki, Paul; Buric, Michael; Chen, Kevin P.

    2017-05-01

    This paper demonstrates optical fibers as high-temperature sensor platforms. Through engineering and onfiber integration of functional metal oxide sensory materials, we report the development of an integrated sensor solution to perform temperature and chemical measurements for high-temperature energy applications. Using the Rayleigh optical frequency domain reflectometry (OFDR) distributed sensing scheme, the temperature and hydrogen concentration were measured along the fiber. To overcome the weak Rayleighbackscattering intensity exhibited by conventional optical fibers, an ultrafast laser was used to enhance the Rayleigh scattering by a direct laser writing method. Using the Rayleigh-enhanced fiber as sensor platform, both temperature and hydrogen reaction were monitored at high temperature up to 750°C with 4-mm spatial resolution.

  9. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    NASA Astrophysics Data System (ADS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  10. AOI [3] High-Temperature Nano-Derived Micro-H 2 and - H 2S Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.

    2014-08-01

    The emissions from coal-fired power plants remain a significant concern for air quality. This environmental challenge must be overcome by controlling the emission of sulfur dioxide (SO 2) and hydrogen sulfide (H 2S) throughout the entire coal combustion process. One of the processes which could specifically benefit from robust, low cost, and high temperature compatible gas sensors is the coal gasification process which converts coal and/or biomass into syngas. Hydrogen (H 2), carbon monoxide (CO) and sulfur compounds make up 33%, 43% and 2% of syngas, respectively. Therefore, development of a high temperature (>500°C) chemical sensor for in-situ monitoring ofmore » H 2, H 2S and SO2 2 levels during coal gasification is strongly desired. The selective detection of SO 2/H 2S in the presence of H 2, is a formidable task for a sensor designer. In order to ensure effective operation of these chemical sensors, the sensor system must inexpensively function within harsh temperature and chemical environment. Currently available sensing approaches, which are based on gas chromatography, electrochemistry, and IR-spectroscopy, do not satisfy the required cost and performance targets. This work focused on the development microsensors that can be applied to this application. In order to develop the high- temperature compatible microsensor, this work addressed various issues related to sensor stability, selectivity, and miniaturization. In the research project entitled “High-Temperature Nano-Derived Micro-H 2 and -H 2S Sensors”, the team worked to develop micro-scale, chemical sensors and sensor arrays composed of nano-derived, metal-oxide composite materials to detect gases like H 2, SO 2, and H 2S within high-temperature environments (>500°C). The research was completed in collaboration with NexTech Materials, Ltd. (Lewis Center, Ohio). NexTech assisted in the testing of the sensors in syngas with contaminate levels of H 2S. The idea of including nanomaterials as the

  11. Ultrahigh Temperature Capacitive Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Harsh, Kevin

    2014-01-01

    Robust, miniaturized sensing systems are needed to improve performance, increase efficiency, and track system health status and failure modes of advanced propulsion systems. Because microsensors must operate in extremely harsh environments, there are many technical challenges involved in developing reliable systems. In addition to high temperatures and pressures, sensing systems are exposed to oxidation, corrosion, thermal shock, fatigue, fouling, and abrasive wear. In these harsh conditions, sensors must be able to withstand high flow rates, vibration, jet fuel, and exhaust. In order for existing and future aeropropulsion turbine engines to improve safety and reduce cost and emissions while controlling engine instabilities, more accurate and complete sensor information is necessary. High-temperature (300 to 1,350 C) capacitive pressure sensors are of particular interest due to their high measurement bandwidth and inherent suitability for wireless readout schemes. The objective of this project is to develop a capacitive pressure sensor based on silicon carbon nitride (SiCN), a new class of high-temperature ceramic materials, which possesses excellent mechanical and electric properties at temperatures up to 1,600 C.

  12. A concept of wireless and passive very-high temperature sensor

    NASA Astrophysics Data System (ADS)

    Nicolay, P.; Matloub, R.; Bardong, J.; Mazzalai, A.; Muralt, P.

    2017-05-01

    There is a need for sensors capable operating at temperatures above 1000 °C. We describe an innovative sensor that might achieve this goal. The sensor comprises two main elements: a thermocouple and a surface acoustic wave (SAW) strain sensor. The cold junction of the thermocouple is electrically connected to a highly piezoelectric thin layer, deposited on top of a SAW substrate. In operation, the voltage generated by the temperature gradient between the hot (>1000 °C) and cold junction (<350 °C) generates a strain field in the layer, which is mechanically transmitted to the substrate. This modifies the SAW propagation conditions and therefore the sensors' radiofrequency response. The change depends on the applied voltage and thus on the hot junction temperature. As SAW devices are passive elements that can be remotely interrogated, it becomes possible to infer the hot junction temperature from the radiofrequency response, i.e., to remotely read temperatures above 1000 °C, without embedded electronics. In this paper, we demonstrate the feasibility of this concept, using AlN layers deposited on Y-Z Lithium Niobate (LN). The achieved sensitivity of 80 Hz/V at 400 MHz is constant over a wide voltage range. Numerical simulations were performed to compute the main properties of the demonstrators and suggest optimization strategies. Improvements are expected from the use of stronger piezoelectric layers, such as AlScN or Pb(Ti,Zr)O3 (PZT), which could increase the sensitivity by factors of 3 and 20, as estimated from their transverse piezoelectric coefficients. As a first step in this direction, thin PZT layers have been deposited on Y-Z LN.

  13. High-Temperature Piezoelectric Sensing

    PubMed Central

    Jiang, Xiaoning; Kim, Kyungrim; Zhang, Shujun; Johnson, Joseph; Salazar, Giovanni

    2014-01-01

    Piezoelectric sensing is of increasing interest for high-temperature applications in aerospace, automotive, power plants and material processing due to its low cost, compact sensor size and simple signal conditioning, in comparison with other high-temperature sensing techniques. This paper presented an overview of high-temperature piezoelectric sensing techniques. Firstly, different types of high-temperature piezoelectric single crystals, electrode materials, and their pros and cons are discussed. Secondly, recent work on high-temperature piezoelectric sensors including accelerometer, surface acoustic wave sensor, ultrasound transducer, acoustic emission sensor, gas sensor, and pressure sensor for temperatures up to 1,250 °C were reviewed. Finally, discussions of existing challenges and future work for high-temperature piezoelectric sensing are presented. PMID:24361928

  14. High-sensitivity in situ QCLAS-based ammonia concentration sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Peng, W. Y.; Sur, R.; Strand, C. L.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2016-07-01

    A novel quantum cascade laser (QCL) absorption sensor is presented for high-sensitivity in situ measurements of ammonia (hbox {NH}_3) in high-temperature environments, using scanned wavelength modulation spectroscopy (WMS) with first-harmonic-normalized second-harmonic detection (scanned WMS-2 f/1 f) to neutralize the effect of non-absorption losses in the harsh environment. The sensor utilized the sQ(9,9) transition of the fundamental symmetric stretch band of hbox {NH}_3 at 10.39 {\\upmu }hbox {m} and was sinusoidally modulated at 10 kHz and scanned across the peak of the absorption feature at 50 Hz, leading to a detection bandwidth of 100 Hz. A novel technique was used to select an optimal WMS modulation depth parameter that reduced the sensor's sensitivity to spectral interference from hbox {H}_2hbox {O} and hbox {CO}_2 without significantly sacrificing signal-to-noise ratio. The sensor performance was validated by measuring known concentrations of hbox {NH}_3 in a flowing gas cell. The sensor was then demonstrated in a laboratory-scale methane-air burner seeded with hbox {NH}_3, achieving a demonstrated detection limit of 2.8 ± 0.26 ppm hbox {NH}_3 by mole at a path length of 179 cm, equivalence ratio of 0.6, pressure of 1 atm, and temperatures of up to 600 K.

  15. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    PubMed Central

    Fuentes-Fuentes, Miguel A.; May-Arrioja, Daniel A.; Guzman-Sepulveda, José R.; Torres-Cisneros, Miguel; Sánchez-Mondragón, José J.

    2015-01-01

    A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC) of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF) highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors. PMID:26512664

  16. Isolating Gas Sensor From Pressure And Temperature Effects

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chen, Tony T. D.; Chaturvedi, Sushi K.

    1994-01-01

    Two-stage flow system enables oxygen sensor in system to measure oxygen content of low-pressure, possibly-high-temperature atmosphere in test environment while protecting sensor against possibly high temperature and fluctuations in pressure of atmosphere. Sensor for which flow system designed is zirconium oxide oxygen sensor sampling atmospheres in high-temperature wind tunnels. Also adapted to other gas-analysis instruments that must be isolated from pressure and temperature effects of test environments.

  17. Temperature-programmed technique accompanied with high-throughput methodology for rapidly searching the optimal operating temperature of MOX gas sensors.

    PubMed

    Zhang, Guozhu; Xie, Changsheng; Zhang, Shunping; Zhao, Jianwei; Lei, Tao; Zeng, Dawen

    2014-09-08

    A combinatorial high-throughput temperature-programmed method to obtain the optimal operating temperature (OOT) of gas sensor materials is demonstrated here for the first time. A material library consisting of SnO2, ZnO, WO3, and In2O3 sensor films was fabricated by screen printing. Temperature-dependent conductivity curves were obtained by scanning this gas sensor library from 300 to 700 K in different atmospheres (dry air, formaldehyde, carbon monoxide, nitrogen dioxide, toluene and ammonia), giving the OOT of each sensor formulation as a function of the carrier and analyte gases. A comparative study of the temperature-programmed method and a conventional method showed good agreement in measured OOT.

  18. Low-cost and high-resolution interrogation scheme for LPG-based temperature sensor

    NASA Astrophysics Data System (ADS)

    Venkata Reddy, M.; Srimannarayana, K.; Venkatappa Rao, T.; Vengal Rao, P.

    2015-09-01

    A low-cost and high-resolution interrogation scheme for a long-period fiber grating (LPG) temperature sensor with adjustable temperature range has been designed, developed and tested. In general LPGs are widely used as optical sensors and can be used as optical edge filters to interrogate the wavelength encoded signal from sensors such as fiber Bragg grating (FBG) by converting it into intensity modulated signal. But the interrogation of LPG sensors using FBG is a bit novel and it is to be studied experimentally. The sensor works based on measurement of shift in attenuation band of LPG corresponding to the applied temperature. The wavelength shift of LPG attenuation band is monitored using an optical spectrum analyser (OSA). Further the bulk and expensive OSA is replaced with a low-cost interrogation system that employ an FBG, photodiode and a transimpedance amplifier (TIA). The designed interrogation scheme makes the system low-cost, fast in response, and also enhances its resolution up to 0.1°C. The measurable temperature range using the proposed scheme is limited to 120 °C. However this range can be shifted within 15-450 °C by means of adjusting the Bragg wavelength of FBG.

  19. Phase Interrogation Used for a Wireless Passive Pressure Sensor in an 800 °C High-Temperature Environment

    PubMed Central

    Zhang, Huixin; Hong, Yingping; Liang, Ting; Zhang, Hairui; Tan, Qiulin; Xue, Chenyang; Liu, Jun; Zhang, Wendong; Xiong, Jijun

    2015-01-01

    A wireless passive pressure measurement system for an 800 °C high-temperature environment is proposed and the impedance variation caused by the mutual coupling between a read antenna and a LC resonant sensor is analyzed. The system consists of a ceramic-based LC resonant sensor, a readout device for impedance phase interrogation, heat insulating material, and a composite temperature-pressure test platform. Performances of the pressure sensor are measured by the measurement system sufficiently, including pressure sensitivity at room temperature, zero drift from room temperature to 800 °C, and the pressure sensitivity under the 800 °C high temperature environment. The results show that the linearity of sensor is 0.93%, the repeatability is 6.6%, the hysteretic error is 1.67%, and the sensor sensitivity is 374 KHz/bar. The proposed measurement system, with high engineering value, demonstrates good pressure sensing performance in a high temperature environment. PMID:25690546

  20. Novel High Temperature Capacitive Pressure Sensor Utilizing SiC Integrated Circuit Twin Ring Oscillators

    NASA Technical Reports Server (NTRS)

    Scardelletti, M.; Neudeck, P.; Spry, D.; Meredith, R.; Jordan, J.; Prokop, N.; Krasowski, M.; Beheim, G.; Hunter, G.

    2017-01-01

    This paper describes initial development and testing of a novel high temperature capacitive pressure sensor system. The pressure sensor system consists of two 4H-SiC 11-stage ring oscillators and a SiCN capacitive pressure sensor. One oscillator has the capacitive pressure sensor fixed at one node in its feedback loop and varies as a function of pressure and temperature while the other provides a pressure-independent reference frequency which can be used to temperature compensate the output of the first oscillator. A two-day repeatability test was performed up to 500C on the oscillators and the oscillator fundamental frequency changed by only 1. The SiCN capacitive pressure sensor was characterized at room temperature from 0 to 300 psi. The sensor had an initial capacitance of 3.76 pF at 0 psi and 1.75 pF at 300 psi corresponding to a 54 change in capacitance. The integrated pressure sensor system was characterized from 0 to 300 psi in steps of 50 psi over a temperature range of 25 to 500C. The pressure sensor system sensitivity was 0.113 kHzpsi at 25C and 0.026 kHzpsi at 500C.

  1. Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Laster, Kimala L. H.

    2005-01-01

    A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.

  2. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  3. PCF-based Fabry-Perot interferometric sensor for strain measurement under high-temperature

    NASA Astrophysics Data System (ADS)

    Deng, Ming; Tang, Chang-Ping; Zhu, Tao; Rao, Yun-Jiang

    2011-05-01

    We report a simple and robust all-fiber in-line Fabry-Perot interferometer (FPI) with bubble cavity, which is fabricated by directly splicing a mutimode photonic crystal fiber to a conventional single mode fiber by using a commercial splicer. The fabrication process only involves fusion splicing and cleaving. The high-temperature strain characteristic of such a device is evaluated and experimental results shows that this FPI can be used as an ideal sensor for precise strain measurement under high temperatures of up to 750°C. Therefore, such a FPI sensor may find important applications in aeronautics or metallurgy areas.

  4. Single-ended retroreflection sensors for absorption spectroscopy in high-temperature environments

    NASA Astrophysics Data System (ADS)

    Melin, Scott T.; Wang, Ze; Neal, Nicholas J.; Rothamer, David A.; Sanders, Scott T.

    2017-04-01

    Novel single-ended sensor arrangements are demonstrated for in situ absorption spectroscopy in combustion and related test articles. A single-ended optical access technique based on back-reflection from a polished test article surface is presented. H2O vapor absorption spectra were measured at 10 kHz in a homogeneous-charge compression-ignition engine using a sensor of this design collecting back-reflection from a polished piston surface. The measured spectra show promise for high-repetition-rate measurements in practical combustion devices. A second sensor was demonstrated based on a modification to this optical access technique. The sensor incorporates a nickel retroreflective surface as back-reflector to reduce sensitivity to beam steering and misalignment. In a propane-fired furnace, H2O vapor absorption spectra were obtained over the range 7315-7550 cm- 1 at atmospheric pressure and temperatures up to 775 K at 20 Hz using an external-cavity diode laser spectrometer. Gas properties of temperature and mole fraction were obtained from this furnace data using a band-shape spectral fitting technique. The temperature accuracy of the band-shape fitting was demonstrated to be ±1.3 K for furnace measurements at atmospheric pressure. These results should extend the range of applications in which absorption spectroscopy sensors are attractive candidates.

  5. INTELLIGENT MONITORING SYSTEM WITH HIGH TEMPERATURE DISTRIBUTED FIBEROPTIC SENSOR FOR POWER PLANT COMBUSTION PROCESSES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang Y. Lee; Stuart S. Yin; Andre Boheman

    2004-12-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatialmore » resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, improvement was made on the performance of in-fiber grating fabricated in single crystal sapphire fibers, test was performed on the grating performance of single crystal sapphire fiber with new fabrication methods, and the fabricated grating was applied to high temperature sensor. Under Task 2, models obtained from 3-D modeling of the Demonstration Boiler were used to study relationships between temperature and NOx, as the multi-dimensionality of such systems are most comparable with real-life boiler systems. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we investigate a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. The 3D temperature data is furnished by the Penn State Energy Institute using FLUENT. Given a set of empirical data with no

  6. Development and Performance Verification of Fiber Optic Temperature Sensors in High Temperature Engine Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey R.; Kren, Lawrence A.; Floyd, Bertram M.; Elam, Kristie A.; Martinez, Martel

    2014-01-01

    A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn Research Center for aircraft engine applications. After fabrication and preliminary in-house performance evaluation, the HTFOS was tested in an engine environment at NASA Armstrong Flight Research Center. The engine tests enabled the performance of the HTFOS in real engine environments to be evaluated along with the ability of the sensor to respond to changes in the engine's operating condition. Data were collected prior, during, and after each test in order to observe the change in temperature from ambient to each of the various test point levels. An adequate amount of data was collected and analyzed to satisfy the research team that HTFOS operates properly while the engine was running. Temperature measurements made by HTFOS while the engine was running agreed with those anticipated.

  7. Development of a TDLAS sensor for temperature and concentration of H2 O in high speed and high temperature flows

    NASA Astrophysics Data System (ADS)

    Sheehe, Suzanne; O'Byrne, Sean

    2017-06-01

    The development of a sensor for simultaneous temperature concentration of H2 O and temperature in high speed flows is presented. H2 O is a desirable target sensing species because it is a primary product in combustion systems; both temperature and concentration profiles can be used to assess both the extent of the combustion and the flow field characteristics. Accurate measurements are therefore highly desirable. The sensor uses a vertical-cavity surface emitting laser (VCSEL) scanned at 50 kHz from 7172 to 7186 cm-1. Temperatures and concentrations are extracted from the spectra by fitting theoretical spectra to the experimental data. The theoretical spectra are generated using GENSPECT in conjunction with line parameters from the HITRAN 2012 database. To validate the theoretical spectra, experimental spectra of H2 O were obtained at known temperatures (290-550 K) and pressures (30 torr) in a heated static gas cell. The results show that some theoretical lines deviate from the experimental lines. New line-strengths are calculated assuming that the line assignments and broadening parameters in HITRAN are correct. This data is essential for accurate H2 O concentration and temperature measurements at low pressure and high temperature conditions. US Air Force Asian Office of Aerospace Research and Development Grant FA2386-16-1-4092.

  8. A High Temperature Capacitive Pressure Sensor Based on Alumina Ceramic for in Situ Measurement at 600 °C

    PubMed Central

    Tan, Qiulin; Li, Chen; Xiong, Jijun; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Hong, Yingping; Ren, Zhong; Luo, Tao

    2014-01-01

    In response to the growing demand for in situ measurement of pressure in high-temperature environments, a high temperature capacitive pressure sensor is presented in this paper. A high-temperature ceramic material-alumina is used for the fabrication of the sensor, and the prototype sensor consists of an inductance, a variable capacitance, and a sealed cavity integrated in the alumina ceramic substrate using a thick-film integrated technology. The experimental results show that the proposed sensor has stability at 850 °C for more than 20 min. The characterization in high-temperature and pressure environments successfully demonstrated sensing capabilities for pressure from 1 to 5 bar up to 600 °C, limited by the sensor test setup. At 600 °C, the sensor achieves a linear characteristic response, and the repeatability error, hysteresis error and zero-point drift of the sensor are 8.3%, 5.05% and 1%, respectively. PMID:24487624

  9. Slot Antenna Integrated Re-Entrant Resonator Based Wireless Pressure Sensor for High-Temperature Applications.

    PubMed

    Su, Shujing; Lu, Fei; Wu, Guozhu; Wu, Dezhi; Tan, Qiulin; Dong, Helei; Xiong, Jijun

    2017-08-25

    The highly sensitive pressure sensor presented in this paper aims at wireless passive sensing in a high temperature environment by using microwave backscattering technology. The structure of the re-entrant resonator was analyzed and optimized using theoretical calculation, software simulation, and its equivalent lump circuit model was first modified by us. Micro-machining and high-temperature co-fired ceramic (HTCC) process technologies were applied to fabricate the sensor, solving the common problem of cavity sealing during the air pressure loading test. In addition, to prevent the response signal from being immersed in the strong background clutter of the hermetic metal chamber, which makes its detection difficult, we proposed two key techniques to improve the signal to noise ratio: the suppression of strong background clutter and the detection of the weak backscattered signal of the sensor. The pressure sensor demonstrated in this paper works well for gas pressure loading between 40 and 120 kPa in a temperature range of 24 °C to 800 °C. The experimental results show that the sensor resonant frequency lies at 2.1065 GHz, with a maximum pressure sensitivity of 73.125 kHz/kPa.

  10. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System

    PubMed Central

    Zhou, Guanwu; Zhao, Yulong; Guo, Fangfang; Xu, Wenju

    2014-01-01

    Theoretical analysis in this paper indicates that the accuracy of a silicon piezoresistive pressure sensor is mainly affected by thermal drift, and varies nonlinearly with the temperature. Here, a smart temperature compensation system to reduce its effect on accuracy is proposed. Firstly, an effective conditioning circuit for signal processing and data acquisition is designed. The hardware to implement the system is fabricated. Then, a program is developed on LabVIEW which incorporates an extreme learning machine (ELM) as the calibration algorithm for the pressure drift. The implementation of the algorithm was ported to a micro-control unit (MCU) after calibration in the computer. Practical pressure measurement experiments are carried out to verify the system's performance. The temperature compensation is solved in the interval from −40 to 85 °C. The compensated sensor is aimed at providing pressure measurement in oil-gas pipelines. Compared with other algorithms, ELM acquires higher accuracy and is more suitable for batch compensation because of its higher generalization and faster learning speed. The accuracy, linearity, zero temperature coefficient and sensitivity temperature coefficient of the tested sensor are 2.57% FS, 2.49% FS, 8.1 × 10−5/°C and 29.5 × 10−5/°C before compensation, and are improved to 0.13%FS, 0.15%FS, 1.17 × 10−5/°C and 2.1 × 10−5/°C respectively, after compensation. The experimental results demonstrate that the proposed system is valid for the temperature compensation and high accuracy requirement of the sensor. PMID:25006998

  11. Surface-mount sapphire interferometric temperature sensor.

    PubMed

    Zhu, Yizheng; Wang, Anbo

    2006-08-20

    A fiber-optic high-temperature sensor is demonstrated by bonding a 45 degrees -polished single-crystal sapphire fiber on the surface of a sapphire wafer, whose optical thickness is temperature dependent and measured by white-light interferometry. A novel adhesive-free coupling between the silica and sapphire fibers is achieved by fusion splicing, and its performance is characterized. The sensor's interference signal is investigated for its dependence on angular alignment between the fiber and the wafer. A prototype sensor is tested to 1,170 degrees C with a resolution of 0.4 degrees C, demonstrating excellent potential for high-temperature measurement.

  12. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  13. Modulated-splitting-ratio fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Rys, John R.; Fritsch, Klaus; Ruppe, Walter A.

    1988-01-01

    A fiber-optic temperature sensor is described, which uses a small silicon beamsplitter whose splitting ratio varies as a function of temperature. A four-beam technique is used to measure the sensor's temperature-indicating splitting ratio. This referencing method provides a measurement that is largely independent of the transmission properties of the sensor's optical fiber link. A significant advantage of this sensor, relative to other fiber-optic sensors, is its high stability, which permits the fiber-optic components to be readily substituted, thereby simplifying the sensor's installation and maintenance.

  14. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments.

    PubMed

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-08-31

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively.

  15. High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Nguyen, Linh V.; Warren-Smith, Stephen C.; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-04-01

    We report a high temperature fiber sensor based on the multimode interference effect within a suspended core microstructured optical fiber (SCF). By splicing a short section of SCF with a lead-in single-mode fiber (SMF), the sensor head was formed. A complex interference pattern was obtained in the reflection spectrum as the result of the multiple excited modes in the SCF. The complexity of the interference indicates that there are more than two dominantly excited modes in the SCF, as resolved by Fast Fourier Transform (FFT) analysis of the interference. The proposed sensor was subjected to temperature variation from 20°C to 1100°C. The fringe of the filtered spectrum red-shifted linearly with respect to temperature varying between 20°C and 1100°C, with similar temperature sensitivity for increasing and decreasing temperature. Phase monitoring was used for an extended temperature experiment (80 hours) in which the sensor was subjected to several different temperature variation conditions namely (i) step-wise increase/decrease with 100°C steps between 20°C and 1100°C, (ii) dwelling overnight at 400°C, (iii) free fall from 1100°C to 132°C, and (iv) continuous increase of temperature from 132°C to 1100°C. Our approach serves as a simple and cost-effective alternative to the better-known high temperature fiber sensors such as the fiber Bragg grating (FBG) in sapphire fibers or regenerated FBG in photosensitive optical fibers.

  16. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  17. Highly selective room temperature NO2 gas sensor based on rGO-ZnO composite

    NASA Astrophysics Data System (ADS)

    Jyoti, Kanaujiya, Neha; Varma, G. D.

    2018-05-01

    Blending metal oxide nanoparticles with graphene or its derivatives can greatly enhance gas sensing characteristics. In the present work, ZnO nanoparticles have been synthesized via reflux method. Thin films of reduced graphene oxide (rGO) and composite of rGO-ZnO have been fabricated by drop casting method for gas sensing application. The samples have been characterized by X-ray diffraction (XRD) and Field-emission scanning electron microscope (FESEM) for the structural and morphological studies respectively. Sensing measurements have been carried out for the composite film of rGO-ZnO for different concentrations of NO2 ranging from 4 to 100 ppm. Effect of increasing temperature on the sensing performance has also been studied and the rGO-ZnO composite sensor shows maximum percentage response at room temperature. The limit of detection (LOD) for rGO-ZnO composite sensor is 4ppm and it exhibits a high response of 48.4% for 40 ppm NO2 at room temperature. To check the selectivity of the composite sensor, sensor film has been exposed to 40 ppm different gases like CO, NH3, H2S and Cl2 at room temperature and the sensor respond negligibly to these gases. The present work suggests that rGO-ZnO composite material can be a better candidate for fabrication of highly selective room temperature NO2 gas sensor.

  18. An Insertable Passive LC Pressure Sensor Based on an Alumina Ceramic for In Situ Pressure Sensing in High-Temperature Environments

    PubMed Central

    Xiong, Jijun; Li, Chen; Jia, Pinggang; Chen, Xiaoyong; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Tan, Qiulin

    2015-01-01

    Pressure measurements in high-temperature applications, including compressors, turbines, and others, have become increasingly critical. This paper proposes an implantable passive LC pressure sensor based on an alumina ceramic material for in situ pressure sensing in high-temperature environments. The inductance and capacitance elements of the sensor were designed independently and separated by a thermally insulating material, which is conducive to reducing the influence of the temperature on the inductance element and improving the quality factor of the sensor. In addition, the sensor was fabricated using thick film integrated technology from high-temperature materials that ensure stable operation of the sensor in high-temperature environments. Experimental results showed that the sensor accurately monitored pressures from 0 bar to 2 bar at temperatures up to 800 °C. The sensitivity, linearity, repeatability error, and hysteretic error of the sensor were 0.225 MHz/bar, 95.3%, 5.5%, and 6.2%, respectively. PMID:26334279

  19. Microhotplate Temperature Sensor Calibration and BIST.

    PubMed

    Afridi, M; Montgomery, C; Cooper-Balis, E; Semancik, S; Kreider, K G; Geist, J

    2011-01-01

    In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the

  20. Microhotplate Temperature Sensor Calibration and BIST

    PubMed Central

    Afridi, M.; Montgomery, C.; Cooper-Balis, E.; Semancik, S.; Kreider, K. G.; Geist, J.

    2011-01-01

    In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the

  1. High-Temperature Storage Testing of ACF Attached Sensor Structures

    PubMed Central

    Lahokallio, Sanna; Hoikkanen, Maija; Vuorinen, Jyrki; Frisk, Laura

    2015-01-01

    Several electronic applications must withstand elevated temperatures during their lifetime. Materials and packages for use in high temperatures have been designed, but they are often very expensive, have limited compatibility with materials, structures, and processing techniques, and are less readily available than traditional materials. Thus, there is an increasing interest in using low-cost polymer materials in high temperature applications. This paper studies the performance and reliability of sensor structures attached with anisotropically conductive adhesive film (ACF) on two different organic printed circuit board (PCB) materials: FR-4 and Rogers. The test samples were aged at 200 °C and 240 °C and monitored electrically during the test. Material characterization techniques were also used to analyze the behavior of the materials. Rogers PCB was observed to be more stable at high temperatures in spite of degradation observed, especially during the first 120 h of aging. The electrical reliability was very good with Rogers. At 200 °C, the failures occurred after 2000 h of testing, and even at 240 °C the interconnections were functional for 400 h. The study indicates that, even though these ACFs were not designed for use in high temperatures, with stable PCB material they are promising interconnection materials at elevated temperatures, especially at 200 °C. However, the fragility of the structure due to material degradation may cause reliability problems in long-term high temperature exposure. PMID:28793735

  2. Dielectrically-Loaded Cylindrical Resonator-Based Wireless Passive High-Temperature Sensor

    PubMed Central

    Xiong, Jijun; Wu, Guozhu; Tan, Qiulin; Wei, Tanyong; Wu, Dezhi; Shen, Sanmin; Dong, Helei; Zhang, Wendong

    2016-01-01

    The temperature sensor presented in this paper is based on a microwave dielectric resonator, which uses alumina ceramic as a substrate to survive in harsh environments. The resonant frequency of the resonator is determined by the relative permittivity of the alumina ceramic, which monotonically changes with temperature. A rectangular aperture etched on the surface of the resonator works as both an incentive and a coupling device. A broadband slot antenna fed by a coplanar waveguide is utilized as an interrogation antenna to wirelessly detect the sensor signal using a radio-frequency backscattering technique. Theoretical analysis, software simulation, and experiments verified the feasibility of this temperature-sensing system. The sensor was tested in a metal-enclosed environment, which severely interferes with the extraction of the sensor signal. Therefore, frequency-domain compensation was introduced to filter the background noise and improve the signal-to-noise ratio of the sensor signal. The extracted peak frequency was found to monotonically shift from 2.441 to 2.291 GHz when the temperature was varied from 27 to 800 °C, leading to an average absolute sensitivity of 0.19 MHz/°C. PMID:27916920

  3. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  4. Fiber optic sensor for measurement of pressure fluctuations at high temperatures

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Cuomo, Frank W.

    1989-01-01

    A fiber-optic sensor, based on the principle of the fiber-optic lever, is described which features small size, extended bandwidth, and capability to operate at high temeratures, as required for measurements in hypersonic flow. The principle of operation, design features peculiar to the intended application, and expected performance at high temperatures are described.

  5. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  6. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  7. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  8. Optical fiber evanescent absorption sensors for high-temperature gas sensing in advanced coal-fired power plants

    NASA Astrophysics Data System (ADS)

    Buric, Michael P.; Ohodnicky, Paul R.; Duy, Janice

    2012-10-01

    Modern advanced energy systems such as coal-fired power plants, gasifiers, or similar infrastructure present some of the most challenging harsh environments for sensors. The power industry would benefit from new, ultra-high temperature devices capable of surviving in hot and corrosive environments for embedded sensing at the highest value locations. For these applications, we are currently exploring optical fiber evanescent wave absorption spectroscopy (EWAS) based sensors consisting of high temperature core materials integrated with novel high temperature gas sensitive cladding materials. Mathematical simulations can be used to assist in sensor development efforts, and we describe a simulation code that assumes a single thick cladding layer with gas sensitive optical constants. Recent work has demonstrated that Au nanoparticle-incorporated metal oxides show a potentially useful response for high temperature optical gas sensing applications through the sensitivity of the localized surface plasmon resonance absorption peak to ambient atmospheric conditions. Hence, the simulation code has been applied to understand how such a response can be exploited in an optical fiber based EWAS sensor configuration. We demonstrate that interrogation can be used to optimize the sensing response in such materials.

  9. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol

    NASA Astrophysics Data System (ADS)

    Shi, Min; Li, Shuguang; Chen, Hailiang

    2018-06-01

    A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to -8.7657 and 16.8142 nm/°C when temperature rises from 45 to 75 °C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 °C, the sensitivity can reach -7.848 and 16.655 nm/°C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 °C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF's sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.

  10. Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response.

    PubMed

    Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H

    2008-03-15

    We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.

  11. Distributed temperature sensor testing in liquid sodium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerardi, Craig; Bremer, Nathan; Lisowski, Darius

    Rayleigh-backscatter-based distributed fiber optic sensors were immersed in sodium to obtain high-resolution liquid-sodium temperature measurements. Distributed temperature sensors (DTSs) functioned well up to 400°C in a liquid sodium environment. The DTSs measured sodium column temperature and the temperature of a complex geometrical pattern that leveraged the flexibility of fiber optics. A single Ø 360 lm OD sensor registered dozens of temperatures along a length of over one meter at 100 Hz. We also demonstrated the capability to use a single DTS to simultaneously detect thermal interfaces (e.g. sodium level) and measure temperature.

  12. Wireless contactless pressure measurement of an LC passive pressure sensor with a novel antenna for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Li, Chen; Tan, Qiu-Lin; Xue, Chen-Yang; Zhang, Wen-Dong; Li, Yun-Zhi; Xiong, Ji-Jun

    2015-04-01

    In this paper, a novel antenna is proposed for high-temperature testing, which can make the high-temperature pressure characteristics of a wireless passive ceramic pressure sensor demonstrated at up to a temperature of 600 °C. The design parameters of the antenna are similar to those of the sensor, which will increase the coupling strength between the sensor and testing antenna. The antenna is fabricated in thick film integrated technology, and the properties of the alumina ceramic and silver ensure the feasibility of the antenna in high-temperature environments. The sensor, coupled with the ceramic antenna, is investigated using a high-temperature pressure testing platform. The experimental measurement results show that the pressure signal in a harsh environment can be detected by the frequency diversity of the sensor. Project supported by the National Natural Science Foundation for Distinguished Young Scholars, China (Grant No. 51425505), the National Natural Science Foundation of China (Grant No. 61471324), the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi Province, China (Grant No. 2013-077), and the Graduate Students Outstanding Innovation Project of Shanxi Province, China (Grant No. 20143020).

  13. Testing of Sapphire Optical Fiber and Sensors in Intense Radiation Fields When Subjected to Very High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blue, Thomas; Windl, Wolfgang

    The primary objective of this project was to determine the optical attenuation and signal degradation of sapphire optical fibers & sensors (temperature & strain), in-situ, operating at temperatures up to 1500°C during reactor irradiation through experiments and modeling. The results will determine the feasibility of extending sapphire optical fiber-based instrumentation to extremely high temperature radiation environments. This research will pave the way for future testing of sapphire optical fibers and fiber-based sensors under conditions expected in advanced high temperature reactors.

  14. Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickrell, Gary; Scott, Brian

    2014-06-30

    This report covers the technical progress on the program “Novel Modified Optical Fibers for High Temperature In-Situ Miniaturized Gas Sensors in Advanced Fossil Energy Systems”, funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Materials Science & Engineering and Electrical & Computer Engineering Departments at Virginia Tech, and summarizes technical progress from July 1st, 2005 –June 30th, 2014. The objective of this program was to develop novel fiber materials for high temperature gas sensors based on evanescent wave absorption in optical fibers. This project focused on two primary areas: the study ofmore » a sapphire photonic crystal fiber (SPCF) for operation at high temperature and long wavelengths, and a porous glass based fiber optic sensor for gas detection. The sapphire component of the project focused on the development of a sapphire photonic crystal fiber, modeling of the new structures, fabrication of the optimal structure, development of a long wavelength interrogation system, testing of the optical properties, and gas and temperature testing of the final sensor. The fabrication of the 6 rod SPCF gap bundle (diameter of 70μm) with a hollow core was successfully constructed with lead-in and lead-out 50μm diameter fiber along with transmission and gas detection testing. Testing of the sapphire photonic crystal fiber sensor capabilities with the developed long wavelength optical system showed the ability to detect CO 2 at or below 1000ppm at temperatures up to 1000°C. Work on the porous glass sensor focused on the development of a porous clad solid core optical fiber, a hollow core waveguide, gas detection capabilities at room and high temperature, simultaneous gas species detection, suitable joining technologies for the lead-in and lead-out fibers and the porous sensor, sensor system sensitivity improvement, signal processing improvement, relationship between pore structure and fiber

  15. absorption sensor for sensitive temperature and species measurements in high-temperature gases

    NASA Astrophysics Data System (ADS)

    Spearrin, R. M.; Ren, W.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    A continuous-wave laser absorption diagnostic, based on the infrared CO2 bands near 4.2 and 2.7 μm, was developed for sensitive temperature and concentration measurements in high-temperature gas systems using fixed-wavelength methods. Transitions in the respective R-branches of both the fundamental υ 3 band (~2,350 cm-1) and combination υ 1 + υ 3 band (~3,610 cm-1) were chosen based on absorption line-strength, spectral isolation, and temperature sensitivity. The R(76) line near 2,390.52 cm-1 was selected for sensitive CO2 concentration measurements, and a detection limit of <5 ppm was achieved in shock tube kinetics experiments (~1,300 K). A cross-band, two-line thermometry technique was also established utilizing the R(96) line near 2,395.14 cm-1, paired with the R(28) line near 3,633.08 cm-1. This combination yields high temperature sensitivity (ΔE" = 3,305 cm-1) and expanded range compared with previous intra-band CO2 sensors. Thermometry performance was validated in a shock tube over a range of temperatures (600-1,800 K) important for combustion. Measured temperature accuracy was demonstrated to be better than 1 % over the entire range of conditions, with a standard error of ~0.5 % and µs temporal resolution.

  16. Pristine carbon nanotubes based resistive temperature sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Md Bayazeed, E-mail: bayazeed786@gmail.com; Jamia Millia Islamia; Saini, Sudhir Kumar, E-mail: sudhirsaini1310@gmail.com

    A good sensor must be highly sensitive, faster in response, of low cost cum easily producible, and highly reliable. Incorporation of nano-dimensional particles/ wires makes conventional sensors more effective in terms of fulfilling the above requirements. For example, Carbon Nanotubes (CNTs) are promising sensing element because of its large aspect ratio, unique electronic and thermal properties. In addition to their use for widely reported chemical sensing, it has also been explored for temperature sensing. This paper presents the fabrication of CNTs based temperature sensor, prepared on silicon substrate using low cost spray coating method, which is reliable and reproducible methodmore » to prepare uniform CNTs thin films on any substrate. Besides this, simple and inexpensive method of preparation of dispersion of single walled CNTs (SWNTs) in 1,2 dichlorobenzene by using probe type ultrasonicator for debundling the CNTs for improving sensor response were used. The electrical contacts over the dispersed SWNTs were taken using silver paste electrodes. Fabricated sensors clearly show immediate change in resistance as a response to change in temperature of SWNTs. The measured sensitivity (change in resistance with temperature) of the sensor was found ∼ 0.29%/°C in the 25°C to 60°C temperature range.« less

  17. Silicon-etalon fiber-optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1989-01-01

    A temperature sensor is described which consists of a silicon etalon that is sputtered directly onto the end of an optical fiber. A two-layer protective cap structure is used to improve the sensor's long-term stability. The sensor's output is wavelength encoded to provide a high degree of immunity from cable and connector effects. This sensor is extremely compact and potentially inexpensive.

  18. Development of Metal-Ceramic Coaxial Cable Fabry-Pérot Interferometric Sensors for High Temperature Monitoring.

    PubMed

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-09-25

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2-8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200-500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.

  19. High temperature ultrasonic sensor for fission gas characterization in MTR harsh environment

    NASA Astrophysics Data System (ADS)

    Gatsa, O.; Combette, P.; Rozenkrantz, E.; Fourmentel, D.; Destouches, C.; Ferrandis, J. Y. AD(; )

    2018-01-01

    In the contemporary world, the measurements in hostile environment is one of the predominant necessity for automotive, aerospace, metallurgy and nuclear plant. The measurement of different parameters in experimental reactors is an important point in nuclear power strategy. In the near past, IES (Institut d'Électronique et des Systèmes) on collaboration with CEA (Commissariat à l'Energie Atomique et aux Energies Alternatives) have developed the first ultrasonic sensor for the application of gas quantity determination that has been tested in a Materials Testing Reactor (MTR). Modern requirements state to labor with the materials that possess stability on its parameters around 350°C in operation temperature. Previous work on PZT components elaboration by screen printing method established the new basis in thick film fabrication and characterization in our laboratory. Our trials on Bismuth Titanate ceramics showed the difficulties related to high electrical conductivity of fabricated samples that postponed further research on this material. Among piezoceramics, the requirements on finding an alternative solution on ceramics that might be easily polarized and fabricated by screen printing approach were resolved by the fabrication of thick film from Sodium Bismuth Titanate (NBT) piezoelectric powder. This material exhibits high Curie temperature, relatively good piezoelectric and coupling coefficients, and it stands to be a good solution for the anticipated application. In this paper, we present NBT thick film fabrication by screen printing, characterization of piezoelectric, dielectric properties and material parameters studies in dependence of temperature. Relatively high resistivity in the range of 1.1013 Ohm.cm for fabricated thick film is explained by Aurivillius structure in which a-and b-layers form perovskite structure between oxides of c-layer. Main results of this study are presented and discussed in terms of feasibility for an application to a new sensor

  20. Multiple Waveband Temperature Sensor (MWTS)

    NASA Technical Reports Server (NTRS)

    Bandara, Sumith V.; Gunapala, Sarath; Wilson, Daniel; Stirbl, Robert; Blea, Anthony; Harding, Gilbert

    2006-01-01

    This slide presentation reviews the development of Multiple Waveband Temperature Sensor (MWTS). The MWTS project will result in a highly stable, monolithically integrated, high resolution infrared detector array sensor that records registered thermal imagery in four infrared wavebands to infer dynamic temperature profiles on a laser-irradiated ground target. An accurate surface temperature measurement of a target in extreme environments in a non-intrusive manner is required. The development challenge is to: determine optimum wavebands (suitable for target temperatures, nature of the targets and environments) to measure accurate target surface temperature independent of the emissivity, integrate simultaneously readable multiband Quantum Well Infrared Photodetectors (QWIPs) in a single monolithic focal plane array (FPA) sensor and to integrate the hardware/software and system calibration for remote temperature measurements. The charge was therefore to develop and demonstrate a multiband infrared imaging camera with the detectors simultaneously sensitive to multiple distinct color bands for front surface temperature measurements Wavelength ( m) measurements. Amongst the requirements are: that the measurement system will not affect target dynamics or response to the laser irradiation and that the simplest criterion for spectral band selection is to choose those practically feasible spectral bands that create the most contrast between the objects or scenes of interest in the expected environmental conditions. There is in the presentation a review of the modeling and simulation of multi-wave infrared temperature measurement and also a review of the detector development and QWIP capacities.

  1. Development and Performance Evaluation of Optical Sensors for High Temperature Engine Applications

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Varga, D.; Floyd, B.

    2011-01-01

    This paper discusses fiber optic sensors designed and constructed to withstand extreme temperatures of aircraft engine. The paper describes development and performance evaluation of fiber optic Bragg grating based sensors. It also describes the design and presents test results of packaged sensors subjected to temperatures up to 1000 C for prolonged periods of time.

  2. Room temperature infrared imaging sensors based on highly purified semiconducting carbon nanotubes.

    PubMed

    Liu, Yang; Wei, Nan; Zhao, Qingliang; Zhang, Dehui; Wang, Sheng; Peng, Lian-Mao

    2015-04-21

    High performance infrared (IR) imaging systems usually require expensive cooling systems, which are highly undesirable. Here we report the fabrication and performance characteristics of room temperature carbon nanotube (CNT) IR imaging sensors. The CNT IR imaging sensor is based on aligned semiconducting CNT films with 99% purity, and each pixel or device of the imaging sensor consists of aligned strips of CNT asymmetrically contacted by Sc and Pd. We found that the performance of the device is dependent on the CNT channel length. While short channel devices provide a large photocurrent and a rapid response of about 110 μs, long channel length devices exhibit a low dark current and a high signal-to-noise ratio which are critical for obtaining high detectivity. In total, 36 CNT IR imagers are constructed on a single chip, each consists of 3 × 3 pixel arrays. The demonstrated advantages of constructing a high performance IR system using purified semiconducting CNT aligned films include, among other things, fast response, excellent stability and uniformity, ideal linear photocurrent response, high imaging polarization sensitivity and low power consumption.

  3. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  4. Comparison of neonatal skin sensor temperatures with axillary temperature: does skin sensor placement really matter?

    PubMed

    Schafer, Dorothea; Boogaart, Sheri; Johnson, Lynette; Keezel, Catherine; Ruperts, Liga; Vander Laan, Karen J

    2014-02-01

    Appropriate thermoregulation affects both morbidity and mortality in the neonatal setting. Nurses rely on information from temperature sensors and radiant warmers or incubators to appropriately maintain a neonate's body temperature. Skin temperature sensors must be repositioned to prevent skin irritation and breakdown. This study addresses whether there is a significant difference between skin sensor temperature readings from 3 locations on the neonate and whether there is a significant difference between skin sensor temperatures compared with digital axillary temperatures. The study participants included 36 hemodynamically stable neonates, with birth weight of 750 g or more and postnatal age of 15 days or more, in a neonatal intensive care unit. Gestational age ranged from 29.6 to 36.1 weeks at the time of data collection. A method-comparison design was used to evaluate the level of agreement between skin sensor temperatures and digital axillary thermometer measurements. When the neonate's skin sensor was scheduled for routine site change, 3 new skin sensors were placed-1 each on the right upper abdomen, left flank, and right axilla. The neonate was placed in a supine position and redressed or rewrapped if previously dressed or wrapped. Subjects served as their own controls, with temperatures measured at all 3 skin sensor sites and followed by a digital thermometer measurement in the left axilla. The order of skin sensor temperature measurements was randomly assigned by a computer-generated number sequence. An analysis of variance for repeated measures was used to test for statistical differences between the skin sensor temperatures. The difference in axillary and skin sensor temperatures was calculated by subtracting the reference standard temperature (digital axillary) from the test temperatures (skin temperatures at 3 different locations), using the Bland-Altman method. The level of significance was set at P < .05. No statistically significant differences were

  5. Zr/ZrO2 sensors for in situ measurement of pH in high-temperature and -pressure aqueous solutions.

    PubMed

    Zhang, R H; Zhang, X T; Hu, S M

    2008-04-15

    The aim of this study is to develop new pH sensors that can be used to test and monitor hydrogen ion activity in hydrothermal conditions. A Zr/ZrO2 oxidation electrode is fabricated for in situ pH measurement of high-temperature aqueous solutions. This sensor responds rapidly and precisely to pH over a wide range of temperature and pressure. The Zr/ZrO2 electrode was made by oxidizing zirconium metal wire with Na2CO3 melt, which produced a thin film of ZrO2 on its surface. Thus, an oxidation-reduction electrode was produced. The Zr/ZrO2 electrode has a good electrochemical stability over a wide range of pH in high-temperature aqueous solutions when used with a Ag/AgCl reference electrode. Measurements of the Zr/ZrO2 sensor potential against a Ag/AgCl reference electrode is shown to vary linearly with pH between temperatures 20 and 200 degrees C. The slope of the potential versus pH at high temperature is slightly below the theoretical value indicated by the Nernst equation; such deviation is attributed to the fact that the sensor is not strictly at equilibrium with the solution to be tested in a short period of time. The Zr/ZrO2 sensor can be calibrated over the conditions that exist in the natural deep-seawater. Our studies showed that the Zr/ZrO2 electrode is a suitable pH sensor for the hydrothermal systems at midocean ridge or other geothermal systems with the high-temperature environment. Yttria-stabilized zirconia sensors have also been used to investigate the pH of hydrothermal fluids in hot springs vents at midocean ridge. These sensors, however, are not sensitive below 200 degrees C. Zr/ZrO2 sensors have wider temperature range and can be severed as good alternative sensors for measuring the pH of hydrothermal fluids.

  6. A selective ultrahigh responding high temperature ethanol sensor using TiO2 nanoparticles.

    PubMed

    Arafat, M M; Haseeb, A S M A; Akbar, Sheikh A

    2014-07-28

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor.

  7. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  8. One novel type of miniaturization FBG rotation angle sensor with high measurement precision and temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Jiang, Shanchao; Wang, Jing; Sui, Qingmei

    2018-03-01

    In order to achieve rotation angle measurement, one novel type of miniaturization fiber Bragg grating (FBG) rotation angle sensor with high measurement precision and temperature self-compensation is proposed and studied in this paper. The FBG rotation angle sensor mainly contains two core sensitivity elements (FBG1 and FBG2), triangular cantilever beam, and rotation angle transfer element. In theory, the proposed sensor can achieve temperature self-compensation by complementation of the two core sensitivity elements (FBG1 and FBG2), and it has a boundless angel measurement range with 2π rad period duo to the function of the rotation angle transfer element. Based on introducing the joint working processes, the theory calculation model of the FBG rotation angel sensor is established, and the calibration experiment on one prototype is also carried out to obtain its measurement performance. After experimental data analyses, the measurement precision of the FBG rotation angle sensor prototype is 0.2 ° with excellent linearity, and the temperature sensitivities of FBG1 and FBG2 are 10 pm/° and 10.1 pm/°, correspondingly. All these experimental results confirm that the FBG rotation angle sensor can achieve large-range angle measurement with high precision and temperature self-compensation.

  9. Development of Metal-Ceramic Coaxial Cable Fabry-Pérot Interferometric Sensors for High Temperature Monitoring

    PubMed Central

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; Xiao, Hai; Dong, Junhang

    2015-01-01

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensor exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments. PMID:26404280

  10. Luminescent high temperature sensor based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, He-lin; Yang, Ai-jun; Sui, Cheng-hua

    2013-11-01

    A high temperature sensor based on the multi-parameter temperature dependent characteristic of photoluminescence (PL) of quantum dot (QD) thin film is demonstrated by depositing the CdSe/ZnS core/shell QDs on the SiO2 glass substrates. The variations of the intensity, the peak wavelength and the full width at half maximum (FWHM) of PL spectra with temperature are studied experimentally and theoretically. The results indicate that the peak wavelength of the PL spectra changes linearly with temperature, while the PL intensity and FWHM vary exponentially for the temperature range from 30 °C to 180 °C. Using the obtained temperature dependent optical parameters, the resolution of the designed sensor can reach 0.1 nm/°C.

  11. High-temperature zirconia microthruster with an integrated flow sensor

    NASA Astrophysics Data System (ADS)

    Lekholm, Ville; Persson, Anders; Palmer, Kristoffer; Ericson, Fredric; Thornell, Greger

    2013-05-01

    This paper describes the design, fabrication and characterization of a ceramic, heated cold-gas microthruster device made with silicon tools and high temperature co-fired ceramic processing. The device contains two opposing thrusters, each with an integrated calorimetric propellant flow sensor and a heater in the stagnation chamber of the nozzle. The exhaust from a thruster was photographed using schlieren imaging to study its behavior and search for leaks. The heater elements were tested under a cyclic thermal load and to the maximum power before failure. The nozzle heater was shown to improve the efficiency of the thruster by 6.9%, from a specific impulse of 66 to 71 s, as calculated from a decrease of the flow rate through the nozzle of 13%, from 44.9 to 39.2 sccm. The sensitivity of the integrated flow sensor was measured to 0.15 mΩ sccm-1 in the region of 0-15 sccm and to 0.04 mΩ sccm-1 above 20 sccm, with a zero-flow sensitivity of 0.27 mΩ sccm-1. The choice of yttria-stabilized zirconia as a material for the devices makes them robust and capable of surviving temperatures locally exceeding 1000 °C.

  12. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene

    PubMed Central

    Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr

    2016-01-01

    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common −65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications—superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor). PMID:28036036

  13. A Fully Transparent Flexible Sensor for Cryogenic Temperatures Based on High Strength Metallurgical Graphene.

    PubMed

    Pawlak, Ryszard; Lebioda, Marcin; Rymaszewski, Jacek; Szymanski, Witold; Kolodziejczyk, Lukasz; Kula, Piotr

    2016-12-28

    Low-temperature electronics operating in below zero temperatures or even below the lower limit of the common -65 to 125 °C temperature range are essential in medical diagnostics, in space exploration and aviation, in processing and storage of food and mainly in scientific research, like superconducting materials engineering and their applications-superconducting magnets, superconducting energy storage, and magnetic levitation systems. Such electronic devices demand special approach to the materials used in passive elements and sensors. The main goal of this work was the implementation of a fully transparent, flexible cryogenic temperature sensor with graphene structures as sensing element. Electrodes were made of transparent ITO (Indium Tin Oxide) or ITO/Ag/ITO conductive layers by laser ablation and finally encapsulated in a polymer coating. A helium closed-cycle cryostat has been used in measurements of the electrical properties of these graphene-based temperature sensors under cryogenic conditions. The sensors were repeatedly cooled from room temperature to cryogenic temperature. Graphene structures were characterized using Raman spectroscopy. The observation of the resistance changes as a function of temperature indicates the potential use of graphene layers in the construction of temperature sensors. The temperature characteristics of the analyzed graphene sensors exhibit no clear anomalies or strong non-linearity in the entire studied temperature range (as compared to the typical carbon sensor).

  14. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  15. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  16. Using Bayesian Inference Framework towards Identifying Gas Species and Concentration from High Temperature Resistive Sensor Array Data

    DOE PAGES

    Liu, Yixin; Zhou, Kai; Lei, Yu

    2015-01-01

    High temperature gas sensors have been highly demanded for combustion process optimization and toxic emissions control, which usually suffer from poor selectivity. In order to solve this selectivity issue and identify unknown reducing gas species (CO, CH 4 , and CH 8 ) and concentrations, a high temperature resistive sensor array data set was built in this study based on 5 reported sensors. As each sensor showed specific responses towards different types of reducing gas with certain concentrations, based on which calibration curves were fitted, providing benchmark sensor array response database, then Bayesian inference framework was utilized to process themore » sensor array data and build a sample selection program to simultaneously identify gas species and concentration, by formulating proper likelihood between input measured sensor array response pattern of an unknown gas and each sampled sensor array response pattern in benchmark database. This algorithm shows good robustness which can accurately identify gas species and predict gas concentration with a small error of less than 10% based on limited amount of experiment data. These features indicate that Bayesian probabilistic approach is a simple and efficient way to process sensor array data, which can significantly reduce the required computational overhead and training data.« less

  17. Development of a sapphire optical pressure sensor for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Mills, David A.; Alexander, Dylan; Subhash, Ghatu; Sheplak, Mark

    2014-06-01

    This paper presents the fabrication, packaging, and characterization of a sapphire optical pressure sensor for hightemperature applications. Currently available instrumentation poses significant limitations on the ability to achieve realtime, continuous measurements in high-temperature environments such as those encountered in industrial gas turbines and high-speed aircraft. The fiber-optic lever design utilizes the deflection of a circular platinum-coated sapphire diaphragm to modulate the light reflected back to a single send/receive sapphire optical fiber. The 7 mm diameter, 50 μm thick diaphragm is attached using a novel thermocompression bonding process based on spark plasma sintering technology. Bonds using platinum as an intermediate layer are achieved at a temperature of 1200°C with a hold time of 5 min. Initial characterization of the bond interface using a simple tensile test indicates a bond strength in excess of 12 MPa. Analysis of the buckled diaphragm after bonding is also presented. The packaged sensor enables continuous operation up to 900°C. Room-temperature characterization reveals a first resonance of 18.2 kHz, a flat-band sensitivity of -130 dB re 1 V/Pa (0.32 μV/Pa) from 4-20 kHz, a minimum detectable pressure of 3.8 Pa, and a linear response up to 169 dB at 1.9 kHz.

  18. High refractive index and temperature sensitivity LPGs for high temperature operation

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.

    2013-11-01

    A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.

  19. 1700 deg C optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Mossey, P. W.; Shaffernocker, W. M.; Mulukutla, A. R.

    1986-01-01

    A new gas temperature sensor was developed that shows promise of sufficient ruggedness to be useful as a gas turbine temperature sensor. The sensor is in the form of a single-crystal aluminum oxide ceramic, ground to a cone shape and given an emissive coating. A lens and an optical fiber conduct the thermally emitted light to a remote and near-infrared photodetector assembly. Being optically coupled and passive, the sensor is highly immune to all types of electrical interference. Candidate sensors were analyzed for optical sensor performance, heat transfer characteristics, stress from gas loading. This led to the selection of the conical shape as the most promising for the gas turbine environment. One uncoated and two coated sensing elements were prepared for testing. Testing was conducted to an indicated 1750 C in a propane-air flame. Comparison with the referee optical pyrometer shows an accuracy of + or - 25 C at 1700 C for this initial development. One hundred cycles from room temperature to 1700 C left the sapphire cone intact, but some loss of the platinum, 6% rhodium coating was observed. Several areas for improving the overall performance and durability are identified.

  20. A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rieker, G. B.; Li, H.; Liu, X.; Jeffries, J. B.; Hanson, R. K.; Allen, M. G.; Wehe, S. D.; Mulhall, P. A.; Kindle, H. S.

    2007-05-01

    A near-infrared diode laser sensor is presented that is capable of measuring time-varying gas temperature and water vapour concentration at temperatures up to 1050 K and pressures up to 25 atm with a bandwidth of 7.5 kHz. Measurements with noise-equivalent-absorbances of the order of 10-3 (10-5 Hz-1/2) are made possible in dynamic environments through the use of wavelength modulation spectroscopy (WMS) with second harmonic detection (2f) on two water vapour spectral features near 7203.9 and 7435.6 cm-1. Laser performance characteristics that become important at the large modulation depths needed at high pressures are accounted for in the WMS-2f signal analysis, and the utility of normalization by the 1f signal to correct for variations in laser intensity, transmission and detector gain is presented. Laboratory measurements with the sensor system in a static cell with known temperature and pressure agree to 3% RMS in temperature and 4% RMS in H2O mole fraction for 500 < T < 900 K and 1 < P < 25 atm. The sensor time response is demonstrated in a high-pressure shock tube where shock wave transients are successfully captured, the average measured post-shock temperature agrees within 1% of the expected value, and H2O mole fraction agrees within 8%.

  1. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity.

    PubMed

    Liu, Guigen; Han, Ming; Hou, Weilin

    2015-03-23

    We report a fiber-optic sensor based on a silicon Fabry-Pérot cavity, fabricated by attaching a silicon pillar on the tip of a single-mode fiber, for high-resolution and high-speed temperature measurement. The large thermo-optic coefficient and thermal expansion coefficient of the silicon material give rise to an experimental sensitivity of 84.6 pm/°C. The excellent transparency and large refractive index of silicon over the infrared wavelength range result in a visibility of 33 dB for the reflection spectrum. A novel average wavelength tracking method has been proposed and demonstrated for sensor demodulation with improved signal-to-noise ratio, which leads to a temperature resolution of 6 × 10⁻⁴ °C. Due to the high thermal diffusivity of silicon, a response time as short as 0.51 ms for a sensor with an 80-µm-diameter and 200-µm-long silicon pillar has been experimentally achieved, suggesting a maximum frequency of ~2 kHz can be reached, to address the needs for highly dynamic environmental variations such as those found in the ocean.

  2. Fibre gratings for high temperature sensor applications

    NASA Astrophysics Data System (ADS)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  3. Wireless Capacitive Pressure Sensor With Directional RF Chip Antenna for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, M. C.; Jordan, J. L.; Ponchak, G. E.; Zorman, C. A.

    2015-01-01

    This paper presents the design, fabrication and characterization of a wireless capacitive pressure sensor with directional RF chip antenna that is envisioned for the health monitoring of aircraft engines operating in harsh environments. The sensing system is characterized from room temperature (25 C) to 300 C for a pressure range from 0 to 100 psi. The wireless pressure system consists of a Clapp-type oscillator design with a capacitive MEMS pressure sensor located in the LC-tank circuit of the oscillator. Therefore, as the pressure of the aircraft engine changes, so does the output resonant frequency of the sensing system. A chip antenna is integrated to transmit the system output to a receive antenna 10 m away.The design frequency of the wireless pressure sensor is 127 MHz and a 2 increase in resonant frequency over the temperature range of 25 to 300 C from 0 to 100 psi is observed. The phase noise is less than minus 30 dBcHz at the 1 kHz offset and decreases to less than minus 80 dBcHz at 10 kHz over the entire temperature range. The RF radiation patterns for two cuts of the wireless system have been measured and show that the system is highly directional and the MEMS pressure sensor is extremely linear from 0 to 100 psi.

  4. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology

    PubMed Central

    Malits, Maria; Nemirovsky, Yael

    2017-01-01

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode’s sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode’s perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor’s channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate “on-line” temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode’s small area and perimeter causes a high 1/f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing. PMID:28758932

  5. Nanometric Integrated Temperature and Thermal Sensors in CMOS-SOI Technology.

    PubMed

    Malits, Maria; Nemirovsky, Yael

    2017-07-29

    This paper reviews and compares the thermal and noise characterization of CMOS (complementary metal-oxide-semiconductor) SOI (Silicon on insulator) transistors and lateral diodes used as temperature and thermal sensors. DC analysis of the measured sensors and the experimental results in a broad (300 K up to 550 K) temperature range are presented. It is shown that both sensors require small chip area, have low power consumption, and exhibit linearity and high sensitivity over the entire temperature range. However, the diode's sensitivity to temperature variations in CMOS-SOI technology is highly dependent on the diode's perimeter; hence, a careful calibration for each fabrication process is needed. In contrast, the short thermal time constant of the electrons in the transistor's channel enables measuring the instantaneous heating of the channel and to determine the local true temperature of the transistor. This allows accurate "on-line" temperature sensing while no additional calibration is needed. In addition, the noise measurements indicate that the diode's small area and perimeter causes a high 1/ f noise in all measured bias currents. This is a severe drawback for the sensor accuracy when using the sensor as a thermal sensor; hence, CMOS-SOI transistors are a better choice for temperature sensing.

  6. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    NASA Astrophysics Data System (ADS)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  7. An arc tangent function demodulation method of fiber-optic Fabry-Perot high-temperature pressure sensor

    NASA Astrophysics Data System (ADS)

    Ren, Qianyu; Li, Junhong; Hong, Yingping; Jia, Pinggang; Xiong, Jijun

    2017-09-01

    A new demodulation algorithm of the fiber-optic Fabry-Perot cavity length based on the phase generated carrier (PGC) is proposed in this paper, which can be applied in the high-temperature pressure sensor. This new algorithm based on arc tangent function outputs two orthogonal signals by utilizing an optical system, which is designed based on the field-programmable gate array (FPGA) to overcome the range limit of the original PGC arc tangent function demodulation algorithm. The simulation and analysis are also carried on. According to the analysis of demodulation speed and precision, the simulation of different numbers of sampling points, and measurement results of the pressure sensor, the arc tangent function demodulation method has good demodulation results: 1 MHz processing speed of single data and less than 1% error showing practical feasibility in the fiber-optic Fabry-Perot cavity length demodulation of the Fabry-Perot high-temperature pressure sensor.

  8. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load.

    PubMed

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-10-13

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C.

  9. Application of CCG Sensors to a High-Temperature Structure Subjected to Thermo-Mechanical Load

    PubMed Central

    Xie, Weihua; Meng, Songhe; Jin, Hua; Du, Chong; Wang, Libin; Peng, Tao; Scarpa, Fabrizio; Xu, Chenghai

    2016-01-01

    This paper presents a simple methodology to perform a high temperature coupled thermo-mechanical test using ultra-high temperature ceramic material specimens (UHTCs), which are equipped with chemical composition gratings sensors (CCGs). The methodology also considers the presence of coupled loading within the response provided by the CCG sensors. The theoretical strain of the UHTCs specimens calculated with this technique shows a maximum relative error of 2.15% between the analytical and experimental data. To further verify the validity of the results from the tests, a Finite Element (FE) model has been developed to simulate the temperature, stress and strain fields within the UHTC structure equipped with the CCG. The results show that the compressive stress exceeds the material strength at the bonding area, and this originates a failure by fracture of the supporting structure in the hot environment. The results related to the strain fields show that the relative error with the experimental data decrease with an increase of temperature. The relative error is less than 15% when the temperature is higher than 200 °C, and only 6.71% at 695 °C. PMID:27754356

  10. Temperature grid sensor for the measurement of spatial temperature distributions at object surfaces.

    PubMed

    Schäfer, Thomas; Schubert, Markus; Hampel, Uwe

    2013-01-25

    This paper presents results of the development and application of a new temperature grid sensor based on the wire-mesh sensor principle. The grid sensor consists of a matrix of 256 Pt1000 platinum chip resistors and an associated electronics that measures the grid resistances with a multiplexing scheme at high speed. The individual sensor elements can be spatially distributed on an object surface and measure transient temperature distributions in real time. The advantage compared with other temperature field measurement approaches such as infrared cameras is that the object under investigation can be thermally insulated and the radiation properties of the surface do not affect the measurement accuracy. The sensor principle is therefore suited for various industrial monitoring applications. Its applicability for surface temperature monitoring has been demonstrated through heating and mixing experiments in a vessel.

  11. Development of self-powered wireless high temperature electrochemical sensor for in situ corrosion monitoring of coal-fired power plant.

    PubMed

    Aung, Naing Naing; Crowe, Edward; Liu, Xingbo

    2015-03-01

    Reliable wireless high temperature electrochemical sensor technology is needed to provide in situ corrosion information for optimal predictive maintenance to ensure a high level of operational effectiveness under the harsh conditions present in coal-fired power generation systems. This research highlights the effectiveness of our novel high temperature electrochemical sensor for in situ coal ash hot corrosion monitoring in combination with the application of wireless communication and an energy harvesting thermoelectric generator (TEG). This self-powered sensor demonstrates the successful wireless transmission of both corrosion potential and corrosion current signals to a simulated control room environment. Copyright © 2014 ISA. All rights reserved.

  12. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Quick, William H. (Inventor); August, Rudolf R. (Inventor); James, Kenneth A. (Inventor); Strahan, Jr., Virgil H. (Inventor); Nichols, Donald K. (Inventor)

    1980-01-01

    An inexpensive, lightweight fiber optic micro-sensor that is suitable for applications which may require remote temperature sensing. The disclosed temperature sensor includes a phosphor material that, after receiving incident light stimulation, is adapted to emit phosphorescent radiation output signals, the amplitude decay rate and wavelength of which are functions of the sensed temperature.

  13. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements

    PubMed Central

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-01-01

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature. PMID:26554008

  14. Ultraflexible, large-area, physiological temperature sensors for multipoint measurements.

    PubMed

    Yokota, Tomoyuki; Inoue, Yusuke; Terakawa, Yuki; Reeder, Jonathan; Kaltenbrunner, Martin; Ware, Taylor; Yang, Kejia; Mabuchi, Kunihiko; Murakawa, Tomohiro; Sekino, Masaki; Voit, Walter; Sekitani, Tsuyoshi; Someya, Takao

    2015-11-24

    We report a fabrication method for flexible and printable thermal sensors based on composites of semicrystalline acrylate polymers and graphite with a high sensitivity of 20 mK and a high-speed response time of less than 100 ms. These devices exhibit large resistance changes near body temperature under physiological conditions with high repeatability (1,800 times). Device performance is largely unaffected by bending to radii below 700 µm, which allows for conformal application to the surface of living tissue. The sensing temperature can be tuned between 25 °C and 50 °C, which covers all relevant physiological temperatures. Furthermore, we demonstrate flexible active-matrix thermal sensors which can resolve spatial temperature gradients over a large area. With this flexible ultrasensitive temperature sensor we succeeded in the in vivo measurement of cyclic temperatures changes of 0.1 °C in a rat lung during breathing, without interference from constant tissue motion. This result conclusively shows that the lung of a warm-blooded animal maintains surprising temperature stability despite the large difference between core temperature and inhaled air temperature.

  15. Gallium Oxide Nanostructures for High Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chintalapalle, Ramana V.

    Gallium oxide (Ga 2O 3) thin films were produced by sputter deposition by varying the substrate temperature (T s) in a wide range (T s=25-800 °C). The structural characteristics and electronic properties of Ga 2O 3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga 2O 3 films. XRD and SEM analyses indicate that the Ga 2O 3 films grown at lower temperatures were amorphous while those grown at T s≥500more » oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga 2O 3 films at T s=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga 2O 3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga 2O 3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga 2O 3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga 2O 3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga 2O 3 films compared to intrinsic Ga 2O 3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.« less

  16. Fluidic Sensor Temperature Indicating System.

    DTIC Science & Technology

    A fluidic sensor temperature indicating system designed by Honeywell Inc was tested on a T56 engine during dynamometer calibration. It was also...based on the sensor being mounted in a T56 engine showed a hot gas temperature drop from 1970F at the sensor entrance to 1760F in the sensor pulsation

  17. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications.

    PubMed

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-10-17

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1-0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature.

  18. Evaluation of Fiber Bragg Grating and Distributed Optical Fiber Temperature Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCary, Kelly Marie

    Fiber optic temperature sensors were evaluated in the High Temperature Test Lab (HTTL) to determine the accuracy of the measurements at various temperatures. A distributed temperature sensor was evaluated up to 550C and a fiber Bragg grating sensor was evaluated up to 750C. HTTL measurements indicate that there is a drift in fiber Bragg sensor over time of approximately -10C with higher accuracy at temperatures above 300C. The distributed sensor produced some bad data points at and above 500C but produced measurements with less than 2% error at increasing temperatures up to 400C

  19. High-temperature sapphire optical sensor fiber coatings

    NASA Astrophysics Data System (ADS)

    Desu, Seshu B.; Claus, Richard O.; Raheem, Ruby; Murphy, Kent A.

    1990-10-01

    the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.

  20. High-temperature microelectromechanical pressure sensors based on a SOI heterostructure for an electronic automatic aircraft engine control system

    NASA Astrophysics Data System (ADS)

    Sokolov, Leonid V.

    2010-08-01

    There is a need of measuring distributed pressure on the aircraft engine inlet with high precision within a wide operating temperature range in the severe environment to improve the efficiency of aircraft engine control. The basic solutions and principles of designing high-temperature (to 523K) microelectromechanical pressure sensors based on a membrane-type SOI heterostructure with a monolithic integral tensoframe (MEMS-SOIMT) are proposed in accordance with the developed concept, which excludes the use of electric p-n junctions in semiconductor microelectromechanical sensors. The MEMS-SOIMT technology relies on the group processes of microelectronics and micromechanics for high-precision microprofiling of a three-dimension micromechanical structure, which exclude high-temperature silicon doping processes.

  1. Breathable and Stretchable Temperature Sensors Inspired by Skin

    NASA Astrophysics Data System (ADS)

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  2. Breathable and Stretchable Temperature Sensors Inspired by Skin

    PubMed Central

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-01-01

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis. PMID:26095941

  3. Breathable and Stretchable Temperature Sensors Inspired by Skin.

    PubMed

    Chen, Ying; Lu, Bingwei; Chen, Yihao; Feng, Xue

    2015-06-22

    Flexible electronics attached to skin for healthcare, such as epidermal electronics, has to struggle with biocompatibility and adapt to specified environment of skin with respect to breath and perspiration. Here, we report a strategy for biocompatible flexible temperature sensors, inspired by skin, possessing the excellent permeability of air and high quality of water-proof by using semipermeable film with porous structures as substrate. We attach such temperature sensors to underarm and forearm to measure the axillary temperature and body surface temperature respectively. The volunteer wears such sensors for 24 hours with two times of shower and the in vitro test shows no sign of maceration or stimulation to the skin. Especially, precise temperature changes on skin surface caused by flowing air and water dropping are also measured to validate the accuracy and dynamical response. The results show that the biocompatible temperature sensor is soft and breathable on the human skin and has the excellent accuracy compared to mercury thermometer. This demonstrates the possibility and feasibility of fully using the sensors in long term body temperature sensing for medical use as well as sensing function of artificial skin for robots or prosthesis.

  4. Development of metal-ceramic coaxial cable Fabry-Pérot interferometric sensors for high temperature monitoring

    DOE PAGES

    Trontz, Adam; Cheng, Baokai; Zeng, Shixuan; ...

    2015-09-25

    Metal-ceramic coaxial cable Fabry-Pérot interferometric (MCCC-FPI) sensors have been developed using a stainless steel tube and a stainless steel wire as the outer and inner conductors, respectively; a tubular α-alumina insulator; and a pair of air gaps created in the insulator along the cable to serve as weak reflectors for the transmitting microwave (MW) signal. The MCCC-FPI sensors have been demonstrated for high temperature measurements using MW signals in a frequency range of 2–8 GHz. The temperature measurement is achieved by monitoring the frequency shift (Δƒ) of the MW interferogram reflected from the pair of weak reflectors. The MW sensormore » exhibited excellent linear dependence of Δƒ on temperature; small measurement deviations (±2.7%); and fast response in a tested range of 200–500 °C. The MCCC has the potential for further developing multipoint FPI sensors in a single-cable to achieve in situ and continuous measurement of spatially distributed temperature in harsh environments.« less

  5. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  6. Polymer substrate temperature sensor array for brain interfaces.

    PubMed

    Kim, Insoo; Fok, Ho Him R; Li, Yuanyuan; Jackson, Thomas N; Gluckman, Bruce J

    2011-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS.

  7. High-performance gas sensors with temperature measurement

    PubMed Central

    Zhang, Yong; Li, Shengtao; Zhang, Jingyuan; Pan, Zhigang; Min, Daomin; Li, Xin; Song, Xiaoping; Liu, Junhua

    2013-01-01

    There are a number of gas ionization sensors using carbon nanotubes as cathode or anode. Unfortunately, their applications are greatly limited by their multi-valued sensitivity, one output value corresponding to several measured concentration values. Here we describe a triple-electrode structure featuring two electric fields with opposite directions, which enable us to overcome the multi-valued sensitivity problem at 1 atm in a wide range of gas concentrations. We used a carbon nanotube array as the first electrode, and the two electric fields between the upper and the lower interelectrode gaps were designed to extract positive ions generated in the upper gap, hence significantly reduced positive ion bombardment on the nanotube electrode, which allowed us to maintain a high electric field near the nanotube tips, leading to a single-valued sensitivity and a long nanotube life. We have demonstrated detection of various gases and simultaneously monitoring temperature, and a potential for applications. PMID:23405281

  8. Fabrication of All-SiC Fiber-Optic Pressure Sensors for High-Temperature Applications

    PubMed Central

    Jiang, Yonggang; Li, Jian; Zhou, Zhiwen; Jiang, Xinggang; Zhang, Deyuan

    2016-01-01

    Single-crystal silicon carbide (SiC)-based pressure sensors can be used in harsh environments, as they exhibit stable mechanical and electrical properties at elevated temperatures. A fiber-optic pressure sensor with an all-SiC sensor head was fabricated and is herein proposed. SiC sensor diaphragms were fabricated via an ultrasonic vibration mill-grinding (UVMG) method, which resulted in a small grinding force and low surface roughness. The sensor head was formed by hermetically bonding two layers of SiC using a nickel diffusion bonding method. The pressure sensor illustrated a good linearity in the range of 0.1–0.9 MPa, with a resolution of 0.27% F.S. (full scale) at room temperature. PMID:27763494

  9. High performance and highly reliable Raman-based distributed temperature sensors based on correlation-coded OTDR and multimode graded-index fibers

    NASA Astrophysics Data System (ADS)

    Soto, M. A.; Sahu, P. K.; Faralli, S.; Sacchi, G.; Bolognini, G.; Di Pasquale, F.; Nebendahl, B.; Rueck, C.

    2007-07-01

    The performance of distributed temperature sensor systems based on spontaneous Raman scattering and coded OTDR are investigated. The evaluated DTS system, which is based on correlation coding, uses graded-index multimode fibers, operates over short-to-medium distances (up to 8 km) with high spatial and temperature resolutions (better than 1 m and 0.3 K at 4 km distance with 10 min measuring time) and high repeatability even throughout a wide temperature range.

  10. Optical high temperature sensor based on fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei

    The aim of this thesis is to fabricate a fiber Bragg grating (FBG) temperature sensor that is capable to measure temperatures in excess of 1100°C. For this purpose, two topics have been studied and investigated during this project. One of them is the development of a high temperature resistant molecular-water induced FBGs; and the other is to investigate the effect of microwave-irradiation on the hydrogen-loaded FBG. The molecular-water induced FBGs are different from the other types of FBG. In these devices the refractive index is modulated by the periodic changes of molecular-water concentration within the grating. The device was developed using thermal annealing technology based on hydrogen-load FBG. Thermal stability of these devices was studied by measuring the grating reflectivity from room temperature to 1000°C. The stability of the device was tested by examining the FBG reflectivity for a period of time at certain temperatures. The results show that these devices are extremely stable at temperatures in excess of 1000°C. The hydroxyl concentration in the grating has been also investigated during this thesis. Based on the knowledge of hydroxyl groups inside FBG, a microwave treatment was designed to increase the hydroxyl concentration in the FBG area. The results show that the molecular-water induced grating, which was fabricated using microwave radiated hydrogen-loaded FBI, are stable at temperatures above 1100°C.

  11. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  12. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  13. A diamond-based scanning probe spin sensor operating at low temperature in ultra-high vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer-Nolte, E.; Wrachtrup, J.; 3rd Institute of Physics and Research Center SCoPE, University Stuttgart, 70569 Stuttgart

    2014-01-15

    We present the design and performance of an ultra-high vacuum (UHV) low temperature scanning probe microscope employing the nitrogen-vacancy color center in diamond as an ultrasensitive magnetic field sensor. Using this center as an atomic-size scanning probe has enabled imaging of nanoscale magnetic fields and single spins under ambient conditions. In this article we describe an experimental setup to operate this sensor in a cryogenic UHV environment. This will extend the applicability to a variety of molecular systems due to the enhanced target spin lifetimes at low temperature and the controlled sample preparation under UHV conditions. The instrument combines amore » tuning-fork based atomic force microscope (AFM) with a high numeric aperture confocal microscope and the facilities for application of radio-frequency (RF) fields for spin manipulation. We verify a sample temperature of <50 K even for strong laser and RF excitation and demonstrate magnetic resonance imaging with a magnetic AFM tip.« less

  14. Niphargus: a silicon band-gap sensor temperature logger for high-precision environmental monitoring

    NASA Astrophysics Data System (ADS)

    Burlet, Christian; Vanbrabant, Yves; Piessens, Kris; Welkenhuysen, Kris; Verheyden, Sophie

    2014-05-01

    A temperature logger, called 'Niphargus', was developed at the Geological Survey of Belgium to monitor temperature of local natural processes with sensitivity of the order of a few hundredths of degrees to monitor temperature variability in open air, caves, soils and rivers. The newly developed instrument uses a state-of-the-art band-gap silicon temperature sensor with digital output. This sensor reduces the risk of drift associated with thermistor-based sensing devices, especially in humid environments. The Niphargus is designed to be highly reliable, low-cost and powered by a single lithium cell with up to several years autonomy depending on the sampling rate and environmental conditions. The Niphargus was evaluated in an ice point bath experiment in terms of temperature accuracy and thermal inertia. The small size and low power consumption of the logger allow its use in difficult accessible environments, e.g. caves and space-constrained applications, inside a rock in a water stream. In both cases, the loggers have proven to be reliable and accurate devices. For example, spectral analysis of the temperature signal in the Han caves (Belgium) allowed detection and isolation of a 0.005° C amplitude day-night periodic signal in the temperature curve. PIC Figure 1: a Niphargus logger in its standard size. SMD components side. Photo credit: W. Miseur

  15. Intrinsic and metal-doped gallium oxide based high-temperature oxygen sensors for combustion processes

    NASA Astrophysics Data System (ADS)

    Rubio, Ernesto Javier

    Currently, there is enormous interest in research, development and optimization of the combustion processes for energy harvesting. Recent statistical and economic analyses estimated that by improving the coal-based firing/combustion processes in the power plants, savings up to $450-500 million yearly can be achieved. Advanced sensors and controls capable of withstanding extreme environments such as high temperatures, highly corrosive atmospheres, and high pressures are critical to such efficiency enhancement and cost savings. For instance, optimization of the combustion processes in power generation systems can be achieved by sensing, monitoring and control of oxygen, which is a measure of the completeness of the process and can lead to enhanced efficiency and reduced greenhouse gas emissions. However, despite the fact that there exists a very high demand for advanced sensors, the existing technologies suffer from poor 'response and recovery times' and 'long-term stability.' Motivated by the aforementioned technological challenges, the present work was focused on high-temperature (≥700 °C) oxygen sensors for application in power generation systems. The objective of the present work is to investigate nanostructured gallium oxide (2O3) based sensors for oxygen sensing, where we propose to conduct in-depth exploration of the role of refractory metal (tungsten, W, in this case) doping into 2O 3 to enhance the sensitivity, selectivity, stability ("3S" criteria) and reliability of such sensors while keeping cost economical. Tungsten (W) doped gallium oxide (2O3) thin films were deposited via rf-magnetron co-sputtering of W-metal and Ga2O3-ceramic targets. Films were produced by varying the sputtering power applied to the W-target in order to achieve variable W content into 2O3 films while substrate temperature was kept constant at 500 °C. Chemical composition, chemical valence states, microstructure and crystal structure of as-grown and post-annealed W-doped 2O3

  16. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  17. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor)

    2000-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  18. Fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Sawatari, Takeo (Inventor); Gaubis, Philip A. (Inventor); Mattes, Brenton L. (Inventor); Charnetski, Clark J. (Inventor)

    1999-01-01

    A fiber optic temperature sensor uses a light source which transmits light through an optical fiber to a sensor head at the opposite end of the optical fiber from the light source. The sensor head has a housing coupled to the end of the optical fiber. A metallic reflective surface is coupled to the housing adjacent the end of the optical fiber to form a gap having a predetermined length between the reflective surface and the optical fiber. A detection system is also coupled to the optical fiber which determines the temperature at the sensor head from an interference pattern of light which is reflected from the reflective surface.

  19. Fluorescent temperature sensor

    DOEpatents

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  20. High level gamma radiation effects on Cernox™ cryogenic temperature sensors

    NASA Astrophysics Data System (ADS)

    Courts, S. S.

    2017-12-01

    Cryogenic temperature sensors are used in high energy particle colliders to monitor the temperatures of superconducting magnets, superconducting RF cavities, and cryogen infrastructure. While not intentional, these components are irradiated by leakage radiation during operation of the collider. A common type of cryogenic thermometer used in these applications is the Cernox™ resistance thermometer (CxRT) manufactured by Lake Shore Cryotronics, Inc. This work examines the radiation-induced calibration offsets on CxRT models CX-1050-SD-HT and CX-1080-SD-HT resulting from exposure to very high levels of gamma radiation. Samples from two different wafers of each of the two models tested were subjected to a gamma radiation dose ranging from 10 kGy to 5 MGy. Data were analysed in terms of the temperature-equivalent resistance change between pre- and post-irradiation calibrations. The data show that the resistance of these devices decreased following irradiation resulting in positive temperature offsets across the 1.4 K to 330 K temperature range. Variations in response were observed between wafers of the same CxRT model. Overall, the offsets increased with increasing temperature and increasing gamma radiation dose. At 1.8 K, the average offset increased from 0 mK to +13 mK as total dose increased from 10 kGy to 5 MGy. At 4.2 K, the average offset increased from +4 mK to +33 mK as total dose increased from 10 kGy to 5 MGy. Equivalent temperature offset data are presented over the 1.4 K to 330 K temperature range by CxRT model, wafer, and total gamma dose.

  1. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    NASA Astrophysics Data System (ADS)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  2. Active thermal isolation for temperature responsive sensors

    NASA Technical Reports Server (NTRS)

    Martinson, Scott D. (Inventor); Gray, David L. (Inventor); Carraway, Debra L. (Inventor); Reda, Daniel C. (Inventor)

    1994-01-01

    The detection of flow transition between laminar and turbulent flow and of shear stress or skin friction of airfoils is important in basic research for validation of airfoil theory and design. These values are conventionally measured using hot film nickel sensors deposited on a polyimide substrate. The substrate electrically insulates the sensor and underlying airfoil but is prevented from thermally isolating the sensor by thickness constraints necessary to avoid flow contamination. Proposed heating of the model surface is difficult to control, requires significant energy expenditures, and may alter the basic flow state of the airfoil. A temperature responsive sensor is located in the airflow over the specified surface of a body and is maintained at a constant temperature. An active thermal isolator is located between this temperature responsive sensor and the specific surface of the body. The total thickness of the isolator and sensor avoid any contamination of the flow. The temperature of this isolator is controlled to reduce conductive heat flow from the temperature responsive sensor to the body. This temperature control includes (1) operating the isolator at the same temperature as the constant temperature of the sensor; and (2) establishing a fixed boundary temperature which is either less than or equal to, or slightly greater than the sensor constant temperature. The present invention accordingly thermally isolates a temperature responsive sensor in an energy efficient, controllable manner while avoiding any contamination of the flow.

  3. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  4. Optical temperature sensor using thermochromic semiconductors

    DOEpatents

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  5. Perovskite-type oxide thin film integrated fiber optic sensor for high-temperature hydrogen measurement.

    PubMed

    Tang, Xiling; Remmel, Kurtis; Lan, Xinwei; Deng, Jiangdong; Xiao, Hai; Dong, Junhang

    2009-09-15

    Small size fiber optic devices integrated with chemically sensitive photonic materials are emerging as a new class of high-performance optical chemical sensor that have the potential to meet many analytical challenges in future clean energy systems and environmental management. Here, we report the integration of a proton conducting perovskite oxide thin film with a long-period fiber grating (LPFG) device for high-temperature in situ measurement of bulk hydrogen in fossil- and biomass-derived syngas. The perovskite-type Sr(Ce(0.8)Zr(0.1))Y(0.1)O(2.95) (SCZY) nanocrystalline thin film is coated on the 125 microm diameter LPFG by a facile polymeric precursor route. This fiber optic sensor (FOS) operates by monitoring the LPFG resonant wavelength (lambda(R)), which is a function of the refractive index of the perovskite oxide overcoat. At high temperature, the types and population of the ionic and electronic defects in the SCZY structure depend on the surrounding hydrogen partial pressure. Thus, varying the H(2) concentration changes the SCZY film refractive index and light absorbing characteristics that in turn shifts the lambda(R) of the LPFG. The SCZY-coated LPFG sensor has been demonstrated for bulk hydrogen measurement at 500 degrees C for its sensitivity, stability/reversibility, and H(2)-selectivity over other relevant small gases including CO, CH(4), CO(2), H(2)O, and H(2)S, etc.

  6. Arrays of Regenerated Fiber Bragg Gratings in Non-Hydrogen-Loaded Photosensitive Fibers for High-Temperature Sensor Networks

    PubMed Central

    Lindner, Eric; Chojetztki, Christoph; Brueckner, Sven; Becker, Martin; Rothhardt, Manfred; Vlekken, Johan; Bartelt, Hartmut

    2009-01-01

    We report about the possibility of using regenerated fiber Bragg gratings generated in photosensitive fibers without applying hydrogen loading for high temperature sensor networks. We use a thermally induced regenerative process which leads to a secondary increase in grating reflectivity. This refractive index modification has shown to become more stable after the regeneration up to temperatures of 600 °C. With the use of an interferometric writing technique, it is possible also to generate arrays of regenerated fiber Bragg gratings for sensor networks. PMID:22408510

  7. FIBER BRAGG GRATING SENSORS FOR LOCALIZED STRAIN MEASUREMENTS AT LOW TEMPERATURE AND IN HIGH MAGNETIC FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramalingam, Rajinikumar

    2010-04-09

    Study of magnetostrictive effects in the bulk superconductors is very essential and can give more knowledge about the effects like namely, flux pinning induced strain, pincushion distortions in the magnets and so on. Currently used electro mechanical sensors are magnetic field dependent and can only give the global stress/strain information but not the local stress/strains. But the information like radius position dependent strain and characterisation of shape distortion in non cylindrical magnets are interesting. Wavelength encoded multiplexed fiber Bragg Grating sensors inscribed in one fiber gives the possibility to measure magentostrictive effects spatially resolved in low temperature and high magneticmore » field. This paper specifies the design and technology requirements to adapt FBG sensors for such an application. Also reports the experiments demonstrate the properties of glass FBG at low temperature (4.2 K) and the results of strain measurement at 4.2 K/8 T. The sensor exhibits a linear wavelength change for the strain change.« less

  8. A temperature-compensated optical fiber force sensor for minimally invasive surgeries

    NASA Astrophysics Data System (ADS)

    Mo, Z.; Xu, W.; Broderick, N.; Chen, H.

    2015-12-01

    Force sensing in minimally invasive surgery (MIS) is a chronic problem since it has an intensive magnetic resonance (MR) operation environment, which causes a high influence to traditional electronic force sensors. Optical sensor is a promising choice in this area because it is immune to MR influence. However, the changing temperature introduces a lot of noise signals to them, which is the main obstacle for optical sensing applications in MIS. This paper proposes a miniature temperature-compensated optical force sensor by using Fabry-Perot interference (FPI) principle. It can be integrated into medical tools' tips and the temperature noise is decreased by using a reference FPI temperature sensor. An injection needle with embedded temperature-compensated FPI force sensor has been fabricated and tested. And the comparison between temperature-force simulation results and the temperature-force experiment results has been carried out.

  9. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor

    PubMed Central

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-01-01

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery. PMID:27763559

  10. In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor.

    PubMed

    Lee, Chi-Yuan; Weng, Fang-Bor; Kuo, Yzu-Wei; Tsai, Chao-Hsuan; Cheng, Yen-Ting; Cheng, Chih-Kai; Lin, Jyun-Ting

    2016-10-18

    In the chemical reaction that proceeds in a high-temperature proton exchange membrane fuel cell stack (HT-PEMFC stack), the internal local temperature, voltage, pressure, flow and current nonuniformity may cause poor membrane material durability and nonuniform fuel distribution, thus influencing the performance and lifetime of the fuel cell stack. In this paper micro-electro-mechanical systems (MEMS) are utilized to develop a high-temperature electrochemical environment-resistant five-in-one micro-sensor embedded in the cathode channel plate of an HT-PEMFC stack, and materials and process parameters are appropriately selected to protect the micro-sensor against failure or destruction during long-term operation. In-situ measurement of the local temperature, voltage, pressure, flow and current distributions in the HT-PEMFC stack is carried out. This integrated micro-sensor has five functions, and is favorably characterized by small size, good acid resistance and temperature resistance, quick response, real-time measurement, and the goal is being able to be put in any place for measurement without affecting the performance of the battery.

  11. Solid-Liquid Interdiffusion Bonding of Silicon Carbide to Steel for High Temperature MEMS Sensor Packaging and Bonding

    NASA Astrophysics Data System (ADS)

    Chan, Matthew Wei-Jen

    Complex engineering systems ranging from automobile engines to geothermal wells require specialized sensors to monitor conditions such as pressure, acceleration and temperature in order to improve efficiency and monitor component lifetime in what may be high temperature, corrosive, harsh environments. Microelectromechanical systems (MEMS) have demonstrated their ability to precisely and accurately take measurements under such conditions. The systems being monitored are typically made from metals, such as steel, while the MEMS sensors used for monitoring are commonly fabricated from silicon, silicon carbide and aluminum nitride, and so there is a sizable thermal expansion mismatch between the two. For these engineering applications the direct bonding of MEMS sensors to the components being monitored is often required. This introduces several challenges, namely the development of a bond that is capable of surviving high temperature harsh environments while mitigating the thermally induced strains produced during bonding. This project investigates the development of a robust packaging and bonding process, using the gold-tin metal system and the solid-liquid interdiffusion (SLID) bonding process, to join silicon carbide substrates directly to type-316 stainless steel. The SLID process enables bonding at lower temperatures while producing a bond capable of surviving higher temperatures. Finite element analysis was performed to model the thermally induced strains generated in the bond and to understand the optimal way to design the bond. The cross-sectional composition of the bonds has been analyzed and the bond strength has been investigated using die shear testing. The effects of high temperature aging on the bond's strength and the metallurgy of the bond were studied. Additionally, loading of the bond was performed at temperatures over 415 °C, more than 100 °C, above the temperature used for bonding, with full survival of the bond, thus demonstrating the benefit of

  12. Automated general temperature correction method for dielectric soil moisture sensors

    NASA Astrophysics Data System (ADS)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  13. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  14. High-sensitivity and low-temperature magnetic field sensor based on tapered two-mode fiber interference.

    PubMed

    Sun, Bing; Fang, Fang; Zhang, Zuxing; Xu, Jing; Zhang, Lin

    2018-03-15

    A high-sensitivity and low-temperature fiber-optic magnetic field sensor based on a tapered two-mode fiber (TTMF) sandwiched between two single-mode fibers has been proposed and demonstrated. The section of TTMF has a specifically designed transition region as an efficient tool to filter higher-order modes, where the uniform modal interferometer just involved with LP 01 and LP 11 modes is achieved. The transmission spectral characteristics and the magnetic response of the proposed sensors have been investigated. The experimental results show that a maximum sensitivity of 98.2  pm/Oe within a linear magnetic field intensity ranging from 0 to 140 Oe can be achieved. Significantly, the temperature cross-sensitivity problem can be resolved owing to the lower thermal expansion coefficient of the TTMF. Finally, with its low insertion loss, compactness, and ease of fabrication, the proposed sensor would find potential applications in the measurement of a magnetic field.

  15. High density Schottky barrier IRCCD sensors for SWIR applications at intermediate temperature

    NASA Technical Reports Server (NTRS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-01-01

    Monolithic 32 x 64 and 64 x 1:128 palladium silicide (Pd2Si) interline transfer infrared charge coupled devices (IRCCDs) sensitive in the 1 to 3.5 micron spectral band were developed. This silicon imager exhibits a low response nonuniformity of typically 0.2 to 1.6% rms, and was operated in the temperature range between 40 to 140 K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 microns, 5.6% at 1.65 microns 2.2% at 2.22 microns. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detectors is 0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate temperatures at TV frame rates. Typical dark current level measured at 120 K on the FPA is 2 nA/sq cm. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 micron bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 micron center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  16. Packaging Technology for SiC High Temperature Electronics

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Meredith, Roger D.; Nakley, Leah M.; Beheim, Glenn M.; Hunter, Gary W.

    2017-01-01

    High-temperature environment operable sensors and electronics are required for long-term exploration of Venus and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500 C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors in relevant environments. This talk will discuss a ceramic packaging system developed for high temperature electronics, and related testing results of SiC integrated circuits at 500 C facilitated by this high temperature packaging system, including the most recent progress.

  17. Facial development of high performance room temperature NO2 gas sensors based on ZnO nanowalls decorated rGO nanosheets

    NASA Astrophysics Data System (ADS)

    Liu, Zongyuan; Yu, Lingmin; Guo, Fen; Liu, Sheng; Qi, Lijun; Shan, Minyu; Fan, Xinhui

    2017-11-01

    A highly sensitive NO2 gas sensor based on ZnO nanowalls decorated rGO nanosheets was fabricated using a thermal reduction and soft solution process. The highly developed interconnected microporous networks of ZnO nanowalls were anchored homogeneously on the surface of reduced graphene oxide (rGO). Sensors fabricated with heterojunction structures achieved a higher response (S = 9.61) and shorter response-recovery (25 s, 15 s) behavior at room temperature to 50 ppm level NO2 effectively in contrast to those sensors based on net ZnO nanowalls or rGO layers. The stability and selectivity of ZnO/rGO heterojunction were carried out. Meanwhile, the effects of humidity on ZnO/rGO heterojunction gas sensor were investigated. The more preferable sensing performance of ZnO/rGO heterojunction to NO2 was discussed. It can be surmised that this NO2 gas sensor has potential for use as a portable room temperature gas sensor.

  18. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-11-15

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  19. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-12-13

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  20. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  1. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2016-10-25

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  2. Carbon nanotube temperature and pressure sensors

    DOEpatents

    Ivanov, Ilia N.; Geohegan, David B.

    2017-09-12

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  3. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.

    PubMed

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-02-27

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.

  4. Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission

    PubMed Central

    Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia

    2017-01-01

    The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427

  5. Fiber-optic temperature sensor using a spectrum-modulating semiconductor etalon

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Anthan, Donald J.; Beheim, Glenn; Anthan, Donald J.

    1987-01-01

    Described is a fiber-optic temperature sensor that uses a spectrum modulating SiC etalon. The spectral output of this type of sensor may be analyzed to obtain a temperature measurement which is largely independent of the transmission properties of the sensor's fiber-optic link. A highly precise laboratory spectrometer is described in detail, and this instrument is used to study the properties of this type of sensor. Also described are a number of different spectrum analyzers that are more suitable for use in a practical thermometer.

  6. O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Jeffries, J. B.; Hanson, R. K.

    2014-09-01

    The design and validation of a tunable diode laser (TDL) sensor for temperature and H2O in high-pressure and -temperature gases are presented. High-fidelity measurements are enabled through the use of: (1) strong H2O fundamental-band absorption near 2.5 μm, (2) calibration-free first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2 f/1 f), (3) an experimentally derived and validated spectroscopic database, and (4) a new approach to selecting the optimal wavelength and modulation depth of each laser. This sensor uses two TDLs near 2,474 and 2,482 nm that were fiber coupled in free space and frequency multiplexed to enable measurements along a single line-of-sight. The lasers were modulated at 35 and 45.5 kHz, respectively, to achieve a sensor bandwidth of 4.5 kHz. This sensor was validated in a shock tube at temperatures and pressures ranging from 1,000 to 2,700 K and 8 to 50 bar. There the sensor resolved transients and recovered the known steady-state temperature and H2O mole fraction with a precision of 3.2 and 2.6 % RMS, respectively.

  7. A novel method of temperature compensation for piezoresistive microcantilever-based sensors.

    PubMed

    Han, Jianqiang; Wang, Xiaofei; Yan, Tianhong; Li, Yan; Song, Meixuan

    2012-03-01

    Microcantilever with integrated piezoresistor has been applied to in situ surface stress measurement in the field of biochemical sensors. It is well known that piezoresistive cantilever-based sensors are sensitive to ambient temperature changing due to highly temperature-dependent piezoresistive effect and mismatch in thermal expansion of composite materials. This paper proposes a novel method of temperature drift compensation for microcantilever-based sensors with a piezoresistive full Wheatstone bridge integrated at the clamped ends by subtracting the amplified output voltage of the reference cantilever from the output voltage of the sensing cantilever through a simple temperature compensating circuit. Experiments show that the temperature drift of microcantilever sensors can be significantly reduced by the method.

  8. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane.

    PubMed

    Khan, Md Rajibur Rahaman; Kang, Shin-Won

    2016-07-09

    In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM) and an interdigitated capacitor (IDC)-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD) of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R² ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics) in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  9. Graphene nanoribbon field effect transistor for nanometer-size on-chip temperature sensor

    NASA Astrophysics Data System (ADS)

    Banadaki, Yaser M.; Srivastava, Ashok; Sharifi, Safura

    2016-04-01

    Graphene has been extensively investigated as a promising material for various types of high performance sensors due to its large surface-to-volume ratio, remarkably high carrier mobility, high carrier density, high thermal conductivity, extremely high mechanical strength and high signal-to-noise ratio. The power density and the corresponding die temperature can be tremendously high in scaled emerging technology designs, urging the on-chip sensing and controlling of the generated heat in nanometer dimensions. In this paper, we have explored the feasibility of a thin oxide graphene nanoribbon (GNR) as nanometer-size temperature sensor for detecting local on-chip temperature at scaled bias voltages of emerging technology. We have introduced an analytical model for GNR FET for 22nm technology node, which incorporates both thermionic emission of high-energy carriers and band-to-band-tunneling (BTBT) of carriers from drain to channel regions together with different scattering mechanisms due to intrinsic acoustic phonons and optical phonons and line-edge roughness in narrow GNRs. The temperature coefficient of resistivity (TCR) of GNR FET-based temperature sensor shows approximately an order of magnitude higher TCR than large-area graphene FET temperature sensor by accurately choosing of GNR width and bias condition for a temperature set point. At gate bias VGS = 0.55 V, TCR maximizes at room temperature to 2.1×10-2 /K, which is also independent of GNR width, allowing the design of width-free GNR FET for room temperature sensing applications.

  10. Polymer Substrate Temperature Sensor Array for Brain Interfaces

    PubMed Central

    Kim, Insoo; Fok, Ho Him R.; Li, Yuanyuan; Jackson, Thomas N.; Gluckman, Bruce J.

    2012-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25~100 μm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 20~40 °C using a surface mounted thermocouple and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041

  11. High-Energy Faceted SnO₂-Coated TiO₂ Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor.

    PubMed

    Chen, Guohui; Ji, Shaozheng; Li, Haidong; Kang, Xueliang; Chang, Sujie; Wang, Yana; Yu, Guangwei; Lu, Jianren; Claverie, Jerome; Sang, Yuanhua; Liu, Hong

    2015-11-11

    A SnO2 gas sensor was prepared by a two-step oxidation process whereby a Sn(II) precursor was partially oxidized by a hydrothermal process and the resulting Sn3O4 nanoplates were thermally oxidized to yield SnO2 nanoplates. The SnO2 sensor was selective and responsive toward ethanol at a temperature as low as 43 °C. This low sensing temperature stems from the rapid charge transport within SnO2 and from the presence of high-energy (001) facets available for oxygen chemisorption. SnO2/TiO2 nanobelt heterostructures were fabricated by a similar two-step process in which TiO2 nanobelts acted as support for the epitaxial growth of intermediate Sn3O4. At temperatures ranging from 43 to 276 °C, the response of these branched nanobelts is more than double the response of SnO2 for ethanol detection. Our observations demonstrate the potential of low-cost SnO2-based sensors with controlled morphology and reactive facets for detecting gases around room temperature.

  12. Fiber optic strain and temperature sensor for power plant applications

    NASA Astrophysics Data System (ADS)

    Narendran, Nadarajah; Weiss, Joseph M.

    1996-01-01

    The applicability of fiber-optic strain and temperature sensors to monitor power plant structures was evaluated on a super-heated steam pipe operating at 1000 degree(s)F at the Tennessee Valley Authority power plant in Kingston, Tennessee. The potential applications of these fiber-optic sensors include health monitoring of high-temperature structures such as boilers, tube headers, and steam pipes, as well as many other power plant structures exposed to less severe environments. The sensor selected for this application is based on a white-light interferometric technique. The key features of this sensor include its ability for absolute measurements that are not affected by light loss along the fiber cable due to, for example, microbending effects and coupler loss, its compatibility with off-the-shelf fiber-optic components, and its low cost. The glass fiber-optic strain sensors were packaged in a rugged metal housing and were spot welded to the high-temperature steam pipe. Another set of gages was placed inside a thermowell for steam temperature measurement. Data collected during a routine start-up is very encouraging and the details are presented in this manuscript.

  13. Temperature-independent fiber-Bragg-grating-based atmospheric pressure sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiguo; Shen, Chunyan; Li, Luming

    2018-03-01

    Atmospheric pressure is an important way to achieve a high degree of measurement for modern aircrafts, moreover, it is also an indispensable parameter in the meteorological telemetry system. With the development of society, people are increasingly concerned about the weather. Accurate and convenient atmospheric pressure parameters can provide strong support for meteorological analysis. However, electronic atmospheric pressure sensors currently in application suffer from several shortcomings. After an analysis and discussion, we propose an innovative structural design, in which a vacuum membrane box and a temperature-independent strain sensor based on an equal strength cantilever beam structure and fiber Bragg grating (FBG) sensors are used. We provide experimental verification of that the atmospheric pressure sensor device has the characteristics of a simple structure, lack of an external power supply, automatic temperature compensation, and high sensitivity. The sensor system has good sensitivity, which can be up to 100 nm/MPa, and repeatability. In addition, the device exhibits desired hysteresis.

  14. Integrated pressure and temperature sensor with high immunity against external disturbance for flexible endoscope operation

    NASA Astrophysics Data System (ADS)

    Maeda, Yusaku; Maeda, Kohei; Kobara, Hideki; Mori, Hirohito; Takao, Hidekuni

    2017-04-01

    In this study, an integrated pressure and temperature sensor device for a flexible endoscope with long-term stability in in vivo environments was developed and demonstrated. The sensor, which is embedded in the thin wall of the disposable endoscope hood, is intended for use in endoscopic surgery. The device surface is coated with a Cr layer to prevent photoelectronic generation induced by the strong light of the endoscope. The integrated temperature sensor allows compensation for the effect of the temperature drift on a pressure signal. The fabricated device pressure resolution is 0.4 mmHg; the corresponding pressure error is 3.2 mmHg. The packaged device was used in a surgical simulation in an animal experiment. Pressure and temperature monitoring was achieved even in a pH 1 acid solution. The device enables intraluminal pressure and temperature measurements of the stomach, which facilitate the maintenance of internal stomach conditions. The applicability of the sensor was successfully demonstrated in animal experiments.

  15. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    NASA Astrophysics Data System (ADS)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  16. Temperature-Centric Evaluation of Sensor Transients

    NASA Astrophysics Data System (ADS)

    Ayhan, Tuba; Muezzinoglu, Kerem; Vergara, Alexander; Yalcin, Mustak

    2011-09-01

    Controllable sensing conditions provide the means for diversifying sensor response and achieving better selectivity. Modulating the sensing layer temperature of metal-oxide sensors is a popular method for multiplexing the limited number of sensing elements that can be employed in a practical array. Time limitations in many applications, however, cannot tolerate an ad-hoc, one-size-fits-all modulation pattern. When the response pattern is itself non-stationary, as in the transient phase, a temperature program also becomes infeasible. We consider the problem of determining and tuning into a fixed optimum temperature in a sensor array. For this purpose, we present an empirical analysis of the temperature's role on the performance of a metal-oxide gas sensor array in the identification of odorants along the response transient. We show that the optimal temperature in this sense depends heavily on the selection of (i) the set of candidate analytes, (ii) the time-window of the analysis, (iii) the feature extracted from the sensor response, and (iv) the computational identification method used.

  17. Quasidistributed temperature sensor based on dense wavelength-division multiplexing optical fiber delay

    NASA Astrophysics Data System (ADS)

    Su, Jun; Yang, Ning; Fan, Zhiqiang; Qiu, Qi

    2017-10-01

    We report on a fiber-optic delay-based quasidistributed temperature sensor with high precision. The device works by detecting the delay induced by the temperature instead of the spectrum. To analyze the working principle of this sensor, the thermal dependence of the fiber-optic delay was theoretically investigated and the delay-temperature coefficient was measured to be 42.2 ps/km°C. In this sensor, quasidistributed measurement of temperature could be easily realized by dense wavelength-division multiplexing and wavelength addressing. We built and tested a prototype quasidistributed temperature sensor with eight testing points equally distributed along a 32.61-km-long fiber. The experimental results demonstrate an average error of <0.1°C. These results prove that this quasidistributed temperature sensor is feasible and that it is a viable option for simple and economic temperature measurements.

  18. A Miniature Fiber-Optic Sensor for High-Resolution and High-Speed Temperature Sensing in Ocean Environment

    DTIC Science & Technology

    2015-11-05

    the SMF is superior when it comes to remote sensing in far and deep ocean. As an initial test , the real-time temperature structure within the water...4 ℃. The high resolution guarantees the visualization of subtle variation in the local water. To test the response time of the proposed sensor, the... Honey , "Optical trubulence in the sea," in Underwater Photo-optical Instrumentation Applications SPIE, 49-55 (1972). [6] J. D. Nash, D. R. Caldwell, M

  19. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    PubMed

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  20. Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants.

    PubMed

    Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M; Rao, G Prabhakara

    2018-04-01

    Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ∼2.5 kHz/mm.

  1. Deployment of quasi-digital sensor for high temperature molten salt level measurement in pyroprocessing plants

    NASA Astrophysics Data System (ADS)

    Sanga, Ramesh; Agarwal, Sourabh; Sivaramakrishna, M.; Rao, G. Prabhakara

    2018-04-01

    Development of a liquid molten salt level sensor device that can detect the level of liquid molten salt in the process vessels of pyrochemical reprocessing of spent metallic fuels is detailed. It is proposed to apply a resistive-type pulsating sensor-based level measurement approach. There are no commercially available sensors due to limitations of high temperature, radiation, and physical dimensions. A compact, simple, rugged, low power, and high precise pulsating sensor-based level probe and simple instrumentation for the molten salt liquid level sensor to work in the extreme conditions has been indigenously developed, with high precision and accuracy. The working principle, design concept, and results have been discussed. This level probe is mainly composed of the variable resistor made up of ceramic rods. This resistor constitutes the part of resistance-capacitance-type Logic Gate Oscillator (LGO). A change in the molten salt level inside the tank causes a small change in the resistance which in turn changes the pulse frequency of the LGO. Thus the frequency, the output of the instrument that is displayed on the LCD of an embedded system, is a function of molten salt level. In the present design, the range of level measurement is about 10 mm. The sensitivity in position measurement up to 10 mm is ˜2.5 kHz/mm.

  2. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron-Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications.

    PubMed

    Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung

    2017-02-23

    Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H₂)-loaded boron-germanium (B-Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H₂-loaded B-Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H₂-loaded B-Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging.

  3. Temperature insensitive curvature sensor based on cascading photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Li, Yunpu; Fu, Xinghu; Jin, Wa; Bi, Weihong

    2018-03-01

    A temperature insensitive curvature sensor is proposed based on cascading photonic crystal fiber. Using the arc fusion splicing method, this sensor is fabricated by cascading together a single-mode fiber (SMF), a three layers air holes structure of photonic crystal fiber (3PCF), a five layers air holes structure of photonic crystal fiber (5PCF) and a SMF in turn. So the structure SMF-3PCF-5PCF-SMF can be obtained with a total length of 20 mm. During the process of fabrication, the splicing machine parameters and the length of each optical fiber are adjusted to obtain a high sensitivity curvature sensor. The experimental results show that the curvature sensitivity is -8.40 nm/m-1 in the curvature variation range of 0-1.09 m-1, which also show good linearity. In the range of 30-90 °C, the temperature sensitivity is only about 3.24 pm/°C, indicating that the sensor is not sensitive to temperature. The sensor not only has the advantages of easy fabricating, simple structure, high sensitivity but also can solve the problem of temperature measurement cross sensitivity, so it can be used for different areas including aerospace, large-scale bridge, architectural structure health monitoring and so on.

  4. Interferometric fiber-optic temperature sensor with spiral polarization couplers

    NASA Astrophysics Data System (ADS)

    Cortés, R.; Khomenko, A. V.; Starodumov, A. N.; Arzate, N.; Zenteno, L. A.

    1998-09-01

    A fiber optic temperature sensor, for which the changes in modal birefringence of a short section of a long birefringent fiber are monitored remotely, is described. It employs a white light interferometer, which is formed by two concatenated spiral polarization mode couplers. A new method for white light interferometer output signal processing is described which provides a high accuracy absolute temperature measurement even in discontinuous operation of the sensor. Experimental results are presented for temperature measurements over a 100°C range with resolution of 3×10 -3 °C.

  5. Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Wu, Junjun; Li, Shuguang; shi, Min; Feng, Xinxing

    2018-07-01

    A high sensitivity photonic crystal fiber (PCF) temperature sensor based on surface plasmon resonance is proposed and evaluated using the finite element method. Besides, the coupling phenomenon is studied. The gold layer deposited on the polishing surface of D-shape PCF is used as the metal to stimulate surface plasma, which can improves the sensitivity. Through exquisite design, the birefringence of the fiber is improved, which makes the loss of y-polarization far greater than the loss of x-polarization. The D-shape fiber avoids filling metal and liquid into the air-holes, which can contact with fluid directly to feel temperature. When the phase matching condition is satisfied, the core mode will couple with the surface plasma mode. The resonance position of y-polarization is very sensitive to the temperature change. The simulation shows that the PCF has high sensitivity of 36.86 nm/°C in y-polarization and wide detection that from 10 °C to 85 °C.

  6. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor

    PubMed Central

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-01-01

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor’s working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from −40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz/°C℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications. PMID:29439393

  7. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  8. 500 C Electronic Packaging and Dielectric Materials for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Chen, Liang-yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.

    2016-01-01

    High-temperature environment operable sensors and electronics are required for exploring the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and application of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high temperature electronics, and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by these high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed. High-temperature environment operable sensors and electronics are required for probing the inner solar planets and distributed control of next generation aeronautical engines. Various silicon carbide (SiC) high temperature sensors, actuators, and electronics have been demonstrated at and above 500C. A compatible packaging system is essential for long-term testing and eventual applications of high temperature electronics and sensors. High temperature passive components are also necessary for high temperature electronic systems. This talk will discuss ceramic packaging systems developed for high electronics and related testing results of SiC circuits at 500C and silicon-on-insulator (SOI) integrated circuits at temperatures beyond commercial limit facilitated by high temperature packaging technologies. Dielectric materials for high temperature multilayers capacitors will also be discussed.

  9. High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide.

    PubMed

    Li, Shan; Cheng, Ming; Liu, Guannan; Zhao, Lianjing; Zhang, Bo; Gao, Yuan; Lu, Huiying; Wang, Haiyu; Zhao, Jing; Liu, Fangmeng; Yan, Xu; Zhang, Tong; Lu, Geyu

    2018-04-10

    Nitrogen dioxide (NO 2 ), as a typical threatening atmospheric pollutant, is hazardous to the environment and human health. Thus, the development of a gas sensor with high response and low detection limit for NO 2 detection is highly important. The highly ordered mesoporous indium trioxide (In 2 O 3 ) prepared by simple nanocasting method using mesoporous silica as template and decorated with Au nanoparticles was investigated for NO 2 detection. The prepared materials were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Characterization results showed that the samples exhibited ordered mesostructure and were successfully decorated with Au. The gas sensing performance of the sensors based on a series of Au-loaded mesoporous In 2 O 3 were systematically investigated. The Au loading level strongly affected the sensing performance toward NO 2 . The optimal sensor, which was based on 0.5 wt% Au-loaded In 2 O 3 , displayed high sensor response and low detection limit of 10 ppb at low operating temperature of 65 °C. The excellent sensing properties were mainly attributed to the ordered mesoporous structure and the catalytic performance of Au. We believe that the Au-loaded mesoporous In 2 O 3 can provide a promising platform for NO 2 gas sensors with excellent performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Design and realization of temperature measurement system based on optical fiber temperature sensor for wireless power transfer

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Zeng, Shuang; Liu, Xiulan; Jin, Yuan; Li, Xianglong; Wang, Xiaochen

    2018-02-01

    The electric vehicles (EV) have become accepted by increasing numbers of people for the environmental-friendly advantages. A novel way to charge the electric vehicles is through wireless power transfer (WPT). The wireless power transfer is a high power transfer system. The high currents flowing through the transmitter and receiver coils increasing temperature affects the safety of person and charging equipment. As a result, temperature measurement for wireless power transfer is needed. In this paper, a temperature measurement system based on optical fiber temperature sensors for electric vehicle wireless power transfer is proposed. Initially, the thermal characteristics of the wireless power transfer system are studied and the advantages of optical fiber sensors are analyzed. Then the temperature measurement system based on optical fiber temperature sensor is designed. The system consists of optical subsystem, data acquisition subsystem and data processing subsystem. Finally, the system is tested and the experiment result shows that the system can realize 1°C precision and can acquire real-time temperature distribution of the coils, which can meet the requirement of the temperature measuring for wireless power transfer.

  11. Practical polarization maintaining optical fibre temperature sensor for harsh environment application

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Xia, Haiyun; Jin, Wei

    2007-10-01

    A reflection spot temperature sensor was proposed based on the polarization mode interference in polarization maintaining optical fibre (PMF) and the phenomenon that the propagation constant difference of the two orthogonal polarization modes in stressing structures PMF is sensitive to temperature and the sensing equation was obtained. In this temperature sensor, a broadband source was used to suppress the drift due to polarization coupling in lead-in/lead-out PMF. A characteristic and performance investigation proved this sensor to be practical, flexible and precise. Experimental results fitted the theory model very well and the noise-limited minimum detectable temperature variation is less than 0.01 °C. The electric arc processing was investigated and the differential propagation constant modifying the PMF probe is performed. For the demand of field hot-spot monitoring of huge power transformers, a remote multi-channel temperature sensor prototype has been made and tested. Specially coated Panda PMF that can stand high temperatures up to 250 °C was fabricated and used as probe fibres. The sensor probes were sealed within thin quartz tubes that have high voltage insulation and can work in a hot oil and vapour environment. Test results show that the accuracy of the system is better than ±0.5 °C within 0 °C to 200 °C.

  12. Integrated Temperature and Hydrogen Sensors with MEMS Technology

    PubMed Central

    Jiang, Hongchuan; Huang, Min; Yu, Yibing; Tian, Xiaoyu; Zhang, Wanli; Zhang, Jianfeng; Huang, Yifan; Yu, Kun

    2017-01-01

    In this work, a PdNi thin film hydrogen gas sensor with integrated Pt thin film temperature sensor was designed and fabricated using the micro-electro-mechanical system (MEMS) process. The integrated sensors consist of two resistors: the former, based on Pt film, is used as a temperature sensor, while the latter had the function of hydrogen sensing and is based on PdNi alloy film. The temperature coefficient of resistance (TCR) in both devices was measured and the output response of the PdNi film hydrogen sensor was calibrated based on the temperature acquired by the Pt temperature sensor. The SiN layer was deposited on top of Pt film to inhibit the hydrogen diffusion and reduce consequent disturbance on temperature measurement. The TCR of the PdNi film and the Pt film was about 0.00122/K and 0.00217/K, respectively. The performances of the PdNi film hydrogen sensor were investigated with hydrogen concentrations from 0.3% to 3% on different temperatures from 294.7 to 302.2 K. With the measured temperature of the Pt resistor and the TCR of the PdNi film, the impact of the temperature on the performances of the PdNi film hydrogen sensor was reduced. The output response, response time and recovery time of the PdNi film hydrogen sensors under the hydrogen concentration of 0.5%, 1.0%, 1.5% and 2.0% were measured at 313 K. The output response of the PdNi thin film hydrogen sensors increased with increasing hydrogen concentration while the response time and recovery time decreased. A cycling test between pure nitrogen and 3% hydrogen concentration was performed at 313 K and PdNi thin film hydrogen sensor demonstrated great repeatability in the cycling test. PMID:29301220

  13. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  14. An Improved Metal-Packaged Strain Sensor Based on A Regenerated Fiber Bragg Grating in Hydrogen-Loaded Boron–Germanium Co-Doped Photosensitive Fiber for High-Temperature Applications

    PubMed Central

    Tu, Yun; Ye, Lin; Zhou, Shao-Ping; Tu, Shan-Tung

    2017-01-01

    Local strain measurements are considered as an effective method for structural health monitoring of high-temperature components, which require accurate, reliable and durable sensors. To develop strain sensors that can be used in higher temperature environments, an improved metal-packaged strain sensor based on a regenerated fiber Bragg grating (RFBG) fabricated in hydrogen (H2)-loaded boron–germanium (B–Ge) co-doped photosensitive fiber is developed using the process of combining magnetron sputtering and electroplating, addressing the limitation of mechanical strength degradation of silica optical fibers after annealing at a high temperature for regeneration. The regeneration characteristics of the RFBGs and the strain characteristics of the sensor are evaluated. Numerical simulation of the sensor is conducted using a three-dimensional finite element model. Anomalous decay behavior of two regeneration regimes is observed for the FBGs written in H2-loaded B–Ge co-doped fiber. The strain sensor exhibits good linearity, stability and repeatability when exposed to constant high temperatures of up to 540 °C. A satisfactory agreement is obtained between the experimental and numerical results in strain sensitivity. The results demonstrate that the improved metal-packaged strain sensors based on RFBGs in H2-loaded B–Ge co-doped fiber provide great potential for high-temperature applications by addressing the issues of mechanical integrity and packaging. PMID:28241465

  15. Optical fiber voltage sensors for broad temperature ranges

    NASA Technical Reports Server (NTRS)

    Rose, A. H.; Day, G. W.

    1992-01-01

    We describe the development of an optical fiber ac voltage sensor for aircraft and spacecraft applications. Among the most difficult specifications to meet for this application is a temperature stability of +/- 1 percent from -65 C to +125 C. This stability requires a careful selection of materials, components, and optical configuration with further compensation using an optical-fiber temperature sensor located near the sensing element. The sensor is a polarimetric design, based on the linear electro-optic effect in bulk Bi4Ge3O12. The temperature sensor is also polarimetric, based on the temperature dependence of the birefringence of bulk SiO2. The temperature sensor output is used to automatically adjust the calibration of the instrument.

  16. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  17. Research and development program in fiber optic sensors and distributed sensing for high temperature harsh environment energy applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Romanosky, Robert R.

    2017-05-01

    he National Energy Technology Laboratory (NETL) under the Department of Energy (DOE) Fossil Energy (FE) Program is leading the effort to not only develop near zero emission power generation systems, but to increaser the efficiency and availability of current power systems. The overarching goal of the program is to provide clean affordable power using domestic resources. Highly efficient, low emission power systems can have extreme conditions of high temperatures up to 1600 oC, high pressures up to 600 psi, high particulate loadings, and corrosive atmospheres that require monitoring. Sensing in these harsh environments can provide key information that directly impacts process control and system reliability. The lack of suitable measurement technology serves as a driver for the innovations in harsh environment sensor development. Advancements in sensing using optical fibers are key efforts within NETL's sensor development program as these approaches offer the potential to survive and provide critical information about these processes. An overview of the sensor development supported by the National Energy Technology Laboratory (NETL) will be given, including research in the areas of sensor materials, designs, and measurement types. New approaches to intelligent sensing, sensor placement and process control using networked sensors will be discussed as will novel approaches to fiber device design concurrent with materials development research and development in modified and coated silica and sapphire fiber based sensors. The use of these sensors for both single point and distributed measurements of temperature, pressure, strain, and a select suite of gases will be addressed. Additional areas of research includes novel control architecture and communication frameworks, device integration for distributed sensing, and imaging and other novel approaches to monitoring and controlling advanced processes. The close coupling of the sensor program with process modeling and

  18. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  19. High-temperature fiber optic pressure sensor

    NASA Technical Reports Server (NTRS)

    Berthold, J. W.

    1984-01-01

    Attention is given to a program to develop fiber optic methods to measure diaphragm deflection. The end application is intended for pressure transducers capable of operating to 540 C. In this paper are reported the results of a laboratory study to characterize the performance of the fiber-optic microbend sensor. The data presented include sensitivity and spring constant. The advantages and limitations of the microbend sensor for static pressure measurement applications are described. A proposed design is presented for a 540 C pressure transducer using the fiber optic microbend sensor.

  20. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, Jr., Charles L.; Ericson, M. Nance

    1999-01-01

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature.

  1. Temperature measurement method using temperature coefficient timing for resistive or capacitive sensors

    DOEpatents

    Britton, C.L. Jr.; Ericson, M.N.

    1999-01-19

    A method and apparatus for temperature measurement especially suited for low cost, low power, moderate accuracy implementation. It uses a sensor whose resistance varies in a known manner, either linearly or nonlinearly, with temperature, and produces a digital output which is proportional to the temperature of the sensor. The method is based on performing a zero-crossing time measurement of a step input signal that is double differentiated using two differentiators functioning as respective first and second time constants; one temperature stable, and the other varying with the sensor temperature. 5 figs.

  2. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag.

    PubMed

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-06-22

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple.

  3. Novel Concrete Temperature Monitoring Method Based on an Embedded Passive RFID Sensor Tag

    PubMed Central

    Liu, Yongsheng; Deng, Fangming; He, Yigang; Li, Bing; Liang, Zhen; Zhou, Shuangxi

    2017-01-01

    This paper firstly introduces the importance of temperature control in concrete measurement, then a passive radio frequency identification (RFID) sensor tag embedded for concrete temperature monitoring is presented. In order to reduce the influences of concrete electromagnetic parameters during the drying process, a T-type antenna is proposed to measure the concrete temperature at the required depth. The proposed RFID sensor tag is based on the EPC generation-2 ultra-high frequency (UHF) communication protocol and operates in passive mode. The temperature sensor can convert the sensor signals to corresponding digital signals without an external reference clock due to the adoption of phase-locked loop (PLL)-based architecture. Laboratory experimentation and on-site testing demonstrate that our sensor tag embedded in concrete can provide reliable communication performance in passive mode. The maximum communicating distance between reader and tag is 7 m at the operating frequency of 915 MHz and the tested results show high consistency with the results tested by a thermocouple. PMID:28640188

  4. Strain sensors for high field pulse magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Christian; Zheng, Yan; Easton, Daniel

    2009-01-01

    In this paper we present an investigation into several strain sensing technologies that are being considered to monitor mechanical deformation within the steel reinforcement shells used in high field pulsed magnets. Such systems generally operate at cryogenic temperatures to mitigate heating issues that are inherent in the coils of nondestructive, high field pulsed magnets. The objective of this preliminary study is to characterize the performance of various strain sensing technologies at liquid nitrogen temperatures (-196 C). Four sensor types are considered in this investigation: fiber Bragg gratings (FBG), resistive foil strain gauges (RFSG), piezoelectric polymers (PVDF), and piezoceramics (PZT). Threemore » operational conditions are considered for each sensor: bond integrity, sensitivity as a function of temperature, and thermal cycling effects. Several experiments were conducted as part of this study, investigating adhesion with various substrate materials (stainless steel, aluminum, and carbon fiber), sensitivity to static (FBG and RFSG) and dynamic (RFSG, PVDF and PZT) load conditions, and sensor diagnostics using PZT sensors. This work has been conducted in collaboration with the National High Magnetic Field Laboratory (NHMFL), and the results of this study will be used to identify the set of sensing technologies that would be best suited for integration within high field pulsed magnets at the NHMFL facility.« less

  5. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    NASA Astrophysics Data System (ADS)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  6. Temperature compensated and self-calibrated current sensor

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-09-25

    A method is described to provide temperature compensation and reduction of drift due to aging for a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. The offset voltage signal generated by each magnetic field sensor is used to correct variations in the output signal due to temperature variations and aging.

  7. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Muyskens, Mark

    1997-07-01

    Our application of an integrated-circuit (IC) temperature sensor which is easy-to-use, inexpensive, rugged, easily computer-interfacable and has good precision is described. The design, based on the National Semiconductor LM35 IC chip, avoids some of the difficulties associated with conventional sensors (thermocouples, thermistors, and platinum resistance thermometers) and a previously described IC sensor. The sensor can be used with a variety of data-acquisition systems. Applications range from general chemistry to physical chemistry, particularly where computer interfaced, digital temperature measurement is desired. Included is a detailed description of our current design with suggestions for improvement and a performance evaluation of the precision in differential measurement and the time constant for responding to temperature change.

  8. Threshold temperature optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Musial, J. E.

    2016-12-01

    This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.

  9. 46 CFR 153.440 - Cargo temperature sensors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Cargo temperature sensors. 153.440 Section 153.440... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c) of...

  10. 46 CFR 153.440 - Cargo temperature sensors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo temperature sensors. 153.440 Section 153.440... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Cargo Temperature Control Systems § 153.440 Cargo temperature sensors. (a) Except as prescribed in paragraph (c) of...

  11. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  12. Engineering the Charge Transport of Ag Nanocrystals for Highly Accurate, Wearable Temperature Sensors through All-Solution Processes.

    PubMed

    Joh, Hyungmok; Lee, Seung-Wook; Seong, Mingi; Lee, Woo Seok; Oh, Soong Ju

    2017-06-01

    All-nanocrystal (NC)-based and all-solution-processed wearable resistance temperature detectors (RTDs) are introduced. The charge transport mechanisms of Ag NC thin films are engineered through various ligand treatments to design high performance RTDs. Highly conductive Ag NC thin films exhibiting metallic transport behavior with high positive temperature coefficients of resistance (TCRs) are achieved through tetrabutylammonium bromide treatment. Ag NC thin films showing hopping transport with high negative TCRs are created through organic ligand treatment. All-solution-based, one-step photolithography techniques that integrate two distinct opposite-sign TCR Ag NC thin films into an ultrathin single device are developed to decouple the mechanical effects such as human motion. The unconventional materials design and strategy enables highly accurate, sensitive, wearable and motion-free RTDs, demonstrated by experiments on moving or curved objects such as human skin, and simulation results based on charge transport analysis. This strategy provides a low cost and simple method to design wearable multifunctional sensors with high sensitivity which could be utilized in various fields such as biointegrated sensors or electronic skin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Investigation of linearity of the ITER outer vessel steady-state magnetic field sensors at high temperature

    NASA Astrophysics Data System (ADS)

    Entler, S.; Duran, I.; Kocan, M.; Vayakis, G.

    2017-07-01

    Three vacuum vessel sectors in ITER will be instrumented by the outer vessel steady-state magnetic field sensors. Each sensor unit features a pair of metallic Hall sensors with a sensing layer made of bismuth to measure tangential and normal components of the local magnetic field. The influence of temperature and magnetic field on the Hall coefficient was tested for the temperature range from 25 to 250 oC and the magnetic field range from 0 to 0.5 T. A fit of the Hall coefficient normalized temperature function independent of magnetic field was found, and a model of the Hall coefficient functional dependence at a wide range of temperature and magnetic field was built with the purpose to simplify the calibration procedure.

  14. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    PubMed

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  15. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    PubMed Central

    Jenkins, R. Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay. PMID:28134815

  16. Thermoelectric Control Of Temperatures Of Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Burkett, Cecil G., Jr.; West, James W.; Hutchinson, Mark A.; Lawrence, Robert M.; Crum, James R.

    1995-01-01

    Prototype controlled-temperature enclosure containing thermoelectric devices developed to house electronically scanned array of pressure sensors. Enclosure needed because (1) temperatures of transducers in sensors must be maintained at specified set point to ensure proper operation and calibration and (2) sensors sometimes used to measure pressure in hostile environments (wind tunnels in original application) that are hotter or colder than set point. Thus, depending on temperature of pressure-measurement environment, thermoelectric devices in enclosure used to heat or cool transducers to keep them at set point.

  17. Battery system with temperature sensors

    DOEpatents

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  18. Bimorph material/structure designs for high sensitivity flexible surface acoustic wave temperature sensors.

    PubMed

    Tao, R; Hasan, S A; Wang, H Z; Zhou, J; Luo, J T; McHale, G; Gibson, D; Canyelles-Pericas, P; Cooke, M D; Wood, D; Liu, Y; Wu, Q; Ng, W P; Franke, T; Fu, Y Q

    2018-06-13

    A fundamental challenge for surface acoustic wave (SAW) temperature sensors is the detection of small temperature changes on non-planar, often curved, surfaces. In this work, we present a new design methodology for SAW devices based on flexible substrate and bimorph material/structures, which can maximize the temperature coefficient of frequency (TCF). We performed finite element analysis simulations and obtained theoretical TCF values for SAW sensors made of ZnO thin films (~5 μm thick) coated aluminum (Al) foil and Al plate substrates with thicknesses varied from 1 to 1600 μm. Based on the simulation results, SAW devices with selected Al foil or plate thicknesses were fabricated. The experimentally measured TCF values were in excellent agreements with the simulation results. A normalized wavelength parameter (e.g., the ratio between wavelength and sample thickness, λ/h) was applied to successfully describe changes in the TCF values, and the TCF readings of the ZnO/Al SAW devices showed dramatic increases when the normalized wavelength λ/h was larger than 1. Using this design approach, we obtained the highest reported TCF value of -760 ppm/K for a SAW device made of ZnO thin film coated on Al foils (50 μm thick), thereby enabling low cost temperature sensor applications to be realized on flexible substrates.

  19. Research about the high precision temperature measurement

    NASA Astrophysics Data System (ADS)

    Lin, J.; Yu, J.; Zhu, X.; Zeng, Z.; Deng, Y.

    2012-12-01

    High precision temperature control system is one of most important support conditions for tunable birefringent filter.As the first step,we researched some high precision temperature measurement methods for it. Firstly, circuits with a 24 bit ADC as the sensor's reader were carefully designed; Secondly, an ARM porcessor is used as the centrol processing unit, it provides sufficient reading and procesing ability; Thirdly, three kinds of sensors, PT100, Dale 01T1002-5 thermistor, Wheatstone bridge(constructed by pure copper and manganin) as the senor of the temperature were tested respectively. The resolution of the measurement with these three kinds of sensors are all better than 0.001 that's enough for 0.01 stability temperature control. Comparatively, Dale 01T1002-5 thermistor could get the most accurate temperature of the key point, Wheatstone bridge could get the most accurate mean temperature of the whole layer, both of them will be used in our futrue temperature controll system.

  20. Microwave Backscatter-Based Wireless Temperature Sensor Fabricated by an Alumina-Backed Au Slot Radiation Patch.

    PubMed

    Lu, Fei; Wang, Haixing; Guo, Yanjie; Tan, Qiulin; Zhang, Wendong; Xiong, Jijun

    2018-01-16

    A wireless and passive temperature sensor operating up to 800 °C is proposed. The sensor is based on microwave backscatter RFID (radio frequency identification) technology. A thin-film planar structure and simple working principle make the sensor easy to operate under high temperature. In this paper, the proposed high temperature sensor was designed, fabricated, and characterized. Here the 99% alumina ceramic with a dimension of 40 mm × 40 mm × 1 mm was prepared in micromechanics for fabrication of the sensor substrate. The metallization of the Au slot patch was realized in magnetron sputtering with a slot width of 2 mm and a slot length of 32 mm. The measured resonant frequency of the sensor at 25 °C is 2.31 GHz. It was concluded that the resonant frequency decreases with the increase in the temperature in range of 25-800 °C. It was shown that the average sensor sensitivity is 101.94 kHz/°C.

  1. A Wind Energy Powered Wireless Temperature Sensor Node

    PubMed Central

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-01-01

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally. PMID:25734649

  2. A wind energy powered wireless temperature sensor node.

    PubMed

    Zhang, Chuang; He, Xue-Feng; Li, Si-Yu; Cheng, Yao-Qing; Rao, Yang

    2015-02-27

    A wireless temperature sensor node composed of a piezoelectric wind energy harvester, a temperature sensor, a microcontroller, a power management circuit and a wireless transmitting module was developed. The wind-induced vibration energy harvester with a cuboid chamber of 62 mm × 19.6 mm × 10 mm converts ambient wind energy into electrical energy to power the sensor node. A TMP102 temperature sensor and the MSP430 microcontroller are used to measure the temperature. The power management module consists of LTC3588-1 and LT3009 units. The measured temperature is transmitted by the nRF24l01 transceiver. Experimental results show that the critical wind speed of the harvester was about 5.4 m/s and the output power of the harvester was about 1.59 mW for the electrical load of 20 kΩ at wind speed of 11.2 m/s, which was sufficient to power the wireless sensor node to measure and transmit the temperature every 13 s. When the wind speed increased from 6 m/s to 11.5 m/s, the self-powered wireless sensor node worked normally.

  3. Support of the eight-foot high-temperature tunnel modifications project

    NASA Technical Reports Server (NTRS)

    Hodges, Donald Y.; Shebalin, John V.

    1987-01-01

    An ultrasonic level sensor was developed to measure the liquid level in a storage vessel under high pressures, namely up to 6000 psi. The sensor is described. A prototype sensor was installed in the cooling-water storage vessel of the Eight-Foot High-Temperature Tunnel. Plans are being made to install the readout instrument in the control room, so that tunnel operators can monitor the water level during the course of a tunnel run. It was discovered that the sensor will operate at cryogenic temperatures. Consequently, a sensor will be installed in the modified Eight-Foot High-Temperature Tunnel to measure the sound speed of liquid oxygen (LOX) as it is transferred from a storage vessel to the tunnel combustor at pressure of about 3000 psi. The sound speed is known to be a reliable indicator of contamination of LOX by pressurized gaseous nitrogen, which will be used to effect the transfer. Subjecting the sensor to a temperature cycle from room temperature to liquid nitrogen temperature and back again several times revealed no deterioration in sensor performance. The method using this sensor is superior to the original method, which was to bleed samples of LOX from the storage vessel to an independent chamber for measurement of the sound speed.

  4. Fabrication method for a room temperature hydrogen sensor

    NASA Technical Reports Server (NTRS)

    Shukla, Satyajit V. (Inventor); Cho, Hyoung (Inventor); Seal, Sudipta (Inventor); Ludwig, Lawrence (Inventor)

    2011-01-01

    A sensor for selectively determining the presence and measuring the amount of hydrogen in the vicinity of the sensor. The sensor comprises a MEMS device coated with a nanostructured thin film of indium oxide doped tin oxide with an over layer of nanostructured barium cerate with platinum catalyst nanoparticles. Initial exposure to a UV light source, at room temperature, causes burning of organic residues present on the sensor surface and provides a clean surface for sensing hydrogen at room temperature. A giant room temperature hydrogen sensitivity is observed after making the UV source off. The hydrogen sensor of the invention can be usefully employed for the detection of hydrogen in an environment susceptible to the incursion or generation of hydrogen and may be conveniently used at room temperature.

  5. Wireless sensor for temperature and humidity measurement

    NASA Astrophysics Data System (ADS)

    Drumea, Andrei; Svasta, Paul

    2010-11-01

    Temperature and humidity sensors have a broad range of applications, from heating and ventilation of houses to controlled drying of fruits, vegetables or meat in food industry. Modern sensors are integrated devices, usually MEMS, factory-calibrated and with digital output of measured parameters. They can have power down modes for reduced energy consumption. Such an integrated device allows the implementation of a battery powered wireless sensor when coupled with a low power microcontroller and a radio subsystem. A radio sensor can work independently or together with others in a radio network. Presented paper focuses mainly on measurement and construction aspects of sensors for temperature and humidity designed and implemented by authors; network aspects (communication between two or more sensors) are not analyzed.

  6. Temperature compensated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by a separate but identical magnetic field sensor and is used to correct variations in the output signal due to temperature variations and aging.

  7. Fiber ring laser sensor based on Fabry-Perot cavity interferometer for temperature sensing

    NASA Astrophysics Data System (ADS)

    Zou, Hui; Ma, Lei; Xiong, Hui; Zhang, Yunshan; Li, Yong Tao

    2018-01-01

    A ring laser temperature sensor based on a novel reflective fiber Fabry-Perot (F-P) interferometer air cavity is proposed and experimentally demonstrated. The reflective F-P air cavity, which consists of a segment of glass capillary inserted between two single-mode fibers, is utilized as a sensing element as well as as a filter in the fiber ring cavity. As temperature increases, the reflection spectra of the F-P sensor move towards the longer wavelength, and then cause lasing wavelength shifts. By monitoring the variation of lasing wavelength, we obtain a temperature sensor system with a high temperature sensitivity of 0.249 nm °C-1, a narrow 3 dB bandwidth of 0.1514 nm, and a high signal-to-noise ratio of 52 dB. Moreover, it is convenient to fabricate the sensor head, and the stability is very good, giving it a wide range of applications.

  8. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  9. Optical Fiber Chemical Sensor with Sol-Gel Derived Refractive Material as Transducer for High Temperature Gas Sensing in Clean Coal Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiquan Tao

    2006-12-31

    The chemistry of sol-gel derived silica and refractive metal oxide has been systematically studied. Sol-gel processes have been developed for preparing porous silica and semiconductor metal oxide materials. Micelle/reversed micelle techniques have been developed for preparing nanometer sized semiconductor metal oxides and noble metal particles. Techniques for doping metal ions, metal oxides and nanosized metal particles into porous sol-gel material have also been developed. Optical properties of sol-gel derived materials in ambient and high temperature gases have been studied by using fiber optic spectroscopic techniques, such as fiber optic ultraviolet/visible absorption spectrometry, fiber optic near infrared absorption spectrometry and fibermore » optic fluorescence spectrometry. Fiber optic spectrometric techniques have been developed for investigating the optical properties of these sol-gel derived materials prepared as porous optical fibers or as coatings on the surface of silica optical fibers. Optical and electron microscopic techniques have been used to observe the microstructure, such as pore size, pore shape, sensing agent distribution, of sol-gel derived material, as well as the size and morphology of nanometer metal particle doped in sol-gel derived porous silica, the nature of coating of sol-gel derived materials on silica optical fiber surface. In addition, the chemical reactions of metal ion, nanostructured semiconductor metal oxides and nanometer sized metal particles with gas components at room temperature and high temperatures have also been investigated with fiber optic spectrometric methods. Three classes of fiber optic sensors have been developed based on the thorough investigation of sol-gel chemistry and sol-gel derived materials. The first group of fiber optic sensors uses porous silica optical fibers doped with metal ions or metal oxide as transducers for sensing trace NH{sub 3} and H{sub 2}S in high temperature gas samples. The second

  10. Effects of room temperature aging on two cryogenic temperature sensor models used in aerospace applications

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Krause, John

    2012-06-01

    Cryogenic temperature sensors used in aerospace applications are typically procured far in advance of the mission launch date. Depending upon the program, the temperature sensors may be stored at room temperature for extended periods as installation and groundbased testing can take years before the actual flight. The effects of long term storage at room temperature are sometimes approximated by the use of accelerated aging at temperatures well above room temperature, but this practice can yield invalid results as the sensing material and/or electrical contacting method can be increasingly unstable with higher temperature exposure. To date, little data are available on the effects of extended room temperature aging on sensors commonly used in aerospace applications. This research examines two such temperature sensors models - the Lake Shore Cryotronics, Inc. model CernoxTM and DT-670-SD temperature sensors. Sample groups of each model type have been maintained for ten years or longer with room temperature storage between calibrations. Over an eighteen year period, the CernoxTM temperature sensors exhibited a stability of better than ±20 mK for T<30 K and better than ±0.1% of temperature for T>30 K. Over a ten year period the model DT-670-SD sensors exhibited a stability of better than ±140 mK for T<25 K and better than ±75 mK for T>25 K.

  11. Ultra-sensitive wide dynamic range temperature sensor based on in-fiber Lyot interferometer

    NASA Astrophysics Data System (ADS)

    Nikbakht, Hamed; Poorghdiri Isfahani, Mohamad Hosein; Latifi, Hamid

    2017-04-01

    An in-fiber Lyot interferometer for temperature measurement is presented. The sensor utilizes high temperature-dependence of the birefringence in Panda polarization maintaining fibers to achieve high resolution in temperature measurements. Temperature variation modulates the phase difference between the polarization modes propagating in different modes of the Panda fiber. The Lyot interferometer produces a spectrum which varies with the phase difference. Therefore, by monitoring this spectrum a high resolution of 0.003°C was achieved. A fiber Bragg grating is added to the setup to expand its dynamic range. This sensor does not need complicated fabrication process and can be implemented in many applications.

  12. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring.

    PubMed

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-09-15

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures.

  13. Freestanding, Fiber-Based, Wearable Temperature Sensor with Tunable Thermal Index for Healthcare Monitoring.

    PubMed

    Trung, Tran Quang; Le, Hoang Sinh; Dang, Thi My Linh; Ju, Sanghyun; Park, Sang Yoon; Lee, Nae-Eung

    2018-06-01

    Fiber-based sensors integrated on textiles or clothing systems are required for the next generation of wearable electronic platforms. Fiber-based physical sensors are developed, but the development of fiber-based temperature sensors is still limited. Herein, a new approach to develop wearable temperature sensors that use freestanding single reduction graphene oxide (rGO) fiber is proposed. A freestanding and wearable temperature-responsive rGO fiber with tunable thermal index is obtained using simple wet spinning and a controlled graphene oxide reduction time. The freestanding fiber-based temperature sensor shows high responsivity, fast response time (7 s), and good recovery time (20 s) to temperature. It also maintains its response under an applied mechanical deformation. The fiber device fabricated by means of a simple process is easily integrated into fabric such as socks or undershirts and can be worn by a person to monitor the temperature of the environment and skin temperature without interference during movement and various activities. These results demonstrate that the freestanding fiber-based temperature sensor has great potential for fiber-based wearable electronic platforms. It is also promising for applications in healthcare and biomedical monitoring. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Asymmetric structured microfiber-based temperature sensor

    NASA Astrophysics Data System (ADS)

    Xian, Pei; Feng, Guoying; Dai, Shenyu; Zhou, Shouhuan

    2017-04-01

    A temperature sensor formed by a cascaded sphere and an abrupt taper, together in a standard single-mode fiber, was developed. The dip of the measured spectrum signal shifted obviously when the surrounding temperature changed. Measurement sensitivity to 18.36 pm/°C was shown with the surrounding temperature ranging from 35°C to 395°C. Due to its compact size and all-fiber configuration, the proposed sensor has the advantages of simplicity and low-cost fabrication, thus the device would find potential applications in sensing fields.

  15. Body/bone-marrow differential-temperature sensor

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Berdahl, C. M.

    1978-01-01

    Differential-temperature sensor developed to compare bone-marrow and body temperature in leukemia patients uses single stable amplifier to monitor temperature difference recorded by thermocouples. Errors are reduced by referencing temperatures to each other, not to separate calibration points.

  16. An FPGA Noise Resistant Digital Temperature Sensor with Auto Calibration

    DTIC Science & Technology

    2012-03-01

    temperature sensor [6] . . . . . . . . . . . . . . 14 9 Two different digital temperature sensor placement algorithms: (a) Grid placement (b) Optimal...create a grid over the FPGA. While this method works reasonably well, it requires many sensors, some of which are unnecessary. The optimal placement, on...temperature sensor placement algorithms: (a) Grid placement (b) Optimal Placement [7] 16 2.4 Summary Integrated circuits’ sensitivity to temperatures has

  17. Development of a Temperature Sensor for Jet Engine and Space Mission Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis

    2008-01-01

    Electronics for Distributed Turbine Engine Control and Space Exploration Missions are expected to encounter extreme temperatures and wide thermal swings. In particular, circuits deployed in a jet engine compartment are likely to be exposed to temperatures well exceeding 150 C. To meet this requirement, efforts exist at the NASA Glenn Research Center (GRC), in support of the Fundamental Aeronautics Program/Subsonic Fixed Wing Project, to develop temperature sensors geared for use in high temperature environments. The sensor and associated circuitry need to be located in the engine compartment under distributed control architecture to simplify system design, improve reliability, and ease signal multiplexing. Several circuits were designed using commercial-off-the-shelf as well as newly-developed components to perform temperature sensing at high temperatures. The temperature-sensing circuits will be described along with the results pertaining to their performance under extreme temperature.

  18. High-bandwidth scanned-wavelength-modulation spectroscopy sensors for temperature and H2O in a rotating detonation engine

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Almodóvar, Christopher A.; Jeffries, Jay B.; Hanson, Ronald K.; Brophy, Christopher M.

    2014-10-01

    The design and use of two-color tunable diode laser (TDL) absorption sensors for measurements of temperature and H2O in a rotating detonation engine (RDE) are presented. Both sensors used first-harmonic-normalized scanned-wavelength-modulation spectroscopy with second-harmonic detection (scanned-WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in the harsh combustion environment. One sensor used two near-infrared (NIR) TDLs near 1391.7 nm and 1469.3 nm that were modulated at 225 kHz and 285 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O absorption transitions to provide a measurement rate of 50 kHz and a detection limit in the RDE of 0.2% H2O by mole. The other sensor used two mid-infrared (MIR) TDLs near 2551 nm and 2482 nm that were modulated at 90 kHz and 112 kHz, respectively, and sinusoidally scanned across the peak of their respective H2O transitions to provide a measurement rate of 10 kHz and a detection limit in the RDE of 0.02% H2O by mole. Four H2O absorption transitions with different lower-state energies were used to assess the homogeneity of temperature in the measurement plane. Experimentally derived spectroscopic parameters that enable temperature and H2O sensing to within 1.5-3.5% of known values are reported. The sensor design enabling the high-bandwidth scanned-WMS-2f/1f measurements is presented. The two sensors were deployed across two orthogonal and coplanar lines-of-sight (LOS) located in the throat of a converging-diverging nozzle at the RDE combustor exit. Measurements in the non-premixed H2-fueled RDE indicate that the temperature and H2O oscillate at the detonation frequency (≈3.25 kHz) and that production of H2O is a weak function of global equivalence ratio.

  19. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo pump...

  20. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo pump...

  1. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirement for temperature sensors. 153.565... Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in table 1 of this part refers to this section, temperature sensors must be used to monitor the cargo pump...

  2. Ultrasonic Al₂O₃ Ceramic Thermometry in High-Temperature Oxidation Environment.

    PubMed

    Wei, Yanlong; Gao, Yubin; Xiao, Zhaoqian; Wang, Gao; Tian, Miao; Liang, Haijian

    2016-11-11

    In this study, an ultrasonic temperature measurement system was designed with Al₂O₃ high-temperature ceramic as an acoustic waveguide sensor and preliminarily tested in a high-temperature oxidation environment. The test results indicated that the system can indeed work stably in high-temperature environments. The relationship between the temperature and delay time of 26 °C-1600 °C ceramic materials was also determined in order to fully elucidate the high-temperature oxidation of the proposed waveguide sensor and to lay a foundation for the further application of this system in temperatures as high as 2000 °C.

  3. Optical fibre pressure and temperature sensor system designed for urodynamic applications

    NASA Astrophysics Data System (ADS)

    Duraibabu, Dineshbabu; Kelly, Niall; Poeggel, Sven; Flood, Hugh; Yuan, Hongwei; Dooly, Gerard; McGrath, Deirdre; Tosi, Daniele; Lewis, Elfed; Leen, Gabriel

    2016-05-01

    This paper presents an optical fibre pressure and temperature sensor (OFPTS) system, which is adapted for use as a urodynamic pressure measurement system (UPS) for differential pressure measurement with temperature compensation. The OFTPS is based on a Fabry Perot interferometer (FPI), which acts as a pressure sensor and includes an embedded fibre Bragg grating (FBG) for temperature measurement. The sensor system is evaluated in a lower urinary tract (LUT) simulator, which simulates the bladder, rectum and detrusor muscle. The system was benchmarked against a commercially available urodynamic system, at the University Hospital Limerick (UHL) Urology Clinic. Both systems demonstrate a high correlation with a relative pressure variation of less than +/-2.8cmH2O for abdominal and +/-4cmH2O for vesical pressure. The repetitive measurement of the OFPTS system in the LUT simulator against the commercial system demonstrated the high repeatability. Furthermore, the low fabrication cost makes the OFPTS a potentially interesting instrument for urodynamic and other medical applications.

  4. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    NASA Astrophysics Data System (ADS)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  5. Development of micro-heaters with optimized temperature compensation design for gas sensors.

    PubMed

    Hwang, Woo-Jin; Shin, Kyu-Sik; Roh, Ji-Hyoung; Lee, Dae-Sung; Choa, Sung-Hoon

    2011-01-01

    One of the key components of a chemical gas sensor is a MEMS micro-heater. Micro-heaters are used in both semiconductor gas sensors and NDIR gas sensors; however they each require different heat dissipation characteristics. For the semiconductor gas sensors, a uniform temperature is required over a wide area of the heater. On the other hand, for the NDIR gas sensor, the micro-heater needs high levels of infrared radiation in order to increase sensitivity. In this study, a novel design of a poly-Si micro-heater is proposed to improve the uniformity of heat dissipation on the heating plate. Temperature uniformity of the micro-heater is achieved by compensating for the variation in power consumption around the perimeter of the heater. With the power compensated design, the uniform heating area is increased by 2.5 times and the average temperature goes up by 40 °C. Therefore, this power compensated micro-heater design is suitable for a semiconductor gas sensor. Meanwhile, the poly-Si micro-heater without compensation shows a higher level of infrared radiation under equal power consumption conditions. This indicates that the micro-heater without compensation is more suitable for a NDIR gas sensor. Furthermore, the micro-heater shows a short response time of less than 20 ms, indicating a very high efficiency of pulse driving.

  6. D-Shaped Polarization Maintaining Fiber Sensor for Strain and Temperature Monitoring

    PubMed Central

    Qazi, Hummad Habib; Mohammad, Abu Bakar; Ahmad, Harith; Zulkifli, Mohd Zamani

    2016-01-01

    A D-shaped polarization-maintaining fiber (PMF) as fiber optic sensor for the simultaneous monitoring of strain and the surrounding temperature is presented. A mechanical end and edge polishing system with aluminum oxide polishing film is utilized to perform sequential polishing on one side (lengthwise) of the PMF in order to fabricate a D-shaped cross-section. Experimental results show that the proposed sensor has high sensitivity of 46 pm/µε and 130 pm/°C for strain and temperature, respectively, which is significantly higher than other recently reported work (mainly from 2013) related to fiber optic sensors. The easy fabrication method, high sensitivity, and good linearity make this sensing device applicable in various applications such as health monitoring and spatial analysis of engineering structures. PMID:27649195

  7. A Fiber Bragg grating based tilt sensor suitable for constant temperature room

    NASA Astrophysics Data System (ADS)

    Tang, Guoyu; Wei, Jue; Zhou, Wei; Wu, Mingyu; Yang, Meichao; Xie, Ruijun; Xu, Xiaofeng

    2015-07-01

    Constant-temperature rooms have been widely used in industrial production, quality testing, and research laboratories. This paper proposes a high-precision tilt sensor suitable for a constant- temperature room, which has achieved a wide-range power change while the fiber Bragg grating (FBG) reflection peak wavelength shifted very little, thereby demonstrating a novel method for obtaining a high-precision tilt sensor. This paper also studies the effect of the reflection peak on measurement precision. The proposed sensor can distinguish the direction of tilt with an excellent sensitivity of 403 dBm/° and a highest achievable resolution of 2.481 × 10-5 ° (that is, 0.08% of the measuring range).

  8. High-temperature optical fiber instrumentation for gas flow monitoring in gas turbine engines

    NASA Astrophysics Data System (ADS)

    Roberts, Adrian; May, Russell G.; Pickrell, Gary R.; Wang, Anbo

    2002-02-01

    In the design and testing of gas turbine engines, real-time data about such physical variables as temperature, pressure and acoustics are of critical importance. The high temperature environment experienced in the engines makes conventional electronic sensors devices difficult to apply. Therefore, there is a need for innovative sensors that can reliably operate under the high temperature conditions and with the desirable resolution and frequency response. A fiber optic high temperature sensor system for dynamic pressure measurement is presented in this paper. This sensor is based on a new sensor technology - the self-calibrated interferometric/intensity-based (SCIIB) sensor, recently developed at Virginia Tech. State-of-the-art digital signal processing (DSP) methods are applied to process the signal from the sensor to acquire high-speed frequency response.

  9. Polymer/silica hybrid waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Niu, Donghai; Wang, Xibin; Sun, Shiqi; Jiang, Minghui; Xu, Qiang; Wang, Fei; Wu, Yuanda; Zhang, Daming

    2018-04-01

    A highly sensitive waveguide temperature sensor based on asymmetric Mach-Zehnder interferometer was designed and experimentally demonstrated. The interferometer is based on the polymer/silica hybrid waveguide structure, and Norland Optical Adhesive 73 (NOA 73) was employed as the waveguide core to enhance the temperature sensitivity. The influence of the different length differences between the two interferometer arms on the sensitivity of the sensor was systemically studied. It is shown that the maximum temperature sensitivity of -431 pm °C-1 can be obtained in the range of 25 °C-75 °C, while the length difference is 92 μm. Moreover, the temperature sensitivity contributions from different core materials were also investigated experimentally. It is shown that the waveguide material and microstructure of the device have significant influences on the sensitivity of the waveguide temperature sensor.

  10. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, Stephen W.; Cates, Michael R.; Boatner, Lynn A.; Gillies, George T.

    1998-01-01

    A high temperature phosphor consists essentially of a material having the general formula LuPO.sub.4 :Dy.sub.(x),Eu.sub.(y), wherein: 0.1 wt %.ltoreq.x.ltoreq.20 wt % and 0.1 wt %.ltoreq.y.ltoreq.20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopent. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions.

  11. High temperature thermometric phosphors for use in a temperature sensor

    DOEpatents

    Allison, S.W.; Cates, M.R.; Boatner, L.A.; Gillies, G.T.

    1998-03-24

    A high temperature phosphor consists essentially of a material having the general formula LuPO{sub 4}:Dy{sub (x)},Eu{sub (y)}, wherein: 0.1 wt %{<=}x{<=}20 wt % and 0.1 wt %{<=}y{<=}20 wt %. The high temperature phosphor is in contact with an article whose temperature is to be determined. The article having the phosphor in contact with it is placed in the environment for which the temperature of the article is to be determined. The phosphor is excited by a laser causing the phosphor to fluoresce. The emission from the phosphor is optically focused into a beam-splitting mirror which separates the emission into two separate emissions, the emission caused by the dysprosium dopant and the emission caused by the europium dopant. The separated emissions are optically filtered and the intensities of the emission are detected and measured. The ratio of the intensity of each emission is determined and the temperature of the article is calculated from the ratio of the intensities of the separate emissions. 2 figs.

  12. Optical Fiber Strain Instrumentation for High Temperature Aerospace Structural Monitoring

    NASA Technical Reports Server (NTRS)

    Wang, A.

    2002-01-01

    The objective of the program is the development and laboratory demonstration of sensors based on silica optical fibers for measurement of high temperature strain for aerospace materials evaluations. A complete fiber strain sensor system based on white-light interferometry was designed and implemented. An experiment set-up was constructed to permit testing of strain measurement up to 850 C. The strain is created by bending an alumina cantilever beam to which is the fiber sensor is attached. The strain calibration is provided by the application of known beam deflections. To ensure the high temperature operation capability of the sensor, gold-coated single-mode fiber is used. Moreover, a new method of sensor surface attachment which permits accurate sensor gage length determination is also developed. Excellent results were obtained at temperatures up to 800-850 C.

  13. Development of high temperature acoustic emission sensing system using fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Pang, Dandan; Sui, Qingmei; Wang, Ming; Guo, Dongmei; Sai, Yaozhang

    2018-03-01

    In some applications in structural health monitoring (SHM), the acoustic emission (AE) detection technology is used in the high temperature environment. In this paper, a high-temperature-resistant AE sensing system is developed based on the fiber Bragg grating (FBG) sensor. A novel high temperature FBG AE sensor is designed with a high signal-to-noise ratio (SNR) compared with the traditional FBG AE sensor. The output responses of the designed sensors with different sensing fiber lengths also are investigated both theoretically and experimentally. Excellent AE detection results are obtained using the proposed FBG AE sensing system over a temperature range from 25 ° to 200 °. The experimental results indicate that this FBG AE sensing system can well meet the application requirement in AE detecting areas at high temperature.

  14. A Temperature Sensor using a Silicon-on-Insulator (SOI) Timer for Very Wide Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik; Culley, Dennis E.

    2008-01-01

    A temperature sensor based on a commercial-off-the-shelf (COTS) Silicon-on-Insulator (SOI) Timer was designed for extreme temperature applications. The sensor can operate under a wide temperature range from hot jet engine compartments to cryogenic space exploration missions. For example, in Jet Engine Distributed Control Architecture, the sensor must be able to operate at temperatures exceeding 150 C. For space missions, extremely low cryogenic temperatures need to be measured. The output of the sensor, which consisted of a stream of digitized pulses whose period was proportional to the sensed temperature, can be interfaced with a controller or a computer. The data acquisition system would then give a direct readout of the temperature through the use of a look-up table, a built-in algorithm, or a mathematical model. Because of the wide range of temperature measurement and because the sensor is made of carefully selected COTS parts, this work is directly applicable to the NASA Fundamental Aeronautics/Subsonic Fixed Wing Program--Jet Engine Distributed Engine Control Task and to the NASA Electronic Parts and Packaging (NEPP) Program. In the past, a temperature sensor was designed and built using an SOI operational amplifier, and a report was issued. This work used an SOI 555 timer as its core and is completely new work.

  15. Temperature and Pressure Sensors Based on Spin-Allowed Broadband Luminescence of Doped Orthorhombic Perovskite Structures

    NASA Technical Reports Server (NTRS)

    Eldridge, Jeffrey I. (Inventor); Chambers, Matthew D. (Inventor)

    2014-01-01

    Systems and methods that are capable of measuring pressure or temperature based on luminescence are discussed herein. These systems and methods are based on spin-allowed broadband luminescence of sensors with orthorhombic perovskite structures of rare earth aluminates doped with chromium or similar transition metals, such as chromium-doped gadolinium aluminate. Luminescence from these sensors can be measured to determine at least one of temperature or pressure, based on either the intense luminescence of these sensors, even at high temperatures, or low temperature techniques discussed herein.

  16. Silicon carbide, an emerging high temperature semiconductor

    NASA Technical Reports Server (NTRS)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  17. Flight testing of a fiber optic temperature sensor

    NASA Technical Reports Server (NTRS)

    Finney, M. J.; Tregay, G. W.; Calabrese, P. R.

    1993-01-01

    A fiber optic temperature sensor (FOTS) system consisting of an optical probe, a flexible fiber optic cable, and an electro-optic signal processor was fabricated to measure the gas temperature in a turbine engine. The optical probe contained an emissive source embedded in a sapphire lightguide coupled to a fiber-optic jumper cable and was retrofitted into an existing thermocouple probe housing. The flexible fiber optic cable was constructed with 200 micron core, polyimide-coated fiber and was ruggedized for an aircraft environment. The electro-optic signal processing unit was used to ratio the intensities of two wavelength intervals and provided an analog output value of the indicated temperature. Subsequently, this optical sensor system was installed on a NASA Dryden F-15 Highly Integrated Digital Electronic Control (HIDEC) Aircraft Engine and several flight tests were conducted. Over the course of flight testing, the FOTS system's response was proportional to the average of the existing thermocouples sensing the changes in turbine engine thermal conditions.

  18. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  19. Improved Optical-Fiber Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Rogowski, Robert S.; Egalon, Claudio O.

    1993-01-01

    In optical-fiber temperature sensors of proposed type, phosphorescence and/or fluorescence in temperature-dependent coating layers coupled to photodetectors. Phosphorescent and/or fluorescent behavior(s) of coating material(s) depend on temperature; coating material or mixture of materials selected so one can deduce temperature from known temperature dependence of phosphorescence and/or fluorescence spectrum, and/or characteristic decay of fluorescence. Basic optical configuration same as that of optical-fiber chemical detectors described in "Making Optical-Fiber Chemical Detectors More Sensitive" (LAR-14525).

  20. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  1. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, Stanley E.

    1998-01-01

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiberoptic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences.

  2. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  3. A multi-core fiber based interferometer for high temperature sensing

    NASA Astrophysics Data System (ADS)

    Zhou, Song; Huang, Bo; Shu, Xuewen

    2017-04-01

    In this paper, we have verified and implemented a Mach-Zehnder interferometer based on seven-core fiber for high temperature sensing application. This proposed structure is based on a multi-mode-multi-core-multi-mode fiber structure sandwiched by a single mode fiber. Between the single-mode and multi-core fiber, a 3 mm long multi-mode fiber is formed for lead-in and lead-out light. The basic operation principle of this device is the use of multi-core modes, single-mode and multi-mode interference coupling is also utilized. Experimental results indicate that this interferometer sensor is capable of accurate measurements of temperatures up to 800 °C, and the temperature sensitivity of the proposed sensor is as high as 170.2 pm/°C, which is much higher than the current existing MZI based temperature sensors (109 pm/°C). This type of sensor is promising for practical high temperature applications due to its advantages including high sensitivity, simple fabrication process, low cost and compactness.

  4. The Systematic Bias of Ingestible Core Temperature Sensors Requires a Correction by Linear Regression.

    PubMed

    Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B

    2017-01-01

    An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors ( n = 64). In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is

  5. Temperature Compensation Fiber Bragg Grating Pressure Sensor Based on Plane Diaphragm

    NASA Astrophysics Data System (ADS)

    Liang, Minfu; Fang, Xinqiu; Ning, Yaosheng

    2018-06-01

    Pressure sensors are the essential equipments in the field of pressure measurement. In this work, we propose a temperature compensation fiber Bragg grating (FBG) pressure sensor based on the plane diaphragm. The plane diaphragm and pressure sensitivity FBG (PS FBG) are used as the pressure sensitive components, and the temperature compensation FBG (TC FBG) is used to improve the temperature cross-sensitivity. Mechanical deformation model and deformation characteristics simulation analysis of the diaphragm are presented. The measurement principle and theoretical analysis of the mathematical relationship between the FBG central wavelength shift and pressure of the sensor are introduced. The sensitivity and measure range can be adjusted by utilizing the different materials and sizes of the diaphragm to accommodate different measure environments. The performance experiments are carried out, and the results indicate that the pressure sensitivity of the sensor is 35.7 pm/MPa in a range from 0 MPa to 50 MPa and has good linearity with a linear fitting correlation coefficient of 99.95%. In addition, the sensor has the advantages of low frequency chirp and high stability, which can be used to measure pressure in mining engineering, civil engineering, or other complex environment.

  6. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  7. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  8. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  9. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors, such as resistive temperature detectors (RTDs). (d) Pressure. Pressure transducers must be... chilled-surface hygrometers, which include chilled mirror detectors and chilled surface acoustic wave (SAW) detectors. For other applications, we recommend thin-film capacitance sensors. You may use other dewpoint...

  10. Small CO2 Sensors Operate at Lower Temperature

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Xu, Jennifer C.

    2009-01-01

    Solid-electrolyte-based amperometric sensors for measuring concentrations of CO2 in air are being developed for use in detection of fires, environmental monitoring, and other applications where liquid-based electrochemical cells are problematic. These sensors are small (sizes of the order of a millimeter), are robust, are amenable to batch fabrication at relatively low cost, and exhibit short response times (seconds) and wide detection ranges. A sensor of this type at a previous stage of development included a solid electrolyte of Na3Zr2Si2PO12 deposited mainly between interdigitated Pt electrodes on an alumina substrate, all overcoated with an auxiliary solid electrolyte of (Na2CO3:BaCO3 in a molar ratio of 1:1.7). It was necessary to heat this device to a temperature as high as 600 C to obtain the desired sensitivity and rapid response. Heating sensors increases the power consumption of the sensor system and complicates the use of the sensor in some applications. Thus, decreasing a sensor s power consumption while maintaining its performance is a technical goal of ongoing development.

  11. Encapsulation for smart textile electronics - humidity and temperature sensor.

    PubMed

    Larsson, Andreas; Tran, Thanh-Nam; Aasmundtveit, Knut E; Seeberg, Trine M

    2015-01-01

    A combined humidity and temperature sensor was packaged by vacuum casting onto three different types of textiles; cotton, nylon and a waterproof fabric. This was done in order to integrate the sensor in a jacket in a soft and reliable way without changing the sensor performance. A membrane was custom made and integrated into the device to protect the sensor from the environment. The packaged sensors performance was characterized in a climate chamber were the relative humidity and temperature ranged from 25 % to 95 % and -10 °C to 75 °C respectively. The packaged sensors showed insignificant to limited performance degradation.

  12. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.

    PubMed

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-19

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.

  13. In situ measurement of the junction temperature of light emitting diodes using a flexible micro temperature sensor.

    PubMed

    Lee, Chi-Yuan; Su, Ay; Liu, Yin-Chieh; Fan, Wei-Yuan; Hsieh, Wei-Jung

    2009-01-01

    This investigation aimed to fabricate a flexible micro resistive temperature sensor to measure the junction temperature of a light emitting diode (LED). The junction temperature is typically measured using a thermal resistance measurement approach. This approach is limited in that no standard regulates the timing of data capture. This work presents a micro temperature sensor that can measure temperature stably and continuously, and has the advantages of being lightweight and able to monitor junction temperatures in real time. Micro-electro-mechanical-systems (MEMS) technologies are employed to minimize the size of a temperature sensor that is constructed on a stainless steel foil substrate (SS-304 with 30 μm thickness). A flexible micro resistive temperature sensor can be fixed between the LED chip and the frame. The junction temperature of the LED can be measured from the linear relationship between the temperature and the resistance. The sensitivity of the micro temperature sensor is 0.059 ± 0.004 Ω/°C. The temperature of the commercial CREE(®) EZ1000 chip is 119.97 °C when it is thermally stable, as measured using the micro temperature sensor; however, it was 126.9 °C, when measured by thermal resistance measurement. The micro temperature sensor can be used to replace thermal resistance measurement and performs reliably.

  14. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  15. AlN/Pt/LN structure for SAW sensors capable of operating at high temperature

    NASA Astrophysics Data System (ADS)

    Naumenko, Natalya; Nicolay, Pascal

    2017-08-01

    There is a need for wireless sensors able to operate in the intermediate temperature range (ITR) between 300 °C and 600 °C. Surface acoustic wave (SAW) sensors are promising candidates to solve this issue. However, existing SAW sensors most often fail in the ITR, due to the quick degradation of the sensor housing in extreme conditions. A promising way to circumvent the issue is to use "package-less" devices, where the acoustic waves are guided in a multilayered structure where they are intrinsically protected from adverse environmental effects. We present here an innovative multilayered structure that fulfills all the basic requirements, to achieve a wireless and "package-less" SAW Sensor for the ITR. The structure is made of a thin AlN layer deposited on top of a Y + 128°LN substrate and equipped with buried Pt electrodes. Numerical simulations of the acoustic waves propagating in SAW resonators built on this structure reveal the existence of a useful Rayleigh-type SAW that propagates at the AlN/LN interface with a velocity up to 4500 m/s and a high electromechanical coupling k2=5.6%, without leakage into the substrate. The existence of this mode is due to specific properties of the Y + 128°LN cut, which are analyzed in detail in this paper. The performances of an optimized AlN/Pt/LN structure are also compared to the ones of previously suggested "package-less" structures, including AlN/ZnO/Sapphire. It is shown that better device characteristics can be expected from the AlN/Pt/LN structure in the ITR.

  16. High-Temperature Strain Sensing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony; Richards, Lance W.; Hudson, Larry D.

    2008-01-01

    Thermal protection systems (TPS) and hot structures are utilizing advanced materials that operate at temperatures that exceed abilities to measure structural performance. Robust strain sensors that operate accurately and reliably beyond 1800 F are needed but do not exist. These shortcomings hinder the ability to validate analysis and modeling techniques and hinders the ability to optimize structural designs. This presentation examines high-temperature strain sensing for aerospace applications and, more specifically, seeks to provide strain data for validating finite element models and thermal-structural analyses. Efforts have been made to develop sensor attachment techniques for relevant structural materials at the small test specimen level and to perform laboratory tests to characterize sensor and generate corrections to apply to indicated strains. Areas highlighted in this presentation include sensors, sensor attachment techniques, laboratory evaluation/characterization of strain measurement, and sensor use in large-scale structures.

  17. Development of advanced high-temperature heat flux sensors. Phase 2: Verification testing

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    A two-phase program is conducted to develop heat flux sensors capable of making heat flux measurements throughout the hot section of gas turbine engines. In Phase 1, three types of heat flux sensors are selected; embedded thermocouple, laminated, and Gardon gauge sensors. A demonstration of the ability of these sensors to operate in an actual engine environment is reported. A segmented liner of each of two combustors being used in the Broad Specification Fuels Combustor program is instrumented with the three types of heat flux sensors then tested in a high pressure combustor rig. Radiometer probes are also used to measure the radiant heat loads to more fully characterize the combustor environment. Test results show the heat flux sensors to be in good agreement with radiometer probes and the predicted data trends. In general, heat flux sensors have strong potential for use in combustor development programs.

  18. Thin-film fiber optic hydrogen and temperature sensor system

    DOEpatents

    Nave, S.E.

    1998-07-21

    The invention discloses a sensor probe device for monitoring of hydrogen gas concentrations and temperatures by the same sensor probe. The sensor probe is constructed using thin-film deposition methods for the placement of a multitude of layers of materials sensitive to hydrogen concentrations and temperature on the end of a light transparent lens located within the sensor probe. The end of the lens within the sensor probe contains a lens containing a layer of hydrogen permeable material which excludes other reactive gases, a layer of reflective metal material that forms a metal hydride upon absorbing hydrogen, and a layer of semi-conducting solid that is transparent above a temperature dependent minimum wavelength for temperature detection. The three layers of materials are located at the distal end of the lens located within the sensor probe. The lens focuses light generated by broad-band light generator and connected by fiber-optics to the sensor probe, onto a reflective metal material layer, which passes through the semi-conducting solid layer, onto two optical fibers located at the base of the sensor probe. The reflected light is transmitted over fiber optic cables to a spectrometer and system controller. The absence of electrical signals and electrical wires in the sensor probe provides for an elimination of the potential for spark sources when monitoring in hydrogen rich environments, and provides a sensor free from electrical interferences. 3 figs.

  19. Highly Sensitive Sensors Based on Metal-Oxide Nanocolumns for Fire Detection.

    PubMed

    Lee, Kwangjae; Shim, Young-Seok; Song, Young Geun; Han, Soo Deok; Lee, Youn-Sung; Kang, Chong-Yun

    2017-02-07

    A fire detector is the most important component in a fire alarm system. Herein, we present the feasibility of a highly sensitive and rapid response gas sensor based on metal oxides as a high performance fire detector. The glancing angle deposition (GLAD) technique is used to make the highly porous structure such as nanocolumns (NCs) of various metal oxides for enhancing the gas-sensing performance. To measure the fire detection, the interface circuitry for our sensors (NiO, SnO₂, WO₃ and In₂O₃ NCs) is designed. When all the sensors with various metal-oxide NCs are exposed to fire environment, they entirely react with the target gases emitted from Poly(vinyl chlorides) (PVC) decomposed at high temperature. Before the emission of smoke from the PVC (a hot-plate temperature of 200 °C), the resistances of the metal-oxide NCs are abruptly changed and SnO₂ NCs show the highest response of 2.1. However, a commercial smoke detector did not inform any warning. Interestingly, although the NiO NCs are a p -type semiconductor, they show the highest response of 577.1 after the emission of smoke from the PVC (a hot-plate temperature of 350 °C). The response time of SnO₂ NCs is much faster than that of a commercial smoke detector at the hot-plate temperature of 350 °C. In addition, we investigated the selectivity of our sensors by analyzing the responses of all sensors. Our results show the high potential of a gas sensor based on metal-oxide NCs for early fire detection.

  20. ZnO nanorod arrays and direct wire bonding on GaN surfaces for rapid fabrication of antireflective, high-temperature ultraviolet sensors

    NASA Astrophysics Data System (ADS)

    So, Hongyun; Senesky, Debbie G.

    2016-11-01

    Rapid, cost-effective, and simple fabrication/packaging of microscale gallium nitride (GaN) ultraviolet (UV) sensors are demonstrated using zinc oxide nanorod arrays (ZnO NRAs) as an antireflective layer and direct bonding of aluminum wires to the GaN surface. The presence of the ZnO NRAs on the GaN surface significantly reduced the reflectance to less than 1% in the UV and 4% in the visible light region. As a result, the devices fabricated with ZnO NRAs and mechanically stable aluminum bonding wires (pull strength of 3-5 gf) showed higher sensitivity (136.3% at room temperature and 148.2% increase at 250 °C) when compared with devices with bare (uncoated) GaN surfaces. In addition, the devices demonstrated reliable operation at high temperatures up to 300 °C, supporting the feasibility of simple and cost-effective UV sensors operating with higher sensitivity in high-temperature conditions, such as in combustion, downhole, and space exploration applications.

  1. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  2. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  3. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  4. A Fiber Bragg Grating Temperature Sensor for 2-400 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaynetdinov, Madrakhim; See, Erich M.; Geist, Brian

    2015-03-01

    We demonstrate fiber optic, multiplexible temperature sensing using a fiber Bragg grating (FBG) with an operational range of 2-400 K, and a temperature resolution better than 10 mK for temperatures < 12 K. This represents a significant reduction in the lowest usable temperature as well as a significant increase in sensitivity at cryogenic temperatures compared with previously reported multiplexible solutions. This is accomplished by mounting the section of the fiber with a FBG on a polytetrafluoroethylene coupon, which has a non-negligible coefficient of thermal expansion down to < 4 K. The sensors exhibit a good stability over multiple temperature cyclesmore » and acceptable sensor-to-sensor repeatability. Possible applications for this sensor include distributed temperature sensing across superconducting elements and cryogenic temperature measurements in environments where electrical measurements are impractical or unsafe.« less

  5. High temperature superconductor materials and applications

    NASA Technical Reports Server (NTRS)

    Doane, George B., III.; Banks, Curtis; Golben, John

    1990-01-01

    Research on processing methods leading to a significant enhancement in the critical current densities (Jc) and the critical temperature (Tc) of high temperature superconducting in thin bulk and thin film forms. The fabrication of important devices for NASA unique applications (sensors) is investigated.

  6. Optical Pressure-Temperature Sensor for a Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Wiley, John; Korman, Valentin; Gregory, Don

    2008-01-01

    A compact sensor for measuring temperature and pressure in a combusti on chamber has been proposed. The proposed sensor would include two optically birefringent, transmissive crystalline wedges: one of sapph ire (Al2O3) and one of magnesium oxide (MgO), the optical properties of both of which vary with temperature and pressure. The wedges wou ld be separated by a vapor-deposited thin-film transducer, which wou ld be primarily temperaturesensitive (in contradistinction to pressur e- sensitive) when attached to a crystalline substrate. The sensor w ould be housed in a rugged probe to survive the extreme temperatures and pressures in a combustion chamber.

  7. Development of MEMS wireless wall temperature sensor for combustion studies

    NASA Astrophysics Data System (ADS)

    Lee, Minhyeok; Morimoto, Kenichi; Suzuki, Yuji

    2017-03-01

    In this paper, a MEMS-based wireless wall temperature sensor for application to combustion studies is proposed. The resonant frequency change of an LCR circuit on the sensor is used to detect the temperature change, and is transferred by inductive coupling between the sensor and the read-out coil. Sensitivity analysis has been made to examine the effect of the resistance/capacitance change of the sensor on the resonant frequency shifts. Based on the present analysis, the sensing principle with either TCR (temperature coefficient of resistance) or TCP (temperature coefficient of permittivity) can be determined for better temperature sensitivity. The sensor configuration is designed through an equivalent circuit model, and verified with a 3D electromagnetic simulation. A prototype sensor on a glass substrate is successfully fabricated through MEMS technologies. Performance of the sensor is evaluated in the steady thermal field with the temperature range from 25 °C to 175 °C. The profile of the resonant frequency change is well fitted with a quadratic curve derived from the model analysis. The temperature measurement accuracy of 1.6 °C at 25 °C and 0.87 °C at 175 °C has been obtained at the measurement distance of 0.71 mm. In addition, a similar measurement uncertainty can be achieved with a 52 ms measurement time interval.

  8. Wirelessly Interrogated Wear or Temperature Sensors

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.

    2010-01-01

    Sensors for monitoring surface wear and/or temperature without need for wire connections have been developed. Excitation and interrogation of these sensors are accomplished by means of a magnetic-field-response recorder. In a sensor of the present type as in the previously reported ones, the capacitance and, thus, the resonance frequency, varies as a known function of the quantity of interest that one seeks to determine. Hence, the resonance frequency is measured and used to calculate the quantity of interest.

  9. Core-temperature sensor ingestion timing and measurement variability.

    PubMed

    Domitrovich, Joseph W; Cuddy, John S; Ruby, Brent C

    2010-01-01

    Telemetric core-temperature monitoring is becoming more widely used as a noninvasive means of monitoring core temperature during athletic events. To determine the effects of sensor ingestion timing on serial measures of core temperature during continuous exercise. Crossover study. Outdoor dirt track at an average ambient temperature of 4.4°C ± 4.1°C and relative humidity of 74.1% ± 11.0%. Seven healthy, active participants (3 men, 4 women; age  =  27.0 ± 7.5 years, height  =  172.9 ± 6.8 cm, body mass  =  67.5 ± 6.1 kg, percentage body fat  =  12.7% ± 6.9%, peak oxygen uptake [Vo(2peak)]  =  54.4 ± 6.9 mL•kg⁻¹•min⁻¹) completed the study. Participants completed a 45-minute exercise trial at approximately 70% Vo(2peak). They consumed core-temperature sensors at 24 hours (P1) and 40 minutes (P2) before exercise. Core temperature was recorded continuously (1-minute intervals) using a wireless data logger worn by the participants. All data were analyzed using a 2-way repeated-measures analysis of variance (trial × time), Pearson product moment correlation, and Bland-Altman plot. Fifteen comparisons were made between P1 and P2. The main effect of time indicated an increase in core temperature compared with the initial temperature. However, we did not find a main effect for trial or a trial × time interaction, indicating no differences in core temperature between the sensors (P1  =  38.3°C ± 0.2°C, P2  =  38.3°C ± 0.4°C). We found no differences in the temperature recordings between the 2 sensors. These results suggest that assumed sensor location (upper or lower gastrointestinal tract) does not appreciably alter the transmission of reliable and repeatable measures of core temperature during continuous running in the cold.

  10. A Polymer Optical Fiber Temperature Sensor Based on Material Features.

    PubMed

    Leal-Junior, Arnaldo; Frizera-Netoc, Anselmo; Marques, Carlos; Pontes, Maria José

    2018-01-19

    This paper presents a polymer optical fiber (POF)-based temperature sensor. The operation principle of the sensor is the variation in the POF mechanical properties with the temperature variation. Such mechanical property variation leads to a variation in the POF output power when a constant stress is applied to the fiber due to the stress-optical effect. The fiber mechanical properties are characterized through a dynamic mechanical analysis, and the output power variation with different temperatures is measured. The stress is applied to the fiber by means of a 180° curvature, and supports are positioned on the fiber to inhibit the variation in its curvature with the temperature variation. Results show that the sensor proposed has a sensitivity of 1.04 × 10 -3 °C -1 , a linearity of 0.994, and a root mean squared error of 1.48 °C, which indicates a relative error of below 2%, which is lower than the ones obtained for intensity-variation-based temperature sensors. Furthermore, the sensor is able to operate at temperatures up to 110 °C, which is higher than the ones obtained for similar POF sensors in the literature.

  11. A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors

    PubMed Central

    Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia

    2018-01-01

    A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248

  12. Effects of electrostatic discharge on three cryogenic temperature sensor models

    NASA Astrophysics Data System (ADS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox{trade mark, serif} resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox{trade mark, serif} temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox{trade mark, serif} temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox{trade mark, serif} sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  13. Analysis of building envelope insulation performance utilizing integrated temperature and humidity sensors.

    PubMed

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments.

  14. Analysis of Building Envelope Insulation Performance Utilizing Integrated Temperature and Humidity Sensors

    PubMed Central

    Hung, San-Shan; Chang, Chih-Yuan; Hsu, Cheng-Jui; Chen, Shih-Wei

    2012-01-01

    A major cause of high energy consumption for air conditioning in indoor spaces is the thermal storage characteristics of a building's envelope concrete material; therefore, the physiological signals (temperature and humidity) within concrete structures are an important reference for building energy management. The current approach to measuring temperature and humidity within concrete structures (i.e., thermocouples and fiber optics) is limited by problems of wiring requirements, discontinuous monitoring, and high costs. This study uses radio frequency integrated circuits (RFIC) combined with temperature and humidity sensors (T/H sensors) for the design of a smart temperature and humidity information material (STHIM) that automatically, regularly, and continuously converts temperature and humidity signals within concrete and transmits them by radio frequency (RF) to the Building Physiology Information System (BPIS). This provides a new approach to measurement that incorporates direct measurement, wireless communication, and real-time continuous monitoring to assist building designers and users in making energy management decisions and judgments. PMID:23012529

  15. Integrated multi-channel nano-engineered optical hydrogen and temperature sensor detection systems for launch vehicles

    NASA Astrophysics Data System (ADS)

    Alam, M. Z.; Moreno, J.; Aitchison, J. S.; Mojahedi, M.; Kazemi, A. A.

    2008-08-01

    Launch vehicles and other satellite users need launch services that are highly reliable, less complex, easier to test, and cost effective. Being a very small molecule, hydrogen is prone to leakage through seals and micro-cracks. Hydrogen detection in space application is very challenging; public acceptance of hydrogen fuel would require the integration of a reliable hydrogen safety sensor. For detecting leakage of cryogenic fluids in spaceport facilities, launch vehicle industry and aerospace agencies are currently relying heavily on the bulky mass spectrometers, which fill one or more equipment racks, and weigh several hundred kilograms. Therefore, there is a critical need for miniaturized sensors and instruments suitable for use in space applications. This paper describes a novel multi-channel integrated nano-engineered optical sensor to detect hydrogen and monitor the temperature. The integrated optic sensor is made of multi-channel waveguide elements that measure hydrogen concentration in real Time. Our sensor is based on the use of a high index waveguide with a Ni/Pd overlay to detect hydrogen. When hydrogen is absorbed into the Ni/Pd alloy there is a change in the absorption of the material and the optical signal in the waveguide is increased. Our design uses a thin alloy (few nanometers thick) overlay which facilitates the absorption of the hydrogen and will result in a response time of approximately few seconds. Like other Pd/Pd-Ni based sensors the device response varies with temperature and hence the effects of temperature variations must be taken into account. One solution to this problem is simultaneous measurement of temperature in addition to hydrogen concentration at the same vicinity. Our approach here is to propose a temperature sensor that can easily be integrated on the same platform as the hydrogen sensor reported earlier by our group. One suitable choice of material system is silicon on insulator (SOI). Here, we propose a micro ring resonators

  16. Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers.

    PubMed

    Yoo, Wook Jae; Jang, Kyoung Won; Seo, Jeong Ki; Moon, Jinsoo; Han, Ki-Tek; Park, Jang-Yeon; Park, Byung Gi; Lee, Bongsoo

    2011-01-01

    A 2-channel embedded infrared fiber-optic temperature sensor was fabricated using two identical silver halide optical fibers for accurate thermometry without complicated calibration processes. In this study, we measured the output voltages of signal and reference probes according to temperature variation over a temperature range from 25 to 225 °C. To decide the temperature of the water, the difference between the amounts of infrared radiation emitted from the two temperature sensing probes was measured. The response time and the reproducibility of the fiber-optic temperature sensor were also obtained. Thermometry with the proposed sensor is immune to changes if parameters such as offset voltage, ambient temperature, and emissivity of any warm object. In particular, the temperature sensing probe with silver halide optical fibers can withstand a high temperature/pressure and water-chemistry environment. It is expected that the proposed sensor can be further developed to accurately monitor temperature in harsh environments.

  17. Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.

    2017-06-01

    Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.

  18. Microcantilever heater-thermometer with integrated temperature-compensated strain sensor

    DOEpatents

    King, William P [Champaign, IL; Lee, Jungchul [Champaign, IL; Goericke, Fabian T [Wolfsburg, DE

    2011-04-19

    The present invention provides microcantilever hotplate devices which incorporate temperature compensating strain sensors. The microcantilever hotplate devices of the present invention comprise microcantilevers having temperature compensating strain sensors and resistive heaters. The present invention also provides methods for using a microcantilever hotplate for temperature compensated surface stress measurements, chemical/biochemical sensing, measuring various properties of compounds adhered to the microcantilever hotplate surface, or for temperature compensated deflection measurements.

  19. High temperature strain gages

    NASA Technical Reports Server (NTRS)

    Gregory, Otto J. (Inventor); You, Tao (Inventor)

    2011-01-01

    A ceramic strain gage based on reactively sputtered indium-tin-oxide (ITO) thin films is used to monitor the structural integrity of components employed in aerospace propulsion systems operating at temperatures in excess of 1500.degree. C. A scanning electron microscopy (SEM) of the thick ITO sensors reveals a partially sintered microstructure comprising a contiguous network of submicron ITO particles with well defined necks and isolated nanoporosity. Densification of the ITO particles was retarded during high temperature exposure with nitrogen thus stabilizing the nanoporosity. ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures to incorporate more nitrogen into the films. Under these conditions, sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established.

  20. An Integrated-Circuit Temperature Sensor for Calorimetry and Differential Temperature Measurement.

    ERIC Educational Resources Information Center

    Muyskens, Mark A.

    1997-01-01

    Describes the application of an integrated-circuit (IC) chip which provides an easy-to-use, inexpensive, rugged, computer-interfaceable temperature sensor for calorimetry and differential temperature measurement. Discusses its design and advantages. (JRH)

  1. Fabrication of a Flexible Micro Temperature Sensor for Micro Reformer Applications

    PubMed Central

    Lee, Chi-Yuan; Lin, Chien-Hen; Lo, Yi-Man

    2011-01-01

    Micro reformers still face obstacles in minimizing their size, decreasing the concentration of CO, conversion efficiency and the feasibility of integrated fabrication with fuel cells. By using a micro temperature sensor fabricated on a stainless steel-based micro reformer, this work attempts to measure the inner temperature and increase the conversion efficiency. Micro temperature sensors on a stainless steel substrate are fabricated using micro-electro-mechanical systems (MEMS) and then placed separately inside the micro reformer. Micro temperature sensors are characterized by their higher accuracy and sensitivity than those of a conventional thermocouple. To the best of our knowledge, micro temperature sensors have not been embedded before in micro reformers and commercial products, therefore, this work presents a novel approach to integrating micro temperature sensors in a stainless steel-based micro reformer in order to evaluate inner local temperature distributions and enhance reformer performance. PMID:22163817

  2. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Hai; Dong, Junhang; Lin, Jerry

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  3. Temperature and pH sensors based on graphenic materials.

    PubMed

    Salvo, P; Calisi, N; Melai, B; Cortigiani, B; Mannini, M; Caneschi, A; Lorenzetti, G; Paoletti, C; Lomonaco, T; Paolicchi, A; Scataglini, I; Dini, V; Romanelli, M; Fuoco, R; Di Francesco, F

    2017-05-15

    Point-of-care applications and patients' real-time monitoring outside a clinical setting would require disposable and durable sensors to provide better therapies and quality of life for patients. This paper describes the fabrication and performances of a temperature and a pH sensor on a biocompatible and wearable board for healthcare applications. The temperature sensor was based on a reduced graphene oxide (rGO) layer that changed its electrical resistivity with the temperature. When tested in a human serum sample between 25 and 43°C, the sensor had a sensitivity of 110±10Ω/°C and an error of 0.4±0.1°C compared with the reference value set in a thermostatic bath. The pH sensor, based on a graphene oxide (GO) sensitive layer, had a sensitivity of 40±4mV/pH in the pH range between 4 and 10. Five sensor prototypes were tested in a human serum sample over one week and the maximum deviation of the average response from reference values obtained by a glass electrode was 0.2pH units. For biological applications, the temperature and pH sensors were successfully tested for in vitro cytotoxicity with human fibroblast cells (MRC-5) over 24h. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Characterization of Sodium Thermal Hydraulics with Optical Fiber Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Weathered, Matthew Thomas

    The thermal hydraulic properties of liquid sodium make it an attractive coolant for use in Generation IV reactors. The liquid metal's high thermal conductivity and low Prandtl number increases efficiency in heat transfer at fuel rods and heat exchangers, but can also cause features such as high magnitude temperature oscillations and gradients in the coolant. Currently, there exists a knowledge gap in the mechanisms which may create these features and their effect on mechanical structures in a sodium fast reactor. Two of these mechanisms include thermal striping and thermal stratification. Thermal striping is the oscillating temperature field created by the turbulent mixing of non-isothermal flows. Usually this occurs at the reactor core outlet or in piping junctions and can cause thermal fatigue in mechanical structures. Meanwhile, thermal stratification results from large volumes of non-isothermal sodium in a pool type reactor, usually caused by a loss of coolant flow accident. This stratification creates buoyancy driven flow transients and high temperature gradients which can also lead to thermal fatigue in reactor structures. In order to study these phenomena in sodium, a novel method for the deployment of optical fiber temperature sensors was developed. This method promotes rapid thermal response time and high spatial temperature resolution in the fluid. The thermal striping and stratification behavior in sodium may be experimentally analyzed with these sensors with greater fidelity than ever before. Thermal striping behavior at a junction of non-isothermal sodium was fully characterized with optical fibers. An experimental vessel was hydrodynamically scaled to model thermal stratification in a prototypical sodium reactor pool. Novel auxiliary applications of the optical fiber temperature sensors were developed throughout the course of this work. One such application includes local convection coefficient determination in a vessel with the corollary application

  5. 10.3 High-temperature Instrumentation

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    This viewgraph presentation describes high temperature instrumentation development from 1960-1970, 1980-1990 and 2000-present. The contents include: 1) Background; 2) Objective; 3) Application and Sensor; 4) Attachment Techniques; 5) Evaluation/Characterization Testing; and 6) Future testing.

  6. Temperature-Sensitive Coating Sensor Based on Hematite

    NASA Technical Reports Server (NTRS)

    Bencic, Timothy J.

    2011-01-01

    A temperature-sensitive coating, based on hematite (iron III oxide), has been developed to measure surface temperature using spectral techniques. The hematite powder is added to a binder that allows the mixture to be painted on the surface of a test specimen. The coating dynamically changes its relative spectral makeup or color with changes in temperature. The color changes from a reddish-brown appearance at room temperature (25 C) to a black-gray appearance at temperatures around 600 C. The color change is reversible and repeatable with temperature cycling from low to high and back to low temperatures. Detection of the spectral changes can be recorded by different sensors, including spectrometers, photodiodes, and cameras. Using a-priori information obtained through calibration experiments in known thermal environments, the color change can then be calibrated to yield accurate quantitative temperature information. Temperature information can be obtained at a point, or over an entire surface, depending on the type of equipment used for data acquisition. Because this innovation uses spectrophotometry principles of operation, rather than the current methods, which use photoluminescence principles, white light can be used for illumination rather than high-intensity short wavelength excitation. The generation of high-intensity white (or potentially filtered long wavelength light) is much easier, and is used more prevalently for photography and video technologies. In outdoor tests, the Sun can be used for short durations as an illumination source as long as the amplitude remains relatively constant. The reflected light is also much higher in intensity than the emitted light from the inefficient current methods. Having a much brighter surface allows a wider array of detection schemes and devices. Because color change is the principle of operation, the development of high-quality, lower-cost digital cameras can be used for detection, as opposed to the high-cost imagers

  7. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers

    PubMed Central

    Osinchuk, Stephanie; Taylor, Susan M.; Shmon, Cindy L.; Pharr, John; Campbell, John

    2014-01-01

    This study evaluated the CorTemp® ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp® sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and −0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and −1.1°C. PMID:25320380

  8. Comparison between core temperatures measured telemetrically using the CorTemp® ingestible temperature sensor and rectal temperature in healthy Labrador retrievers.

    PubMed

    Osinchuk, Stephanie; Taylor, Susan M; Shmon, Cindy L; Pharr, John; Campbell, John

    2014-10-01

    This study evaluated the CorTemp(®) ingestible telemetric core body temperature sensor in dogs, to establish the relationship between rectal temperature and telemetrically measured core body temperature at rest and during exercise, and to examine the effect of sensor location in the gastrointestinal (GI) tract on measured core temperature. CorTemp(®) sensors were administered orally to fasted Labrador retriever dogs and radiographs were taken to document sensor location. Core and rectal temperatures were monitored throughout the day in 6 resting dogs and during a 10-minute strenuous retrieving exercise in 6 dogs. Time required for the sensor to leave the stomach (120 to 610 min) was variable. Measured core temperature was consistently higher than rectal temperature across all GI locations but temperature differences based on GI location were not significant (P = 0.5218). Resting dogs had a core temperature that was on average 0.4°C above their rectal temperature with 95% limits of agreement (LoA) between 1.2°C and -0.5°C. Core temperature in exercising dogs was on average 0.3°C higher than their concurrent rectal temperature, with LoA of +1.6°C and -1.1°C.

  9. High temperature superconductor dc SQUID micro-susceptometer for room temperature objects

    NASA Astrophysics Data System (ADS)

    Faley, M. I.; Pratt, K.; Reineman, R.; Schurig, D.; Gott, S.; Atwood, C. G.; Sarwinski, R. E.; Paulson, D. N.; Starr, T. N.; Fagaly, R. L.

    2004-05-01

    We have developed a scanning magnetic microscope (SMM) with 25 µm resolution in spatial position for the magnetic features of room temperature objects. The microscope consists of a high-temperature superconductor (HTS) dc SQUID sensor, suspended in vacuum with a self-adjusting standoff, close spaced liquid nitrogen Dewar, X-Y scanning stage and a computer control system. The HTS SQUIDs were optimized for better spatial and field resolutions for operation at liquid nitrogen temperature. Measured inside a magnetic shield, the 10 pT Hz-1/2 typical noise of the SQUIDs is white down to frequencies of about 10 Hz, increasing up to about 20 pT Hz-1/2 at 1 Hz. The microscope is mounted on actively damped platforms, which negate vibrations from the environment as well as damping internal stepper motor noises. A high-resolution video telescope and a 1 µm precision z-axis positioning system allow a close positioning of the sample under the sensor. The ability of the sensors to operate in unshielded environmental conditions with magnetic fields up to about 15 G allowed us to perform 2D mapping of the local ac and dc susceptibility of the objects.

  10. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch.

    PubMed

    Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-09-01

    Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Temperature-compensated strain measurement using FBG sensors embedded in composite laminates

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo

    2002-07-01

    For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named hybrid sensor and laminate sensor, respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic (GFRP). Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glue to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion (CTEs), both strain and temperature can be measured. The latter sensor is a laminate of two 90 degree(s) plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors were experimentally confirmed.

  12. The influence of hard-baking temperature applied for SU8 sensor layer on the sensitivity of capacitive chemical sensor

    NASA Astrophysics Data System (ADS)

    Klanjšek Gunde, Marta; Hauptman, Nina; Maček, Marijan; Kunaver, Matjaž

    2009-06-01

    SU8, the near-UV photosensitive epoxy-based polymer was used as a sensor layer in the capacitive chemical sensor, ready for integration with a generic double-metal CMOS technology. It was observed that the response of the sensor slowly increases with the temperature applied in hard-baking process as long as it remains below 300°C. At this temperature the response of the sensor abruptly increases and becomes almost threefold. It was shown that fully crosslinked structure of the sensor layer becomes opened and disordered when the sensor is hard-baked at temperatures between 300°C and 320°C, that is, still well below the degradation temperature of the polymer. These changes in chemical structure were analyzed by Fourier-transform infrared spectroscopy. The temperature-dependent changes of the sensor layer structure enable one to prepare a combination of capacitive chemical sensors with good discrimination between some volatile organic compounds.

  13. Fiber Bragg Gratings for High-Temperature Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stinson-Bagby, Kelly L.; Fielder, Robert S.

    2004-07-01

    Fiber Bragg grating (FBG) sensors were used as a characterization tool to study the SAFE-100 thermal simulator at the Nasa Marshal Space Flight Center. The motivation for this work was to support Nasa space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. Distributed high temperature measurements, up to 1150 deg. C, were made with FBG temperature sensors. Additionally, FBG strain measurements were taken at elevated temperatures to provide a strain profile of the core during operation. This paper will discuss the contribution of these measurements to meet the goals of Nasa Marshallmore » Space Flight Center's Propulsion Research Center. (authors)« less

  14. High-temperature electronics

    NASA Technical Reports Server (NTRS)

    Seng, Gary T.

    1987-01-01

    In recent years, there was a growing need for electronics capable of sustained high-temperature operation for aerospace propulsion system instrumentation, control and condition monitoring, and integrated sensors. The desired operating temperature in some applications exceeds 600 C, which is well beyond the capability of currently available semiconductor devices. Silicon carbide displays a number of properties which make it very attractive as a semiconductor material, one of which is the ability to retain its electronic integrity at temperatures well above 600 C. An IR-100 award was presented to NASA Lewis in 1983 for developing a chemical vapor deposition process to grow single crystals of this material on standard silicon wafers. Silicon carbide devices were demonstrated above 400 C, but much work remains in the areas of crystal growth, characterization, and device fabrication before the full potential of silicon carbide can be realized. The presentation will conclude with current and future high-temperature electronics program plans. Although the development of silicon carbide falls into the category of high-risk research, the future looks promising, and the potential payoffs are tremendous.

  15. Fiber Optic Sensors for Temperature Monitoring during Thermal Treatments: An Overview

    PubMed Central

    Schena, Emiliano; Tosi, Daniele; Saccomandi, Paola; Lewis, Elfed; Kim, Taesung

    2016-01-01

    During recent decades, minimally invasive thermal treatments (i.e., Radiofrequency ablation, Laser ablation, Microwave ablation, High Intensity Focused Ultrasound ablation, and Cryo-ablation) have gained widespread recognition in the field of tumor removal. These techniques induce a localized temperature increase or decrease to remove the tumor while the surrounding healthy tissue remains intact. An accurate measurement of tissue temperature may be particularly beneficial to improve treatment outcomes, because it can be used as a clear end-point to achieve complete tumor ablation and minimize recurrence. Among the several thermometric techniques used in this field, fiber optic sensors (FOSs) have several attractive features: high flexibility and small size of both sensor and cabling, allowing insertion of FOSs within deep-seated tissue; metrological characteristics, such as accuracy (better than 1 °C), sensitivity (e.g., 10 pm·°C−1 for Fiber Bragg Gratings), and frequency response (hundreds of kHz), are adequate for this application; immunity to electromagnetic interference allows the use of FOSs during Magnetic Resonance- or Computed Tomography-guided thermal procedures. In this review the current status of the most used FOSs for temperature monitoring during thermal procedure (e.g., fiber Bragg Grating sensors; fluoroptic sensors) is presented, with emphasis placed on their working principles and metrological characteristics. The essential physics of the common ablation techniques are included to explain the advantages of using FOSs during these procedures. PMID:27455273

  16. Flexible Multiplexed Surface Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Daryabeigi, Kamran; Dillon-Townes, L. A.; Johnson, Preston B.; Ash, Robert L.

    1995-01-01

    Unitary array of sensors measures temperatures at points distributed over designated area on surface. Useful in measuring surface temperatures of aerodynamic models and thermally controlled objects. Made of combination of integrated-circuit microchips and film circuitry. Temperature-sensing chips scanned at speeds approaching 10 kHz. Operating range minus 40 degrees C to 120 degrees C. Flexibility of array conforms to curved surfaces. Multiplexer eliminates numerous monitoring cables. Control of acquisition and recording of data effected by connecting array to microcomputers via suitable interface circuitry.

  17. Temperature effects on polymer-carbon composite sensors

    NASA Technical Reports Server (NTRS)

    Lim, J. R.; Homer, M. L.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Shevade, A.; Ryan, M. A.

    2003-01-01

    At JPL we have investigated the effects of temperature on polymer-carbon black composite sensors. While the electrical properties of polymer composites have been studied, with mechanisms of conductivity described by connectivity and tunneling, it is not fully understood how these properties affect sensor characteristics and responses.

  18. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirement for temperature sensors. 153.565... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in...

  19. 46 CFR 153.565 - Special requirement for temperature sensors.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirement for temperature sensors. 153.565... CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Special Requirements § 153.565 Special requirement for temperature sensors. If a cargo listed in...

  20. Temperature and Humidity Calibration of a Low-Cost Wireless Dust Sensor for Real-Time Monitoring.

    PubMed

    Hojaiji, Hannaneh; Kalantarian, Haik; Bui, Alex A T; King, Christine E; Sarrafzadeh, Majid

    2017-03-01

    This paper introduces the design, calibration, and validation of a low-cost portable sensor for the real-time measurement of dust particles within the environment. The proposed design consists of low hardware cost and calibration based on temperature and humidity sensing to achieve accurate processing of airborne dust density. Using commercial particulate matter sensors, a highly accurate air quality monitoring sensor was designed and calibrated using real world variations in humidity and temperature for indoor and outdoor applications. Furthermore, to provide a low-cost secure solution for real-time data transfer and monitoring, an onboard Bluetooth module with AES data encryption protocol was implemented. The wireless sensor was tested against a Dylos DC1100 Pro Air Quality Monitor, as well as an Alphasense OPC-N2 optical air quality monitoring sensor for accuracy. The sensor was also tested for reliability by comparing the sensor to an exact copy of itself under indoor and outdoor conditions. It was found that accurate measurements under real-world humid and temperature varying and dynamically changing conditions were achievable using the proposed sensor when compared to the commercially available sensors. In addition to accurate and reliable sensing, this sensor was designed to be wearable and perform real-time data collection and transmission, making it easy to collect and analyze data for air quality monitoring and real-time feedback in remote health monitoring applications. Thus, the proposed device achieves high quality measurements at lower-cost solutions than commercially available wireless sensors for air quality.

  1. Apparatus for accurately measuring high temperatures

    DOEpatents

    Smith, D.D.

    The present invention is a thermometer used for measuring furnace temperatures in the range of about 1800/sup 0/ to 2700/sup 0/C. The thermometer comprises a broadband multicolor thermal radiation sensor positioned to be in optical alignment with the end of a blackbody sight tube extending into the furnace. A valve-shutter arrangement is positioned between the radiation sensor and the sight tube and a chamber for containing a charge of high pressure gas is positioned between the valve-shutter arrangement and the radiation sensor. A momentary opening of the valve shutter arrangement allows a pulse of the high gas to purge the sight tube of air-borne thermal radiation contaminants which permits the radiation sensor to accurately measure the thermal radiation emanating from the end of the sight tube.

  2. Substrate Integrated Waveguide (SIW)-Based Wireless Temperature Sensor for Harsh Environments.

    PubMed

    Tan, Qiulin; Guo, Yanjie; Zhang, Lei; Lu, Fei; Dong, Helei; Xiong, Jijun

    2018-05-03

    This paper presents a new wireless sensor structure based on a substrate integrated circular waveguide (SICW) for the temperature test in harsh environments. The sensor substrate material is 99% alumina ceramic, and the SICW structure is composed of upper and lower metal plates and a series of metal cylindrical sidewall vias. A rectangular aperture antenna integrated on the surface of the SICW resonator is used for electromagnetic wave transmission between the sensor and the external antenna. The resonant frequency of the temperature sensor decreases when the temperature increases, because the relative permittivity of the alumina ceramic increases with temperature. The temperature sensor presented in this paper was tested four times at a range of 30⁻1200 °C, and a broad band coplanar waveguide (CPW)-fed antenna was used as an interrogation antenna during the test process. The resonant frequency changed from 2.371 to 2.141 GHz as the temperature varied from 30 to 1200 °C, leading to a sensitivity of 0.197 MHz/°C. The quality factor of the sensor changed from 3444.6 to 35.028 when the temperature varied from 30 to 1000 °C.

  3. Development of an Acoustic Sensor for On-Line Gas Temperature Measurement in Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter Ariessohn; Hans Hornung

    2006-01-15

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2-Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. Since 1989 the U.S. Department of Energy has supported development of advanced coal gasification technology. The Wabash River and TECO IGCC demonstration projects supported by the DOE have demonstrated the ability of these plantsmore » to achieve high levels of energy efficiency and extremely low emissions of hazardous pollutants. However, a continuing challenge for this technology is the tradeoff between high carbon conversion which requires operation with high internal gas temperatures, and limited refractory life which is exacerbated by those high operating temperatures. Attempts to control internal gas temperature so as to operate these gasifiers at the optimum temperature have been hampered by the lack of a reliable technology for measuring internal gas temperatures. Thermocouples have serious survival problems and provide useful temperature information for only a few days or weeks after startup before burning out. For this reason, the Department of Energy has funded several research projects to develop more robust and reliable temperature measurement approaches for use in coal gasifiers. Enertechnix has developed a line of acoustic gas temperature sensors for use in coal-fired electric utility boilers, kraft recovery boilers, cement kilns and petrochemical process heaters. Acoustic pyrometry provides several significant advantages for gas temperature measurement in hostile process environments. First, it is non-intrusive so survival of the measurement components

  4. An Annular Mechanical Temperature Compensation Structure for Gas-Sealed Capacitive Pressure Sensor

    PubMed Central

    Hao, Xiuchun; Jiang, Yonggang; Takao, Hidekuni; Maenaka, Kazusuke; Higuchi, Kohei

    2012-01-01

    A novel gas-sealed capacitive pressure sensor with a temperature compensation structure is reported. The pressure sensor is sealed by Au-Au diffusion bonding under a nitrogen ambient with a pressure of 100 kPa and integrated with a platinum resistor-based temperature sensor for human activity monitoring applications. The capacitance-pressure and capacitance-temperature characteristics of the gas-sealed capacitive pressure sensor without temperature compensation structure are calculated. It is found by simulation that a ring-shaped structure on the diaphragm of the pressure sensor can mechanically suppress the thermal expansion effect of the sealed gas in the cavity. Pressure sensors without/with temperature compensation structures are fabricated and measured. Through measured results, it is verified that the calculation model is accurate. Using the compensation structures with a 900 μm inner radius, the measured temperature coefficient is much reduced as compared to that of the pressure sensor without compensation. The sensitivities of the pressure sensor before and after compensation are almost the same in the pressure range from 80 kPa to 100 kPa. PMID:22969385

  5. A surface acoustic wave ICP sensor with good temperature stability.

    PubMed

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  6. Distributed temperature sensors development using an stepped-helical ultrasonic waveguide

    NASA Astrophysics Data System (ADS)

    Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2018-04-01

    This paper presents the design and development of the distributed ultrasonic waveguide temperature sensors using some stepped-helical structures. Distributed sensing has several applications in various industries (oil, glass, steel) for measurement of physical parameters such as level, temperature, viscosity, etc. This waveguide incorporates a special notch or bend for obtaining ultrasonic wave reflections from the desired locations (Gage-lengths) where local measurements are desired. In this paper, a multi-location measurement wave-guide, with a measurement capability of 18 locations in a single wire, has been fabricated. The distribution of these sensors is both in the axial as well as radial directions using a stepped-helical spring configuration. Also, different high temperature materials have been chosen for the wave-guide. Both lower order axi-symmetric guided ultrasonic modes (L(0,1) and T(0,1)) were employed. These wave modes were generated/received (pulse-echo approach) using conventional longitudinal and shear transducers, respectively. Also, both the wave modes were simultaneously generated/received and compared using shear transducer for developing the distributed helical wave-guide sensors. The effect of dispersion of the wave modes due to curvature effects will also be discussed.

  7. Modeling and testing of fast response, fiber-optic temperature sensors

    NASA Astrophysics Data System (ADS)

    Tonks, Michael James

    The objective of this work was to design, analyze and test a fast response fiber-optic temperature probe and sensor. The sensor is intended for measuring rapid temperature changes such as produced by a blast wave formed by a detonation. This work was performed in coordination with Luna Innovations Incorporated, and the design is based on extensions of an existing fiber-optic temperature sensor developed by Luna. The sensor consists of a glass fiber with an optical wafer attached to the tip. A basic description of the principles behind the fiber-optic temperature sensor and an accompanying demodulation system is provided. For experimental validation tests, shock tubes were used to simulate the blast wave experienced at a distance of 3.0 m from the detonation of 22.7 kg of TNT. The flow conditions were predicted using idealized shock tube theory. The temperature sensors were tested in three configurations, flush at the end of the shock tube, extended on a probe 2.54 cm into the flow and extended on a probe 12.7 cm into the flow. The total temperature was expected to change from 300 K to 1130 K for the flush wall experiments and from 300 K to 960 K for the probe experiments. During the initial 0.1 milliseconds of the data the temperature only changed 8 K when the sensors were flush in the end of the shock tube. The sensor temperature changed 36 K during the same time when mounted on a probe in the flow. Schlieren pictures were taken of the flow in the shock tube to further understand the shock tube environment. Contrary to ideal shock tube theory, it was discovered that the flow did not remain stagnant in the end of the shock tube after the shock reflects from the end of the shock tube. Instead, the effects of turbulence were recorded with the fiber-optic sensors, and this turbulence was also captured in the schlieren photographs. A fast-response thermocouple was used to collect data for comparison with the fiber-optic sensor, and the fiber-optic sensor was proven to

  8. High Sensitivity MEMS Strain Sensor: Design and Simulation

    PubMed Central

    Mohammed, Ahmed A. S.; Moussa, Walied A.; Lou, Edmond

    2008-01-01

    In this article, we report on the new design of a miniaturized strain microsensor. The proposed sensor utilizes the piezoresistive properties of doped single crystal silicon. Employing the Micro Electro Mechanical Systems (MEMS) technology, high sensor sensitivities and resolutions have been achieved. The current sensor design employs different levels of signal amplifications. These amplifications include geometric, material and electronic levels. The sensor and the electronic circuits can be integrated on a single chip, and packaged as a small functional unit. The sensor converts input strain to resistance change, which can be transformed to bridge imbalance voltage. An analog output that demonstrates high sensitivity (0.03mV/με), high absolute resolution (1με) and low power consumption (100μA) with a maximum range of ±4000με has been reported. These performance characteristics have been achieved with high signal stability over a wide temperature range (±50°C), which introduces the proposed MEMS strain sensor as a strong candidate for wireless strain sensing applications under harsh environmental conditions. Moreover, this sensor has been designed, verified and can be easily modified to measure other values such as force, torque…etc. In this work, the sensor design is achieved using Finite Element Method (FEM) with the application of the piezoresistivity theory. This design process and the microfabrication process flow to prototype the design have been presented. PMID:27879841

  9. Fiber Bragg Grating Array as a Quasi Distributed Temperature Sensor for Furnace Boiler Applications

    NASA Astrophysics Data System (ADS)

    Reddy, P. Saidi; Prasad, R. L. N. Sai; Sengupta, D.; Shankar, M. Sai; Srimannarayana, K.; Kishore, P.; Rao, P. Vengal

    2011-10-01

    This paper presents the experimental work on distributed temperature sensing making use of Fiber Bragg grating (FBG) array sensor for possible applications in the monitoring of temperature profile in high temperature boilers. A special sensor has been designed for this purpose which consists of four FBGs (of wavelengths λB1 = 1547.28 nm, λB2 = 1555.72 nm, λB3 = 1550.84 nm, λB4 = 1545.92 nm) written in hydrogen loaded fiber in line with a spacing of 15 cm between them. All the FBGs are encapsulated inside a stainless steel tube for avoiding micro cracks using rigid probe technique. The spatial distribution of temperature profile inside a prototype boiler has been measured experimentally both in horizontal and vertical directions employing the above sensor and the results are presented.

  10. A quartz-based micro catalytic methane sensor by high resolution screen printing

    NASA Astrophysics Data System (ADS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  11. Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes

    NASA Astrophysics Data System (ADS)

    Liu, Wenlong; Liu, Yen-Yu; Do, Jing-Shan; Li, Jing

    2016-12-01

    Room temperature NH3 gas sensors based on Pt and Pt-Ir (Ir doping Pt) porous ceramic electrodes have been fabricated by both electroplating and sputtering methods. The properties of the gaseous ammonia sensors have been examined by polarization and chronoamperometry techniques. The influence of humidity on the features of the resulting sensors in the system has also been discussed, and the working potential was optimized. Water vapors seem to hugely improve the electrochemical activity of the electrode. With increasing the relative humidity, the response of the Pt-Ir(E)/Pt(S)/PCP sensor to NH3 gas could be enhanced remarkably, and the sensitivity increases from 1.14 to 12.06 μA ppm-1 cm-2 .Then we have also discussed the sensing mechanism of the Pt-Ir sensor and the result has been confirmed by X-ray photoelectron spectroscopy of the electrode surface before and after reaction in the end.

  12. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors.

    PubMed

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-07-13

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry-Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2-10 nm/kPa and a resolution of better than ΔP = 10 Pa protect (0.1 cm H2O). A static pressure test in 38 cm H2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k = 10.7 pm/K, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes.

  13. Recent Improvement of Medical Optical Fibre Pressure and Temperature Sensors

    PubMed Central

    Poeggel, Sven; Duraibabu, Dineshbabu; Kalli, Kyriacos; Leen, Gabriel; Dooly, Gerard; Lewis, Elfed; Kelly, Jimmy; Munroe, Maria

    2015-01-01

    This investigation describes a detailed analysis of the fabrication and testing of optical fibre pressure and temperature sensors (OFPTS). The optical sensor of this research is based on an extrinsic Fabry–Perot interferometer (EFPI) with integrated fibre Bragg grating (FBG) for simultaneous pressure and temperature measurements. The sensor is fabricated exclusively in glass and with a small diameter of 0.2 mm, making it suitable for volume-restricted bio-medical applications. Diaphragm shrinking techniques based on polishing, hydrofluoric (HF) acid and femtosecond (FS) laser micro-machining are described and analysed. The presented sensors were examined carefully and demonstrated a pressure sensitivity in the range of sp = 2–10 nmkPa and a resolution of better than ΔP = 10 Pa (0.1 cm H2O). A static pressure test in 38 cmH2O shows no drift of the sensor in a six-day period. Additionally, a dynamic pressure analysis demonstrated that the OFPTS never exceeded a drift of more than 130 Pa (1.3 cm H2O) in a 12-h measurement, carried out in a cardiovascular simulator. The temperature sensitivity is given by k=10.7 pmK, which results in a temperature resolution of better than ΔT = 0.1 K. Since the temperature sensing element is placed close to the pressure sensing element, the pressure sensor is insensitive to temperature changes. PMID:26184331

  14. Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.

    PubMed

    Gaidan, Ibrahim; Brabazon, Dermot; Ahad, Inam Ul

    2017-08-31

    In this study, three different compositions of ZnO and TiO₂ powders were cold compressed and then heated at 1250 °C for five hours. The samples were ground to powder form. The powders were mixed with 5 wt % of polyvinyl butyral (PVB) as binder and 1.5 wt % carbon black and ethylene-glyco-lmono-butyl-ether as a solvent to form screen-printed pastes. The prepared pastes were screen printed on the top of alumina substrates containing arrays of three copper electrodes. The three fabricated sensors were tested to detect propanol at room temperature at two different concentration ranges. The first concentration range was from 500 to 3000 ppm while the second concentration range was from 2500 to 5000 ppm, with testing taking place in steps of 500 ppm. The response of the sensors was found to increase monotonically in response to the increment in the propanol concentration. The surface morphology and chemical composition of the prepared samples were characterized by Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The sensors displayed good sensitivity to propanol vapors at room temperature. Operation under room-temperature conditions make these sensors novel, as other metal oxide sensors operate only at high temperature.

  15. Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.

    2001-01-01

    High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high

  16. Temperature compensated and self-calibrated current sensor using reference current

    DOEpatents

    Yakymyshyn, Christopher Paul [Seminole, FL; Brubaker, Michael Allen [Loveland, CO; Yakymyshyn, Pamela Jane [Seminole, FL

    2008-01-22

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference electrical current carried by a conductor positioned within the sensing window of the current sensor is used to correct variations in the output signal due to temperature variations and aging.

  17. Analysis, compensation, and correction of temperature effects on FBG strain sensors

    NASA Astrophysics Data System (ADS)

    Haber, T. C.; Ferguson, S.; Guthrie, D.; Graver, T. W.; Soller, B. J.; Mendez, Alexis

    2013-05-01

    One of the most common fiber optic sensor (FOS) types used are fiber Bragg gratings (FBG), and the most frequently measured parameter is strain. Hence, FBG strain sensors are one of the most prevalent FOS devices in use today in structural sensing and monitoring in civil engineering, aerospace, marine, oil and gas, composites and smart structure applications. However, since FBGs are simultaneously sensitive to both temperature and strain, it becomes essential to utilize sensors that are either fully temperature insensitive or, alternatively, properly temperature compensated to avoid erroneous measurements. In this paper, we introduce the concept of measured "total strain", which is inherent and unique to optical strain sensors. We review and analyze the temperature and strain sensitivities of FBG strain sensors and decompose the total measured strain into thermal and non-thermal components. We explore the differences between substrate CTE and System Thermal Response Coefficients, which govern the type and quality of thermal strain decomposition analysis. Finally, we present specific guidelines to achieve proper temperature-insensitive strain measurements by combining adequate installation, sensor packaging and data correction techniques.

  18. Differential wide temperature range CMOS interface circuit for capacitive MEMS pressure sensors.

    PubMed

    Wang, Yucai; Chodavarapu, Vamsy P

    2015-02-12

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between -55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%.

  19. Differential Wide Temperature Range CMOS Interface Circuit for Capacitive MEMS Pressure Sensors

    PubMed Central

    Wang, Yucai; Chodavarapu, Vamsy P.

    2015-01-01

    We describe a Complementary Metal-Oxide Semiconductor (CMOS) differential interface circuit for capacitive Micro-Electro-Mechanical Systems (MEMS) pressure sensors that is functional over a wide temperature range between −55 °C and 225 °C. The circuit is implemented using IBM 0.13 μm CMOS technology with 2.5 V power supply. A constant-gm biasing technique is used to mitigate performance degradation at high temperatures. The circuit offers the flexibility to interface with MEMS sensors with a wide range of the steady-state capacitance values from 0.5 pF to 10 pF. Simulation results show that the circuitry has excellent linearity and stability over the wide temperature range. Experimental results confirm that the temperature effects on the circuitry are small, with an overall linearity error around 2%. PMID:25686312

  20. FBG sensor for temperature-independent high sensitive pressure measurement with aid of a Bourdon tube

    NASA Astrophysics Data System (ADS)

    Srimannarayana, K.; Vengal Rao, P.; Sai Shankar, M.; Kishore, P.

    2014-05-01

    A temperature independent high sensitive pressure sensing system using fiber Bragg grating (FBG) and `C' shaped Bourdon tube (CBT) is demonstrated. The sensor is configured by firmly fixing the FBG (FBG1) between free and fixed ends of the CBT. Additional FBG (FBG2) in line to the FBG1 is introduced which is shielded from the external pressure, tend to measure only the ambient temperature fluctuations. The CBT has an elliptical cross section where its free end is sealed and the fixed end is open for subjecting the liquid or gas pressure to be measured. With the application of pressure, the free end of CBT tends to straighten out results in an axial strain in FBG1 causes red shift in Bragg wavelength. The pressure can be determined by measuring the shift of the Bragg wavelength. The experimental pressure sensitivity is found to be 66.9 pm/psi over a range of 0 to 100 psi. The test results show that the Bragg wavelength shift is linear corresponds to change in applied pressure and well agreed with the simulated results. This simple and high sensitive design is capable of measuring static/dynamic pressure and temperature simultaneously which suits for industrial applications.

  1. Temperature compensated and self-calibrated current sensor using reference magnetic field

    DOEpatents

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-10-09

    A method is described to provide temperature compensation and self-calibration of a current sensor based on a plurality of magnetic field sensors positioned around a current carrying conductor. A reference magnetic field generated within the current sensor housing is detected by the magnetic field sensors and is used to correct variations in the output signal due to temperature variations and aging.

  2. Ultra-miniature wireless temperature sensor for thermal medicine applications

    PubMed Central

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2017-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems. PMID:28989222

  3. Ultra-miniature wireless temperature sensor for thermal medicine applications.

    PubMed

    Khairi, Ahmad; Hung, Shih-Chang; Paramesh, Jeyanandh; Fedder, Gary; Rabin, Yoed

    2011-01-01

    This study presents a prototype design of an ultra-miniature, wireless, battery-less, and implantable temperature-sensor, with applications to thermal medicine such as cryosurgery, hyperthermia, and thermal ablation. The design aims at a sensory device smaller than 1.5 mm in diameter and 3 mm in length, to enable minimally invasive deployment through a hypodermic needle. While the new device may be used for local temperature monitoring, simultaneous data collection from an array of such sensors can be used to reconstruct the 3D temperature field in the treated area, offering a unique capability in thermal medicine. The new sensory device consists of three major subsystems: a temperature-sensing core, a wireless data-communication unit, and a wireless power reception and management unit. Power is delivered wirelessly to the implant from an external source using an inductive link. To meet size requirements while enhancing reliability and minimizing cost, the implant is fully integrated in a regular foundry CMOS technology (0.15 μm in the current study), including the implant-side inductor of the power link. A temperature-sensing core that consists of a proportional-to-absolute-temperature (PTAT) circuit has been designed and characterized. It employs a microwatt chopper stabilized op-amp and dynamic element-matched current sources to achieve high absolute accuracy. A second order sigma-delta (Σ-Δ) analog-to-digital converter (ADC) is designed to convert the temperature reading to a digital code, which is transmitted by backscatter through the same antenna used for receiving power. A high-efficiency multi-stage differential CMOS rectifier has been designed to provide a DC supply to the sensing and communication subsystems. This paper focuses on the development of the all-CMOS temperature sensing core circuitry part of the device, and briefly reviews the wireless power delivery and communication subsystems.

  4. VIS-NIR multispectral synchronous imaging pyrometer for high-temperature measurements.

    PubMed

    Fu, Tairan; Liu, Jiangfan; Tian, Jibin

    2017-06-01

    A visible-infrared multispectral synchronous imaging pyrometer was developed for simultaneous, multispectral, two-dimensional high temperature measurements. The multispectral image pyrometer uses prism separation construction in the spectrum range of 650-950 nm and multi-sensor fusion of three CCD sensors for high-temperature measurements. The pyrometer had 650-750 nm, 750-850 nm, and 850-950 nm channels all with the same optical path. The wavelength choice for each channel is flexible with three center wavelengths (700 nm, 810 nm, and 920 nm) with a full width at half maximum of the spectrum of 3 nm used here. The three image sensors were precisely aligned to avoid spectrum artifacts by micro-mechanical adjustments of the sensors relative to each other to position them within a quarter pixel of each other. The pyrometer was calibrated with the standard blackbody source, and the temperature measurement uncertainty was within 0.21 °C-0.99 °C in the temperatures of 600 °C-1800 °C for the blackbody measurements. The pyrometer was then used to measure the leading edge temperatures of a ceramics model exposed to high-enthalpy plasma aerodynamic heating environment to verify the system applicability. The measured temperature ranges are 701-991 °C, 701-1134 °C, and 701-834 °C at the heating transient, steady state, and cooling transient times. A significant temperature gradient (170 °C/mm) was observed away from the leading edge facing the plasma jet during the steady state heating time. The temperature non-uniformity on the surface occurs during the entire aerodynamic heating process. However, the temperature distribution becomes more uniform after the heater is shut down and the experimental model is naturally cooled. This result shows that the multispectral simultaneous image measurement mode provides a wider temperature range for one imaging measurement of high spatial temperature gradients in transient applications.

  5. High-temperature measurement by using a PCF-based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Xu, Lai-Cai; Deng, Ming; Duan, De-Wen; Wen, Wei-Ping; Han, Meng

    2012-10-01

    A new method for fabricating a fiber-optic Fabry-Perot interferometer (FPI) for high-temperature sensing is presented. The sensor is fabricated by fusion splicing a short section of endlessly single-mode photonic crystal fiber (ESM-PCF) to the cleaved end facet of a single-mode fiber (SMF) with an intentional complete collapse at the splice joint. This procedure not only provides easier, faster and cheaper technology for FPI sensors but also yields the FPI exhibiting an accurate and stable sinusoidal interference fringe with relatively high signal-to-noise ratio (SNR). The high-temperature response of the FPI sensors were experimentally studied and the results show that the sensor allows linear and stable measurement of temperatures up to 1100 °C with a sensitivity of ˜39.1 nm/°C for a cavity length of 1377 um, which makes it attractive for aeronautics and metallurgy areas.

  6. Robust high temperature composite and CO sensor made from such composite

    DOEpatents

    Dutta, Prabir K.; Ramasamy, Ramamoorthy; Li, Xiaogan; Akbar, Sheikh A.

    2010-04-13

    Described herein is a composite exhibiting a change in electrical resistance proportional to the concentration of a reducing gas present in a gas mixture, detector and sensor devices comprising the composite, a method for making the composite and for making devices comprising the composite, and a process for detecting and measuring a reducing gas in an atmosphere. In particular, the reducing gas may be carbon monoxide and the composite may comprise rutile-phase TiO2 particles and platinum nanoclusters. The composite, upon exposure to a gas mixture containing CO in concentrations of up to 10,000 ppm, exhibits an electrical resistance proportional to the concentration of the CO present. The composite is useful for making sensitive, low drift, fast recovering detectors and sensors, and for measuring CO concentrations in a gas mixture present at levels from sub-ppm up to 10,000 ppm. The composites, and devices made from the composites, are stable and operable in a temperature range of from about 450.degree. C. to about 700.degree. C., such as may be found in a combustion chamber.

  7. A Novel Intra-body Sensor for Vaginal Temperature Monitoring

    PubMed Central

    Rodrigues, Joel J. P. C.; Caldeira, João; Vaidya, Binod

    2009-01-01

    Over the years some medical studies have tried to better understand the internal behavior of human beings. Many researchers in this domain have been striving to find relationships between intra-vaginal temperature and certain female health conditions, such as ovulation and fertile period since woman’s intra-vaginal temperature is one of the body parameters most preferred in such studies. However, due to lack of a appropriate technology, medical research devoted to studying correlations of such body parameters with certain womans’ body phenomena could not obtain better results. This article presents the design and implementation of a novel intra-body sensor for acquisition and monitoring of intra-vaginal temperatures. This novel intra-body sensor provides data collection that is used for studying the relation between temperature variations and female health conditions, such as anticipation and monitoring of the ovulation period, detection of pregnancy contractions, preterm labor prevention, etc.. The motivation for this work focuses on the development of this new intra-body sensor that will represent a major step in medical technology. The novel sensor was tested and validated on hospitalized women as well as normal healthy women. Finally our medical team has attested to the accuracy, usability and performance of this novel intra-body sensor. PMID:22574046

  8. Brain temperature measurement: A study of in vitro accuracy and stability of smart catheter temperature sensors.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Wu, Zhizhen; Ahn, Chong H; LeDoux, David; Shutter, Lori A; Hartings, Jed A; Narayan, Raj K

    2012-02-01

    The injured brain is vulnerable to increases in temperature after severe head injury. Therefore, accurate and reliable measurement of brain temperature is important to optimize patient outcome. In this work, we have fabricated, optimized and characterized temperature sensors for use with a micromachined smart catheter for multimodal intracranial monitoring. Developed temperature sensors have resistance of 100.79 ± 1.19Ω and sensitivity of 67.95 mV/°C in the operating range from15-50°C, and time constant of 180 ms. Under the optimized excitation current of 500 μA, adequate signal-to-noise ratio was achieved without causing self-heating, and changes in immersion depth did not introduce clinically significant errors of measurements (<0.01°C). We evaluated the accuracy and long-term drift (5 days) of twenty temperature sensors in comparison to two types of commercial temperature probes (USB Reference Thermometer, NIST-traceable bulk probe with 0.05°C accuracy; and IT-21, type T type clinical microprobe with guaranteed 0.1°C accuracy) under controlled laboratory conditions. These in vitro experimental data showed that the temperature measurement performance of our sensors was accurate and reliable over the course of 5 days. The smart catheter temperature sensors provided accuracy and long-term stability comparable to those of commercial tissue-implantable microprobes, and therefore provide a means for temperature measurement in a microfabricated, multimodal cerebral monitoring device.

  9. An IR Sensor Based Smart System to Approximate Core Body Temperature.

    PubMed

    Ray, Partha Pratim

    2017-08-01

    Herein demonstrated experiment studies two methods, namely convection and body resistance, to approximate human core body temperature. The proposed system is highly energy efficient that consumes only 165 mW power and runs on 5 VDC source. The implemented solution employs an IR thermographic sensor of industry grade along with AT Mega 328 breakout board. Ordinarily, the IR sensor is placed 1.5-30 cm away from human forehead (i.e., non-invasive) and measured the raw data in terms of skin and ambient temperature which is then converted using appropriate approximation formula to find out core body temperature. The raw data is plotted, visualized, and stored instantaneously in a local machine by means of two tools such as Makerplot, and JAVA-JAR. The test is performed when human object is in complete rest and after 10 min of walk. Achieved results are compared with the CoreTemp CM-210 sensor (by Terumo, Japan) which is calculated to be 0.7 °F different from the average value of BCT, obtained by the proposed IR sensor system. Upon a slight modification, the presented model can be connected with a remotely placed Internet of Things cloud service, which may be useful to inform and predict the user's core body temperature through a probabilistic view. It is also comprehended that such system can be useful as wearable device to be worn on at the hat attachable way.

  10. Silicon-Etalon Fiber-Optic Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn; Fritsch, Klaus; Flatico, Joseph M.; Azar, Massood Tabib

    1993-01-01

    Developmental temperature sensor consists of silicon Fabry-Perot etalon attached to end of optical fiber. Features immunity to electrical interference, small size, light weight, safety, and chemical inertness. Output encoded in ration of intensities at two different wavelengths, rather than in overall intensity, with result that temperature readings not degraded much by changes in transmittance of fiber-optic link.

  11. A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications

    PubMed Central

    Yang, Jie

    2013-01-01

    In this article, an extreme environment-capable temperature sensing system based on state-of-art silicon carbide (SiC) wireless electronics is presented. In conjunction with a Pt-Pb thermocouple, the SiC wireless sensor suite is operable at 450 °C while under centrifugal load greater than 1,000 g. This SiC wireless temperature sensing system is designed to be non-intrusively embedded inside the gas turbine generators, acquiring the temperature information of critical components such as turbine blades, and wirelessly transmitting the information to the receiver located outside the turbine engine. A prototype system was developed and verified up to 450 °C through high temperature lab testing. The combination of the extreme temperature SiC wireless telemetry technology and integrated harsh environment sensors will allow for condition-based in-situ maintenance of power generators and aircraft turbines in field operation, and can be applied in many other industries requiring extreme environment monitoring and maintenance. PMID:23377189

  12. Temperature and heat flux measurements: Challenges for high temperature aerospace application

    NASA Technical Reports Server (NTRS)

    Neumann, Richard D.

    1992-01-01

    The measurement of high temperatures and the influence of heat transfer data is not strictly a problem of either the high temperatures involved or the level of the heating rates to be measured at those high temperatures. It is a problem of duration during which measurements are made and the nature of the materials in which the measurements are made. Thermal measurement techniques for each application must respect and work with the unique features of that application. Six challenges in the development of measurement technology are discussed: (1) to capture the character and localized peak values within highly nonuniform heating regions; (2) to manage large volumes of thermal instrumentation in order to efficiently derive critical information; (3) to accommodate thermal sensors into practical flight structures; (4) to broaden the capabilities of thermal survey techniques to replace discrete gages in flight and on the ground; (5) to provide supporting instrumentation conduits which connect the measurement points to the thermally controlled data acquisition system; and (6) to develop a class of 'vehicle tending' thermal sensors to assure the integrity of flight vehicles in an efficient manner.

  13. High-Temperature, Thin-Film Ceramic Thermocouples Developed

    NASA Technical Reports Server (NTRS)

    Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2005-01-01

    To enable long-duration, more distant human and robotic missions for the Vision for Space Exploration, as well as safer, lighter, quieter, and more fuel efficient vehicles for aeronautics and space transportation, NASA is developing instrumentation and material technologies. The high-temperature capabilities of thin-film ceramic thermocouples are being explored at the NASA Glenn Research Center by the Sensors and Electronics Branch and the Ceramics Branch in partnership with Case Western Reserve University (CWRU). Glenn s Sensors and Electronics Branch is developing thin-film sensors for surface measurement of strain, temperature, heat flux, and surface flow in propulsion system research. Glenn s Ceramics Branch, in conjunction with CWRU, is developing structural and functional ceramic technology for aeropropulsion and space propulsion.

  14. Infrared fiber optic sensor for measurements of nonuniform temperature distributions

    NASA Astrophysics Data System (ADS)

    Belotserkovsky, Edward; Drizlikh, S.; Zur, Albert; Bar-Or, O.; Katzir, Abraham

    1992-04-01

    Infrared (IR) fiber optic radiometry of thermal surfaces offers several advantages over refractive optics radiometry. It does not need a direct line of sight to the measured thermal surface and combines high capability of monitoring small areas with high efficiency. These advantages of IR fibers are important in the control of nonuniform temperature distributions, in which the temperature of closely situated points differs considerably and a high spatial resolution is necessary. The theoretical and experimental transforming functions of the sensor during scanning of an area with a nonuniform temperature distribution were obtained and their dependence on the spacial location of the fiber and type of temperature distribution were analyzed. Parameters such as accuracy and precision were determined. The results suggest that IR fiber radiometric thermometry may be useful in medical applications such as laser surgery, hyperthermia, and hypothermia.

  15. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xingbo

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studiedmore » at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.« less

  16. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.

    PubMed

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ.

  17. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors

    NASA Astrophysics Data System (ADS)

    Fujiwara, Kosuke; Oogane, Mikihiko; Kanno, Akitake; Imada, Masahiro; Jono, Junichi; Terauchi, Takashi; Okuno, Tetsuo; Aritomi, Yuuji; Morikawa, Masahiro; Tsuchida, Masaaki; Nakasato, Nobukazu; Ando, Yasuo

    2018-02-01

    Magnetocardiography (MCG) and magnetoencephalography (MEG) signals were detected at room temperature using tunnel magneto-resistance (TMR) sensors. TMR sensors developed with low-noise amplifier circuits detected the MCG R wave without averaging, and the QRS complex was clearly observed with averaging at a high signal-to-noise ratio. Spatial mapping of the MCG was also achieved. Averaging of MEG signals triggered by electroencephalography (EEG) clearly observed the phase inversion of the alpha rhythm with a correlation coefficient as high as 0.7 between EEG and MEG.

  18. Palladium Gate All Around - Hetero Dielectric -Tunnel FET based highly sensitive Hydrogen Gas Sensor

    NASA Astrophysics Data System (ADS)

    Madan, Jaya; Chaujar, Rishu

    2016-12-01

    The paper presents a novel highly sensitive Hetero-Dielectric-Gate All Around Tunneling FET (HD-GAA-TFET) based Hydrogen Gas Sensor, incorporating the advantages of band to band tunneling (BTBT) mechanism. Here, the Palladium supported silicon dioxide is used as a sensing media and sensing relies on the interaction of hydrogen with Palladium-SiO2-Si. The high surface to volume ratio in the case of cylindrical GAA structure enhances the fortuities for surface reactions between H2 gas and Pd, and thus improves the sensitivity and stability of the sensor. Behaviour of the sensor in presence of hydrogen and at elevated temperatures is discussed. The conduction path of the sensor which is dependent on sensors radius has also been varied for the optimized sensitivity and static performance analysis of the sensor where the proposed design exhibits a superior performance in terms of threshold voltage, subthreshold swing, and band to band tunneling rate. Stability of the sensor with respect to temperature affectability has also been studied, and it is found that the device is reasonably stable and highly sensitive over the bearable temperature range. The successful utilization of HD-GAA-TFET in gas sensors may open a new door for the development of novel nanostructure gas sensing devices.

  19. Metal-Coated Optical Fibers for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan

    1996-01-01

    This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.

  20. Online monitoring of dynamic tip clearance of turbine blades in high temperature environments

    NASA Astrophysics Data System (ADS)

    Han, Yu; Zhong, Chong; Zhu, Xiaoliang; Zhe, Jiang

    2018-04-01

    Minimized tip clearance reduces the gas leakage over turbine blade tips and improves the thrust and efficiency of turbomachinery. An accurate tip clearance sensor, measuring the dynamic clearances between blade tips and the turbine case, is a critical component for tip clearance control. This paper presents a robust inductive tip clearance sensor capable of monitoring dynamic tip clearances of turbine machines in high-temperature environments and at high rotational speeds. The sensor can also self-sense the temperature at a blade tip in situ such that temperature effect on tip clearance measurement can be estimated and compensated. To evaluate the sensor’s performance, the sensor was tested for measuring the tip clearances of turbine blades under various working temperatures ranging from 700 K to 1300 K and at turbine rotational speeds ranging from 3000 to 10 000 rpm. The blade tip clearance was varied from 50 to 2000 µm. The experiment results proved that the sensor can accurately measure the blade tip clearances with a temporal resolution of 10 µm. The capability of accurately measuring the tip clearances at high temperatures (~1300 K) and high turbine rotation speeds (~30 000 rpm), along with its compact size, makes it promising for online monitoring and active control of blade tip clearances of high-temperature turbomachinery.

  1. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  2. Core body temperature control by total liquid ventilation using a virtual lung temperature sensor.

    PubMed

    Nadeau, Mathieu; Micheau, Philippe; Robert, Raymond; Avoine, Olivier; Tissier, Renaud; Germim, Pamela Samanta; Vandamme, Jonathan; Praud, Jean-Paul; Walti, Herve

    2014-12-01

    In total liquid ventilation (TLV), the lungs are filled with a breathable liquid perfluorocarbon (PFC) while a liquid ventilator ensures proper gas exchange by renewal of a tidal volume of oxygenated and temperature-controlled PFC. Given the rapid changes in core body temperature generated by TLV using the lung has a heat exchanger, it is crucial to have accurate and reliable core body temperature monitoring and control. This study presents the design of a virtual lung temperature sensor to control core temperature. In the first step, the virtual sensor, using expired PFC to estimate lung temperature noninvasively, was validated both in vitro and in vivo. The virtual lung temperature was then used to rapidly and automatically control core temperature. Experimentations were performed using the Inolivent-5.0 liquid ventilator with a feedback controller to modulate inspired PFC temperature thereby controlling lung temperature. The in vivo experimental protocol was conducted on seven newborn lambs instrumented with temperature sensors at the femoral artery, pulmonary artery, oesophagus, right ear drum, and rectum. After stabilization in conventional mechanical ventilation, TLV was initiated with fast hypothermia induction, followed by slow posthypothermic rewarming for 1 h, then by fast rewarming to normothermia and finally a second fast hypothermia induction phase. Results showed that the virtual lung temperature was able to provide an accurate estimation of systemic arterial temperature. Results also demonstrate that TLV can precisely control core body temperature and can be favorably compared to extracorporeal circulation in terms of speed.

  3. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor

  4. Thermocouples of tantalum and rhenium alloys for more stable vacuum-high temperature performance

    NASA Technical Reports Server (NTRS)

    Morris, J. F. (Inventor)

    1977-01-01

    Thermocouples of the present invention provide stability and performance reliability in systems involving high temperatures and vacuums by employing a bimetallic thermocouple sensor wherein each metal of the sensor is selected from a group of metals comprising tantalum and rhenium and alloys containing only those two metals. The tantalum, rhenium thermocouple sensor alloys provide bare metal thermocouple sensors having advantageous vapor pressure compatibilities and performance characteristics. The compatibility and physical characteristics of the thermocouple sensor alloys of the present invention result in improved emf, temperature properties and thermocouple hot junction performance. The thermocouples formed of the tantalum, rhenium alloys exhibit reliability and performance stability in systems involving high temperatures and vacuums and are adaptable to space propulsion and power systems and nuclear environments.

  5. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips.

    PubMed

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-05-18

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of -0.7/0.6 °C from -30 °C to 70 °C after 1-point calibration at 30 °C.

  6. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  7. A non invasive wearable sensor for the measurement of brain temperature.

    PubMed

    Dittmar, A; Gehin, C; Delhomme, G; Boivin, D; Dumont, G; Mott, C

    2006-01-01

    As the thermoregulation centres are deep in the brain, the cerebral temperature is one of the most important markers of fever, circadian rhythms physical and mental activities. However due to a lack of accessibility, the brain temperature is not easily measured. The axillary, buccal, tympanic and rectal temperatures do not reflect exactly the cerebral temperature. Nevertheless the rectal temperature is used as probably the most reliable indicator of the core body temperature. The brain temperature can be measured using NMR spectroscopy, microwave radiometry, near infrared spectroscopy, ultra-sound thermometry. However none of those methods are amenable to long term ambulatory use outside of the laboratory or of the hospital during normal daily activities, sport, etc. The brain core temperature "BCT" sensor, developed by the Biomedical Microsensors dpt of LPM at INSA-Lyon is a flexible active sensor using "zero-heat-flow" principle. The sensor has been used for experimental measurement: brain temperature during mental activity, and in hospital for the study of circadian rhythms. The results are in agreement with the measurement by the rectal probe. There are 2 versions of this sensor: a non ambulatory for the use in hospitals, and an ambulatory version using teletransmission. We are working for improving the autonomy of the ambulatory version up to several days. This wearable biomedical sensor (WBS) can be used for circadian assessment for chronobiology studies and in medical therapies.

  8. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  9. Improved Blackbody Temperature Sensors for a Vacuum Furnace

    NASA Technical Reports Server (NTRS)

    Farmer, Jeff; Coppens, Chris; O'Dell, J. Scott; McKechnie, Timothy N.; Schofield, Elizabeth

    2009-01-01

    Some improvements have been made in the design and fabrication of blackbody sensors (BBSs) used to measure the temperature of a heater core in a vacuum furnace. Each BBS consists of a ring of thermally conductive, high-melting-temperature material with two tantalum-sheathed thermocouples attached at diametrically opposite points. The name "blackbody sensor" reflects the basic principle of operation. Heat is transferred between the ring and the furnace heater core primarily by blackbody radiation, heat is conducted through the ring to the thermocouples, and the temperature of the ring (and, hence, the temperature of the heater core) is measured by use of the thermocouples. Two main requirements have guided the development of these BBSs: (1) The rings should have as high an emissivity as possible in order to maximize the heat-transfer rate and thereby maximize temperature-monitoring performance and (2) the thermocouples must be joined to the rings in such a way as to ensure long-term, reliable intimate thermal contact. The problem of fabricating a BBS to satisfy these requirements is complicated by an application-specific prohibition against overheating and thereby damaging nearby instrumentation leads through the use of conventional furnace brazing or any other technique that involves heating the entire BBS and its surroundings. The problem is further complicated by another application-specific prohibition against damaging the thin tantalum thermocouple sheaths through the use of conventional welding to join the thermocouples to the ring. The first BBS rings were made of graphite. The tantalum-sheathed thermocouples were attached to the graphite rings by use of high-temperature graphite cements. The ring/thermocouple bonds thus formed were found to be weak and unreliable, and so graphite rings and graphite cements were abandoned. Now, each BBS ring is made from one of two materials: either tantalum or a molybdenum/titanium/zirconium alloy. The tantalum

  10. A Flexible Temperature Sensor Based on Reduced Graphene Oxide for Robot Skin Used in Internet of Things.

    PubMed

    Liu, Guanyu; Tan, Qiulin; Kou, Hairong; Zhang, Lei; Wang, Jinqi; Lv, Wen; Dong, Helei; Xiong, Jijun

    2018-05-02

    Flexible electronics, which can be distributed on any surface we need, are highly demanded in the development of Internet of Things (IoT), robot technology and electronic skins. Temperature is a fundamental physical parameter, and it is an important indicator in many applications. Therefore, a flexible temperature sensor is required. Here, we report a simple method to fabricate three lightweight, low-cost and flexible temperature sensors, whose sensitive materials are reduced graphene oxide (r-GO), single-walled carbon nanotubes (SWCNTs) and multi-wall carbon nanotubes (MWCNTs). By comparing linearity, sensitive and repeatability, we found that the r-GO temperature sensor had the most balanced performance. Furthermore, the r-GO temperature sensor showed good mechanical properties and it could be bent in different angles with negligible resistance change. In addition, the performance of the r-GO temperature sensor remained stable under different kinds of pressure and was unaffected by surrounding environments, like humidity or other gases, because of the insulating layer on its sensitive layer. The easy-fabricated process and economy, together with the remarkable performance of the r-GO temperature sensor, suggest that it is suitable for use as a robot skin or used in the environment of IoT.

  11. Resistive oxygen sensor using ceria-zirconia sensor material and ceria-yttria temperature compensating material for lean-burn engine.

    PubMed

    Izu, Noriya; Nishizaki, Sayaka; Shin, Woosuck; Itoh, Toshio; Nishibori, Maiko; Matsubara, Ichiro

    2009-01-01

    Temperature compensating materials were investigated for a resistive oxygen sensor using Ce(0.9)Zr(0.1)O(2) as a sensor material for lean-burn engines. The temperature dependence of a temperature compensating material should be the same as the sensor material; therefore, the Y concentration in CeO(2)-Y(2)O(3) was optimized. The resistance of Ce(0.5)Y(0.5)O(2-δ) was independent of the air-to-fuel ratio (oxygen partial pressure), so that it was confirmed to function as a temperature compensating material. Sensor elements comprised of Ce(0.9)Zr(0.1)O(2) and Ce(0.5)Y(0.5)O(2-δ) were fabricated and the output was determined to be approximately independent of the temperature in the wide range from 773 to 1,073 K.

  12. Low drift and high resolution miniature optical fiber combined pressure- and temperature sensor for cardio-vascular and urodynamic applications

    NASA Astrophysics Data System (ADS)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, Dineshbabu; Sannino, Simone; Lupoli, Laura; Ippolito, Juliet; Fusco, Fernando; Mirone, Vincenzo; Leen, Gabriel; Lewis, Elfed

    2014-05-01

    The all-glass optical fibre pressure and temperature sensor (OFPTS), present here is a combination of an extrinsic Fabry Perot Interferometer (EFPI) and an fiber Bragg gratings (FBG), which allows a simultaneously measurement of both pressure and temperature. Thermal effects experienced by the EFPI can be compensated by using the FBG. The sensor achieved a pressure measurement resolution of 0.1mmHg with a frame-rate of 100Hz and a low drift rate of < 1 mmHg/hour drift. The sensor has been evaluated using a cardiovascular simulator and additionally has been evaluated in-vivo in a urodynamics application under medical supervision.

  13. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    NASA Astrophysics Data System (ADS)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  14. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    PubMed

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  15. In Situ Monitoring of Temperature inside Lithium-Ion Batteries by Flexible Micro Temperature Sensors

    PubMed Central

    Lee, Chi-Yuan; Lee, Shuo-Jen; Tang, Ming-Shao; Chen, Pei-Chi

    2011-01-01

    Lithium-ion secondary batteries are commonly used in electric vehicles, smart phones, personal digital assistants (PDA), notebooks and electric cars. These lithium-ion secondary batteries must charge and discharge rapidly, causing the interior temperature to rise quickly, raising a safety issue. Over-charging results in an unstable voltage and current, causing potential safety problems, such as thermal runaways and explosions. Thus, a micro flexible temperature sensor for the in in-situ monitoring of temperature inside a lithium-ion secondary battery must be developed. In this work, flexible micro temperature sensors were integrated into a lithium-ion secondary battery using the micro-electro-mechanical systems (MEMS) process for monitoring temperature in situ. PMID:22163735

  16. Reliability improvement methods for sapphire fiber temperature sensors

    NASA Astrophysics Data System (ADS)

    Schietinger, C.; Adams, B.

    1991-08-01

    Mechanical, optical, electrical, and software design improvements can be brought to bear in the enhancement of fiber-optic sapphire-fiber temperature measurement tool reliability in harsh environments. The optical fiber thermometry (OFT) equipment discussed is used in numerous process industries and generally involves a sapphire sensor, an optical transmission cable, and a microprocessor-based signal analyzer. OFT technology incorporating sensors for corrosive environments, hybrid sensors, and two-wavelength measurements, are discussed.

  17. AOI [3]: Smart Refractory Sensor Systems for Wireless Monitoring of Temperature, Health, and Degradation of Slagging Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabolsky, Edward M.; Bhattacharyya, Debangsu; Graham, David

    The objective of the work was to develop refractory “smart bricks”, which would contain embedded temperature, strain/stress, and spallation sensors throughout the volume of high-chromia (-Cr2O3) refractory brick. The proposed work included work to interconnect the sensors to the reactor exterior, where the sensor signals may be processed by low-power electronics and transmitted wirelessly to a central processing hub. The data processing and wireless transmitter hardware was specifically designed to be isolated (with low power consumption) and to be adaptable to future implementation of energy-harvesting strategies for extended life. Finally, the collected data was incorporated into a model to estimatemore » refractory degradation, a technique that could help monitor the health of the refractory in real-time. The long-term goal of this program was to demonstrate high-temperature, wireless sensor arrays for in situ three-dimensional (3-D) refractory monitoring or mapping for slagging gasification systems. The research was in collaboration with HarbisonWalker International (HWI) Technology Center in West Mifflin, PA. HWI is a leading developer and manufacturer of ceramic refractory products for high-temperature applications. The work completed focused on the following areas: 1) Investigation of the chemical stability, microstructural evolution, grain growth kinetics, degree of homogeneity (quantitative image analysis), and electrical properties of refractory oxide-silicide composites at temperatures between 750-1450ºC; 2) Fabrication of silicide-alumina composite and oxide thermocouples and thermistor preforms and the development of techniques to embed them into high-chromia refractory bricks to form “smart bricks”; 3) Utilization of commercial off-the-shelf discrete components to prototype circuits for interfacing between smart brick sensors and the wireless sensor network. The prototypes were then used to design an integrated circuit for thermistor

  18. Design of an Embedded CMOS Temperature Sensor for Passive RFID Tag Chips

    PubMed Central

    Deng, Fangming; He, Yigang; Li, Bing; Zhang, Lihua; Wu, Xiang; Fu, Zhihui; Zuo, Lei

    2015-01-01

    This paper presents an ultra-low embedded power temperature sensor for passive RFID tags. The temperature sensor converts the temperature variation to a PTAT current, which is then transformed into a temperature-controlled frequency. A phase locked loop (PLL)-based sensor interface is employed to directly convert this temperature-controlled frequency into a corresponding digital output without an external reference clock. The fabricated sensor occupies an area of 0.021 mm2 using the TSMC 0.18 1P6M mixed-signal CMOS process. Measurement results of the embedded sensor within the tag system shows a 92 nW power dissipation under 1.0 V supply voltage at room temperature, with a sensing resolution of 0.15 °C/LSB and a sensing accuracy of −0.7/0.6 °C from −30 °C to 70 °C after 1-point calibration at 30 °C. PMID:25993518

  19. Wavelength-modulation spectroscopy near 1.4 µm for measurements of H2O and temperature in high-pressure and -temperature gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, C. S.; Spearrin, R. M.; Schultz, I. A.; Jeffries, J. B.; Hanson, R. K.

    2014-05-01

    The development, validation and demonstration of a two-color tunable diode laser (TDL) absorption sensor for measurements of temperature and H2O in high-pressure and high-temperature gases are presented. This sensor uses first-harmonic-normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f) to account for non-absorbing transmission losses and emission encountered in harsh, high-pressure environments. Two telecommunications-grade TDLs were used to probe H2O absorption transitions near 1391.7 and 1469.3 nm. The lasers were frequency-multiplexed and modulated at 160 and 200 kHz to enable a measurement bandwidth up to 30 kHz along a single line-of-sight. In addition, accurate measurements are enabled at extreme conditions via an experimentally derived spectroscopic database. This sensor was validated under low-absorbance (<0.05) conditions in shock-heated H2O-N2 mixtures at temperatures and pressures from 700 to 2400 K and 2 to 25 atm. There, this sensor recovered the known temperature and H2O mole fraction with a nominal accuracy of 2.8% and 4.7% RMS, respectively. Lastly, this sensor resolved expected transients with high bandwidth and high precision in a reactive shock tube experiment and a pulse detonation combustor.

  20. Diamond detectors for high-temperature transactinide chemistry experiments

    NASA Astrophysics Data System (ADS)

    Steinegger, Patrick; Dressler, Rugard; Eichler, Robert; Piguet, Dave; Streuli, Silvan; Türler, Andreas

    2017-04-01

    Here, we present the fabrication details and functional tests of diamond-based α-spectroscopic sensors, dedicated for high-temperature experiments, targeting the chemistry of transactinide elements. Direct heating studies with this sensor material, revealed a current upper temperature threshold for a safe α-spectroscopic operation of Tdet = 453 K . Up to this temperature, the diamond sensor could be operated in a stable manner over long time periods of the order of days. A satisfying resolution of ≈ 50 keVFWHM was maintained throughout all conducted measurements. However, exceeding the mentioned temperature limit led to a pronounced spectroscopic degradation in the range of 453 - 473 K , thereby preventing any further α-spectroscopic application. These findings are in full agreement with available literature data. The presented detector development generally enables the chemical investigation of more short-lived and less volatile transactinide elements and their compounds, yet unreachable with the currently employed silicon-based solid state sensors. In a second part, the design, construction, and α-spectroscopic performance of a 4-segmented diamond detector, dedicated and used for transactinide element research, is given as an application example.

  1. Microfabricated Nickel Based Sensors for Hostile and High Pressure Environments

    NASA Astrophysics Data System (ADS)

    Holt, Christopher Michael Bjustrom

    This thesis outlines the development of two platforms for integrating microfabricated sensors with high pressure feedthroughs for application in hostile high temperature high pressure environments. An application in oil well production logging is explored and two sensors were implemented with these platforms for application in an oil well. The first platform developed involved microfabrication directly onto a cut and polished high pressure feedthrough. This technique enables a system that is more robust than the wire bonded silicon die technique used for MEMS integration in pressure sensors. Removing wire bonds from the traditional MEMS package allows for direct interface of a microfabricated sensor with a hostile high pressure fluid environment which is not currently possible. During the development of this platform key performance metrics included pressure testing to 70MPa and temperature cycling from 20°C to 200°C. This platform enables electronics integration with a variety of microfabricated electrical and thermal based sensors which can be immersed within the oil well environment. The second platform enabled free space fabrication of nickel microfabricated devices onto an array of pins using a thick tin sacrificial layer. This technique allowed microfabrication of metal MEMS that are released by distances of 1cm from their substrate. This method is quite flexible and allows for fabrication to be done on any pin array substrate regardless of surface quality. Being able to place released MEMS sensors directly onto traditional style circuit boards, ceramic circuit boards, electrical connectors, ribbon cables, pin headers, or high pressure feedthroughs greatly improves the variety of possible applications and reduces fabrication costs. These two platforms were then used to fabricate thermal conductivity sensors that showed excellent performance for distinguishing between oil, water, and gas phases. Testing was conducted at various flow rates and performance of

  2. On the importance of telemetric temperature sensor location during intraperitoneal implantation in rats.

    PubMed

    Chapon, P A; Bulla, J; Gauthier, A; Moussay, S

    2014-04-01

    This study aims to assess the thermal homogeneity of the intraperitoneal (IP) cavity and the relevance of using a fixed telemetric temperature sensor at a given location in studying rodents. Ten rats were intraperitoneally implanted with three Jonah® capsules each; after assessing the accuracy and reliability of the sensors. Two capsules were attached, one to the right iliac fossa (RIF) and the other to the left hypochondrium (LH), and another was placed between the intestines but not attached (Free). In the ex vivo condition, the differences between sensors and reference values remained in the range of ±0.1. In the in vivo condition, each sensor enabled the observation of temperature patterns. However, sensor location affected mean and median temperature values while the rats were moving freely. Indeed, temperature data collected in the LH were 0.1 significantly higher than those collected in the RIF and temperature data collected in the LH were 0.11 significantly higher than those collected with the Free capsules. In in vivo conditions, intra-sensor variability of temperature data was not affected by sensor location. Taking into account sensor accuracy, similar intra-sensor variability, and mean differences observed between the three locations, the impact of sensor location within the IP cavity could be considered negligible. In in vivo conditions, temperature differences between locations regularly exceeded ±0.2 and reached up to 2.5. These extreme values could be explained by behavioral factors such as food or water intake. Finally, considering the good thermal homogeneity of the IP cavity and possible adverse consequences of sensor attachment, it seems better to let sensors range free within the cavity.

  3. Temperature-compensated strain measurement using fiber Bragg grating sensors embedded in composite laminates

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuhira; Okabe, Yoji; Takeda, Nobuo

    2003-12-01

    For accurate strain measurement by fiber Bragg grating (FBG) sensors, it is necessary to compensate the influence of temperature change. In this study two devices using FBG sensors have been developed for temperature-compensated strain measurement. They are named 'hybrid sensor' and 'laminate sensor', respectively. The former consists of two different materials connected in series: carbon fiber reinforced plastic (CFRP) and glass fiber reinforced plastic. Each material contains an FBG sensor with a different Bragg wavelength, and both ends of the device are glued to a structure. Using the difference of their Young's moduli and coefficients of thermal expansion, both strain and temperature can be measured. The latter sensor is a laminate of two 90° plies of CFRP and an epoxy plate, and an FBG sensor is embedded in the epoxy plate. When the temperature changes, the cross section of the optical fiber is deformed by the thermal residual stress. The deformation of the fiber causes the birefringence and widens the reflection spectrum. Since the temperature can be calculated from the spectrum width, which changes in proportion to the temperature, the accuracy of the strain measurement is improved. The usefulness of these sensors was experimentally confirmed.

  4. Thin film diamond temperature sensor array for harsh aerospace environment

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Masood, A.; Fredricks, R. J.; Tamor, M. A.

    1992-01-01

    The feasibility of using polycrystalline CVD diamond films as temperature sensors in harsh aerospace environment associated with hypersonic flights was tested using patterned diamond resistors, fabricated on flat or curved oxidized Si surfaces, as temperature sensors at temperatures between 20 and 1000 C. In this temperature range, the measured resistance was found to vary over 3 orders of magnitude and the temperature coefficient of resistance to change from 0.017/K to 0.003/K. After an annealing treatment, the resistance change was reproducible within 1 percent on the entire temperature range for short measuring times.

  5. A simultaneous pressure and temperature sensor based on a superstructure fiber grating

    NASA Astrophysics Data System (ADS)

    Lin, Chia-Min; Liu, Wen-Fung; Fu, Ming-Yue; Sheng, Hao-Jan; Bor, Sheau-Shung; Tien, Chuen-Lin

    2004-12-01

    We demonstrated that a high-sensitivity fiber sensor based on a superstructure fiber grating (SFG) can simultaneously measure the pressure and temperature by encapsulating the grating in a polymer-half-filled metal cylinder, in which there are two openings on opposite sides of the wall filled with the polymer to sense the pressure. The mechanism of sensing pressure is to transfer the pressure into the axial extended-strain. According to the optical characteristics of an SFG composed of a fiber Bragg grating (FBG) and long period grating (LPG), the various pressure and temperature will cause the variation of the center-wavelength and reflection simultaneously. Thus, the sensor can be used for the measurement both of the pressure and temperature. The pressure sensitivity of 2.28×10-2MPa-1 and the temperature sensitivity both of 0.015nm/°C and -0.143dB/°C are obtained.

  6. Optical fiber distributed temperature sensor in cardiological surgeries

    NASA Astrophysics Data System (ADS)

    Skapa, Jan; Látal, Jan; Penhaker, Marek; Koudelka, Petr; Hancek, František; Vasinek, Vladimír

    2010-04-01

    In those days a lot of cardiological surgeries is made every day. It is a matter of very significant importance keeping the temperature of the hearth low during the surgery because it decides whether the cells of the muscle will die or not. The hearth is cooled by the ice placed around the hearth muscle during the surgery and cooling liquid is injected into the hearth also. In these days the temperature is measured only in some points of the hearth using sensors based on the pH measurements. This article describes new method for measurement of temperature of the hearth muscle during the cardiological surgery. We use a multimode optical fiber and distributed temperature sensor (DTS) based on the stimulated Raman scattering in temperature measurements. This principle allows us to measure the temperature and to determine where the temperature changes during the surgery. Resolution in the temperature is about 0.1 degrees of Celsius. Resolution in length is about 1 meter. The resolution in length implies that the fiber must be wound to ensure the spatial resolution about 5 by 5 centimeters.

  7. Temperature and refractive index measurement based on a coating-enhanced dual-microspheric fiber sensor

    NASA Astrophysics Data System (ADS)

    Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan

    2018-07-01

    We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and  ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.

  8. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    PubMed Central

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  9. Characterization, Modeling and Design Parameters Identification of Silicon Carbide Junction Field Effect Transistor for Temperature Sensor Applications

    PubMed Central

    Salah, Tarek Ben; Khachroumi, Sofiane; Morel, Hervé

    2010-01-01

    Sensor technology is moving towards wide-band-gap semiconductors providing high temperature capable devices. Indeed, the higher thermal conductivity of silicon carbide, (three times more than silicon), permits better heat dissipation and allows better cooling and temperature management. Though many temperature sensors have already been published, little endeavours have been invested in the study of silicon carbide junction field effect devices (SiC-JFET) as a temperature sensor. SiC-JFETs devices are now mature enough and it is close to be commercialized. The use of its specific properties versus temperatures is the major focus of this paper. The SiC-JFETs output current-voltage characteristics are characterized at different temperatures. The saturation current and its on-resistance versus temperature are successfully extracted. It is demonstrated that these parameters are proportional to the absolute temperature. A physics-based model is also presented. Relationships between on-resistance and saturation current versus temperature are introduced. A comparative study between experimental data and simulation results is conducted. Important to note, the proposed model and the experimental results reflect a successful agreement as far as a temperature sensor is concerned. PMID:22315547

  10. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring.

    PubMed

    Marques, Rogério da Silva; Prado, Adilson Ribeiro; Antunes, Paulo Fernando da Costa; André, Paulo Sérgio de Brito; Ribeiro, Moisés R N; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-12-05

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile.

  11. Corrosion Resistant FBG-Based Quasi-Distributed Sensor for Crude Oil Tank Dynamic Temperature Profile Monitoring

    PubMed Central

    da Silva Marques, Rogério; Prado, Adilson Ribeiro; da Costa Antunes, Paulo Fernando; de Brito André, Paulo Sérgio; Ribeiro, Moisés R. N.; Frizera-Neto, Anselmo; Pontes, Maria José

    2015-01-01

    This article presents a corrosion resistant, maneuverable, and intrinsically safe fiber Bragg grating (FBG)-based temperature optical sensor. Temperature monitoring is a critical activity for the oil and gas industry. It typically involves acquiring the desired parameters in a hazardous and corrosive environment. The use of polytetrafluoroethylene (PTFE) was proposed as a means of simultaneously isolating the optical fiber from the corrosive environment and avoiding undesirable mechanical tensions on the FBGs. The presented sensor head is based on multiple FBGs inscribed in a lengthy single mode fiber. The sensor presents an average thermal sensitivity of 8.82 ± 0.09 pm/°C, resulting in a typical temperature resolution of ~0.1 °C and an average time constant value of 6.25 ± 0.08 s. Corrosion and degradation resistance were verified by infrared spectroscopy and scanning electron microscopy during 90 days exposure to high salinity crude oil samples. The developed sensor was tested in a field pilot test, mimicking the operation of an inland crude tank, demonstrating its abilities to dynamically monitor temperature profile. PMID:26690166

  12. Fiber-optic miniature sensor for in situ temperature monitoring of curing composite material

    NASA Astrophysics Data System (ADS)

    Sampath, Umesh; Kim, Dae-gil; Kim, Hyunjin; Song, Minho

    2018-04-01

    This study proposes a fiber-optic temperature sensor with a single-mode fiber tip covered with a thermo-sensitive polymer resin. The temperature is sensed by measuring the Fresnel reflection from the optical fiber/polymer interface. Because the thermo-optic coefficients differ between the optical fiber and the polymer, the in situ temperature can be measured even in curing composite materials. In initial experiments, the proposed sensor successfully measured and recovered the temperature information. The measured sensor data were linearly correlated, with an R2 exceeding 0.99. The standard deviation in the long-term measurements of constant temperature was 2.6%. The durability and stability of the sensor head material in long-term operation was validated by Fourier transform infrared spectroscopy and X-ray diffraction analysis. In further experiments, the suggested miniature temperature sensor obtained the internal temperatures of curing composite material over a wide range (30-110 °C).

  13. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow

    PubMed Central

    Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-01-01

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off. PMID:29065498

  14. A High-Temperature MEMS Surface Fence for Wall-Shear-Stress Measurement in Scramjet Flow.

    PubMed

    Ma, Chengyu; Ma, Binghe; Deng, Jinjun; Yuan, Weizheng; Zhou, Zitong; Zhang, Han

    2017-10-22

    A new variant of MEMS surface fence is proposed for shear-stress estimation under high-speed, high-temperature flow conditions. Investigation of high-temperature resistance including heat-resistant mechanism and process, in conjunction with high-temperature packaging design, enable the sensor to be used in environment up to 400 °C. The packaged sensor is calibrated over a range of ~65 Pa and then used to examine the development of the transient flow of the scramjet ignition process (Mach 2 airflow, stagnation pressure, and a temperature of 0.8 MPa and 950 K, respectively). The results show that the sensor is able to detect the transient flow conditions of the scramjet ignition process including shock impact, flow correction, steady state, and hydrogen off.

  15. Miniature optical fiber temperature sensor based on FMF-SCF structure

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanbiao; Ning, Tigang; Zheng, Jingjing; Gao, Xuekai; Lin, Heng; Li, Jing; Pei, Li; Wen, Xiaodong

    2018-03-01

    We proposed and experimentally demonstrated a miniature optical fiber temperature sensor consisting of a seven core fiber (SCF) and a few mode fiber (FMF). The device is fabricated by splicing a section of FMF with a segment of SCF to form a FMF-SCF based sensing structure, and during the FMF region, few modes can be excited and will propagate within the SCF. In experiment, the proposed device has good quality interferometric spectra, and the highest extinction ratio of 27 dB was achieved. When the temperature increases from room temperature to 110 °C, the temperature response properties of the sensor have been investigated, the wavelength sensitivity of about 91.8 pm/°C and the amplitude sensitivity of about 1.57 × 10-2 a.u./°C are obtained, respectively. Due to its easy and controllable fabrication, the sensor can be a suitable candidate in temperature sensing applications.

  16. Numerical analysis of flow about a total temperature sensor

    NASA Technical Reports Server (NTRS)

    Von Lavante, Ernst; Bruns, Russell L., Jr.; Sanetrik, Mark D.; Lam, Tim

    1989-01-01

    The unsteady flowfield about an airfoil-shaped inlet temperature sensor has been investigated using the thin-layer and full Navier-Stokes equations. A finite-volume formulation of the governing equations was used in conjunction with a Runge-Kutta time stepping scheme to analyze the flow about the sensor. Flow characteristics for this configuration were established at Mach numbers of 0.5 and 0.8 for different Reynolds numbers. The results were obtained for configurations of increasing complexity; important physical phenomena such as shock formation, boundary-layer separation, and unsteady wake formation were noted. Based on the computational results, recommendations for further study and refinement of the inlet temperature sensor were made.

  17. Preparation and characterization of ceramic sensors for use at elevated temperatures

    NASA Astrophysics Data System (ADS)

    You, Tao

    Ceramic ITO strain sensors were prepared by reactive sputtering in various nitrogen/oxygen/argon partial pressures. The thickness of the active ITO strain elements played a significant role in the high temperature stability and piezoresistive properties, specifically, these results indicated that both gauge factor and drift rate were affected by the thickness of ITO films comprising the active strain elements. The influence of nitrogen in the reactive sputtered ITO films on the microstructure and the high temperature piezoresistive properties was also investigated. Scanning electron microscopy (SEM) revealed a partially sintered microstructure consisting of a contiguous network of sub-micron ITO particles with well-defined necks and isolated nanoporosity. Sintering and densification of the ITO particles containing these nitrogen rich grain boundaries was retarded and a contiguous network of nano-sized ITO particles was established. Aluminum doped indium tin oxide thin film exhibited an enhanced high temperature stability compared with undoped ITO thin film. The effect of aluminum doped ITO was investigated under various preparation and testing environments. Electron spectroscopy for chemical analysis (ESCA) studies indicated that interfacial reactions between ITO and aluminum increased the stability of ITO at elevated temperatures. These binding energies of indium-indium are significantly higher than those associated with stoichiometric indium oxide. A robust ceramic temperature sensor was fabricated by two different ITO elements, each with substantially different charge carrier concentrations. Thermal cycling of ITO thin films in a varied of partial oxygen pressures conditions showed that temperature coefficient of resistance (TCR) was nearly independent of oxygen partial pressure. A thermoelectric power of 6.0muV/°C and a linear voltage-temperature response were measured for an ITO thin film ceramic thermocouple over the temperature range 25--1250°C.

  18. Experimental study of temperature sensor for an ocean-going liquid hydrogen (LH2) carrier

    NASA Astrophysics Data System (ADS)

    Nakano, A.; Shimazaki, T.; Sekiya, M.; Shiozawa, H.; Aoyagi, A.; Ohtsuka, K.; Iwakiri, T.; Mikami, Z.; Sato, M.; Kinoshita, K.; Matsuoka, T.; Takayama, Y.; Yamamoto, K.

    2018-04-01

    The prototype temperature sensors for an ocean-going liquid hydrogen (LH2) carrier were manufactured by way of trial. All of the sensors adopted Platinum 1000 (PT-1000) resistance thermometer elements. Various configurations of preproduction temperature sensors were tested in AIST's LH2 test facility. In the experiments, a PT-1000 resistance thermometer, calibrated at the National Metrology Institute of Japan at AIST, was used as the standard thermometer. The temperatures measured by the preproduction sensors were compared with the temperatures measured by the standard thermometer, and the measurement accuracy of the temperature sensors in LH2 was investigated and discussed. It was confirmed that the measurement accuracies of the preproduction temperature sensors were within ±50 mK, which is the required measurement accuracy for a technical demonstration ocean-going LH2 carrier.

  19. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology

    NASA Astrophysics Data System (ADS)

    Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei

    2017-10-01

    Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In2Se3) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C2H2) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C2H2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In2Se3 as a new candidate for future application in monitoring C2H2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.

  20. A flexible, transparent and high-performance gas sensor based on layer-materials for wearable technology.

    PubMed

    Zheng, Zhaoqiang; Yao, Jiandong; Wang, Bing; Yang, Guowei

    2017-10-13

    Gas sensors play a vital role among a wide range of practical applications. Recently, propelled by the development of layered materials, gas sensors have gained much progress. However, the high operation temperature has restricted their further application. Herein, via a facile pulsed laser deposition (PLD) method, we demonstrate a flexible, transparent and high-performance gas sensor made of highly-crystalline indium selenide (In 2 Se 3 ) film. Under UV-vis-NIR light or even solar energy activation, the constructed gas sensors exhibit superior properties for detecting acetylene (C 2 H 2 ) gas at room temperature. We attribute these properties to the photo-induced charger transfer mechanism upon C 2 H 2 molecule adsorption. Moreover, no apparent degradation in the device properties is observed even after 100 bending cycles. In addition, we can also fabricate this device on rigid substrates, which is also capable to detect gas molecules at room temperature. These results unambiguously distinguish In 2 Se 3 as a new candidate for future application in monitoring C 2 H 2 gas at room temperature and open up new opportunities for developing next generation full-spectrum activated gas sensors.

  1. Performance enhanced piezoelectric-based crack detection system for high temperature I-beam SHM

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhang, Haifeng

    2017-04-01

    This paper proposes an innovative sensing system for high temperature (up to 150°C) I-beam crack detection. The proposed system is based on the piezoelectric effect and laser sensing mechanisms, which is proved to be effective at high temperature environment (up to 150°C). Different from other high temperature SHM approaches, the proposed sensing system is employing a piezoelectric disk as an actuator and a laser vibrometer as a sensor for remote detection. Lab tests are carried out and the vibrational properties are studied to characterize the relationship between crack depth and sensor responses by analyzing the RMS of sensor responses. Instead of utilizing a pair of piezoelectric actuator and sensor, using the laser vibrometer will enable 1) a more flexible detection, which will not be limited to specific area or dimension, 2) wireless sensing, which lowers the risk of operating at high temperature/harsh environment. The proposed sensing system can be applied to engineering structures such as in nuclear power plant reactor vessel and heat pipe structures/systems.

  2. Experimental study of low-cost fiber optic distributed temperature sensor system performance

    NASA Astrophysics Data System (ADS)

    Dashkov, Michael V.; Zharkov, Alexander D.

    2016-03-01

    The distributed control of temperature is an actual task for various application such as oil & gas fields, high-voltage power lines, fire alarm systems etc. The most perspective are optical fiber distributed temperature sensors (DTS). They have advantages on accuracy, resolution and range, but have a high cost. Nevertheless, for some application the accuracy of measurement and localization aren't so important as cost. The results of an experimental study of low-cost Raman based DTS based on standard OTDR are represented.

  3. Advanced high temperature instrument for hot section research applications

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Seasholtz, R. G.

    1989-01-01

    Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.

  4. Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Li, Tao; Hu, Limin; Qian, Wenwen; Zhang, Quanyao; Jin, Shangzhong

    2012-11-01

    A temperature-independent highly-sensitive curvature sensor by using a tapered-photonic crystal fiber (PCF)-based Mach-Zehnder interferometer (MZI) is proposed and experimentally demonstrated. It is fabricated by sandwiching a tapered-PCF between two standard single mode fibers (SMFs) with the air holes of the PCF in the fusion splicing region being fully collapsed. The tapering of PCF is found to enhance the sensitivity significantly. Large curvature sensitivities of 2.81 dB/m-1 and 8.35 dB/m-1 are achieved in the measurement ranges of 0.36-0.87 m-1 and 0.87-1.34 m-1, respectively, with the resolution of 0.0012 m-1 being guaranteed. The proposed sensor also shows negligible temperature sensitivity less than 0.006 dB/°C.

  5. Fiber Optic Sensors for Health Monitoring of Morphing Airframes. Part 1; Bragg Grating Strain and Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Wood, Karen; Brown, Timothy; Rogowski, Robert; Jensen, Brian

    2000-01-01

    Fiber optic sensors are being developed for health monitoring of future aircraft. Aircraft health monitoring involves the use of strain, temperature, vibration and chemical sensors to infer integrity of the aircraft structure. Part 1 of this two part series describes sensors that will measure load and temperature signatures of these structures. In some cases a single fiber may be used for measuring these parameters. Part 2 will describe techniques for using optical fibers to monitor composite cure in real time during manufacture and to monitor in-service integrity of composite structures using a single fiber optic sensor capable of measuring multiple chemical and physical parameters. The facilities for fabricating optical fiber and associated sensors and the methods of demodulating Bragg gratings for strain measurement will be described.

  6. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.

    PubMed

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment.

  7. Design, fabrication and testing of an optical temperature sensor

    NASA Technical Reports Server (NTRS)

    Morey, W. W.; Glenn, W. H.; Decker, R. O.; Mcclurg, W. C.

    1980-01-01

    The laboratory breadboard optical temperature sensor based on the temperature dependent absorptive characteristics of a rare earth (europium) doped optical fiber. The principles of operation, materials characterization, fiber and optical component design, design and fabrication of an electrooptic interface unit, signal processing, and initial test results are discussed. Initial tests indicated that, after a brief warmup period, the output of the sensor was stable to approximately 1 C at room temperature or approximately + or - 0.3 percent of point (K). This exceeds the goal of 1 percent of point. Recommendations are presented for further performance improvement.

  8. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements.

    PubMed

    De Miguel-Soto, Veronica; Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-11-30

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber.

  9. Study of Optical Fiber Sensors for Cryogenic Temperature Measurements

    PubMed Central

    Leandro, Daniel; Lopez-Aldaba, Aitor; Beato-López, Juan Jesus; Pérez-Landazábal, José Ignacio; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; Lopez-Amo, Manuel

    2017-01-01

    In this work, the performance of five different fiber optic sensors at cryogenic temperatures has been analyzed. A photonic crystal fiber Fabry-Pérot interferometer, two Sagnac interferometers, a commercial fiber Bragg grating (FBG), and a π-phase shifted fiber Bragg grating interrogated in a random distributed feedback fiber laser have been studied. Their sensitivities and resolutions as sensors for cryogenic temperatures have been compared regarding their advantages and disadvantages. Additionally, the results have been compared with the given by a commercial optical backscatter reflectometer that allowed for distributed temperature measurements of a single mode fiber. PMID:29189755

  10. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials.

    PubMed

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; Di, Chong-an; Zhu, Daoben

    2015-09-21

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa(-1). More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  11. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Zhang, Fengjiao; Zang, Yaping; Huang, Dazhen; di, Chong-An; Zhu, Daoben

    2015-09-01

    Skin-like temperature- and pressure-sensing capabilities are essential features for the next generation of artificial intelligent products. Previous studies of e-skin and smart elements have focused on flexible pressure sensors, whereas the simultaneous and sensitive detection of temperature and pressure with a single device remains a challenge. Here we report developing flexible dual-parameter temperature-pressure sensors based on microstructure-frame-supported organic thermoelectric (MFSOTE) materials. The effective transduction of temperature and pressure stimuli into two independent electrical signals permits the instantaneous sensing of temperature and pressure with an accurate temperature resolution of <0.1 K and a high-pressure-sensing sensitivity of up to 28.9 kPa-1. More importantly, these dual-parameter sensors can be self-powered with outstanding sensing performance. The excellent sensing properties of MFSOTE-based devices, together with their unique advantages of low cost and large-area fabrication, make MFSOTE materials possess promising applications in e-skin and health-monitoring elements.

  12. A method for estimating the diffuse attenuation coefficient (KdPAR)from paired temperature sensors

    USGS Publications Warehouse

    Read, Jordan S.; Rose, Kevin C.; Winslow, Luke A.; Read, Emily K.

    2015-01-01

    A new method for estimating the diffuse attenuation coefficient for photosynthetically active radiation (KdPAR) from paired temperature sensors was derived. We show that during cases where the attenuation of penetrating shortwave solar radiation is the dominant source of temperature changes, time series measurements of water temperatures at multiple depths (z1 and z2) are related to one another by a linear scaling factor (a). KdPAR can then be estimated by the simple equation KdPAR ln(a)/(z2/z1). A suggested workflow is presented that outlines procedures for calculating KdPAR according to this paired temperature sensor (PTS) method. This method is best suited for conditions when radiative temperature gains are large relative to physical noise. These conditions occur frequently on water bodies with low wind and/or high KdPARs but can be used for other types of lakes during time periods of low wind and/or where spatially redundant measurements of temperatures are available. The optimal vertical placement of temperature sensors according to a priori knowledge of KdPAR is also described. This information can be used to inform the design of future sensor deployments using the PTS method or for campaigns where characterizing sub-daily changes in temperatures is important. The PTS method provides a novel method to characterize light attenuation in aquatic ecosystems without expensive radiometric equipment or the user subjectivity inherent in Secchi depth measurements. This method also can enable the estimation of KdPAR at higher frequencies than many manual monitoring programs allow.

  13. High Density Schottky Barrier Infrared Charge-Coupled Device (IRCCD) Sensors For Short Wavelength Infrared (SWIR) Applications At Intermediate Temperature

    NASA Astrophysics Data System (ADS)

    Elabd, H.; Villani, T. S.; Tower, J. R.

    1982-11-01

    Monolithic 32 x 64 and 64 x 128 palladium silicide (Pd2Si) interline transfer IRCCDs sensitive in the 1-3.5 pm spectral band have been developed. This silicon imager exhibits a low response nonuniformity of typically 0.2-1.6% rms, and has been operated in the temperature range between 40-140K. Spectral response measurements of test Pd2Si p-type Si devices yield quantum efficiencies of 7.9% at 1.25 μm, 5.6% at 1.65 μm and 2.2% at 2.22 μm. Improvement in quantum efficiency is expected by optimizing the different structural parameters of the Pd2Si detectors. The spectral response of the Pd2Si detectors fit a modified Fowler emission model. The measured photo-electric barrier height for the Pd2Si detector is ≍0.34 eV and the measured quantum efficiency coefficient, C1, is 19%/eV. The dark current level of Pd2Si Schottky barrier focal plane arrays (FPAs) is sufficiently low to enable operation at intermediate tem-peratures at TV frame rates. Typical dark current level measured at 120K on the FPA is 2 nA/cm2. The Pd2Si Schottky barrier imaging technology has been developed for satellite sensing of earth resources. The operating temperature of the Pd2Si FPA is compatible with passive cooler performance. In addition, high density Pd2Si Schottky barrier FPAs are manufactured with high yield and therefore represent an economical approach to short wavelength IR imaging. A Pd2Si Schottky barrier image sensor for push-broom multispectral imaging in the 1.25, 1.65, and 2.22 μm bands is being studied. The sensor will have two line arrays (dual band capability) of 512 detectors each, with 30 μm center-to-center detector spacing. The device will be suitable for chip-to-chip abutment, thus providing the capability to produce large, multiple chip focal planes with contiguous, in-line sensors.

  14. Assessment of an aural infrared sensor for body temperature measurement in children.

    PubMed

    Rhoads, F A; Grandner, J

    1990-02-01

    A newly marketed device measures body temperature using an ear probe that detects infrared radiation from the tympanic membrane. It is simple to use and gives a reading in 1-2 seconds. Its accuracy was evaluated in a group of children, aged 1 month through 10 years, by comparing it with either rectal (n = 65), or oral (n = 48) temperatures obtained with a standard electronic thermometer, IVAC (San Diego, CA). The average elapsed time between readings was 11 minutes. Overall, 60 rectal and 40 oral temperatures (88.5%) were higher with IVAC than with the aural sensor. The difference ranged from -0.7 degrees C to +2.5 degrees C. The correlations between the infrared ear-probe values and the rectal and oral temperature readings were 0.77 and 0.75, respectively. Because the average reading using the aural sensor was lower than that using the IVAC, the sensitivity of the aural sensor for detecting clinically important levels of fever was low. None of seven patients with a rectal temperature of 39 degrees C or more and only 7 of 27 with a rectal temperature of 38 degrees C or more were identified by the aural sensor as having temperatures above these cutoff levels. Similarly, none of three patients with an oral temperature of 39 degrees C or more and only three of eight with an oral temperature of 38 degrees C or more were identified correctly by the aural sensor. The authors conclude that the aural sensor is unsatisfactory for detecting clinically significant fevers in a pediatric outpatient setting.

  15. Micromachined lab-on-a-tube sensors for simultaneous brain temperature and cerebral blood flow measurements.

    PubMed

    Li, Chunyan; Wu, Pei-Ming; Hartings, Jed A; Wu, Zhizhen; Cheyuo, Cletus; Wang, Ping; LeDoux, David; Shutter, Lori A; Ramaswamy, Bharat Ram; Ahn, Chong H; Narayan, Raj K

    2012-08-01

    This work describes the development of a micromachined lab-on-a-tube device for simultaneous measurement of brain temperature and regional cerebral blood flow. The device consists of two micromachined gold resistance temperature detectors with a 4-wire configuration. One is used as a temperature sensor and the other as a flow sensor. The temperature sensor operates with AC excitation current of 500 μA and updates its outputs at a rate of 5 Hz. The flow sensor employs a periodic heating and cooling technique under constant-temperature mode and updates its outputs at a rate of 0.1 Hz. The temperature sensor is also used to compensate for temperature changes during the heating period of the flow sensor to improve the accuracy of flow measurements. To prevent thermal and electronic crosstalk between the sensors, the temperature sensor is located outside the "thermal influence" region of the flow sensor and the sensors are separated into two different layers with a thin-film Copper shield. We evaluated the sensors for accuracy, crosstalk and long-term drift in human blood-stained cerebrospinal fluid. These in vitro experiments showed that simultaneous temperature and flow measurements with a single lab-on-a-tube device are accurate and reliable over the course of 5 days. It has a resolution of 0.013 °C and 0.18 ml/100 g/min; and achieves an accuracy of 0.1 °C and 5 ml/100 g/min for temperature and flow sensors respectively. The prototype device and techniques developed here establish a foundation for a multi-sensor lab-on-a-tube, enabling versatile multimodality monitoring applications.

  16. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature

    PubMed Central

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang

    2016-01-01

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. PMID:25953120

  17. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, Ronald; Whitty, Kevin

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiplemore » species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.« less

  18. Effects of Temperature on Polymer/Carbon Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Manfireda, Allison; Lara, Liana; Homer, Margie; Yen, Shiao-Pin; Kisor, Adam; Ryan, Margaret; Zhou, Hanying; Shevade, Abhijit; James, Lim; Manatt, Kenneth

    2009-01-01

    Experiments were conducted on the effects of temperature, polymer molecular weight, and carbon loading on the electrical resistances of polymer/carbon-black composite films. The experiment were performed in a continuing effort to develop such films as part of the JPL Electronic Nose (ENose), that would be used to detect, identify, and quantify parts-per-million (ppm) concentration levels of airborne chemicals in the space shuttle/space station environments. The polymers used in this study were three formulations of poly(ethylene oxide) [PEO] that had molecular weights of 20 kilodaltons, 600 kilodaltons, and 1 megadalton, respectively. The results of one set of experiments showed a correlation between the polymer molecular weight and the percolation threshold. In a second set of experiments, differences among the temperature dependences of resistance were observed for different carbon loadings; these differences could be explained by a change in the conduction mechanism. In a third set of experiments, the responses of six different polymer/carbon composite sensors to three analytes (water vapor, methanol, methane) were measured as a function of temperature (28 to 36 C). For a given concentration of each analyte, the response of each sensor decreased with increasing temperature, in a manner different from those of the other sensors.

  19. Cu-modified carbon spheres/reduced graphene oxide as a high sensitivity of gas sensor for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Su, Zhibin; Tan, Li; Yang, Ruiqiang; Zhang, Yu; Tao, Jin; Zhang, Nan; Wen, Fusheng

    2018-03-01

    Nitrogen dioxide (NO2) as one of the most serious air pollution is harmful to people's health, therefore high-performance gas sensors is critically needed. Here, Cu-modified carbon spheres/reduced graphene oxide (Cu@CS/RGO) composite have been prepared as NO2 gas sensor material. Carbon sphere in the interlayer of RGO can increase the specific surface area of RGO. Copper nanoparticles decorated on the surface of CS can effectively enhance the adsorption activity of RGO as supplier of free electrons. The experimental results showed that its particular structure improved the gas sensitivity of RGO at different NO2 concentrations at room temperature.

  20. Room-temperature CO Thermoelectric Gas Sensor based on Au/Co3O4 Catalyst Tablet.

    PubMed

    Sun, L; Luan, W L; Wang, T C; Su, W X; Zhang, L X

    2017-02-17

    A carbon monoxide (CO) thermoelectric (TE) gas sensor was fabricated by affixing a Au/Co 3 O 4 catalyst tablet on a TE film layer. The Au/Co 3 O 4 catalyst tablet was prepared by a co-precipitation and tablet compression method and its possible catalytic mechanism was discussed by means of x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy, x-ray photoelectron spectroscopy, temperature-programmed reduction of hydrogen, Fourier transform infrared spectroscopy and Brunauer-Emmett-Teller analysis. The optimal catalyst, with a Au content of 10 wt%, was obtained at a calcination temperature between 200 and 300 °C. The small size of the Au nanoparticles, high specific surface, the existence of Co 3+ and water-derived species contributed to  high catalytic activity. Based on the optimal Au/Co 3 O 4 catalyst tablet, the CO TE gas sensor worked at room temperature and showed a response voltage signal (ΔV) of 23 mV, high selectivity among hydrogen and methane, high stability, and a fast response time of 106 s for 30 000 ppm CO/air. In addition, a CO concentration in the range of 5000-30 000 ppm could obviously be detected and exhibited a linear relationship with ΔV. The CO TE gas sensor provides a promising option for the detection of CO gas at room temperature.

  1. A CMOS smart temperature and humidity sensor with combined readout.

    PubMed

    Eder, Clemens; Valente, Virgilio; Donaldson, Nick; Demosthenous, Andreas

    2014-09-16

    A fully-integrated complementary metal-oxide semiconductor (CMOS) sensor for combined temperature and humidity measurements is presented. The main purpose of the device is to monitor the hermeticity of micro-packages for implanted integrated circuits and to ensure their safe operation by monitoring the operating temperature and humidity on-chip. The smart sensor has two modes of operation, in which either the temperature or humidity is converted into a digital code representing a frequency ratio between two oscillators. This ratio is determined by the ratios of the timing capacitances and bias currents in both oscillators. The reference oscillator is biased by a current whose temperature dependency is complementary to the proportional to absolute temperature (PTAT) current. For the temperature measurement, this results in an exceptional normalized sensitivity of about 0.77%/°C at the accepted expense of reduced linearity. The humidity sensor is a capacitor, whose value varies linearly with relative humidity (RH) with a normalized sensitivity of 0.055%/% RH. For comparison, two versions of the humidity sensor with an area of either 0.2 mm2 or 1.2 mm2 were fabricated in a commercial 0.18 μm CMOS process. The on-chip readout electronics operate from a 5 V power supply and consume a current of approximately 85 µA.

  2. Theoretical analysis and coating thickness determination of a dual layer metal coated FBG sensor for sensitivity enhancement at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Ramalingam, Rajinikumar; Atrey, M. D.

    2017-12-01

    Use of Fiber Bragg Grating (FBG) sensor is very appealing for sensing low temperature and strain in superconducting magnets because of their miniature size and the possibility of accommodating many sensors in a single fiber. The main drawback is their low intrinsic thermal sensitivity at low temperatures below 120 K. Approaching cryogenic temperatures, temperature changes lower than a few degrees Kelvin cannot be resolved, since they do not cause an appreciable shift of the wavelength diffracted by a bare FBG sensor. To improve the thermal sensitivity and thermal inertia below 77 K, the Bare FBG (BFBG) sensor can be coated with high thermal expansion coefficient materials. In this work, different metal were considered for coating the FBG sensor. For theoretical investigation, a double layered circular thick wall tube model has been considered to study the effect on sensitivity due to the mechanical properties like Young’s modulus, Thermal expansion coefficient, Poisson’s ratio of selected materials at a various cryogenic temperatures. The primary and the secondary coating thickness for a dual layer metal coated FBG sensor have been determined from the above study. The sensor was then fabricated and tested at cryogenic temperature range from 4-300 K. The cryogenic temperature characteristics of the tested sensors are reported.

  3. High-Performance Flexible Force and Temperature Sensing Array with a Robust Structure

    NASA Astrophysics Data System (ADS)

    Kim, Min-Seok; Song, Han-Wook; Park, Yon-Kyu

    We have developed a flexible tactile sensor array capable of sensing physical quantities, e.g. force and temperature with high-performances and high spatial resolution. The fabricated tactile sensor consists of 8 × 8 force measuring array with 1 mm spacing and a thin metal (copper) temperature sensor. The flexible force sensing array consists of sub-millimetre-size bar-shaped semi-conductor strain gage array attached to a thin and flexible printed circuit board covered by stretchable elastomeric material on both sides. This design incorporates benefits of both materials; the semi-conductor's high performance and the polymer's mechanical flexibility and robustness, while overcoming their drawbacks of those two materials. Special fabrication processes, so called “dry-transfer technique” have been used to fabricate the tactile sensor along with standard micro-fabrication processes.

  4. Automatic dew-point temperature sensor.

    PubMed

    Graichen, H; Rascati, R; Gonzalez, R R

    1982-06-01

    A device is described for measuring dew-point temperature and water vapor pressure in small confined areas. The method is based on the deposition of water on a cooled surface when at dew-point temperature. A small Peltier module lowers the temperature of two electrically conductive plates. At dew point the insulating gap separating the plates becomes conductive as water vapor condenses. Sensors based on this principle can be made small and rugged and can be used for measuring directly the local water vapor pressure. They may be installed within a conventional ventilated sweat capsule used for measuring water vapor loss from the skin surface. A novel application is the measurement of the water vapor pressure gradients across layers of clothing worn by an exercising subject.

  5. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor.

    PubMed

    Honda, Wataru; Harada, Shingo; Ishida, Shohei; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-08-26

    A vertically integrated inorganic-based flexible complementary metal-oxide-semiconductor (CMOS) inverter with a temperature sensor with a high inverter gain of ≈50 and a low power consumption of <7 nW mm(-1) is demonstrated using a layer-by-layer assembly process. In addition, the negligible influence of the mechanical flexibility on the performance of the CMOS inverter and the temperature dependence of the CMOS inverter characteristics are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fiber optic temperature sensor gives rise to thermal analysis in complex product design

    NASA Astrophysics Data System (ADS)

    Cheng, Andrew Y. S.; Pau, Michael C. Y.

    1996-09-01

    A computer-adapted fiber-optic temperature sensing system has been developed which aims to study both the theoretical aspect of fiber temperature sensing and the experimental aspect of such system. The system consists of a laser source, a fiber sensing element, an electronic fringes counting device, and an on-line personal computer. The temperature measurement is achieved by the conventional double beam fringe counting method with optical path length changes in the sensing beam due to the fiber expansion. The system can automatically measure the temperature changes in a sensing fiber arm which provides an insight of the heat generation and dissipation of the measured system. Unlike the conventional measuring devices such as thermocouples or solid state temperature sensors, the fiber sensor can easily be wrapped and shaped to fit the surface of the measuring object or even inside a molded plastic parts such as a computer case, which gives much more flexibility and applicability to the analysis of heat generation and dissipation in the operation of these machine parts. The reference beam is being set up on a temperature controlled optical bench to facilitate high sensitivity and high temperature resolution. The measuring beam has a motorized beam selection device for multiple fiber beam measurement. The project has been demonstrated in the laboratory and the system sensitivity and resolution are found to be as high as 0.01 degree Celsius. It is expected the system will find its application in many design studies which require thermal budgeting.

  7. Noncontact measurement of high temperature using optical fiber sensors

    NASA Technical Reports Server (NTRS)

    Claus, R. O.

    1990-01-01

    The primary goal of this research program was the investigation and application of noncontact temperature measurement techniques using optical techniques and optical fiber methods. In particular, a pyrometer utilizing an infrared optical light pipe and a multiwavelength filtering approach was designed, revised, and tested. This work was motivated by the need to measure the temperatures of small metallic pellets (approximately 3 mm diameter) in free fall at the Microgravity Materials Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this program investigated the adaptation of holography technology to optical fiber sensors, and also examined the use of rare-earth dopants in optical fibers for use in measuring temperature. The pyrometer development effort involved both theoretical analysis and experimental tests. For the analysis, a mathematical model based on radiative transfer principles was derived. Key parameter values representative of the drop tube system, such as particle size, tube diameter and length, and particle temperature, were used to determine an estimate of the radiant flux that will be incident on the face of an optical fiber or light pipe used to collect radiation from the incandescent falling particle. An extension of this work examined the advantage of inclining or tilting the collecting fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results indicate that increases in total power collected of about 15 percent may be realized by tilting the fiber. In order to determine the suitability of alternative light pipes and optical fibers, and experimental set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core fiber of varying diameters were tested. A prototype two-color pyrometer was assembled and tested at Virginia Tech, and then

  8. Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature.

    PubMed

    Bhandari, Siddhartha; Bergmann, Neil; Jurdak, Raja; Kusy, Branislav

    2017-05-26

    Wireless sensor networks have gained significant traction in environmental signal monitoring and analysis. The cost or lifetime of the system typically depends on the frequency at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved. Using empirical datasets collected from environmental monitoring sensor networks, this work performs time series analyses of measured temperature time series. Unlike previous works which have concentrated on suppressing the transmission of some data samples by time-series analysis but still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the sensor can be increased up to one hour while still allowing intermediate and future states to be estimated with interpolation RMSE less than 0.2 °C and forecasting RMSE less than 1 °C.

  9. Accurate dew-point measurement over a wide temperature range using a quartz crystal microbalance dew-point sensor

    NASA Astrophysics Data System (ADS)

    Kwon, Su-Yong; Kim, Jong-Chul; Choi, Buyng-Il

    2008-11-01

    Quartz crystal microbalance (QCM) dew-point sensors are based on frequency measurement, and so have fast response time, high sensitivity and high accuracy. Recently, we have reported that they have the very convenient attribute of being able to distinguish between supercooled dew and frost from a single scan through the resonant frequency of the quartz resonator as a function of the temperature. In addition to these advantages, by using three different types of heat sinks, we have developed a QCM dew/frost-point sensor with a very wide working temperature range (-90 °C to 15 °C). The temperature of the quartz surface can be obtained effectively by measuring the temperature of the quartz crystal holder and using temperature compensation curves (which showed a high level of repeatability and reproducibility). The measured dew/frost points showed very good agreement with reference values and were within ±0.1 °C over the whole temperature range.

  10. Optical sensors for mapping temperature and winds in the thermosphere from a CubeSat platform

    NASA Astrophysics Data System (ADS)

    Sullivan, Stephanie Whalen

    The thermosphere is the region between approximately 80 km and 320 or more km above the earth's surface. While many people consider this elevation to be space rather than atmosphere, there is a small quantity of gasses in this region. The behavior of these gasses influences the orbits of satellites, including the International Space Station, causes space weather events, and influences the weather closer to the surface of the earth. Due to the location and characteristics of the thermosphere, even basic properties such as temperature are very difficult to measure. High spatial and temporal resolution data on temperatures and winds in the thermosphere are needed by both the space weather and earth climate modeling communities. To address this need, Space Dynamics Laboratory (SDL) started the Profiling Oxygen Emissions of the Thermosphere (POET) program. POET consists of a series of sensors designed to fly on sounding rockets, CubeSats, or larger platforms, such as IridiumNEXT SensorPODS. While each sensor design is different, they all use characteristics of oxygen optical emissions to measure space weather properties. The POET program builds upon the work of the RAIDS, Odin, and UARS programs. Our intention is to dramatically reduce the costs of building, launching, and operating spectrometers in space, thus allowing for more sensors to be in operation. Continuous long-term data from multiple sensors is necessary to understand the underlying physics required to accurately model and predict weather in the thermosphere. While previous spectrometers have been built to measure winds and temperatures in the thermosphere, they have all been large and expensive. The POET sensors use new focal plane technology and optical designs to overcome these obstacles. This thesis focuses on the testing and calibration of the two POET sensors: the Oxygen Profiling of the Atmospheric Limb (OPAL) temperature sensor and the Split-field Etalon Doppler Imager (SEDI) wind sensor.

  11. Machine vision guided sensor positioning system for leaf temperature assessment

    NASA Technical Reports Server (NTRS)

    Kim, Y.; Ling, P. P.; Janes, H. W. (Principal Investigator)

    2001-01-01

    A sensor positioning system was developed for monitoring plants' well-being using a non-contact sensor. Image processing algorithms were developed to identify a target region on a plant leaf. A novel algorithm to recover view depth was developed by using a camera equipped with a computer-controlled zoom lens. The methodology has improved depth recovery resolution over a conventional monocular imaging technique. An algorithm was also developed to find a maximum enclosed circle on a leaf surface so the conical field-of-view of an infrared temperature sensor could be filled by the target without peripheral noise. The center of the enclosed circle and the estimated depth were used to define the sensor 3-D location for accurate plant temperature measurement.

  12. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    PubMed Central

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-01-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238

  13. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    NASA Astrophysics Data System (ADS)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-10-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

  14. PVDF Sensor Stimulated by Infrared Radiation for Temperature Monitoring in Microfluidic Devices.

    PubMed

    Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S

    2017-04-13

    This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin pyroelectric film together with an infrared source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.

  15. Platinum thin film resistors as accurate and stable temperature sensors

    NASA Technical Reports Server (NTRS)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  16. Unobtrusive Monitoring of Neonatal Brain Temperature Using a Zero-Heat-Flux Sensor Matrix.

    PubMed

    Atallah, Louis; Bongers, Edwin; Lamichhane, Bishal; Bambang-Oetomo, Sidarto

    2016-01-01

    The temperature of preterm neonates must be maintained within a narrow window to ensure their survival. Continuously measuring their core temperature provides an optimal means of monitoring their thermoregulation and their response to environmental changes. However, existing methods of measuring core temperature can be very obtrusive, such as rectal probes, or inaccurate/lagging, such as skin temperature sensors and spot-checks using tympanic temperature sensors. This study investigates an unobtrusive method of measuring brain temperature continuously using an embedded zero-heat-flux (ZHF) sensor matrix placed under the head of the neonate. The measured temperature profile is used to segment areas of motion and incorrect positioning, where the neonate's head is not above the sensors. We compare our measurements during low motion/stable periods to esophageal temperatures for 12 preterm neonates, measured for an average of 5 h per neonate. The method we propose shows good correlation with the reference temperature for most of the neonates. The unobtrusive embedding of the matrix in the neonate's environment poses no harm or disturbance to the care work-flow, while measuring core temperature. To address the effect of motion on the ZHF measurements in the current embodiment, we recommend a more ergonomic embedding ensuring the sensors are continuously placed under the neonate's head.

  17. A Passive Radio-Frequency Identification (RFID) Gas Sensor With Self-Correction Against Fluctuations of Ambient Temperature

    PubMed Central

    Potyrailo, Radislav A.; Surman, Cheryl

    2013-01-01

    Uncontrolled fluctuations of ambient temperature in the field typically greatly reduce accuracy of gas sensors. In this study, we developed an approach for the self-correction against fluctuations of ambient temperature of individual gas and vapor sensors. The main innovation of our work is in the temperature correction which is accomplished without the need for a separate uncoated reference sensor or a separate temperature sensor. Our sensors are resonant inductor-capacitor-resistor (LCR) transducers coated with sensing materials and operated as multivariable passive (battery-free) radio-frequency identification (RFID) sensors. Using our developed approach, we performed quantitation of an exemplary vapor over the temperature range from 25 to 40 °C. This technical solution will be attractive in numerous applications where temperature stabilization of a gas sensor or addition of auxiliary temperature or uncoated reference sensors is prohibitive. PMID:23956496

  18. A temperature and pressure controlled calibration system for pressure sensors

    NASA Technical Reports Server (NTRS)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  19. Numerical Simulation of Temperature Sensor Self-Heating Effects in Gaseous and Liquid Hydrogen Under Cryogenic Conditions

    NASA Astrophysics Data System (ADS)

    Langebach, R.; Haberstroh, Ch.

    2010-04-01

    In this paper a numerical investigation is presented that characterizes the free convective flow field and the resulting heat transfer mechanisms for a resistance temperature sensor in liquid and gaseous hydrogen at various cryogenic conditions. Motivation for this is the detection of stratification effects e.g. inside a liquid hydrogen storage vessel. In this case, the local temperature measurement in still resting fluid requires a very high standard of precision despite an extremely poor thermal anchoring of the sensor. Due to electrical power dissipation a certain amount of heat has to be transferred from sensor to fluid. This can cause relevant measurement errors due to a slightly elevated sensor temperature. A commercial CFD code was employed to calculate the heat and mass transfer around the typical sensor geometry. The results were compared with existing heat transfer correlations from the literature. As a result the magnitude of averaged heat transfer coefficients and sensor over-heating as a function of power dissipation are given in figures. From the gained numerical results a new correlation for the averaged Nusselt Number is presented that represents very low Rayleigh Number flows. The correlation can be used to estimate sensor self-heating effects in similar situations.

  20. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, J.D.

    1995-05-30

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber`s transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature. 5 figs.

  1. Microbend fiber-optic temperature sensor

    DOEpatents

    Weiss, Jonathan D.

    1995-01-01

    A temperature sensor is made of optical fiber into which quasi-sinusoidal microbends have been permanently introduced. In particular, the present invention includes a graded-index optical fiber directing steady light through a section of the optical fiber containing a plurality of permanent microbends. The microbend section of the optical fiber is contained in a thermally expansive sheath, attached to a thermally expansive structure, or attached to a bimetallic element undergoing temperature changes and being monitored. The microbend section is secured to the thermally expansive sheath which allows the amplitude of the microbends to decrease with temperature. The resultant increase in the optical fiber's transmission thus allows temperature to be measured. The plural microbend section of the optical fiber is secured to the thermally expansive structure only at its ends and the microbends themselves are completely unconstrained laterally by any bonding agent to obtain maximum longitudinal temperature sensitivity. Although the permanent microbends reduce the transmission capabilities of fiber optics, the present invention utilizes this phenomenon as a transduction mechanism which is optimized to measure temperature.

  2. Determination and experimental verification of high-temperature SAW orientations on langatate.

    PubMed

    Davulis, Peter M; da Cunha, Mauricio Pereira

    2012-02-01

    Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.

  3. Temperature measurement and damage detection in concrete beams exposed to fire using PPP-BOTDA based fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Bao, Yi; Hoehler, Matthew S.; Smith, Christopher M.; Bundy, Matthew; Chen, Genda

    2017-10-01

    In this study, Brillouin scattering-based distributed fiber optic sensor is implemented to measure temperature distributions and detect cracks in concrete structures subjected to fire for the first time. A telecommunication-grade optical fiber is characterized as a high temperature sensor with pulse pre-pump Brillouin optical time domain analysis (PPP-BODTA), and implemented to measure spatially-distributed temperatures in reinforced concrete beams in fire. Four beams were tested to failure in a natural gas fueled compartment fire, each instrumented with one fused silica, single-mode optical fiber as a distributed sensor and four thermocouples. Prior to concrete cracking, the distributed temperature was validated at locations of the thermocouples by a relative difference of less than 9%. The cracks in concrete can be identified as sharp peaks in the temperature distribution since the cracks are locally filled with hot air. Concrete cracking did not affect the sensitivity of the distributed sensor but concrete spalling broke the optical fiber loop required for PPP-BOTDA measurements.

  4. A High Frequency (HF) Inductive Power Transfer Circuit for High Temperature Applications Using SiC Schottky Diodes

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Ponchak, George E.; Spry, David J.; Neudeck, Philip G.

    2018-01-01

    Wireless sensors placed in high temperature environments, such as aircraft engines, are desirable to reduce the mass and complexity of routing wires. While communication with the sensors is straight forward, providing power wirelessly is still a challenge. This paper introduces an inductive wireless power transfer circuit incorporating SiC Schottky diodes and its operation from room temperature (25 C) to 500 C.

  5. Highly Sensitive and Stretchable Strain Sensor Based on Ag@CNTs.

    PubMed

    Zhang, Qiang; Liu, Lihua; Zhao, Dong; Duan, Qianqian; Ji, Jianlong; Jian, Aoqun; Zhang, Wendong; Sang, Shengbo

    2017-12-04

    Due to the rapid development and superb performance of electronic skin, we propose a highly sensitive and stretchable temperature and strain sensor. Silver nanoparticles coated carbon nanowires (Ag@CNT) nanomaterials with different Ag concentrations were synthesized. After the morphology and components of the nanomaterials were demonstrated, the sensors composed of Polydimethylsiloxane (PDMS) and CNTs or Ag@CNTs were prepared via a simple template method. Then, the electronic properties and piezoresistive effects of the sensors were tested. Characterization results present excellent performance of the sensors for the highest gauge factor (GF) of the linear region between 0-17.3% of the sensor with Ag@CNTs1 was 137.6, the sensor with Ag@CNTs2 under the strain in the range of 0-54.8% exhibiting a perfect linearity and the GF of the sensor with Ag@CNTs2 was 14.9.

  6. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  7. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limb, Scott J.

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  8. High temperature strain measurement with a resistance strain gage

    NASA Technical Reports Server (NTRS)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  9. Metallic-packaging fiber Bragg grating sensor based on ultrasonic welding for strain-insensitive temperature measurement

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Yang, Runtao; Zhang, Yumin; Dong, Mingli; Lou, Xiaoping

    2018-04-01

    In this paper, a metallic-packaging fiber Bragg grating temperature sensor characterized by a strain insensitive design is demonstrated. The sensor is fabricated by the one-step ultrasonic welding technique using type-II fiber Bragg grating combined with an aluminum alloy substrate. Finite element analysis is used to perform theoretical evaluation. The result of the experiment illustrates that the metallic-packaging temperature sensor is insensitive to longitudinal strain. The sensor's temperature sensitivity is 36 pm/°C over the range of 50-110 °C, with the correlation coefficient (R2) being 0.999. The sensor's temporal response is 40 s at a sudden temperature change from 21 °C to 100 °C. The proposed sensor can be applied on reliable and precise temperature measurement.

  10. Theoretical and Experimental Studies of Epidermal Heat Flux Sensors for Measurements of Core Body Temperature.

    PubMed

    Zhang, Yihui; Webb, Richard Chad; Luo, Hongying; Xue, Yeguang; Kurniawan, Jonas; Cho, Nam Heon; Krishnan, Siddharth; Li, Yuhang; Huang, Yonggang; Rogers, John A

    2016-01-07

    Long-term, continuous measurement of core body temperature is of high interest, due to the widespread use of this parameter as a key biomedical signal for clinical judgment and patient management. Traditional approaches rely on devices or instruments in rigid and planar forms, not readily amenable to intimate or conformable integration with soft, curvilinear, time-dynamic, surfaces of the skin. Here, materials and mechanics designs for differential temperature sensors are presented which can attach softly and reversibly onto the skin surface, and also sustain high levels of deformation (e.g., bending, twisting, and stretching). A theoretical approach, together with a modeling algorithm, yields core body temperature from multiple differential measurements from temperature sensors separated by different effective distances from the skin. The sensitivity, accuracy, and response time are analyzed by finite element analyses (FEA) to provide guidelines for relationships between sensor design and performance. Four sets of experiments on multiple devices with different dimensions and under different convection conditions illustrate the key features of the technology and the analysis approach. Finally, results indicate that thermally insulating materials with cellular structures offer advantages in reducing the response time and increasing the accuracy, while improving the mechanics and breathability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electro-optic high voltage sensor

    DOEpatents

    Davidson, James R.; Seifert, Gary D.

    2003-09-16

    A small sized electro-optic voltage sensor capable of accurate measurement of high voltages without contact with a conductor or voltage source is provided. When placed in the presence of an electric field, the sensor receives an input beam of electromagnetic radiation. A polarization beam displacer separates the input beam into two beams with orthogonal linear polarizations and causes one linearly polarized beam to impinge a crystal at a desired angle independent of temperature. The Pockels effect elliptically polarizes the beam as it travels through the crystal. A reflector redirects the beam back through the crystal and the beam displacer. On the return path, the polarization beam displacer separates the elliptically polarized beam into two output beams of orthogonal linear polarization. The system may include a detector for converting the output beams into electrical signals and a signal processor for determining the voltage based on an analysis of the output beams.

  12. Dual neutron flux/temperature measurement sensor

    DOEpatents

    Mihalczo, John T.; Simpson, Marc L.; McElhaney, Stephanie A.

    1994-01-01

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination.

  13. Fibre Optic Temperature Sensors Using Fluorescent Phenomena.

    NASA Astrophysics Data System (ADS)

    Selli, Raman Kumar

    Available from UMI in association with The British Library. A number of fibre optic sensors based on fluorescent phenomena using low cost electronic and optical filtering techniques, for temperature sensing applications are described and discussed. The initial device developed uses the absorption edge change of an optical glass to monitor changes in temperature with a second wavelength reference channel being generated from a fluorescent material, neodymium doped in glass. This device demonstrates the working of the self-referencing principle in a practical device tested over the temperature range of -60^circ C to 200^circC. This initial device was improved by incorporating a microprocessor and by modifying the processing electronic circuitry. An alternative probe was constructed which used a second fibre placed along-side the addressing fibre in contrast to the original device where the fibre is placed at the opposite end of the addressing fibre. A device based on the same principle but with different absorption glasses and a different fluorescent medium, crystalline ruby, was also examined. This device operated at a lower wavelength region compared to the infra -red working region of the first device. This work illustrated the need to make an appropriate choice of sensor absorption glass so that the cheaper indicator type LEDs, which operated at lower wavelengths, may be used. Ruby is a fluorescent material which is characterized by each emission wavelength having its own temperature characteristics. The integrated energy output over the complete emission spectrum is independent of temperature. This provided a means of generating a reference from the complete spectrum while a small frequency band gave a temperature dependent output. This characteristic of ruby was used to develop a temperature measuring device. A final system which utilises the temperature dependent decay-time emission properties of crystalline ruby was developed. In this case the ruby was

  14. A tension insensitive PbS fiber temperature sensor based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Fu, Xing-hu; Zhang, Jiang-peng; Yang, Kai-li; Dong, Yan-hua; Wen, Jian-xiang; Fu, Guang-wei; Bi, Wei-hong

    2017-03-01

    In this paper, a tension insensitive PbS fiber temperature sensor based on Sagnac interferometer is proposed and demonstrated. The sensing mechanism of tension and temperature is analyzed. The relationships between the interference spectrum, temperature and tension are analyzed, respectively. The experimental temperature range is 36—70 °C. The experimental results show that the interference spectrum is red shifted, and its sensitivity is 53.89 pm/°C. In tension experiment, the tension range is 0—1 400 μɛ. The experimental results show that there is no wavelength shift in the interference spectrum. The sensor is immune to tension cross-sensitivity compared with other sensors. It can be used for temperature testing in aerospace, chemistry and pharmacy.

  15. Thin film molybdenum silicide as potential temperature sensors for turbine engines

    NASA Technical Reports Server (NTRS)

    Ho, C. H.; Prakash, S.; Deshpandey, C. V.; Doerr, H. J.; Bunshah, R. F.

    1989-01-01

    Temperature measurements of Mo-Si-based thin-film resistance thermometers were studied. Annealing in an argon ambient at a temperature above 1000 C for at least 1 h is required to form the stable tetragonal MoSi2 phase. With a crack-free 2-micron-thick AlN barrier layer on top, a sensor was tested up to 1200 C. The resistivity vs temperature characteristic shows the room temperature resistivity and temperature coefficient of resistivity (TCR) of the sensor to be approximately 350 microohm and 0.01195 K, respectively. No film adhesion problems were observed for at least four testing cycles.

  16. Determination of chlorine concentration using single temperature modulated semiconductor gas sensor

    NASA Astrophysics Data System (ADS)

    Woźniak, Ł.; Kalinowski, P.; Jasiński, G.; Jasiński, P.

    2016-11-01

    A periodic temperature modulation using sinusoidal heater voltage was applied to a commercial SnO2 semiconductor gas sensor. Resulting resistance response of the sensor was analyzed using a feature extraction method based on Fast Fourier Transformation (FFT). The amplitudes of the higher harmonics of the FFT from the dynamic nonlinear responses of measured gas were further utilized as an input for Artificial Neuron Network (ANN). Determination of the concentration of chlorine was performed. Moreover, this work evaluates the sensor performance upon sinusoidal temperature modulation.

  17. Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber

    NASA Astrophysics Data System (ADS)

    Yang, Bing; Chen, Zhe; Wang, Yiting; Zhang, Jun; Liao, Guozhen; Tian, Zhengwen; Yu, Jianhui; Tang, Jieyuan; Luo, Yunhan; Lu, Huihui

    2015-07-01

    A temperature fiber sensor with nanostructured cladding composed ted by titanium dioxide (TiO2) nanoparticles was demonstrated. The nanoparticles self-assembled onto a side polished optical fiber (SPF). The enhancement of interaction between the propagating light and the TiO2 nanoparticles (TN) can be obtained via strong evanescent field of the SPF. The strong light-TN interaction gives rise to temperature sensing with a optical power variation of ~4dB in SPF experimentally for an environment temperature ranging from -7.8°C to 77.6°C. The novel temperature sensor shows a sensitivity of ~0.044 dB/°C. The TN-based fiber-optic temperature sensor is facile to manufactured, compatible with fiber-optic interconnections and high potential in photonics applications.

  18. Temperature sensor based on a polymer diffraction grating with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nuzhdin, V. I.; Valeev, V. F.; Galyautdinov, M. F.; Osin, Yu. N.; Stepanov, A. L.

    2018-01-01

    The method is suggested for producing an optical temperature noncontact sensor on a polymer polymethylmethacrylate (PMMA) substrate with a diffraction optical element formed by implanting low-energy high-dose silver ions through a surface mask. Ion implantation is performed at an energy of 30 keV, a radiation dose of 5.0 × 1016 ion cm-2 and an ion beam current density of 2 μA cm-2 through a surface metal mask having the form of grid with square periodical holes (cells) of size 25 μm. In the course of implantation, silver nanoparticles are produced in periodical unmasked domains of irradiated PMMA. Operation of the temperature sensor on diffraction microstructures made of polymer with silver nanoparticles is demonstrated in the range from 20 °C to 95 °C by testing it with a probe radiation of a He - Ne laser.

  19. High resolution skin-like sensor capable of sensing and visualizing various sensations and three dimensional shape.

    PubMed

    Xu, Tianbai; Wang, Wenbo; Bian, Xiaolei; Wang, Xiaoxue; Wang, Xiaozhi; Luo, J K; Dong, Shurong

    2015-08-13

    Human skin contains multiple receptors, and is able to sense various stimuli such as temperature, pressure, force, corrosion etc, and to feel pains and the shape of objects. The development of skin-like sensors capable of sensing these stimuli is of great importance for various applications such as robots, touch detection, temperature monitoring, strain gauges etc. Great efforts have been made to develop high performance skin-like sensors, but they are far from perfect and much inferior to human skin as most of them can only sense one stimulus with focus on pressure (strain) or temperature, and are unable to visualize sensations and shape of objects. Here we report a skin-like sensor which imitates real skin with multiple receptors, and a new concept of pain sensation. The sensor with very high resolution not only has multiple sensations for touch, pressure, temperature, but also is able to sense various pains and reproduce the three dimensional shape of an object in contact.

  20. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-07-28

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.