Weon, S Y; Lee, S I; Koopman, B
2004-11-01
Effect of temperature and dissolved oxygen concentration on nitrification rate were investigated with enrichment cultures of nitrifying bacteria. Values of specific nitrite oxidation rate in the absence of ammonia were 2.9-12 times higher than maximum specific ammonia oxidation rates at the same temperatures. The presence of high ammonia levels reversed this relationship, causing maximum specific nitrite oxidation rates to fall to 19 to 45% as high as maximum specific ammonia oxidation rates. This result suggests that nitrification at high ammonia levels will invariably result in nitrite accumulation. The K(O2) for nitrite oxidation in the presence of high ammonia levels was higher than the K(O2) for ammonia oxidation when temperature exceeded 18 degrees C, whereas the opposite was true at lower temperatures. These results indicate that low oxygen tensions will exacerbate nitrite accumulation when water temperature is high.
NASA Technical Reports Server (NTRS)
Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.
1990-01-01
Limited experimental data exists for the specific core loss and dynamic B-H loops for soft magnetic materials for the combined conditions of high frequency and high temperature. This experimental study investigates the specific core loss and dynamic B-H loop characteristics of Supermalloy and Metglas 2605SC over the frequency range of 1 to 50 kHz and temperature range of 23 to 300 C under sinusoidal voltage excitation. The experimental setup used to conduct the investigation is described. The effects of the maximum magnetic flux density, frequency, and temperature on the specific core loss and on the size and shape of the B-H loops are examined.
The effect of high temperature on cause-specific mortality: A multi-county analysis in China.
Ban, Jie; Xu, Dandan; He, Mike Z; Sun, Qinghua; Chen, Chen; Wang, Wentao; Zhu, Pengfei; Li, Tiantian
2017-09-01
Although existing studies have linked high temperature to mortality in a small number of regions, less evidence is available on the variation in the associations between high temperature exposure and cause-specific mortality of multiple regions in China. Our study focused on the use of time series analysis to quantify the association between high temperature and different cause-specific mortalities for susceptible populations for 43 counties in China. Two-stage analyses adopting a distributed lag non-linear model (DLNM) and a meta-analysis allowed us to obtain county-specific estimates and national-scale pooled estimates of the nonlinear temperature-mortality relationship. We also considered different populations stratified by age and sex, causes of death, absolute and relative temperature patterns, and potential confounding from air pollutants. All of the observed cause-specific mortalities are significantly associated with higher temperature. The estimated effects of high temperature on mortality varied by spatial distribution and temperature patterns. Compared with the 90th percentile temperature, the overall relative risk (RR) at the 99th percentile temperature for non-accidental mortality is 1.105 (95%CI: 1.089, 1.122), for circulatory disease is 1.107 (95%CI: 1.081, 1.133), for respiratory disease is 1.095 (95%CI: 1.050, 1.142), for coronary heart disease is 1.073 (95%CI: 1.047, 1.099), for acute myocardial infarction is 1.072 (95%CI: 1.042, 1.104), and for stroke is 1.095 (95%CI: 1.052, 1.138). Based on our findings, we believe that heat-related health effect in China is a significant issue that requires more attention and allocation of existing resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Large-Eddy Simulations of Noise Generation in Supersonic Jets at Realistic Engine Temperatures
NASA Astrophysics Data System (ADS)
Liu, Junhui; Corrigan, Andrew; Kailasanath, K.; Taylor, Brian
2015-11-01
Large-eddy simulations (LES) have been carried out to investigate the noise generation in highly heated supersonic jets at temperatures similar to those observed in high-performance jet engine exhausts. It is found that the exhaust temperature of high-performance jet engines can range from 1000K at an intermediate power to above 2000K at a maximum afterburning power. In low-temperature jets, the effects of the variation of the specific heat ratio as well as the radial temperature profile near the nozzle exit are small and are ignored, but it is not clear whether those effects can be also ignored in highly heated jets. The impact of the variation of the specific heat ratio is assessed by comparing LES results using a variable specific heat ratio with those using a constant specific heat ratio. The impact on both the flow field and the noise distributions are investigated. Because the total temperature near the nozzle wall can be substantially lower than the nozzle total temperature either due to the heating loss through the nozzle wall or due to the cooling applied near the wall, this lower wall temperature may impact the temperature in the shear layer, and thus impact the noise generation. The impact of the radial temperature profile on the jet noise generation is investigated by comparing results of lower nozzle wall temperatures with those of the adiabatic wall condition.
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-01-01
Objective: Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. Methods: We collected data from Beijing and Shanghai, China, during 2007–2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. Results: For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0–27, while the hot effects reached the strongest at lag 0–14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. Conclusion: People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days. PMID:26703637
Effects of Extreme Temperatures on Cause-Specific Cardiovascular Mortality in China.
Wang, Xuying; Li, Guoxing; Liu, Liqun; Westerdahl, Dane; Jin, Xiaobin; Pan, Xiaochuan
2015-12-21
Limited evidence is available for the effects of extreme temperatures on cause-specific cardiovascular mortality in China. We collected data from Beijing and Shanghai, China, during 2007-2009, including the daily mortality of cardiovascular disease, cerebrovascular disease, ischemic heart disease and hypertensive disease, as well as air pollution concentrations and weather conditions. We used Poisson regression with a distributed lag non-linear model to examine the effects of extremely high and low ambient temperatures on cause-specific cardiovascular mortality. For all cause-specific cardiovascular mortality, Beijing had stronger cold and hot effects than those in Shanghai. The cold effects on cause-specific cardiovascular mortality reached the strongest at lag 0-27, while the hot effects reached the strongest at lag 0-14. The effects of extremely low and high temperatures differed by mortality types in the two cities. Hypertensive disease in Beijing was particularly susceptible to both extremely high and low temperatures; while for Shanghai, people with ischemic heart disease showed the greatest relative risk (RRs = 1.16, 95% CI: 1.03, 1.34) to extremely low temperature. People with hypertensive disease were particularly susceptible to extremely low and high temperatures in Beijing. People with ischemic heart disease in Shanghai showed greater susceptibility to extremely cold days.
HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS
The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.
This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K andmore » ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.« less
High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods
NASA Technical Reports Server (NTRS)
Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)
2009-01-01
According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.
Advanced Technology Components for Model GTP305-2 Aircraft Auxiliary Power System.
1980-02-01
minimum specific fuel consumption o A high specific power In addition these studies indicated that a turbine rotor inlet temperature of 20506F still...skirt leading edge had pulled away from the liner in areas at high metal temperatures and then formed an aerodynamic pocket for circulation and combus...cooling is required to prevent high temperature turbine inlet flow from recirculating on the rotor disk. Magnitude of the cooling flow required to
Evidence for a high temperature differentiation in a molten earth: A preliminary appraisal
NASA Technical Reports Server (NTRS)
Murthy, V. Rama
1992-01-01
If the earth were molten during its later stages of accretion as indicated by the present understanding of planetary accretion process, the differentiation that led to the formation of the core and mantle must have occurred at high temperatures in the range of 3000-5000 K because of the effect of pressure on the temperature of melting in the interior of the earth. This calls into question the use of low-temperature laboratory measurements of partition coefficients of trace elements to make inferences about earth accretion and differentiation. The low temperature partition coefficients cannot be directly applied to high temperature fractionations because partition coefficients refer to an equilibrium specific to a temperature for a given reaction, and must change in some proportion to exp 1/RT. There are no laboratory data on partition coefficients at the high temperatures relevant to differentiation in the interior of the earth, and an attempt to estimate high temperature distribution coefficients of siderophile elements was made by considering the chemical potential of a given element at equilibrium and how this potential changes with temperature, under some specific assumptions.
Hydrogen Production from Nuclear Energy via High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Carl M. Stoots; J. Stephen Herring
2006-04-01
This paper presents the technical case for high-temperature nuclear hydrogen production. A general thermodynamic analysis of hydrogen production based on high-temperature thermal water splitting processes is presented. Specific details of hydrogen production based on high-temperature electrolysis are also provided, including results of recent experiments performed at the Idaho National Laboratory. Based on these results, high-temperature electrolysis appears to be a promising technology for efficient large-scale hydrogen production.
High temperature cyclic oxidation data. Part 1: Turbine alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.; Lowell, Carl E.
1989-01-01
Specific-weight-change-versus-time data and x ray diffraction results are presented derived from high temperature cyclic tests on high temperature, high strength nickel-base gamma/gamma prime and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Complete Mie-Gruneisen Equation of State (update)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2016-03-14
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less
High-Temperature Cyclic Oxidation Data, Volume 1
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Garlick, R. G.; Lowell, C. E.
1984-01-01
This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress.
Zhang, Hua; Xu, Heng; Feng, Mengjie; Zhu, Ying
2018-01-01
High temperature significantly alters the amylose content of rice, resulting in mature grains with poor eating quality. However, only few genes and/or quantitative trait loci involved in this process have been isolated and the molecular mechanisms of this effect remain unclear. Here, we describe a floral organ identity gene, OsMADS7, involved in stabilizing rice amylose content at high temperature. OsMADS7 is greatly induced by high temperature at the early filling stage. Constitutive suppression of OsMADS7 stabilizes amylose content under high temperature stress but results in low spikelet fertility. However, rice plants with both stable amylose content at high temperature and normal spikelet fertility can be obtained by specifically suppressing OsMADS7 in endosperm. GBSSI is the major enzyme responsible for amylose biosynthesis. A low filling rate and high expression of GBSSI were detected in OsMADS7 RNAi plants at high temperature, which may be correlated with stabilized amylose content in these transgenic seeds under high temperature. Thus, specific suppression of OsMADS7 in endosperm could improve the stability of rice amylose content at high temperature, and such transgenic materials may be a valuable genetic resource for breeding rice with elite thermal resilience. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Ab-initio study of thermodynamic properties of boron nanowire at atomic scale
NASA Astrophysics Data System (ADS)
Bhuyan, Prabal D.; Gupta, Sanjeev K.; Sonvane, Y.; Gajjar, P. N.
2018-04-01
In the present work, we have optimized ribbon like zigzag structure of boron (B) nanowire (NW) and investigated vibrational and thermodynamic properties using quasi-harmonic approximations (QHA). All positive phonon in the phonon dispersive curve have confirmed dynamical stability of ribbon B-NW. The thermodynamic properties, like Debye temperature, internal energy and specific heat, are calculated as a function of temperature. The variation of specific heat is proportional to T3 Debye law at lower temperature for B-NW, while it becomes constant above room temperature at 1200K; obeys Dulong-Petit's law. The high Debye temperature of 1120K is observed at ambient temperature, which can be attributed to high thermal conductivity. Our study shows that B-NW with high thermal conductivity could be the next generation electron connector for nanoscale electronic devices.
Model A: High-Temperature Tribometer
1992-02-01
spring loaded collet which grips the pin. In previous machines Inconel 625 collets and sleeves with 450 contact angles were used without collet...Triboeter, high temperature, friction, wear 11 1 08__ 19 ABSTRACT (Continue on revere if necewry and identify by blck number) A high temperature...tribometer has been specifically designed and fabricated to accurately measure, in real time, friction and wear characteristics of materials at temperatures
Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S. K.; Lustbader, J.; Musselman, M.
2015-05-06
This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.
Gulab, Hussain; Jan, Muhammad Rasul; Shah, Jasmin; Manos, George
2010-01-01
This paper presents results regarding the effect of various process conditions on the performance of a zeolite catalyst in pyrolysis of high density polyethylene. The results show that polymer catalytic degradation can be operated at relatively low catalyst content reducing the cost of a potential industrial process. As the polymer to catalyst mass ratio increases, the system becomes less active, but high temperatures compensate for this activity loss resulting in high conversion values at usual batch times and even higher yields of liquid products due to less overcracking. The results also show that high flow rate of carrier gas causes evaporation of liquid products falsifying results, as it was obvious from liquid yield results at different reaction times as well as the corresponding boiling point distributions. Furthermore, results are presented regarding temperature effects on liquid selectivity. Similar values resulted from different final reactor temperatures, which are attributed to the batch operation of the experimental equipment. Since polymer and catalyst both undergo the same temperature profile, which is the same up to a specific time independent of the final temperature. Obviously, this common temperature step determines the selectivity to specific products. However, selectivity to specific products is affected by the temperature, as shown in the corresponding boiling point distributions, with higher temperatures showing an increased selectivity to middle boiling point components (C(8)-C(9)) and lower temperatures increased selectivity to heavy components (C(14)-C(18)).
NASA Technical Reports Server (NTRS)
Tower, Leonard K; Gammon, Benson E
1953-01-01
The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.
Nonequilibrium Phase Chemistry in High Temperature Structure Alloys
NASA Technical Reports Server (NTRS)
Wang, R.
1991-01-01
Titanium and nickel aluminides of nonequilibrium microstructures and in thin gauge thickness were identified, characterized and produced for potential high temperature applications. A high rate sputter deposition technique for rapid surveillance of the microstructures and nonequilibrium phase is demonstrated. Alloys with specific compositions were synthesized with extended solid solutions, stable dispersoids, and specific phase boundaries associated with different heat treatments. Phase stability and mechanical behavior of these nonequilibrium alloys were investigated and compared.
NASA Technical Reports Server (NTRS)
Willett, Mike
2015-01-01
Orbital Research, Inc., developed, built, and tested three high-temperature components for use in the design of a data concentrator module in distributed turbine engine control. The concentrator receives analog and digital signals related to turbine engine control and communicates with a full authority digital engine control (FADEC) or high-level command processor. This data concentrator follows the Distributed Engine Controls Working Group (DECWG) roadmap for turbine engine distributed controls communication development that operates at temperatures at least up to 225 C. In Phase I, Orbital Research developed detailed specifications for each component needed for the system and defined the total system specifications. This entailed a combination of system design, compiling existing component specifications, laboratory testing, and simulation. The results showed the feasibility of the data concentrator. Phase II of this project focused on three key objectives. The first objective was to update the data concentrator design modifications from DECWG and prime contractors. Secondly, the project defined requirements for the three new high-temperature, application-specific integrated circuits (ASICs): one-time programmable (OTP), transient voltage suppression (TVS), and 3.3V. Finally, the project validated each design by testing over temperature and under load.
Schuster, C; Estrella, N; Menzel, A
2014-03-01
The impact of global warming on phenology has been widely studied, and almost consistently advancing spring events have been reported. Especially in alpine regions, an extraordinary rapid warming has been observed in the last decades. However, little is known about phenological phases over the whole vegetation period at high elevations. We observed 12 phenological phases of seven tree species and measured air temperature at 42 sites along four transects of about 1000 m elevational range in the years 2010 and 2011 near Garmisch-Partenkirchen, Germany. Site- and species-specific onset dates for the phenological phases were determined and related to elevation, temperature lapse rates and site-specific temperature sums. Increasing temperatures induced advanced spring and delayed autumn phases, in which both yielded similar magnitudes. Delayed leaf senescence could therefore have been underestimated until now in extending the vegetation period. Not only the vegetation period, but also phenological periods extended with increasing temperature. Moreover, sensitivity to elevation and temperature strongly depends on the specific phenological phase. Differences between species and groups of species (deciduous, evergreen, high elevation) were found in onset dates, phenological response rates and also in the effect of chilling and forcing temperatures. Increased chilling days highly reduced forcing temperature requirements for deciduous trees, but less for evergreen trees. The problem of shifted species associations and phenological mismatches due to species-specific responses to increasing temperature is a recent topic in ecological research. Therefore, we consider our findings from this novel, dense observation network in an alpine area of particular importance to deepen knowledge on phenological responses to climate change. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.
Electrolytes for Use in High Energy Lithium-Ion Batteries with Wide Operating Temperature Range
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.
2011-01-01
Objectives of this work are: (1) Develop advanced Li -ion electrolytes that enable cell operation over a wide temperature range (i.e., -30 to +60C). (2) Improve the high temperature stability and lifetime characteristics of wide operating temperature electrolytes. (3) Improve the high voltage stability of these candidate electrolytes systems to enable operation up to 5V with high specific energy cathode materials. (4) Define the performance limitations at low and high temperature extremes, as well as, life limiting processes. (5) Demonstrate the performance of advanced electrolytes in large capacity prototype cells.
Temperature, hospital admissions and emergency room visits in Lhasa, Tibet: a time-series analysis.
Bai, Li; Cirendunzhu; Woodward, Alistair; Dawa; Zhaxisangmu; Chen, Bin; Liu, Qiyong
2014-08-15
Tibet of China, with an average altitude of over 4000 m, has experienced noticeable changes in its climate over the last 50 years. The association between temperature and morbidity (most commonly represented by hospital admissions) has been documented mainly in developed countries. Little is known about patterns in China; nor have the health effects of temperature variations been closely studied in highland areas, worldwide. We investigated the temperature-morbidity association in Lhasa, the capital city of Tibet, using sex- and age-specific hospitalizations, excluding those due to external causes. A distributed lag non-linear model (DLNM) was applied to assess the nonlinear and delayed effects of temperature on morbidity (including total emergency room visits, total and cause-specific hospital admissions, sex- and age-specific non-external admissions). High temperatures are associated with increases in morbidity, to a greater extent than low temperatures. Lag effects of high and low temperatures were cause-specific. The relative risks (RR) of high temperature for total emergency room visits and non-external hospitalizations were 1.162 (95% CI: 1.002-1.349) and 1.161 (95% CI: 1.007-1.339) respectively, for lag 0-14 days. The strongest cumulative effect of heat for lag 0-27 days was on admissions for infectious diseases (RR: 2.067, 95% CI: 1.026-4.027). Acute heat effects at lag 0 were related with increases of renal (RR: 1.478, 95% CI: 1.005-2.174) and respiratory diseases (RR: 1.119, 95% CI: 1.010-1.240), whereas immediate cold effects increased admission for digestive diseases (RR: 1.132, 95% CI: 1.002-1.282). Those ≥65 years of age and males were more vulnerable to high temperatures. We provide a first look at the temperature-morbidity relationship in Tibet. Exposure to both hot and cold temperatures resulted in increased admissions to hospital, but the immediate causes varied. We suggest that initiatives should be taken to reduce the adverse effects of temperature extremes in Tibet. Copyright © 2014. Published by Elsevier B.V.
Gao, Jinghong; Sun, Yunzong; Liu, Qiyong; Zhou, Maigeng; Lu, Yaogui; Li, Liping
2015-02-01
Few multi-city studies have been conducted to explore the regional level definition of heat wave and examine the association between extreme high temperature and mortality in developing countries. The purpose of the present study was to investigate the impact of extreme high temperature on mortality and to explore the local definition of heat wave in five Chinese cities. We first used a distributed lag non-linear model to characterize the effects of daily mean temperature on non-accidental mortality. We then employed a generalized additive model to explore the city-specific definition of heat wave. Finally, we performed a comparative analysis to evaluate the effectiveness of the definition. For each city, we found a positive non-linear association between extreme high temperature and mortality, with the highest effects appearing within 3 days of extreme heat event onset. Specifically, we defined individual heat waves of Beijing and Tianjin as being two or more consecutive days with daily mean temperatures exceeding 30.2 °C and 29.5 °C, respectively, and Nanjing, Shanghai and Changsha heat waves as ≥3 consecutive days with daily mean temperatures higher than 32.9 °C, 32.3 °C and 34.5 °C, respectively. Comparative analysis generally supported the definition. We found extreme high temperatures were associated with increased mortality, after a short lag period, when temperatures exceeded obvious threshold levels. The city-specific definition of heat wave developed in our study may provide guidance for the establishment and implementation of early heat-health response systems for local government to deal with the projected negative health outcomes due to heat waves. Copyright © 2014 Elsevier B.V. All rights reserved.
Silicon Carbide Nanotube Oxidation at High Temperatures
NASA Technical Reports Server (NTRS)
Ahlborg, Nadia; Zhu, Dongming
2012-01-01
Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.
NASA Astrophysics Data System (ADS)
Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.
2015-02-01
Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.
49 CFR Appendix B to Part 192 - Qualification of Pipe
Code of Federal Regulations, 2014 CFR
2014-10-01
...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...
49 CFR Appendix B to Part 192 - Qualification of Pipe
Code of Federal Regulations, 2012 CFR
2012-10-01
...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...
49 CFR Appendix B to Part 192 - Qualification of Pipe
Code of Federal Regulations, 2013 CFR
2013-10-01
...—Steel pipe, “Standard Specification for Seamless Carbon Steel Pipe for High Temperature Service... pipe, “Standard Specification for Metal-Arc-Welded Steel Pipe for Use with High-Pressure Transmission...). ASTM A672—Steel pipe, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure...
Thermodynamic properties of OsB under high temperature and high pressure
NASA Astrophysics Data System (ADS)
Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang
2011-09-01
The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.
NASA Astrophysics Data System (ADS)
Hofstraat, Johannes W.; van Zeijl, W. J.; Smedes, F.; Ariese, Freek; Gooijer, Cees; Velthorst, Nel H.; Locher, R.; Renn, Alois; Wild, Urs P.
1989-05-01
High-resolution fluorescence spectroscopy may be used to obtain highly specific, vibrationally resolved spectral signatures of molecules. Two techniques are presented that both make use of low temperature, solid matrices. In Shpol'skii spectroscopy highly resolved spectra are obtained by employing n-alkanes as solvents that form neat crystalline matrices at low temperatures in which the guest molecules occupy well defined substitutional sites. Fluorescence line-narrowing spectroscopy is based on the application of selective (mostly laser-) excitation of the guest molecules. Principles and analytical applications of both techniques will be discussed. Specific attention will be paid to the determination of pyrene in bird meat by means of Shpol'skii spectroscopy and to the possibilities of applying two-dimensional fluorescence line-narrowing spectroscopy.
New World Vistas: Air and Space Power for the 21st Century, Materials Volume.
1996-06-01
derivatives from niche (non-silicon) materials: IR sensors, radars, lasers, and high - temperature , adverse-environment electronics. Investment in these...Develop metastable interstitial composites to create extremely high temperatures for destroying chemical biological warfare agents. " Explosives: 1...synthesize of high temperature materials that will be tailored for specific applications/ components. These materials will tend to have microstructures on
Woo, Ji-Min; Yang, Kyung-Mi; Kim, Sae-Um; Blank, Lars M; Park, Jin-Byung
2014-07-01
Cellular responses of Saccharomyces cerevisiae to high temperatures of up to 42 °C during ethanol fermentation at a high glucose concentration (i.e., 100 g/L) were investigated. Increased temperature correlated with stimulated glucose uptake to produce not only the thermal protectant glycerol but also ethanol and acetic acid. Carbon flux into the tricarboxylic acid (TCA) cycle correlated positively with cultivation temperature. These results indicate that the increased demand for energy (in the form of ATP), most likely caused by multiple stressors, including heat, acetic acid, and ethanol, was matched by both the fermentation and respiration pathways. Notably, acetic acid production was substantially stimulated compared to that of other metabolites during growth at increased temperature. The acetic acid produced in addition to ethanol seemed to subsequently result in adverse effects, leading to increased production of reactive oxygen species. This, in turn, appeared to cause the specific growth rate, and glucose uptake rate reduced leading to a decrease of the specific ethanol production rate far before glucose depletion. These results suggest that adverse effects from heat, acetic acid, ethanol, and oxidative stressors are synergistic, resulting in a decrease of the specific growth rate and ethanol production rate and, hence, are major determinants of cell stability and ethanol fermentation performance of S. cerevisiae at high temperatures. The results are discussed in the context of possible applications.
A high-temperature wideband pressure transducer
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1975-01-01
Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.
Method For Synthesizing Extremely High-Temperature Melting Materials
Saboungi, Marie-Louise; Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Method for synthesizing extremely high-temperature melting materials
Saboungi, Marie-Louise; Glorieux, Benoit
2007-11-06
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as carbides and transition-metal, lanthanide and actinide oxides, using an aerodynamic levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Method for Synthesizing Extremeley High Temperature Melting Materials
Saboungi, Marie-Louise and Glorieux, Benoit
2005-11-22
The invention relates to a method of synthesizing high-temperature melting materials. More specifically the invention relates to a containerless method of synthesizing very high temperature melting materials such as borides, carbides and transition-metal, lanthanide and actinide oxides, using an Aerodynamic Levitator and a laser. The object of the invention is to provide a method for synthesizing extremely high-temperature melting materials that are otherwise difficult to produce, without the use of containers, allowing the manipulation of the phase (amorphous/crystalline/metastable) and permitting changes of the environment such as different gaseous compositions.
Experimental investigation of refractory metals in the premelting region during fast heating
NASA Astrophysics Data System (ADS)
Senchenko, V. N.; Belikov, R. S.; Popov, V. S.
2015-11-01
This work demonstrates experimental possibility of investigation of high refractory materials around its melting point, particularly in premelting region with high accuracy. In this article authors describe the developed experimental setup based on rapid resistive self-heating of a sample by a large current pulse generated by a capacitor discharge circuit that allow fast pulse interruption by temperature feedback signal. The sample temperature was measured with a two-channel microsecond radiation pyrometer. Preliminary experiments were conducted on tantalum and molybdenum at heating speed of 108 K/s. The method allows investigating thermophysical properties of refractory conductive materials such as melting temperature, melting heat, specific resistivity, specific enthalpy and specific heat capacity in solid and liquid phase, especially in premelting area.
Wan, Guijun; Dang, Zhihao; Wu, Gang; Parajulee, Megha N; Ge, Feng; Chen, Fajun
2014-05-01
The approval of transgenic Bacillus thuringiensis (Bt) rice by China was momentous for biotech crops, although it has yet to be approved for commercial production. Non-target pest problems in rice paddies, such as the three ecologically similar species of planthoppers Nilaparvata lugens, Laodelphax striatellus and Sogatella furcifera, could become increasingly serious under global climate change. Fused (Cry1Ab/Cry1Ac) and single (Cry1Ab) transgenic Bt rice were evaluated for effects on species-specific responses of planthoppers to elevated carbon dioxide (CO2) and temperature. Transgenic Bt rice lines significantly modified species-specific responses of the planthoppers to elevated CO2 and temperature. High temperature appears to favour outbreaks of S. furcifera relative to N. lugens and L. striatellus when feeding upon fused transgenic Bt rice, especially at elevated CO2 . Elevated CO2 at high temperature appears to be a factor reducing S. furcifera occurrence when feeding upon single transgenic Bt rice. Different types of transgenic Bt rice alter the species-specific responses of non-target planthoppers to elevated CO2 and temperature. Compared with their non-transgenic parental lines, the single transgenic Bt rice shows better performance in controlling the non-target planthopper S. furcifera by comparison with the fused transgenic Bt rice under elevated CO2 and temperature. It is suggested that multitypes of transgenic Bt rice be used in the field simultaneously in order to take advantage of high transgenic diversity for optimal performance against all pests in paddy fields. © 2013 Society of Chemical Industry.
Spin-State Transition in La1-xSrxCoO3 Single Crystals
NASA Astrophysics Data System (ADS)
Bhardwaj, S.; Prabhakaran, D.; Awasthi, A. M.
2011-07-01
We present a study of the thermal conductivity (κ), specific heat (Cp) and Raman spectra of La1-xSrxCoO3 (x = 0,0.1) single crystals. Both the specimens have low thermal conductivity and board Raman peaks, arising from strong scattering of phonons by lattice disorder, produced by (and doping-enhanced) spin-states admixture of the Co3+ ions. The thermal conductivity anomalously deviates from ˜1/T behaviour at high (room) temperatures, expected of an insulator. High-temperature specific heat reveals large decrease in the metal-insulator (M-I) transition temperature with Sr-doping.
Spatial and temporal variation in the association between temperature and salmonellosis in NZ.
Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P
2016-04-01
Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.
NASA Astrophysics Data System (ADS)
Wavering, Thomas A.; Greene, Jonathan A.; Meller, Scott A.; Bailey, Timothy A.; Kozikowski, Carrie L.; Lenahan, Shannon M.; Murphy, Kent A.; Camden, Michael P.; Simmons, Larry W.
1999-01-01
Optical fiber sensors have numerous advantages over conventional sensing technologies. One such advantage is that optical fiber sensors can operate in high temperature environments. While most conventional electrical-based sensors do not operate reliably over 300 degrees C, fused silica based optical fiber sensors can survive up to 900 degrees C, and sapphire based optical fiber sensors can survive up to 2000 degrees C. Using both fused silica and sapphire technologies, we present result for high temperature strain, pressure, and temperature sensors using Extrinsic Fabry-Perot INterferometric-based and Bragg grating sensors. High temperature strain and temperature sensors were used to conduct fatigue testing of composite coupons at 600 degrees C. The results from these specific high temperature applications are presented along with future applications and directions for these sensors.
Cheng, Chang-Hong; Guo, Zhi-Xun; Ye, Chao-Xia; Wang, An-Li
2018-02-01
The present study was conducted to investigate the effects of astaxanthin on growth performance, biochemical parameters, ROS production, and immune-related gene expressions of the pufferfish (Takifugu obscurus) under high temperature stress. The experimental basal diets supplemented with astaxanthin at the rates of 0 (control), 20, 40, 80, 160, and 320 mg kg -1 were fed to fish for 8 weeks. The results showed that the fish fed diet with 80, 160, and 320 mg kg -1 astaxanthin significantly improved weight gain and specific growth rate. Furthermore, fish fed the moderate dietary astaxanthin increased plasma alkaline phosphatase activities, and decrease plasma aspartate aminotransferase and alanine aminotransferase activities. After the feeding trial, the fish were exposed to high temperature stress for 48 h. The results shown that astaxanthin could suppress ROS production induced by high temperature stress. Meanwhile, compared with the control group, the astaxanthin groups increased SOD, CAT, and HSP70 mRNA levels under high temperature stress. These results showed that the basal diet supplemented with 80-320 mg kg -1 astaxanthin could enhance growth, nonspecific immune responses, and antioxidant defense system and improve resistance against high temperature stress in pufferfish.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, Chain T.; Takeyama, Masao
1994-01-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250.degree. C. and improved room temperature ductility. The alloys contain a Cr.sub.2 Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements.
Two-phase chromium-niobium alloys exhibiting improved mechanical properties at high temperatures
Liu, C.T.; Takeyama, Masao.
1994-02-01
The specification discloses chromium-niobium alloys which exhibit improved mechanical properties at high temperatures in the range of 1250 C and improved room temperature ductility. The alloys contain a Cr[sub 2]Nb-rich intermetallic phase and a Cr-rich phase with an overall niobium concentration in the range of from about 5 to about 18 at. %. The high temperature strength is substantially greater than that of state of the art nickel-based superalloys for enhanced high temperature service. Further improvements in the properties of the compositions are obtained by alloying with rhenium and aluminum; and additional rare-earth and other elements. 14 figures.
Method And Apparatus For Evaluatin Of High Temperature Superconductors
Fishman, Ilya M.; Kino, Gordon S.
1996-11-12
A technique for evaluation of high-T.sub.c superconducting films and single crystals is based on measurement of temperature dependence of differential optical reflectivity of high-T.sub.c materials. In the claimed method, specific parameters of the superconducting transition such as the critical temperature, anisotropy of the differential optical reflectivity response, and the part of the optical losses related to sample quality are measured. The apparatus for performing this technique includes pump and probe sources, cooling means for sweeping sample temperature across the critical temperature and polarization controller for controlling a state of polarization of a probe light beam.
Record-high specific conductance and temperature in San Francisco Bay during water year 2014
Downing-Kunz, Maureen; Work, Paul; Shellenbarger, Gregory
2015-11-18
In water year (WY) 2014 (October 1, 2013, through September 30, 2014), our network measured record-high values of specific conductance and water temperature at several stations during a period of very little freshwater inflow from the Sacramento–San Joaquin Delta and other tributaries because of severe drought conditions in California. This report summarizes our observations for WY2014 and compares them to previous years that had different levels of freshwater inflow.
High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware
NASA Technical Reports Server (NTRS)
Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.
2016-01-01
Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JaeHwa Koh; DuckJoo Yoon; Chang H. Oh
2010-07-01
An electrolyzer model for the analysis of a hydrogen-production system using a solid oxide electrolysis cell (SOEC) has been developed, and the effects for principal parameters have been estimated by sensitivity studies based on the developed model. The main parameters considered are current density, area specific resistance, temperature, pressure, and molar fraction and flow rates in the inlet and outlet. Finally, a simple model for a high-temperature hydrogen-production system using the solid oxide electrolysis cell integrated with very high temperature reactors is estimated.
Effects of variable specific heat on energy transfer in a high-temperature supersonic channel flow
NASA Astrophysics Data System (ADS)
Chen, Xiaoping; Li, Xiaopeng; Dou, Hua-Shu; Zhu, Zuchao
2018-05-01
An energy transfer mechanism in high-temperature supersonic turbulent flow for variable specific heat (VSH) condition through turbulent kinetic energy (TKE), mean kinetic energy (MKE), turbulent internal energy (TIE) and mean internal energy (MIE) is proposed. The similarities of energy budgets between VSH and constant specific heat (CSH) conditions are investigated by introducing a vibrational energy excited degree and considering the effects of fluctuating specific heat. Direct numerical simulation (DNS) of temporally evolving high-temperature supersonic turbulent channel flow is conducted at Mach number 3.0 and Reynolds number 4800 combined with a constant dimensional wall temperature 1192.60 K for VSH and CSH conditions to validate the proposed energy transfer mechanism. The differences between the terms in the two kinetic energy budgets for VSH and CSH conditions are small; however, the magnitude of molecular diffusion term for VSH condition is significantly smaller than that for CSH condition. The non-negligible energy transfer is obtained after neglecting several small terms of diffusion, dissipation and compressibility related. The non-negligible energy transfer involving TIE includes three processes, in which energy can be gained from TKE and MIE and lost to MIE. The same non-negligible energy transfer through TKE, MKE and MIE is observed for both the conditions.
Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters
NASA Astrophysics Data System (ADS)
Kiseleva, E. A.; Zhurilova, M. A.; Kochanova, S. A.; Shkolnikov, E. J.; Tarasenko, A. B.; Zaitseva, O. V.; Uryupina, O. V.; Valyano, G. V.
2018-01-01
Electrochemical double-layer capacitors (EDLC) offer energy storage technology, highly demanded for rapid transition processes in transport and stationary applications, concerned with fast power fluctuations. Rough structure of activated carbon, widely used as electrode material because of its high specific area, leads to poor electrode conductivity. Therefore there is the need for conductive additive to decrease internal resistance and to achieve high specific power and high specific energy. Usually carbon blacks are widely used as conductive additive. In this paper electrodes with different conductive additives—two types of carbon blacks and single-walled carbon nanotubes—were prepared and characterized in organic electrolyte-based EDLC cells. Electrodes are based on original wood derived activated carbon produced by potassium hydroxide high-temperature activation at Joint Institute for High Temperatures RAS. Electrodes were prepared from slurry by cold-rolling. For electrode characterization cyclic voltammetry, impedance spectra analysis, equivalent series resistance measurements and galvanostatic charge-discharge were used.
A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.
Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng
2018-02-01
Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Application Specific Electronic Module Program (ASEM), Final Technical Report.
1994-12-14
relatively high temperatures , may induce a metal break or other continuity problems. Secondly, the improved electrical environment at the module level vs...wafer probe can permit higher speed tests to be applied, isolating marginal die. Thirdly, high reliability screens, such as temperature cycling, bum-in...The high temperature aging is done at 150’ C for 500 hours. The thermal cycle treatments are from 0- 100 0 C and 3 cycles per hour are done. The
An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.
Baker, Graham; de Borst, René
2005-11-15
The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics.
Development of Electrolytes for Low Temperature Rechargable Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Smart, M. C.; Huang, C. K.; Ratnakumar, B. V.; Surampudi, S.
1996-01-01
NASA's future missions aimed at exploring Mars require high specific energy bateries that can be operated at temperatures of -20(deg)C and below...This paper maily deals with the results of our work to develop advanced low temperature electrolytes.
Wang, Zhiqiang; Shi, Xiaojie; Tolbert, Leon M.; ...
2014-04-30
Here we present a board-level integrated silicon carbide (SiC) MOSFET power module for high temperature and high power density application. Specifically, a silicon-on-insulator (SOI)-based gate driver capable of operating at 200°C ambient temperature is designed and fabricated. The sourcing and sinking current capability of the gate driver are tested under various ambient temperatures. Also, a 1200 V/100 A SiC MOSFET phase-leg power module is developed utilizing high temperature packaging technologies. The static characteristics, switching performance, and short-circuit behavior of the fabricated power module are fully evaluated at different temperatures. Moreover, a buck converter prototype composed of the SOI gate drivermore » and SiC power module is built for high temperature continuous operation. The converter is operated at different switching frequencies up to 100 kHz, with its junction temperature monitored by a thermosensitive electrical parameter and compared with thermal simulation results. The experimental results from the continuous operation demonstrate the high temperature capability of the power module at a junction temperature greater than 225°C.« less
NASA Astrophysics Data System (ADS)
Choi, Poo Reum; Lee, Eunji; Kwon, Soon Hyung; Jung, Ji Chul; Kim, Myung-Soo
2015-12-01
The present study reports the influence of pre-carbonization on the properties of KOH-activated coal tar pitch (CTP). The change of crystallinity and pore structure of pre-carbonized CTPs as well as their activated carbons (ACs) as function of pre-carbonization temperature are investigated. The crystallinity of pre-carbonized CTPs increases with increasing the carbonization temperature up to 600 °C, but a disorder occurs during the carbonization around 700 °C and an order happens gradually with increasing the carbonization temperatures in range of 800-1000 °C. The CTPs pre-carbonized at high temperatures are more difficult to be activated with KOH than those pre-carbonized at low temperatures due to the increase of micro-crystalline size and the decrease of surface functional groups. The micro-pores and meso-pores are well developed at around 1.0 nm and 2.4 nm, respectively, as the ACs are pre-carbonized at temperatures of 500-600 °C, exhibiting high specific capacitances as electrode materials for electric double layer capacitor (EDLC). Although the specific surface area (SSA) and pore volume of ACs pre-carbonized at temperatures of 900-1000 °C are extraordinary low (non-porous) as compared to those of AC pre-carbonized at 600 °C, their specific capacitances are comparable to each other. The large specific capacitances with low SSA ACs can be attributed to the structural change resulting from the electrochemical activation during the 1st charge above 2.0 V.
NASA Astrophysics Data System (ADS)
Song, B.; Antoun, B. R.; Boston, M.
2012-05-01
We modified the design originally developed by Kuokkala's group to develop an automated high-temperature Kolsky compression bar for characterizing high-rate properties of 304L stainless steel at elevated temperatures. Additional features have been implemented to this high-temperature Kolsky compression bar for recrystallization investigation. The new features ensure a single loading on the specimen and precise time and temperature control for quenching to the specimen after dynamic loading. Dynamic compressive stress-strain curves of 304L stainless steel were obtained at 21, 204, 427, 649, and 871 °C (or 70, 400, 800, 1200, and 1600 °F) at the same constant strain rate of 332 s-1. The specimen subjected to specific time and temperature control for quenching after a single dynamic loading was preserved for investigating microstructure recrystallization.
Heat pipe cooled power magnetics
NASA Technical Reports Server (NTRS)
Chester, M. S.
1979-01-01
A high frequency, high power, low specific weight (0.57 kg/kW) transformer developed for space use was redesigned with heat pipe cooling allowing both a reduction in weight and a lower internal temperature rise. The specific weight of the heat pipe cooled transformer was reduced to 0.4 kg/kW and the highest winding temperature rise was reduced from 40 C to 20 C in spite of 10 watts additional loss. The design loss/weight tradeoff was 18 W/kg. Additionally, allowing the same 40 C winding temperature rise as in the original design, the KVA rating is increased to 4.2 KVA, demonstrating a specific weight of 0.28 kg/kW with the internal loss increased by 50W. This space environment tested heat pipe cooled design performed as well electrically as the original conventional design, thus demonstrating the advantages of heat pipes integrated into a high power, high voltage magnetic. Another heat pipe cooled magnetic, a 3.7 kW, 20A input filter inductor was designed, developed, built, tested, and described. The heat pipe cooled magnetics are designed to be Earth operated in any orientation.
High-Temperature and Pressure Aluminum Reactions in Carbon Dioxide Rich Post-Detonation Environments
NASA Astrophysics Data System (ADS)
Tappan, Bryce; Manner, Virginia; Pemberton, Steven; Lieber, Mark; Johnson, Carl; Sanders, Eric
2013-06-01
Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.
High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments
NASA Astrophysics Data System (ADS)
Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.
2014-05-01
Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Hossain, S.; Ratnakumar, B. V.; Loutfy, R.; Whitcanack, L. D.; Chin, K. B.; Davies, E. D.; Surampudi, S.; Narayanan, S. R.
2004-01-01
NASA has interest in secondary energy storage batteries that display high specific energy, high energy density, long life characteristics, and perform well over a wide range of temperatures, in order to enable a number of future applications.
2009-12-01
Malliakos. Detonation cell size measurements in high-temperature hydrogen- air-steam mixtures at the bnl high-temperature combustion facility. Technical...Report NUREG/CR-6391, BNL -NUREG-52482, Brookhaven National Laboratory, 1997. [13] W.B. Benedick, R. Knystautas, and J.H.S. Lee. Large-scale
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.
2011-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames.1,2 Conventional storable propellants produce average specific impulse. Nuclear thermal rockets capable of producing high specific impulse are proposed. Nuclear thermal rockets employ heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K), and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited.3 The primary concern is the mechanical failure of fuel elements that employ high-melting-point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. The purpose of the testing is to obtain data to assess the properties of the non-nuclear support materials, as-fabricated, and determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures. The fission process of the planned fissile material and the resulting heating performance is well known and does not therefore require that active fissile material be integrated in this testing. A small-scale test bed designed to heat fuel element samples via non-contact radio frequency heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Simulation of Thermal Behavior in High-Precision Measurement Instruments
NASA Astrophysics Data System (ADS)
Weis, Hanna Sophie; Augustin, Silke
2008-06-01
In this paper, a way to modularize complex finite-element models is described. The modularization is done with temperature fields that appear in high-precision measurement instruments. There, the temperature negatively impacts the achievable uncertainty of measurement. To correct for this uncertainty, the temperature must be known at every point. This cannot be achieved just by measuring temperatures at specific locations. Therefore, a numerical treatment is necessary. As the system of interest is very complex, modularization is unavoidable to obtain good numerical results.
Fundamental aspects of and failure modes in high-temperature composites
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Ginty, Carol A.
1990-01-01
Fundamental aspects of and attendant failure mechanisms for high temperature composites are summarized. These include: (1) in-situ matrix behavior; (2) load transfer; (3) limits on matrix ductility to survive a given number of cyclic loadings; (4) fundamental parameters which govern thermal stresses; (5) vibration stresses; and (6) impact resistance. The resulting guidelines are presented in terms of simple equations which are suitable for the preliminary assessment of the merits of a particular high temperature composite in a specific application.
Structure refinement for tantalum nitrides nanocrystals with various morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai
2012-07-15
Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less
Aidoo, Moses Kwame; Bdolach, Eyal; Fait, Aaron; Lazarovitch, Naftali; Rachmilevitch, Shimon
2016-09-01
Roots play important roles in regulating whole-plant carbon and water relations in response to extreme soil temperature. Three foxtail millet (Setaria italica L.) lines (448-Ames 21521, 463-P1391643 and 523-P1219619) were subjected to two different soil temperatures (28 and 38 °C). The gas exchange, chlorophyll fluorescence, root morphology and central metabolism of leaves and roots were studied at the grain-filling stage. High soil temperature (38 °C) significantly influenced the shoot transpiration, stomatal conductance, photosynthesis, root growth and metabolism of all lines. The root length and area were significantly reduced in lines 448 and 463 in response to the stress, while only a small non-specific reduction was observed in line 523 in response to the treatment. The shift of root metabolites in response to high soil temperature was also genotype specific. In response to high soil temperature, glutamate, proline and pyroglutamate were reduced in line 448, and alanine, aspartate, glycine, pyroglutamate, serine, threonine and valine were accumulated in line 463. In the roots of line 523, serine, threonine, valine, isomaltose, maltose, raffinose, malate and itaconate were accumulated. Root tolerance to high soil temperature was evident in line 523, in its roots growth potential, lower photosynthesis and stomatal conductance rates, and effective utilization and assimilation of membrane carbon and nitrogen, coupled with the accumulation of protective metabolites. Copyright © 2016. Published by Elsevier Masson SAS.
Advanced high-temperature batteries
NASA Technical Reports Server (NTRS)
Nelson, P. A.
1989-01-01
Recent results for Li-Al/FeS2 cells and bipolar battery design have shown the possibility of achieving high specific energy (210 Wh/kg) and high specific power (239 W/kg) at the cell level for an electric vehicle application. Outstanding performance is also projected for sodium/metal chloride cells having large electrolyte areas and thin positive electrodes.
Young, K M; Cramp, R L; Franklin, C E
2013-02-01
Animals that undergo prolonged dormancy experience minimal muscle disuse atrophy (MDA) compared to animals subjected to artificial immobilisation over shorter timeframes. An association between oxidative stress and MDA suggests that metabolic depression presumably affords dormant animals some protection against muscle disuse. Because aerobic metabolism is temperature sensitive, we proposed that MDA in dormant (aestivating) ectotherms would be enhanced at elevated temperatures. In the green-striped burrowing frog, Cyclorana alboguttata, the thermal sensitivity of skeletal muscle metabolic rate is muscle-specific. We proposed that the degree of atrophy experienced during aestivation would correlate with the thermal sensitivity of muscle metabolic rate such that muscles with a relatively high metabolic rate at high temperatures would experience more disuse atrophy. To test this hypothesis, we examined the effect of temperature and aestivation on the extent of MDA in two functionally different muscles: the M. gastrocnemius (jumping muscle) and M. iliofibularis (non-jumping muscle), in C. alboguttata aestivating at 24 or 30 °C for 6 months. We compared a range of morphological parameters from muscle cross-sections stained with succinic dehydrogenase to show that muscle-specific patterns of disuse atrophy were consistent with the relative rates of oxygen consumption of those muscle types. However, despite muscle-specific differences in thermal sensitivity of metabolic rate, aestivation temperature did not influence the extent of atrophy in either muscle. Our results suggest that the muscles of frogs aestivating at high temperatures are defended against additional atrophy ensuring protection of muscle function during long periods of immobilisation. Copyright © 2012 Wiley Periodicals, Inc.
Development of high strength, high temperature ceramics
NASA Technical Reports Server (NTRS)
Hall, W. B.
1982-01-01
Improvement in the high-pressure turbopumps, both fuel and oxidizer, in the Space Shuttle main engine were considered. The operation of these pumps is limited by temperature restrictions of the metallic components used in these pumps. Ceramic materials that retain strength at high temperatures and appear to be promising candidates for use as turbine blades and impellers are discussed. These high strength materials are sensitive to many related processing parameters such as impurities, sintering aids, reaction aids, particle size, processing temperature, and post thermal treatment. The specific objectives of the study were to: (1) identify and define the processing parameters that affect the properties of Si3N4 ceramic materials, (2) design and assembly equipment required for processing high strength ceramics, (3) design and assemble test apparatus for evaluating the high temperature properties of Si3N4, and (4) conduct a research program of manufacturing and evaluating Si3N4 materials as applicable to rocket engine applications.
Compact Ceramic Microchannel Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewinsohn, Charles
The objective of the proposed work was to demonstrate the feasibility of a step change in power plant efficiency at a commercially viable cost, by obtaining performance data for prototype, compact, ceramic microchannel heat exchangers. By performing the tasks described in the initial proposal, all of the milestones were met. The work performed will advance the technology from Technology Readiness Level 3 (TRL 3) to Technology Readiness Level 4 (TRL 4) and validate the potential of using these heat exchangers for enabling high efficiency solid oxide fuel cell (SOFC) or high-temperature turbine-based power plants. The attached report will describe howmore » this objective was met. In collaboration with The Colorado School of Mines (CSM), specifications were developed for a high temperature heat exchanger for three commercial microturbines. Microturbines were selected because they are a more mature commercial technology than SOFC, they are a low-volume and high-value target for market entry of high-temperature heat exchangers, and they are essentially scaled-down versions of turbines used in utility-scale power plants. Using these specifications, microchannel dimensions were selected to meet the performance requirements. Ceramic plates were fabricated with microchannels of these dimensions. The plates were tested at room temperature and elevated temperature. Plates were joined together to make modular, heat exchanger stacks that were tested at a variety of temperatures and flow rates. Although gas flow rates equivalent to those in microturbines could not be achieved in the laboratory environment, the results showed expected efficiencies, robust operation under significant temperature gradients at high temperature, and the ability to cycle the stacks. Details of the methods and results are presented in this final report.« less
Complete Mie-Gruneisen Equation of State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph
2012-06-28
The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less
High-temperature adult-plant resistance, the key for sustainable control of stripe rust
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the U.S. since early 1960s. This article describes practical procedures f...
Packaging Technologies for 500C SiC Electronics and Sensors
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2013-01-01
Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.
On the Use of Accelerated Aging Methods for Screening High Temperature Polymeric Composite Materials
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Grayson, Michael A.
1999-01-01
A rational approach to the problem of accelerated testing of high temperature polymeric composites is discussed. The methods provided are considered tools useful in the screening of new materials systems for long-term application to extreme environments that include elevated temperature, moisture, oxygen, and mechanical load. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for specific aging mechanisms.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-17
... during the winter time, when frequent and persistent temperature inversions occur, were specifically... winds and strong temperature inversions. These meteorological conditions may trap emissions within the... show a very high frequency of surface temperature inversions in the winter. Due to the meteorology...
High-temperature responses of North American cacti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.D.; Didden-Zopfy, B.; Nobel, P.S.
1984-04-01
High-temperature tolerances of 14 species of North American cacti were investigated. A reduction in the proportion of chlorenchyma cells taking up a vital stain (neutral red) and reduced nocturnal acid accumulation were used as indicators of high-temperature damage. All species tolerated relatively high tissue temperatures, the mean maximum tolerance being 64/sup 0/C, with an absolute maximum of 69/sup 0/ for two species of ferocactus. Such tissue tolerances to high temperature may be unsurpassed in vascular plants. Morphological features can affect tissue temperatures. Specifically, thin-stemmed species such as the cylindropuntias attain lower maximum temperatures under identical microclimatic conditions than do moremore » massive species; they also tend to be less tolerant of high-temperature stress. Stem diameter changes of three species of columnar ceriod cacti along a Sonoran Desert latitudinal transect were previously attributed to adaptation to progressively colder temperatures northward. Such changes can also be interpreted as a morphological adaptation to high temperatures, particularly in the southern Sonoran Desert. Interspecific differences in high-temperature tolerance may account for distributional differences among other species. Acclimation of high-temperature tolerances in response to increasing day/night air temperatures was observed in all 14 species, especially at higher growh temperatures. From 40/sup 0/ day/30/sup 0/ night to 50/sup 0//40/sup 0/, the tolerable tissue temperatures increased an average of 6/sup 0/. Half-times for the acclimation shifts were 1-3d. Although cacti attain extremely high tissue temperatures in desert habitats, tolerance of high temperatures and pronounced acclimation potential allow them to occur in some of the hottest habitats in North America.« less
Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions
NASA Technical Reports Server (NTRS)
Wang, Y.; Gupta, A. K.
2001-01-01
The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.
Northwest Manufacturing Initiative
2013-03-26
Testing of Metallic Materials] specifications. For high temperature tests, a heated water bath was use while for low temperature testing down to...Weld metal and heat affected zones were evaluated using Charpy and E399 fracture toughness methods. The influence of temperature , loading rate, CVN...determine the influence of fracture test methods and welding procedures on toughness. Room temperature E399 tests, (CTS) were carried out under
Record-high specific conductance and water temperature in San Francisco Bay during water year 2015
Work, Paul A.; Downing-Kunz, Maureen; Livsey, Daniel N.
2017-02-22
The San Francisco estuary is commonly defined to include San Francisco Bay (bay) and the adjacent Sacramento–San Joaquin River Delta (delta). The U.S. Geological Survey (USGS) has operated a high-frequency (15-minute sampling interval) water-quality monitoring network in San Francisco Bay since the late 1980s (Buchanan and others, 2014). This network includes 19 stations at which sustained measurements have been made in the bay; currently, 8 stations are in operation (fig. 1). All eight stations are equipped with specific conductance (which can be related to salinity) and water-temperature sensors. Water quality in the bay constantly changes as ocean tides force seawater in and out of the bay, and river inflows—the most significant coming from the delta—vary on time scales ranging from those associated with storms to multiyear droughts. This monitoring network was designed to observe and characterize some of these changes in the bay across space and over time. The data demonstrate a high degree of variability in both specific conductance and temperature at time scales from tidal to annual and also reveal longer-term changes that are likely to influence overall environmental health in the bay.In water year (WY) 2015 (October 1, 2014, through September 30, 2015), as in the preceding water year (Downing-Kunz and others, 2015), the high-frequency measurements revealed record-high values of specific conductance and water temperature at several stations during a period of reduced freshwater inflow from the delta and other tributaries because of persistent, severe drought conditions in California. This report briefly summarizes observations for WY 2015 and compares them to previous years that had different levels of freshwater inflow.
Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto
2015-08-01
Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin of metabolic efficiency. We hypothesize that a temperature increase above Topt (e.g. >31°C) triggers both an increment in mglc and suppression of μmax, which together contribute to an upshift of Yatp/glc from the lower limit and thus compensate for the loss of the safety margin. This trade-off allows adding 10 more degrees to Topt and extends the thermal window up to 40°C, sustaining survival and reproduction in supraoptimal temperatures. Deeper understanding of the limits of thermal tolerance can be practically exploited in biotechnological applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nainiger, J. J.
1978-01-01
An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.
The effect of ambient temperature on diabetes mortality in China: A multi-city time series study.
Yang, Jun; Yin, Peng; Zhou, Maigeng; Ou, Chun-Quan; Li, Mengmeng; Liu, Yunning; Gao, Jinghong; Chen, Bin; Liu, Jiangmei; Bai, Li; Liu, Qiyong
2016-02-01
Few multi-city studies have been conducted to investigate the acute health effects of low and high temperatures on diabetes mortality worldwide. We aimed to examine effects of ambient temperatures on city-/gender-/age-/education-specific diabetes mortality in nine Chinese cities using a two-stage analysis. Distributed lag non-linear model was first applied to estimate the city-specific non-linear and delayed effects of temperatures on diabetes mortality. Pooled effects of temperatures on diabetes mortality were then obtained using meta-analysis, based on restricted maximum likelihood. We found that heat effects were generally acute and followed by a period of mortality displacement, while cold effects could last for over two weeks. The pooled relative risks of extreme high (99th percentile of temperature) and high temperature (90th percentile of temperature) were 1.29 (95%CI: 1.11-1.47) and 1.11 (1.03-1.19) over lag 0-21 days, compared with the 75th percentile of temperature. In contrast, the pooled relative risks over lag 0-21 days were 1.44 (1.25-1.66) for extreme low (1st percentile of temperature) and 1.20 (1.12-1.30) for low temperature (10th percentile of temperature), compared to 25th percentile of temperature. The estimate of heat effects was relatively higher among females than that among males, with opposite trend for cold effects, and the estimates of heat and cold effects were particularly higher among the elderly and those with low education, although the differences between these subgroups were not statistically significant (P>0.05). These findings have important public health implications for protecting diabetes patients from adverse ambient temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.
Thermally switchable dielectrics
Dirk, Shawn M.; Johnson, Ross S.
2013-04-30
Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.
Clay facial masks: physicochemical stability at different storage temperatures.
Zague, Vivian; de Almeida Silva, Diego; Baby, André Rolim; Kaneko, Telma Mary; Velasco, Maria Valéria Robles
2007-01-01
Clay facial masks--formulations that contain a high percentage of solids dispersed in a liquid vehicle--have become of special interest due to specific properties presented by clays, such as particle size, cooling index, high adsorption capacity, and plasticity. Although most of the physicochemical properties of clay dispersions have been studied, specific aspects concerning the physicochemical stability of clay mask products remain unclear. This work aimed at investigating the accelerated physicochemical stability of clay mask formulations stored at different temperatures. Formulations were subjected to centrifuge testing and to thermal treatment for 15 days, during which temperature was varied from -5.0 degrees to 45.0 degrees C. The apparent viscosity and visual aspect (homogeneity) of all formulations were affected by temperature variation, whereas color, odor, and pH value remained unaltered. These results, besides the estimation of physicochemical stability under aging, can be useful in determining the best storage conditions for clay-based formulations.
Containerless experiments in fluid physics in microgravity
NASA Technical Reports Server (NTRS)
Trinh, E. H.
1990-01-01
The physical phenomena associated with the behavior of liquid samples freely suspended in low gravity must be thoroughly understood prior to undertaking detailed scientific studies of the materials under scrutiny. The characteristics of molten specimens under the action of containerless positioning stresses must be identified and separated from the specific phenomena relating to the absence of an overwhelming gravitational field. The strategy designed to optimize the scientific return of reliable experimental data from infrequent microgravity investigations should include the gradual and logical phasing of more sophisticated studies building on the accumulated results from previous flight experiments. Lower temperature fluid physics experiments using model materials can provide a great deal of information that can be useful in analyzing the behavior of high temperature melts. The phasing of the experimental capabilities should, therefore, also include a gradual build-up of more intricate and specialized diagnostic instrumentation and environmental control and monitoring capabilities. Basic physical investigations should also be distinguished from specific materials technology issues. The latter investigations require very specific high temperature (and high vacuum) devices that must be thoroughly mastered on the ground prior to implementing them in space.
USDA-ARS?s Scientific Manuscript database
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease of wheat (Triticum aestivum) worldwide. Wheat high-temperature seedling-plant (HTSP) resistance to Pst is non-race-specific and durable. WRKY transcription factors have proven to play important roles in ...
USDA-ARS?s Scientific Manuscript database
Wheat cultivar Express has durable, high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici). To elucidate the genetic basis of the resistance, Express was crossed with ‘Avocet Susceptible’ (AVS). A mapping population of 146 F5 recombinant inbred lines (R...
2004-09-01
required for a specific application. The list of applications is very extensive and includes: aircraft brakes, electrodes, high temperature molds, rocket...and includes: aircraft brakes, electrodes, high temperature molds, rocket nozzles and exit cones, tires, ink, nuclear reactors and fuel particles...produced. For example carbons can be hard (chars) or soft (blacks), strong (PAN fibers) or weak ( aerogel ), stiff (pitch fibers) or flexible
More Cyclic-Oxidation Data For Turbine Alloys
NASA Technical Reports Server (NTRS)
Barrett, Charles A.; Garlick, Ralph G.
1993-01-01
Document presents data on cyclic oxidation of high-temperature, high-strength, nickel-base and cobalt-base alloys for turbines. Completes presentation of data begun in NASA Technical Memorandum 83665 (Revised 1989), "High-Temperature Cyclic Oxidation Data, Turbine Alloys, Part 1." Data consist of plots and tabulations of changes in specific weight as function of time, and lists of surface and spalled material phases identified by x-ray diffraction measurements.
NASA Astrophysics Data System (ADS)
Spry, James A.; Beaudet, Robert; Schubert, Wayne
Dry heat microbial reduction (DHMR) is the primary method currently used to reduce the microbial load of spacecraft and component parts to comply with planetary protection re-quirements. However, manufacturing processes often involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the specifica-tion in NASA document NPR8020.12, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. Our results from a comprehensive multi-year laboratory research effort have generated en-hanced data sets on four aspects of the current specification: time and temperature effects in combination, the effect that humidity has on spore lethality, and the lethality for spores with exceptionally high thermal resistance (so called "hardies"). This paper describes potential modifications to the specification, based on the data set gener-ated in the referenced studies. The proposed modifications are intended to broaden the scope of the current specification while still maintaining confidence in a conservative interpretation of the lethality of the DHMR process on microorganisms.
Thermodynamic Studies of High Temperature Materials Via Knudsen Cell Mass Spectrometry
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Brady, Michael P.
1997-01-01
The Knudsen Cell technique is a classic technique from high temperature chemistry for studying condensed phase/vapor equilibria. It is based on a small enclosure, usually about 1 cm in diameter by 1 cm high, with an orifice of well-defined geometry. This forms a molecular beam which is analyzed with mass spectrometry. There are many applications to both fundamental and applied problems with high temperature materials. Specific measurements include vapor pressures and vapor compositions above solids, activities of alloy components, and fundamental gas/solid reactions. The basic system is shown. Our system can accommodate a wide range of samples, temperatures, and attachments, such as gas inlets. It is one of only about ten such systems world-wide.
Improved Turn-On and Operating Voltages in AlGaN-Based Deep-Ultraviolet Light-Emitting Diodes
NASA Astrophysics Data System (ADS)
Hao, Guo-Dong; Taniguchi, Manabu; Tamari, Naoki; Inoue, Shin-ichiro
2017-10-01
While good ohmic contact formation has been achieved on both p-GaN and n-AlGaN surfaces, the turn-on and operating voltages of AlGaN-based deep-ultraviolet light-emitting diodes (DUV-LEDs) remain very high. We find that this critical problem is mainly caused by the large difference between the annealing temperatures required for ohmic contact formation on the p-GaN and high Al-fraction n-AlGaN surfaces. We studied the effects of the high-temperature annealing treatments required for n-ohmic contact formation on the subsequent p-ohmic contact formation process in DUV-LEDs. The results show that post-annealing treatment at high temperature is necessary to form an ohmic contact on n-Al0.7Ga0.3N, but a treatment temperature of 900°C or more could cause severe degradation of the specific contact resistivity and the bulk resistivity of p-GaN. We conclude that 900°C is the optimum temperature to form an ohmic contact on n-Al0.7Ga0.3N in DUV-LEDs, where p-GaN and n-Al0.7Ga0.3N act as the p- and n-ohmic contact layers, respectively. We also found that the specific contact resistivity of p-GaN can be reduced by an additional low-temperature annealing treatment after the high-temperature annealing step; this effect can be attributed to the enhancement of the hole concentration in the p-GaN surface contact region. Finally, DUV-LEDs that emit at 280 nm were fabricated using four different annealing treatments during processing. A considerable reduction in the series resistance and thereby in the operating voltage was confirmed using the annealing process proposed above, consisting of a high-temperature anneal at 900°C followed by a low-temperature anneal at 500°C for 3 min.
Chen, Kai; Wolf, Kathrin; Breitner, Susanne; Gasparrini, Antonio; Stafoggia, Massimo; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bero-Bedada, Getahun; Bellander, Tom; Hennig, Frauke; Jacquemin, Bénédicte; Pekkanen, Juha; Hampel, Regina; Cyrys, Josef; Peters, Annette; Schneider, Alexandra
2018-07-01
Although epidemiological studies have reported associations between mortality and both ambient air pollution and air temperature, it remains uncertain whether the mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and temperature. We investigated whether the short-term associations of particle number concentration (PNC in the ultrafine range (≤100 nm) or total PNC ≤ 3000 nm, as a proxy for UFP), particulate matter ≤ 2.5 μm (PM 2.5 ) and ≤ 10 μm (PM 10 ), and ozone with daily total natural and cardiovascular mortality were modified by air temperature and whether air pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013. We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis. Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm 3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air temperatures (<25th percentile) [-0.18% (95% CI: -0.97%, 0.62%)]. On days with high air pollution (>50th percentile), both heat- and cold-related mortality risks increased. Our findings showed that high temperature could modify the effects of air pollution on daily mortality and high air pollution might enhance the air temperature effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions
NASA Astrophysics Data System (ADS)
Bahr, Keisha D.; Jokiel, Paul L.; Rodgers, Ku'ulei S.
2016-06-01
Coral reef ecosystems are presently undergoing decline due to anthropogenic climate change. The chief detrimental factors are increased temperature and increased pCO2. The purpose of this study was to evaluate the effect of these two stressors operating independently and in unison on the biological response of common Hawaiian reef corals. Manipulative experiments were performed using five species ( Porites compressa, Pocillopora damicornis, Fungia scutaria, Montipora capitata, and Leptastrea purpurea) in a continuous-flow mesocosm system under natural sunlight conditions. Corals were grown together as a community under treatments of high temperature (2 °C above normal maximum summer temperature), high pCO2 (twice present-day conditions), and with both factors acting in unison. Control corals were grown under present-day pCO2 and at normal summer temperatures. Leptastrea purpurea proved to be an extremely hardy coral. No change in calcification or mortality occurred under treatments of high temperature, high pCO2, or combined high temperature-high pCO2. The remaining four species showed reduced calcification in the high-temperature treatment. Two species ( L. purpurea and M. capitata) showed no response to increased pCO2. Also, high pCO2 ameliorated the negative effect of high temperature on the calcification rates of P. damicornis. Mortality was driven primarily by high temperature, with a negative synergistic effect in P. compressa only in the high-pCO2-high-temperature treatment. Results support the observation that biological response to temperature and pCO2 elevation is highly species-specific, so generalizations based on response of a single species might not apply to a diverse and complex coral reef community.
Sun, Tao; Wang, Lingxiang; Guo, Changzhi; Zhang, Guochuan; Hu, Wenhai
2017-05-02
Malignant tumors in the proximal fibula are rare but life-threatening; however, biopsy is not routine due to the high risk of peroneal nerve injury. Our aim was to determine preoperative clinical indicators of malignancy. Between 2004 and 2016, 52 consecutive patients with proximal fibular tumors were retrospectively reviewed. Details of the clinicopathological characteristics including age, gender, location of tumors, the presenting symptoms, the duration of symptoms, and pathological diagnosis were collected. Descriptive statistics were calculated, and univariate and multivariate regression were performed. Of these 52 patients, 84.6% had benign tumors and 15.4% malignant tumors. The most common benign tumors were osteochondromas (46.2%), followed by enchondromas (13.5%) and giant cell tumors (13.5%). The most common malignancy was osteosarcomas (11.5%). The most common presenting symptoms were a palpable mass (52.0%) and pain (46.2%). Pain was the most sensitive (100%) and fourth specific (64%); both high skin temperature and peroneal nerve compression had the highest specificity (98%) and third sensitivity (64%); change in symptoms had the second highest specificity (89%) while 50% sensitivity. Using multivariate regression, palpable pain, high skin temperature, and peroneal nerve compression symptoms were predictors of malignancy. Most tumors in the proximal fibula are benign, and the malignancy is rare. Palpable pain, peroneal nerve compression symptoms, and high skin temperature were specific in predicting malignancy.
NASA Technical Reports Server (NTRS)
Pearl, J. C.; Sinton, W. M.
1982-01-01
The size and temperature, morphology and distribution, variability, possible absorption features, and processes of hot spots on Io are discussed, and an estimate of the global heat flux is made. Size and temperature information is deconvolved to obtain equivalent radius and temperature of hot spots, and simultaneously obtained Voyager thermal and imaging data is used to match hot sources with specific geologic features. In addition to their thermal output, it is possible that hot spots are also characterized by production of various gases and particulate materials; the spectral signature of SO2 has been seen. Origins for relatively stable, low temperature sources, transient high temperature sources, and relatively stable, high-tmperature sources are discussed.
High-Temperature Specific Heat of the TmBiGeO5 and YbBiGeO5 Compounds
NASA Astrophysics Data System (ADS)
Denisova, L. T.; Belousova, N. V.; Galiakhmetova, N. A.; Denisov, V. M.; Golubeva, E. O.
2018-02-01
The TmBiGeO5 and YbBiGeO5 compounds have been synthesized from Tm2O3 (Yb2O3), Bi2O3, and GeO2 oxides by the solid-state synthesis with successive burning at 1003, 1073, 1123, 1143, 1173, and 1223 K. High-temperature specific heat of the oxide compounds has been measured by differential scanning calorimetry. Basing on the experimental dependences C p = f( T), the thermodynamic properties of the oxide compounds, i.e., the enthalpy and entropy variations, have been calculated.
Kristensen, Lasse S; Andersen, Gitte B; Hager, Henrik; Hansen, Lise Lotte
2012-01-01
Sensitive and specific mutation detection is of particular importance in cancer diagnostics, prognostics, and individualized patient treatment. However, the majority of molecular methodologies that have been developed with the aim of increasing the sensitivity of mutation testing have drawbacks in terms of specificity, convenience, or costs. Here, we have established a new method, Competitive Amplification of Differentially Melting Amplicons (CADMA), which allows very sensitive and specific detection of all mutation types. The principle of the method is to amplify wild-type and mutated sequences simultaneously using a three-primer system. A mutation-specific primer is designed to introduce melting temperature decreasing mutations in the resulting mutated amplicon, while a second overlapping primer is designed to amplify both wild-type and mutated sequences. When combined with a third common primer very sensitive mutation detection becomes possible, when using high-resolution melting (HRM) as detection platform. The introduction of melting temperature decreasing mutations in the mutated amplicon also allows for further mutation enrichment by fast coamplification at lower denaturation temperature PCR (COLD-PCR). For proof-of-concept, we have designed CADMA assays for clinically relevant BRAF, EGFR, KRAS, and PIK3CA mutations, which are sensitive to, between 0.025% and 0.25%, mutated alleles in a wild-type background. In conclusion, CADMA enables highly sensitive and specific mutation detection by HRM analysis. © 2011 Wiley Periodicals, Inc.
The Preparation and Characterization of a Sodium Tungsten Bronze
ERIC Educational Resources Information Center
Conroy, Lawrence E.
1977-01-01
Describes an experiment that utilizes the techniques of temperature synthesis, crystallization from a molten salt, oxidation-reduction in a molten salt, powder X-ray diffraction and analysis by high temperature volatilization or a specific ion electrode. (MLH)
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.
1989-01-01
Light weight and potential high temperature capability of intermetallic compounds, such as the aluminides, and structural ceramics, such as the carbides and nitrides, make these materials attractive for gas turbine engine applications. In terms of specific fuel consumption and specific thrust, revolutionary improvements over current technology are being sought by realizing the potential of these materials through their use as matrices combined with high strength, high temperature fibers. The U.S. along with other countries throughout the world have major research and development programs underway to characterize these composites materials; improve their reliability; identify and develop new processing techniques, new matrix compositions, and new fiber compositions; and to predict their life and failure mechanisms under engine operating conditions. The status is summarized of NASA's Advanced High Temperature Engine Materials Technology Program (HITEMP) and the potential benefits are described to be gained in 21st century transport aircraft by utilizing intermetallic and ceramic matrix composite materials.
NASA Astrophysics Data System (ADS)
James; Spry, A.; Beaudet, Robert; Schubert, Wayne
Dry heat microbial reduction (DHMR) is the primary technique used to reduce the microbial load of spacecraft and component parts to comply with planetary protection requirements. Often, manufacturing processes involve heating flight hardware to high temperatures for purposes other than planetary protection DHMR. At present, the existing specification in NASA document NPR8020.12C, describing the process lethality on B. atrophaeus (ATCC 9372) bacterial spores, does not allow for additional planetary protection bioburden reduction credit for processing outside a narrow temperature, time and humidity window. However, recent studies (Schubert et al., COSPAR 2008) from a comprehensive multi-year laboratory research effort have generated enhanced data sets on four aspects of the current specification: time and temperature combination effects, the effect that humidity has on spore lethality, the lethality for spores with exceptionally high thermal resistance (so called "hardies"), and the extended exposure requirement for encapsulated microorganisms. This paper describes proposed modifications to the specification, based on the data set generated in the referenced study. The proposed modifications are intended to broaden the scope of the current specification while still maintaining a confident conservative interpretation of the lethality of the DHMR process on microorganisms. Potential cost and schedule benefits to future missions utilizing the revised specification will be highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, D. P.; Bardon, M. F.; Clark, W.
This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammablemore » headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.« less
Thermophysical Properties of Five Industrial Steels in the Solid and Liquid Phase
NASA Astrophysics Data System (ADS)
Wilthan, B.; Schützenhöfer, W.; Pottlacher, G.
2017-07-01
The need for characterization of thermophysical properties of steel was addressed in the FFG-Bridge Project 810999 in cooperation with our partner from industry, Böhler Edelstahl GmbH & Co KG. To optimize numerical simulations of production processes such as plastic deformation or remelting, additional and more accurate thermophysical property data were necessary for the group of steels under investigation. With the fast ohmic pulse heating circuit system and a commercial high-temperature Differential Scanning Calorimeter at Graz University of Technology, we were able to measure the temperature-dependent specific electrical resistivity and specific enthalpy for a set of five high alloyed steels: E105, M314, M315, P800, and V320 from room temperature up into the liquid phase. The mechanical properties of those steels make sample preparation an additional challenge. The described experimental approach typically uses electrically conducting wire-shaped specimen with a melting point high enough for the implemented pyrometric temperature measurement. The samples investigated here are too brittle to be drawn as wires and could only be cut into rectangular specimen by Electrical Discharge Machining. Even for those samples all electrical signals and the temperature signal can be recorded with proper alignment of the pyrometer. For each material under investigation, a set of data including chemical composition, solidus and liquidus temperature, enthalpy, electrical resistivity, and thermal diffusivity as a function of temperature will be reported.
Laffont, Guillaume; Cotillard, Romain; Roussel, Nicolas; Desmarchelier, Rudy; Rougeault, Stéphane
2018-06-02
The harsh environment associated with the next generation of nuclear reactors is a great challenge facing all new sensing technologies to be deployed for on-line monitoring purposes and for the implantation of SHM methods. Sensors able to resist sustained periods at very high temperatures continuously as is the case within sodium-cooled fast reactors require specific developments and evaluations. Among the diversity of optical fiber sensing technologies, temperature resistant fiber Bragg gratings are increasingly being considered for the instrumentation of future nuclear power plants, especially for components exposed to high temperature and high radiation levels. Research programs are supporting the developments of optical fiber sensors under mixed high temperature and radiative environments leading to significant increase in term of maturity. This paper details the development of temperature-resistant wavelength-multiplexed fiber Bragg gratings for temperature and strain measurements and their characterization for on-line monitoring into the liquid sodium used as a coolant for the next generation of fast reactors.
Calorimetric measurements on Li4C60 and Na4C60
NASA Astrophysics Data System (ADS)
Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.; Gracia-Espino, Eduardo; Sundqvist, Bertil; Wâgberg, Thomas
2015-04-01
We show specific heat data for Na4C60 and Li4C60 in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C60. At high temperatures, a difference in specific heat between the intercalated and undoped C60 polymers of 100 J K-1 mol-1 is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heat data for Li4C60 and Na4C60 are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li4C60 affect these motions to a somewhat higher degree than the single intermolecular bonds in Na4C60. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with TE = 386 K for Li4C60 and TE = 120 K for Na4C60, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li4C60 and 3.1 meV for Na4C60, probably associated with jumps between closely spaced energy levels inside "octahedral-type" ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.
NASA Technical Reports Server (NTRS)
Roelke, Richard J.
1992-01-01
Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.
High Temperature Ferroelectrics for Actuators: Recent Developments and Challenges
NASA Technical Reports Server (NTRS)
Sehirlioglu, Alp; Kowalski, Benjamin
2014-01-01
A variety of piezoelectric applications have been driving the research in development of new high temperature ferroelectrics; ranging from broader markets such as fuel and gas modulation and deep well oil drilling to very specific applications such as thermoacoustic engines and ultrasonic drilling on the surface of Venus. The focus has been mostly on increasing the Curie temperature. However, greater challenges for high temperature ferroelectrics limit the operating temperature to levels much below the Curie temperature. These include enhanced loss tangent and dc conductivity at high fields as well as depoling due to thermally activated domain rotation. The initial work by Eitel et al. [Jpn. J. Appl. Phys., 40 [10, Part 1] 59996002 (2001)] increased interest in investigation of Bismuth containing perovskites in solid solution with lead titanate. Issues that arise vary from solubility limits to increased tetragonality; the former one prohibits processing of morphotropic phase boundary, while the latter one impedes thorough poling of the polycrystalline ceramics. This talk will summarize recent advances in development of high temperature piezoelectrics and provide information about challenges encountered as well as the approaches taken to improve the high temperature behavior of ferroelectrics with a focus on applications that employ the converse piezoelectric effect.
NASA Technical Reports Server (NTRS)
Munasinghe, L.; Jun, T.; Rind, D. H.
2012-01-01
Consensus on global warming is the result of multiple and varying lines of evidence, and one key ramification is the increase in frequency of extreme climate events including record high temperatures. Here we develop a metric- called "record equivalent draws" (RED)-based on record high (low) temperature observations, and show that changes in RED approximate changes in the likelihood of extreme high (low) temperatures. Since we also show that this metric is independent of the specifics of the underlying temperature distributions, RED estimates can be aggregated across different climates to provide a genuinely global assessment of climate change. Using data on monthly average temperatures across the global landmass we find that the frequency of extreme high temperatures increased 10-fold between the first three decades of the last century (1900-1929) and the most recent decade (1999-2008). A more disaggregated analysis shows that the increase in frequency of extreme high temperatures is greater in the tropics than in higher latitudes, a pattern that is not indicated by changes in mean temperature. Our RED estimates also suggest concurrent increases in the frequency of both extreme high and extreme low temperatures during 2002-2008, a period when we observe a plateauing of global mean temperature. Using daily extreme temperature observations, we find that the frequency of extreme high temperatures is greater in the daily minimum temperature time-series compared to the daily maximum temperature time-series. There is no such observable difference in the frequency of extreme low temperatures between the daily minimum and daily maximum.
NASA Astrophysics Data System (ADS)
Guan, Huade; Beecham, Simon; Xu, Hanqiu; Ingleton, Greg
2017-02-01
Climate warming and increasing variability challenges the electricity supply in warm seasons. A good quantitative representation of the relationship between warm-season electricity consumption and weather condition provides necessary information for long-term electricity planning and short-term electricity management. In this study, an extended version of cooling degree days (ECDD) is proposed for better characterisation of this relationship. The ECDD includes temperature, residual temperature and specific humidity effects. The residual temperature is introduced for the first time to reflect the building thermal inertia effect on electricity consumption. The study is based on the electricity consumption data of four multiple-street city blocks and three office buildings. It is found that the residual temperature effect is about 20% of the current-day temperature effect at the block scale, and increases with a large variation at the building scale. Investigation of this residual temperature effect provides insight to the influence of building designs and structures on electricity consumption. The specific humidity effect appears to be more important at the building scale than at the block scale. A building with high energy performance does not necessarily have low specific humidity dependence. The new ECDD better reflects the weather dependence of electricity consumption than the conventional CDD method.
USDA-ARS?s Scientific Manuscript database
Stripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Resistance is the best approach to control the disease. High-temperature adult-plant (HTAP) stripe rust resistance has proven to be race non-specific and durable. However, genes...
Improved Thermal-Switch Disks Protect Batteries
NASA Technical Reports Server (NTRS)
Darcy, Eric; Bragg, Bobby
1990-01-01
Improved thermal-switch disks help protect electrical batteries against high currents like those due to short circuits or high demands for power in circuits supplied by batteries. Protects batteries against excessive temperatures. Centered by insulating fiberglass washer. Contains conductive polymer that undergoes abrupt increase in electrical resistance when excessive current raises its temperature above specific point. After cooling, polymer reverts to low resistance. Disks reusable.
NASA Astrophysics Data System (ADS)
Tong, Linyue; Skorenko, Kenneth H.; Faucett, Austin C.; Boyer, Steven M.; Liu, Jian; Mativetsky, Jeffrey M.; Bernier, William E.; Jones, Wayne E.
2015-11-01
Laminar composite electrodes are prepared for application in supercapacitors using a catalyzed vapor-phase polymerization (VPP) of 3,4-ethylenedioxythiophene (EDOT) on the surface of commercial carbon coated aluminum foil. These highly electrically conducting polymer films provide for rapid and stable power storage per gram at room temperature. The chemical composition, surface morphology and electrical properties are characterized by Raman spectroscopy, scanning electron microscopy (SEM), and conducting atomic force microscopy (C-AFM). A series of electrical measurements including cyclic voltammetry (CV), charge-discharge (CD) and electrochemical impedance spectroscopy are also used to evaluate electrical performance. The processing temperature of VPP shows a significant effect on PEDOT morphology, the degree of orientation and its electrical properties. The relatively high temperature leads to high specific area and large conductive domains of PEDOT layer which benefits the capacitive behavior greatly according to the data presented. Since the substrate is already highly conductive, the PEDOT based composite can be used as electrode materials directly without adding current collector. By this simple and efficient process, PEDOT based composites exhibit specific capacitance up to 134 F g-1 with the polymerization temperature of 110 °C.
Power-efficient low-temperature woven coiled fibre actuator for wearable applications.
Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W; Tagashira, Kenji; Omote, Atsushi
2016-11-04
A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg -1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.
In vitro selection of high temperature Zn(2+)-dependent DNAzymes.
Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi
2005-08-01
In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.
Power-efficient low-temperature woven coiled fibre actuator for wearable applications
Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi
2016-01-01
A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg−1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency. PMID:27812014
Power-efficient low-temperature woven coiled fibre actuator for wearable applications
NASA Astrophysics Data System (ADS)
Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi
2016-11-01
A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg-1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.
Fabrication of Large Bulk High Temperature Superconducting Articles
NASA Technical Reports Server (NTRS)
Koczor, Ronald (Inventor); Hiser, Robert A. (Inventor)
2003-01-01
A method of fabricating large bulk high temperature superconducting articles which comprises the steps of selecting predetermined sizes of crystalline superconducting materials and mixing these specific sizes of particles into a homogeneous mixture which is then poured into a die. The die is placed in a press and pressurized to predetermined pressure for a predetermined time and is heat treated in the furnace at predetermined temperatures for a predetermined time. The article is left in the furnace to soak at predetermined temperatures for a predetermined period of time and is oxygenated by an oxygen source during the soaking period.
Recyclable Thermoresponsive Polymer-β-Glucosidase Conjugate with Intact Hydrolysis Activity.
Mukherjee, Ishita; Sinha, Sushant K; Datta, Supratim; De, Priyadarsi
2018-06-11
β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose and is a rate-limiting enzyme in the conversion of lignocellulosic biomass to sugars toward biofuels. Since the cost of enzyme is a major contributor to biofuel economics, we report the bioconjugation of a temperature-responsive polymer with the highly active thermophilic β-glucosidase (B8CYA8) from Halothermothrix orenii toward improving enzyme recyclability. The bioconjugate, with a lower critical solution temperature (LCST) of 33 °C withstands high temperatures up to 70 °C. Though the secondary structure of the enzyme in the conjugate is slightly distorted with a higher percentage of β-sheet like structure, the stability and specific activity of B8CYA8 in the conjugate remains unaltered up to 30 °C and retains more than 70% specific activity of the unmodified enzyme at 70 °C. The conjugate can be reused for β-glucosidic bond cleavage of cellobiose for at least four cycles without any significant loss in specific activity.
Evaluation of CVI SiC/SiC Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Kiser, D.; Almansour, A.; Smith, C.; Gorican, D.; Phillips, R.; Bhatt, R.; McCue, T.
2017-01-01
Silicon carbide fiber reinforced silicon carbide (SiC/SiC) composites are candidate materials for various high temperature turbine engine applications because of their high specific strength and good creep resistance at temperatures of 1400 C (2552 F) and higher. Chemical vapor infiltration (CVI) SiC/SiC ceramic matrix composites (CMC) incorporating Sylramic-iBN SiC fiber were evaluated via fast fracture tensile tests (acoustic emission damage characterization to assess cracking behavior), tensile creep testing, and microscopy. The results of this testing and observed material behavior degradation mechanisms are reviewed.
New Technologies for Enhanced Environmental Testing on Spacecraft Structures
NASA Astrophysics Data System (ADS)
Ascani, Maurizio; Alemanno, Leonardo; Rinalducci, Fabrizio
2014-06-01
This paper presents engineering approaches to realize Thermal Vacuum Chambers (TVC) for different R&D applications: (1) testing of propulsion systems, operating as a Hall thruster, (2) increasing of the DUT (device under test) surface temperature up to +550°C, (3) installation of the solar system inside the TVC. Each application implies specific problems that need to be managed by TVC during the tests. In particular, emission of high-energy ionized gas at high temperatures, surface temperatures higher 800 K and optical specimen contamination represent under high vacuum conditions significant challenges for test equipment.
High plastic concrete temperature specifications for paving mixtures.
DOT National Transportation Integrated Search
2011-08-01
This report documents a study performed for the Illinois Department of Transportation (IDOT) regarding : concrete roadway construction in hot weather. The main objective in this project is to develop improved : specifications and procedures with resp...
Evaluation of TIAX High Energy CAM-7/Graphite Lithium-Ion Batteries at High and Low Temperatures
2014-08-01
phosphate ( LiFePO4 or LFP), lithium nickel cobalt manganese oxide (LiNixCoyMnzO2 or NCM), LCO, and NCA, CAM-7 based 18650 cells have a higher specific...electric vehicles HT high temperature Li lithium LiCoO2 or LCO lithium cobalt oxide LiCoPO4 or LCP lithium cobalt phosphate LiFePO4 or LFP lithium
Lithium storage in structurally tunable carbon anode derived from sustainable source
Lim, Daw Gen; Kim, Kyungho; Razdan, Mayuri; ...
2017-09-01
Here, a meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed below 160°C (thermally stable precursor) followed by color change, however above 280°C characteristic D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface area with low structural ordering (active carbons) to low specific surface area with high graphitic ordering as a function of increasing reaction temperature. Carbons synthesized at 600°Cmore » demonstrated enhanced reversible lithiation capacity (390 mAh g -1), high charge-discharge rate capability, and stable cycle life. On the contrary, carbons synthesized at higher temperatures (>1200°C) produced more graphite-like structure yielding longer specific capacity retention with lower reversible capacity.« less
Experimental And Numerical Study Of CMC Leading Edges In Hypersonic Flows
NASA Astrophysics Data System (ADS)
Kuhn, Markus; Esser, Burkard; Gulhan, Ali; Dalenbring, Mats; Cavagna, Luca
2011-05-01
Future transportation concepts aim at high supersonic or hypersonic speeds, where the formerly sharp boundaries between aeronautic and aerospace applications become blurred. One of the major issues involved to high speed flight are extremely high aerothermal loads, which especially appear at the leading edges of the plane’s wings and at sharp edged air intake components of the propulsion system. As classical materials like metals or simple ceramics would thermally and structurally fail here, new materials have to be applied. In this context, lightweight ceramic matrix composites (CMC) seem to be prospective candidates as they are high-temperature resistant and offer low thermal expansion along with high specific strength at elevated temperature levels. A generic leading edge model with a ceramic wing assembly with a sweep back angle of 53° was designed, which allowed for easy leading edge sample integration of different CMC materials. The samples consisted of the materials C/C-SiC (non-oxide), OXIPOL and WHIPOX (both oxide) with a nose radius of 2 mm. In addition, a sharp edged C/C-SiC sample was prepared to investigate the nose radius influence. Overall, 13 thermocouples were installed inside the entire model to measure the temperature evolution at specific locations, whereby 5 thermocouples were placed inside the leading edge sample itself. In addition, non-intrusive techniques were applied for surface temperature measurements: An infrared camera was used to measure the surface temperature distribution and at specific spots, the surface temperature was also measured by pyrometers. Following, the model was investigated in DLR’s arc-heated facility L3K at a total enthalpy of 8.5 MJ/kg, Mach number of 7.8, different angles of attack and varying wing inclination angles. These experiments provide a sound basis for the simulation of aerothermally loaded CMC leading edge structures. Such fluid-structure coupled approaches have been performed by FOI, basing on a modal approach for the conduction model. Results show, that the temperature profiles are correctly depicted dependent on the model’s angle of attack.
Frequency spectrum of tantalum at temperatures of 293-2300 K
NASA Astrophysics Data System (ADS)
Semenov, V. A.; Kozlov, Zh. A.; Krachun, L.; Mateescu, G.; Morozov, V. M.; Oprea, A. I.; Oprea, K.; Puchkov, A. V.
2010-05-01
The temperature dependence of the frequency spectrum of tantalum in the temperature range from room temperature to 2300 K has been studied for the first time using inelastic slow-neutron scattering. The inelastic slow-neutron scattering spectra have been measured at different temperatures on a DIN-2PI time-of-flight spectrometer installed at the IBR-2 nuclear reactor (Joint Institute for Nuclear Research, Dubna, Russia) with the use of a TS3000K high-temperature thermostat. From the measured spectra, the frequency spectra of the tantalum crystal lattice have been determined at temperatures of 293, 1584, and 2300 K by the iteration method. As the temperature increases, the frequency spectrum, on the whole, is softened and the specific features manifested themselves at room temperature are smoothed. The variations observed have been explained by the increase in the role of the effects of vibration anharmonism at high temperatures.
Effects of high summer temperatures on mortality in 50 Spanish cities.
Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio; Diaz, Julio
2014-06-09
Periods of high temperature have been widely found to be associated with excess mortality but with variable relationships in different cities. How these specifics depend on climatic and other characteristics of cities is not well understood. We assess summer temperature-mortality relationships using data from 50 provincial capitals in Spain, during the period 1990-2004. Poisson time series regression analyses were applied to daily temperature and mortality data, adjusting for potential confounding seasonal factors. Associations of heat with mortality were summarised for each city as the risk increments at the 99th compared to the 90th percentiles of the whole-year temperature distributions, as predicted from spline curves. Risk increments averaged 14.6% between both centiles, or 3.3% per 1 Celsius degree. Although risk increments varied substantially between cities, the range of temperature from the 90th to 99th centile was the only characteristic independently significantly associated with them. The heat increment did not depend on other city climatic, socio-demographic and geographic determinants. Cities in Spain are partially adapted to high mean summer temperatures but not to high variation in summer temperatures.
High-temperature langatate elastic constants and experimental validation up to 900 degrees C.
Davulis, Peter M; da Cunha, Mauricio Pereira
2010-01-01
This paper reports on a set of langatate (LGT) elastic constants extracted from room temperature to 1100 degrees C using resonant ultrasound spectroscopy techniques and an accompanying assessment of these constants at high temperature. The evaluation of the constants employed SAW device measurements from room temperature to 900 degrees C along 6 different LGT wafer orientations. Langatate parallelepipeds and wafers were aligned, cut, ground, and polished, and acoustic wave devices were fabricated at the University of Maine facilities along specific orientations for elastic constant extraction and validation. SAW delay lines were fabricated on LGT wafers prepared at the University of Maine using 100-nm platinumrhodium- zirconia electrodes capable of withstanding temperatures up to 1000 degrees C. The numerical predictions based on the resonant ultrasound spectroscopy high-temperature constants were compared with SAW phase velocity, fractional frequency variation, and temperature coefficients of delay extracted from SAW delay line frequency response measurements. In particular, the difference between measured and predicted fractional frequency variation is less than 2% over the 25 degrees C to 900 degrees C temperature range and within the calculated and measured discrepancies. Multiple temperature-compensated orientations at high temperature were predicted and verified in this paper: 4 of the measured orientations had turnover temperatures (temperature coefficient of delay = 0) between 200 and 420 degrees C, and 2 had turnover temperatures below 100 degrees C. In summary, this work reports on extracted high-temperature elastic constants for LGT up to 1100 degrees C, confirmed the validity of those constants by high-temperature SAW device measurements up to 900 degrees C, and predicted and identified temperature-compensated LGT orientations at high temperature.
Nickel aluminide alloy suitable for structural applications
Liu, Chain T.
1998-01-01
Alloys for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1.+-.0.8%)Al--(1.0.+-.0.8%)Mo--(0.7.+-.0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques.
Space applications for high temperature superconductivity - Brief review
NASA Technical Reports Server (NTRS)
Krishen, Kumar
1990-01-01
An overview is presented of materials and devices based on high-temperature superconductivity (HTS) that could have useful space-oriented applications. Of specific interest are applications of HTS technologies to mm and microwave systems, spaceborne and planet-surface sensors, and to magnetic subsystems for robotic, rescue, and docking maneuvers. HTS technologies can be used in optoelectronics, magnetic-field detectors, antennae, transmission/delay lines, and launch/payload coils.
2013-05-04
tita - nium. Specifically, it was shown that due to high attendant temperatures these tools have to be made of high-temperature hard materials such as...the two phases and are typically classified as a-type, aþb-type, and b-type alloys. Among tita - nium alloys, aþb-type are of particular interest since
Ulrich, P N; Marsh, A G
2009-01-01
The mitochondria of intertidal invertebrates continue to function when organisms are exposed to rapid substantial shifts in temperature. To test if mitochondrial physiology of the clam Mercenaria mercenaria is compromised under elevated temperatures, we measured mitochondrial respiration efficiency at 15 degrees C, 18 degrees C, and 21 degrees C using a novel, high-throughput, microplate respirometry methodology developed for this study. Though phosphorylating (state 3) and resting (state 4) respiration rates were unaffected over this temperature range, respiratory control ratios (RCRs: ratio of state 3 to state 4 respiration rates) decreased significantly above 18 degrees C (p < 0.05). The drop in RCR was not associated with reduction of phosphorylation efficiency, suggesting that, while aerobic scope of mitochondrial respiration is limited at elevated temperatures, mitochondria continue to efficiently produce adenosine triphosphate. We further investigated the response of clam mitochondria to elevated temperatures by monitoring phosphorylation of mitochondrial protein. Three proteins clearly demonstrated significant time- and temperature-specific phosphorylation patterns. The protein-specific patterns of phosphorylation may suggest that a suite of protein kinases and phosphatases regulate mitochondrial physiology in response to temperature. Thus, while aerobic scope of clam mitochondrial respiration is reduced at moderate temperatures, specific protein phosphorylation responses reflect large shifts in function that are initiated within the organelle at higher temperatures.
NASA Astrophysics Data System (ADS)
Behrens, B.-A.; Nürnberger, F.; Bonk, C.; Hübner, S.; Behrens, S.; Vogt, H.
2017-09-01
Aluminum alloys of the 7000 series possess high lightweight potential due to their high specific tensile strength combined with a good ultimate elongation. For this reason, hot-formed boron-manganese-steel parts can be substituted by these alloys. Therefore, the application of these aluminum alloys for structural car body components is desired to decrease the weight of the body in white and consequently CO2 emissions during vehicle operation. These days, the limited formability at room temperature limits an application in the automobile industry. By increasing the deformation temperature, formability can be improved. In this study, two different approaches to increase the formability of these alloys by means of higher temperatures were investigated. The first approach is a warm forming route to form sheets in T6 temper state with high tensile strength at temperatures between 150 °C and 300 °C. The second approach is a hot forming route. Here, the material is annealed at solution heat treatment temperature and formed directly after the annealing step. Additionally, a quench step is included in the forming stage. After the forming and quenching step, the sheets have to be artificially aged to achieve the high specific tensile strength. In this study, several parameters in the presented process routes, which influence the formability and the mechanical properties, have been investigated for the aluminum alloys EN AW7022 and EN AW7075.
Flow Field Dynamics in a High-g Ultra-Compact Combustor
2016-12-01
6.1.3.1. Baseline Exit Temperatures .............................................................. 308 x 6.1.3.2. Exit Temperature Effects Due to...through improved thrust-specific fuel consumption ; however, implementation of an effective combustion scheme in the constrained space between turbine...their influence on the combustion process, and the resultant effect on exit temperature profiles and emissions (as detailed in the following section
Analytical assessment of some characteristic ratios for s-wave superconductors
NASA Astrophysics Data System (ADS)
Gonczarek, Ryszard; Krzyzosiak, Mateusz; Gonczarek, Adam; Jacak, Lucjan
2018-04-01
We evaluate some thermodynamic quantities and characteristic ratios that describe low- and high-temperature s-wave superconducting systems. Based on a set of fundamental equations derived within the conformal transformation method, a simple model is proposed and studied analytically. After including a one-parameter class of fluctuations in the density of states, the mathematical structure of the s-wave superconducting gap, the free energy difference, and the specific heat difference is found and discussed in an analytic manner. Both the zero-temperature limit T = 0 and the subcritical temperature range T ≲ T c are discussed using the method of successive approximations. The equation for the ratio R 1, relating the zero-temperature energy gap and the critical temperature, is formulated and solved numerically for various values of the model parameter. Other thermodynamic quantities are analyzed, including a characteristic ratio R 2, quantifying the dynamics of the specific heat jump at the critical temperature. It is shown that the obtained model results coincide with experimental data for low- T c superconductors. The prospect of application of the presented model in studies of high- T c superconductors and other superconducting systems of the new generation is also discussed.
Performance of High Temperature Operational Amplifier, Type LM2904WH, under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Elbuluk, Malik
2008-01-01
Operation of electronic parts and circuits under extreme temperatures is anticipated in NASA space exploration missions as well as terrestrial applications. Exposure of electronics to extreme temperatures and wide-range thermal swings greatly affects their performance via induced changes in the semiconductor material properties, packaging and interconnects, or due to incompatibility issues between interfaces that result from thermal expansion/contraction mismatch. Electronics that are designed to withstand operation and perform efficiently in extreme temperatures would mitigate risks for failure due to thermal stresses and, therefore, improve system reliability. In addition, they contribute to reducing system size and weight, simplifying its design, and reducing development cost through the elimination of otherwise required thermal control elements for proper ambient operation. A large DC voltage gain (100 dB) operational amplifier with a maximum junction temperature of 150 C was recently introduced by STMicroelectronics [1]. This LM2904WH chip comes in a plastic package and is designed specifically for automotive and industrial control systems. It operates from a single power supply over a wide range of voltages, and it consists of two independent, high gain, internally frequency compensated operational amplifiers. Table I shows some of the device manufacturer s specifications.
López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R
2013-12-15
The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency. Copyright © 2013 Elsevier B.V. All rights reserved.
Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen
NASA Technical Reports Server (NTRS)
Oliva, J.; Ashcroft, N. W.
1981-01-01
It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.
Report on the Installation and Preparedness of a Protochips Fusion in-situ Heating Holder for TEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edmondson, Philip D.
2017-03-01
This brief report documents the procurement and installation of a Protochips Fusion (formerly Aduro) high-temperature, high stability transmission electron microscopy (TEM) specimen holder that allows for the high spatial resolution characterization of material specimens at high temperature in situ of an electron microscope. This specimen holder was specifically procured for use with The FEI Talos F200X Scanning/Transmission Electron Microscope (STEM) in Oak Ridge National Laboratory’s (ORNL’s) Low Activation Materials Development and Analysis (LAMDA) Laboratory. The Protochips Fusion holder will enable high-resolution structural and chemical analysis of irradiated materials at high temperature, becoming a unique capability worldwide, and would encourage high-qualitymore » in situ experiments to be conducted on irradiated materials.« less
Development of an Extreme High Temperature n-type Ohmic Contact to Silicon Carbide
NASA Technical Reports Server (NTRS)
Evans, Laura J.; Okojie, Robert S.; Lukco, Dorothy
2011-01-01
We report on the initial demonstration of a tungsten-nickel (75:25 at. %) ohmic contact to silicon carbide (SiC) that performed for up to fifteen hours of heat treatment in argon at 1000 C. The transfer length method (TLM) test structure was used to evaluate the contacts. Samples showed consistent ohmic behavior with specific contact resistance values averaging 5 x 10-4 -cm2. The development of this contact metallization should allow silicon carbide devices to operate more reliably at the present maximum operating temperature of 600 C while potentially extending operations to 1000 C. Introduction Silicon Carbide (SiC) is widely recognized as one of the materials of choice for high temperature, harsh environment sensors and electronics due to its ability to survive and continue normal operation in such environments [1]. Sensors and electronics in SiC have been developed that are capable of operating at temperatures of 600 oC. However operating these devices at the upper reliability temperature threshold increases the potential for early degradation. Therefore, it is important to raise the reliability temperature ceiling higher, which would assure increased device reliability when operated at nominal temperature. There are also instances that require devices to operate and survive for prolonged periods of time above 600 oC [2, 3]. This is specifically needed in the area of hypersonic flight where robust sensors are needed to monitor vehicle performance at temperature greater than 1000 C, as well as for use in the thermomechanical characterization of high temperature materials (e.g. ceramic matrix composites). While SiC alone can withstand these temperatures, a major challenge is to develop reliable electrical contacts to the device itself in order to facilitate signal extraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vereshchagin, K A; Smirnov, Valery V; Stel'makh, O M
2012-01-31
Coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to determine the parameters of gaseous combustion products of hydrogen and hydrocarbon fuels with oxygen at high temperatures and pressures. The methodical aspects of CARS thermometry, which are related to the optimal choice of molecules (diagnostic references) and specific features of their spectra, dependent on temperature and pressure, are analysed. Burning is modelled under the conditions similar to those of real spacecraft propulsion systems using a specially designed laboratory combustion chamber, operating in the pulse-periodic regime at high temperatures (to 3500 K) and pressures (to 20 MPa) of combustion products. (nonlinear opticalmore » phenomena)« less
NASA Astrophysics Data System (ADS)
Jacobson, Benjamin A.; Gleckman, Philip L.; Holman, Robert L.; Sagie, Daniel; Winston, Roland
1991-10-01
We have demonstrated the feasibility of a high temperature cool-wall optical furnace that harnesses the unique power of concentrated solar heating for advanced materials processing and testing. Out small-scale test furnace achieved temperatures as high as 2400 C within a 10 mm X 0.44 mm cylindrical hot-zone. Optimum performance and efficiency resulted from an innovative two-stage optical design using a long-focal length, point-focus, conventional primary concentrator and a non-imaging secondary concentrator specifically designed for the cylindrical geometry of the target fiber. A scale-up analysis suggests that even higher temperatures can be achieved over hot zones large enough for practical commercial fiber post- processing and testing.
Laorden, M L; Miralles, F S; Puig, M M
1988-03-01
The effects of the non-specific opiate antagonist L-naloxone and the inactive isomer D-naloxone, as well as the specific mu receptor antagonist beta-funaltrexamine, have been examined on hyperthermia-induced seizures in unrestrained 15 days old rats. Saline-injected animals exposed to an ambient temperature of 40 degrees C showed a gradual increase in body temperature reaching a maximum of 42 +/- 0.1 degrees C at 50 min exposure. At this time all the pups had seizures and died. Similar results were obtained when the animals were pretreated with different doses of D-naloxone and beta-funaltrexamine. Rats pretreated with L-naloxone also showed an increase in rectal temperature; but the temperature was lower than in saline-injected animals. Only high doses of L-naloxone prevented seizures and deaths. These data indicate that endogenous opioid peptides may play a role in seizures induced by hyperthermia and that receptors other than mu receptors could be involved in hyperthermia-induced seizures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francisco Valentin; Narbeh Artoun; Masahiro Kawaji
2015-08-01
Fundamental high pressure/high temperature forced convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. The experiments utilize a high temperature/high pressure gas flow test facility constructed for forced convection and natural circulation experiments. The test section has a single 16.8 mm ID flow channel in a 2.7 m long, 108 mm OD graphite column with four 2.3kW electric heater rods placed symmetrically around the flow channel. This experimental study presents the role of buoyancy forces in enhancing or reducing convection heat transfer for helium at high pressures upmore » to 70 bar and high temperatures up to 873 degrees K. Wall temperatures have been compared among 10 cases covering the inlet Re numbers ranging from 500 to 3,000. Downward flows display higher and lower wall temperatures in the upstream and downstream regions, respectively, than the upward flow cases due to the influence of buoyancy forces. In the entrance region, convection heat transfer is reduced due to buoyancy leading to higher wall temperatures, while in the downstream region, buoyancyinduced mixing causes higher convection heat transfer and lower wall temperatures. However, their influences are reduced as the Reynolds number increases. This experimental study is of specific interest to VHTR design and validation of safety analysis codes.« less
Self-consistent description of a system of interacting phonons
NASA Astrophysics Data System (ADS)
Poluektov, Yu. M.
2015-11-01
A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.
Channel-specific dielectronic recombination of Ge(XXXII), Se(XXXIV), and Kr(XXXVI)
NASA Astrophysics Data System (ADS)
El Machtoub, G.
2004-04-01
We present explicit calculations of channel-specific dielectronic recombination cross sections for hydrogen-like germanium, Ge(XXXII); selenium, Se(XXXIV); and krypton, Kr(XXXVI). The convoluted cross sections characterize K-shell emission spectra over a wide energy range where contributions from high-n (n = 2-10), satellite lines are included. The high-n contributions presented are important for better diagnostics in the domain of high-temperature plasmas.
Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier
2017-01-01
The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994
Poran, S; Nguyen-Duc, T; Auerbach, A; Dupuis, N; Frydman, A; Bourgeois, Olivier
2017-02-22
The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, c p , measurements. Here we use a unique highly sensitive experiment to measure c p of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.
Amid, Mehrnoush; Murshid, Fara Syazana; Manap, Mohd Yazid; Islam Sarker, Zaidul
2016-01-01
This study aimed to investigate the effects of the ultrasound-assisted extraction conditions on the yield, specific activity, temperature, and storage stability of the pectinase enzyme from guava peel. The ultrasound variables studied were sonication time (10-30 min), ultrasound temperature (30-50 °C), pH (2.0-8.0), and solvent-to-sample ratio (2:1 mL/g to 6:1 mL/g). The main goal was to optimize the ultrasound-assisted extraction conditions to maximize the recovery of pectinase from guava peel with the most desirable enzyme-specific activity and stability. Under the optimum conditions, a high yield (96.2%), good specific activity (18.2 U/mg), temperature stability (88.3%), and storage stability (90.3%) of the extracted enzyme were achieved. The optimal conditions were 20 min sonication time, 40 °C temperature, at pH 5.0, using a 4:1 mL/g solvent-to-sample ratio. The study demonstrated that optimization of ultrasound-assisted process conditions for the enzyme extraction could improve the enzymatic characteristics and yield of the enzyme.
Design Guideline for New Generation of High-Temperature Guarded Hot Plate
NASA Astrophysics Data System (ADS)
Wu, J.; Hameury, J.; Failleau, G.; Blahut, A.; Vachova, T.; Strnad, R.; Krause, M.; Rafeld, E.; Hammerschmidt, U.
2018-02-01
This paper complements the existing measurement standards and literature for high-temperature guarded hot plates (HTGHPs) by addressing specific issues relating to thermal conductivity measurement of technical insulation at high temperatures. The examples given are focused on the designs of HTGHPs for measuring thin thermal insulation. The sensitivity studies have been carried out on major influencing factors that affect the thermal conductivity measurements using HTGHPs, e.g., the uncertainty of temperature measurements, plate flatness and center-guard gap design and imbalance. A new configuration of center-guard gap with triangular shape cross section has been optimized to obtain the same thermal resistance as a 2 mm wide gap with rectangular shape cross section that has been used in the HTGHPs at NPL and LNE. Recommendations have been made on the selections of heater plate materials, high-temperature high-emissivity coatings and miniature temperature sensors. For the first time, thermal stress analysis method has been applied to the field of HTGHPs, in order to estimate the effect of differential thermal expansion on the flatness of thin rigid specimens during thermal conductivity tests in a GHP.
Identifying Changes in the Probability of High Temperature, High Humidity Heat Wave Events
NASA Astrophysics Data System (ADS)
Ballard, T.; Diffenbaugh, N. S.
2016-12-01
Understanding how heat waves will respond to climate change is critical for adequate planning and adaptation. While temperature is the primary determinant of heat wave severity, humidity has been shown to play a key role in heat wave intensity with direct links to human health and safety. Here we investigate the individual contributions of temperature and specific humidity to extreme heat wave conditions in recent decades. Using global NCEP-DOE Reanalysis II daily data, we identify regional variability in the joint probability distribution of humidity and temperature. We also identify a statistically significant positive trend in humidity over the eastern U.S. during heat wave events, leading to an increased probability of high humidity, high temperature events. The extent to which we can expect this trend to continue under climate change is complicated due to variability between CMIP5 models, in particular among projections of humidity. However, our results support the notion that heat wave dynamics are characterized by more than high temperatures alone, and understanding and quantifying the various components of the heat wave system is crucial for forecasting future impacts.
NASA Technical Reports Server (NTRS)
Kull, F. R.
1975-01-01
The results of a program to develop a lightweight high temperature reusable fastening system for aerospace vehicle thermal protection system applications are documented. This feasibility program resulted in several fastener innovations which will meet the specific needs of the heat shield application. Three systems were designed from Hayes 188 alloy and tested by environmental exposure and residual mechanical properties. The designs include a clinch stud with a collar retainer, a weld stud with a split ring retainer, and a caged stud with a collar retainer. The results indicated that a lightweight, reusable, high temperature fastening system can be developed for aerospace vehicle application.
High Temperature Materials Needs in NASA's Advanced Space Propulsion Programs
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Glass, David E.
2005-01-01
In recent years, NASA has embarked on several new and exciting efforts in the exploration and use of space. The successful accomplishment of many planned missions and projects is dependent upon the development and deployment of previously unproven propulsion systems. Key to many of the propulsion systems is the use of emergent materials systems, particularly high temperature structural composites. A review of the general missions and benefits of utilizing high temperature materials will be presented. The design parameters and operating conditions will be presented for both specific missions/vehicles and classes of components. Key technical challenges and opportunities are identified along with suggested paths for addressing them.
Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick
2006-02-01
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to -196 degrees C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than -70 degrees C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate.
Involvement of Two Specific Causes of Cell Mortality in Freeze-Thaw Cycles with Freezing to −196°C
Dumont, Frédéric; Marechal, Pierre-André; Gervais, Patrick
2006-01-01
The purpose of this study was to examine cell viability after freezing. Two distinct ranges of temperature were identified as corresponding to stages at which yeast cell mortality occurred during freezing to −196°C. The upper temperature range was related to the temperature of crystallization of the medium, which was dependent on the solute concentration; in this range mortality was prevented by high solute concentrations, and the proportion of the medium in the vitreous state was greater than the proportion in the crystallized state. The lower temperature range was related to recrystallization that occurred during thawing. Mortality in this temperature range was increased by a high cooling rate and/or high solute concentration in the freezing medium and a low temperature (less than −70°C). However, a high rate of thawing prevented yeast mortality in this lower temperature range. Overall, it was found that cell viability could be conserved better under freezing conditions by increasing the osmotic pressure of the medium and by using an increased warming rate. PMID:16461684
Preliminary analysis of aircraft fuel systems for use with broadened specification jet fuels
NASA Technical Reports Server (NTRS)
Pasion, A. J.; Thomas, I.
1977-01-01
An analytical study was conducted on the use of broadened specification hydrocarbon fuels in present day aircraft. A short range Boeing 727 mission and three long range Boeing 747 missions were used as basis of calculation for one-day-per-year extreme values of fuel loading, airport ambient and altitude ambient temperatures with various seasonal and climatic conditions. Four hypothetical fuels were selected; two high-vapor-pressure fuels with 35 kPa and 70 kPa RVP and two high-freezing-point fuels with -29 C and -18 C freezing points. In-flight fuel temperatures were predicted by Boeing's aircraft fuel tank thermal analyzer computer program. Boil-off rates were calculated for the high vapor pressure fuels and heating/insulation requirements for the high freezing point fuels were established. Possible minor and major heating system modifications were investigated with respect to heat output, performance and economic penalties for the high freezing point fuels.
Organic emissions from coal pyrolysis: mutagenic effects.
Braun, A G; Wornat, M J; Mitra, A; Sarofim, A F
1987-01-01
Four different types of coal have been pyrolyzed in a laminar flow, drop tube furnace in order to establish a relationship between polycyclic aromatic compound (PAC) evolution and mutagenicity. Temperatures of 900K to 1700K and particle residence times up to 0.3 sec were chosen to best simulate conditions of rapid rate pyrolysis in pulverized (44-53 microns) coal combustion. The specific mutagenic activity (i.e., the activity per unit sample weight) of extracts from particulates and volatiles captured on XAD-2 resin varied with coal type according to the order: subbituminous greater than high volatile bituminous greater than lignite greater than anthracite. Total mutagenic activity (the activity per gram of coal pyrolyzed), however, varied with coal type according to the order: high volatile bituminous much greater than subbituminous = lignite much greater than anthracite, due primarily to high organic yield during high volatile bituminous coal pyrolysis. Specific mutagenic activity peaked in a temperature range of 1300K to 1500K and generally appeared at higher temperatures and longer residence times than peak PAC production. PMID:3311724
Wang, Yejun; Kulatilaka, Waruna D
2017-04-10
In most coherent spectroscopic methods used in gas-phase laser diagnostics, multiple laser beams are focused and crossed at a specific location in space to form the probe region. The desired signal is then generated as a result of nonlinear interactions between the beams in this overlapped region. When such diagnostic schemes are implemented in practical devices having turbulent reacting flow fields with refractive index gradients, the resulting beam steering can give rise to large measurement uncertainties. The objective of this work is to simulate beam-steering effects arising from pressure and temperature gradients in gas-phase media using an optical ray tracing approach. The ZEMAX OpticStudio software package is used to simulate the beam crossing and uncrossing effects in the presence of pressure and temperature gradients, specifically the conditions present in high-pressure, high-temperature combustion devices such as gas turbine engines. Specific cases involving two-beam and three-beam crossing configurations are simulated. The model formulation, the effects of pressure and temperature gradients, and the resulting beam-steering effects are analyzed. The results show that thermal gradients in the range of 300-3000 K have minimal effects, while pressure gradients in the range of 1-50 atm result in pronounced beam steering and the resulting signal fluctuations in the geometries investigated. However, with increasing pressures, the temperature gradients can also have a pronounced effect on the resultant signal levels.
Guan, Ling; Li, Gaobo; Yang, Yiling; Deng, Xiufang; Cai, Peisi
2012-01-01
Subjects with Bell's palsy and healthy individuals were treated with moxibustion thermal stimulation on the Hegu (LI4) acupoint; an infrared thermal imaging system was used to observe facial-temperature changes. Bell's palsy patients developed low or high temperatures at the affected side, with poor symmetry. Healthy people showed high temperatures on the forehead, medial angle of the eye, nasal ala and around the lips, but low temperatures on bilateral cheeks, thus forming a “T-type hot area” in the face, with good temperature symmetry. Moxibustion treatment for 11 minutes significantly improved high asymmetry in temperature in the faces of Bell's palsy patients. This evidence indicates that moxibustion treatment on Hegu enables increases in facial temperatures in healthy people and Bell's palsy patients, especially around the lips. Moxibustion stimulation at the Hegu not only improves the global circulation but also has specific effects on the lips in Bell's palsy patients, but the underlying mechanism needs further investigation. PMID:25745463
The temperature of unheated bodies in a high-speed gas stream
NASA Technical Reports Server (NTRS)
Eckert, E; Weise, W
1941-01-01
The present report deals with temperature measurements on cylinders of 0.2 to 3 millimeters diameter in longitudinal and transverse air flow at speeds of 100 to 300 meters per second. Within the explored test range, that is, the probable laminar boundary layer region, the temperature of the cylinders in axial flow is practically independent of the speed and in good agreement with Pohlhausen's theoretical values; Whereas, in transverse flow, cylinders of certain diameter manifest a close relationship with speed, the ratio of the temperature above the air of the body to the adiabatic stagnation temperature decreases with rising speed and then rises again from a Mach number of 0.6. The importance of this "specific temperature" of the body for heat-transfer studies at high speed is discussed.
Lukic, Sasa; Menze, Jasper; Weide, Philipp; Busser, G Wilma; Winterer, Markus; Muhler, Martin
2017-09-11
Chemical vapor synthesis (CVS) is a unique method to prepare well-defined photocatalyst materials with both large specific surface area and a high degree of crystallinity. The obtained β-Ga 2 O 3 nanoparticles were optimized for photocatalysis by reductive photodeposition of the Rh/CrO x co-catalyst system. The influence of the degree of crystallinity and the specific surface area on photocatalytic aqueous methanol reforming and overall water splitting (OWS) was investigated by synthesizing β-Ga 2 O 3 samples in the temperature range from 1000 °C to 1500 °C. With increasing temperature, the specific surface area and the microstrain were found to decrease, whereas the degree of crystallinity and the crystallite size increased. Whereas the photocatalyst with the highest specific surface area showed the highest aqueous methanol reforming activity, the highest OWS activity was that for the sample with an optimum ratio between high degree of crystallinity and specific surface area. Thus, it was possible to show that the facile aqueous methanol reforming and the demanding OWS have different requirements for high photocatalytic activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The 100,000-hour cyclic oxidation behavior at 815C (1500 F) of 33 high-temperature alloys
NASA Technical Reports Server (NTRS)
Barrett, C. A.
1977-01-01
Commercial high-temperature Fe-, Ni-, and Co-base alloys were oxidized in air at 815 deg C for ten 1000-hour cycles. Specific weight change versus time curves were derived and the 10,000-hour surface oxides were analyzed by X-ray diffraction. The alloys were ranked by a combination of appearance and metal loss estimates derived from gravimetric data.
Metal-Coated Optical Fibers for High Temperature Applications
NASA Technical Reports Server (NTRS)
Zeakes, Jason; Murphy, Kent; Claus, Richard; Greene, Jonathan; Tran, Tuan
1996-01-01
This poster will highlight on-going research at the Virginia Tech Fiber & Electro-Optics Research Center (FEORC) in the area of thin films on optical fibers. Topics will include the sputter deposition of metals and metal; alloys onto optical fiber and fiber optic sensors for innovative applications. Specific information will be available on thin film fiber optic hydrogen sensors, corrosion sensors, and metal-coated optical fiber for high temperature aerospace applications.
Copper-Exchanged Zeolite L Traps Oxygen
NASA Technical Reports Server (NTRS)
Sharma, Pramod K.; Seshan, Panchalam K.
1991-01-01
Brief series of simple chemical treatments found to enhance ability of zeolite to remove oxygen from mixture of gases. Thermally stable up to 700 degrees C and has high specific surface area which provides high capacity for adsorption of gases. To increase ability to adsorb oxygen selectively, copper added by ion exchange, and copper-exchanged zeolite reduced with hydrogen. As result, copper dispersed atomically on inner surfaces of zeolite, making it highly reactive to oxygen, even at room temperature. Reactivity to oxygen even greater at higher temperatures.
Mangrove species' responses to winter air temperature extremes in China
Chen, Luzhen; Wang, Wenqing; Li, Qingshun Q.; Zhang, Yihui; Yang, Shengchang; Osland, Michael J.; Huang, Jinliang; Peng, Congjiao
2017-01-01
The global distribution and diversity of mangrove forests is greatly influenced by the frequency and intensity of winter air temperature extremes. However, our understanding of how different mangrove species respond to winter temperature extremes has been lacking because extreme freezing and chilling events are, by definition, relatively uncommon and also difficult to replicate experimentally. In this study, we investigated species-specific variation in mangrove responses to winter temperature extremes in China. In 10 sites that span a latitudinal gradient, we quantified species-specific damage and recovery following a chilling event, for mangrove species within and outside of their natural range (i.e., native and non-native species, respectively). To characterize plant stress, we measured tree defoliation and chlorophyll fluorescence approximately one month following the chilling event. To quantify recovery, we measured chlorophyll fluorescence approximately nine months after the chilling event. Our results show high variation in the geographic- and species-specific responses of mangroves to winter temperature extremes. While many species were sensitive to the chilling temperatures (e.g., Bruguiera sexangula and species in the Sonneratia and Rhizophora genera), the temperatures during this event were not cold enough to affect certain species (e.g., Kandelia obovata, Aegiceras corniculatum, Avicennia marina, and Bruguiera gymnorrhiza). As expected, non-native species were less tolerant of winter temperature extremes than native species. Interestingly, tidal inundation modulated the effects of chilling. In comparison with other temperature-controlled mangrove range limits across the world, the mangrove range limit in China is unique due to the combination of the following three factors: (1) Mangrove species diversity is comparatively high; (2) winter air temperature extremes, rather than means, are particularly intense and play an important ecological role; and (3) due to afforestation and restoration efforts, several species of non-native mangroves have been introduced beyond their natural range limits. Hence, from a global perspective, mangroves in China provide valuable opportunities to advance understanding of the effects of freezing and chilling temperatures on mangroves. Within the context of climate change, our findings provide a foundation for better understanding and preparing for mangrove species-specific responses to future changes in the duration and intensity of winter temperature extremes.
Crystal structure and phase transition of thermoelectric SnSe.
Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo
2016-06-01
Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.
Mental disease-related emergency admissions attributable to hot temperatures.
Lee, Suji; Lee, Hwanhee; Myung, Woojae; Kim, E Jin; Kim, Ho
2018-03-01
The association between high temperature and mental disease has been the focus of several studies worldwide. However, no studies have focused on the mental disease burden attributable to hot temperature. Here, we aim to quantify the risk attributed to hot temperatures based on the exposure-lag-response relationship between temperature and mental diseases. From data on daily temperature and emergency admissions (EA) for mental diseases collected from 6 major cities (Seoul, Incheon, Daejeon, Daegu, Busan, and Gwangju in South Korea) over a period of 11years (2003-2013), we estimated temperature-disease associations using a distributed lag non-linear model, and we pooled the data by city through multivariate meta-analysis. Cumulative relative risk and attributable risks were calculated for extreme hot temperatures, defined as the 99th percentile relative to the 50th percentile of temperatures. The strongest association between mental disease and high temperature was seen within a period of 0-4days of high temperature exposure. Our results reveal that 14.6% of EA for mental disease were due to extreme hot temperatures, and the elderly were more susceptible (19.1%). Specific mental diseases, including anxiety, dementia, schizophrenia, and depression, also showed significant risk attributed to hot temperatures. Of all EA for anxiety, 31.6% were attributed to extremely hot temperatures. High temperature was responsible for an attributable risk for mental disease, and the burden was higher in the elderly. This finding has important implications for designing appropriate public health policies to minimize the impact of high temperature on mental health. Copyright © 2017 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Low temperature steel pipe Sec. VIII of the ASME Boiler and Pressure Vessel Code (5). Pipe, welded: A... only, fusion welded steel pipe ASME B31.1 (8). A 358 Electric fusion welded pipe, high temperature... Seamless and welded (no added filler metal) carbon and low alloy tubing for low temperature UCS23, Sec...
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
Nickel aluminide alloy suitable for structural applications
Liu, C.T.
1998-03-10
Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.
Effects of extrusion variables on the properties of waxy hulless barley extrudates.
Köksel, Hamit; Ryu, Gy-Hyung; Başman, Arzu; Demiralp, Hande; Ng, Perry K W
2004-02-01
The objective of this research was to investigate the extrudability of waxy hulless barley flour under various extrusion conditions. Waxy hulless barley flour was processed in a laboratory-scale corotating twin-screw extruder with different levels of feed moisture content (22.3, 26.8, and 30.7%) and die temperature (130, 150, and 170 degrees C) to develop a snack food with high beta-glucan content. The effects of extrusion condition variables (screw configuration, moisture, and temperature) on the system variables (pressure and specific mechanical energy), the extrudate physical properties (sectional expansion index, bulk density), starch gelatinization, pasting properties (cold peak viscosity, trough viscosity, and final viscosity), and beta-glucan contents were determined. Results were evaluated by using response surface methodology. Increased extrusion temperature and feed moisture content resulted in decreases in exit die pressure and specific mechanical energy values. For extrudates extruded under low shear screw configuration (LS), increased barrel temperature decreased sectional expansion index (SEI) values at both low and high moisture contents. The feed moisture seems to have an inverse relationship with SEI over the range studied. Bulk density was higher at higher moisture contents, for both low and high barrel temperatures, for samples extruded under high shear screw configuration (HS) and LS. Cold peak viscosities (CV) were observed in all samples. The CV increased with the increase in extrusion temperature and feed moisture content. Although beta-glucan contents of the LS extrudates were comparable to that of barley flour sample, HS samples had generally lower beta-glucan contents. The extrusion cooking technique seems to be promising for the production of snack foods with high beta-glucan content, especially using LS conditions.
Chiu, Rex S; Nahal, Hardeep; Provart, Nicholas J; Gazzarrini, Sonia
2012-01-27
Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. © 2011 Chiu et al; licensee BioMed Central Ltd.
2012-01-01
Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal temperature. Physiologically, this is important since delaying germination has a protective role at high temperature. Transcriptomic analysis of seeds imbibed at supraoptimal temperature reveal that a complex program is in place, which involves not only the regulation of heat and dehydration response genes to adjust cellular functions, but also the activation of seed-specific programs and the inhibition of germination-promoting programs to delay germination. PMID:22279962
NASA Astrophysics Data System (ADS)
Bore, Ezekiel
2016-04-01
Microbial transformation of organic substances in soil is the most important process of the C cycle. Most of the current studies base their information about transformation of organic substances on incubation studies under laboratory conditions and thus, we have a profound knowledge on SOM transformations at ambient temperatures. However, metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5, -5 -20 oC. Soils were sampled after 1, 3 and 10 days and additionally after 30 days for samples at -20 °C. The 13C from individual molecule position was quantifed in respired CO2, bulk soil, extractable organic C and extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of microbial communities classified by 13C phospholipid fatty acid (PLFA) analysis. 13CO2 released showed a dominance of the flux from C-1 position at 5 °C. Consequently, at 5 °C, pentose phosphate pathway activity is a dominant metabolic pathway of glucose metabolization. In contrast to -5 °C and -20 oC, metabolic behaviors completely switched towards a preferential respiration of the glucose C-4 position. With decreasing temperature, microorganism strongly shifted towards metabolization of glucose via glycolysis which indicates a switch to cellular maintenance. High recoveries of 13C in extractable microbial biomass at -5 °C indicates optimal growth condition for the microorganisms. PLFA analysis showed high incorporation of 13C into Gram negative bacteria at 5 °C but decreased with temperature. Gram positive bacteria out-competed Gram negatives with decreasing temperature. This study revealed a remarkable microbial activity at temperatures below 0 °C, differing significantly from that at ambient temperatures. These metabolic pathways, can be unraveled based on position-specific labeling.
Seposo, Xerxes T.; Dang, Tran Ngoc; Honda, Yasushi
2015-01-01
The effect of temperature on the risk of mortality has been described in numerous studies of category-specific (e.g., cause-, sex-, age-, and season-specific) mortality in temperate and subtropical countries, with consistent findings of U-, V-, and J-shaped exposure-response functions. In this study, we analyzed the relationship between temperature and mortality in Manila City (Philippines), during 2006–2010 to identify the potential susceptible populations. We collected daily all-cause and cause-specific death counts from the Philippine Statistics Authority-National Statistics Office and the meteorological variables were collected from the Philippine Atmospheric Geophysical and Astronomical Services Administration. Temperature-mortality relationships were modeled using Poisson regression combined with distributed lag nonlinear models, and were used to perform cause-, sex-, age-, and season-specific analyses. The minimum mortality temperature was 30 °C, and increased risks of mortality were observed per 1 °C increase among elderly persons (RR: 1.53, 95% CI: 1.31–1.80), women (RR: 1.47, 95% CI: 1.27–1.69), and for respiratory causes of death (RR: 1.52, 95% CI: 1.23–1.88). Seasonal effect modification was found to greatly affect the risks in the lower temperature range. Thus, the temperature-mortality relationship in Manila City exhibited an increased risk of mortality among elderly persons, women, and for respiratory-causes, with inherent effect modification in the season-specific analysis. The findings of this study may facilitate the development of public health policies to reduce the effects of air temperature on mortality, especially for these high-risk groups. PMID:26086706
The Cutting Edge of High-Temperature Composites
NASA Technical Reports Server (NTRS)
2006-01-01
NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.
Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng
2018-01-08
An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.
NASA Astrophysics Data System (ADS)
Makeev, M. O.; Meshkov, S. A.; Sinyakin, V. Yu
2017-11-01
In the present work the thermal degradation of IV curves of AlAs/GaAs resonant tunneling diodes using artificial aging method was investigated. The dependency of AuGeNi specific ohmic contact resistance on time and temperature was determined.
49 CFR 179.400-25 - Stenciling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specification for Cryogenic Liquid Tank Car Tanks and Seamless Steel Tanks (Classes DOT-113 and 107A) § 179.400... design service temperature and maximum lading weight, in letters and figures at least 11/2 inches high... at its coldest operating temperature, after deduction for the volume above the inlet to the pressure...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, T.S.C.
1997-05-01
Low transition temperature (low-{Tc}) and high-{Tc} Superconducting QUantum Interference Devices (SQUIDs) have been used to perform high-resolution magnetic measurements on samples whose temperatures are much higher than the operating temperatures of the devices. Part 1 of this work focuses on measurements of the rigidity of flux vortices in high-{Tc} superconductors using two low-{Tc} SQUIDs, one on either side of a thermally-insulated sample. The correlation between the signals of the SQUIDs is a direct measure of the extent of correlation between the movements of opposite ends of vortices. These measurements were conducted under the previously-unexplored experimental conditions of nominally-zero applied magneticmore » field, such that vortex-vortex interactions were unimportant, and with zero external current. At specific temperatures, the authors observed highly-correlated noise sources, suggesting that the vortices moved as rigid rods. At other temperatures, the noise was mostly uncorrelated, suggesting that the relevant vortices were pinned at more than one point along their length. Part 2 describes the design, construction, performance, and applications of a scanning high-{Tc} SQUID microscope optimized for imaging room-temperature objects with very high spatial resolution and magnetic source sensitivity.« less
High concentration agglomerate dynamics at high temperatures.
Heine, M C; Pratsinis, S E
2006-11-21
The dynamics of agglomerate aerosols are investigated at high solids concentrations that are typical in industrial scale manufacture of fine particles (precursor mole fraction larger than 10 mol %). In particular, formation and growth of fumed silica at such concentrations by chemical reaction, coagulation, and sintering is simulated at nonisothermal conditions and compared to limited experimental data and commercial product specifications. Using recent chemical kinetics for silica formation by SiCl4 hydrolysis and neglecting aerosol polydispersity, the evolution of the diameter of primary particles (specific surface area, SSA), hard- and soft-agglomerates, along with agglomerate effective volume fraction (volume occupied by agglomerate) is investigated. Classic Smoluchowski theory is fundamentally limited for description of soft-agglomerate Brownian coagulation at high solids concentrations. In fact, these high concentrations affect little the primary particle diameter (or SSA) but dominate the soft-agglomerate diameter, structure, and volume fraction, leading to gelation consistent with experimental data. This indicates that restructuring and fragmentation should affect product particle characteristics during high-temperature synthesis of nanostructured particles at high concentrations in aerosol flow reactors.
Development of Thin Solar Cells for Space Applications at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Dickman, John E.; Hepp, Aloysius; Banger, Kulbinder K.; Harris, Jerry D.; Jin, Michael H.
2003-01-01
NASA GRC Thin Film Solar Cell program is developing solar cell technologies for space applications which address two critical metrics: higher specific power (power per unit mass) and lower launch stowed volume. To be considered for space applications, an array using thin film solar cells must offer significantly higher specific power while reducing stowed volume compared to the present technologies being flown on space missions, namely crystalline solar cells. The NASA GRC program is developing single-source precursors and the requisite deposition hardware to grow high-efficiency, thin-film solar cells on polymer substrates at low deposition temperatures. Using low deposition temperatures enables the thin film solar cells to be grown on a variety of polymer substrates, many of which would not survive the high temperature processing currently used to fabricate thin film solar cells. The talk will present the latest results of this research program.
Shear melting and high temperature embrittlement: theory and application to machining titanium.
Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J
2015-04-24
We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.
A porous ceramic membrane tailored high-temperature supercapacitor
NASA Astrophysics Data System (ADS)
Zhang, Xin; He, Benlin; Zhao, Yuanyuan; Tang, Qunwei
2018-03-01
The supercapacitor that can operate at high-temperature are promising for markedly increase in capacitance because of accelerated charge movement. However, the state-of-the-art polymer-based membranes will decompose at high temperature. Inspired by solid oxide fuel cells, we present here the experimental realization of high-temperature supercapacitors (HTSCs) tailored with porous ceramic separator fabricated by yttria-stabilized zirconia (YSZ) and nickel oxide (NiO). Using activated carbon electrode and supporting electrolyte from potassium hydroxide (KOH) aqueous solution, a category of symmetrical HTSCs are built in comparison with a conventional polymer membrane based device. The dependence of capacitance performance on temperature is carefully studied, yielding a maximized specific capacitance of 272 F g-1 at 90 °C for the optimized HTSC tailored by NiO/YSZ membrane. Moreover, the resultant HTSC has relatively high durability when suffer repeated measurement over 1000 cycles at 90 °C, while the polymer membrane based supercapacitor shows significant reduction in capacitance at 60 °C. The high capacitance along with durability demonstrates NiO/YSZ membrane tailored HTSCs are promising in future advanced energy storage devices.
NASA Technical Reports Server (NTRS)
Cezairliyan, Ared
1993-01-01
Rapid (subsecond) heating techniques developed at the National Institute of Standards and Technology for the measurements of selected thermophysical and related properties of metals and alloys at high temperatures (above 1000 C) are described. The techniques are based on rapid resistive self-heating of the specimen from room temperature to the desired high temperature in short times and measuring the relevant experimental quantities, such as electrical current through the specimen, voltage across the specimen, specimen temperature, length, etc., with appropriate time resolution. The first technique, referred to as the millisecond-resolution technique, is for measurements on solid metals and alloys in the temperature range 1000 C to the melting temperature of the specimen. It utilizes a heavy battery bank for the energy source, and the total heating time of the specimen is typically in the range of 100-1000 ms. Data are recorded digitally every 0.5 ms with a full-scale resolution of about one part in 8000. The properties that can be measured with this system are as follows: specific heat, enthalpy, thermal expansion, electrical resistivity, normal spectral emissivity, hemispherical total emissivity, temperature and energy of solid-solid phase transformations, and melting temperature (solidus). The second technique, referred to as the microsecond-resolution technique, is for measurements on liquid metals and alloys in the temperature range 1200 to 6000 C. It utilizes a capacitor bank for the energy source, and the total heating time of the specimen is typically in the range 50-500 micro-s. Data are recorded digitally every 0.5 micro-s with a full-scale resolution of about one part in 4000. The properties that can be measured with this system are: melting temperature (solidus and liquidus), heat of fusion, specific heat, enthalpy, and electrical resistivity. The third technique is for measurements of the surface tension of liquid metals and alloys at their melting temperature. It utilizes a modified millisecond-resolution heating system designed for use in a microgravity environment.
Jumrani, Kanchan; Bhatia, Virender Singh; Pandey, Govind Prakash
2017-03-01
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2 °C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO 2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28 °C, respectively.
DOT National Transportation Integrated Search
2017-09-01
Numerous studies have shown that G*/Sin, the high temperature specification parameter for current Performance Graded (PG) asphalt binder is not adequate to reflect the rutting characteristics of polymer-modified binders. Consequently, many state De...
NASA Astrophysics Data System (ADS)
Frieler, Katja; Meinshausen, Malte; Braun, Nadine; Hare, Bill
2010-05-01
Given the expected and already observed impacts of climate change there is growing agreement that global mean temperature rise should be limited to below 2 or 1.5 degrees. The translation of such a temperature target into guidelines for global emission reduction over the coming decades has become one of the most important and urgent tasks. In fact, there are four recent studies (Meinshausen et al. 2009, Allen et al. 2009, Matthews et al. 2009 and Zickfeld et al. 2009) which take a very comprehensive approach to quantifying the current uncertainties related to the question of what are the "allowed amounts" of global emissions given specific limits of global warming. Here, we present an extension of this budget approach allowing to focus on specific regional impacts. The method is based on probabilistic projections of regional temperature and precipitation changes providing the input for available impact functions. Using the example of Greenland's surface mass balance (Gregory et al., 2006) we will demonstrate how the probability of specific impacts can be described in dependence of global GHG emission budgets taking into account the uncertainty of global mean temperature projections as well as uncertainties of regional climate patterns varying from AOGCM to AOGCM. The method utilizes the AOGCM based linear relation between global mean temperature changes and regionally averaged changes in temperature and precipitation. It allows to handle the variations of regional climate projections from AR4 AOGCM runs independent of the uncertainties of global mean temperature change that are estimated by a simple climate model (Meinshausen et al., 2009). While the linearity of this link function is already established for temperature and to a lesser degree (depending on the region) also for precipitation (Santer et al. 1990; Mitchell et al. 1999; Giorgi et al., 2008; Solomon et al., 2009), we especially focus on the quantification of the uncertainty (in particularly the inter-AOGCM variations) of the associated scaling coefficients. Our approach is based on a linear mixed effects model (e.g. Bates and Pinheiro, 2001). In comparison to other scaling approaches we do not fit separate models for the temperature and precipitation data but we apply a two-dimensional model, i.e., we explicitly account for the fact that models (scenarios or runs) showing an especially high temperature increase may also show high precipitation increases or vice versa. Coupling the two-dimensional distribution of the scaling coefficients with the uncertainty distributions of global mean temperature change given different GHG emission trajectories finally provides time series of two dimensional uncertainty distributions of regional changes in temperature and precipitation, where both components might be correlated. These samples provide the input for regional specific impact functions. In case of Greenland we use a function by Gregory et al., 2006 that allows us to calculate changes in sea level rise due to changes in Greenland's surface mass balance in dependence of regionally averaged changes in temperature and precipitation. The precipitation signal turns out to be relatively strong for Greenland with AOGCMs consistently showing increasing precipitation with increasing global mean temperature. In addition, temperature and precipitation increases turned out to be highly correlated for Greenland: Models showing an especially high temperature increase also show high precipitation increases reflected by a correlation coefficient of 0.88 for the inter-model variations of both components of the scaling coefficients. Taking these correlations into account is especially important because the surface mass balance of the Greenland ice sheet critically depends on the interaction of the temperature and precipitation component of climate change: Increasing precipitation may at least partly balance the loss due to increasing temperatures.
NASA Technical Reports Server (NTRS)
Key, Jeff; Maslanik, James; Steffen, Konrad
1995-01-01
During the second phase project year we have made progress in the development and refinement of surface temperature retrieval algorithms and in product generation. More specifically, we have accomplished the following: (1) acquired a new advanced very high resolution radiometer (AVHRR) data set for the Beaufort Sea area spanning an entire year; (2) acquired additional along-track scanning radiometer(ATSR) data for the Arctic and Antarctic now totalling over eight months; (3) refined our AVHRR Arctic and Antarctic ice surface temperature (IST) retrieval algorithm, including work specific to Greenland; (4) developed ATSR retrieval algorithms for the Arctic and Antarctic, including work specific to Greenland; (5) developed cloud masking procedures for both AVHRR and ATSR; (6) generated a two-week bi-polar global area coverage (GAC) set of composite images from which IST is being estimated; (7) investigated the effects of clouds and the atmosphere on passive microwave 'surface' temperature retrieval algorithms; and (8) generated surface temperatures for the Beaufort Sea data set, both from AVHRR and special sensor microwave imager (SSM/I).
NASA Technical Reports Server (NTRS)
Wieserman, W. R.; Schwarze, G. E.; Niedra, J. M.
1992-01-01
The design of power magnetic components such as transformers, inductors, motors, and generators, requires specific knowledge about the magnetic and electrical characteristics of the magnetic materials used in these components. Limited experimental data exists that characterizes the performance of soft magnetic materials for the combined conditions of high temperature and high frequency over a wide flux density range. An experimental investigation of a 2V-49-Fe-49Co (Supermendur) and a grain oriented 3 Si-Fe (Magnesil) alloy was conducted over the temperature range of 23 to 300 C and frequency range of 0.1 to 10 kHz. The effects of temperature, frequency, and maximum flux density on the core loss and dynamic B-H loops for sinusoidal voltage excitation conditions are examined for each of these materials. A comparison of the core loss of these two materials is also made over the temperature and frequency range investigated.
Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Van Noord, Jonathan
2012-01-01
NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.
Von Guerard, Paul; McKnight, Diane M.; Harnish, R.A.; Gartner, J.W.; Andrews, E.D.
1995-01-01
During the 1990-91 and 1991-92 field seasons in Antarctica, streamflow, water-temperature, and specific-conductance data were collected on the major streams draining into Lake Fryxell. Lake Fryxell is a permanently ice-covered, closed-basin lake with 13 tributary streams. Continuous streamflow data were collected at eight sites, and periodic streamflow measurements were made at three sites. Continuous water-temperature and specific- conductance data were collected at seven sites, and periodic water-temperature and specific-conductance data were collected at all sites. Streamflow for all streams measured ranged from 0 to 0.651 cubic meter per second. Water temperatures for all streams measured ranged from 0 to 14.3 degrees Celsius. Specific conductance for all streams measured ranged from 11 to 491 microsiemens per centimeter at 25 degrees Celsius. It is probable that stream- flow in the Lake Fryxell Basin during 1990-92 was greater than average. Examination of the 22-year streamflow record in the Onyx River in the Wright Valley revealed that in 1990 streamflow began earlier than for any previous year recorded and that the peak streamflow of record was exceeded. Similar high-flow conditions occurred during the 1991-92 field season. Thus, the data collected on streams draining into Lake Fryxell during 1990-92 are representative of greater than average stream- flow conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Aiyong; Lin, Bo; Zhang, Hanlei
2017-01-01
Three series of Cr-based mixed oxides (Cr-Co, Cr-Fe, and Cr-Ni oxides) with high specific surface areas and amorphous textures were synthesized using a novel sol-gel method. These mixed oxides, in comparison to their pure metal oxide (CrOx, Co3O4, FeOx and NiO) counterparts, display enhanced performance for catalytic oxidation of low-concentration NO at room temperature. The best performing catalysts achieve 100% NO conversion for ~30 h of operation at a high space velocity of 45,000 ml g-1 h-1. The amorphous structure was found to be critical for these catalysts to maintain high activity and durability. Control of Cr/M (M=Co, Fe andmore » Ni) molar ratio, nitrate precursor decomposition temperature and catalyst calcination temperature was key to the synthesis of these highly active catalysts.« less
Nuclear resonant inelastic X-ray scattering at high pressure and low temperature
Bi, Wenli; Zhao, Jiyong; Lin, Jung -Fu; ...
2015-01-01
In this study, a new synchrotron radiation experimental capability of coupling nuclear resonant inelastic X-ray scattering with the cryogenically cooled high-pressure diamond anvil cell technique is presented. The new technique permits measurements of phonon density of states at low temperature and high pressure simultaneously, and can be applied to studies of phonon contribution to pressure- and temperature-induced magnetic, superconducting and metal–insulator transitions in resonant isotope-bearing materials. In this report, a pnictide sample, EuFe 2As 2, is used as an example to demonstrate this new capability at beamline 3-ID of the Advanced Photon Source, Argonne National Laboratory. A detailed description ofmore » the technical development is given. The Fe-specific phonon density of states and magnetism from the Fe sublattice in Eu 57Fe 2As 2 at high pressure and low temperature were derived by using this new capability.« less
Low-temperature magnetic properties of GdCoIn5
NASA Astrophysics Data System (ADS)
Betancourth, D.; Facio, J. I.; Pedrazzini, P.; Jesus, C. B. R.; Pagliuso, P. G.; Vildosola, V.; Cornaglia, Pablo S.; García, D. J.; Correa, V. F.
2015-01-01
A comprehensive experimental and theoretical study of the low temperature properties of GdCoIn5 was performed. Specific heat, thermal expansion, magnetization and electrical resistivity were measured in good quality single crystals down to 4He temperatures. All the experiments show a second-order-like phase transition at 30 K probably associated with the onset of antiferromagnetic order. The magnetic susceptibility shows a pronounced anisotropy below TN with an easy magnetic axis perpendicular to the crystallographic ĉ-axis. Total energy GGA+U calculations indicate a ground state with magnetic moments localized at the Gd ions and allowed a determination of the Gd-Gd magnetic interactions. Band structure calculations of the electron and phonon contributions to the specific heat together with Quantum Monte Carlo calculations of the magnetic contributions show a very good agreement with the experimental data. Comparison between experiment and calculations suggests a significant anharmonic contribution to the specific heat at high temperature (T ≳ 100 K).
Hosoi-Tanabe, Shoko; Zhang, Hongyan; Zhu, Daochen; Nagata, Shinichi; Ban, Syuhei; Imura, Satoshi
2010-06-01
To investigate the adaptability to higher temperatures of Antarctic microorganisms persisting in low temperature conditions for a long time, Antarctic lake samples were incubated in several selection media at 25 degrees C and 30 degrees C. The microorganisms did not grow at 30 degrees C; however, some of them grew at 25 degrees C, indicating that the bacteria in Antarctic have the ability to grow at a wide range of temperatures. Total DNA was extracted from these microorganisms and amplified using the bacteria-universal primers. The amplified fragments were cloned, and randomly selected 48 clones were sequenced. The sequenced clones showed high similarity to the alpha-subdivision of the Proteobacteria with specific affinity to the genus Agrobacterium, Caulobacter and Brevundimonas, the ss-subdivision of Proteobacteria with specific affinity to the genus Cupriavidus, and Bacillus of the phylum Firmicutes. These results showed the presence of universal genera, suggesting that the bacteria in the Antarctic lake were not specific to this environment.
Thermodynamic and electrical properties of laser-shocked liquid deuterium
NASA Astrophysics Data System (ADS)
He, Zhiyu; Jia, Guo; Zhang, Fan; Luo, Kui; Huang, Xiuguang; Shu, Hua; Fang, Zhiheng; Ye, Junjian; Xie, Zhiyong; Xia, Miao; Fu, Sizu
2018-01-01
Liquid deuterium at high pressure and temperature has been observed to undergo significant electronic structural changes. Reflectivity and temperature measurements of liquid deuterium up to around 70 GPa were obtained using a quartz standard. The observed specific heat of liquid deuterium approaches the Dulong-Petit limit above 1 eV. Discussions on specific heat indicate a molecular dissociation below 1 eV and fully dissociated above 1.5 eV. Also, the electrical conductivity of deuterium estimated from reflectivity reaches 1.3 × 105 (Ωṡm)-1, proving that deuterium in this condition is a conducting degenerate liquid metal and undergo an insulator-metal transition. The results from specific heat, carrier density and conductivity agreed well with each other, which might be a reinforcement of the insulator-metal transition and the molecular dissociation. In addition, a new correction method of reflectivity in temperature calculation was proposed to improve the accuracy of temperature results. A new "dynamic calibration" was introduced in this work to make the experiments simpler and more accurate.
NASA Astrophysics Data System (ADS)
Sun, Xiaoqin; Lee, Kyoung Ok; Medina, Mario A.; Chu, Youhong; Li, Chuanchang
2018-06-01
Differential scanning calorimetry (DSC) analysis is a standard thermal analysis technique used to determine the phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy of phase change materials (PCMs). To determine the appropriate heating rate and sample mass, various DSC measurements were carried out using two kinds of PCMs, namely N-octadecane paraffin and calcium chloride hexahydrate. The variations in phase transition temperature, enthalpy, heat of fusion, specific heat and activation energy were observed within applicable heating rates and sample masses. It was found that the phase transition temperature range increased with increasing heating rate and sample mass; while the heat of fusion varied without any established pattern. The specific heat decreased with the increase of heating rate and sample mass. For accuracy purpose, it is recommended that for PCMs with high thermal conductivity (e.g. hydrated salt) the focus will be on heating rate rather than sample mass.
Prediction of frozen food properties during freezing using product composition.
Boonsupthip, W; Heldman, D R
2007-06-01
Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.
Composite Silica Aerogels Opacified with Titania
NASA Technical Reports Server (NTRS)
Paik, Jon-Ah; Sakamoto, Jeffrey; Jones, Steven; Fleurial, Jean-Pierre; DiStefano, Salvador; Nesmith, Bill
2009-01-01
A further improvement has been made to reduce the high-temperature thermal conductivities of the aerogel-matrix composite materials described in Improved Silica Aerogel Composite Materials (NPO-44287), NASA Tech Briefs, Vol. 32, No. 9 (September 2008), page 50. Because the contribution of infrared radiation to heat transfer increases sharply with temperature, the effective high-temperature thermal conductivity of a thermal-insulation material can be reduced by opacifying the material to reduce the radiative contribution. Therefore, the essence of the present improvement is to add an opacifying constituent material (specifically, TiO2 powder) to the aerogel-matrix composites.
Gasification Characteristics of Coal/Biomass Mixed Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Reginald
2014-09-01
A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomassmore » and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures.« less
High Temperature Boost (HTB) Power Processing Unit (PPU) Formulation Study
NASA Technical Reports Server (NTRS)
Chen, Yuan; Bradley, Arthur T.; Iannello, Christopher J.; Carr, Gregory A.; Mohammad, Mojarradi M.; Hunter, Don J.; DelCastillo, Linda; Stell, Christopher B.
2013-01-01
This technical memorandum is to summarize the Formulation Study conducted during fiscal year 2012 on the High Temperature Boost (HTB) Power Processing Unit (PPU). The effort is authorized and supported by the Game Changing Technology Division, NASA Office of the Chief Technologist. NASA center participation during the formulation includes LaRC, KSC and JPL. The Formulation Study continues into fiscal year 2013. The formulation study has focused on the power processing unit. The team has proposed a modular, power scalable, and new technology enabled High Temperature Boost (HTB) PPU, which has 5-10X improvement in PPU specific power/mass and over 30% in-space solar electric system mass saving.
Advanced high temperature thermoelectrics for space power
NASA Technical Reports Server (NTRS)
Lockwood, A.; Ewell, R.; Wood, C.
1981-01-01
Preliminary results from a spacecraft system study show that an optimum hot junction temperature is in the range of 1500 K for advanced nuclear reactor technology combined with thermoelectric conversion. Advanced silicon germanium thermoelectric conversion is feasible if hot junction temperatures can be raised roughly 100 C or if gallium phosphide can be used to improve the figure of merit, but the performance is marginal. Two new classes of refractory materials, rare earth sulfides and boron-carbon alloys, are being investigated to improve the specific weight of the generator system. Preliminary data on the sulfides have shown very high figures of merit over short temperature ranges. Both n- and p-type doping have been obtained. Pure boron-carbide may extrapolate to high figure of merit at temperatures well above 1500 K but not lower temperature; n-type conduction has been reported by others, but not yet observed in the JPL program. Inadvertant impurity doping may explain the divergence of results reported.
NASA Astrophysics Data System (ADS)
Sun, Y.; Zhou, G.; Li, K. R.; Li, Q.; Pan, W.
2017-12-01
With high specific heat and density, supercritical helium can be used to reduce the temperature oscillationand improve temperature stabilityin the low temperature conditions. However, the natural convection ofthe supercritical helium has a complex influence on the suppression of the temperature oscillation. In this paper,a transient three-dimensional numerical simulation is carried out for the natural convection in the cylinder to analyze the effect of natural convection on transferring of temperature oscillation.According to the results of numerical calculation, a cryogenic system cooled by GM cryocooler is designed tostudy the influence of natural convection of supercritical helium on temperature oscillation suppression.
Heat Wave and Mortality: A Multicountry, Multicommunity Study
Gasparrini, Antonio; Armstrong, Ben G.; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; Coelho, Micheline de Sousa Zanotti Stagliorio; Pan, Xiaochuan; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Zanobetti, Antonella; Schwartz, Joel D.; Bell, Michelle L.; Scortichini, Matteo; Michelozzi, Paola; Punnasiri, Kornwipa; Li, Shanshan; Tian, Linwei; Garcia, Samuel David Osorio; Seposo, Xerxes; Overcenco, Ala; Zeka, Ariana; Goodman, Patrick; Dang, Tran Ngoc; Dung, Do Van; Mayvaneh, Fatemeh; Saldiva, Paulo Hilario Nascimento; Williams, Gail; Tong, Shilu
2017-01-01
Background: Few studies have examined variation in the associations between heat waves and mortality in an international context. Objectives: We aimed to systematically examine the impacts of heat waves on mortality with lag effects internationally. Methods: We collected daily data of temperature and mortality from 400 communities in 18 countries/regions and defined 12 types of heat waves by combining community-specific daily mean temperature ≥90th, 92.5th, 95th, and 97.5th percentiles of temperature with duration ≥2, 3, and 4 d. We used time-series analyses to estimate the community-specific heat wave–mortality relation over lags of 0–10 d. Then, we applied meta-analysis to pool heat wave effects at the country level for cumulative and lag effects for each type of heat wave definition. Results: Heat waves of all definitions had significant cumulative associations with mortality in all countries, but varied by community. The higher the temperature threshold used to define heat waves, the higher heat wave associations on mortality. However, heat wave duration did not modify the impacts. The association between heat waves and mortality appeared acutely and lasted for 3 and 4 d. Heat waves had higher associations with mortality in moderate cold and moderate hot areas than cold and hot areas. There were no added effects of heat waves on mortality in all countries/regions, except for Brazil, Moldova, and Taiwan. Heat waves defined by daily mean and maximum temperatures produced similar heat wave–mortality associations, but not daily minimum temperature. Conclusions: Results indicate that high temperatures create a substantial health burden, and effects of high temperatures over consecutive days are similar to what would be experienced if high temperature days occurred independently. People living in moderate cold and moderate hot areas are more sensitive to heat waves than those living in cold and hot areas. Daily mean and maximum temperatures had similar ability to define heat waves rather than minimum temperature. https://doi.org/10.1289/EHP1026 PMID:28886602
Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2
NASA Astrophysics Data System (ADS)
Bhamu, K. C.
2018-05-01
Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.
Gockel, Christine; Kolb, Peter M.; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent. PMID:24788725
Gockel, Christine; Kolb, Peter M; Werth, Lioba
2014-01-01
Temperature-related words such as cold-blooded and hot-headed can be used to describe criminal behavior. Words associated with coldness describe premeditated behavior and words associated with heat describe impulsive behavior. Building on recent research about the close interplay between physical and interpersonal coldness and warmth, we examined in a lab experiment how ambient temperature within a comfort zone influences judgments of criminals. Participants in rooms with low temperature regarded criminals to be more cold-blooded than participants in rooms with high temperature. Specifically, they were more likely to attribute premeditated crimes, ascribed crimes resulting in higher degrees of penalty, and attributed more murders to criminals. Likewise, participants in rooms with high temperature regarded criminals to be more hot-headed than participants in rooms with low temperature: They were more likely to attribute impulsive crimes. Results imply that cognitive representations of temperature are closely related to representations of criminal behavior and attributions of intent.
NASA Astrophysics Data System (ADS)
Berry, R.; Shandas, V.; Makido, Y.
2017-12-01
Many cities are unintentionally designed to be heat sinks, which absorb the sun's short-wave radiation and reemit as long-wave radiation. Long time reorganization of this `urban heat island' (UHI) phenomena has led researchers and city planners into developing strategies for reducing ambient temperatures through urban design. Specifically, greening areas have proven to reduce the temperature in UHI's, including strategies such as green streets, green facades, and green roofs have been implemented. Among the scientific community there is promoted study of how myriad greening strategies can reduce temperature, relatively limited work has focused on the distribution, density, and quantity of tree campaigns. This paper examines how the spacing and size of trees reduce temperatures differently. A major focus of the paper is to understand how to lower the temperature through tree planting, and provide recommendations to cities that are attempting to solve their own urban heat island issues. Because different cities have different room for planting greenery, we examined which strategies are more efficient given an area constraint. Areas that have less available room might not be able to plant a high density of trees. We compared the different experimental groups varying in density and size of trees against the control to see the effect the trees had. Through calibration with local weather stations, we used a micrometeorology program (ENVI-Met) to model and simulate the different experimental models and how they affect the temperature. The results suggest that some urban designs can reduce ambient temperatures by over 7 0C, and the inclusion of large form trees have the greatest contribution, by reducing temperatures over 15 0C. The results suggest that using specific strategies that combine placement of specific tree configurations with alternative distribution of urban development patterns can help to solve the current challenges of UHI's, and thereby support management actions for addressing future impacts from climate change.
Insect eggs protected from high temperatures by limited homeothermy of plant leaves.
Potter, Kristen; Davidowitz, Goggy; Woods, H Arthur
2009-11-01
Virtually all aspects of insect biology are affected by body temperature, and many taxa have evolved sophisticated temperature-control mechanisms. All insects, however, begin life as eggs and lack the ability to thermoregulate. Eggs laid on leaves experience a thermal environment, and thus a body temperature, that is strongly influenced by the leaves themselves. Because plants can maintain leaf temperatures that differ from ambient, e.g. by evapotranspiration, plant hosts may protect eggs from extreme ambient temperatures. We examined the degree to which leaves buffer ambient thermal variation and whether that buffering benefits leaf-associated insect eggs. In particular, we: (1) measured temperature variation at oviposition sites in the field, (2) manipulated temperatures in the laboratory to determine the effect of different thermal conditions on embryo development time and survival, and (3) tested embryonic metabolic rates over increasing temperatures. Our results show that Datura wrightii leaves buffer Manduca sexta eggs from fatally high ambient temperatures in the southwestern USA. Moreover, small differences in temperature profiles among leaves can cause large variation in egg metabolic rate and development time. Specifically, large leaves were hotter than small leaves during the day, reaching temperatures that are stressfully high for eggs. This study provides the first mechanistic demonstration of how this type of leaf-constructed thermal refuge interacts with egg physiology.
Performance enhanced piezoelectric-based crack detection system for high temperature I-beam SHM
NASA Astrophysics Data System (ADS)
Zhang, Chen; Zhang, Haifeng
2017-04-01
This paper proposes an innovative sensing system for high temperature (up to 150°C) I-beam crack detection. The proposed system is based on the piezoelectric effect and laser sensing mechanisms, which is proved to be effective at high temperature environment (up to 150°C). Different from other high temperature SHM approaches, the proposed sensing system is employing a piezoelectric disk as an actuator and a laser vibrometer as a sensor for remote detection. Lab tests are carried out and the vibrational properties are studied to characterize the relationship between crack depth and sensor responses by analyzing the RMS of sensor responses. Instead of utilizing a pair of piezoelectric actuator and sensor, using the laser vibrometer will enable 1) a more flexible detection, which will not be limited to specific area or dimension, 2) wireless sensing, which lowers the risk of operating at high temperature/harsh environment. The proposed sensing system can be applied to engineering structures such as in nuclear power plant reactor vessel and heat pipe structures/systems.
Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.
Lau, On Sun; Song, Zhuojun; Zhou, Zimin; Davies, Kelli A; Chang, Jessica; Yang, Xin; Wang, Shenqi; Lucyshyn, Doris; Tay, Irene Hui Zhuang; Wigge, Philip A; Bergmann, Dominique C
2018-04-23
Environmental factors shape the phenotypes of multicellular organisms. The production of stomata-the epidermal pores required for gas exchange in plants-is highly plastic and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production, but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the basic-helix-loop-helix (bHLH) transcription factor that serves as the master regulator of stomatal lineage initiation [6, 7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high-temperature signaling [8]. Importantly, we demonstrate that, upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where warm-temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at elevated temperatures. Our work identifies a molecular link connecting high-temperature signaling and stomatal development and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly expressed environmental signaling factor. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bales, Thomas T.
1992-01-01
Vugraphs are presented to show the use of refractory materials for the skin of the High speed Civil Transport (HSCT). Examples are given of skin temperature ranges, failure mode weight distribution, tensile properties as a function of temperature, and components to be constructed from composite materials. The responsibilities of various aircraft companies for specific aircraft components are defined.
Thermal properties of rare earth cobalt oxides and of La1- x Gd x CoO3 solid solutions
NASA Astrophysics Data System (ADS)
Orlov, Yu. S.; Dudnikov, V. A.; Gorev, M. V.; Vereshchagin, S. N.; Solov'ev, L. A.; Ovchinnikov, S. G.
2016-05-01
Powder X-ray diffraction data for the crystal structure, phase composition, and molar specific heat for La1‒ x Gd x CoO3 cobaltites in the temperature range of 300-1000 K have been analyzed. The behavior of the volume thermal expansion coefficient in cobaltites with isovalent doping in the temperature range of 100-1000 K is studied. It is found that the β( T) curve exhibits two peaks at some doping levels. The rate of the change in the occupation number for the high-spin state of cobalt ions is calculated for the compounds under study taking into account the spin-orbit interaction. With the Birch-Murnaghan equation of state, it is demonstrated that the low-temperature peak in the thermal expansion shifts with the growth of the pressure toward higher temperatures and at pressure P ˜ 7 GPa coincides with the second peak. The similarity in the behavior of the thermal expansion coefficient in the La1- x Gd x CoO3 compounds with the isovalent substitution and the undoped LnCoO3 compound (Ln is a lanthanide) is considered. For the whole series of rare earth cobalt oxides, the nature of two specific features in the temperature dependence of the specific heat and thermal expansion is revealed and their relation to the occupation number for the high-spin state of cobalt ions and to the insulator-metal transition is established.
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans Gougar
2014-05-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
Baseline Concept Description of a Small Modular High Temperature Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans D.
2014-10-01
The objective of this report is to provide a description of generic small modular high temperature reactors (herein denoted as an smHTR), summarize their distinguishing attributes, and lay out the research and development (R&D) required for commercialization. The generic concepts rely heavily on the modular high temperature gas-cooled reactor designs developed in the 1980s which were never built but for which pre-licensing or certification activities were conducted. The concept matured more recently under the Next Generation Nuclear Plant (NGNP) project, specifically in the areas of fuel and material qualification, methods development, and licensing. As all vendor-specific designs proposed under NGNPmore » were all both ‘small’ or medium-sized and ‘modular’ by International Atomic Energy Agency (IAEA) and Department of Energy (DOE) standards, the technical attributes, challenges, and R&D needs identified, addressed, and documented under NGNP are valid and appropriate in the context of Small Modular Reactor (SMR) applications. Although the term High Temperature Reactor (HTR) is commonly used to denote graphite-moderated, thermal spectrum reactors with coolant temperatures in excess of 650oC at the core outlet, in this report the historical term High Temperature Gas-Cooled Reactor (HTGR) will be used to distinguish the gas-cooled technology described herein from its liquid salt-cooled cousin. Moreover, in this report it is to be understood that the outlet temperature of the helium in an HTGR has an upper limit of 950 degrees C which corresponds to the temperature to which certain alloys are currently being qualified under DOE’s ARC program. Although similar to the HTGR in just about every respect, the Very High Temperature Reactor (VHTR) may have an outlet temperature in excess of 950 degrees C and is therefore farther from commercialization because of the challenges posed to materials exposed to these temperatures. The VHTR is the focus of R&D under the Generation IV program and its specific R&D needs will be included in this report when appropriate for comparison. The distinguishing features of the HTGR are the refractory (TRISO) coated particle fuel, the low-power density, graphite-moderated core, and the high outlet temperature of the inert helium coolant. The low power density and fuel form effectively eliminate the possibility of core melt, even upon a complete loss of coolant pressure and flow. The graphite, which constitutes the bulk of the core volume and mass, provides a large thermal buffer that absorbs fission heat such that thermal transients occur over a timespan of hours or even days. As chemically-inert helium is already a gas, there is no coolant temperature or void feedback on the neutronics and no phase change or corrosion product that could degrade heat transfer. Furthermore, the particle coatings and interstitial graphite retain fission products such that the source terms at the plant boundary remain well below actionable levels under all anticipated nominal and off-normal operating conditions. These attributes enable the reactor to supply process heat to a collocated industrial plant with negligible risk of contamination and minimal dynamic coupling of the facilities (Figure 1). The exceptional retentive properties of coated particle fuel in a graphite matrix were first demonstrated in the DRAGON reactor, a European research facility that began operation in 1964.« less
NASA Astrophysics Data System (ADS)
Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao
2013-09-01
Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.
NASA Astrophysics Data System (ADS)
Menz, Christoph
2016-04-01
Climate change interferes with various aspects of the socio-economic system. One important aspect is its influence on animal husbandry, especially dairy faming. Dairy cows are usually kept in naturally ventilated barns (NVBs) which are particular vulnerable to extreme events due to their low adaptation capabilities. An effective adaptation to high outdoor temperatures for example, is only possible under certain wind and humidity conditions. High temperature extremes are expected to increase in number and strength under climate change. To assess the impact of this change on NVBs and dairy cows also the changes in wind and humidity needs to be considered. Hence we need to consider the multivariate structure of future temperature extremes. The OptiBarn project aims to develop sustainable adaptation strategies for dairy housings under climate change for Europe, by considering the multivariate structure of high temperature extremes. In a first step we identify various multivariate high temperature extremes for three core regions in Europe. With respect to dairy cows in NVBs we will focus on the wind and humidity field during high temperature events. In a second step we will use the CORDEX-EUR-11 ensemble to evaluate the capability of the RCMs to model such events and assess their future change potential. By transferring the outdoor conditions to indoor climate and animal wellbeing the results of this assessment can be used to develop technical, architectural and animal specific adaptation strategies for high temperature extremes.
Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors
NASA Astrophysics Data System (ADS)
Fan, Yang; Yang, Xin; Zhu, Bing; Liu, Pei-Fang; Lu, Hai-Ting
2014-12-01
The polysaccharide carrageenan is used as a natural precursor to prepare micro-mesoporous carbon spheres. The carbon spheres were synthesized by hydrothermal carbonization of carrageenan, and subsequent chemical activation by KOH at different temperatures. The obtained micro-mesoporous carbon spheres have high surface area (up to 2502 m2 g-1) and large pore volume (up to 1.43 cm3 g-1). Moreover, the micro- and mesoporosity can be finely tuned be modifying the activation temperatures in the range of 700-900 °C. The carbon spheres activated at 900 °C present high specific capacitance of 230 F g-1 at a current density of 1 A g-1 and good ion transport kinetics. The good capacitive performance can be ascribed to the high specific surface area, well-controlled micro- and mesoporosity and narrow pore size distribution.
NASA Astrophysics Data System (ADS)
Savvatimskiy, A. I.; Onufriev, S. V.; Konyukhov, S. A.
2017-11-01
Experiments with HOPG graphite grade showed that the melting temperature of graphite equals 4800-4900 K and that the melting of graphite is possible only at elevated pressures. The data were obtained for resistivity, specific heat and input (Joule) energy up to 5000 K. HAPG (Highly Annealing Pyrolytic Graphite) is a form of highly oriented pyrolytic graphite. HAPG specimens in the form of strips (thickness 30 microns) were placed in a cell (between two plates of glass-sapphire). The specimen temperature was measured by a high speed pyrometer. The heat of fusion for both graphite grades (heated in a confined volume) was less (and specific heat - higher) than for the case with nearly free expansion. A possible reason for the observed effects is discussed in the report.
High Temperature Polymeric Materials for Space Transportation Propulsion Applications
NASA Technical Reports Server (NTRS)
Meador, Michael A.; Campbell, Sandi G.; Chuang, Kathy C.; Scheimann, Daniel A.; Mintz, Eric; Hylton, Donald; Veazie, David; Criss, James; Kollmansberg, Ron; Tsotsis, Tom
2003-01-01
High temperature polymer matrix composites are attractive materials for space transporation propulsion systems because of their low density and high specific strength. However, the relatively poor stability and processability of these materials can render them unsuitable for many of these applications. New polymeric materials have been developed under the Propulsion Research and Technology Program through the use of novel resin chemistry and nanotechnology. These new materials can significantly enhance the durability and weight and improve the processability and affordability of propulsion components for advanced space transportation systems.
The Mechanical Design Optimization of a High Field HTS Solenoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalitha, SL; Gupta, RC
2015-06-01
This paper describes the conceptual design optimization of a large aperture, high field (24 T at 4 K) solenoid for a 1.7 MJ superconducting magnetic energy storage device. The magnet is designed to be built entirely of second generation (2G) high temperature superconductor tape with excellent electrical and mechanical properties at the cryogenic temperatures. The critical parameters that govern the magnet performance are examined in detail through a multiphysics approach using ANSYS software. The analysis results formed the basis for the performance specification as well as the construction of the magnet.
Turbine Seal Research at NASA GRC
NASA Technical Reports Server (NTRS)
Proctor, Margaret P.; Steinetz, Bruce M.; Delgado, Irebert R.; Hendricks, Robert C.
2011-01-01
Low-leakage, long-life turbomachinery seals are important to both Space and Aeronautics Missions. (1) Increased payload capability (2) Decreased specific fuel consumption and emissions (3) Decreased direct operating costs. NASA GRC has a history of significant accomplishments and collaboration with industry and academia in seals research. NASA's unique, state-of-the-art High Temperature, High Speed Turbine Seal Test Facility is an asset to the U.S. Engine / Seal Community. Current focus is on developing experimentally validated compliant, non-contacting, high temperature seal designs, analysis, and design methodologies to enable commercialization.
NASA Technical Reports Server (NTRS)
Vestrand, W. Thomas
1999-01-01
The goal of our Room Temperature Semiconductor Spectrometer (RTeSS) project is to develop a small high-energy solar flare spectrometer employing semiconductor detectors that do not require significant cooling when used as high-energy solar flare spectrometers. Specifically, the goal is to test Cadmium Zinc Telluride (CZT) detectors with coplanar grid electrodes as x-ray and gamma-ray spectrometers and to design an experiment that can be flown as a "piggy-back" payload on a satellite mission during the next solar maximum.
Superconducting properties of copper oxide high-temperature superconductors
Chen, Guanhua; Langlois, Jean-Marc; Guo, Yuejin; Goddard, William A.
1989-01-01
The equations for the magnon pairing theory of high-temperature copper-oxide-based superconductors are solved and used to calculate several properties, leading to results for specific heat and critical magnetic fields consistent with experimental results. In addition, the theory suggests an explanation of why there are two sets of transition temperatures (Tc ≈ 90 K and Tc ≈ 55 K) for the Y1Ba2Cu3O6+x class of superconductors. It also provides an explanation of why La2-xSrxCuO4 is a superconductor for only a small range of x (and suggests an experiment to independently test the theory). These results provide support for the magnon pairing theory of high-temperature superconductors. On the basis of the theory, some suggestions are made for improving these materials. PMID:16594038
NASA Astrophysics Data System (ADS)
Díaz-Almeyda, E.; Thomé, P. E.; El Hafidi, M.; Iglesias-Prieto, R.
2011-03-01
Coral reefs are threatened by increasing surface seawater temperatures resulting from climate change. Reef-building corals symbiotic with dinoflagellates in the genus Symbiodinium experience dramatic reductions in algal densities when exposed to temperatures above the long-term local summer average, leading to a phenomenon called coral bleaching. Although the temperature-dependent loss in photosynthetic function of the algal symbionts has been widely recognized as one of the early events leading to coral bleaching, there is considerable debate regarding the actual damage site. We have tested the relative thermal stability and composition of membranes in Symbiodinium exposed to high temperature. Our results show that melting curves of photosynthetic membranes from different symbiotic dinoflagellates substantiate a species-specific sensitivity to high temperature, while variations in fatty acid composition under high temperature rather suggest a complex process in which various modifications in lipid composition may be involved. Our results do not support the role of unsaturation of fatty acids of the thylakoid membrane as being mechanistically involved in bleaching nor as being a dependable tool for the diagnosis of thermal susceptibility of symbiotic reef corals.
High temperature sensitivity is intrinsic to voltage-gated potassium channels
Yang, Fan; Zheng, Jie
2014-01-01
Temperature-sensitive transient receptor potential (TRP) ion channels are members of the large tetrameric cation channels superfamily but are considered to be uniquely sensitive to heat, which has been presumed to be due to the existence of an unidentified temperature-sensing domain. Here we report that the homologous voltage-gated potassium (Kv) channels also exhibit high temperature sensitivity comparable to that of TRPV1, which is detectable under specific conditions when the voltage sensor is functionally decoupled from the activation gate through either intrinsic mechanisms or mutations. Interestingly, mutations could tune Shaker channel to be either heat-activated or heat-deactivated. Therefore, high temperature sensitivity is intrinsic to both TRP and Kv channels. Our findings suggest important physiological roles of heat-induced variation in Kv channel activities. Mechanistically our findings indicate that temperature-sensing TRP channels may not contain a specialized heat-sensor domain; instead, non-obligatory allosteric gating permits the intrinsic heat sensitivity to drive channel activation, allowing temperature-sensitive TRP channels to function as polymodal nociceptors. DOI: http://dx.doi.org/10.7554/eLife.03255.001 PMID:25030910
Low Cost Cryocoolers for High Temperature Superconductor Communication Filters
NASA Technical Reports Server (NTRS)
Brown, Davina
1998-01-01
This final report describes the work performed by a consortium of Industry and Government to develop low cost cryocoolers. The specific application was for low cost commercial based high temperature superconductor communication filters. This program was initiated in January 1995 and resulted in the successful demonstration of an HTS filter dewar cooled by a low cost pulse tube cryocooler. Further development of this cryocooler technology is proceeding through various contracts underway and proposed at this time.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
NASA Technical Reports Server (NTRS)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
Renpenning, Julian; Hitzfeld, Kristina L; Gilevska, Tetyana; Nijenhuis, Ivonne; Gehre, Matthias; Richnow, Hans-Hermann
2015-03-03
A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.
Degu, Asfaw; Ayenew, Biruk; Cramer, Grant R; Fait, Aaron
2016-12-01
Grape-berries are exposed to a plethora of abiotic and biotic stimuli during their development. The developmental and temporal regulation of grape berry polyphenol metabolism in response to various cues was investigated using LC-QTOF-MS based metabolite profiling. High light (2500μmolm(-2)s(-1)), high temperature (40°C), jasmonic acid (200μM), menadione (120μM) and abscisic acid (3.026mM) treatments were applied to detached berries. Greater magnitudes of metabolite fluctuations characterize the pre-veraison berries than the veraison stage in response to the treatments. Furthermore, a tighter co-response of metabolic processes was shown at veraison, likely supporting the resilience to change in response to stress. High temperature and ABA treatments led to greater magnitudes of change during the course of the experiment. The present study demonstrates the occurrence of differential patterns of metabolic responses specific to individual cues and berry developmental stage, which in the field are commonly associated and thus hardly discernable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-01-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product. PMID:25670085
Minimising hydrogen sulphide generation during steam assisted production of heavy oil
NASA Astrophysics Data System (ADS)
Montgomery, Wren; Sephton, Mark A.; Watson, Jonathan S.; Zeng, Huang; Rees, Andrew C.
2015-02-01
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
Minimising hydrogen sulphide generation during steam assisted production of heavy oil.
Montgomery, Wren; Sephton, Mark A; Watson, Jonathan S; Zeng, Huang; Rees, Andrew C
2015-02-11
The majority of global petroleum is in the form of highly viscous heavy oil. Traditionally heavy oil in sands at shallow depths is accessed by large scale mining activities. Recently steam has been used to allow heavy oil extraction with greatly reduced surface disturbance. However, in situ thermal recovery processes can generate hydrogen sulphide, high levels of which are toxic to humans and corrosive to equipment. Avoiding hydrogen sulphide production is the best possible mitigation strategy. Here we use laboratory aquathermolysis to reproduce conditions that may be experienced during thermal extraction. The results indicate that hydrogen sulphide generation occurs within a specific temperature and pressure window and corresponds to chemical and physical changes in the oil. Asphaltenes are identified as the major source of sulphur. Our findings reveal that for high sulphur heavy oils, the generation of hydrogen sulphide during steam assisted thermal recovery is minimal if temperature and pressure are maintained within specific criteria. This strict pressure and temperature dependence of hydrogen sulphide release can allow access to the world's most voluminous oil deposits without generating excessive amounts of this unwanted gas product.
NASA Astrophysics Data System (ADS)
Gillet, Philippe; Guyot, Francois; Malezieux, Jean-Marie
1989-12-01
High pressure (up to 2.7 GPa) and high temperature (up to 1000 K) Raman spectra of Ca 2GeO 4 (olivine form) have been recorded. Measurements of the pressure- and temperature-induced frequency shifts of 14 modes have been performed. The classical mode Gruneisen parameter and a corresponding parameter related to temperature variation are calculated. For the high frequency modes (GeO stretching) we calculate these parameters with local tetrahedral elastic parameters. From these parameters anharmonic parameters are calculated for each Raman active mode. The effect of anharmonicity on the specific heat is calculated and compared with calorimetric data. Taking anharmonicity into account leads to a departure from the Dulong and Petit limit of the order of 2% at 1000 K and more than 6% at 2000 K, in good accord with experimental data. We propose that, eventually, such effects might be significant in the calculations of thermodynamic properties of mantle silicates like forsterite and its polymorphs.
NASA Astrophysics Data System (ADS)
Zhou, K.; Wang, H. P.; Wei, B.
2013-03-01
The thermophysical properties of undercooled liquid alloys at high temperature are usually difficult to measure by experiment. Here, we report the specific heat of liquid Ti45Al45Nb10 ternary alloy in the undercooled state. By using electromagnetic levitation technique, a maximum undercooling of 287 K (0.15 T L) is achieved for this alloy. Its specific heat is determined to be 32.72 ± 2.51 J mol-1 K-1 over a broad temperature range of 1578-2010 K.
Analytical Micromechanics Modeling Technique Developed for Ceramic Matrix Composites Analysis
NASA Technical Reports Server (NTRS)
Min, James B.
2005-01-01
Ceramic matrix composites (CMCs) promise many advantages for next-generation aerospace propulsion systems. Specifically, carbon-reinforced silicon carbide (C/SiC) CMCs enable higher operational temperatures and provide potential component weight savings by virtue of their high specific strength. These attributes may provide systemwide benefits. Higher operating temperatures lessen or eliminate the need for cooling, thereby reducing both fuel consumption and the complex hardware and plumbing required for heat management. This, in turn, lowers system weight, size, and complexity, while improving efficiency, reliability, and service life, resulting in overall lower operating costs.
Flexural properties of structural lumber products after long-term exposure to high temperatures
Bruce A. Craig; David W. Green; David S. Gromala
2006-01-01
When wood fiber is exposed to significant heat, its strength decreases. It has long been known that prolonged heating at temperatures over 66°C (150°F) can cause a permanent loss in strength. The National Design Specification (NDS) provides factors (Ct) for adjusting allowable properties when structural wood members are exposed to temperatures between 38°C (100°F) and...
WE-DE-201-12: Thermal and Dosimetric Properties of a Ferrite-Based Thermo-Brachytherapy Seed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warrell, G; Shvydka, D; Parsai, E I
Purpose: The novel thermo-brachytherapy (TB) seed provides a simple means of adding hyperthermia to LDR prostate permanent implant brachytherapy. The high blood perfusion rate (BPR) within the prostate motivates the use of the ferrite and conductive outer layer design for the seed cores. We describe the results of computational analyses of the thermal properties of this ferrite-based TB seed in modelled patient-specific anatomy, as well as studies of the interseed and scatter (ISA) effect. Methods: The anatomies (including the thermophysical properties of the main tissue types) and seed distributions of 6 prostate patients who had been treated with LDR brachytherapymore » seeds were modelled in the finite element analysis software COMSOL, using ferrite-based TB and additional hyperthermia-only (HT-only) seeds. The resulting temperature distributions were compared to those computed for patient-specific seed distributions, but in uniform anatomy with a constant blood perfusion rate. The ISA effect was quantified in the Monte Carlo software package MCNP5. Results: Compared with temperature distributions calculated in modelled uniform tissue, temperature distributions in the patient-specific anatomy were higher and more heterogeneous. Moreover, the maximum temperature to the rectal wall was typically ∼1 °C greater for patient-specific anatomy than for uniform anatomy. The ISA effect of the TB and HT-only seeds caused a reduction in D90 similar to that found for previously-investigated NiCu-based seeds, but of a slightly smaller magnitude. Conclusion: The differences between temperature distributions computed for uniform and patient-specific anatomy for ferrite-based seeds are significant enough that heterogeneous anatomy should be considered. Both types of modelling indicate that ferrite-based seeds provide sufficiently high and uniform hyperthermia to the prostate, without excessively heating surrounding tissues. The ISA effect of these seeds is slightly less than that for the previously-presented NiCu-based seeds.« less
Effective specific impulse of external nuclear pulse propulsion systems
NASA Technical Reports Server (NTRS)
Reynolds, T. W.
1972-01-01
An investigation of a simple self-similar flow model for an external nuclear pulse propulsion system indicates that to achieve the high effective specific impulse of such a system three principal factors are required. The are (1) attaining pulses of optimum energy, (2) attaining good propellant collimation, and (3) using an ablative material for the pusher surface which has high absorptivity for radiant energy at the propellant stagnation temperature.
Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M.; Vara Prasad, P. V.; Kumar, Shiv; Gaur, Pooran M.; Farooq, Muhammad; Siddique, Kadambot H. M.; Varshney, Rajeev K.; Nayyar, Harsh
2017-01-01
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress. PMID:29123532
Sita, Kumari; Sehgal, Akanksha; HanumanthaRao, Bindumadhava; Nair, Ramakrishnan M; Vara Prasad, P V; Kumar, Shiv; Gaur, Pooran M; Farooq, Muhammad; Siddique, Kadambot H M; Varshney, Rajeev K; Nayyar, Harsh
2017-01-01
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
NASA Astrophysics Data System (ADS)
Dunckel, Anne E.; Cardenas, M. Bayani; Sawyer, Audrey H.; Bennett, Philip C.
2009-12-01
Microbial mats have spatially heterogeneous structured communities that manifest visually through vibrant color zonation often associated with environmental gradients. We report the first use of high-resolution thermal infrared imaging to map temperature at four hot springs within the El Tatio Geyser Field, Chile. Thermal images with millimeter resolution show drastic variability and pronounced patterning in temperature, with changes on the order of 30°C within a square decimeter. Paired temperature and visual images show that zones with specific coloration occur within distinct temperature ranges. Unlike previous studies where maximum, minimum, and optimal temperatures for microorganisms are based on isothermally-controlled laboratory cultures, thermal imaging allows for mapping thousands of temperature values in a natural setting. This allows for efficiently constraining natural temperature bounds for visually distinct mat zones. This approach expands current understanding of thermophilic microbial communities and opens doors for detailed analysis of biophysical controls on microbial ecology.
Positron studies of defected metals, metallic surfaces
NASA Astrophysics Data System (ADS)
Bansil, A.
Specific problems proposed under this project included the treatment of electronic structure and momentum density in various disordered and defected systems. Since 1987, when the new high-temperature superconductors were discovered, the project focused extensively on questions concerning the electronic structure and Fermiology of high-(Tc) superconductors, in particular, (1) momentum density and positron experiments, (2) angle-resolved photoemission intensities, and (3) effects of disorder and substitutions in the high-(Tc)'s. The specific progress made in each of these problems is summarized.
NDE standards for high temperature materials
NASA Technical Reports Server (NTRS)
Vary, Alex
1991-01-01
High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.
Mechanical and thermodynamic properties of AlX (X = N, P, As) compounds
NASA Astrophysics Data System (ADS)
Xu, Lifang; Bu, Wei
2017-09-01
The Vickers hardness of various AlX (X = N, P, As) compound polymorphs were calculated with the bond resistance model. Thermodynamic properties, such as vibrational entropy, constant volume specific heat and Debye temperatures, were calculated using phonon dispersion relations and phonon density of states (DOS). The calculated values are in good agreement with the previous experimental and theoretical data. For the same structure of AlX (X = N, P, As) compounds, their hardness and Debye temperatures both decrease with the X atomic number. The wurtzite (wz) and zincblende (zb) structures of the same compounds AlX share an almost identical hardness, but have different Debye temperatures. The difference between wz and zb structures increases as the atomic number of X increases. The thermodynamic properties reveal that the constant volume specific heat approaches the Dulong-Petit rule at high temperatures.
NASA Astrophysics Data System (ADS)
Savvatimskiy, A. I.; Onufriev, S. V.; Muboyadzhyan, S. A.; Seredkin, N. N.
2017-11-01
The temperature dependences of the thermal and electro physical properties of the zirconium carbide ZrC + C and ZrCa0.95 were studied in the temperature range 2000-5000 K. The Zr+C specimens were in the form of thin layers sputtered on quarts substrate and ZrC0.95 specimens were in the form of plates cut off from the sintered block. The properties are measured: temperature and heat of fusion, enthalpy, specific heat and resistivity, referred to the initial dimensions. A steep increase in the specific heat of these substances before melting and a sharp decrease after melting were observed at a heating rate of ∼ 108 K/s, which is possibly due to the formation of Frenkel pair defects in the specimens.
Jiang, Yaru; Zheng, Xin; Yan, Xiaoqin; Li, Yong; Zhao, Xuan; Zhang, Yue
2017-05-01
Designing and optimizing the electrode materials and studying the electrochemical performance or cycle life of the supercapacitor under different working conditions are crucial to its practical application. Herein, we proposed a rational design of 3D-graphene/CoMoO 4 nanoplates by a facile two-step hydrothermal method. Owing to the high electron transfer rate of graphene and the high activity of the CoMoO 4 nanoplates, the three-dimensional electrode architectures achieved remarkable electrochemical performances with high areal specific capacitance (1255.24F/g at 1A/g) and superior cycling stability (91.3% of the original specific capacitance after 3000 cycles at 1A/g). The all-solid-state asymmetric supercapacitor composed of 3D-graphene/CoMoO 4 and activated carbon (AC) exhibited a specific capacitance of 109F/g at 0.2A/g and an excellent cycling stability with only 12.1% of the initial specific capacitance off after 3000 cycles at 2A/g. The effects of temperature and charge-discharge current densities on the charge storage capacity of the supercapacitor were also investigated in detail for practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Hartman, K.J.; Hom, C.D.; Mazik, P.M.
2010-01-01
Effects of elevated temperature and acid mine drainage (AMD) on crayfish mortality were investigated in the Stony River, Grant County, West Virginia. During summers 2003 and 2004, four-week in situ bioassays were performed along a thermal and AMD gradient with the native crayfish Cambarus bartonii. Crayfish mortality was analyzed in conjunction with temperature and AMD related variables (pH, specific conductivity). Mortality was significantly higher (48-88%) at sites with high temperatures during 2003 (max = 33.0??C), but no significant differences were observed in 2004 (max = 32.0??C). Temperatures were higher in 2003 than 2004 due to increased discharge from a cooling reservoir flowing into the river. Additionally, duration of high temperature was approximately four days in 2003 as compared with only one day in 2004. No significant relationship between acid mine drainage variables and crayfish mortality was apparent.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Zhang, Ruijun; Chen, Peng; Ge, Shanhai
2014-01-01
Porous carbide-derived carbons (CDCs) are synthesized from TiC at different chlorination temperatures as electrode materials for electrochemical capacitors. It is found that the microstructure of the produced CDCs has significant influence on both the hydrophilicity in aqueous KOH electrolyte and the resultant electrochemical performance. Because the TiC-CDC synthesized at higher temperature (e.g. 1000 °C) contains well-ordered graphite ribbons, it shows lower hydrophilicity and specific capacitance. It is also found that addition of a small amount of ethanol to KOH electrolyte effectively improves the wettability of the CDCs synthesized at higher temperature and the corresponding specific capacitance. Compared with the CDC synthesized at 600 °C, the CDC synthesized at 1000 °C shows fast ion transport and excellent capacitive behavior in KOH electrolyte with addition of ethanol because of the existences of mesopores and high specific surface area.
Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors
NASA Astrophysics Data System (ADS)
Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo
2017-04-01
Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.
Performance analysis of radiation cooled dc transmission lines for high power space systems
NASA Technical Reports Server (NTRS)
Schwarze, G. E.
1985-01-01
As space power levels increase to meet mission objectives and also as the transmission distance between power source and load increases, the mass, volume, power loss, and operating voltage and temperature become important system design considerations. This analysis develops the dependence of the specific mass and percent power loss on hte power and voltage levels, transmission distance, operating temperature and conductor material properties. Only radiation cooling is considered since the transmission line is assumed to operate in a space environment. The results show that the limiting conditions for achieving low specific mass, percent power loss, and volume for a space-type dc transmission line are the permissible transmission voltage and operating temperature. Other means to achieve low specific mass include the judicious choice of conductor materials. The results of this analysis should be immediately applicable to power system trade-off studies including comparisons with ac transmission systems.
Prediction of air temperature for thermal comfort of people in outdoor environments
NASA Astrophysics Data System (ADS)
Huang, Jianhua
2007-05-01
Current thermal comfort indices do not take into account the effects of wind and body movement on the thermal resistance and vapor resistance of clothing. This may cause public health problem, e.g. cold-related mortality. Based on the energy balance equation and heat exchanges between a clothed body and the outdoor environment, a mathematical model was developed to determine the air temperature at which an average adult, wearing a specific outdoor clothing and engaging in a given activity, attains thermal comfort under outdoor environment condition. The results indicated low clothing insulation, less physical activity and high wind speed lead to high air temperature prediction for thermal comfort. More accurate air temperature prediction is able to prevent wearers from hypothermia under cold conditions.
The dissociation of liquid silica at high pressure and temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, D; Boehly, T; Eggert, J
2005-11-17
Liquid silica at high pressure and temperature is shown to undergo significant structural modifications and profound changes in its electronic properties. Temperature measurements on shock waves in silica at 70-1000 GPa indicate that the specific heat of liquid SiO{sub 2} rises well above the Dulong-Petit limit, exhibiting a broad peak with temperature that is attributable to the growing structural disorder caused by bond-breaking in the melt. The simultaneous sharp rise in optical reflectivity of liquid SiO{sub 2} indicates that dissociation causes the electrical and therefore thermal conductivities of silica to attain metallic-like values of 1-5 x 10{sup 5} S/m andmore » 24-600 W/m.K respectively.« less
Stability Projections for High Temperature Superconductors
1990-03-01
able data or our best estimates. 2.2.1. Specific Heat per Unit Volume - From the specific heat measurements of Junod et al. [5] and Inderhees et aL...for 77-K Super- conducting Magnets, IEEE Trans. MAG 24, 1211-14 (1988). [5] Junod , Bezinge et XVI al., Structure, Resistivity, Criti- cal Field
NASA Astrophysics Data System (ADS)
Gerasimov, A.; Kirpichnikov, A.; Sabirova, F.; Gainullin, R.
2017-11-01
On the basis of theoretical analysis of distributions of the conductivity, current density and specific power of heat release in the high-frequency induction discharge, a law of crowding of maxima of these values has been established.
Zohdi, Nor Khanani; Amid, Mehrnoush
2013-11-20
Plant peels could be a potential source of novel pectinases for use in various industrial applications due to their broad substrate specificity with high stability under extreme conditions. Therefore, the extraction conditions of a novel pectinase enzyme from pitaya peel was optimized in this study. The effect of extraction variables, namely buffer to sample ratio (2:1 to 8:1, X₁), extraction temperature (-15 to +25 °C, X₂) and buffer pH (4.0 to 12.0, X₃) on specific activity, temperature stability, storage stability and surfactant agent stability of pectinase from pitaya peel was investigated. The study demonstrated that the optimum conditions for the extraction of pectinase from pitaya sources could improve the enzymatic characteristics of the enzyme and protect its activity and stability during the extraction procedure. The optimum extraction conditions cause the pectinase to achieve high specific activity (15.31 U/mg), temperature stability (78%), storage stability (88%) and surfactant agent stability (83%). The most desirable conditions to achieve the highest activity and stability of pectinase enzyme from pitaya peel were the use of 5:1 buffer to sample ratio at 5 °C and pH 8.0.
Unlabeled oligonucleotides as internal temperature controls for genotyping by amplicon melting.
Seipp, Michael T; Durtschi, Jacob D; Liew, Michael A; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V; Wittwer, Carl T
2007-07-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39 degrees C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments.
Shinde, Pragati A; Lokhande, Vaibhav C; Ji, Taeksoo; Lokhande, Chandrakant D
2017-07-15
The mesoporous nanostructured metal oxides have a lot of capabilities to upsurge the energy storing capacity of the supercapacitor. In present work, different nanostructured morphologies of MnO 2 have been successfully fabricated on flexible carbon cloth by simple but capable hydrothermal method at different deposition temperatures. The deposition temperature has strong influence on reaction kinetics, which subsequently alters the morphology and electrochemical performance. Among different nanostructured MnO 2 thin films, the mesoporous weirds composed thin film obtained at temperature of 453K exhibits excellent physical and electrochemical features for supercapacitor application. The weirds composed MnO 2 thin film exhibits specific surface area of 109m 2 g -1 , high specific capacitance of 595Fg -1 with areal capacitance of 4.16Fcm -2 at a scan rate of 5mVs -1 and high specific energy of 56.32Whkg -1 . In addition to this, MnO 2 weirds attain capacity retention of 87 % over 2000 CV cycles, representing better cycling stability. The enhanced electrochemical performance could be ascribed to direct growth of highly porous MnO 2 weirds on carbon cloth which provide more pathways for easy diffusion of electrolyte into the interior of electroactive material. The as-fabricated electrode with improved performance could be ascribed as a potential electrode material for energy storage devices. Copyright © 2017 Elsevier Inc. All rights reserved.
Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors
Klein, Brianna A.; Baca, Albert G.; Armstrong, Andrew M.; ...
2017-09-23
Here, we present a low resistance, straightforward planar ohmic contact for Al 0.45Ga 0.55N/Al 0.3Ga 0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρ c = 2.5 × 10 -5 Ω cm², sheet resistances of R SH = 3.9 kΩ/more » $$\\blacksquare$$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al 0.45Ga 0.55N/Al 0.3Ga 0.7N HEMTs.« less
Planar Ohmic Contacts to Al 0.45 Ga 0.55 N/Al 0.3 Ga 0.7 N High Electron Mobility Transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Brianna A.; Baca, Albert G.; Armstrong, Andrew M.
Here, we present a low resistance, straightforward planar ohmic contact for Al 0.45Ga 0.55N/Al 0.3Ga 0.7N high electron mobility transistors. Five metal stacks (a/Al/b/Au; a = Ti, Zr, V, Nb/Ti; b = Ni, Mo, V) were evaluated at three individual annealing temperatures (850, 900, and 950°C). The Ti/Al/Ni/Au achieved the lowest specific contact resistance at a 900°C anneal temperature. Transmission electron microscopy analysis revealed a metal-semiconductor interface of Ti-Al-Au for an ohmic (900°C anneal) and a Schottky (850°C anneal) Ti/Al/Ni/Au stack. HEMTs were fabricated using the optimized recipe with resulting contacts that had room-temperature specific contact resistances of ρ c = 2.5 × 10 -5 Ω cm², sheet resistances of R SH = 3.9 kΩ/more » $$\\blacksquare$$, and maximum current densities of 75 mA/mm (at VGATE of 2 V). Electrical measurements from -50 to 200°C had decreasing specific contact resistance and increasing sheet resistance, with increasing temperature. These contacts enabled state-of-the-art performance of Al 0.45Ga 0.55N/Al 0.3Ga 0.7N HEMTs.« less
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1990-01-01
A research program is described which developes an understanding of high-temperature solid lubrication and experimental techniques through the development of a composite lubricant coating system. The knowledge gained through this research was then applied to a specific engineering challenge, the tribology of a sliding seal for hypersonic flight vehicles. The solid lubricant coating is a chromium carbide based composite combined with silver, which acts as a low temperature lubricant, and barium fluoride/calcium fluoride eutectic, which acts as a high-temperature lubricant. This composite coating provides good wear resistance and low friction for sliding contacts from room temperature to over 900 C in reducing or oxidative environments. The specific research on this coating included a composition screening using a foil gas bearing test rig and the use of thin silver films to reduce initial wear using a pin-on-disk test rig. The chemical stability of the materials used was also addressed. This research indicated that soft metallic films and materials which become soft at elevated temperatures are potentially good lubricants. The general results from the experiments with the model solid lubricant coating were then applied to a sliding seal design concept. This seal design requires that a braided ceramic fabric slide against a variety of metal counterface materials at temperatures from 25 to 850 C in an oxidative environment. A pin-on-disk tribometer was used to evaluate the tribological properties of these materials and to develop lubrication techniques. The results indicate that these seal materials must be lubricated to prevent wear and reduce friction. Thin films of silver, gold and calcium fluoride provided lubrication to the sliding materials.
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2013-10-01 2013-10-01 false Low temperature operation-ferritic steels (replaces UCS...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2014-10-01 2014-10-01 false Low temperature operation-ferritic steels (replaces UCS...
46 CFR 54.25-10 - Low temperature operation-ferritic steels (replaces UCS-65 through UCS-67).
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following additional requirements: Note: For high alloy steels refer to § 54.25-15. For heat... tempered steels. The ultimate and yield strengths shall be as shown in the applicable specification and... 46 Shipping 2 2012-10-01 2012-10-01 false Low temperature operation-ferritic steels (replaces UCS...
Calculation of thermodynamic functions of aluminum plasma for high-energy-density systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shumaev, V. V., E-mail: shumaev@student.bmstu.ru
The results of calculating the degree of ionization, the pressure, and the specific internal energy of aluminum plasma in a wide temperature range are presented. The TERMAG computational code based on the Thomas–Fermi model was used at temperatures T > 105 K, and the ionization equilibrium model (Saha model) was applied at lower temperatures. Quantitatively similar results were obtained in the temperature range where both models are applicable. This suggests that the obtained data may be joined to produce a wide-range equation of state.
High-Energy-Density, Low-Temperature Li/CFx Primary Cells
NASA Technical Reports Server (NTRS)
Whitacre, Jay; Bugga, Ratnakumar; Smart, Marshall; Prakash, G.; Yazami, Rachid
2007-01-01
High-energy-density primary (nonrechargeable) electrochemical cells capable of relatively high discharge currents at temperatures as low as -40 C have been developed through modification of the chemistry of commercial Li/CFx cells and batteries. The commercial Li/CFx units are not suitable for high-current and low-temperature applications because they are current limited and their maximum discharge rates decrease with decreasing temperature. The term "Li/CFx" refers to an anode made of lithium and a cathode made of a fluorinated carbonaceous material (typically graphite). In commercial cells, x typically ranges from 1.05 to 1.1. This cell composition makes it possible to attain specific energies up to 800 Wh/kg, but in order to prevent cell polarization and the consequent large loss of cell capacity, it is typically necessary to keep discharge currents below C/50 (where C is numerically equal to the current that, flowing during a charge or discharge time of one hour, would integrate to the nominal charge or discharge capacity of a cell). This limitation has been attributed to the low electronic conductivity of CFx for x approx. 1. To some extent, the limitation might be overcome by making cathodes thinner, and some battery manufacturers have obtained promising results using thin cathode structures in spiral configurations. The present approach includes not only making cathodes relatively thin [.2 mils (.0.051 mm)] but also using sub-fluorinated CFx cathode materials (x < 1) in conjunction with electrolytes formulated for use at low temperatures. The reason for choosing sub-fluorinated CFx cathode materials is that their electronic conductivities are high, relative to those for which x > 1. It was known from recent prior research that cells containing sub-fluorinated CFx cathodes (x between 0.33 and 0.66) are capable of retaining substantial portions of their nominal low-current specific energies when discharged at rates as high as 5C at room temperature. However, until experimental cells were fabricated following the present approach and tested, it was not known whether or to what extent low-temperature performance would be improved.
Measurement of the Specific Heat Using a Gravity Cancellation Approach
NASA Technical Reports Server (NTRS)
Zhong, Fang
2003-01-01
The specific heat at constant volume C(sob V) of a simple fluid diverges near its liquid-vapor critical point. However, gravity-induced density stratification due to the divergence of isothermal susceptibility hinders the direct comparison of the experimental data with the predictions of renormalization group theory. In the past, a microgravity environment has been considered essential to eliminate the density stratification. We propose to perform specific heat measurements of He-3 on the ground using a method to cancel the density stratification. A He-3 fluid layer will be heated from below, using the thermal expansion of the fluid to cancel the hydrostatic compression. A 6% density stratification at a reduced temperature of 10(exp -5) can be cancelled to better than 0.1% with a steady 1.7 micro K temperature difference across a 0.05 cm thick fluid layer. A conventional AC calorimetry technique will be used to determine the heat capacity. The minimized bulk density stratification with a relaxation time 6500 sec at a reduced temperature of 10(exp -5) will stay unchanged during 1 Hz AC heating. The smear of the specific heat divergence due to the temperature difference across the cell is about 0.1% at a reduced temperature of 10(exp -6). The combination of using High Resolution Thermometry with a 0.5 n K temperature resolution in the AC technique and the cancellation of the density stratification will enable C(sub V) to be measured down to a reduced temperature of 10(exp -6) with less than a 1% systematic error.
1989-09-01
and development in Japan onnetallic alloys, ceramics, and composites for use at high temperaturs are described by consid- ering the government programs ...temperatures above about 1,100 0C. carbW PROGRAMS TO DEVELOP IR 3 IMPROVED iIUGH TEUMEAT- 2 ic(C D)BA e fr e d cu sing specific research iiprograms...Performance * Research into conceptual design of Ceramics program is to develop new ceram- ceramics ics with high reliability and toughness when 0
Study, selection, and preparation of solid cationic conductors
NASA Technical Reports Server (NTRS)
Roth, W. L.; Mitoff, S. P.; King, R. N.
1972-01-01
Crystal chemical principles and transport theory were used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. More than twenty compounds were synthesized or obtained and screened by nuclear magnetic resonance and conductivity. Many were densified by sintering or hot pressing. Encouraging results were obtained for nine of these materials but none have yet been good ionic conductors at low temperature.
Baev, Vesselin; Milev, Ivan; Naydenov, Mladen; Vachev, Tihomir; Apostolova, Elena; Mehterov, Nikolay; Gozmanva, Mariyana; Minkov, Georgi; Sablok, Gaurav; Yahubyan, Galina
2014-11-01
Small RNA profiling and assessing its dependence on changing environmental factors have expanded our understanding of the transcriptional and post-transcriptional regulation of plant stress responses. Insufficient data have been documented earlier to depict the profiling of small RNA classes in temperature-associated stress which has a wide implication for climate change biology. In the present study, we report a comparative assessment of the genome-wide profiling of small RNAs in Arabidopsis thaliana using two conditional responses, induced by high- and low-temperature. Genome-wide profiling of small RNAs revealed an abundance of 21 nt small RNAs at low temperature, while high temperature showed an abundance of 21 nt and 24 nt small RNAs. The two temperature treatments altered the expression of a specific subset of mature miRNAs and displayed differential expression of a number of miRNA isoforms (isomiRs). Comparative analysis demonstrated that a large number of protein-coding genes can give rise to differentially expressed small RNAs following temperature shifts. Low temperature caused accumulation of small RNAs, corresponding to the sense strand of a number of cold-responsive genes. In contrast, high temperature stimulated the production of small RNAs of both polarities from genes encoding functionally diverse proteins. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Deterioration of the anammox process at decreasing temperatures and long SRTs.
Hoekstra, Maaike; de Weerd, Florence A; Kleerebezem, Robbert; van Loosdrecht, Mark C M
2018-03-01
The implementation of autotrophic nitrogen removal in the mainstream of a municipal wastewater treatment plant is currently pursued. Among the crucial unknown factors are the kinetic properties of anaerobic ammonium oxidising (anammox) bacteria at low temperatures. In this study we investigated the adaptation of a fast-growing anammox culture to a lower temperature. In a membrane bioreactor a highly enriched anammox community was obtained at 30°C, 25°C and 20°C. This culture was exposed to long- and short-term temperature changes. In short-term experiments the decrease in biomass-specific activity due to decrease in temperature can be described by an activation energy of 64 ± 28 kJ mol -1 . Prolonged cultivation (months) implies that cultivation at low temperatures resulted in deterioration of biomass-specific activity (Ea LT 239 kJ mol -1 ). The growth rate and specific anammox activity in the system decreased from 0.33 d -1 and 4.47 g NO 2 -N g VSS -1 d -1 at 30°C to 0.0011 d -1 and 0.037 g NO 2 -N g VSS -1 d -1 at 20°C. The reason for the deterioration of the system was related to the required long SRT in the system. The long SRT leads to an increase of non-active and non-anammox cells in the reactor, thereby decreasing the biomass-specific activity.
High temperature antenna pointing mechanism for BepiColombo mission
NASA Astrophysics Data System (ADS)
Mürer, Johan A.; Harper, Richard; Anderson, Mike
2005-07-01
This paper describes the two axis Antenna Pointing Mechanism (APM) with dual frequency (X-Ka bands) Rotary Joint (RJ) developed by Kongsberg Defence and Aerospace and BAE Systems, in the frame of the ESA BepiColombo mission to the planet Mercury. The extreme environmental conditions induced by Mercury's proximity to the Sun (up to 14.500 W/m2 direct solar fluxes, up to 5000 W/m2 infrared flux and up to 1200 W/m2 albedo shine form the planet surface), have dictated the need for a specific high temperature development of the pointing mechanism and of its integrated RF Rotary Joint. Global thermal analysis of the antenna predicts qualification temperature for the elevation stage APM between 250°C and 295°C. In addition, the mechanism shall survive extreme cold temperatures during the interplanetary cruise phase. Beside the harsh environment, the stringent pointing accuracy required by the antenna high frequency operations, and the extreme dimensional stability demanded by a radio science experiment (which is using the antenna for range and range rate measurements), have introduced additional, specific challenges to the mechanism design. Innovative solutions have been deemed necessary at system architecture level, in the design of the mechanisms critical areas and in the selection of high temperature compatible materials and processes. The very high working temperature of the mechanism ruled out use of aluminium alloys, which is replaced by Titanium alloy and stainless steels. Special heat treatments of the steel are applied for minimum loss of hardness. The structures are optimised for minimum mass. To handle thermal stresses and distortion, a very compact design of the APM was performed integrating the bearings, position sensor and drive chain within minimum structural length. The Rotary Joint is a unique design tailored to the APM using a common main bearing support. Special manufacturing processes have been tested and applied for manufacture of the very compact RJ being the first of its kind (dual X-Ka band) in European space development. The twin channels are arranged concentrically, permitting continuous 360° rotation. Maximum use of waveguide has been made to minimise the loss in the Ka-band frequency channel and this leads to an unconventional design of the X-band channel. A specific effort and extensive test program at ESTL in the UK have been put in place to identify suitable high temperature solutions for the RJ and APM bearings lubrication. The high temperature demands the use of a dry lubrication system. High working loads due to thermal stresses puts extra challenge to the life duration of the dry film lubrication. Lead lubrication was initially the preferred concept, but has later in the program been substituted by MoS2 film. A design life of 20,000 cycles at 250°C and elevated load has been demonstrated for the bearings with MoS2. Special attention has been paid to the materials in the stepper motor using high temperature solder material and MoS2 dry lubrication in the bearings and gear train. The APM is designed for use of a high accuracy inductive based position sensor with remote signal and amplifier electronics. Electrical signal transfer is via a high temperature Twist Capsule. The activity has included the design, manufacturing and testing in a respresentative environment of a breadboard model of the APM and of its integrated radio frequency RJ. The breadboard does not include a position sensor or the Twist Capsule. The breadboard tests will include functional performance tests in air, vibration tests and thermal vacuum. The thermal vacuum test will include RF testing at high temperature combined with APM pointing performance.
Yu, Dunji; An, Ke; Chen, Xu; ...
2015-10-09
Phase-specific thermal expansion and mechanical deformation behaviors of a directionally solidified NiAl–Cr(Mo) lamellar in situ composite were investigated by using real-time in situ neutron diffraction during compression at elevated temperatures up to 800 °C. Tensile and compressive thermal residual stresses were found to exist in the NiAl phase and Crss (solid solution) phase, respectively. Then, based on the evolution of lattice spacings and phase stresses, the phase-specific deformation behavior was analyzed qualitatively and quantitatively. Moreover, estimates of phase stresses were derived by Hooke's law on the basis of a simple method for the determination of stress-free lattice spacing in inmore » situ composites. During compressive loading, the NiAl phase yields earlier than the Crss phase. The Crss phase carries much higher stress than the NiAl phase, and displays consistent strain hardening at all temperatures. The NiAl phase exhibits strain hardening at relatively low temperatures and softening at high temperatures. During unloading, the NiAl phase yields in tension whereas the Crss phase unloads elastically. Additionally, post-test microstructural observations show phase-through cracks at room temperature, micro cracks along phase interfaces at 600 °C and intact lamellae kinks at 800 °C, which is due to the increasing deformability of both phases as temperature rises.« less
NASA Astrophysics Data System (ADS)
Sui, Yanwei; Zhang, Dongling; Han, Yongpeng; Sun, Zhi; Qi, Jiqiu; Wei, Fuxiang; He, Yezeng; Meng, Qingkun
2018-05-01
This work successfully demonstrates various temperature carbonization of iron based metal organic framework to derive electrode materials for supercapacitors. Furthermore, impacts of calcined temperatures on the nature of as-prepared products are reported, and samples obtained at 300, 400, 500, 600 and 700 °C were investigated respectively. The products reveals excellent electrochemical performance. Carbonized at 600 °C, the composite materials display the highest specific capacitance of 972 F/g at a current density of 1 A/g. Carbonized at 500 °C, the capacitance retention of materials reach up to 93%. The high specific capacitance and excellent cyclic stability of the developed materials would exhibit nice prospect for the practical utilization of electrode materials.
NASA Astrophysics Data System (ADS)
Liu, T. L.; Liu, W. R.; Xu, X. H.
2017-11-01
Heat transfer fluid is one critical component for transferring and storing heat energy in concentrating solar power systems. Molten-salt mixtures can be used as high temperature heat transfer fluids because of their thermophysical properties. This paper studied the thermophysical properties of Li2CO3-Na2CO3-K2CO3 eutectic salt and three eutectic chloride salts NaCl-KCl-ZnCl2 with different compositions in the range of 450-600°C and 250-800°C, respectively. Properties including specific heat capacity, thermal conductivity, density and viscosity were determined based on imperial correlations and compared at different operating temperatures. The heat transfer coefficients of using different eutectic salts as heat transfer fluids were also calculated and compared in their operating temperature range. It is concluded that all the four eutectic salts can satisfy the requirements of a high-temperature heat transfer fluid.
Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density.
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y; Meinhardt, Kerry D; Chang, Hee Jung; Canfield, Nathan L; Sprenkle, Vincent L
2016-02-11
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg(-1), higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.
Advanced intermediate temperature sodium-nickel chloride batteries with ultra-high energy density
NASA Astrophysics Data System (ADS)
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.
2016-02-01
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium-nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg-1, higher than that of conventional tubular sodium-nickel chloride batteries (280 °C), is obtained for planar sodium-nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium-nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs.
Two-way shape memory behavior of semi-crystalline elastomer under stress-free condition
NASA Astrophysics Data System (ADS)
Qian, Chen; Dong, Yubing; Zhu, Yaofeng; Fu, Yaqin
2016-08-01
Semi-crystalline shape memory polymers exhibit two-way shape memory effect (2W-SME) under constant stresses through crystallization-induced elongation upon cooling and melting-induced constriction upon heating. The applied constant stress influenced the prediction and usability of 2W-SME in practical applications without any external force. Here the reversible shape transition in EVA-shaped memory polymer was quantitative analyzed under a suitable temperature range and external stress-free condition. The fraction of reversible strain increased with increasing upper temperature (T high) within the temperature range and reached the maximum value of 13.62% at 70 °C. However, reversible strain transition was almost lost when T high exceeded 80 °C because of complete melting of crystalline scaffold, known as the latent recrystallization template. The non-isothermal annealing of EVA 2W-SMP under changing circulating temperatures was confirmed. Moreover, the orientation of crystallization was retained at high temperatures. These findings may contribute to design an appropriate shape memory protocol based on application-specific requirements.
Proceedings, phenomenology and applications of high temperature superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedell, K.S.
1991-01-01
Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less
Proceedings, phenomenology and applications of high temperature superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedell, K.S.
1991-12-31
Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely relatedmore » to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions.« less
A search for relativistic electron induced stratospheric ozone depletion
NASA Technical Reports Server (NTRS)
Aikin, Arthur C.
1994-01-01
Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.
NASA Astrophysics Data System (ADS)
Rana, R.; Singh, S. B.; Bleck, W.; Mohanty, O. N.
2009-04-01
Crash resistance and formability relevant mechanical properties of a copper-alloyed interstitial-free (IF) steel processed under various conditions of batch annealing (BA), continuous annealing (CA), and postcontinuous annealing aging have been studied in a wide range of strain rate (3.33 × 10-4 to 200 s-1) and temperature (-100 °C to +20 °C). These properties have been compared with similarly processed traditional mild and high-strength IF steels. Assessment of various parameters such as strength, elongation, strain rate sensitivity of stress, strain-hardening capacity, temperature sensitivity of stress, activation volume, and specific energy absorption of all these steels implies that copper-alloyed IF steel is soft and formable in CA condition. It can be made stronger and more crash resistant than the conventional mild- or high-strength IF steels when aged to peak strength after CA. Room-temperature strain rate sensitivity of stress of the investigated steels exhibits a two-stage behavior. Copper in solution in ferrite causes solid solution softening at low temperatures (≤20 °C) and at high strain rates (200 s-1).
Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions
Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.
2016-01-01
Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions. PMID:27334145
Single Crystal Synthesis and STM Studies of High Temperature Superconductors
NASA Technical Reports Server (NTRS)
Barrientos, Alfonso
1997-01-01
This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.
NASA Astrophysics Data System (ADS)
Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-08-01
The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.
Hydration Repulsion between Carbohydrate Surfaces Mediated by Temperature and Specific Ions
NASA Astrophysics Data System (ADS)
Chen, Hsieh; Cox, Jason R.; Ow, Hooisweng; Shi, Rena; Panagiotopoulos, Athanassios Z.
2016-06-01
Stabilizing colloids or nanoparticles in solution involves a fine balance between surface charges, steric repulsion of coating molecules, and hydration forces against van der Waals attractions. At high temperature and electrolyte concentrations, the colloidal stability of suspensions usually decreases rapidly. Here, we report a new experimental and simulation discovery that the polysaccharide (dextran) coated nanoparticles show ion-specific colloidal stability at high temperature, where we observed enhanced colloidal stability of nanoparticles in CaCl2 solution but rapid nanoparticle-nanoparticle aggregation in MgCl2 solution. The microscopic mechanism was unveiled in atomistic simulations. The presence of surface bound Ca2+ ions increases the carbohydrate hydration and induces strongly polarized repulsive water structures beyond at least three hydration shells which is farther-reaching than previously assumed. We believe leveraging the binding of strongly hydrated ions to macromolecular surfaces represents a new paradigm in achieving absolute hydration and colloidal stability for a variety of materials, particularly under extreme conditions.
NASA Astrophysics Data System (ADS)
Fowell, Sara E.; Sandford, Kate; Stewart, Joseph A.; Castillo, Karl D.; Ries, Justin B.; Foster, Gavin L.
2016-10-01
Caribbean sea surface temperatures (SSTs) have increased at a rate of 0.2°C per decade since 1971, a rate double that of the mean global change. Recent investigations of the coral Siderastrea siderea on the Belize Mesoamerican Barrier Reef System (MBRS) have demonstrated that warming over the last 30 years has had a detrimental impact on calcification. Instrumental temperature records in this region are sparse, making it necessary to reconstruct longer SST records indirectly through geochemical temperature proxies. Here we investigate the skeletal Sr/Ca and Li/Mg ratios of S. siderea from two distinct reef zones (forereef and backreef) of the MBRS. Our field calibrations of S. siderea show that Li/Mg and Sr/Ca ratios are well correlated with temperature, although both ratios are 3 times more sensitive to temperature change in the forereef than in the backreef. These differences suggest that a secondary parameter also influences these SST proxies, highlighting the importance for site- and species-specific SST calibrations. Application of these paleothermometers to downcore samples reveals highly uncertain reconstructed temperatures in backreef coral, but well-matched reconstructed temperatures in forereef coral, both between Sr/Ca-SSTs and Li/Mg-SSTs, and in comparison to the Hadley Centre Sea Ice and Sea Surface Temperature record. Reconstructions generated from a combined Sr/Ca and Li/Mg multiproxy calibration improve the precision of these SST reconstructions. This result confirms that there are circumstances in which both Li/Mg and Sr/Ca are reliable as stand-alone and combined proxies of sea surface temperature. However, the results also highlight that high-precision, site-specific calibrations remain critical for reconstructing accurate SSTs from coral-based elemental proxies.
Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.
Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang
2018-06-01
Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.
Ultra-High Temperature ContinuousReactors based on Electro-thermal FluidizedBed Concept
Fedorov, Sergiy S.; Rohatgi, Upendra Singh; Barsukov, Igor V.; ...
2015-12-08
This paper presents the results of research and development in high-temperature (i.e. 2,000- 3,000ºС) continuous furnaces operating on the principle of electro-thermal fluidized bed for the purification of recycled, finely sized carbon materials. The basis of this fluidized bed furnace is specific electrical resistance and a new correlation has been developed to predict specific electrical resistance for the natural graphite-based precursors entering the fluidized bed reactor This correlation has been validated with the data from a fully functional pilot furnace whose throughput capacity is 10 kg per hour built as part of this work. Data collected in the course ofmore » graphite refining experiments demonstrated that difference between the calculated and measured values of specific electrical resistance of fluidized bed does not exceed 25%. It was concluded that due to chaotic nature of electro-thermal fluidized bed reactors this discrepancy is acceptable. The fluid mechanics of the three types of operating regimes, have been described. The numerical relationships obtained as part of this work allowed proposing an algorithm for selection of technological operational modes with large- scale high-temperature furnaces rated for throughputs of several tons of product per hour. Optimizations proposed now allow producing natural graphite-based end product with the purity level of 99.98+ wt%C which is the key passing criteria for applications in the advanced battery markets.« less
NASA Astrophysics Data System (ADS)
Omaraa, Ehsan; Saman, Wasim; Bruno, Frank; Liu, Ming
2017-06-01
Latent heat storage using phase change materials (PCMs) can be used to store large amounts of energy in a narrow temperature difference during phase transition. The thermophysical properties of PCMs such as latent heat, specific heat and melting and solidification temperature need to be defined at high precision for the design and estimating the cost of latent heat storage systems. The existing laboratory standard methods, such as differential thermal analysis (DTA) and differential scanning calorimetry (DSC), use a small sample size (1-10 mg) to measure thermophysical properties, which makes these methods suitable for homogeneous elements. In addition, this small amount of sample has different thermophysical properties when compared with the bulk sample and may have limitations for evaluating the properties of mixtures. To avoid the drawbacks in existing methods, the temperature - history (T-history) method can be used with bulk quantities of PCM salt mixtures to characterize PCMs. This paper presents a modified T-history setup, which was designed and built at the University of South Australia to measure the melting point, heat of fusion, specific heat, degree of supercooling and phase separation of salt mixtures for a temperature range between 200 °C and 400 °C. Sodium Nitrate (NaNO3) was used to verify the accuracy of the new setup.
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-07-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent ( n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent ( n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity ( m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume ( V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
High Temperature Uniaxial Compression and Stress-Relaxation Behavior of India-Specific RAFM Steel
NASA Astrophysics Data System (ADS)
Shah, Naimish S.; Sunil, Saurav; Sarkar, Apu
2018-05-01
India-specific reduced activity ferritic martensitic steel (INRAFM), a modified 9Cr-1Mo grade, has been developed by India as its own structural material for fabrication of the Indian Test Blanket Module (TBM) to be installed in the International Thermonuclear Energy Reactor (ITER). The extensive study on mechanical and physical properties of this material has been currently going on for appraisal of this material before being put to use in the ITER. High temperature compression, stress-relaxation, and strain-rate change behavior of the INRAFM steel have been investigated. The optical microscopic and scanning electron microscopic characterizations were carried out to observe the microstructural changes that occur during uniaxial compressive deformation test. Comparable true plastic stress values at 300 °C and 500 °C and a high drop in true plastic stress at 600 °C were observed during the compression test. Stress-relaxation behaviors were investigated at 500 °C, 550 °C, and 600 °C at a strain rate of 10-3 s-1. The creep properties of the steel at different temperatures were predicted from the stress-relaxation test. The Norton's stress exponent (n) was found to decrease with the increasing temperature. Using Bird-Mukherjee-Dorn relationship, the temperature-compensated normalized strain rate vs stress was plotted. The stress exponent (n) value of 10.05 was obtained from the normalized plot. The increasing nature of the strain rate sensitivity (m) with the test temperature was found from strain-rate change test. The low plastic stability with m 0.06 was observed at 600 °C. The activation volume (V *) values were obtained in the range of 100 to 300 b3. By comparing the experimental values with the literature, the rate-controlling mechanisms at the thermally activated region of high temperature were found to be the nonconservative movement of jogged screw dislocations and thermal breaking of attractive junctions.
Tsuji, Takashi; Hata, Kenji; Futaba, Don N; Sakurai, Shunsuke
2017-11-16
Recently, the millimetre-scale, highly efficient synthesis of single-wall carbon nanotube (SWCNT) forests from Fe catalysts has been reported through the annealing of the magnesia (MgO) underlayer. Here, we report the double-edged effects of underlayer annealing on the efficiency and structure of the SWCNT forest synthesis through a temperature-dependent examination. Our results showed that the efficiency of the SWCNT forests sharply increased with increased underlayer annealing temperatures from 600 °C up to 900 °C due to a temperature-dependent structural modification, characterized by increased grain size and reduced defects, of the MgO underlayer. Beyond this temperature, the SWCNT fraction also decreased as a result of further structural modification of the MgO underlayer. This exemplifies the double-edged effects of annealing. Specifically, for underlayer annealing below 600 °C, the catalyst subsurface diffusion was found to limit the growth efficiency, and for excessively high underlayer annealing temperatures (>900 °C), catalyst coalescence/ripening led to the formation of double-wall carbon nanotubes. As a result, three distinct regions of synthesis were observed: (i) a "low yield" region below a threshold temperature (∼600 °C); (ii) an "increased yield" region from 600 to 900 °C, and (iii) a "saturation" region above 900 °C. The efficient SWCNT forest synthesis could only occur within a specific annealing temperature window as a result of this double-edged effects of underlayer annealing.
NASA Astrophysics Data System (ADS)
Boubenia, R.; Rosenkrantz, E.; Despetis, F.; P, P.; Ferrandis, J.-Y.
2016-03-01
Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten).
NASA Astrophysics Data System (ADS)
Eaton, Timothy T.
2016-11-01
Characterizing flow dynamics in very small tidal creeks is complicated and not well suited to methods developed for upland streams or coastal estuaries, due to low flows, bidirectionality and shallow waters. Simple instrumentation enables thermal and salinity signals to be used to observe flow directions and estimate velocities in these settings. Using multiple inexpensive sensors over 500 m along a tidally influenced wetland creek, I demonstrate how advection of temperature and specific conductance pulses reveal flood and ebb tides and the temporary reversal of flow by warmer, estuarine water from the receiving embayment. The sequential rise of temperature upstream was most evident under hot and dry conditions, after daily peak air temperatures of 25 °C or above, and was subdued or disrupted under cooler or rainy conditions in summertime. Changes in specific conductance at successive sites upstream were less susceptible to environmental influences and confirm tidal flood velocity of between 0.07 and 0.37 m/s. The tidally-induced flow reversal suggests that periodic high tide conditions can interfere with rapid dispersal of pollution discharges, such as from the combined sewer overflow (CSO) located upstream of the studied creek reach. This low-cost approach of temperature and specific conductance sensing in vegetated coastal wetlands where access, precise elevation control and creek discharge measurements are difficult, provides a simple way of tracking water masses when sufficient contrast exists between water sources.
Zhang, Yue; Yan, Chenyang; Kan, Haidong; Cao, Junshan; Peng, Li; Xu, Jianming; Wang, Weibing
2014-11-25
Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on gender- and age-specific emergency department visits, especially in developing countries. In this study, we examined the short-term effects of daily ambient temperature on emergency department visits (ED visits) in Shanghai. Daily ED visits and daily ambient temperatures between January 2006 and December 2011 were analyzed. After controlling for secular and seasonal trends, weather, air pollution and other confounding factors, a Poisson generalized additive model (GAM) was used to examine the associations between ambient temperature and gender- and age-specific ED visits. A moving average lag model was used to evaluate the lag effects of temperature on ED visits. Low temperature was associated with an overall 2.76% (95% confidence interval (CI): 1.73 to 3.80) increase in ED visits per 1°C decrease in temperature at Lag1 day, 2.03% (95% CI: 1.04 to 3.03) and 2.45% (95% CI: 1.40 to 3.52) for males and females. High temperature resulted in an overall 1.78% (95% CI: 1.05 to 2.51) increase in ED visits per 1°C increase in temperature on the same day, 1.81% (95% CI: 1.08 to 2.54) among males and 1.75% (95% CI: 1.03 to 2.49) among females. The cold effect appeared to be more acute among younger people aged <45 years, whereas the effects were consistent on individuals aged ≥65 years. In contrast, the effects of high temperature were relatively consistent over all age groups. These findings suggest a significant association between ambient temperature and ED visits in Shanghai. Both cold and hot temperatures increased the relative risk of ED visits. This knowledge has the potential to advance prevention efforts targeting weather-sensitive conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
NASA Technical Reports Server (NTRS)
Roth, W. L.; Muller, O.
1974-01-01
Crystal chemical principles and transport theory have been used to predict structures and specific compounds which might find application as solid electrolytes in rechargeable high energy and high power density batteries operating at temperatures less than 200 C. Structures with 1-, 2-, and 3-dimensional channels were synthesized and screened by nuclear magnetic resonance, dielectric loss, and conductivity. There is significant conductivity at room temperature in some of the materials but none attain a level that is comparable to beta-alumina. Microwave and fast pulse methods were developed to measure conductivity in powders and in small crystals.
Impact of temperature on mortality in Hubei, China: a multi-county time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Yunquan; Yu, Chuanhua; Bao, Junzhe; Li, Xudong
2017-03-01
We examined the impact of extreme temperatures on mortality in 12 counties across Hubei Province, central China, during 2009-2012. Quasi-Poisson generalized linear regression combined with distributed lag non-linear model was first applied to estimate county-specific relationship between temperature and mortality. A multivariable meta-analysis was then used to pool the estimates of county-specific mortality effects of extreme cold temperature (1st percentile) and hot temperature (99th percentile). An inverse J-shaped relationship was observed between temperature and mortality at the provincial level. Heat effect occurred immediately and persisted for 2-3 days, whereas cold effect was 1-2 days delayed and much longer lasting. Higher mortality risks were observed among females, the elderly aged over 75 years, persons dying outside the hospital and those with high education attainment, especially for cold effects. Our data revealed some slight differences in heat- and cold- related mortality effects on urban and rural residents. These findings may have important implications for developing locally-based preventive and intervention strategies to reduce temperature-related mortality, especially for those susceptible subpopulations. Also, urbanization should be considered as a potential influence factor when evaluating temperature-mortality association in future researches.
NASA Astrophysics Data System (ADS)
Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.
2017-03-01
M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.
Georges, Arthur
1989-11-01
Mean daily temperature in natural nests of freshwater turtles with temperature-dependent sex determination is known to be a poor predictor of hatchling sex ratios when nest temperatures fluctuate. To account for this, a model was developed on the assumption that females will emerge from eggs when more than half of embryonic development occurs above the threshold temperature for sex determination rather than from eggs that spend more than half their time above the threshold. The model is consistent with previously published data and in particular explains the phenomenon whereby the mean temperature that best distinguishes between male and female nests decreases with increasing variability in nest temperature. The model, if verified by controlled experiments, has important implications for our understanding of temperature-dependent sex determination in natural nests. Both mean nest temperature and "hours spent above the threshold" will be poor predictors of hatchling sex ratios. Studies designed to investigate latitudinal trends and inter-specific differences in the threshold temperature will need to consider latitudinal and inter-specific variation in the magnitude of diel fluctuations in nest temperature, and variation in factors influencing the magnitude of those fluctuations, such as nest depth. Furthermore, any factor that modifies the relationship between developmental rate and temperature can be expected to influence hatchling sex ratios in natural nests, especially when nest temperatures are close to the threshold.
NASA Astrophysics Data System (ADS)
Wang, Xiuling; Yuan, Anbao; Wang, Yuqin
In the present work, a nanostructured manganese dioxide material was synthesized by a sol-gel method starting with manganese acetate (MnAc 2·4H 2O) and citric acid (C 6H 8O 7·H 2O) raw materials, and characterized by X-ray diffraction, infrared spectroscopic and transmission electron microscope techniques. The electrochemical properties and the influence of temperature on supercapacitive behaviors of the nano-MnO 2 electrode in 1 M LiOH electrolyte were investigated using electrochemical methods. Experimental results show that the MnO 2 electrode can exhibit an excellent pseudocapacitive behavior in 1 M LiOH electrolyte, and a high specific capacitance of 317 F g -1 can be obtained at a charge/discharge current rate of 100 mA g -1 and at the temperature of 25 °C. We found that temperature has a crucial influence on the discharge specific capacitance of the electrode. The specific capacitance at 25 °C is higher than that at 15 or 35 °C.
Performance of a 100V Half-Bridge MOSFET Driver, Type MIC4103, Over a Wide Temperature Range
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2011-01-01
The operation of a high frequency, high voltage MOSFET (metal-oxide semiconductor field-effect transistors) driver was investigated over a wide temperature regime that extended beyond its specified range. The Micrel MIC4103 is a 100V, non-inverting, dual driver that is designed to independently drive both high-side and low-side N-channel MOSFETs. It features fast propagation delay times and can drive 1000 pF load with 10ns rise times and 6 ns fall times [1]. The device consumes very little power, has supply under-voltage protection, and is rated for a -40 C to +125 C junction temperature range. The floating high-side driver of the chip can sustain boost voltages up to 100 V. Table I shows some of the device manufacturer s specification.
Dang, Tran Ngoc; Seposo, Xerxes T; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi
2016-01-01
The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11-1.83; low temperature effect, RR=2.0, 95% CI=1.13-3.52), females (low temperature effect, RR=2.19, 95% CI=1.14-4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91-6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15-2.22; low temperature effect, RR=1.99, 95% CI=0.92-4.28). In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City.
Dang, Tran Ngoc; Seposo, Xerxes T.; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi
2016-01-01
Background The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). Results High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52), females (low temperature effect, RR=2.19, 95% CI=1.14–4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28). Conclusions In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City. PMID:26781954
Determination and experimental verification of high-temperature SAW orientations on langatate.
Davulis, Peter M; da Cunha, Mauricio Pereira
2012-02-01
Langatate (LGT) is a member of the langasite family of crystals appropriate for high-temperature frequency control and sensing applications. This paper identifies multiple LGT SAW orientations for use at high temperature, specifically in the 400°C to 900°C range. Orientations with low sensitivity to temperature are desired for frequency control devices and many sensors, conversely large temperature sensitivity is a benefit for temperature sensors. The LGT SAW temperature behavior has been calculated for orientations sweeping the Euler angles (0°, Θ, ψ), (90°, Θ, ψ), and (ψ, 90°, ψ), based on newly identified high-temperature elastic constants and temperature coefficients for this material. The temperature coefficient of delay (TCD) and total frequency change over the temperature range were analyzed from 400°C to 900°C. Multiple SAW orientations were identified with zero-TCD between 400°C and 500°C. Although no orientations that have turn-over temperatures above 500°C were identified, several have low frequency variation with temperature, of the order of -0.8% over the range 400°C to 800°C. Temperature-sensitive orientations with TCD up to 75 ppm/°C at 900°C were identified, with potential for high-temperature sensor applications. The reported predictions are shown to agree with measured behavior of LGT SAW delay lines fabricated along 6 orientations in the (90°, 23°, ψ) plane. In addition, this work demonstrates that concurrently operated LGT SAW devices fabricated on the same wafer provide means of temperature sensing. In particular, the measured frequency difference between delay lines oriented along (90°, 23°, 0°) and (90°, 23°, 48°) has fractional temperature sensitivity that ranges from -172 ppm/°C at 25°C to -205 ppm/°C at 900°C.
Barone, C; Romeo, F; Pagano, S; Adamo, M; Nappi, C; Sarnelli, E; Kurth, F; Iida, K
2014-08-22
An important step forward for the understanding of high-temperature superconductivity has been the discovery of iron-based superconductors. Among these compounds, iron pnictides could be used for high-field magnet applications, resulting more advantageous over conventional superconductors, due to a high upper critical field as well as its low anisotropy at low temperatures. However, the principal obstacle in fabricating high quality superconducting wires and tapes is given by grain boundaries. In order to study these effects, the dc transport and voltage-noise properties of Co-doped BaFe₂As₂ superconducting films with artificial grain boundary junctions have been investigated. A specific procedure allows the separation of the film noise from that of the junction. While the former shows a standard 1/f behaviour, the latter is characterized by an unconventional temperature-dependent multi-Lorentzian voltage-spectral density. Moreover, below the film superconducting critical temperature, a peculiar noise spectrum is found for the grain boundary junction. Possible theoretical interpretation of these phenomena is proposed.
Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)
NASA Astrophysics Data System (ADS)
Lee, Dongyoung; Lee, Dai Gil
2016-09-01
A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.
Phase transformation strengthening of high-temperature superalloys
Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.
2016-01-01
Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ′ to η phase along stacking faults in γ′ precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties. PMID:27874007
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Jason; Yu, Wensong; Sun, Pengwei
2012-03-31
The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling andmore » simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.« less
NASA Technical Reports Server (NTRS)
Demange, Jeffrey J.; Taylor, Shawn C.; Dunlap, Patrick H.; Steinetz, Bruce M.; Finkbeiner, Joshua R.; Proctor, Margaret P.
2014-01-01
The NASA Glenn Research Center (GRC), partnering with the University of Toledo, has a long history of developing and testing seal technologies for high-temperature applications. The GRC Seals Team has conducted research and development on high-temperature seal technologies for applications including advanced propulsion systems, thermal protection systems (airframe and control surface thermal seals), high-temperature preloading technologies, and other extreme-environment seal applications. The team has supported several high-profile projects over the past 30 years and has partnered with numerous organizations, including other government entities, academic institutions, and private organizations. Some of these projects have included the National Aerospace Space Plane (NASP), Space Shuttle Space Transport System (STS), the Multi-Purpose Crew Vehicle (MPCV), and the Dream Chaser Space Transportation System, as well as several high-speed vehicle programs for other government organizations. As part of the support for these programs, NASA GRC has developed unique seal-specific test facilities that permit evaluations and screening exercises in relevant environments. The team has also embarked on developing high-temperature preloaders to help maintain seal functionality in extreme environments. This paper highlights several propulsion-related projects that the NASA GRC Seals Team has supported over the past several years and will provide an overview of existing testing capabilities
NASA Technical Reports Server (NTRS)
Miladinovich, Daniel S.; Zhu, Dongming
2011-01-01
Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.
Technology development of a biowaste resistojet, volume 1
NASA Technical Reports Server (NTRS)
Phillips, D. G.
1972-01-01
The materials research effort conducted in support of a NASA-sponsored biowaste resistojet development program is summarized. The resistojet concept under development is the concentric tube design wherein the final pass of the gases through the thruster is through the resistance heated center tube. To produce high specific impulses, this center tube must operate at very high temperatures and it is this element that is most critical in the design. Because of the corrosive nature of the biowaste gases at high temperature, and because of the limited data available for many potential materials, the subject materials study was conducted.
Resin Transfer Moldable Polyimides Developed for High-Temperature Applications
NASA Technical Reports Server (NTRS)
Meador, Mary Ann
2000-01-01
High-temperature polyimides, such as PMR 15 (which was developed at the NASA Glenn Research Center at Lewis Field), are becoming an increasingly important class of materials for a variety of aerospace applications, such as aircraft engine components and propulsion and airframe components for reusable launch vehicles (RLV s). Because of their high specific strength and low density, use of these materials in place of more traditional aerospace materials, such as titanium, can significantly reduce component and vehicle weight, leading to reductions in fuel consumption (and pollutants), increases in payload and passenger capacity, and improvements in vehicle performance.
Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C.
2017-01-01
ABSTRACT Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria, particularly Actinomycetales, was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature. PMID:28405627
Dai, Zhongmin; Barberán, Albert; Li, Yong; Brookes, Philip C; Xu, Jianming
2017-01-01
Microbes that colonize pyrogenic organic matter (PyOM) (also called biochar) play an important role in PyOM mineralization and crucially affect soil biogeochemical cycling, while the microbial community composition associated with PyOM particles is poorly understood. We generated two manure-based PyOMs with different characteristics (PyOM pyrolyzed at the low temperature of 300°C [i.e., PyOM300] and at the high temperature of 700°C [i.e., PyOM700]) and added them to high-carbon (4.15%) and low-C (0.37%) soil for microbial colonization. 16S rRNA gene sequencing showed that Actinobacteria , particularly Actinomycetales , was the dominant taxon in PyOM, regardless of the PyOM pyrolysis temperature and soil type. Bacterial communities associated with PyOM particles from high-C soils were similar to those in non-PyOM-amended soils. PyOM300 had higher total microbial activity and more differential bacterial communities than PyOM700. More bacterial operational taxonomic units (OTUs) preferentially thrived on the low-pyrolysis-temperature PyOM, while some specific OTUs thrived on high-pyrolysis-temperature PyOM. In particular, Chloroflexi species tended to be more prevalent in high-pyrolysis-temperature PyOM in low-C soils. In conclusion, the differences in colonized bacterial community composition between the different PyOMs were strongly influenced by the pyrolysis temperatures of PyOM, i.e., under conditions of easily mineralizable C or fused aromatic C, and by other properties, e.g., pH, surface area, and nutrient content. IMPORTANCE Pyrogenic organic matter (PyOM) is widely distributed in soil and fluvial ecosystems and plays an important role in biogeochemical cycling. Many studies have reported changes in soil microbial communities stimulated by PyOM, but very little is known about the microbial communities associated with PyOM. The microbes that colonize PyOMs can participate in the mineralization of PyOM, so changing its structure affects the fate of PyOMs and contributes to soil biogeochemical cycling. This study identified the bacterial community composition associated with PyOMs on the basis of high-throughput sequencing and demonstrated that both PyOM pyrolysis temperature and the colonization environment determined the bacterial community composition. Our work increases our understanding of the dominant phylogenetic taxa associated with PyOMs, demonstrates mechanisms mediating microbial metabolism and growth in PyOMs, and expands a new research area for pyrogenic organic matter. This study identified the bacterial community composition associated with PyOM, which is widely distributed in the environment. Most bacterial OTUs preferentially thrived on PyOM pyrolyzed at low temperature, while some specific OTUs thrived on PyOM pyrolyzed at high temperature.
Calorimetric measurements on Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaba, Akira; Miyazaki, Yuji; Michałowski, Paweł P.
2015-04-28
We show specific heat data for Na{sub 4}C{sub 60} and Li{sub 4}C{sub 60} in the range 0.4-350 K for samples characterized by Raman spectroscopy and X-ray diffraction. At high temperatures, the two different polymer structures have very similar specific heats both in absolute values and in general trend. The specific heat data are compared with data for undoped polymeric and pristine C{sub 60}. At high temperatures, a difference in specific heat between the intercalated and undoped C{sub 60} polymers of 100 J K{sup −1} mol{sup −1} is observed, in agreement with the Dulong-Petit law. At low temperatures, the specific heatmore » data for Li{sub 4}C{sub 60} and Na{sub 4}C{sub 60} are modified by the stiffening of vibrational and librational molecular motion induced by the polymer bonds. The covalent twin bonds in Li{sub 4}C{sub 60} affect these motions to a somewhat higher degree than the single intermolecular bonds in Na{sub 4}C{sub 60}. Below 1 K, the specific heats of both materials become linear in temperature, as expected from the effective dimensionality of the structure. The contribution to the total specific heat from the inserted metal ions can be well described by Einstein functions with T{sub E} = 386 K for Li{sub 4}C{sub 60} and T{sub E} = 120 K for Na{sub 4}C{sub 60}, but for both materials we also observe a Schottky-type contribution corresponding to a first approximation to a two-level system with ΔE = 9.3 meV for Li{sub 4}C{sub 60} and 3.1 meV for Na{sub 4}C{sub 60}, probably associated with jumps between closely spaced energy levels inside “octahedral-type” ionic sites. Static magnetic fields up to 9 T had very small effects on the specific heat below 10 K.« less
A strategy for high specific power pyroelectric energy harvesting from a fluid source
NASA Astrophysics Data System (ADS)
Maheux, E.; Hrebtov, M. Yu.; Sukhorukov, G.; Kozyulin, N. N.; Bobrov, M. S.; Dobroselsky, K. G.; Chikishev, L. M.; Dulin, V. M.; Yudin, P. V.
2017-12-01
Conversion of waste heat into usable electricity is now one of the important strategies for saving natural resources and minimizing impact on the environment. In contrast to Seebeck devices, utilizing a temperature gradient, pyroelectric scavengers use temporal temperature oscillations. Here, optimal strategies for pyroelectric energy harvesting are theoretically investigated from the point of view of non-stationary heat exchange for the application-relevant case of harvesting with a pyroelectric lamella from a fluid heat source. It is shown that for a fixed lamella thickness by choosing appropriate phase shift between the temperature oscillations and the voltage on the pyroelectric lamella, one can effectively operate at high frequencies and achieve a two to three-fold increase in specific power with respect to the classical Olsen cycle. A further increase in specific power is achieved by thinning down the lamella. For devices with a thickness down to a few hundreds of nanometers, specific power linearly increases with the inverse thickness. Further scaling down of the device is hampered with the heat exchange in the boundary layer. Our simulations for a representative pyroelectric Pb(Zr0,5Ti0,5)O3 predict harvestable powers of the order of kW/kg for a device with a thickness in the range from 100 nm to 1 μm, operating at hundreds of Hz.
Key, Douglas J
2014-07-01
This study incorporates concurrent thermal camera imaging as a means of both safely extending the length of each treatment session within skin surface temperature tolerances and to demonstrate not only the homogeneous nature of skin surface temperature heating but the distribution of that heating pattern as a reflection of localization of subcutaneous fat distribution. Five subjects were selected because of a desire to reduce abdomen and flank fullness. Full treatment field thermal camera imaging was captured at 15 minute intervals, specifically at 15, 30, and 45 minutes into active treatment with the purpose of monitoring skin temperature and avoiding any patterns of skin temperature excess. Peak areas of heating corresponded anatomically to the patients' areas of greatest fat excess ie, visible "pinchable" fat. Preliminary observation of high-resolution thermal camera imaging used concurrently with focused field RF therapy show peak skin heating patterns overlying the areas of greatest fat excess.
Coupled Monte Carlo neutronics and thermal hydraulics for power reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernnat, W.; Buck, M.; Mattes, M.
The availability of high performance computing resources enables more and more the use of detailed Monte Carlo models even for full core power reactors. The detailed structure of the core can be described by lattices, modeled by so-called repeated structures e.g. in Monte Carlo codes such as MCNP5 or MCNPX. For cores with mainly uniform material compositions, fuel and moderator temperatures, there is no problem in constructing core models. However, when the material composition and the temperatures vary strongly a huge number of different material cells must be described which complicate the input and in many cases exceed code ormore » memory limits. The second problem arises with the preparation of corresponding temperature dependent cross sections and thermal scattering laws. Only if these problems can be solved, a realistic coupling of Monte Carlo neutronics with an appropriate thermal-hydraulics model is possible. In this paper a method for the treatment of detailed material and temperature distributions in MCNP5 is described based on user-specified internal functions which assign distinct elements of the core cells to material specifications (e.g. water density) and temperatures from a thermal-hydraulics code. The core grid itself can be described with a uniform material specification. The temperature dependency of cross sections and thermal neutron scattering laws is taken into account by interpolation, requiring only a limited number of data sets generated for different temperatures. Applications will be shown for the stationary part of the Purdue PWR benchmark using ATHLET for thermal- hydraulics and for a generic Modular High Temperature reactor using THERMIX for thermal- hydraulics. (authors)« less
77 FR 64249 - Track Safety Standards; Improving Rail Integrity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... specific problems. This is a result of high traffic volumes that load the rail and accelerate defect growth... influenced by tonnage. Rapid growth rates can also be associated with rail where high-tensile residual stresses are present in the railhead and in CWR in lower temperature ranges where the rail is in high...
Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C
2017-05-01
We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes. Copyright © 2017 Elsevier Inc. All rights reserved.
Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours.
Wijlemans, J W; Bartels, L W; Deckers, R; Ries, M; Mali, W P Th M; Moonen, C T W; van den Bosch, M A A J
2012-09-28
Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation.
Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablation of liver tumours
Bartels, L.W.; Deckers, R.; Ries, M.; Mali, W.P.Th.M.; Moonen, C.T.W.; van den Bosch, M.A.A.J.
2012-01-01
Abstract Recent decades have seen a paradigm shift in the treatment of liver tumours from invasive surgical procedures to minimally invasive image-guided ablation techniques. Magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) is a novel, completely non-invasive ablation technique that has the potential to change the field of liver tumour ablation. The image guidance, using MR imaging and MR temperature mapping, provides excellent planning images and real-time temperature information during the ablation procedure. However, before clinical implementation of MR-HIFU for liver tumour ablation is feasible, several organ-specific challenges have to be addressed. In this review we discuss the MR-HIFU ablation technique, the liver-specific challenges for MR-HIFU tumour ablation, and the proposed solutions for clinical translation. PMID:23022541
Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari
2017-08-31
Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.
A Rechargeable High-Temperature Molten Salt Iron-Oxygen Battery.
Peng, Cheng; Guan, Chengzhi; Lin, Jun; Zhang, Shiyu; Bao, Hongliang; Wang, Yu; Xiao, Guoping; Chen, George Zheng; Wang, Jian-Qiang
2018-06-11
The energy and power density of conventional batteries are far lower than their theoretical expectations, primarily because of slow reaction kinetics that are often observed under ambient conditions. Here we describe a low-cost and high-temperature rechargeable iron-oxygen battery containing a bi-phase electrolyte of molten carbonate and solid oxide. This new design merges the merits of a solid-oxide fuel cell and molten metal-air battery, offering significantly improved battery reaction kinetics and power capability without compromising the energy capacity. The as-fabricated battery prototype can be charged at high current density, and exhibits excellent stability and security in the highly charged state. It typically exhibits specific energy, specific power, energy density, and power density of 129.1 Wh kg -1 , 2.8 kW kg -1 , 388.1 Wh L -1 , and 21.0 kW L -1 , respectively, based on the mass and volume of the molten salt. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of temperature on mortality in Hong Kong: a time series analysis
NASA Astrophysics Data System (ADS)
Yi, Wen; Chan, Albert P. C.
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Effects of temperature on mortality in Hong Kong: a time series analysis.
Yi, Wen; Chan, Albert P C
2015-07-01
Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.
Phase equilibrium modeling for high temperature metallization on GaAs solar cells
NASA Technical Reports Server (NTRS)
Chung, M. A.; Davison, J. E.; Smith, S. R.
1991-01-01
Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.
Advanced high temperature instrument for hot section research applications
NASA Technical Reports Server (NTRS)
Englund, D. R.; Seasholtz, R. G.
1989-01-01
Programs to develop research instrumentation for use in turbine engine hot sections are described. These programs were initiated to provide improved measurements capability as support for a multidisciplinary effort to establish technology leading to improved hot section durability. Specific measurement systems described here include heat flux sensors, a dynamic gas temperature measuring system, laser anemometry for hot section applications, an optical system for viewing the interior of a combustor during operation, thin film sensors for surface temperature and strain measurements, and high temperature strain measuring systems. The state of development of these sensors and measuring systems is described, and, in some cases, examples of measurements made with these instruments are shown. Work done at the NASA Lewis Research Center and at various contract and grant facilities is covered.
Inskeep, William P.; Jay, Zackary J.; Herrgard, Markus J.; Kozubal, Mark A.; Rusch, Douglas B.; Tringe, Susannah G.; Macur, Richard E.; Jennings, Ryan deM.; Boyd, Eric S.; Spear, John R.; Roberto, Francisco F.
2013-01-01
Geothermal habitats in Yellowstone National Park (YNP) provide an unparalleled opportunity to understand the environmental factors that control the distribution of archaea in thermal habitats. Here we describe, analyze, and synthesize metagenomic and geochemical data collected from seven high-temperature sites that contain microbial communities dominated by archaea relative to bacteria. The specific objectives of the study were to use metagenome sequencing to determine the structure and functional capacity of thermophilic archaeal-dominated microbial communities across a pH range from 2.5 to 6.4 and to discuss specific examples where the metabolic potential correlated with measured environmental parameters and geochemical processes occurring in situ. Random shotgun metagenome sequence (∼40–45 Mb Sanger sequencing per site) was obtained from environmental DNA extracted from high-temperature sediments and/or microbial mats and subjected to numerous phylogenetic and functional analyses. Analysis of individual sequences (e.g., MEGAN and G + C content) and assemblies from each habitat type revealed the presence of dominant archaeal populations in all environments, 10 of whose genomes were largely reconstructed from the sequence data. Analysis of protein family occurrence, particularly of those involved in energy conservation, electron transport, and autotrophic metabolism, revealed significant differences in metabolic strategies across sites consistent with differences in major geochemical attributes (e.g., sulfide, oxygen, pH). These observations provide an ecological basis for understanding the distribution of indigenous archaeal lineages across high-temperature systems of YNP. PMID:23720654
Huang, Shenggen; Sun, Jian; Yan, Jian; Liu, Jiaqin; Wang, Weijie; Qin, Qingqing; Mao, Wenping; Xu, Wei; Wu, Yucheng; Wang, Junfeng
2018-03-21
In this work, Al-doped MnO 2 (Al-MO) nanoparticles have been synthesized by a simple chemical method with the aim to enhance cycling stability. At room temperature and 50 °C, the specific capacitances of Al-MO are well-maintained after 10 000 cycles. Compared with pure MnO 2 nanospheres (180.6 F g -1 at 1 A g -1 ), Al-MO also delivers an enhanced specific capacitance of 264.6 F g -1 at 1 A g -1 . During the cycling test, Al-MO exhibited relatively stable structure initially and transformed to needlelike structures finally both at room temperature and high temperature. In order to reveal the morphology evolution process, in situ NMR under high magnetic field has been carried out to probe the dynamics of structural properties. The 23 Na spectra and the SEM observation suggest that the morphology evolution may follow pulverization/reassembling process. The Na + intercalation/deintercalation induced pulverization, leading to the formation of tiny MnO 2 nanoparticles. After that, the pulverized tiny nanoparticles reassembled into new structures. In Al-MO electrodes, doping of Al 3+ could slow down this structure evolution process, resulting in a better electrochemical stability. This work deepens the understanding on the structural changes in faradic reaction of pseudocapacitive materials. It is also important for the practical applications of MnO 2 -based supercapacitors.
Thermal fatigue-and-oxidation-resistant alloy
NASA Technical Reports Server (NTRS)
Bizon, P. T.; Waters, W. J.; Spera, D. A.
1976-01-01
Cast nickel-base alloy designated as NASA TAZ-8A has been developed for use in high temperature aircraft engine components. TAZ-8A composition is 8Ta, 6Cr, 6A1, 4Mo, 4W, 2Cb, 0.5Zr, 0.125C, 0.004B, and balance Ni (weight percent). Its specific gravity at room temperature is 8.65.
Synthesis of Perfluorinated Polymers
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Psarras, T.
1982-01-01
Long-chain perfluoropolyethers containing functional pendent groups were investigated as possible candidates for new sealants and elastomers that function in extreme environments. Of specific interest was development of materials exhibiting high thermal and oxidative stability at temperatures around 400 degrees C, low-temperature flexibility with glass transition at about 50 degrees C, and hydrolytic stability as well as compatibility with metals and resistance to fuels.
NMR and specific heat study of atomic dynamics and spin-orbit behavior in Cu2-xAgyTe
NASA Astrophysics Data System (ADS)
Sirusi, Ali A.; Ballikaya, Sedat; Chen, Jing-Han; Uher, Ctirad; Ross, Joseph H., Jr.
We report studies of Cu2Te and Cu2-xAgyTe, promising candidates for thermoelectric and photovoltaic applications. Cu and Te NMR show that above a well-defined 200 K onset, Cu2Te exhibits Cu-ion hopping, leading to the higher-temperature superionic motion. In Cu1.98Ag0.2Te the onset increases to 250 K. In the low-temperature static phase the properties are nearly identical. Aside from Korringa terms there are large diamagnetic contributions for all nuclei, comparable to those for other systems with very large spin-orbit and/or inverted band configurations. Thus the system may be a topologically interesting system like the similar phase Ag2Te. Results will be compared to DFT calculations of NMR shifts. The low-temperature spectra also indicate two distinct local environments for Cu sites, one corresponding to high symmetry such as characterizes the high-temperature cubic phase, and one with much more asymmetry. In addition, specific heat results are consistent with about 50% of the Cu ions being weakly bound on Einstein-oscillator sites. We tentatively connect these results to reported local inhomogeneity due to vacancy condensation in similar systems.
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Ungar, Eugene K.; Chambliss, Joe P.; Cassady, Leonard D.
2011-01-01
The Variable Specific Impulse Magnetoplasma Rocket (VASIMR), currently under development by Ad Astra Rocket Company, is a unique propulsion system that can potentially change the way space propulsion is performed. VASIMR's efficiency, when compared to that of a conventional chemical rocket, reduce propellant needed for exploration missions by a factor of 10. Currently plans include flight tests of a 200 kW VASIMR system, titled VF-200, on the International Space Station. The VF-200 will consist of two 100 kW thruster units packaged together in one engine bus. Each thruster unit has a unique heat rejection requirement of about 27 kW over a firing time of 15 minutes. In order to control rocket core temperatures, peak operating temperatures of about 300 C are expected within the thermal control loop. Design of a high temperature radiator is a unique challenge for the vehicle design. This paper will discuss the path taken to develop a steady state and transient based radiator design. The paper will describe radiator design options for the VASIMR thermal control system for use on ISS as well as future exploration vehicles.
Assessing Field-Specific Risk of Soybean Sudden Death Syndrome Using Satellite Imagery in Iowa.
Yang, S; Li, X; Chen, C; Kyveryga, P; Yang, X B
2016-08-01
Moderate resolution imaging spectroradiometer (MODIS) satellite imagery from 2004 to 2013 were used to assess the field-specific risks of soybean sudden death syndrome (SDS) caused by Fusarium virguliforme in Iowa. Fields with a high frequency of significant decrease (>10%) of the normalized difference vegetation index (NDVI) observed in late July to middle August on historical imagery were hypothetically considered as high SDS risk. These high-risk fields had higher slopes and shorter distances to flowlines, e.g., creeks and drainages, particularly in the Des Moines lobe. Field data in 2014 showed a significantly higher SDS level in the high-risk fields than fields selected without considering NDVI information. On average, low-risk fields had 10 times lower F. virguliforme soil density, determined by quantitative polymerase chain reaction, compared with other surveyed fields. Ordinal logistic regression identified positive correlations between SDS and slope, June NDVI, and May maximum temperature, but high June maximum temperature hindered SDS. A modeled SDS risk map showed a clear trend of potential disease occurrences across Iowa. Landsat imagery was analyzed similarly, to discuss the ability to utilize higher spatial resolution data. The results demonstrated the great potential of both MODIS and Landsat imagery for SDS field-specific risk assessment.
Mechanical tensile testing of titanium 15-3-3-3 and Kevlar 49 at cryogenic temperatures
NASA Astrophysics Data System (ADS)
James, B. L.; Martinez, R. M.; Shirron, P.; Tuttle, J.; Galassi, N. M.; McGuinness, D. S.; Puckett, D.; Francis, J. J.; Flom, Y.
2012-06-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thermal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
Mechanical Tensile Testing of Titanium 15-3-3-3 and Kevlar 49 at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
James, Bryan L.; Martinez, Raul M.; Shirron, Peter; Tuttle, Jim; Galassi, Nicholas M.; Mcguinness, Daniel S.; Puckett, David; Francis, John J.; Flom, Yury
2011-01-01
Titanium 15-3-3-3 and Kevlar 49 are highly desired materials for structural components in cryogenic applications due to their low thennal conductivity at low temperatures. Previous tests have indicated that titanium 15-3-3-3 becomes increasingly brittle as the temperature decreases. Furthermore, little is known regarding the mechanical properties of Kevlar 49 at low temperatures, most specifically its Young's modulus. This testing investigates the mechanical properties of both materials at cryogenic temperatures through cryogenic mechanical tensile testing to failure. The elongation, ultimate tensile strength, yield strength, and break strength of both materials are provided and analyzed here.
NASA Astrophysics Data System (ADS)
Alfieri, Silvia Maria; De Lorenzi, Francesca; Missere, Daniele; Buscaroli, Claudio; Menenti, Massimo
2013-04-01
Extremely high and extremely low temperature may have a terminal impact on the productivity of fruit tree if occurring at critical phases of development. Notorious examples are frost during flowering or extremely high temperature during fruit setting. The dates of occurrence of such critical phenological stages depend on the weather history from the start of the yearly development cycle in late autumn, thus the impact of climate extremes can only be evaluated correctly if the phenological development is modeled taking into account the weather history of the specific year being evaluated. Climate change impact may lead to a shift in timing of phenological stages and change in the duration of vegetative and reproductive phases. A changing climate can also exhibit a greater climatic variability producing quite large changes in the frequency of extreme climatic events. We propose a two-stage approach to evaluate the impact of predicted future climate on the productivity of fruit trees. The phenological development is modeled using phase - specific thermal times and variety specific thermal requirements for several cultivars of pear, apricot and peach. These requirements were estimated using phenological observations over several years in Emilia Romagna region and scientific literature. We calculated the dates of start and end of rest completion, bud swell, flowering, fruit setting and ripening stages , from late autumn through late summer. Then phase-specific minimum and maximum cardinal temperature were evaluated for present and future climate to estimate how frequently they occur during any critically sensitive phenological phase. This analysis has been done for past climate (1961 - 1990) and fifty realizations of a year representative of future climate (2021 - 2050). A delay in rest completion of about 10-20 days has been predicted for future climate for most of the cultivars. On the other hand the predicted rise in air temperature causes an earlier development of crops thus a reduction in the length of the different phenological stages. Despite the earlier timing of phenological phases may expose the crops to frost hazard, the mean increase of air temperature avoids relevant impacts on crops. The frequency of air temperatures higher than the cardinal temperatures is expected to increase by 5% compared with the reference 1961 - 1990 climate. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)
Zhang, Y Q; Yu, C H; Bao, J Z
2016-11-06
Objective: To evaluate the acute effects of daily mean temperature on ischemic heart disease (IHD) mortality in 12 counties across Hubei Province, China. Methods: We obtained the daily IHD mortality data and meteorological data of the 12 counties for 2009-2012. The distributed lag nonlinear model (DLNM) was used to estimate the community-specific association between mean temperature and IHD mortality. A multivariate meta-analysis was then applied to pool the community-specific relationship between temperature and IHD mortality, and the effects of cold and heat on mortality risk. Results: In 2009-2012, of the 6 702 012 people included in this study, 19 688 died of IHD. A daily average of 1.2 IHD deaths occurred in each community. The annual average mean temperature was 16.6 ℃ during the study period. A nonlinear temperature-IHD mortality relationship was observed for different cumulative lag days at the provincial level. The pooled heat effect was acute but attenuated within 2 days. In contrast, the cold effect was delayed and persisted for more than 2 weeks. Compared with a reference temperature (25 th percentile of mean temperature during the study period, P 25 ), the cold effect for P 10 of mean temperature was associated with IHD mortality, the RR (95% CI ) was 1.084 (1.008-1.167) at lag 0-14, and 1.149 (1.053-1.253) at lag 0-21. For the P 1 cold temperature, the mortality RR (95% CI ) values were 1.116 (0.975-1.276) and 1.220 (1.04-1.428), respectively. We found no significant association between high temperatures and IHD mortality in the present study at different lag days. Conclusion: In Hubei Province, low temperature was associated with increased IHD mortality risk, and cold effects lasted for several days; no significant effect of high temperature was observed.
Mang, Hyung-Gon; Qian, Weiqiang; Zhu, Ying; Qian, Jun; Kang, Hong-Gu; Klessig, Daniel F.; Hua, Jian
2012-01-01
Plant defense responses to pathogens are influenced by abiotic factors, including temperature. Elevated temperatures often inhibit the activities of disease resistance proteins and the defense responses they mediate. A mutant screen with an Arabidopsis thaliana temperature-sensitive autoimmune mutant bonzai1 revealed that the abscisic acid (ABA)–deficient mutant aba2 enhances resistance mediated by the resistance (R) gene SUPPRESSOR OF npr1-1 CONSTITUTIVE1 (SNC1) at high temperature. ABA deficiency promoted nuclear accumulation of SNC1, which was essential for it to function at low and high temperatures. Furthermore, the effect of ABA deficiency on SNC1 protein accumulation is independent of salicylic acid, whose effects are often antagonized by ABA. ABA deficiency also promotes the activity and nuclear localization of R protein RESISTANCE TO PSEUDOMONAS SYRINGAE4 at higher temperature, suggesting that the effect of ABA on R protein localization and nuclear activity is rather broad. By contrast, mutations that confer ABA insensitivity did not promote defense responses at high temperature, suggesting either tissue specificity of ABA signaling or a role of ABA in defense regulation independent of the core ABA signaling machinery. Taken together, this study reveals a new intersection between ABA and disease resistance through R protein localization and provides further evidence of antagonism between abiotic and biotic responses. PMID:22454454
Low temperature physical properties of Co-35Ni-20Cr-10Mo alloy MP35N®
NASA Astrophysics Data System (ADS)
Lu, J.; Toplosky, V. J.; Goddard, R. E.; Han, K.
2017-09-01
Multiphase Co-35Ni-20Cr-10Mo alloy MP35N® is a high strength alloy with excellent corrosion resistance. Its applications span chemical, medical, and food processing industries. Thanks to its high modulus and high strength, it found applications in reinforcement of ultra-high field pulsed magnets. Recently, it has also been considered for reinforcement in superconducting wires used in ultra-high field superconducting magnets. For these applications, accurate measurement of its physical properties at cryogenic temperatures is very important. In this paper, physical properties including electrical resistivity, specific heat, thermal conductivity, and magnetization of as-received and aged samples are measured from 2 to 300 K. The electrical resistivity of the aged sample is slightly higher than the as-received sample, both showing a weak linear temperature dependence in the entire range of 2-300 K. The measured specific heat Cp of 430 J/kg-K at 295 K agrees with a theoretical prediction, but is significantly smaller than the values in the literature. The thermal conductivity between 2 and 300 K is in good agreement with the literature which is only available above 77 K. Magnetic property of MP35N® changes significantly with aging. The as-received sample exhibits Curie paramagnetism with a Curie constant C = 0.175 K. While the aged sample contains small amounts of a ferromagnetic phase even at room temperature. The measured MP35N® properties will be useful for the engineering design of pulsed magnets and superconducting magnets using MP35N® as reinforcement.
Chum, H.L.; Evans, R.J.
1992-08-04
A process is described for using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent. 11 figs.
Chum, Helena L.; Evans, Robert J.
1992-01-01
A process of using fast pyrolysis in a carrier gas to convert a waste phenolic resin containing feedstreams in a manner such that pyrolysis of said resins and a given high value monomeric constituent occurs prior to pyrolyses of the resins in other monomeric components therein comprising: selecting a first temperature program range to cause pyrolysis of said resin and a given high value monomeric constituent prior to a temperature range that causes pyrolysis of other monomeric components; selecting, if desired, a catalyst and a support and treating said feedstreams with said catalyst to effect acid or basic catalyzed reaction pathways to maximize yield or enhance separation of said high value monomeric constituent in said first temperature program range to utilize reactive gases such as oxygen and steam in the pyrolysis process to drive the production of specific products; differentially heating said feedstreams at a heat rate within the first temperature program range to provide differential pyrolysis for selective recovery of optimum quantity of said high value monomeric constituent prior to pyrolysis of other monomeric components therein; separating said high value monomeric constituent; selecting a second higher temperature program range to cause pyrolysis of a different high value monomeric constituent of said phenolic resins waste and differentially heating said feedstreams at said higher temperature program range to cause pyrolysis of said different high value monomeric constituent; and separating said different high value monomeric constituent.
High-freezing-point fuel studies
NASA Technical Reports Server (NTRS)
Tolle, F. F.
1980-01-01
Considerable progress in developing the experimental and analytical techniques needed to design airplanes to accommodate fuels with less stringent low temperature specifications is reported. A computer technique for calculating fuel temperature profiles in full tanks was developed. The computer program is being extended to include the case of partially empty tanks. Ultimately, the completed package is to be incorporated into an aircraft fuel tank thermal analyser code to permit the designer to fly various thermal exposure patterns, study fuel temperatures versus time, and determine holdup.
Thermal conductivity behavior of boron carbides
NASA Technical Reports Server (NTRS)
Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.
1983-01-01
Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.
Frustrated honeycomb-lattice bilayer quantum antiferromagnet in a magnetic field
NASA Astrophysics Data System (ADS)
Krokhmalskii, Taras; Baliha, Vasyl; Derzhko, Oleg; Schulenburg, Jörg; Richter, Johannes
2018-05-01
Frustrated bilayer quantum magnets have attracted attention as flat-band spin systems with unconventional thermodynamic properties. We study the low-temperature properties of a frustrated honeycomb-lattice bilayer spin-1/2 isotropic (XXX) Heisenberg antiferromagnet in a magnetic field by means of an effective low-energy theory using exact diagonalizations and quantum Monte Carlo simulations. Our main focus is on the magnetization curve and the temperature dependence of the specific heat indicating a finite-temperature phase transition in high magnetic fields.
Low-Temperature Plasma Functionalization of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Khare, Bishun; Meyyappan, M.
2004-01-01
A low-temperature plasma process has been devised for attaching specified molecular groups to carbon nanotubes in order to impart desired chemical and/or physical properties to the nanotubes for specific applications. Unlike carbon-nanotube- functionalization processes reported heretofore, this process does not involve the use of wet chemicals, does not involve exposure of the nanotubes to high temperatures, and generates very little chemical residue. In addition, this process can be carried out in a relatively simple apparatus and can readily be scaled up to mass production.
Radiative engineering with refractory epsilon-near-zero metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dyachenko, Pavel N.; Molesky, Sean; Petrov, Alexander Y.; Störmer, Michael; Krekeler, Tobias; Lang, Slawa; Ritter, Martin; Jacob, Zubin; Eich, Manfred
2016-04-01
Improvement in high-temperature stable spectrally selective absorbers and emitters is integral for the further development of thermophotovoltaic (TPV), lighting and solar thermal applications. However, the high operational temperatures (T>1000oC) required for efficient energy conversion, along with application specific criteria such as the operational range of low bandgap semiconductors, greatly restrict what can be accomplished with natural materials. Motivated by this challenge, we demonstrate the first example of high temperature thermal radiation engineering with metamaterials. By employing the naturally selective thermal excitation of radiative modes that occurs near topological transitions, we show that thermally stable highly selective emissivity features are achieved for temperatures up to 1000°C with low angular dependence in a sub-micron thick refractory tungsten/hafnium dioxide epsilon-near-zero (ENZ) metamaterial. We also investigate the main mechanisms of thermal degradation of the fabricated refractory metamaterial both in terms of optical performance and structural stability using spectral analysis and energy-dispersive X-ray spectroscopy (EDS) techniques. Importantly, we observe chemical stability of the constituent materials for temperatures up to 1000°C and structural stability beyond 1100°C. The scalable fabrication, requiring magnetron sputtering, and thermally robust optical properties of this metamaterial approach are ideally suited to high temperature emitter applications such as lighting or TPV. Our findings provide a first concrete proof of radiative engineering with high temperature topological transition in ENZ metamaterials, and establish a clear path for implementation in TPV energy harvesting applications.
Improved Wide Operating Temperature Range of Li-Ion Cells
NASA Technical Reports Server (NTRS)
Smart, Marshall C.; Bugga, Ratnakumar V.
2013-01-01
Future NASA missions aimed at exploring the Moon, Mars, and the outer planets require rechargeable batteries that can operate over a wide temperature range (-60 to +60 C) to satisfy the requirements of various applications including landers, rovers, penetrators, CEV, CLV, etc. This work addresses the need for robust rechargeable batteries that can operate well over a wide temperature range. The Department of Energy (DoE) has identified a number of technical barriers associated with the development of Liion rechargeable batteries for PHEVs. For this reason, DoE has interest in the development of advanced electrolytes that will improve performance over a wide range of temperatures, and lead to long life characteristics (5,000 cycles over a 10-year life span). There is also interest in improving the high-voltage stability of these candidate electrolyte systems to enable the operation of up to 5 V with high specific energy cathode materials. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-40 to +40 C); however, the rate capability at the lower temperatures is very poor. In addition, the low-temperature performance typically deteriorates rapidly upon being exposed to high temperatures. A number of electrolyte formulations were developed that incorporate the use of electrolyte additives to improve the high-temperature resilience, low-temperature power capability, and life characteristics of methyl propionate (MP)-based electrolyte solutions. These electrolyte additives include mono-fluoroethylene carbonate (FEC), lithium oxalate, vinylene carbonate (VC), and lithium bis(oxalate borate) (LiBOB), which have previously been shown to result in improved high-temperature resilience of all carbonate-based electrolytes. These MP-based electrolytes with additives have been shown to have improved performance in experiments with MCMB-LiNiCoAlO2 cells.
NASA Technical Reports Server (NTRS)
Esposito, J. J.; Zabora, R. F.
1975-01-01
Pertinent mechanical and physical properties of six high conductivity metals were determined. The metals included Amzirc, NARloy Z, oxygen free pure copper, electroformed copper, fine silver, and electroformed nickel. Selection of these materials was based on their possible use in high performance reusable rocket nozzles. The typical room temperature properties determined for each material included tensile ultimate strength, tensile yield strength, elongation, reduction of area, modulus of elasticity, Poisson's ratio, density, specific heat, thermal conductivity, and coefficient of thermal expansion. Typical static tensile stress-strain curves, cyclic stress-strain curves, and low-cycle fatigue life curves are shown. Properties versus temperature are presented in graphical form for temperatures from 27.6K (-410 F) to 810.9K (1000 F).
Evolution of the Specific Surface Area of Snow in a High Temperature Gradient Metamorphism
NASA Astrophysics Data System (ADS)
Wang, X.; Baker, I.
2014-12-01
The structural evolution of low-density snow under a high temperature gradient over a short period usually takes place in the surface layers during diurnal recrystallization or on a clear, cold night. To relate snow microstructures with their thermal properties, we combined X-ray computed microtomography (micro-CT) observations with numerical simulations. Different types of snow were tested over a large range of TGs (100 K m-1- 500 K m-1). The Specific Surface Area (SSA) was used to characterize the temperature gradient metamorphism (TGM). The magnitude of the temperature gradient and the initial snow type both influence the evolution of SSA. The SSA evolution under TGM was dominated by grain growth and the formation of complex surfaces. Fresh snow experienced a logarithmic decrease of SSA with time, a feature been observed previously by others [Calonne et al., 2014; Schneebeli and Sokratov, 2004; Taillandier et al., 2007]. However, for initial rounded and connected snow structures, the SSA will increase during TGM. Understanding the SSA increase is important in order to predict the enhanced uptake of chemical species by snow or increase in snow albedo. Calonne, N., F. Flin, C. Geindreau, B. Lesaffre, and S. Rolland du Roscoat (2014), Study of a temperature gradient metamorphism of snow from 3-D images: time evolution of microstructures, physical properties and their associated anisotropy, The Cryosphere Discussions, 8, 1407-1451, doi:10.5194/tcd-8-1407-2014. Schneebeli, M., and S. A. Sokratov (2004), Tomography of temperature gradient metamorphism of snow and associated changes in heat conductivity, Hydrological Processes, 18(18), 3655-3665, doi:10.1002/hyp.5800. Taillandier, A. S., F. Domine, W. R. Simpson, M. Sturm, and T. A. Douglas (2007), Rate of decrease of the specific surface area of dry snow: Isothermal and temperature gradient conditions, Journal of Geophysical Research: Earth Surface (2003-2012), 112(F3), doi: 10.1029/2006JF000514.
Temperature sensitive surfaces and methods of making same
Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA
2002-09-10
Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.
Specification of the 2nd cryogenic plant for RAON
NASA Astrophysics Data System (ADS)
Yoon, S.; Ki, T.; Lee, K. W.; Kim, Y.; Jo, H. C.; Kim, D. G.
2017-12-01
RAON is a rare isotope beam facility being built at Daejeon, South Korea. The RAON consists of three linear accelerators, SCL1 (1st SuperConducting LINAC), SCL2, and SCL3. Each LINAC has its own cryogenic plant. The cryogenic plant for SCL2 will provide the cooling for cryomodules, low temperature SC magnets, high temperature SC magnets, and a cryogenic distribution system. This paper describes the specification of the plant including cooling capacity, steady state and transient operation modes, and cooling strategies. In order to reduce CAPEX with the specification, two suppliers will consider no liquid nitrogen pre-cooling, one integrated cold box, and one back-up HP compressor. The detail design of the plant will be started at the end of this year.
Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data
Waite, W.F.; Gilbert, L.Y.; Winters, W.J.; Mason, D.H.
2006-01-01
Thermal diffusivity and specific heat can be estimated from thermal conductivity measurements made using a standard needle probe and a suitably high data acquisition rate. Thermal properties are calculated from the measured temperature change in a sample subjected to heating by a needle probe. Accurate thermal conductivity measurements are obtained from a linear fit to many tens or hundreds of temperature change data points. In contrast, thermal diffusivity calculations require a nonlinear fit to the measured temperature change occurring in the first few tenths of a second of the measurement, resulting in a lower accuracy than that obtained for thermal conductivity. Specific heat is calculated from the ratio of thermal conductivity to diffusivity, and thus can have an uncertainty no better than that of the diffusivity estimate. Our thermal conductivity measurements of ice Ih and of tetrahydrofuran (THF) hydrate, made using a 1.6 mm outer diameter needle probe and a data acquisition rate of 18.2 pointss, agree with published results. Our thermal diffusivity and specific heat results reproduce published results within 25% for ice Ih and 3% for THF hydrate. ?? 2006 American Institute of Physics.
Space power demonstrator engine, phase 1
NASA Technical Reports Server (NTRS)
1987-01-01
The design, analysis, and preliminary test results for a 25 kWe Free-Piston Stirling engine with integral linear alternators are described. The project is conducted by Mechanical Technology under the direction of LeRC as part of the SP-100 Nuclear Space Power Systems Program. The engine/alternator system is designed to demonstrate the following performance: (1) 25 kWe output at a specific weight less than 8 kg/kW; (2) 25 percent efficiency at a temperature ratio of 2.0; (3) low vibration (amplitude less than .003 in); (4) internal gas bearings (no wear, no external pump); and (5) heater temperature/cooler temperature from 630 to 315 K. The design approach to minimize vibration is a two-module engine (12.5 kWe per module) in a linearly-opposed configuration with a common expansion space. The low specific weight is obtained at high helium pressure (150 bar) and high frequency (105 Hz) and by using high magnetic strength (samarium cobalt) alternator magnets. Engine tests began in June 1985; 16 months following initiation of engine and test cell design. Hydrotest and consequent engine testing to date has been intentionally limited to half pressure, and electrical power output is within 15 to 20 percent of design predictions.
Rotational Raman-Based Temperature Measurements in a High-Velocity Turbulent Jet
NASA Technical Reports Server (NTRS)
Locke, Randy J.; Wernet, Mark P.; Anderson, Robert C.
2017-01-01
Spontaneous rotational Raman scattering spectroscopy is used to acquire the first ever high quality, spatially-resolved measurements of the mean and root mean square (rms) temperature fluctuations in turbulent, high-velocity heated jets. Raman spectra in air were obtained across a matrix of radial and axial locations downstream from a 50 mm diameter nozzle operating from subsonic to supersonic conditions over a wide range of temperatures and Mach numbers, in accordance with the Tanna matrix frequently used in jet noise studies. These data were acquired in the hostile, high noise (115 dB) environment of a large scale open air test facility at NASA Glenn Research Center (GRC). Temperature estimates were determined by performing nonlinear least squares fitting of the single shot spectra to the theoretical rotational Stokes spectra of N2 and O2, using a custom in-house code developed specifically for this investigation. The laser employed in this study was a high energy, long-pulsed, frequency doubled Nd:YAG laser. One thousand single-shot spectra were acquired at each spatial coordinate. Mean temperature and rms temperature variations were calculated at each measurement location. Excellent agreement between the averaged and single-shot temperatures was observed with an accuracy better than 2.5 percent for temperature, and rms variations in temperature between +/-2.2 percent at 296 K and +/-4.5 percent at 850 K. The results of this and planned follow-on studies will support NASA GRC's development of physics-based jet noise prediction, turbulence modeling and aeroacoustic source modeling codes.
High temperature thruster technology for spacecraft propulsion
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1991-01-01
A technology program intended to develop high-temperature oxidation-resistant thrusters for spacecraft applications is considered. The program will provide the requisite material characterizations and fabrication to incorporate iridium coated rhenium material into small rockets for spacecraft propulsion. This material increases the operating temperature of thrusters to 2200 C, a significant increase over the 1400 C of the silicide-coated niobium chambers currently used. Stationkeeping class 22 N engines fabricated from iridium-coated rhenium have demonstrated steady state specific impulses 20-25 seconds higher than niobium chambers. These improved performances are obtained by reducing or eliminating the fuel film cooling requirements in the combustion chamber while operating at the same overall mixture ratio as conventional engines.
NASA Astrophysics Data System (ADS)
Tuner, H.
2013-01-01
Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.
Process of making titanium carbide (TiC) nano-fibrous felts
Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao
2015-01-13
A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.
Low–Cost Bio-Based Carbon Fiber for High-Temperature Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K.; Akato, Kokouvi M.; Tran, Chau D.
GrafTech International Holdings Inc. (GTI), worked with Oak Ridge National Laboratory (ORNL) under CRADA No. NFE-15-05807 to develop lignin-based carbon fiber (LBCF) technology and to demonstrate LBCF performance in high-temperature products and applications. This work was unique and different from other reported LBCF work in that this study was application-focused and scalability-focused. Accordingly, the executed work was based on meeting criteria based on technology development, cost, and application suitability. The focus of this work was to demonstrate lab-scale LBCF from at least 4 different precursor feedstock sources that could meet the estimated production cost of $5.00/pound and have ash levelmore » of less than 500 ppm in the carbonized insulation-grade fiber. Accordingly, a preliminary cost model was developed based on publicly available information. The team demonstrated that 4 lignin samples met the cost criteria, as highlighted in Table 1. In addition, the ash level for the 4 carbonized lignin samples were below 500 ppm. Processing asreceived lignin to produce a high purity lignin fiber was a significant accomplishment in that most industrial lignin, prior to purification, had greater than 4X the ash level needed for this project, and prior to this work there was not a clear path of how to achieve the purity target. The lab scale development of LBCF was performed with a specific functional application in mind, specifically for high temperature rigid insulation. GTI is currently a consumer of foreignsourced pitch and rayon based carbon fibers for use in its high temperature insulation products, and the motivation was that LBCF had potential to decrease costs and increase product competitiveness in the marketplace through lowered raw material costs, lowered energy costs, and decreased environmental footprint. At the end of this project, the Technology Readiness Level (TRL) remained at 5 for LBCF in high temperature insulation.« less
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
Evolutionary responses to climate change in parasitic systems.
Chaianunporn, Thotsapol; Hovestadt, Thomas
2015-08-01
Species may respond to climate change in many ecological and evolutionary ways. In this simulation study, we focus on the concurrent evolution of three traits in response to climate change, namely dispersal probability, temperature tolerance (or niche width), and temperature preference (optimal habitat). More specifically, we consider evolutionary responses in host species involved in different types of interaction, that is parasitism or commensalism, and for low or high costs of a temperature tolerance-fertility trade-off (cost of generalization). We find that host species potentially evolve all three traits simultaneously in response to increasing temperature but that the evolutionary response interacts and may be compensatory depending on the conditions. The evolutionary adjustment of temperature preference is slower in the parasitism than in commensalism scenario. Parasitism, in turn, selects for higher temperature tolerance and increased dispersal. High costs for temperature tolerance (i.e. generalization) restrict evolution of tolerance and thus lead to a faster response in temperature preference than that observed under low costs. These results emphasize the possible role of biotic interactions and the importance of 'multidimensional' evolutionary responses to climate change. © 2015 John Wiley & Sons Ltd.
Bhardwaj, Ankur R; Joshi, Gopal; Kukreja, Bharti; Malik, Vidhi; Arora, Priyanka; Pandey, Ritu; Shukla, Rohit N; Bankar, Kiran G; Katiyar-Agarwal, Surekha; Goel, Shailendra; Jagannath, Arun; Kumar, Amar; Agarwal, Manu
2015-01-21
Brassica juncea var. Varuna is an economically important oilseed crop of family Brassicaceae which is vulnerable to abiotic stresses at specific stages in its life cycle. Till date no attempts have been made to elucidate genome-wide changes in its transcriptome against high temperature or drought stress. To gain global insights into genes, transcription factors and kinases regulated by these stresses and to explore information on coding transcripts that are associated with traits of agronomic importance, we utilized a combinatorial approach of next generation sequencing and de-novo assembly to discover B. juncea transcriptome associated with high temperature and drought stresses. We constructed and sequenced three transcriptome libraries namely Brassica control (BC), Brassica high temperature stress (BHS) and Brassica drought stress (BDS). More than 180 million purity filtered reads were generated which were processed through quality parameters and high quality reads were assembled de-novo using SOAPdenovo assembler. A total of 77750 unique transcripts were identified out of which 69,245 (89%) were annotated with high confidence. We established a subset of 19110 transcripts, which were differentially regulated by either high temperature and/or drought stress. Furthermore, 886 and 2834 transcripts that code for transcription factors and kinases, respectively, were also identified. Many of these were responsive to high temperature, drought or both stresses. Maximum number of up-regulated transcription factors in high temperature and drought stress belonged to heat shock factors (HSFs) and dehydration responsive element-binding (DREB) families, respectively. We also identified 239 metabolic pathways, which were perturbed during high temperature and drought treatments. Analysis of gene ontologies associated with differentially regulated genes forecasted their involvement in diverse biological processes. Our study provides first comprehensive discovery of B. juncea transcriptome under high temperature and drought stress conditions. Transcriptome resource generated in this study will enhance our understanding on the molecular mechanisms involved in defining the response of B. juncea against two important abiotic stresses. Furthermore this information would benefit designing of efficient crop improvement strategies for tolerance against conditions of high temperature regimes and water scarcity.
Tumuluru, Jaya Shankar
2016-04-16
In the present study a Box–Behnken experimental design was used to understand the effect of the moisture content of lodgepole pine grind (33–39%, w.b.), die speed (40–60 Hz) and preheating temperature (30–90 °C) on the pellet quality and specific energy consumption. The partially dried pellets produced had high-moisture content in the range of 19–28% (w.b.), and were further dried to <9% (w.b.) in a mechanical oven set at 70 °C for 3 h. Dried pellets were further evaluated for pellet moisture content, unit, bulk, tapped density, and durability. Response surface models developed for the product properties have adequately described themore » process based on coefficient of determination values. Surface plots developed indicated higher unit, bulk, and tapped density (1050, 520, 560 kg/m 3) are achievable at 33–35% (w.b.) moisture content of the lodgepole pine grind, die speed of 60 Hz and preheating temperature of 30–60 °C. Higher moisture content of 39% (w.b) reduced unit, bulk, and tapped density to <912, 396, and 452 kg/m 3. Higher durability values of >95% were obtained at 33–35% (w.b.) at lower preheating temperatures of 30–50 °C and higher die speed of >50 Hz. At 33% (w.b.) moisture content of the lodgepole pine grind, preheating temperature of 90 °C, and die speed of 60 Hz, the observed specific energy consumption was <116 kW h/ton. As a result, scanning electron microscope studies indicated that lignin crosslinking is the primary reason for binding of the lodgepole pine grind at high-moisture content.« less
Advanced high-temperature electromagnetic pump
NASA Technical Reports Server (NTRS)
Gahan, J. W.; Powell, A. H.
1972-01-01
Three phase helical, electromagnetic induction pump for use as boiler feed pump in potassium Rankine-cycle power system is described. Techniques for fabricating components of pump are discussed. Specifications of pump are analyzed.
High operating temperature IR-modules with reduced pitch for SWaP sensitive applications
NASA Astrophysics Data System (ADS)
Breiter, R.; Wendler, J.; Lutz, H.; Rutzinger, S.; Ihle, T.; Ziegler, J.; Rühlich, I.
2011-06-01
Low size, weight and power (SWaP) are the most critical requirements for portable thermal imagers like weapon sights or handheld observations devices. On the other hand due to current asymmetrical conflicts there are high requirements for the e/o performance of these devices providing the ability to distinguish between combatants and non-combatants in adequate ranges. Despite of all the success with uncooled technology, such requirements usually still require cooled detectors. AIM has developed a family of thermal weapon sights called HuntIR and RangIR based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The specific capability of these devices is a high ID range >1500m for tank targets being suitable in use as thermal sights for .50 cal rifles like the G82, targeting units for the 40mm AGL or for night observation. While such ranges sound far beyond the operational needs in urban operations, the a.m. specific needs of asymmetric warfare require sometimes even more range performance. High operating temperature (HOT) is introduced in the AIM MCT 640x512/15μm MWIR or LWIR modules for further reduction of cooler power consumption, shorter cooldown times and higher MTTF. As a key component to keep performance while further reducing SWaP AIM is developing a new cooled MCT IR-module with reduced pitch of 12 μm operating at a temperature >120 K. The module will provide full TV format with 640x480 elements sensitive in the MWIR spectral band. The paper will show recent results of AIM IR-modules with high operating temperature and the impact of design regarding the IR-module itself and thermal sights making use of it.
A study on pore-opening behaviors of graphite nanofibers by a chemical activation process.
Kim, Byung-Joo; Lee, Young-Seak; Park, Soo-Jin
2007-02-15
In this work, porous graphite nanofibers (GNFs) were prepared by a KOH activation method in order to manufacture porous carbon nanofibers. The process was conducted in the activation temperature range of 900-1100 degrees C, and the KOH:GNFs ratio was fixed at 3.5:1. The textural properties of the porous carbons were analyzed using N2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micro- and mesopore structures, respectively. From the results, it was found that the textural properties, including the specific surface area and the pore volumes, were proportionally enhanced with increasing activation temperatures. However, the activation mechanisms showed quite significant differences between the samples activated at low and high temperatures.
Unlabeled Oligonucleotides as Internal Temperature Controls for Genotyping by Amplicon Melting
Seipp, Michael T.; Durtschi, Jacob D.; Liew, Michael A.; Williams, Jamie; Damjanovich, Kristy; Pont-Kingdon, Genevieve; Lyon, Elaine; Voelkerding, Karl V.; Wittwer, Carl T.
2007-01-01
Amplicon melting is a closed-tube method for genotyping that does not require probes, real-time analysis, or allele-specific polymerase chain reaction. However, correct differentiation of homozygous mutant and wild-type samples by melting temperature (Tm) requires high-resolution melting and closely controlled reaction conditions. When three different DNA extraction methods were used to isolate DNA from whole blood, amplicon Tm differences of 0.03 to 0.39°C attributable to the extractions were observed. To correct for solution chemistry differences between samples, complementary unlabeled oligonucleotides were included as internal temperature controls to shift and scale the temperature axis of derivative melting plots. This adjustment was applied to a duplex amplicon melting assay for the methylenetetrahydrofolate reductase variants 1298A>C and 677C>T. High- and low-temperature controls bracketing the amplicon melting region decreased the Tm SD within homozygous genotypes by 47 to 82%. The amplicon melting assay was 100% concordant to an adjacent hybridization probe (HybProbe) melting assay when temperature controls were included, whereas a 3% error rate was observed without temperature correction. In conclusion, internal temperature controls increase the accuracy of genotyping by high-resolution amplicon melting and should also improve results on lower resolution instruments. PMID:17591926
Matzrafi, Maor; Shaar-Moshe, Lidor; Rubin, Baruch; Peleg, Zvi
2017-01-01
Climate change endangers food security and our ability to feed the ever-increasing human population. Weeds are the most important biotic stress, reducing crop-plant productivity worldwide. Chemical control, the main approach for weed management, can be strongly affected by temperature. Previously, we have shown that temperature-dependent non-target site (NTS) resistance of Brachypodium hybridum is due to enhanced detoxification of acetyl-CoA carboxylase inhibitors. Here, we explored the transcriptional basis of this phenomenon. Plants were characterized for the transcriptional response to herbicide application, high-temperature and their combination, in an attempt to uncover the genetic basis of temperature-dependent pinoxaden resistance. Even though most of the variance among treatments was due to pinoxaden application (61%), plants were able to survive pinoxaden application only when grown under high-temperatures. Biological pathways and expression patterns of members of specific gene families, previously shown to be involved in NTS metabolic resistance to different herbicides, were examined. Cytochrome P450, glucosyl transferase and glutathione-S-transferase genes were found to be up-regulated in response to pinoxaden application under both control and high-temperature conditions. However, biological pathways related to oxidation and glucose conjugation were found to be significantly enriched only under the combination of pinoxaden application and high-temperature. Analysis of reactive oxygen species (ROS) was conducted at several time points after treatment using a probe detecting H2O2/peroxides. Comparison of ROS accumulation among treatments revealed a significant reduction in ROS quantities 24 h after pinoxaden application only under high-temperature conditions. These results may indicate significant activity of enzymatic ROS scavengers that can be correlated with the activation of herbicide-resistance mechanisms. This study shows that up-regulation of genes related to metabolic resistance is not sufficient to explain temperature-dependent pinoxaden resistance. We suggest that elevated activity of enzymatic processes at high-temperature may induce rapid and efficient pinoxaden metabolism leading to temperature-dependent herbicide resistance. PMID:28680434
Climate-water quality relationships in Texas reservoirs
Gelca, Rodica; Hayhoe, Katharine; Scott-Fleming, Ian; Crow, Caleb; Dawson, D.; Patino, Reynaldo
2015-01-01
Water temperature, dissolved oxygen, and concentrations of salts in surface water bodies can be affected by the natural environment, local human activities such as surface and ground water withdrawals, land use, and energy extraction, and variability and long-term trends in atmospheric conditions including temperature and precipitation. Here, we quantify the relationship between 121 indicators of mean and extreme temperature and precipitation and 24 water quality parameters in 57 Texas reservoirs using observational data records covering the period 1960 to 2010. We find that water temperature, dissolved oxygen, pH, specific conductance, chloride, sulfate, and phosphorus all show consistent correlations with atmospheric predictors, including high and low temperature extremes, dry days, heavy precipitation events, and mean temperature and precipitation over time scales ranging from one week to two years. Based on this analysis and published future projections for this region, we expect climate change to increase water temperatures, decrease dissolved oxygen levels, decrease pH, increase specific conductance, and increase levels of sulfate, chloride in Texas reservoirs. Over decadal time scales, this may affect aquatic ecosystems in the reservoirs, including altering the risk of conditions conducive to algae occurrence, as well as affecting the quality of water available for human consumption and recreation.
Breitner, Susanne; Wolf, Kathrin; Devlin, Robert B; Diaz-Sanchez, David; Peters, Annette; Schneider, Alexandra
2014-07-01
Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we investigated effect modification by age and ambient air pollution. We obtained data from Munich, Nuremberg as well as Augsburg, Germany, for the period 1990 to 2006. Data included daily cause-specific death counts, mean daily meteorology and air pollution concentrations (particulate matter with a diameter<10 μm [PM10] and maximum 8-h ozone). We used Poisson regression models combined with distributed lag non-linear models adjusting for long-term trend, calendar effects, and meteorological factors. Air pollutant concentrations were categorized into three levels, and an interaction term was included to quantify potential effect modification of the air temperature effects. The temperature-mortality relationships were non-linear for all cause-specific mortality categories showing U- or J-shaped curves. An increase from the 90th (20.0 °C) to the 99th percentile (24.8 °C) of 2-day average temperature led to an increase in non-accidental mortality by 11.4% (95% CI: 7.6%-15.3%), whereas a decrease from the 10th (-1.0 °C) to the 1st percentile (-7.5 °C) in the 15-day average temperature resulted in an increase of 6.2% (95% CI: 1.8%-10.8%). The very old were found to be most susceptible to heat effects. Results also suggested some effect modification by ozone, but not for PM10. Results indicate that both very low and very high air temperature increase cause-specific mortality in Bavaria. Results also pointed to the importance of considering effect modification by age and ozone in assessing temperature effects on mortality. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Horak, Johannes; Schmerold, Ivo; Wimmer, Kurt; Schauberger, Günther
2017-10-01
In vehicles that are parked, no ventilation and/or air conditioning takes place. If a vehicle is exposed to direct solar radiation, an immediate temperature rise occurs. The high cabin air temperature can threaten children and animals that are left unattended in vehicles. In the USA, lethal heat strokes cause a mean death rate of 37 children per year. In addition, temperature-sensitive goods (e.g. drugs in ambulances and veterinary vehicles) can be adversely affected by high temperatures. To calculate the rise of the cabin air temperature, a dynamic model was developed that is driven by only three parameters, available at standard meteorological stations: air temperature, global radiation and wind velocity. The transition from the initial temperature to the constant equilibrium temperature depends strongly on the configuration of the vehicle, more specifically on insulation, window area and transmission of the glass, as well as on the meteorological conditions. The comparison of the model with empirical data showed good agreement. The model output can be applied to assess the heat load of children and animals as well as temperature-sensitive goods, which are transported and/or stored in a vehicle.
High-Temperature Thermal Conductivity Measurement Apparatus Based on Guarded Hot Plate Method
NASA Astrophysics Data System (ADS)
Turzo-Andras, E.; Magyarlaki, T.
2017-10-01
An alternative calibration procedure has been applied using apparatus built in-house, created to optimize thermal conductivity measurements. The new approach compared to those of usual measurement procedures of thermal conductivity by guarded hot plate (GHP) consists of modified design of the apparatus, modified position of the temperature sensors and new conception in the calculation method, applying the temperature at the inlet section of the specimen instead of the temperature difference across the specimen. This alternative technique is suitable for eliminating the effect of thermal contact resistance arising between a rigid specimen and the heated plate, as well as accurate determination of the specimen temperature and of the heat loss at the lateral edge of the specimen. This paper presents an overview of the specific characteristics of the newly developed "high-temperature thermal conductivity measurement apparatus" based on the GHP method, as well as how the major difficulties are handled in the case of this apparatus, as compared to the common GHP method that conforms to current international standards.
Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System
NASA Astrophysics Data System (ADS)
Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.
2017-01-01
The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
Makowska, Małgorzata G.; Theil Kuhn, Luise; Cleemann, Lars N.; ...
2015-12-17
In high material penetration by neutrons allows for experiments using sophisticated sample environments providing complex conditions. Thus, neutron imaging holds potential for performing in situ nondestructive measurements on large samples or even full technological systems, which are not possible with any other technique. Our paper presents a new sample environment for in situ high resolution neutron imaging experiments at temperatures from room temperature up to 1100 degrees C and/or using controllable flow of reactive atmospheres. The design also offers the possibility to directly combine imaging with diffraction measurements. Design, special features, and specification of the furnace are described. In addition,more » examples of experiments successfully performed at various neutron facilities with the furnace, as well as examples of possible applications are presented. Our work covers a broad field of research from fundamental to technological investigations of various types of materials and components.« less
High-efficiency machining methods for aviation materials
NASA Astrophysics Data System (ADS)
Kononov, V. K.
1991-07-01
The papers contained in this volume present results of theoretical and experimental studies aimed at increasing the efficiency of cutting tools during the machining of high-temperature materials and titanium alloys. Specific topics discussed include a study of the performance of disk cutters during the machining of flexible parts of a high-temperature alloy, VZhL14N; a study of the wear resistance of cutters of hard alloys of various types; effect of a deformed electric field on the precision of the electrochemical machining of gas turbine engine components; and efficient machining of parts of composite materials. The discussion also covers the effect of the technological process structure on the residual stress distribution in the blades of gas turbine engines; modeling of the multiparameter assembly of engineering products for a specified priority of geometrical output parameters; and a study of the quality of the surface and surface layer of specimens machined by a high-temperature pulsed plasma.
46 CFR 56.01-2 - Incorporation by reference.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Steel Pipe for High-Temperature Service (“ASTM A 106”), 56.60-1; (5) ASTM A 126-95, Standard... (1996), Standard Specification for Seamless Carbon Steel Boiler Tubes for High-Pressure Service (“ASTM A...-Resistance-Welded Carbon Steel Boiler and Superheater Tubes for High-Pressure Service (“ASTM A 226”), 56.60-1...
Analysis of the internal temperature of the cells in a battery pack during SOC balancing
NASA Astrophysics Data System (ADS)
Mizanur, R.; Rashid, M. M.; Rahman, A.; Zahirul Alam, A. H. M.; Ihsan, S.; Mollik, M. S.
2017-03-01
Lithium-ion batteries are more suitable for the application of electric vehicle due to high energy and power density compared to other rechargeable batteries. However, the battery pack temperature has a great impact on the overall performance, cycle life, normal charging-discharging behaviour and even safety. During rapid charge transferring process, the internal temperature may exceed its allowable limit (460C). In this paper, an analysis of internal temperature during charge balancing and discharging conditions is presented. Specific interest is paid to the effects of temperature on the different rate of ambient temperature and discharging current. Matlab/Simulink Li-ion battery model and quasi-resonant converter base balancing system are used to study the temperature effect. Rising internal temperature depends on the rate of balancing current and ambient temperature found in the simulation results.
Gradient Heating Facility. Experiment cartridges. Description and general specifications
NASA Technical Reports Server (NTRS)
Breton, J.
1982-01-01
Specifications that define experiment cartridges that are compatible with the furnace of the gradient heating facility on board the Spacelab are presented. They establish a standard cartridge design independent of the type of experiment to be conducted. By using them, experimenters can design, construct, and test the hot section of the cartridge, known as the high temperature nacelle.
Naraballobh, Watcharapong; Trakooljul, Nares; Murani, Eduard; Brunner, Ronald; Krischek, Carsten; Janisch, Sabine; Wicke, Michael; Ponsuksili, Siriluck; Wimmers, Klaus
2016-01-01
Variations in egg incubation temperatures can have acute or long-term effects on gene transcription in avian species. Altered gene expression may, in turn, affect muscle traits in poultry and indirectly influence commercial production. To determine how changes in eggshell temperature affect gene expression, incubation temperatures were varied [36.8°C (low), 37.8°C (control), 38.8°C (high)] at specific time periods reflecting two stages of myogenesis [embryonic days (ED) 7-10 and 10-13]. Gene expression was compared between interventions and matching controls by microarrays in broiler breast muscle at ED10 or ED13 and post-hatch at day 35. Early (ED7-10) high incubation temperature (H10ΔC) resulted in 1370 differentially expressed genes (DEGs) in embryos. Ingenuity pathway analysis revealed temporary activation of cell maintenance, organismal development, and survival ability genes, but these effects were not maintained in adults. Late high incubation temperature (ED10-13) (H13ΔC) had slightly negative impacts on development of cellular components in embryos, but a cumulative effect was observed in adults, in which tissue development and nutrition metabolism were affected. Early low incubation temperature (L10ΔC) produced 368 DEGs, most of which were down-regulated and involved in differentiation and formation of muscle cells. In adults, this treatment down-regulated pathways of transcriptional processes, but up-regulated cell proliferation. Late low temperature incubation (L13ΔC) produced 795 DEGs in embryos, and activated organismal survival and post-transcriptional regulation pathways. In adults this treatment activated cellular and organ development, nutrition and small molecule activity, and survival rate, but deactivated size of body and muscle cells. Thermal interventions during incubation initiate immediate and delayed transcriptional responses that are specific for timing and direction of treatment. Interestingly, the transcriptional response to transiently decreased incubation temperature, which did not affect the phenotypes, prompts compensatory effects reflecting resilience. In contrast, higher incubation temperature triggers gene expression and has long-term effects on the phenotype. These mechanisms of considerable phenotypic plasticity contribute to the biodiversity and broaden the basis for managing poultry populations.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whitcanack, L. D.; Chin, K. B.; Surampudi, S.; Croft, H.; Tice, D.; Staniewicz, R.
2002-01-01
In order to enable future missions involving the exploration of the surface of Mars with Landers and Rovers, NASA desires long life, high energy density rechargeable batteries which can operate well at very low temperature (down to 40(deg)C). Lithium-ion technology has been identified as being the most promising chemistry, due to high gravimetric and volumetric energy densities, as well as, long life characteristics. However, the state-of-art (SOA) technology is not sufficient to meet the needs of many applications that require excellent low temperature capabilities. To further improve this technology, work at JF'L has been focused upon developing electrolytes that result in lithium-ion cells with wider temperature ranges of operation. These efforts have led to the identification of a number of ternary and quaternary, all carbonate-based electrolytes that have been demonstrated to result in improved low temperature performance in experimental three-electrode MCMB carbon/LiNio.sCoo.zOz cells. A number of electrochemical characterization techniques were performed on these cells (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further enhance our understanding of the performance limitations at low temperature. The most promising electrolyte formulations, namely 1 .O M LiPF6EC+DEC+DMC+EMC (1 : 1: 1 :2 v/v) and 1 .O M LiPF6 EC+DEC+DMC+EMC (1 : 1 : 1 :3 v/v), were incorporated into SAFT prototype DD-size (9 Ahr) lithium- cells for evaluation. A number of electrical tests were performed on these cells, including rate characterization as a function of temperature, cycle life characterization at different temperatures, as well as, many mission specific characterization test to determine their viability to enable future missions to Mars. Excellent performance was observed with the prototype DD-size cells over a wide temperature range (-50 to 4OoC), with high specific energy being delivered at very low temperatures (i.e, over 95 WHrKg being delivered at 40(deg)C using a C/10 discharge rate).
NASA Technical Reports Server (NTRS)
Weber, L. A.
1971-01-01
Thermophysical properties data for oxygen at pressures below 5000 psia have been extrapolated to higher pressures (5,000-10,000 psia) in the temperature range 100-600 R. The tables include density, entropy, enthalpy, internal energy, speed of sound, specific heat, thermal conductivity, viscosity, thermal diffusivity, Prandtl number, and dielectric constant.
David W. Green; James W. Evans; Bruce A. Craig
2003-01-01
The effect of temperature on properties can be separated into reversible and permanent effects. The National Design Specification (NDS) provides factors (Ct) for reducing properties for reversible effects but provides little guidance on permanent effects. The primary objective of this paper is to evaluate the effect of prolonged heating (permanent effect) on the...
Packaging Technology Developed for High-Temperature Silicon Carbide Microsystems
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.
2001-01-01
High-temperature electronics and sensors are necessary for harsh-environment space and aeronautical applications, such as sensors and electronics for space missions to the inner solar system, sensors for in situ combustion and emission monitoring, and electronics for combustion control for aeronautical and automotive engines. However, these devices cannot be used until they can be packaged in appropriate forms for specific applications. Suitable packaging technology for operation temperatures up to 500 C and beyond is not commercially available. Thus, the development of a systematic high-temperature packaging technology for SiC-based microsystems is essential for both in situ testing and commercializing high-temperature SiC sensors and electronics. In response to these needs, researchers at Glenn innovatively designed, fabricated, and assembled a new prototype electronic package for high-temperature electronic microsystems using ceramic substrates (aluminum nitride and aluminum oxide) and gold (Au) thick-film metallization. Packaging components include a ceramic packaging frame, thick-film metallization-based interconnection system, and a low electrical resistance SiC die-attachment scheme. Both the materials and fabrication process of the basic packaging components have been tested with an in-house-fabricated SiC semiconductor test chip in an oxidizing environment at temperatures from room temperature to 500 C for more than 1000 hr. These test results set lifetime records for both high-temperature electronic packaging and high-temperature electronic device testing. As required, the thick-film-based interconnection system demonstrated low (2.5 times of the room-temperature resistance of the Au conductor) and stable (decreased 3 percent in 1500 hr of continuous testing) electrical resistance at 500 C in an oxidizing environment. Also as required, the electrical isolation impedance between printed wires that were not electrically joined by a wire bond remained high (greater than 0.4 GW) at 500 C in air. The attached SiC diode demonstrated low (less than 3.8 W/mm2) and relatively consistent dynamic resistance from room temperature to 500 C. These results indicate that the prototype package and the compatible die-attach scheme meet the initial design standards for high-temperature, low-power, and long-term operation. This technology will be further developed and evaluated, especially with more mechanical tests of each packaging element for operation at higher temperatures and longer lifetimes.
NASA Astrophysics Data System (ADS)
Peng, B.; Guan, K.; Chen, M.
2016-12-01
Future agricultural production faces a grand challenge of higher temperature under climate change. There are multiple physiological or metabolic processes of how high temperature affects crop yield. Specifically, we consider the following major processes: (1) direct temperature effects on photosynthesis and respiration; (2) speed-up growth rate and the shortening of growing season; (3) heat stress during reproductive stage (flowering and grain-filling); (4) high-temperature induced increase of atmospheric water demands. In this work, we use a newly developed modeling framework (CLM-APSIM) to simulate the corn and soybean growth and explicitly parse the above four processes. By combining the strength of CLM in modeling surface biophysical (e.g., hydrology and energy balance) and biogeochemical (e.g., photosynthesis and carbon-nitrogen interactions), as well as that of APSIM in modeling crop phenology and reproductive stress, the newly developed CLM-APSIM modeling framework enables us to diagnose the impacts of high temperature stress through different processes at various crop phenology stages. Ground measurements from the advanced SoyFACE facility at University of Illinois is used here to calibrate, validate, and improve the CLM-APSIM modeling framework at the site level. We finally use the CLM-APSIM modeling framework to project crop yield for the whole US Corn Belt under different climate scenarios.
Low Cost Nuclear Thermal Rocket Cermet Fuel Element Environment Testing
NASA Technical Reports Server (NTRS)
Bradley, David E.; Mireles, Omar R.; Hickman, Robert R.
2011-01-01
Deep space missions with large payloads require high specific impulse (Isp) and relatively high thrust in order to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average Isp. Nuclear thermal rockets (NTR) capable of high Isp thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high temperature hydrogen exposure on fuel elements is limited. The primary concern is the mechanical failure of fuel elements which employ high-melting-point metals, ceramics or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via non-contact RF heating and expose samples to hydrogen is being developed to assist in optimal material and manufacturing process selection without employing fissile material. This paper details the test bed design and results of testing conducted to date.
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
2014-01-01
Background Little evidence is available about the association between temperature and cerebrovascular mortality in China. This study aims to examine the effects of ambient temperature on cerebrovascular mortality in different climatic zones in China. Method We obtained daily data on weather conditions, air pollution and cerebrovascular deaths from five cities (Beijing, Tianjin, Shanghai, Wuhan, and Guangzhou) in China during 2004-2008. We examined city-specific associations between ambient temperature and the cerebrovascular mortality, while adjusting for season, long-term trends, day of the week, relative humidity and air pollution. We examined cold effects using a 1°C decrease in temperature below a city-specific threshold, and hot effects using a 1°C increase in temperature above a city-specific threshold. We used a meta-analysis to summarize the cold and hot effects across the five cities. Results Beijing and Tianjin (with low mean temperature) had lower thresholds than Shanghai, Wuhan and Guangzhou (with high mean temperature). In Beijing, Tianjin, Wuhan and Guangzhou cold effects were delayed, while in Shanghai there was no or short induction. Hot effects were acute in all five cities. The cold effects lasted longer than hot effects. The hot effects were followed by mortality displacement. The pooled relative risk associated with a 1°C decrease in temperature below thresholds (cold effect) was 1.037 (95% confidence interval (CI): 1.020, 1.053). The pooled relative risk associated with a 1°C increase in temperature above thresholds (hot effect) was 1.014 (95% CI: 0.979, 1.050). Conclusion Cold temperatures are significantly associated with cerebrovascular mortality in China, while hot effect is not significant. People in colder climate cities were sensitive to hot temperatures, while people in warmer climate cities were vulnerable to cold temperature. PMID:24690204
Heat-related deaths in hot cities: estimates of human tolerance to high temperature thresholds.
Harlan, Sharon L; Chowell, Gerardo; Yang, Shuo; Petitti, Diana B; Morales Butler, Emmanuel J; Ruddell, Benjamin L; Ruddell, Darren M
2014-03-20
In this study we characterized the relationship between temperature and mortality in central Arizona desert cities that have an extremely hot climate. Relationships between daily maximum apparent temperature (ATmax) and mortality for eight condition-specific causes and all-cause deaths were modeled for all residents and separately for males and females ages <65 and ≥ 65 during the months May-October for years 2000-2008. The most robust relationship was between ATmax on day of death and mortality from direct exposure to high environmental heat. For this condition-specific cause of death, the heat thresholds in all gender and age groups (ATmax = 90-97 °F; 32.2-36.1 °C) were below local median seasonal temperatures in the study period (ATmax = 99.5 °F; 37.5 °C). Heat threshold was defined as ATmax at which the mortality ratio begins an exponential upward trend. Thresholds were identified in younger and older females for cardiac disease/stroke mortality (ATmax = 106 and 108 °F; 41.1 and 42.2 °C) with a one-day lag. Thresholds were also identified for mortality from respiratory diseases in older people (ATmax = 109 °F; 42.8 °C) and for all-cause mortality in females (ATmax = 107 °F; 41.7 °C) and males <65 years (ATmax = 102 °F; 38.9 °C). Heat-related mortality in a region that has already made some adaptations to predictable periods of extremely high temperatures suggests that more extensive and targeted heat-adaptation plans for climate change are needed in cities worldwide.
Giacobini, Mario; Pugliese, Andrea; Merler, Stefano; Rosà, Roberto
2016-01-01
Culex pipiens mosquito is a species widely spread across Europe and represents a competent vector for many arboviruses such as West Nile virus (WNV), which has been recently circulating in many European countries, causing hundreds of human cases. In order to identify the main determinants of the high heterogeneity in Cx. pipiens abundance observed in Piedmont region (Northwestern Italy) among different seasons, we developed a density-dependent stochastic model that takes explicitly into account the role played by temperature, which affects both developmental and mortality rates of different life stages. The model was calibrated with a Markov chain Monte Carlo approach exploring the likelihood of recorded capture data gathered in the study area from 2000 to 2011; in this way, we disentangled the role played by different seasonal eco-climatic factors in shaping the vector abundance. Illustrative simulations have been performed to forecast likely changes if temperature or density–dependent inputs would change. Our analysis suggests that inter-seasonal differences in the mosquito dynamics are largely driven by different temporal patterns of temperature and seasonal-specific larval carrying capacities. Specifically, high temperatures during early spring hasten the onset of the breeding season and increase population abundance in that period, while, high temperatures during the summer can decrease population size by increasing adult mortality. Higher densities of adult mosquitoes are associated with higher larval carrying capacities, which are positively correlated with spring precipitations. Finally, an increase in larval carrying capacity is expected to proportionally increase adult mosquito abundance. PMID:27105065
Europa Lander Material Selection Considerations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tappan, Alexander S.; Heller, Mellisa
2017-01-10
Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Huili; Liu, Zhifang; Yang, Jiaqin
2014-09-15
Graphical abstract: Generally, large acid quantity and high temperature are beneficial to the formation of anhydrous WO3, but the acidity effect on the crystal phase is weaker than that of temperature. Large acid quantity is found helpful to the oriented growth of tungsten oxides, forming a nanoplate-like product. - Highlights: • Large acid quantity is propitious to the oriented growth of a WO{sub 3} nanoplate. • Effect of acid quantity on crystal phases of products is weaker than that of temperature. • One step hydrothermal synthesis of WO{sub 3} is facile and can be easily scaled up. • A WO{submore » 3} nanoplate shows a fast response and distinct sensing selectivity to acetone gas. - Abstract: WO{sub 3} nanostructures were successfully synthesized by a facile hydrothermal method using Na{sub 2}WO{sub 4}·2H{sub 2}O and HNO{sub 3} as raw materials. They are characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The specific surface area was obtained from N{sub 2} adsorption–desorption isotherm. The effects of the amount of HNO{sub 3}, hydrothermal temperature and reaction time on the crystal phases and morphologies of the WO{sub 3} nanostructures were investigated in detail, and the reaction mechanism was discussed. Large amount of acid is found for the first time to be helpful to the oriented growth of tungsten oxides, forming nanoplate-like products, while hydrothermal temperature has more influence on the crystal phase of the product. Gas-sensing properties of the series of as-prepared WO{sub 3} nanoplates were tested by means of acetone, ethanol, formaldehyde and ammonia. One of the WO{sub 3} nanoplates with high specific surface area and high crystallinity displays high sensitivity, fast response and distinct sensing selectivity to acetone gas.« less
Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R.
2014-01-01
Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication. PMID:25137123
Sawall, Yvonne; Al-Sofyani, Abdulmohsin; Banguera-Hinestroza, Eulalia; Voolstra, Christian R
2014-01-01
Algal symbionts (zooxanthellae, genus Symbiodinium) of scleractinian corals respond strongly to temperature, nutrient and light changes. These factors vary greatly along the north-south gradient in the Red Sea and include conditions, which are outside of those typically considered optimal for coral growth. Nevertheless, coral communities thrive throughout the Red Sea, suggesting that zooxanthellae have successfully acclimatized or adapted to the harsh conditions they experience particularly in the south (high temperatures and high nutrient supply). As such, the Red Sea is a region, which may help to better understand how zooxanthellae and their coral hosts successfully acclimatize or adapt to environmental change (e.g. increased temperatures and localized eutrophication). To gain further insight into the physiology of coral symbionts in the Red Sea, we examined the abundance of dominant Symbiodinium types associated with the coral Pocillopora verrucosa, and measured Symbiodinium physiological characteristics (i.e. photosynthetic processes, cell density, pigmentation, and protein composition) along the latitudinal gradient of the Red Sea in summer and winter. Despite the strong environmental gradients from north to south, our results demonstrate that Symbiodinium microadriaticum (type A1) was the predominant species in P. verrucosa along the latitudinal gradient. Furthermore, measured physiological characteristics were found to vary more with prevailing seasonal environmental conditions than with region-specific differences, although the measured environmental parameters displayed much higher spatial than temporal variability. We conclude that our findings might present the result of long-term acclimatization or adaptation of S. microadriaticum to regionally specific conditions within the Red Sea. Of additional note, high nutrients in the South correlated with high zooxanthellae density indicating a compensation for a temperature-driven loss of photosynthetic performance, which may prove promising for the resilience of these corals under increase of temperature increase and eutrophication.
46 CFR 160.032-1 - Applicable specifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Steel Castings, Carbon, Suitable for Fusion Welding for High-Temperature Service—160.032-3 (b) Copies on... ASTM from the American Society for Testing and Materials, 100 Barr Harbor Drive, West Conshohocken, PA...
Advances in the stability of high precision crystal resonators
NASA Technical Reports Server (NTRS)
Ballato, A.; Vig, J. R.
1979-01-01
Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.
Atom probe study of grain boundary segregation in technically pure molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at; Weidow, J., E-mail: jonathan.weidow@chalmers.se; Knabl, W., E-mail: wolfram.knabl@plansee.com
2014-01-15
Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitivemore » techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.« less
Pol, Chetan A.; Ghige, Suvarna K.; Gosavi, Suchitra R.; Hazarey, Vinay K.
2015-01-01
Background: Heat-induced alterations to dental and restorative materials can be of great interest to forensic dentistry. Knowing the specific optical behavior of dental materials can be of high importance as recognition of changes induced by high temperatures can lead to the determination of material which was used in a dental restoration, facilitating identification of burned human remains. Aim: To observe the effects of predetermined temperatures (200°C–400°C–600°C–800°C–1000°C) on unrestored teeth and different restorative materials macroscopically and then examine them under a stereomicroscope for the purpose of identification. Materials and Methods: The study was conducted on 375 extracted teeth which were divided into five groups of 75 teeth each as follows: group 1- unrestored teeth, group 2- teeth restored with all-ceramic crowns, Group 3- with class I silver amalgam filling, group 4- with class I composite restoration, and group 5- with class I glass ionomer cement restoration. Results: Unrestored and restored teeth display a series of specific macroscopic & stereomicroscopic structural changes for each range of temperature. Conclusion: Dental tissues and restorative materials undergo a series of changes which correlate well with the various temperatures to which they were exposed. These changes are a consequence of the nature of the materials and their physicochemical characteristics. PMID:26005305
NASA Astrophysics Data System (ADS)
Cao, Penghui; Park, Harold S.; Lin, Xi
2013-10-01
We couple the recently developed self-learning metabasin escape algorithm, which enables efficient exploration of the potential energy surface (PES), with shear deformation to elucidate strain-rate and temperature effects on the shear transformation zone (STZ) characteristics in two-dimensional amorphous solids. In doing so, we report a transition in the STZ characteristics that can be obtained through either increasing the temperature or decreasing the strain rate. The transition separates regions having two distinct STZ characteristics. Specifically, at high temperatures and high strain rates, we show that the STZs have characteristics identical to those that emerge from purely strain-driven, athermal quasistatic atomistic calculations. At lower temperatures and experimentally relevant strain rates, we use the newly coupled PES + shear deformation method to show that the STZs have characteristics identical to those that emerge from a purely thermally activated state. The specific changes in STZ characteristics that occur in moving from the strain-driven to thermally activated STZ regime include a 33% increase in STZ size, faster spatial decay of the displacement field, a change in the deformation mechanism inside the STZ from shear to tension, a reduction in the stress needed to nucleate the first STZ, and finally a notable loss in characteristic quadrupolar symmetry of the surrounding elastic matrix that has previously been seen in athermal, quasistatic shear studies of STZs.
Edwards, Kieron D.; Anderson, Paul E.; Hall, Anthony; Salathia, Neeraj S.; Locke, James C.W.; Lynn, James R.; Straume, Martin; Smith, James Q.; Millar, Andrew J.
2006-01-01
Temperature compensation contributes to the accuracy of biological timing by preventing circadian rhythms from running more quickly at high than at low temperatures. We previously identified quantitative trait loci (QTL) with temperature-specific effects on the circadian rhythm of leaf movement, including a QTL linked to the transcription factor FLOWERING LOCUS C (FLC). We have now analyzed FLC alleles in near-isogenic lines and induced mutants to eliminate other candidate genes. We showed that FLC lengthened the circadian period specifically at 27°C, contributing to temperature compensation of the circadian clock. Known upstream regulators of FLC expression in flowering time pathways similarly controlled its circadian effect. We sought to identify downstream targets of FLC regulation in the molecular mechanism of the circadian clock using genome-wide analysis to identify FLC-responsive genes and 3503 transcripts controlled by the circadian clock. A Bayesian clustering method based on Fourier coefficients allowed us to discriminate putative regulatory genes. Among rhythmic FLC-responsive genes, transcripts of the transcription factor LUX ARRHYTHMO (LUX) correlated in peak abundance with the circadian period in flc mutants. Mathematical modeling indicated that the modest change in peak LUX RNA abundance was sufficient to cause the period change due to FLC, providing a molecular target for the crosstalk between flowering time pathways and circadian regulation. PMID:16473970
High Temperature Transparent Furnace Development
NASA Technical Reports Server (NTRS)
Bates, Stephen C.
1997-01-01
This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.
NASA Astrophysics Data System (ADS)
Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong
2018-04-01
Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.
Multifunctional Composites for Improved Polyimide Thermal Stability
NASA Technical Reports Server (NTRS)
Miller, Sandi G.
2007-01-01
The layered morphology of silicate clay provides an effective barrier to oxidative degradation of the matrix resin. However, as resin thermal stability continues to reach higher limits, development of an organic modification with comparable temperature capabilities becomes a challenge. Typically, phyllosilicates used in polymer nanocomposites are modified with an alkyl ammonium ion. Such organic modifiers are not suited for incorporation into high temperature polymers as they commonly degrade below 200oC. Therefore, the development of nanoparticle specifically suited for high temperature applications is necessary. Several nanoparticles were investigated in this study, including pre-exfoliated synthetic clay, an organically modified clay, and carbon nanofiber. Dispersion of the layered silicate increases the onset temperature of matrix degradation as well as slows oxidative degradation. The thermally stable carbon nanofibers are also observed to significantly increase the resin thermal stability.
NASA Astrophysics Data System (ADS)
Tang, Mengyun; Zhang, Zhengfu; Wang, Zi; Liu, Jingfeng; Yan, Hongge; Peng, Jinhui
2018-02-01
Iron trifluoride has been studied as a cathode material due to its cost-effectiveness, low toxicity, and high theoretical capacities of 712 mA h g-1. However, FeF3 has serious shortcomings of poor electronic conductivity and a slow diffusion rate of lithium ions, leading to a lower reversible specific capacity. In this work, FeF3/C nanocomposite has been synthesized successfully via a high-energy ball-milling method, and acetylene black is used as the conductive agent to improve the conductivity of FeF3. The FeF3/C nanocomposite shows a high initial discharge capacity of 346.25 and 161.58 mA h g-1 after 40th cycle at 50 mA g-1. It exhibits good cycle performance and rate performance. The high-temperature discharge capacities decreased with increase in the temperature. The initial high-temperature discharge capacities are found to be 254.17, 300.01, 281.25 and 125.16, and 216.875, 156, 141.67, 150, and 64.98 mA h g-1 at 20th cycles at the 40, 50, 60, and 70 °C, respectively.
NASA Astrophysics Data System (ADS)
Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.
2018-06-01
We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.
Study of the thermal-optics parameters of Nd3+-doped phosphate glass as a function of temperature
NASA Astrophysics Data System (ADS)
Filho, J. C.; Pilla, V.; Messias, D. N.; Lourenço, S. A.; Silva, A. C. A.; Dantas, N. O.; Andrade, A. A.
2017-02-01
The spectroscopic properties of rare earth ions in many different hosts have been investigated, including surveys of Nd3+ in silicate, phosphate, fluorophosphates and fluoride glasses. Some of the thermal-optical properties of materials are influenced by temperature change, such as thermal diffusivity, specific heat and luminescence quantum efficiency. In this work the luminescence quantum efficiency of PANK: Nd3+, as a function of temperature (80- 480 K), was investigated using the normalized lifetime thermal lens technique. This system presents high quantum efficiency at low Nd3+ concentration and at ambient temperature, 100%, which decrease as temperature increase. Below room temperature the effects are not in accord with the maximum value of η, which must be unity.
NASA Astrophysics Data System (ADS)
Ausloos, M.; Dorbolo, S.
A logarithmic behavior is hidden in the linear temperature regime of the electrical resistivity R(T) of some YBCO sample below 2Tc where "pairs" break apart, fluctuations occur and "a gap is opening". An anomalous effect also occurs near 200 K in the normal state Hall coefficient. In a simulation of oxygen diffusion in planar 123 YBCO, an anomalous behavior is found in the oxygen-vacancy motion near such a temperature. We claim that the behavior of the specific heat above and near the critical temperature should be reexamined in order to show the influence and implications of fluctuations and dimensionality on the nature of the phase transition and on the true onset temperature.
NASA Astrophysics Data System (ADS)
Jacob, Rohit J.; Kline, Dylan J.; Zachariah, Michael R.
2018-03-01
This work investigates the reaction dynamics of metastable intermolecular composites through high speed spectrometry, pressure measurements, and high-speed color camera pyrometry. Eight mixtures including Al/CuO and Al/Fe2O3/xWO3 (x being the oxidizer mol. %) were reacted in a constant volume pressure cell as a means of tuning gas release and adiabatic temperature. A direct correlation between gas release, peak pressure, and pressurization rate was observed, but it did not correlate with temperature. When WO3 was varied as part of the stoichiometric oxidizer content, it was found that Al/Fe2O3/70% WO3 achieved the highest pressures and shortest burn time despite a fairly constant temperature between mixtures, suggesting an interplay between the endothermic Fe2O3 decomposition and the higher adiabatic flame temperature sustained by the Al/WO3 reaction in the composite. It is proposed that the lower ignition temperature of Al/WO3 leads to the initiation of the composite and its higher flame temperature enhances the gasification of Fe2O3, thus improving advection and propagation as part of a feedback loop that drives the reaction. Direct evidence of such gas release promoting reactivity was obtained through high speed pyrometry videos of the reaction. These results set the stage for nanoenergetic materials that can be tuned for specific applications through carefully chosen oxidizer mixtures.
Thermotolerance responses in ripening berries of Vitis vinifera L. cv Muscat Hamburg.
Carbonell-Bejerano, Pablo; Santa María, Eva; Torres-Pérez, Rafael; Royo, Carolina; Lijavetzky, Diego; Bravo, Gema; Aguirreolea, Jone; Sánchez-Díaz, Manuel; Antolín, M Carmen; Martínez-Zapater, José M
2013-07-01
Berry organoleptic properties are highly influenced by ripening environmental conditions. In this study, we used grapevine fruiting cuttings to follow berry ripening under different controlled conditions of temperature and irradiation intensity. Berries ripened at higher temperatures showed reduced anthocyanin accumulation and hastened ripening, leading to a characteristic drop in malic acid and total acidity. The GrapeGen GeneChip® combined with a newly developed GrapeGen 12Xv1 MapMan version were utilized for the functional analysis of berry transcriptomic differences after 2 week treatments from veraison onset. These analyses revealed the establishment of a thermotolerance response in berries under high temperatures marked by the induction of heat shock protein (HSP) chaperones and the repression of transmembrane transporter-encoding transcripts. The thermotolerance response was coincident with up-regulation of ERF subfamily transcription factors and increased ABA levels, suggesting their participation in the maintenance of the acclimation response. Lower expression of amino acid transporter-encoding transcripts at high temperature correlated with balanced amino acid content, suggesting a transcriptional compensation of temperature effects on protein and membrane stability to allow for completion of berry ripening. In contrast, the lower accumulation of anthocyanins and higher malate metabolization measured under high temperature might partly result from imbalance in the expression and function of their specific transmembrane transporters and expression changes in genes involved in their metabolic pathways. These results open up new views to improve our understanding of berry ripening under high temperatures.
Striebel, Maren; Schabhüttl, Stefanie; Hodapp, Dorothee; Hingsamer, Peter; Hillebrand, Helmut
2016-11-01
Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.
Advanced intermediate temperature sodium–nickel chloride batteries with ultra-high energy density
Li, Guosheng; Lu, Xiaochuan; Kim, Jin Y.; Meinhardt, Kerry D.; Chang, Hee Jung; Canfield, Nathan L.; Sprenkle, Vincent L.
2016-01-01
Sodium-metal halide batteries have been considered as one of the more attractive technologies for stationary electrical energy storage, however, they are not used for broader applications despite their relatively well-known redox system. One of the roadblocks hindering market penetration is the high-operating temperature. Here we demonstrate that planar sodium–nickel chloride batteries can be operated at an intermediate temperature of 190 °C with ultra-high energy density. A specific energy density of 350 Wh kg−1, higher than that of conventional tubular sodium–nickel chloride batteries (280 °C), is obtained for planar sodium–nickel chloride batteries operated at 190 °C over a long-term cell test (1,000 cycles), and it attributed to the slower particle growth of the cathode materials at the lower operating temperature. Results reported here demonstrate that planar sodium–nickel chloride batteries operated at an intermediate temperature could greatly benefit this traditional energy storage technology by improving battery energy density, cycle life and reducing material costs. PMID:26864635
Plasma catalytic reforming of methane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromberg, L.; Cohn, D.R.; Rabinovich, A.
1998-08-01
Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can bemore » efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.« less
Zheng, Xiangrong; Zhang, Weishe; Lu, Chan; Norbäck, Dan; Deng, Qihong
2018-05-01
It is well known that exposure to thermal stress during pregnancy can lead to an increased incidence of premature births. However, there is little known regarding window(s) of susceptibility during the course of a pregnancy. We attempted to identify possible windows of susceptibility in a cohort study of 3604 children in Changsha with a hot-summer and cold winter climatic characteristics. We examined the association between PTB and ambient temperature during different timing windows of pregnancy: conception month, three trimesters, birth month and entire pregnancy. We found a U-shaped relation between the prevalence of PTB and mean ambient temperature during pregnancy. Both high and low temperatures were associated with PTB risk, adjusted OR (95% CI) respectively 2.57 (1.98-3.33) and 2.39 (1.93-2.95) for 0.5 °C increase in high temperature range (>18.2°C) and 0.5°C decrease in low temperature range (< 18.2°C). Specifically, PTB was significantly associated with ambient temperature and extreme heat/cold days during conception month and the third trimester. Sensitivity analysis indicated that female fetus were more susceptible to the risk of ambient temperature. Our study indicates that the risk of preterm birth due to high or low temperature may exist early during the conception month. Copyright © 2018 Elsevier Ltd. All rights reserved.
Temperature dependence of acoustic impedance for specific fluorocarbon liquids
NASA Astrophysics Data System (ADS)
Marsh, Jon N.; Hall, Christopher S.; Wickline, Samuel A.; Lanza, Gregory M.
2002-12-01
Recent studies by our group have demonstrated the efficacy of perfluorocarbon liquid nanoparticles for enhancing the reflectivity of tissuelike surfaces to which they are bound. The magnitude of this enhancement depends in large part on the difference in impedances of the perfluorocarbon, the bound substrate, and the propagating medium. The impedance varies directly with temperature because both the speed of sound and the mass density of perfluorocarbon liquids are highly temperature dependent. However, there are relatively little data in the literature pertaining to the temperature dependence of the acoustic impedance of these compounds. In this study, the speed of sound and density of seven different fluorocarbon liquids were measured at specific temperatures between 20 °C and 45 °C. All of the samples demonstrated negative, linear dependencies on temperature for both speed of sound and density and, consequently, for the acoustic impedance. The slope of sound speed was greatest for perfluorohexane (-278+/-1.5 cm/s-°C) and lowest for perfluorodichlorooctane (-222+/-0.9 cm/s-°C). Of the compounds measured, perfluorohexane exhibited the lowest acoustic impedance at all temperatures, and perfluorodecalin the highest at all temperatures. Computations from a simple transmission-line model used to predict reflectivity enhancement from surface-bound nanoparticles are discussed in light of these results.
Chapin, Thomas; Todd, Andrew S.; Zeigler, Matthew P.
2014-01-01
Water temperature and streamflow intermittency are critical parameters influencing aquatic ecosystem health. Low-cost temperature loggers have made continuous water temperature monitoring relatively simple but determining streamflow timing and intermittency using temperature data alone requires significant and subjective data interpretation. Electrical resistance (ER) sensors have recently been developed to overcome the major limitations of temperature-based methods for the assessment of streamflow intermittency. This technical note introduces the STIC (Stream Temperature, Intermittency, and Conductivity logger); a robust, low-cost, simple to build instrument that provides long-duration, high-resolution monitoring of both relative conductivity (RC) and temperature. Simultaneously collected temperature and RC data provide unambiguous water temperature and streamflow intermittency information that is crucial for monitoring aquatic ecosystem health and assessing regulatory compliance. With proper calibration, the STIC relative conductivity data can be used to monitor specific conductivity.
Thermal effects on fish ecology
Coutant, Charles C.
1976-01-01
Of all the environmental factors that influence aquatic organisms, temperature is the most all-pervasive. There is always an environmental temperature while other factors may or may not be present to exert their effects. Fish are, for all practical purposes, thermal conformers, or obligate poikilotherms. That is, they are able to exert little significant influence on maintaining a certain body temperature by specialized metabolic or behavioral means. Their body temperature thus fluctuates nearly in concert with the temperature of their aquatic medium (although particularly large, actively-moving fish such as tuna have deep muscle temperatures slightly higher than the water). Intimate contact at the gills of body fluids with the outside water and the high specific heat of water provide a very efficient heat exchanger that insures this near identity of internal and external temperatures.
Terada, Y; Tamada, D; Kose, K
2011-10-01
A temperature variable magnetic resonance imaging (MRI) system has been developed using a 1.0 T permanent magnet. A permanent magnet, gradient coils, radiofrequency coil, and shim coil were installed in a temperature variable thermostatic bath. First, the variation in the magnetic field inhomogeneity with temperature was measured. The inhomogeneity has a specific spatial symmetry, which scales linearly with temperature, and a single-channel shim coil was designed to compensate for the inhomogeneity. The inhomogeneity was drastically reduced by shimming over a wide range of temperature from -5°C to 45°C. MR images of an okra pod acquired at different temperatures demonstrated the high potential of the system for visualizing thermally sensitive properties. Copyright © 2011 Elsevier Inc. All rights reserved.
Room Temperature and Elevated Temperature Composite Sandwich Joint Testing
NASA Technical Reports Server (NTRS)
Walker, Sandra P.
1998-01-01
Testing of composite sandwich joint elements has been completed to verify the strength capacity of joints designed to carry specified running loads representative of a high speed civil transport wing. Static tension testing at both room and an elevated temperature of 350 F and fatigue testing at room temperature were conducted to determine strength capacity, fatigue life, and failure modes. Static tension test results yielded failure loads above the design loads for the room temperature tests, confirming the ability of the joint concepts tested to carry their design loads. However, strength reductions as large as 30% were observed at the elevated test temperature, where all failure loads were below the room temperature design loads for the specific joint designs tested. Fatigue testing resulted in lower than predicted fatigue lives.
Schmidtke, B; Petzold, N; Kahlau, R; Hofmann, M; Rössler, E A
2012-10-01
The phenomenon of the glass transition is an unresolved problem in condensed matter physics. Its prominent feature, the super-Arrhenius temperature dependence of the transport coefficients, remains a challenge to be described over the full temperature range. For a series of molecular glass formers, we combined τ(T) collected from dielectric spectroscopy and dynamic light scattering covering a range 10(-12) s < τ(T) < 10(2) s. Describing the dynamics in terms of an activation energy E(T), we distinguish a high-temperature regime characterized by an Arrhenius law with a constant activation energy E(∞) and a low-temperature regime for which E(coop)(T) ≡ E(T)-E(∞) increases exponentially while cooling. A scaling is introduced, specifically E(coop)(T)/E(∞) [proportionality] exp[-λ(T/T(A)-1)], where λ is a fragility parameter and T(A) a reference temperature proportional to E(∞). In order to describe τ(T) still the attempt time τ(∞) has to be specified. Thus, a single interaction parameter E(∞) describing the high-temperature regime together with λ controls the temperature dependence of low-temperature cooperative dynamics.
Magnetic and transport properties of amorphous Ce-Al alloy
NASA Astrophysics Data System (ADS)
Amakai, Yusuke; Murayama, Shigeyuki; Momono, Naoki; Takano, Hideaki; Kuwai, Tomohiko
2018-05-01
Amorphous (a-)Ce50Al50 has been prepared by DC high-rate sputter method. The structure of the obtained sample has been confirmed to have an amorphous structure because there are no Bragg peaks in the X-ray diffraction measurement and have a clear exothermic peak by the differential scanning calorimetry measurement. We have measured the resistivity ρ, magnetic susceptibility χ, specific heat Cp and thermoelectric power S for a-Ce50Al50. The temperature dependence of ρ exhibits a small temperature dependence less than 10% in the whole temperature region. χ follows a Curie-Weiss behavior in the high-temperature region of T>90 K. The effective paramagnetic moment peff, estimated from C is 2.18 μB/Ce-atom. The low-temperature Cp/T increases rapidly with decreasing temperature and tends to a saturation. S(T) exhibits negative values in a wide temperature region. A minimum of S appear at around 60 K, and S decreases linearly with decreasing temperature down to 10 K. The low-temperature S is almost 0 μV/K down to 2 K. From these results, we have pointed out that present a-Ce50Al50 would be an incoherent Kondo material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kee, S.C.; Nobel, P.S.
1986-02-01
Raising the day/night air temperatures from 30/sup 0/C/20/sup 0/C to 50/sup 0/C/40/sup 0/C increases the high temperature tolerated by Agave deserti, Carnegiea gigantea, and Ferocactus acanthodes by 6/sup 0/C to 8/sup 0/C; the increase is about half completed in 3 days and fully completed in 10 days. A 25 to 27 kilodalton protein concomitantly accumulates for all three desert succulents upon transfer to 50/sup 0/C/40/sup 0/C, while accumulation of other heat heat-shock proteins is species specific. Some of the induced proteins are more abundant at 3 days, while others (including the 25-27 kilodalton protein) remain after completion of high temperaturemore » acclimation.« less
Alloy design for intrinsically ductile refractory high-entropy alloys
NASA Astrophysics Data System (ADS)
Sheikh, Saad; Shafeie, Samrand; Hu, Qiang; Ahlström, Johan; Persson, Christer; Veselý, Jaroslav; Zýka, Jiří; Klement, Uta; Guo, Sheng
2016-10-01
Refractory high-entropy alloys (RHEAs), comprising group IV (Ti, Zr, Hf), V (V, Nb, Ta), and VI (Cr, Mo, W) refractory elements, can be potentially new generation high-temperature materials. However, most existing RHEAs lack room-temperature ductility, similar to conventional refractory metals and alloys. Here, we propose an alloy design strategy to intrinsically ductilize RHEAs based on the electron theory and more specifically to decrease the number of valence electrons through controlled alloying. A new ductile RHEA, Hf0.5Nb0.5Ta0.5Ti1.5Zr, was developed as a proof of concept, with a fracture stress of close to 1 GPa and an elongation of near 20%. The findings here will shed light on the development of ductile RHEAs for ultrahigh-temperature applications in aerospace and power-generation industries.
Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi
2012-12-01
Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.
Study on Endurance and Performance of Impregnated Ruthenium Catalyst for Thruster System.
Kim, Jincheol; Kim, Taegyu
2018-02-01
Performance and endurance of the Ru catalyst were studied for nitrous oxide monopropellant thruster system. The thermal decomposition of N2O requires a considerably high temperature, which make it difficult to be utilized as a thruster propellant, while the propellant decomposition temperature can be reduced by using the catalyst through the decomposition reaction with the propellant. However, the catalyst used for the thruster was frequently exposed to high temperature and high-pressure environment. Therefore, the state change of the catalyst according to the thruster operation was analyzed. Characterization of catalyst used in the operation condition of the thruster was performed using FE-SEM and EDS. As a result, performance degradation was occurred due to the volatilization of Ru catalyst and reduction of the specific surface area according to the phase change of Al2O3.
Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo; ...
2017-11-03
Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contescu, Cristian I.; Mee, Robert W.; Lee, Yoonjo
Four grades of nuclear graphite with various microstructures were subjected to accelerated oxidation tests in helium with traces of moisture and hydrogen in order to evaluate the effects of chronic oxidation on graphite components in high temperature gas cooled reactors. Kinetic analysis showed that the Langmuir-Hinshelwood (LH) model cannot consistently reproduce all results. In particular, at high temperatures and water partial pressures oxidation was always faster than the LH model predicts, with stronger deviations for superfine grain graphite than for medium grain grades. It was also found empirically that the apparent reaction order for water has a sigmoid-type variation withmore » temperature which follows the integral Boltzmann distribution function. This suggests that the apparent activation with temperature of graphite reactive sites that causes deviations from the LH model is rooted in specific structural and electronic properties of surface sites on graphite. A semi-global kinetic model was proposed, whereby the classical LH model was modified with a temperature-dependent reaction order for water. The new Boltzmann-enhanced model (BLH) was shown to consistently predict experimental oxidation rates over large ranges of temperature (800-1100 oC) and partial pressures of water (3-1200 Pa) and hydrogen (0-300 Pa), not only for the four grades of graphite but also for the historic grade H-451. The BLH model offers as more reliable input for modeling the chemical environment effects during the life-time operation of new grades of graphite in advanced nuclear reactors operating at high and very high temperatures.« less
Mortality related to air pollution with the moscow heat wave and wildfire of 2010.
Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia; Pershagen, Göran
2014-05-01
Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.
Lü, Yinyun; Zhan, Wenwen; He, Yue; Wang, Yiting; Kong, Xiangjian; Kuang, Qin; Xie, Zhaoxiong; Zheng, Lansun
2014-03-26
Porous metal oxides nanomaterials with controlled morphology have received great attention because of their promising applications in catalysis, energy storage and conversion, gas sensing, etc. In this paper, porous Co3O4 concave nanocubes with extremely high specific surface area (120.9 m(2)·g(-1)) were synthesized simply by calcining Co-based metal-organic framework (Co-MOF, ZIF-67) templates at the optimized temperature (300 °C), and the formation mechanism of such highly porous structures as well as the influence of the calcination temperature are well explained by taking into account thermal behavior and intrinsic structural features of the Co-MOF precursors. The gas-sensing properties of the as-synthesized porous Co3O4 concave nanocubes were systematically tested towards volatile organic compounds including ethanol, acetone, toluene, and benzene. Experimental results reveal that the porous Co3O4 concave nanocubes present the highest sensitivity to ethanol with fast response/recovery time (< 10 s) and a low detection limit (at least 10 ppm). Such outstanding gas sensing performance of the porous Co3O4 concave nanocubes benefits from their high porosity, large specific surface area, and remarkable capabilities of surface-adsorbed oxygen.
A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor
Algorri, José Francisco; Urruchi, Virginia; Bennis, Noureddine; Sánchez-Pena, José Manuel
2014-01-01
A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC) sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage's sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption. PMID:24721771
Caswell, Andrew W; Kraetschmer, Thilo; Rein, Keith; Sanders, Scott T; Roy, Sukesh; Shouse, Dale T; Gord, James R
2010-09-10
Two time-division-multiplexed (TDM) sources based on fiber Bragg gratings were applied to monitor gas temperature, H(2)O mole fraction, and CH(4) mole fraction using line-of-sight absorption spectroscopy in a practical high-pressure gas turbine combustor test article. Collectively, the two sources cycle through 14 wavelengths in the 1329-1667 nm range every 33 μs. Although it is based on absorption spectroscopy, this sensing technology is fundamentally different from typical diode-laser-based absorption sensors and has many advantages. Specifically, the TDM lasers allow efficient, flexible acquisition of discrete-wavelength information over a wide spectral range at very high speeds (typically 30 kHz) and thereby provide a multiplicity of precise data at high speeds. For the present gas turbine application, the TDM source wavelengths were chosen using simulated temperature-difference spectra. This approach is used to select TDM wavelengths that are near the optimum values for precise temperature and species-concentration measurements. The application of TDM lasers for other measurements in high-pressure, turbulent reacting flows and for two-dimensional tomographic reconstruction of the temperature and species-concentration fields is also forecast.
All-optical technique for measuring thermal properties of materials at static high pressure
NASA Astrophysics Data System (ADS)
Pangilinan, G. I.; Ladouceur, H. D.; Russell, T. P.
2000-10-01
The development and implementation of an all-optical technique for measuring thermal transport properties of materials at high pressure in a gem anvil cell are reported. Thermal transport properties are determined by propagating a thermal wave in a material subjected to high pressures, and measuring the temperature as a function of time using an optical sensor embedded downstream in the material. Optical beams are used to deposit energy and to measure the sensor temperature and replace the resistive heat source and the thermocouples of previous methods. This overcomes the problems introduced with pressure-induced resistance changes and the spatial limitations inherent in previous high-pressure experimentation. Consistent with the heat conduction equation, the material's specific heat, thermal conductivity, and thermal diffusivity (κ) determine the sensor's temperature rise and its temporal profile. The all-optical technique described focuses on room-temperature thermal properties but can easily be applied to a wide temperature range (77-600 K). Measurements of thermal transport properties at pressure up to 2.0 GPa are reported, although extension to much higher pressures are feasible. The thermal properties of NaCl, a commonly used material for high-pressure experiments are measured and shown to be consistent with those obtained using the traditional methods.
High-temperature specific heat of Bi2GeO5 and SmBiGeO5 compounds
NASA Astrophysics Data System (ADS)
Denisova, L. T.; Belousova, N. V.; Galiakhmetova, N. A.; Denisov, V. M.; Zhereb, V. P.
2017-08-01
The SmBiGeO5 compound is synthesized from Sm2O3, Bi2O3, and GeO2 by solid-state synthesis with subsequent annealing at 1003, 1073, 1123, 1143, 1173, and 1223 K. The metastable Bi2GeO5 compound is prepared from melt. Temperature dependences of specific heat of Bi2GeO5 (350-1000 K) and SmBiGeO5 (370-1000 K) are measured by differential scanning calorimetry. Basing on the experimental dependences C P = f( T), the thermodynamic functions of the oxide compounds are calculated.
Diode laser soldering using a lead-free filler material for electronic packaging structures
NASA Astrophysics Data System (ADS)
Chaminade, C.; Fogarassy, E.; Boisselier, D.
2006-04-01
As of today, several lead-free soldering pastes have been qualified for currently used soldering process. Regarding the new potential of laser-assisted soldering processes, the behaviour of the SnAgCu soldering paste requires, however, new investigations. In the first part of this study, the specific temperature profile of a laser soldering process is investigated using a high power diode laser (HPDL). These experimental results are compared to a thermal simulation developed for this specific application. The second part of this work deals with the diffusion of the tin-based filler material through the nickel barrier using the information extracted from the temperature simulations.
Dunmall, Karen M.; Mochnacz, Neil J.; Zimmerman, Christian E.; Lean, Charles; Reist, James D.
2016-01-01
Distributional shifts of biota to higher latitudes and elevations are presumably influenced by species-specific physiological tolerances related to warming temperatures. However, it is establishment rather than dispersal that may be limiting colonizations in these cold frontier areas. In freshwater ecosystems, perennial groundwater springs provide critical winter thermal refugia in these extreme environments. By reconciling the thermal characteristics of these refugia with the minimum thermal tolerances of life stages critical for establishment, we develop a strategy to focus broad projections of northward and upward range shifts to the specific habitats that are likely for establishments. We evaluate this strategy using chum salmon (Oncorhynchus keta) and pink salmon (Oncorhynchus gorbuscha) that seem poised to colonize Arctic watersheds. Stream habitats with a minimum temperature of 4 °C during spawning and temperatures above 2 °C during egg incubation were most vulnerable to establishments by chum and pink salmon. This strategy will improve modelling forecasts of range shifts for cold freshwater habitats and focus proactive efforts to conserve both newly emerging fisheries and native species at northern and upper distributional extremes.
High temperature oxidation-resistant thruster research
NASA Technical Reports Server (NTRS)
Wooten, John R.; Lansaw, P. Tina
1990-01-01
A program was conducted for NASA-LeRC by Aerojet Propulsion Division to establish the technology base for a new class of long-life, high-performance, radiation-cooled bipropellant thrusters capable of operation at temperatures over 2200 C (4000 F). The results of a systematic, multi-year program are described starting with the preliminary screening tests which lead to the final material selection. Life greater than 15 hours was demonstrated on a workhorse iridium-lined rhenium chamber at chamber temperatures between 2000 and 2300 C (3700 and 4200 F). The chamber was fabricated by the Chemical Vapor Deposition at Ultramet. The program culminated in the design, fabrication, and hot-fire test of an NTO/MMH 22-N (5-lbF) class thruster containing a thin wall iridium-lined rhenium thrust chamber with a 150:1 area ratio nozzle. A specific impulse of 310 seconds was measured and front-end thermal management was achieved for steady state and several pulsing duty cycles. The resulting design represents a 20 second specific impulse improvement over conventional designs in which the use of disilicide coated columbium chambers limit operation to 1300 C (2400 F).
Ab Initio High Pressure and Temperature Investigation on Cubic PbMoO3 Perovskite
NASA Astrophysics Data System (ADS)
Dar, Sajad Ahmad; Srivastava, Vipul; Sakalle, Umesh Kumar
2017-12-01
A combined high pressure and temperature investigation on recently reported cubic perovskite PbMoO3 have been performed within the most accurate density functional theory (DFT). The structure was found stable in cubic paramagnetic phase. The DFT calculated analytical and experimental lattice constant were found in good agreement. The analytical tolerance factor as well as the elastic properties further verifies the cubic stability for PbMoO3. The spin polarized electronic band structure and density of states presented metallic nature with symmetry in up and down states. The insignificant magnetic moment also confirms the paramagnetic nature for the compound. The high pressure elastic and mechanical study up to 35 GPa reveal the structural stability of the material in this pressure range. The compound was found to establish a ductile nature. The electrical conductivity obtained from the band structure results show a decreasing trend with increasing temperature. The temperature dependence of thermodynamic parameters such as specific heat ( C v), thermal expansion ( α) has also been evaluated.
Cornish, Jennifer L; Clemens, Kelly J; Thompson, Murray R; Callaghan, Paul D; Dawson, Bronwyn; McGregor, Iain S
2008-01-01
Methamphetamine is a drug that is often consumed at dance parties or nightclubs where the ambient temperature is high. The present study determined whether such high ambient temperatures alter intravenous methamphetamine self-administration in the rat. Male Hooded Wistar rats were trained to self-administer intravenous methamphetamine (0.1 mg/kg/infusion) under a fixed ratio 1 (FR1) or progressive ratio (PR) schedule of reinforcement at an ambient temperature of 23 +/- 1 degrees C. They were then given their daily self-administration session at a raised ambient temperature of 30 +/- 1 degrees C. Methamphetamine self-administration was increased at 30 degrees C under both FR1 and PR reinforcement schedules, with the latter effect indicating that heat enhances the motivation to obtain methamphetamine. High temperatures did not alter self-administration of the D1 receptor agonist SKF 82958 in methamphetamine-experienced rats suggesting some specificity in the methamphetamine effect. When rats were given access to drink isotonic saline solution during methamphetamine self-administration sessions they drank much more solution at 30 degrees C than 23 degrees C. However, availability of isotonic saline to drink did not alter the heat-induced facilitation of methamphetamine self-administration (PR schedule) indicating that the heat effect does not simply reflect increased motivation for intravenous fluids. Hyperthermia was evident in rats self-administering methamphetamine at high ambient temperatures and fluid consumption did not prevent this effect. Heat did not affect blood levels of methamphetamine, or its principal metabolite amphetamine indicating that the facilitatory effect of heat did not reflect altered methamphetamine pharmacokinetics. Overall, these results show that high ambient temperatures increase the reinforcing efficacy of methamphetamine and encourage higher levels of drug intake.
Specific heat measurement set-up for quench condensed thin superconducting films.
Poran, Shachaf; Molina-Ruiz, Manel; Gérardin, Anne; Frydman, Aviad; Bourgeois, Olivier
2014-05-01
We present a set-up designed for the measurement of specific heat of very thin or ultra-thin quench condensed superconducting films. In an ultra-high vacuum chamber, materials of interest can be thermally evaporated directly on a silicon membrane regulated in temperature from 1.4 K to 10 K. On this membrane, a heater and a thermometer are lithographically fabricated, allowing the measurement of heat capacity of the quench condensed layers. This apparatus permits the simultaneous thermal and electrical characterization of successively deposited layers in situ without exposing the deposited materials to room temperature or atmospheric conditions, both being irreversibly harmful to the samples. This system can be used to study specific heat signatures of phase transitions through the superconductor to insulator transition of quench condensed films.
Heat Priming Induces Trans-generational Tolerance to High Temperature Stress in Wheat
Wang, Xiao; Xin, Caiyun; Cai, Jian; Zhou, Qin; Dai, Tingbo; Cao, Weixing; Jiang, Dong
2016-01-01
Wheat plants are very sensitive to high temperature stress during grain filling. Effects of heat priming applied to the first generation on tolerance of the successive generation to post-anthesis high temperature stress were investigated. Compared with the progeny of non-heat primed plants (NH), the progeny of heat-primed plants (PH) possessed higher grain yield, leaf photosynthesis and activities of antioxidant enzymes and lower cell membrane damage under high temperature stress. In the transcriptome profile, 1430 probes showed obvious difference in expression between PH and NH. These genes were related to signal transduction, transcription, energy, defense, and protein destination and storage, respectively. The gene encoding the lysine-specific histone demethylase 1 (LSD1) which was involved in histone demethylation related to epigenetic modification was up-regulated in the PH compared with NH. The proteome analysis indicated that the proteins involved in photosynthesis, energy production and protein destination and storage were up-regulated in the PH compared with NH. In short, thermos-tolerance was induced through heritable epigenetic alternation and signaling transduction, both processes further triggered prompt modifications of defense related responses in anti-oxidation, transcription, energy production, and protein destination and storage in the progeny of the primed plants under high temperature stress. It was concluded that trans-generation thermo-tolerance was induced by heat priming in the first generation, and this might be an effective measure to cope with severe high-temperature stresses during key growth stages in wheat production. PMID:27148324
Barone, C.; Romeo, F.; Pagano, S.; Adamo, M.; Nappi, C.; Sarnelli, E.; Kurth, F.; Iida, K.
2014-01-01
An important step forward for the understanding of high-temperature superconductivity has been the discovery of iron-based superconductors. Among these compounds, iron pnictides could be used for high-field magnet applications, resulting more advantageous over conventional superconductors, due to a high upper critical field as well as its low anisotropy at low temperatures. However, the principal obstacle in fabricating high quality superconducting wires and tapes is given by grain boundaries. In order to study these effects, the dc transport and voltage-noise properties of Co-doped BaFe2As2 superconducting films with artificial grain boundary junctions have been investigated. A specific procedure allows the separation of the film noise from that of the junction. While the former shows a standard 1/f behaviour, the latter is characterized by an unconventional temperature-dependent multi-Lorentzian voltage-spectral density. Moreover, below the film superconducting critical temperature, a peculiar noise spectrum is found for the grain boundary junction. Possible theoretical interpretation of these phenomena is proposed. PMID:25145385
NASA Technical Reports Server (NTRS)
Johnson, G. M.
1976-01-01
The application of high temperature accelerated test techniques was shown to be an effective method of microcircuit defect screening. Comprehensive microcircuit evaluations and a series of high temperature (473 K to 573 K) life tests demonstrated that a freak or early failure population of surface contaminated devices could be completely screened in thirty two hours of test at an ambient temperature of 523 K. Equivalent screening at 398 K, as prescribed by current Military and NASA specifications, would have required in excess of 1,500 hours of test. All testing was accomplished with a Texas Instruments' 54L10, low power triple-3 input NAND gate manufactured with a titanium- tungsten (Ti-W), Gold (Au) metallization system. A number of design and/or manufacturing anomalies were also noted with the Ti-W, Au metallization system. Further study of the exact nature and cause(s) of these anomalies is recommended prior to the use of microcircuits with Ti-W, Au metallization in long life/high reliability applications. Photomicrographs of tested circuits are included.
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-01
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink. PMID:29351248
A Comprehensive Study of a Micro-Channel Heat Sink Using Integrated Thin-Film Temperature Sensors.
Wang, Tao; Wang, Jiejun; He, Jian; Wu, Chuangui; Luo, Wenbo; Shuai, Yao; Zhang, Wanli; Chen, Xiancai; Zhang, Jian; Lin, Jia
2018-01-19
A micro-channel heat sink is a promising cooling method for high power integrated circuits (IC). However, the understanding of such a micro-channel device is not sufficient, because the tools for studying it are very limited. The details inside the micro-channels are not readily available. In this letter, a micro-channel heat sink is comprehensively studied using the integrated temperature sensors. The highly sensitive thin film temperature sensors can accurately monitor the temperature change in the micro-channel in real time. The outstanding heat dissipation performance of the micro-channel heat sink is proven in terms of maximum temperature, cooling speed and heat resistance. The temperature profile along the micro-channel is extracted, and even small temperature perturbations can be detected. The heat source formed temperature peak shifts towards the flow direction with the increasing flow rate. However, the temperature non-uniformity is independent of flow rate, but solely dependent on the heating power. Specific designs for minimizing the temperature non-uniformity are necessary. In addition, the experimental results from the integrated temperature sensors match the simulation results well. This can be used to directly verify the modeling results, helping to build a convincing simulation model. The integrated sensor could be a powerful tool for studying the micro-channel based heat sink.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolovich, S.D.; Saxena, A.; Cullers, C.
One of the ongoing challenges of the aerospace industry is to develop more efficient turbine engines. Greater efficiency entails reduced specific strength and larger temperature gradients, the latter of which means higher operating temperatures and increased thermal conductivity. Continued development of nickel-based superalloys has provided steady increases in engine efficiency and the limits of superalloys have probably not been realized. However, other material systems are under intense investigation for possible use in high temperature engines. Ceramic, intermetallic, and various composite systems are being explored in an effort to exploit the much higher melting temperatures of these systems. NiAl is consideredmore » a potential alternative to conventional superalloys due to its excellent oxidation resistance, low density, and high melting temperature. The fact that NiAl is the most common coating for current superalloy turbine blades is a tribute to its oxidation resistance. Its density is one-third that of typical superalloys and in most temperature ranges its thermal conductivity is twice that of common superalloys. Despite these many advantages, NiAl requires more investigation before it is ready to be used in engines. Binary NiAl in general has poor high-temperature strength and low-temperature ductility. On-going research in alloy design continues to make improvements in the high-temperature strength of NiAl. The factors controlling low temperature ductility have been identified in the last few years. Small, but reproducible ductility can now be achieved at room temperature through careful control of chemical purity and processing. But the mechanisms controlling the transition from brittle to ductile behavior are not fully understood. Research in the area of fatigue deformation can aid the development of the NiAl system in two ways. Fatigue properties must be documented and optimized before NiAl can be applied to engineering systems.« less
Polarized-neutron study of spin dynamics in the Kondo insulator YbB12.
Nemkovski, K S; Mignot, J-M; Alekseev, P A; Ivanov, A S; Nefeodova, E V; Rybina, A V; Regnault, L-P; Iga, F; Takabatake, T
2007-09-28
Inelastic neutron scattering experiments have been performed on the archetype compound YbB(12), using neutron polarization analysis to separate the magnetic signal from the phonon background. With decreasing temperature, components characteristic for a single-site spin-fluctuation dynamics are suppressed, giving place to specific, strongly Q-dependent, low-energy excitations near the spin-gap edge. This crossover is discussed in terms of a simple crystal-field description of the incoherent high-temperature state and a predominantly local mechanism for the formation of the low-temperature singlet ground state.
NASA Technical Reports Server (NTRS)
Lawson, John W.; Bauschlicher, Charles W.; Daw, Murray
2011-01-01
Refractory materials such as metallic borides, often considered as ultra high temperature ceramics (UHTC), are characterized by high melting point, high hardness, and good chemical inertness. These materials have many applications which require high temperature materials that can operate with no or limited oxidation. Ab initio, first principles methods are the most accurate modeling approaches available and represent a parameter free description of the material based on the quantum mechanical equations. Using these methods, many of the intrinsic properties of these material can be obtained. We performed ab initio calculations based on density functional theory for the UHTC materials ZrB2 and HfB2. Computational results are presented for structural information (lattice constants, bond lengths, etc), electronic structure (bonding motifs, densities of states, band structure, etc), thermal quantities (phonon spectra, phonon densities of states, specific heat), as well as information about point defects such as vacancy and antisite formation energies.
Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.
Chu, J P; Chen, Y T; Mahalingam, T; Tzeng, C C; Cheng, T W
2006-12-01
Fiber reinforced plastic (FRP) composite material has widespread use in general tank, special chemical tank and body of yacht, etc. The purpose of this study is directed towards the volume reduction of non-combustible FRP by thermal plasma and recycling of vitrified slag with specific procedures. In this study, we have employed three main wastes such as, FRP, gill net and waste glass. The thermal molten process was applied to treat vitrified slag at high temperatures whereas in the post-heat treatment vitrified slags were mixed with specific additive and ground into powder form and then heat treated at high temperatures. With a two-stage heat treatment, the treated sample was generated into four crystalline phases, cristobalite, albite, anorthite and wollastonite. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the two-stage heating treatment. Good physical and mechanical properties were achieved after heat treatment, and this study reveals that our results could be comparable with the commercial products.
Diffusion coefficient of hydrogen in a cast gamma titanium aluminide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundaram, P.A.; Wessel, E.; Ennis, P.J.
1999-06-04
Gamma titanium aluminides have the potential for high temperature applications because of their high specific strength and specific modulus. Their oxidation resistance is good, especially at intermediate temperatures and with suitable alloying additions, good oxidation resistance can be obtained up to 800 C. One critical area of application is in combustion engines in aero-space vehicles such as hypersonic airplanes and high speed civil transport airplanes. This entails the use of hydrogen as a fuel component and hence the effect of hydrogen on the mechanical properties of gamma titanium aluminides is of significant scientific and technological utility. The purpose of thismore » short investigation is to use an electrochemical method under galvanostatic conditions to determine the diffusion coefficient of hydrogen in a cast gamma titanium aluminide, a typical technical alloy with potential application in gas turbines under creep conditions. This result will be then compared with that obtained by microhardness profiling of electrolytically hydrogen precharged material.« less
Preparing thermoplastic aromatic polyimides
NASA Technical Reports Server (NTRS)
Bell, V. L.
1973-01-01
Method prepares aromatic polyimides with significantly reduced glass-transition temperatures and without accompanying loss of high-level thermo-oxidative stability which has been typical. This has been made possible by use of diamine monomers with specific stereoisomeric features.
49 CFR 179.220-26 - Stenciling.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Specifications for Non-Pressure Tank Car Tanks (Classes DOT-111AW and 115AW) § 179.220-26 Stenciling. (a) The... high to indicate the safe upper temperature limit, if applicable, for the inner tank, insulation, and...
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-01-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm−1 with a spectral resolution of 1 cm−1 were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca2+-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca2+ presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel. PMID:25071948
Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten
2014-07-01
The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.
49 CFR 192.7 - What documents are incorporated by reference partly or wholly in this part?
Code of Federal Regulations, 2013 CFR
2013-10-01
... for Seamless Carbon Steel Pipe for High-Temperature Service” (July 15, 2008) §§ 192.113; Item I... Metal-Arc Welded Steel Pipe for Use With High-Pressure Transmission Systems” (October 1, 2005) §§ 192...) ASTM A672-08, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service...
49 CFR 192.7 - What documents are incorporated by reference partly or wholly in this part?
Code of Federal Regulations, 2014 CFR
2014-10-01
... for Seamless Carbon Steel Pipe for High-Temperature Service” (July 15, 2008) §§ 192.113; Item I... Metal-Arc Welded Steel Pipe for Use With High-Pressure Transmission Systems” (October 1, 2005) §§ 192...) ASTM A672-08, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service...
49 CFR 192.7 - What documents are incorporated by reference partly or wholly in this part?
Code of Federal Regulations, 2012 CFR
2012-10-01
... for Seamless Carbon Steel Pipe for High-Temperature Service” (July 15, 2008) §§ 192.113; Item I... Metal-Arc Welded Steel Pipe for Use With High-Pressure Transmission Systems” (October 1, 2005) §§ 192...) ASTM A672-08, “Standard Specification for Electric-Fusion-Welded Steel Pipe for High-Pressure Service...
1990-02-28
include energy costs, time required for cooling, large volume changes, and degradation. For many high -temperature LCPs, the latter may be the most...LCPs)- high local (microscopic) orientational order, which is retained in the solid state-has significant implications in a range of DOD applications...that yield and maintain specific mer sequences. * Continue efforts to measure mer sequence distribution, e.g., by multinuclei NMR. 0 Develop high
Hecht, K; Wrba, A; Jaenicke, R
1989-07-15
Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.
NASA Astrophysics Data System (ADS)
Thomas, Siby; Ajith, K. M.; Chandra, Sharat; Valsakumar, M. C.
2015-08-01
Structural and thermodynamical properties of monolayer pristine and defective boron nitride sheets (h-BN) have been investigated in a wide temperature range by carrying out atomistic simulations using a tuned Tersoff-type inter-atomic empirical potential. The temperature dependence of lattice parameter, radial distribution function, specific heat at constant volume, linear thermal expansion coefficient and the height correlation function of the thermally excited ripples on pristine as well as defective h-BN sheet have been investigated. Specific heat shows considerable increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations, < {{h}2}> , shows that the bending rigidity and variance of height fluctuations are strongly temperature dependent and this is explained using the continuum theory of membranes. A detailed study of the height-height correlation function shows deviation from the prediction of harmonic theory of membranes as a consequence of the strong anharmonicity in h-BN. It is also seen that the variance of the height fluctuations increases with defect concentration.
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nepal, Roshan; Zhang, Qiang; Dai, Samuel
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
Structural and magnetic transitions in spinel FeM n 2 O 4 single crystals
Nepal, Roshan; Zhang, Qiang; Dai, Samuel; ...
2018-01-11
Materials that form the spinel structure are known to exhibit geometric frustration, which can lead to magnetic frustration as well. Through magnetization and neutron diffraction measurements, we find that FeMn 2O 4 undergoes one structural and two magnetic transitions. The structural transition occurs at T s ~595K from cubic at high temperatures to tetragonal at low temperatures. Here, two magnetic transitions are ferrimagnetic at T FI–1 ~373K and T FI–2 ~50K, respectively. Further investigation of the specific heat, thermal conductivity, and Seebeck coefficient confirms both magnetic transitions. Of particular interest is that there is a significant magnetic contribution to themore » low-temperature specific heat and thermal conductivity, providing a unique system to study heat transport by magnetic excitations.« less
RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.
Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J
2014-12-10
In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.
USDA-ARS?s Scientific Manuscript database
Efforts to analyze the replicative RNA produced by Maize fine streak virus (MVSF) within maize tissue was complicated by the lack of specificity during cDNA generation using standard reverse transcriptase protocols. Real-time qRT-PCR using cDNA generated by priming with random hexamers does not dist...
Analysis of Wear Behavior of Graphene OXIDE — Polyamide Gears for Engineering Applications
NASA Astrophysics Data System (ADS)
Rajamani, Geetha; Paulraj, Jawahar; Krishnan, Kanny
Recent advances in polymer nanocomposites open a wide range of applications in various industrial sectors. Due to their high potential properties, these materials are replacing the usage of metals for many heavier components in automobile industries. In this experimental work, the tribological performance of Graphene oxide (GO) — Polyamide is investigated against pristine polyamide by fabricating gears for the usage in engineering applications. A gear test rig was developed in-house for analysis to study the specific wear rate and temperature gradient at different conditions of load and speeds. The wear resistance of the polyamide gears with the addition of 0.03wt.% of graphene oxide is better than the pristine polyamide gears and the specific wear rate is reduced significantly. The reduced specific wear rate of these polymer nanocomposite gears is attributed to the superior properties of graphene oxide such as High specific surface area, good adhesion properties and enhanced glass transition temperatures. The GO nanocomposite gear seems to be a potential alternative against conventional gears for engineering applications. Finally, the wear mechanisms and the potential of GO-based polyamide nanocomposite gears were proposed tentatively in the development of transmission gears for engineering applications.
Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel
NASA Astrophysics Data System (ADS)
Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.
2018-05-01
Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.
Characterization of Thick and Thin Film SiCN for Pressure Sensing at High Temperatures
Leo, Alfin; Andronenko, Sergey; Stiharu, Ion; Bhat, Rama B.
2010-01-01
Pressure measurement in high temperature environments is important in many applications to provide valuable information for performance studies. Information on pressure patterns is highly desirable for improving performance, condition monitoring and accurate prediction of the remaining life of systems that operate in extremely high temperature environments, such as gas turbine engines. A number of technologies have been recently investigated, however these technologies target specific applications and they are limited by the maximum operating temperature. Thick and thin films of SiCN can withstand high temperatures. SiCN is a polymer-derived ceramic with liquid phase polymer as its starting material. This provides the advantage that it can be molded to any shape. CERASET™ also yields itself for photolithography, with the addition of photo initiator 2, 2-Dimethoxy-2-phenyl-acetophenone (DMPA), thereby enabling photolithographical patterning of the pre-ceramic polymer using UV lithography. SiCN fabrication includes thermosetting, crosslinking and pyrolysis. The technology is still under investigation for stability and improved performance. This work presents the preparation of SiCN films to be used as the body of a sensor for pressure measurements in high temperature environments. The sensor employs the phenomenon of drag effect. The pressure sensor consists of a slender sensitive element and a thick blocking element. The dimensions and thickness of the films depend on the intended application of the sensors. Fabrication methods of SiCN ceramics both as thin (about 40–60 μm) and thick (about 2–3 mm) films for high temperature applications are discussed. In addition, the influence of thermosetting and annealing processes on mechanical properties is investigated. PMID:22205871
Lee, Sang-Jin; Jung, Choong-Hwan
2012-01-01
Nano-sized yttria (Y2O3) powders were successfully synthesized at a low temperature of 400 degrees C by a simple polymer solution route. PVA polymer, as an organic carrier, contributed to an atom-scale homogeneous precursor gel and it resulted in fully crystallized, nano-sized yttria powder with high specific surface area through the low temperature calcination. In this process, the content of PVA, calcination temperature and heating time affected the microstructure and crystallization behavior of the powders. The development of crystalline phase and the final particle size were strongly dependant on the oxidation reaction from the polymer burn-out step and the PVA content. In this paper, the PVA solution technique for the fabrication of nano-sized yttria powders is introduced. The effects of PVA content and holding time on the powder morphology and powder specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, SEM, TEM and nitrogen gas adsorption. The yttria powder synthesized from the PVA content of 3:1 ratio and calcined at 400 degrees C had a crystallite size of about 20 nm or less with a high surface areas of 93.95-120.76 m2 g(-1).
The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics
NASA Astrophysics Data System (ADS)
Zhao, Haoyu; Simon, Sindee
The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.
Ho, Hung Chak; Wong, Man Sing; Yang, Lin; Shi, Wenzhong; Yang, Jinxin; Bilal, Muhammad; Chan, Ta-Chien
2018-03-01
Haze is an extreme weather event that can severely increase air pollution exposure, resulting in higher burdens on human health. Few studies have explored the health effects of haze, and none have investigated the spatiotemporal interaction between temperature, air quality and urban environment that may exacerbate the adverse health effects of haze. We investigated the spatiotemporal pattern of haze effects and explored the additional effects of temperature, air pollution and urban environment on the short-term mortality risk during hazy days. We applied a Poisson regression model to daily mortality data from 2007 through 2014, to analyze the short-term mortality risk during haze events in Hong Kong. We evaluated the adverse effect on five types of cause-specific mortality after four types of haze event. We also analyzed the additional effect contributed by the spatial variability of urban environment on each type of cause-specific mortality during a specific haze event. A regular hazy day (lag 0) has higher all-cause mortality risk than a day without haze (odds ratio: 1.029 [1.009, 1.049]). We have also observed high mortality risks associated with mental disorders and diseases of the nervous system during hazy days. In addition, extreme weather and air quality contributed to haze-related mortality, while cold weather and higher ground-level ozone had stronger influences on mortality risk. Areas with a high-density environment, lower vegetation, higher anthropogenic heat, and higher PM 2.5 featured stronger effects of haze on mortality than the others. A combined influence of haze, extreme weather/air quality, and urban environment can result in extremely high mortality due to mental/behavioral disorders or diseases of the nervous system. In conclusion, we developed a data-driven technique to analyze the effects of haze on mortality. Our results target the specific dates and areas with higher mortality during haze events, which can be used for development of health warning protocols/systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Performance of the Micropower Voltage Reference ADR3430 Under Extreme Temperatures
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2011-01-01
Electronic systems designed for use in space exploration systems are expected to be exposed to harsh temperatures. For example, operation at cryogenic temperatures is anticipated in space missions such as polar craters of the moon (-223 C), James Webb Space Telescope (-236 C), Mars (-140 C), Europa (-223 C), Titan (-178 C), and other deep space probes away from the sun. Similarly, rovers and landers on the lunar surface, and deep space probes intended for the exploration of Venus are expected to encounter high temperature extremes. Electronics capable of operation under extreme temperatures would not only meet the requirements of future spacebased systems, but would also contribute to enhancing efficiency and improving reliability of these systems through the elimination of the thermal control elements that present electronics need for proper operation under the harsh environment of space. In this work, the performance of a micropower, high accuracy voltage reference was evaluated over a wide temperature range. The Analog Devices ADR3430 chip uses a patented voltage reference architecture to achieve high accuracy, low temperature coefficient, and low noise in a CMOS process [1]. The device combines two voltages of opposite temperature coefficients to create an output voltage that is almost independent of ambient temperature. It is rated for the industrial temperature range of -40 C to +125 C, and is ideal for use in low power precision data acquisition systems and in battery-powered devices. Table 1 shows some of the manufacturer s device specifications.
NASA Astrophysics Data System (ADS)
Luo, Weili
2017-11-01
A new type of heat engine has been proposed in 2005 that defies fundamental thermodynamic law: A specifically designed magnetic body force can reverse heat flow from high temperature to low temperature. This mechanism can drive heat to higher temperature, rendering the possibility to re-use the ``waste heat''. As the result, the efficiency is much higher than that of the Carnot Engine. In a recent paper a realization of this proposed mechanism is reported: by using a specific configuration of temperature and magnetic field gradients, we observed that magnetic body force suppresses the gravito-thermal convective heat when the gradients of temperature and field are anti-parallel to each other. This driving force stops the heat flow of approaching to thermal equilibrium in the system, causing the temperature difference across the sample to increase with applied fields. In this work, I will discuss the driving mechanism for this phenomenon and its application in the proposed engine. This remarkable result suggests that the 2nd law of thermodynamics maybe conditioned and needs to be re-examined.
Magnetic study of the low temperature anomalies in the magnetodielectric terbium iron garnet
NASA Astrophysics Data System (ADS)
Lahoubi, Mahieddine
2018-05-01
The anomalous magnetic properties at low temperatures of terbium iron garnet (TbIG) are analyzed and summarized using neutron powder diffraction (NPD) experiments together with high field magnetization, magnetostriction and specific heat measurements performed on single crystals. Reliable information at both microscopic and macroscopic levels is provided about the significant change of the double umbrella structure observed in the NPD results near 54 K. The positions of the observed maxima at 55-65 K in the paraprocess magnetic susceptibility along the three mean directions and paraprocess of the forced magnetostriction along the easy axis of magnetization 〈111〉 agree with the manifestations of the "low-temperature point" TB predicted by Belov at 58 K. However, the pronounced maximum at 57 K in the excess of specific heat in zero magnetic fields reveals that the Schottky effect causes anomaly at temperature close the TB point. The results are discussed and compared with previous magnetic, magneto-optical and magnetodielectric reports.
Preliminary assessment of soil moisture over vegetation
NASA Technical Reports Server (NTRS)
Carlson, T. N.
1986-01-01
Modeling of surface energy fluxes was combined with in-situ measurement of surface parameters, specifically the surface sensible heat flux and the substrate soil moisture. A vegetation component was incorporated in the atmospheric/substrate model and subsequently showed that fluxes over vegetation can be very much different than those over bare soil for a given surface-air temperature difference. The temperature signatures measured by a satellite or airborne radiometer should be interpreted in conjunction with surface measurements of modeled parameters. Paradoxically, analyses of the large-scale distribution of soil moisture availability shows that there is a very high correlation between antecedent precipitation and inferred surface moisture availability, even when no specific vegetation parameterization is used in the boundary layer model. Preparatory work was begun in streamlining the present boundary layer model, developing better algorithms for relating surface temperatures to substrate moisture, preparing for participation in the French HAPEX experiment, and analyzing aircraft microwave and radiometric surface temperature data for the 1983 French Beauce experiments.
The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe
Cheng, Bingbing; Bandi, Venugopal; Yu, Shuai; D’Souza, Francis; Nguyen, Kytai T.; Hong, Yi; Tang, Liping; Yuan, Baohong
2017-01-01
Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement). In this work, investigations of the switching mechanism of a recently reported near-infrared environment-sensitive fluorophore, ADP(CA)2, were conducted. Besides, multiple potential biomedical applications of this switchable fluorescent probe have been demonstrated, including wash-free live-cell fluorescence imaging, in vivo tissue fluorescence imaging, temperature sensing, and ultrasound-switchable fluorescence (USF) imaging. The fluorescence of the ADP(CA)2 is extremely sensitive to the microenvironment, especially polarity and viscosity. Our investigations showed that the fluorescence of ADP(CA)2 can be switched on by low polarity, high viscosity, or the presence of protein and surfactants. In wash-free live-cell imaging, the fluorescence of ADP(CA)2 inside cells was found much brighter than the dye-containing medium and was retained for at least two days. In all of the fluorescence imaging applications conducted in this study, high target-to-noise (>5-fold) was achieved. In addition, a high temperature sensitivity (73-fold per Celsius degree) of ADP(CA)2-based temperature probes was found in temperature sensing. PMID:28208666
Hargreaves, G A; Hunt, G E; Cornish, J L; McGregor, I S
2007-03-16
3,4-Methylenedioxymethamphetamine (MDMA, "Ecstasy") is a popular drug that is often taken under hot conditions at dance clubs. High ambient temperature increases MDMA-induced hyperthermia and recent studies suggest that high temperatures may also enhance the rewarding and prosocial effects of MDMA in rats. The present study investigated whether ambient temperature influences MDMA-induced expression of Fos, a marker of neural activation. Male Wistar rats received either MDMA (10 mg/kg i.p.) or saline, and were placed in test chambers for 2 h at either 19 or 30 degrees C. MDMA caused significant hyperthermia at 30 degrees C and a modest hypothermia at 19 degrees C. The 30 degrees C ambient temperature had little effect on Fos expression in vehicle-treated rats. However MDMA-induced Fos expression was augmented in 15 of 30 brain regions at the high temperature. These regions included (1) sites associated with thermoregulation such as the median preoptic nucleus, dorsomedial hypothalamus and raphe pallidus, (2) the supraoptic nucleus, a region important for osmoregulation and a key mediator of oxytocin and vasopressin release, (3) the medial and central nuclei of the amygdala, important in the regulation of social and emotional behaviors, and (4) the shell of the nucleus accumbens and (anterior) ventral tegmental area, regions associated with the reinforcing effects of MDMA. MDMA-induced Fos expression was unaffected by ambient temperature at many other sites, and was diminished at high temperature at one site (the islands of Calleja), suggesting that the effect of temperature on MDMA-induced Fos expression was not a general pharmacokinetic effect. Overall, these results indicate that high temperatures accentuate key neural effects of MDMA and this may help explain the widespread use of the drug under hot conditions at dance parties as well as the more hazardous nature of MDMA taken under such conditions.
Heat capacity of xenon adsorbed on nanobundle grooves
NASA Astrophysics Data System (ADS)
Chishko, K. A.; Sokolova, E. S.
2016-02-01
A model of a one-dimensional nonideal gas in an external transverse force field is used to interpret the experimentally observed thermodynamic properties of xenon deposited in grooves on the surface of carbon nanobundles. A nonideal gas model with pairwise interactions is not entirely adequate for describing dense adsorbates (at low temperatures), but makes it easy to account for the exchange of particles between the 1D adsorbate and the 3D atmosphere, which is an important factor at intermediate (on the order of 35 K for xenon) and, especially, high (˜100 K) temperatures. In this paper, we examine a 1D real gas taking only the one-dimensional Lennard-Jones interaction into account, but under exact equilibrium with respect to the number of particles between the 1D adsorbate and the 3D atmosphere of the measurement cell. The low-temperature branch of the specific heat is fitted independently by an elastic chain model so as to obtain the best agreement between theory and experiment over the widest possible region, beginning at zero temperature. The gas approximation sets in after temperatures for which the phonon specific heat of the chain essentially transforms to a one-dimensional equipartition law. Here the basic parameters of both models can be chosen so that the heat capacity C(T) of the chain transforms essentially continuously into the corresponding curve for the gas approximation. Thus, it can be expected that an adequate interpretation of the real temperature dependences of the specific heat of low-dimensionality atomic adsorbates can be obtained through a reasonable combination of the phonon and gas approximations. The main parameters of the gas approximation (such as the desorption energy) obtained by fitting the theory to experiments on the specific heat of xenon correlate well with published data.
Heat capacity of high-purity lanthanum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, P.H.; Finnemore, D.K.; Bevolo, A.J.
1980-04-01
A study of the specific heat of high-purity single-phase dhcp La shows that this material is an intrinsic type-II superconductor with a kappa of about 2.4. The temperature dependence of the free energy is characteristic of an intermediate coupling superconductor with 2..delta../k/sub B/T/sub c/ approx. = 3.7.
Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Tang, Qiming; Su, Heng; Cui, Yanhui; Baker, Andrew P.; Liu, Yanchen; Lu, Juan; Song, Xiaona; Zhang, Huayu; Wu, Junwei; Yu, Haijun; Qu, Deyang
2018-03-01
As an advanced anode material for lithium-ion batteries, tin-chalcogenides receive substantial attention due to their high lithium-ion storage capacity. Here, tin chalcogenide (SnSe0.5S0.5) nanoplates are synthesized using a facile and quick polyol-method, followed by heating at different temperatures. Results show that the as-prepared of SnSe0.5S0.5 heated at temperature of 180 °C exhibits the best electrochemical performance with an outstanding discharge specific capacity of 1144 mA h g-1 at 0.1 A g-1 after 100 cycles and 682 mA h g-1 at 0.5 A g-1 after 200 cycles with a high coulombic efficiency (CE) of 98.7%. Even at a high current density of 5 A g-1, this anode material delivers a specific capacity of 473 mA h g-1. The high electrochemical performance of SnSe0.5S0.5 is shown by in-situ XRD analysis to originate from an enhanced Li+ intercalation and an alloy conversion process.
Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.
Gotcu, Petronela; Seifert, Hans J
2016-04-21
Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent.
Multi-Megawatt Power System Trade Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longhurst, Glen Reed; Schnitzler, Bruce Gordon; Parks, Benjamin Travis
2001-11-01
As part of a larger task, the Idaho National Engineering and Environmental Laboratory (INEEL) was tasked to perform a trade study comparing liquid-metal cooled reactors having Rankine power conversion systems with gas-cooled reactors having Brayton power conversion systems. This report summarizes the approach, the methodology, and the results of that trade study. Findings suggest that either approach has the possibility to approach the target specific mass of 3-5 kg/kWe for the power system, though it appears either will require improvements to achieve that. Higher reactor temperatures have the most potential for reducing the specific mass of gas-cooled reactors but domore » not necessarily have a similar effect for liquid-cooled Rankine systems. Fuels development will be the key to higher reactor operating temperatures. Higher temperature turbines will be important for Brayton systems. Both replacing lithium coolant in the primary circuit with gallium and replacing potassium with sodium in the power loop for liquid systems increase system specific mass. Changing the feed pump turbine to an electric motor in Rankine systems has little effect. Key technologies in reducing specific mass are high reactor and radiator operating temperatures, low radiator areal density, and low turbine/generator system masses. Turbine/generator mass tends to dominate overall power system mass for Rankine systems. Radiator mass was dominant for Brayton systems.« less
NASA Astrophysics Data System (ADS)
Imai, Yasuhiko; Yoda, Yoshitaka; Kitao, Shinji; Masuda, Ryo; Higashitaniguchi, Satoshi; Inaba, Chika; Seto, Makoto
2007-09-01
We have developed a high-resolution monochromator (HRM) for the measurement of nuclear resonant scattering (NRS) of synchrotron radiation by Te-125 at 35.49 keV using the backscattering of sapphire (9 1 -10 68). HRMs for nuclei with excitation energies less than 30 keV have been successfully developed using high angle diffractions by silicon crystals. Nearly perfect silicon crystal, however, is not suitable for high efficient HRMs at higher energy regions because the symmetry of the crystal structure is high and the Debye-temperature is low. Therefore, we used high quality synthetic sapphire crystal, which has low symmetry of crystal structure and high Debye-temperature. The temperature of the crystal was precisely controlled around 218 K to diffract synchrotron radiation with a Bragg angle of π/2 - 0.52 mrad. Energy was tuned by changing the crystal temperature under the condition of constant diffraction angle. Energy resolution was measured by detecting nuclear forward scattering by Te-125 in enriched TeO II. The relative energy resolution of 2.1×10 -7 is achieved, that is 7.5 meV in energy bandwidth. This HRM opens studies on element-specific dynamics and electronic state of substances containing Te-125.
Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.
Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison
2016-11-01
MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.
Conceptual Launch Vehicles Using Metallic Hydrogen Propellant
NASA Astrophysics Data System (ADS)
Cole, John W.; Silvera, Isaac F.; Foote, John P.
2008-01-01
Solid molecular hydrogen is predicted to transform into an atomic solid with metallic properties under pressures >4.5 Mbar. Atomic metallic hydrogen is predicted to be metastable, limited by some critical temperature and pressure, and to store very large amounts of energy. Experiments may soon determine the critical temperature, critical pressure, and specific energy availability. It is useful to consider the feasibility of using metastable atomic hydrogen as a rocket propellant. If one assumes that metallic hydrogen is stable at usable temperatures and pressures, and that it can be affordably produced, handled, and stored, then it may be a useful rocket propellant. Assuming further that the available specific energy can be determined from the recombination of the atoms into molecules (216 MJ/kg), then conceptual engines and launch vehicle concepts can be developed. Under these assumptions, metallic hydrogen would be a revolutionary new rocket fuel with a theoretical specific impulse of 1700 s at a chamber pressure of 100 atm. A practical problem that arises is that rocket chamber temperatures may be too high for the use of this pure fuel. This paper examines an engine concept that uses liquid hydrogen or water as a diluent coolant for the metallic hydrogen to reduce the chamber temperature to usable values. Several launch vehicles are then conceptually developed. Results indicate that if metallic hydrogen is experimentally found to have the properties assumed in this analysis, then there are significant benefits. These benefits become more attractive as the chamber temperatures increase.
Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium
NASA Astrophysics Data System (ADS)
Putz, Ana-Maria; Wang, Kunzhou; Len, Adél; Plocek, Jiri; Bezdicka, Petr; Kopitsa, Gennady P.; Khamova, Tamara V.; Ianăşi, Cătălin; Săcărescu, Liviu; Mitróová, Zuzana; Savii, Cecilia; Yan, Minhao; Almásy, László
2017-12-01
Mesoporous silica particles have been synthesized by sol-gel method from tetraethoxysilane (tetraethylorthosilicate, TEOS) and methyltriethoxysilane (MTES), in ethanol and water mixture, at different ratios of the of the silica precursors. Ammonia was used as catalyst at room temperature and hexadecyltrimethylammonium bromide (cetyltrimethylammonium bromide, CTAB) as the structure directing agent. Nitrogen sorption, X-ray diffraction and small-angle neutron scattering gave information on the evolution of the gel structure and pore morphologies in the function of MTES/TEOS molar ratio. Thermogravimetric and differential thermal analysis showed that with addition of MTES the exothermic peak indicating the oxidation of the low molecular weight organic fragments shift to higher temperature. A room-temperature, one-pot synthesis of MCM-41 type materials is presented, in which the variation of the MTES concentration allows to change the hydrophobicity, preserving the specific properties materials, like the ordered pore structure, large specific surface area and high porosity. Specifically, the obtained materials had cylindrical pores, specific surface areas up to 1101 m2/g and total pore volumes up to 0.473 cm3/g. The obtained mesoporous materials are susceptible for further functionalization to improve their selective uptake of guest species in drug delivery applications.
Country-Specific Effects of Climate Variability on Human Migration.
Gray, Clark; Wise, Erika
2016-04-01
Involuntary human migration is among the social outcomes of greatest concern in the current era of global climate change. Responding to this concern, a growing number of studies have investigated the consequences of short to medium-term climate variability for human migration using demographic and econometric approaches. These studies have provided important insights, but at the same time have been significantly limited by lack of expertise in the use of climate data, access to cross-national data on migration, and attention to model specification. To address these limitations, we link data on internal and international migration over a 6-year period from 9,812 origin households in Kenya, Uganda, Nigeria, Burkina Faso and Senegal to high-resolution gridded climate data from both station and satellite sources. Analyses of these data using several plausible specifications reveal that climate variability has country-specific effects on migration: Migration tends to increase with temperature anomalies in Uganda, tends to decrease with temperature anomalies in Kenya and Burkina Faso, and shows no consistent relationship with temperature in Nigeria and Senegal. Consistent with previous studies, precipitation shows weak and inconsistent relationships with migration across countries. These results challenge generalizing narratives that foresee a consistent migratory response to climate change across the globe.
Thermophysical modelling for high-resolution digital terrain models
NASA Astrophysics Data System (ADS)
Pelivan, I.
2018-07-01
A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavourable illumination conditions such as little-to-no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment, and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disc-integrated and disc-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.
Ultralight boron nitride aerogels via template-assisted chemical vapor deposition
Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming
2015-01-01
Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 °C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m2 g−1, 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm−3, much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools. PMID:25976019
Thermophysical modeling for high-resolution digital terrain models
NASA Astrophysics Data System (ADS)
Pelivan, I.
2018-04-01
A method is presented for efficiently calculating surface temperatures for highly resolved celestial body shapes. A thorough investigation of the necessary conditions leading to reach model convergence shows that the speed of surface temperature convergence depends on factors such as the quality of initial boundary conditions, thermal inertia, illumination conditions, and resolution of the numerical depth grid. The optimization process to shorten the simulation time while increasing or maintaining the accuracy of model results includes the introduction of facet-specific boundary conditions such as pre-computed temperature estimates and pre-evaluated simulation times. The individual facet treatment also allows for assigning other facet-specific properties such as local thermal inertia. The approach outlined in this paper is particularly useful for very detailed digital terrain models in combination with unfavorable illumination conditions such as little to no sunlight at all for a period of time as experienced locally on comet 67P/Churyumov-Gerasimenko. Possible science applications include thermal analysis of highly resolved local (landing) sites experiencing seasonal, environment and lander shadowing. In combination with an appropriate roughness model, the method is very suitable for application to disk-integrated and disk-resolved data. Further applications are seen where the complexity of the task has led to severe shape or thermophysical model simplifications such as in studying surface activity or thermal cracking.
NASA Astrophysics Data System (ADS)
Larsen, James M.; Russ, Stephan M.; Jones, J. W.
1995-12-01
The current capabilities of continuous silicon-carbide fiber-reinforced titanium matrix composites (TMCs) are reviewed with respect to application needs and compared to the capabilities of conventional high-temperature monolithic alloys and aluminides. In particular, the properties of a firstgeneration titanium aluminide composite, SCS-6/Ti-24Al-11Nb, and a second-generation metastable beta alloy composite, SCS-6/TIMETAL 21S, are compared with the nickel-base superalloy IN100, the high-temperature titanium alloy Ti-1100, and a relatively new titanium aluminide alloy. Emphasis is given to life-limiting cyclic and monotonie properties and to the influence of time-dependent deformation and environmental effects on these properties. The composite materials offer a wide range of performance capabilities, depending on laminate architecture. In many instances, unidirectional composites exhibit outstanding properties, although the same materials loaded transverse to the fiber direction typically exhibit very poor properties, primarily due to the weak fiber/matrix interface. Depending on the specific mechanical property under consideration, composite cross-ply laminates often show no improvement over the capability of conventional monolithic materials. Thus, it is essential that these composite materials be tailored to achieve a balance of properties suitable to the specific application needs if these materials are to be attractive candidates to replace more conventional materials.
Ultralight boron nitride aerogels via template-assisted chemical vapor deposition.
Song, Yangxi; Li, Bin; Yang, Siwei; Ding, Guqiao; Zhang, Changrui; Xie, Xiaoming
2015-05-15
Boron nitride (BN) aerogels are porous materials with a continuous three-dimensional network structure. They are attracting increasing attention for a wide range of applications. Here, we report the template-assisted synthesis of BN aerogels by catalyst-free, low-pressure chemical vapor deposition on graphene-carbon nanotube composite aerogels using borazine as the B and N sources with a relatively low temperature of 900 (°)C. The three-dimensional structure of the BN aerogels was achieved through the structural design of carbon aerogel templates. The BN aerogels have an ultrahigh specific surface area, ultralow density, excellent oil absorbing ability, and high temperature oxidation resistance. The specific surface area of BN aerogels can reach up to 1051 m(2) g(-1), 2-3 times larger than the reported BN aerogels. The mass density can be as low as 0.6 mg cm(-3), much lower than that of air. The BN aerogels exhibit high hydrophobic properties and can absorb up to 160 times their weight in oil. This is much higher than porous BN nanosheets reported previously. The BN aerogels can be restored for reuse after oil absorption simply by burning them in air. This is because of their high temperature oxidation resistance and suggests broad utility as water treatment tools.
Stephens, C. R.; Juliano, S. A.
2012-01-01
Estimating a mosquito’s vector competence, or likelihood of transmitting disease, if it takes an infectious blood meal, is an important aspect of predicting when and where outbreaks of infectious diseases will occur. Vector competence can be affected by rearing temperature and inter- and intraspecific competition experienced by the individual mosquito during its larval development. This research investigates whether a new morphological indicator of larval rearing conditions, wing shape, can be used to distinguish reliably temperature and competitive conditions experienced during larval stages. Aedes albopictus and Aedes aegypti larvae were reared in low intra-specific, high intra-specific, or high inter-specific competition treatments at either 22°C or 32°C. The right wing of each dried female was removed and photographed. Nineteen landmarks and twenty semilandmarks were digitized on each wing. Shape variables were calculated using geometric morphometric software. Canonical variate analysis, randomization multivariate analysis of variance, and visualization of landmark movement using deformation grids provided evidence that although semilandmark position was significantly affected by larval competition and temperature for both species, the differences in position did not translate into differences in wing shape, as shown in deformation grids. Two classification procedures yielded success rates of 26–49%. Accounting for wing size produced no increase in classification success. There appeared to be a significant relationship between shape and size. These results, particularly the low success rate of classification based on wing shape, show that shape is unlikely to be a reliable indicator of larval rearing competition and temperature conditions for Aedes albopictus and Aedes aegypti. PMID:22897054
NASA Astrophysics Data System (ADS)
Kycia, Jan Bronislaw
An ultra-high-vacuum crystal growth facility using the electron beam float zone refining method was designed and built. High quality single crystals of UPtsb3 were grown. Material quality was characterized by mass spectrometry and x-ray scattering techniques. Low temperature resistivity, AC susceptibility and specific heat measurements were also conducted. We find that the transition temperature of the material can be varied systematically by annealing. The suppression of the superconducting transition from defects is consistent with a modified Abrikosov-Gorkov formula that includes anisotropic pairing, Fermi surface anisotropy and anisotropic scattering by defects. High resolution nuclear magnetic resonance (NMR) measurements of bulk superfluid sp3He-B were performed at temperatures above 0.5 mK and at pressures from 0.3 to 28.8 bar. The resonance frequency of the bulk superfluid sp3He-B is shifted from the Larmor frequency of the normal fluid. According to the theory of Greaves the frequency shift at the superfluid transition determines a specific combination, betasb{345}, of the five fourth-order coefficients of the order parameter invariants used in the Ginzburg-Landau description of superfluid sp3He. NMR measurements were performed to determine the coefficient betasb{345} and its dependence on pressure. The results are in agreement with the theoretical calculations of Sauls and Serene that are based on strong coupling contributions which are enhanced at higher pressures.