Sample records for high temporal precision

  1. Temporally precise single-cell resolution optogenetics

    PubMed Central

    Shemesh, Or A.; Tanese, Dimitrii; Zampini, Valeria; Linghu, Changyang; Piatkevich, Kiryl; Ronzitti, Emiliano; Papagiakoumou, Eirini; Boyden, Edward S.; Emiliani, Valentina

    2017-01-01

    Optogenetic control of individual neurons with high temporal precision, within intact mammalian brain circuitry, would enable powerful explorations of how neural circuits operate. Two-photon computer generated holography enables precise sculpting of light, and could in principle enable simultaneous illumination of many neurons in a network, with the requisite temporal precision to simulate accurate neural codes. We designed a high efficacy soma-targeted opsin, finding that fusing the N-terminal 150 residues of kainate receptor subunit 2 (KA2) to the recently discovered high-photocurrent channelrhodopsin CoChR restricted expression of this opsin primarily to the cell body of mammalian cortical neurons. In combination with two-photon holographic stimulation, we found that this somatic CoChR (soCoChR) enabled photostimulation of individual cells in intact cortical circuits with single cell resolution and <1 millisecond temporal precision, and use soCoChR to perform connectivity mapping on intact cortical circuits. PMID:29184208

  2. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  3. What can neuromorphic event-driven precise timing add to spike-based pattern recognition?

    PubMed

    Akolkar, Himanshu; Meyer, Cedric; Clady, Zavier; Marre, Olivier; Bartolozzi, Chiara; Panzeri, Stefano; Benosman, Ryad

    2015-03-01

    This letter introduces a study to precisely measure what an increase in spike timing precision can add to spike-driven pattern recognition algorithms. The concept of generating spikes from images by converting gray levels into spike timings is currently at the basis of almost every spike-based modeling of biological visual systems. The use of images naturally leads to generating incorrect artificial and redundant spike timings and, more important, also contradicts biological findings indicating that visual processing is massively parallel, asynchronous with high temporal resolution. A new concept for acquiring visual information through pixel-individual asynchronous level-crossing sampling has been proposed in a recent generation of asynchronous neuromorphic visual sensors. Unlike conventional cameras, these sensors acquire data not at fixed points in time for the entire array but at fixed amplitude changes of their input, resulting optimally sparse in space and time-pixel individually and precisely timed only if new, (previously unknown) information is available (event based). This letter uses the high temporal resolution spiking output of neuromorphic event-based visual sensors to show that lowering time precision degrades performance on several recognition tasks specifically when reaching the conventional range of machine vision acquisition frequencies (30-60 Hz). The use of information theory to characterize separability between classes for each temporal resolution shows that high temporal acquisition provides up to 70% more information that conventional spikes generated from frame-based acquisition as used in standard artificial vision, thus drastically increasing the separability between classes of objects. Experiments on real data show that the amount of information loss is correlated with temporal precision. Our information-theoretic study highlights the potentials of neuromorphic asynchronous visual sensors for both practical applications and theoretical investigations. Moreover, it suggests that representing visual information as a precise sequence of spike times as reported in the retina offers considerable advantages for neuro-inspired visual computations.

  4. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations.

    PubMed

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.

  5. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos

    PubMed Central

    Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini

    2017-01-01

    Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125

  6. High-precision shape representation using a neuromorphic vision sensor with synchronous address-event communication interface

    NASA Astrophysics Data System (ADS)

    Belbachir, A. N.; Hofstätter, M.; Litzenberger, M.; Schön, P.

    2009-10-01

    A synchronous communication interface for neuromorphic temporal contrast vision sensors is described and evaluated in this paper. This interface has been designed for ultra high-speed synchronous arbitration of a temporal contrast image sensors pixels' data. Enabling high-precision timestamping, this system demonstrates its uniqueness for handling peak data rates and preserving the main advantage of the neuromorphic electronic systems, that is high and accurate temporal resolution. Based on a synchronous arbitration concept, the timestamping has a resolution of 100 ns. Both synchronous and (state-of-the-art) asynchronous arbiters have been implemented in a neuromorphic dual-line vision sensor chip in a standard 0.35 µm CMOS process. The performance analysis of both arbiters and the advantages of the synchronous arbitration over asynchronous arbitration in capturing high-speed objects are discussed in detail.

  7. Tracking individual action potentials throughout mammalian axonal arbors.

    PubMed

    Radivojevic, Milos; Franke, Felix; Altermatt, Michael; Müller, Jan; Hierlemann, Andreas; Bakkum, Douglas J

    2017-10-09

    Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.

  8. Open Source Tools for Temporally Controlled Rodent Behavior Suitable for Electrophysiology and Optogenetic Manipulations

    PubMed Central

    Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs

    2018-01-01

    Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383

  9. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding

    PubMed Central

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule’s error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism. PMID:27532262

  10. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.

    PubMed

    Gardner, Brian; Grüning, André

    2016-01-01

    Precise spike timing as a means to encode information in neural networks is biologically supported, and is advantageous over frequency-based codes by processing input features on a much shorter time-scale. For these reasons, much recent attention has been focused on the development of supervised learning rules for spiking neural networks that utilise a temporal coding scheme. However, despite significant progress in this area, there still lack rules that have a theoretical basis, and yet can be considered biologically relevant. Here we examine the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. As part of our analysis we examine two spike-based learning methods: one of which relies on an instantaneous error signal to modify synaptic weights in a network (INST rule), and the other one relying on a filtered error signal for smoother synaptic weight modifications (FILT rule). We test the accuracy of the solutions provided by each rule with respect to their temporal encoding precision, and then measure the maximum number of input patterns they can learn to memorise using the precise timings of individual spikes as an indication of their storage capacity. Our results demonstrate the high performance of the FILT rule in most cases, underpinned by the rule's error-filtering mechanism, which is predicted to provide smooth convergence towards a desired solution during learning. We also find the FILT rule to be most efficient at performing input pattern memorisations, and most noticeably when patterns are identified using spikes with sub-millisecond temporal precision. In comparison with existing work, we determine the performance of the FILT rule to be consistent with that of the highly efficient E-learning Chronotron rule, but with the distinct advantage that our FILT rule is also implementable as an online method for increased biological realism.

  11. Technical note: Coupling infrared gas analysis and cavity ring down spectroscopy for autonomous, high-temporal-resolution measurements of DIC and δ13C-DIC

    NASA Astrophysics Data System (ADS)

    Call, Mitchell; Schulz, Kai G.; Carvalho, Matheus C.; Santos, Isaac R.; Maher, Damien T.

    2017-03-01

    A new approach to autonomously determine concentrations of dissolved inorganic carbon (DIC) and its carbon stable isotope ratio (δ13C-DIC) at high temporal resolution is presented. The simple method requires no customised design. Instead it uses two commercially available instruments currently used in aquatic carbon research. An inorganic carbon analyser utilising non-dispersive infrared detection (NDIR) is coupled to a Cavity Ring-down Spectrometer (CRDS) to determine DIC and δ13C-DIC based on the liberated CO2 from acidified aliquots of water. Using a small sample volume of 2 mL, the precision and accuracy of the new method was comparable to standard isotope ratio mass spectrometry (IRMS) methods. The system achieved a sampling resolution of 16 min, with a DIC precision of ±1.5 to 2 µmol kg-1 and δ13C-DIC precision of ±0.14 ‰ for concentrations spanning 1000 to 3600 µmol kg-1. Accuracy of 0.1 ± 0.06 ‰ for δ13C-DIC based on DIC concentrations ranging from 2000 to 2230 µmol kg-1 was achieved during a laboratory-based algal bloom experiment. The high precision data that can be autonomously obtained by the system should enable complex carbonate system questions to be explored in aquatic sciences using high-temporal-resolution observations.

  12. Mechanisms underlying the temporal precision of sound coding at the inner hair cell ribbon synapse

    PubMed Central

    Moser, Tobias; Neef, Andreas; Khimich, Darina

    2006-01-01

    Our auditory system is capable of perceiving the azimuthal location of a low frequency sound source with a precision of a few degrees. This requires the auditory system to detect time differences in sound arrival between the two ears down to tens of microseconds. The detection of these interaural time differences relies on network computation by auditory brainstem neurons sharpening the temporal precision of the afferent signals. Nevertheless, the system requires the hair cell synapse to encode sound with the highest possible temporal acuity. In mammals, each auditory nerve fibre receives input from only one inner hair cell (IHC) synapse. Hence, this single synapse determines the temporal precision of the fibre. As if this was not enough of a challenge, the auditory system is also capable of maintaining such high temporal fidelity with acoustic signals that vary greatly in their intensity. Recent research has started to uncover the cellular basis of sound coding. Functional and structural descriptions of synaptic vesicle pools and estimates for the number of Ca2+ channels at the ribbon synapse have been obtained, as have insights into how the receptor potential couples to the release of synaptic vesicles. Here, we review current concepts about the mechanisms that control the timing of transmitter release in inner hair cells of the cochlea. PMID:16901948

  13. French Meteor Network for High Precision Orbits of Meteoroids

    NASA Technical Reports Server (NTRS)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  14. The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns

    PubMed Central

    Florian, Răzvan V.

    2012-01-01

    In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876

  15. A low-cost programmable pulse generator for physiology and behavior

    PubMed Central

    Sanders, Joshua I.; Kepecs, Adam

    2014-01-01

    Precisely timed experimental manipulations of the brain and its sensory environment are often employed to reveal principles of brain function. While complex and reliable pulse trains for temporal stimulus control can be generated with commercial instruments, contemporary options remain expensive and proprietary. We have developed Pulse Pal, an open source device that allows users to create and trigger software-defined trains of voltage pulses with high temporal precision. Here we describe Pulse Pal’s circuitry and firmware, and characterize its precision and reliability. In addition, we supply online documentation with instructions for assembling, testing and installing Pulse Pal. While the device can be operated as a stand-alone instrument, we also provide application programming interfaces in several programming languages. As an inexpensive, flexible and open solution for temporal control, we anticipate that Pulse Pal will be used to address a wide range of instrumentation timing challenges in neuroscience research. PMID:25566051

  16. Modulation of Temporal Precision in Thalamic Population Responses to Natural Visual Stimuli

    PubMed Central

    Desbordes, Gaëlle; Jin, Jianzhong; Alonso, Jose-Manuel; Stanley, Garrett B.

    2010-01-01

    Natural visual stimuli have highly structured spatial and temporal properties which influence the way visual information is encoded in the visual pathway. In response to natural scene stimuli, neurons in the lateral geniculate nucleus (LGN) are temporally precise – on a time scale of 10–25 ms – both within single cells and across cells within a population. This time scale, established by non stimulus-driven elements of neuronal firing, is significantly shorter than that of natural scenes, yet is critical for the neural representation of the spatial and temporal structure of the scene. Here, a generalized linear model (GLM) that combines stimulus-driven elements with spike-history dependence associated with intrinsic cellular dynamics is shown to predict the fine timing precision of LGN responses to natural scene stimuli, the corresponding correlation structure across nearby neurons in the population, and the continuous modulation of spike timing precision and latency across neurons. A single model captured the experimentally observed neural response, across different levels of contrasts and different classes of visual stimuli, through interactions between the stimulus correlation structure and the nonlinearity in spike generation and spike history dependence. Given the sensitivity of the thalamocortical synapse to closely timed spikes and the importance of fine timing precision for the faithful representation of natural scenes, the modulation of thalamic population timing over these time scales is likely important for cortical representations of the dynamic natural visual environment. PMID:21151356

  17. Spike Timing and Reliability in Cortical Pyramidal Neurons: Effects of EPSC Kinetics, Input Synchronization and Background Noise on Spike Timing

    PubMed Central

    Rodriguez-Molina, Victor M.; Aertsen, Ad; Heck, Detlef H.

    2007-01-01

    In vivo studies have shown that neurons in the neocortex can generate action potentials at high temporal precision. The mechanisms controlling timing and reliability of action potential generation in neocortical neurons, however, are still poorly understood. Here we investigated the temporal precision and reliability of spike firing in cortical layer V pyramidal cells at near-threshold membrane potentials. Timing and reliability of spike responses were a function of EPSC kinetics, temporal jitter of population excitatory inputs, and of background synaptic noise. We used somatic current injection to mimic population synaptic input events and measured spike probability and spike time precision (STP), the latter defined as the time window (Δt) holding 80% of response spikes. EPSC rise and decay times were varied over the known physiological spectrum. At spike threshold level, EPSC decay time had a stronger influence on STP than rise time. Generally, STP was highest (≤2.45 ms) in response to synchronous compounds of EPSCs with fast rise and decay kinetics. Compounds with slow EPSC kinetics (decay time constants>6 ms) triggered spikes at lower temporal precision (≥6.58 ms). We found an overall linear relationship between STP and spike delay. The difference in STP between fast and slow compound EPSCs could be reduced by incrementing the amplitude of slow compound EPSCs. The introduction of a temporal jitter to compound EPSCs had a comparatively small effect on STP, with a tenfold increase in jitter resulting in only a five fold decrease in STP. In the presence of simulated synaptic background activity, precisely timed spikes could still be induced by fast EPSCs, but not by slow EPSCs. PMID:17389910

  18. The precise temporal calibration of dinosaur origins.

    PubMed

    Marsicano, Claudia A; Irmis, Randall B; Mancuso, Adriana C; Mundil, Roland; Chemale, Farid

    2016-01-19

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic-Jurassic boundary.

  19. Impairments in Precision, Rather than Spatial Strategy, Characterize Performance on the Virtual Morris Water Maze: A Case Study

    PubMed Central

    Kolarik, Branden S.; Shahlaie, Kiarash; Hassan, Abdul; Borders, Alyssa A.; Kaufman, Kyle C.; Gurkoff, Gene; Yonelinas, Andy P.; Ekstrom, Arne D.

    2015-01-01

    Damage to the medial temporal lobes produces profound amnesia, greatly impairing the ability of patients to learn about new associations and events. While studies in rodents suggest a strong link between damage to the hippocampus and the ability to navigate using distal landmarks in a spatial environment, the connection between navigation and memory in humans remains less clear. Past studies on human navigation have provided mixed findings about whether patients with damage to the medial temporal lobes can successfully acquire and navigate new spatial environments, possibly due, in part, to issues related to patient demographics and characterization of medial temporal lobe damage. Here, we report findings from a young, high functioning patient who suffered severe medial temporal lobe damage. Although the patient is densely amnestic, her ability to acquire and utilize new, but coarse, spatial “maps” appears largely intact. Specifically, a novel computational analysis focused on the precision of her spatial search revealed a significant deficit in spatial precision rather than spatial search strategy. These findings argue that an intact hippocampus in humans is not necessary for representing multiple external landmarks during spatial navigation of new environments. We suggest instead that the human hippocampus may store and represent complex high-resolution bindings of features in the environment as part of a larger role in perception, memory, and navigation. PMID:26593960

  20. The precise temporal calibration of dinosaur origins

    PubMed Central

    Marsicano, Claudia A.; Irmis, Randall B.; Mancuso, Adriana C.; Mundil, Roland; Chemale, Farid

    2016-01-01

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U–Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic–Jurassic boundary. PMID:26644579

  1. High-rate RTK and PPP multi-GNSS positioning for small-scale dynamic displacements monitoring

    NASA Astrophysics Data System (ADS)

    Paziewski, Jacek; Sieradzki, Rafał; Baryła, Radosław; Wielgosz, Pawel

    2017-04-01

    The monitoring of dynamic displacements and deformations of engineering structures such as buildings, towers and bridges is of great interest due to several practical and theoretical reasons. The most important is to provide information required for safe maintenance of the constructions. High temporal resolution and precision of GNSS observations predestine this technology to be applied to most demanding application in terms of accuracy, availability and reliability. GNSS technique supported by appropriate processing methodology may meet the specific demands and requirements of ground and structures monitoring. Thus, high-rate multi-GNSS signals may be used as reliable source of information on dynamic displacements of ground and engineering structures, also in real time applications. In this study we present initial results of application of precise relative GNSS positioning for detection of small scale (cm level) high temporal resolution dynamic displacements. Methodology and algorithms applied in self-developed software allowing for relative positioning using high-rate dual-frequency phase and pseudorange GPS+Galileo observations are also given. Additionally, an approach was also made to use the Precise Point Positioning technique to such application. In the experiment were used the observations obtained from high-rate (20 Hz) geodetic receivers. The dynamic displacements were simulated using specially constructed device moving GNSS antenna with dedicated amplitude and frequency. The obtained results indicate on possibility of detection of dynamic displacements of the GNSS antenna even at the level of few millimetres using both relative and Precise Point Positioning techniques after suitable signals processing.

  2. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  3. Advances in the stability of high precision crystal resonators

    NASA Technical Reports Server (NTRS)

    Ballato, A.; Vig, J. R.

    1979-01-01

    Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.

  4. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning

    PubMed Central

    Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald

    2017-01-01

    Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased. PMID:28368346

  5. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning.

    PubMed

    Zhou, Feng; Li, Xingxing; Li, Weiwei; Chen, Wen; Dong, Danan; Wickert, Jens; Schuh, Harald

    2017-04-03

    Benefits from the modernized US Global Positioning System (GPS), the revitalized Russian GLObal NAvigation Satellite System (GLONASS), and the newly-developed Chinese BeiDou Navigation Satellite System (BDS) and European Galileo, multi-constellation Global Navigation Satellite System (GNSS) has emerged as a powerful tool not only in positioning, navigation, and timing (PNT), but also in remote sensing of the atmosphere and ionosphere. Both precise positioning and the derivation of atmospheric parameters can benefit from multi-GNSS observations. In this contribution, extensive evaluations are conducted with multi-GNSS datasets collected from 134 globally-distributed ground stations of the International GNSS Service (IGS) Multi-GNSS Experiment (MGEX) network in July 2016. The datasets are processed in six different constellation combinations, i.e., GPS-, GLONASS-, BDS-only, GPS + GLONASS, GPS + BDS, and GPS + GLONASS + BDS + Galileo precise point positioning (PPP). Tropospheric gradients are estimated with eight different temporal resolutions, from 1 h to 24 h, to investigate the impact of estimating high-resolution gradients on position estimates. The standard deviation (STD) is used as an indicator of positioning repeatability. The results show that estimating tropospheric gradients with high temporal resolution can achieve better positioning performance than the traditional strategy in which tropospheric gradients are estimated on a daily basis. Moreover, the impact of estimating tropospheric gradients with different temporal resolutions at various elevation cutoff angles (from 3° to 20°) is investigated. It can be observed that with increasing elevation cutoff angles, the improvement in positioning repeatability is decreased.

  6. Encoding of Natural Sounds at Multiple Spectral and Temporal Resolutions in the Human Auditory Cortex

    PubMed Central

    Santoro, Roberta; Moerel, Michelle; De Martino, Federico; Goebel, Rainer; Ugurbil, Kamil; Yacoub, Essa; Formisano, Elia

    2014-01-01

    Functional neuroimaging research provides detailed observations of the response patterns that natural sounds (e.g. human voices and speech, animal cries, environmental sounds) evoke in the human brain. The computational and representational mechanisms underlying these observations, however, remain largely unknown. Here we combine high spatial resolution (3 and 7 Tesla) functional magnetic resonance imaging (fMRI) with computational modeling to reveal how natural sounds are represented in the human brain. We compare competing models of sound representations and select the model that most accurately predicts fMRI response patterns to natural sounds. Our results show that the cortical encoding of natural sounds entails the formation of multiple representations of sound spectrograms with different degrees of spectral and temporal resolution. The cortex derives these multi-resolution representations through frequency-specific neural processing channels and through the combined analysis of the spectral and temporal modulations in the spectrogram. Furthermore, our findings suggest that a spectral-temporal resolution trade-off may govern the modulation tuning of neuronal populations throughout the auditory cortex. Specifically, our fMRI results suggest that neuronal populations in posterior/dorsal auditory regions preferably encode coarse spectral information with high temporal precision. Vice-versa, neuronal populations in anterior/ventral auditory regions preferably encode fine-grained spectral information with low temporal precision. We propose that such a multi-resolution analysis may be crucially relevant for flexible and behaviorally-relevant sound processing and may constitute one of the computational underpinnings of functional specialization in auditory cortex. PMID:24391486

  7. Exact event-driven implementation for recurrent networks of stochastic perfect integrate-and-fire neurons.

    PubMed

    Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo

    2012-12-01

    In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

  8. Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input.

    PubMed

    Happel, Max F K; Jeschke, Marcus; Ohl, Frank W

    2010-08-18

    Primary sensory cortex integrates sensory information from afferent feedforward thalamocortical projection systems and convergent intracortical microcircuits. Both input systems have been demonstrated to provide different aspects of sensory information. Here we have used high-density recordings of laminar current source density (CSD) distributions in primary auditory cortex of Mongolian gerbils in combination with pharmacological silencing of cortical activity and analysis of the residual CSD, to dissociate the feedforward thalamocortical contribution and the intracortical contribution to spectral integration. We found a temporally highly precise integration of both types of inputs when the stimulation frequency was in close spectral neighborhood of the best frequency of the measurement site, in which the overlap between both inputs is maximal. Local intracortical connections provide both directly feedforward excitatory and modulatory input from adjacent cortical sites, which determine how concurrent afferent inputs are integrated. Through separate excitatory horizontal projections, terminating in cortical layers II/III, information about stimulus energy in greater spectral distance is provided even over long cortical distances. These projections effectively broaden spectral tuning width. Based on these data, we suggest a mechanism of spectral integration in primary auditory cortex that is based on temporally precise interactions of afferent thalamocortical inputs and different short- and long-range intracortical networks. The proposed conceptual framework allows integration of different and partly controversial anatomical and physiological models of spectral integration in the literature.

  9. Spatio-temporal water quality mapping from satellite images using geographically and temporally weighted regression

    NASA Astrophysics Data System (ADS)

    Chu, Hone-Jay; Kong, Shish-Jeng; Chang, Chih-Hua

    2018-03-01

    The turbidity (TB) of a water body varies with time and space. Water quality is traditionally estimated via linear regression based on satellite images. However, estimating and mapping water quality require a spatio-temporal nonstationary model, while TB mapping necessitates the use of geographically and temporally weighted regression (GTWR) and geographically weighted regression (GWR) models, both of which are more precise than linear regression. Given the temporal nonstationary models for mapping water quality, GTWR offers the best option for estimating regional water quality. Compared with GWR, GTWR provides highly reliable information for water quality mapping, boasts a relatively high goodness of fit, improves the explanation of variance from 44% to 87%, and shows a sufficient space-time explanatory power. The seasonal patterns of TB and the main spatial patterns of TB variability can be identified using the estimated TB maps from GTWR and by conducting an empirical orthogonal function (EOF) analysis.

  10. Geodynamics and temporal variations in the gravity field

    NASA Technical Reports Server (NTRS)

    Mcadoo, D. C.; Wagner, C. A.

    1989-01-01

    Just as the Earth's surface deforms tectonically, so too does the gravity field evolve with time. Now that precise geodesy is yielding observations of these deformations it is important that concomitant, temporal changes in the gravity field be monitored. Although these temporal changes are minute they are observable: changes in the J2 component of the gravity field were inferred from satellite (LAGEOS) tracking data; changes in other components of the gravity field would likely be detected by Geopotential Research Mission (GRM), a proposed but unapproved NASA gravity field mission. Satellite gradiometers were also proposed for high-precision gravity field mapping. Using simple models of geodynamic processes such as viscous postglacial rebound of the solid Earth, great subduction zone earthquakes and seasonal glacial mass fluctuations, we predict temporal changes in gravity gradients at spacecraft altitudes. It was found that these proposed gravity gradient satellite missions should have sensitivities equal to or better than 10(exp -4) E in order to reliably detect these changes. It was also found that satellite altimetry yields little promise of useful detection of time variations in gravity.

  11. Noise-induced hearing loss increases the temporal precision of complex envelope coding by auditory-nerve fibers

    PubMed Central

    Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.

    2014-01-01

    While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545

  12. Assessing the capability of different satellite observing configurations to resolve the distribution of methane emissions at kilometer scales

    NASA Astrophysics Data System (ADS)

    Turner, Alexander J.; Jacob, Daniel J.; Benmergui, Joshua; Brandman, Jeremy; White, Laurent; Randles, Cynthia A.

    2018-06-01

    Anthropogenic methane emissions originate from a large number of fine-scale and often transient point sources. Satellite observations of atmospheric methane columns are an attractive approach for monitoring these emissions but have limitations from instrument precision, pixel resolution, and measurement frequency. Dense observations will soon be available in both low-Earth and geostationary orbits, but the extent to which they can provide fine-scale information on methane sources has yet to be explored. Here we present an observation system simulation experiment (OSSE) to assess the capabilities of different satellite observing system configurations. We conduct a 1-week WRF-STILT simulation to generate methane column footprints at 1.3 × 1.3 km2 spatial resolution and hourly temporal resolution over a 290 × 235 km2 domain in the Barnett Shale, a major oil and gas field in Texas with a large number of point sources. We sub-sample these footprints to match the observing characteristics of the recently launched TROPOMI instrument (7 × 7 km2 pixels, 11 ppb precision, daily frequency), the planned GeoCARB instrument (2.7 × 3.0 km2 pixels, 4 ppb precision, nominal twice-daily frequency), and other proposed observing configurations. The information content of the various observing systems is evaluated using the Fisher information matrix and its eigenvalues. We find that a week of TROPOMI observations should provide information on temporally invariant emissions at ˜ 30 km spatial resolution. GeoCARB should provide information available on temporally invariant emissions ˜ 2-7 km spatial resolution depending on sampling frequency (hourly to daily). Improvements to the instrument precision yield greater increases in information content than improved sampling frequency. A precision better than 6 ppb is critical for GeoCARB to achieve fine resolution of emissions. Transient emissions would be missed with either TROPOMI or GeoCARB. An aspirational high-resolution geostationary instrument with 1.3 × 1.3 km2 pixel resolution, hourly return time, and 1 ppb precision would effectively constrain the temporally invariant emissions in the Barnett Shale at the kilometer scale and provide some information on hourly variability of sources.

  13. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, David J.

    1999-01-01

    A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.

  14. Multichannel heterodyning for wideband interferometry, correlation and signal processing

    DOEpatents

    Erskine, D.J.

    1999-08-24

    A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.

  15. Generating daily high spatial land surface temperatures by combining ASTER and MODIS land surface temperature products for environmental process monitoring.

    PubMed

    Wu, Mingquan; Li, Hua; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-01

    There is a shortage of daily high spatial land surface temperature (LST) data for use in high spatial and temporal resolution environmental process monitoring. To address this shortage, this work used the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), and the Spatial and Temporal Data Fusion Approach (STDFA) to estimate high spatial and temporal resolution LST by combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST and Moderate Resolution Imaging Spectroradiometer (MODIS) LST products. The actual ASTER LST products were used to evaluate the precision of the combined LST images using the correlation analysis method. This method was tested and validated in study areas located in Gansu Province, China. The results show that all the models can generate daily synthetic LST image with a high correlation coefficient (r) of 0.92 between the synthetic image and the actual ASTER LST observations. The ESTARFM has the best performance, followed by the STDFA and the STARFM. Those models had better performance in desert areas than in cropland. The STDFA had better noise immunity than the other two models.

  16. Temporal Precision of Neuronal Information in a Rapid Perceptual Judgment

    PubMed Central

    Ghose, Geoffrey M.; Harrison, Ian T.

    2009-01-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons. PMID:19109454

  17. Temporal precision of neuronal information in a rapid perceptual judgment.

    PubMed

    Ghose, Geoffrey M; Harrison, Ian T

    2009-03-01

    In many situations, such as pedestrians crossing a busy street or prey evading predators, rapid decisions based on limited perceptual information are critical for survival. The brevity of these perceptual judgments constrains how neuronal signals are integrated or pooled over time because the underlying sequence of processes, from sensation to perceptual evaluation to motor planning and execution, all occur within several hundred milliseconds. Because most previous physiological studies of these processes have relied on tasks requiring considerably longer temporal integration, the neuronal basis of such rapid decisions remains largely unexplored. In this study, we examine the temporal precision of neuronal activity associated with a rapid perceptual judgment. We find that the activity of individual neurons over tens of milliseconds can reliably convey information about sensory events and was well correlated with the animals' judgments. There was a strong correlation between sensory reliability and the correlation with behavioral choice, suggesting that rapid decisions were preferentially based on the most reliable sensory signals. We also find that a simple model in which the responses of a small number of individual neurons (<5) are summed can completely explain behavioral performance. These results suggest that neuronal circuits are sufficiently precise to allow for cognitive decisions to be based on small numbers of action potentials from highly reliable neurons.

  18. MR-based source localization for MR-guided HDR brachytherapy

    NASA Astrophysics Data System (ADS)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  19. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  20. Middle cranial fossa approach to repair tegmen defects assisted by three-dimensionally printed temporal bone models.

    PubMed

    Ahmed, Sameer; VanKoevering, Kyle K; Kline, Stephanie; Green, Glenn E; Arts, H Alexander

    2017-10-01

    To explore the perioperative utility of three-dimensionally (3D)-printed temporal bone models of patients undergoing repair of lateral skull base defects and spontaneous cerebrospinal fluid leaks with the middle cranial fossa approach. Case series. 3D-printed temporal bone models-based on patient-specific, high-resolution computed tomographic imaging-were constructed using inexpensive polymer materials. Preoperatively, the models demonstrated the extent of temporal lobe retraction necessary to visualize the proposed defects in the lateral skull base. Also preoperatively, Silastic sheeting was arranged across the modeled tegmen, marked, and cut to cover all of the proposed defect sites. The Silastic sheeting was then sterilized and subsequently served as a precise intraoperative template for a synthetic dural replacement graft. Of note, these grafts were customized without needing to retract the temporal lobe. Five patients underwent the middle cranial fossa approach assisted by 3D-printed temporal bone models to repair tegmen defects and spontaneous cerebrospinal fluid leaks. No complications were encountered. The prefabricated dural repair grafts were easily placed and fit precisely onto the middle fossa floor without any additional modifications. All defects were covered as predicted by the 3D temporal bone models. At their postoperative visits, all five patients maintained resolution of their spontaneous cerebrospinal fluid leaks. Inexpensive 3D-printed temporal bone models of tegmen defects can serve as beneficial adjuncts during lateral skull base repair. The models provide a panoramic preoperative view of all tegmen defects and allow for custom templating of dural grafts without temporal lobe retraction. 4 Laryngoscope, 127:2347-2351, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  1. The iMars web-GIS - spatio-temporal data queries and single image web map services

    NASA Astrophysics Data System (ADS)

    Walter, S. H. G.; Steikert, R.; Schreiner, B.; Sidiropoulos, P.; Tao, Y.; Muller, J.-P.; Putry, A. R. D.; van Gasselt, S.

    2017-09-01

    We introduce a new approach for a system dedicated to planetary surface change detection by simultaneous visualisation of single-image time series in a multi-temporal context. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs.

  2. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products

    PubMed Central

    Zheng, Yang; Wu, Bingfang; Zhang, Miao; Zeng, Hongwei

    2016-01-01

    Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at SPOT5’s spatial resolution and at MODIS’s temporal resolution and a phenology extraction algorithm based on NDVI time-series analysis. The feasibility of our phenology detection approach was evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and MODIS NDVI, with an R2 of greater than 0.69 and an root mean square error (RMSE) of less than 0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters, such as the start and end of season (SOS and EOS), were closely correlated with the field-observed data with an R2 of the SOS ranging from 0.68 to 0.86 and with an R2 of the EOS ranging from 0.72 to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high fragmented farmland, which is meaningful for the implementation of precision agriculture. PMID:27973404

  3. Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products.

    PubMed

    Zheng, Yang; Wu, Bingfang; Zhang, Miao; Zeng, Hongwei

    2016-12-10

    Timely and efficient monitoring of crop phenology at a high spatial resolution are crucial for the precise and effective management of agriculture. Recently, satellite-derived vegetation indices (VIs), such as the Normalized Difference Vegetation Index (NDVI), have been widely used for the phenology detection of terrestrial ecosystems. In this paper, a framework is proposed to detect crop phenology using high spatio-temporal resolution data fused from Systeme Probatoire d'Observation de la Tarre5 (SPOT5) and Moderate Resolution Imaging Spectroradiometer (MODIS) images. The framework consists of a data fusion method to produce a synthetic NDVI dataset at SPOT5's spatial resolution and at MODIS's temporal resolution and a phenology extraction algorithm based on NDVI time-series analysis. The feasibility of our phenology detection approach was evaluated at the county scale in Shandong Province, China. The results show that (1) the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm can accurately blend SPOT5 and MODIS NDVI, with an R ² of greater than 0.69 and an root mean square error (RMSE) of less than 0.11 between the predicted and referenced data; and that (2) the estimated phenology parameters, such as the start and end of season (SOS and EOS), were closely correlated with the field-observed data with an R ² of the SOS ranging from 0.68 to 0.86 and with an R ² of the EOS ranging from 0.72 to 0.79. Our research provides a reliable approach for crop phenology mapping in areas with high fragmented farmland, which is meaningful for the implementation of precision agriculture.

  4. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  5. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks

    PubMed Central

    Lee, Wang Wei; Kukreja, Sunil L.; Thakor, Nitish V.

    2017-01-01

    This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications. PMID:28197065

  6. Temporal Control and Hand Movement Efficiency in Skilled Music Performance

    PubMed Central

    Goebl, Werner; Palmer, Caroline

    2013-01-01

    Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946

  7. A New Time Measurement Method Using a High-End Global Navigation Satellite System to Analyze Alpine Skiing

    ERIC Educational Resources Information Center

    Supej, Matej; Holmberg, Hans-Christer

    2011-01-01

    Accurate time measurement is essential to temporal analysis in sport. This study aimed to (a) develop a new method for time computation from surveyed trajectories using a high-end global navigation satellite system (GNSS), (b) validate its precision by comparing GNSS with photocells, and (c) examine whether gate-to-gate times can provide more…

  8. High precise measurements of cosmogenic radiocarbon abundance by complex of scintillation equipments

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Metskvarishvili, R. Y.; Tsereteli, S. L.

    1985-01-01

    The main characteristics of scintillation equipments which enable the measurements of radiocarbon content with high accuracy of 0.2 to 0.3% were considered. The complex of scintillation devices operated very well for the last 15 years and allowed the investigation of the temporal variation of solar activity and intensity of cosmic rays for the last 300 years.

  9. The value of crossdating to retain high-frequency variability, climate signals, and extreme events in environmental proxies

    Treesearch

    Bryan A. Black; Daniel Griffin; Peter van der Sleen; Alan D. Wanamaker; James H. Speer; David C. Frank; David W. Stahle; Neil Pederson; Carolyn A. Copenheaver; Valerie Trouet; Shelly Griffin; Bronwyn M. Gillanders

    2016-01-01

    High-resolution biogenic and geologic proxies in which one increment or layer is formed per year are crucial to describing natural ranges of environmental variability in Earth's physical and biological systems. However, dating controls are necessary to ensure temporal precision and accuracy; simple counts cannot ensure that all layers are placed correctly in time...

  10. Aging affects neural precision of speech encoding

    PubMed Central

    Anderson, Samira; Parbery-Clark, Alexandra; White-Schwoch, Travis; Kraus, Nina

    2012-01-01

    Older adults frequently report they can hear what is said but cannot understand the meaning, especially in noise. This difficulty may arise from the inability to process rapidly changing elements of speech. Aging is accompanied by a general slowing of neural processing and decreased neural inhibition, both of which likely interfere with temporal processing in auditory and other sensory domains. Age-related reductions in inhibitory neurotransmitter levels and delayed neural recovery can contribute to decreases in the auditory system’s temporal precision. Decreased precision may lead to neural timing delays, reductions in neural response magnitude, and a disadvantage in processing the rapid acoustic changes in speech. The auditory brainstem response (ABR), a scalp-recorded electrical potential, is known for its ability to capture precise neural synchrony within subcortical auditory nuclei; therefore, we hypothesized that a loss of temporal precision results in subcortical timing delays and decreases in response consistency and magnitude. To assess this hypothesis, we recorded ABRs to the speech syllable /da/ in normal hearing younger (ages 18 to 30) and older adult humans (60 to 67). Older adults had delayed ABRs, especially in response to the rapidly changing formant transition, and greater response variability. We also found that older adults had decreased phase locking and smaller response magnitudes than younger adults. Taken together, our results support the theory that older adults have a loss of temporal precision in subcortical encoding of sound, which may account, at least in part, for their difficulties with speech perception. PMID:23055485

  11. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.

    PubMed

    Asano, Toshifumi; Ishizuka, Toru; Yawo, Hiromu

    2017-01-01

    Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

  12. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons

    PubMed Central

    Baudot, Pierre; Levy, Manuel; Marre, Olivier; Monier, Cyril; Pananceau, Marc; Frégnac, Yves

    2013-01-01

    Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating) or higher dimensionality statistics (dense noise). In most cells, natural scene animation was the only condition where high temporal precision (in the 10–20 ms range) was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms) “spike-less” periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non-linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: (1) broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; (2) tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; (3) signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual dense noise. PMID:24409121

  13. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons.

    PubMed

    Baudot, Pierre; Levy, Manuel; Marre, Olivier; Monier, Cyril; Pananceau, Marc; Frégnac, Yves

    2013-01-01

    Synaptic noise is thought to be a limiting factor for computational efficiency in the brain. In visual cortex (V1), ongoing activity is present in vivo, and spiking responses to simple stimuli are highly unreliable across trials. Stimulus statistics used to plot receptive fields, however, are quite different from those experienced during natural visuomotor exploration. We recorded V1 neurons intracellularly in the anaesthetized and paralyzed cat and compared their spiking and synaptic responses to full field natural images animated by simulated eye-movements to those evoked by simpler (grating) or higher dimensionality statistics (dense noise). In most cells, natural scene animation was the only condition where high temporal precision (in the 10-20 ms range) was maintained during sparse and reliable activity. At the subthreshold level, irregular but highly reproducible membrane potential dynamics were observed, even during long (several 100 ms) "spike-less" periods. We showed that both the spatial structure of natural scenes and the temporal dynamics of eye-movements increase the signal-to-noise ratio by a non-linear amplification of the signal combined with a reduction of the subthreshold contextual noise. These data support the view that the sparsening and the time precision of the neural code in V1 may depend primarily on three factors: (1) broadband input spectrum: the bandwidth must be rich enough for recruiting optimally the diversity of spatial and time constants during recurrent processing; (2) tight temporal interplay of excitation and inhibition: conductance measurements demonstrate that natural scene statistics narrow selectively the duration of the spiking opportunity window during which the balance between excitation and inhibition changes transiently and reversibly; (3) signal energy in the lower frequency band: a minimal level of power is needed below 10 Hz to reach consistently the spiking threshold, a situation rarely reached with visual dense noise.

  14. Slow Cholinergic Modulation of Spike Probability in Ultra-Fast Time-Coding Sensory Neurons

    PubMed Central

    Goyer, David; Kurth, Stefanie; Rübsamen, Rudolf

    2016-01-01

    Abstract Sensory processing in the lower auditory pathway is generally considered to be rigid and thus less subject to modulation than central processing. However, in addition to the powerful bottom-up excitation by auditory nerve fibers, the ventral cochlear nucleus also receives efferent cholinergic innervation from both auditory and nonauditory top–down sources. We thus tested the influence of cholinergic modulation on highly precise time-coding neurons in the cochlear nucleus of the Mongolian gerbil. By combining electrophysiological recordings with pharmacological application in vitro and in vivo, we found 55–72% of spherical bushy cells (SBCs) to be depolarized by carbachol on two time scales, ranging from hundreds of milliseconds to minutes. These effects were mediated by nicotinic and muscarinic acetylcholine receptors, respectively. Pharmacological block of muscarinic receptors hyperpolarized the resting membrane potential, suggesting a novel mechanism of setting the resting membrane potential for SBC. The cholinergic depolarization led to an increase of spike probability in SBCs without compromising the temporal precision of the SBC output in vitro. In vivo, iontophoretic application of carbachol resulted in an increase in spontaneous SBC activity. The inclusion of cholinergic modulation in an SBC model predicted an expansion of the dynamic range of sound responses and increased temporal acuity. Our results thus suggest of a top–down modulatory system mediated by acetylcholine which influences temporally precise information processing in the lower auditory pathway. PMID:27699207

  15. Ion microprobe measurement of strontium isotopes in calcium carbonate with application to salmon otoliths

    USGS Publications Warehouse

    Weber, P.K.; Bacon, C.R.; Hutcheon, I.D.; Ingram, B.L.; Wooden, J.L.

    2005-01-01

    The ion microprobe has the capability to generate high resolution, high precision isotopic measurements, but analysis of the isotopic composition of strontium, as measured by the 87Sr/ 86Sr ratio, has been hindered by isobaric interferences. Here we report the first high precision measurements of 87Sr/ 86Sr by ion microprobe in calcium carbonate samples with moderate Sr concentrations. We use the high mass resolving power (7000 to 9000 M.R.P.) of the SHRIMP-RG ion microprobe in combination with its high transmission to reduce the number of interfering species while maintaining sufficiently high count rates for precise isotopic measurements. The isobaric interferences are characterized by peak modeling and repeated analyses of standards. We demonstrate that by sample-standard bracketing, 87Sr/86Sr ratios can be measured in inorganic and biogenic carbonates with Sr concentrations between 400 and 1500 ppm with ???2??? external precision (2??) for a single analysis, and subpermil external precision with repeated analyses. Explicit correction for isobaric interferences (peak-stripping) is found to be less accurate and precise than sample-standard bracketing. Spatial resolution is ???25 ??m laterally and 2 ??m deep for a single analysis, consuming on the order of 2 ng of material. The method is tested on otoliths from salmon to demonstrate its accuracy and utility. In these growth-banded aragonitic structures, one-week temporal resolution can be achieved. The analytical method should be applicable to other calcium carbonate samples with similar Sr concentrations. Copyright ?? 2005 Elsevier Ltd.

  16. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency.

  17. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  18. How Advances in Imaging Will Affect Precision Radiation Oncology.

    PubMed

    Jaffray, David A; Das, Shiva; Jacobs, Paula M; Jeraj, Robert; Lambin, Philippe

    2018-06-01

    Radiation oncology is 1 of the most structured disciplines in medicine. It is of a highly technical nature with reliance on robotic systems to deliver intervention, engagement of diverse expertise, and early adoption of digital approaches to optimize and execute the application of this highly effective cancer treatment. As a localized intervention, the dependence on sensitive, specific, and accurate imaging to define the extent of disease, its heterogeneity, and adjacency to normal tissues directly affects the therapeutic ratio. Image-based in vivo temporal monitoring of the response to treatment enables adaptation and further affects the therapeutic ratio. Thus, more precise intervention will enable fractionation schedules that better interoperate with advances such as immunotherapy. In the data set-rich era that promises precision and personalized medicine, the radiation oncology field will integrate these new data into highly protocoled pathways of care that begin with multimodality prediction and enable patient-specific adaptation of therapy based on quantitative measures of the individual's dose-volume temporal trajectory and midtherapy predictions of response. In addition to advancements in computed tomography imaging, emerging technologies, such as ultra-high-field magnetic resonance and molecular imaging will bring new information to the design of treatments. Next-generation image guided radiation therapy systems will inject high specificity and sensitivity data and stimulate adaptive replanning. In addition, a myriad of pre- and peritherapeutic markers derived from advances in molecular pathology (eg, tumor genomics), automated and comprehensive imaging analytics (eg, radiomics, tumor microenvironment), and many other emerging biomarkers (eg, circulating tumor cell assays) will need to be integrated to maximize the benefit of radiation therapy for an individual patient. We present a perspective on the promise and challenges of fully exploiting imaging data in the pursuit of personalized radiation therapy, drawing from the presentations and broader discussions at the 2016 American Society of Therapeutic Radiation Oncology-National Cancer Institute workshop on Precision Medicine in Radiation Oncology (Bethesda, MD). Copyright © 2018. Published by Elsevier Inc.

  19. Electrical Stimulation in Hippocampus and Entorhinal Cortex Impairs Spatial and Temporal Memory.

    PubMed

    Goyal, Abhinav; Miller, Jonathan; Watrous, Andrew J; Lee, Sang Ah; Coffey, Tom; Sperling, Michael R; Sharan, Ashwini; Worrell, Gregory; Berry, Brent; Lega, Bradley; Jobst, Barbara C; Davis, Kathryn A; Inman, Cory; Sheth, Sameer A; Wanda, Paul A; Ezzyat, Youssef; Das, Sandhitsu R; Stein, Joel; Gorniak, Richard; Jacobs, Joshua

    2018-05-09

    The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred. SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory. Copyright © 2018 the authors 0270-6474/18/384471-11$15.00/0.

  20. Mechanisms of time-based figure-ground segregation.

    PubMed

    Kandil, Farid I; Fahle, Manfred

    2003-11-01

    Figure-ground segregation can rely on purely temporal information, that is, on short temporal delays between positional changes of elements in figure and ground (Kandil, F.I. & Fahle, M. (2001) Eur. J. Neurosci., 13, 2004-2008). Here, we investigate the underlying mechanisms by measuring temporal segregation thresholds for various kinds of motion cues. Segregation can rely on monocular first-order motion (based on luminance modulation) and second-order motion cues (contrast modulation) with a high temporal resolution of approximately 20 ms. The mechanism can also use isoluminant motion with a reduced temporal resolution of 60 ms. Figure-ground segregation can be achieved even at presentation frequencies too high for human subjects to inspect successive frames individually. In contrast, when stimuli are presented dichoptically, i.e. separately to both eyes, subjects are unable to perceive any segregation, irrespective of temporal frequency. We propose that segregation in these displays is detected by a mechanism consisting of at least two stages. On the first level, standard motion or flicker detectors signal local positional changes (flips). On the second level, a segregation mechanism combines the local activities of the low-level detectors with high temporal precision. Our findings suggest that the segregation mechanism can rely on monocular detectors but not on binocular mechanisms. Moreover, the results oppose the idea that segregation in these displays is achieved by motion detectors of a higher order (motion-from-motion), but favour mechanisms sensitive to short temporal delays even without activation of higher-order motion detectors.

  1. A new high-precision 40Ar/39Ar age for the Rochechouart impact structure: At least 5 Ma older than the Triassic-Jurassic boundary

    NASA Astrophysics Data System (ADS)

    Cohen, Benjamin E.; Mark, Darren F.; Lee, Martin R.; Simpson, Sarah L.

    2017-08-01

    The Rochechourt impact structure in south-central France, with maximum diameter of 40-50 km, has previously been dated to within 1% uncertainty of the Triassic-Jurassic boundary, at which time 30% of global genera became extinct. To evaluate the temporal relationship between the impact and the Triassic-Jurassic boundary at high precision, we have re-examined the structure's age using multicollector ARGUS-V 40Ar/39Ar mass spectrometry. Results from four aliquots of impact melt are highly reproducible, and yield an age of 206.92 ± 0.20/0.32 Ma (2σ, full analytical/external uncertainties). Thus, the Rochechouart impact structure predates the Triassic-Jurassic boundary by 5.6 ± 0.4 Ma and so is not temporally linked to the mass extinction. Rochechouart has formerly been proposed to be part of a multiple impact event, but when compared with new ages from the other purported "paired" structures, the results provide no evidence for synchronous impacts in the Late Triassic. The widespread Central Atlantic Magmatic Province flood basalts remain the most likely cause of the Triassic-Jurassic mass extinction.

  2. Precision timing detectors with cadmium-telluride sensor

    NASA Astrophysics Data System (ADS)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  3. Reconstructing time series water volumes of drying lakes in Central Asia with ZY-3 stereo remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, J.; Warner, T.; Bao, A.

    2017-12-01

    Central Asia is one of the world most vulnerable areas responding to global change. Lakes in arid regions of Central Asia remain sensitive to climatic change and fluctuate with temperature and precipitation variations. Study showed that some central asian inland lakes in showed a trend of area shrinkage or extinct in the last decades. Quantitative analysis of lake volume changes in spatio-temporal processes will improve our understanding water resource utilization in arid regions and their responses to regional climate change. However, due to the lack of lake bathmetry or observation data, the volumes of these lakes remain unknown. In this paper, three lakes, such as Chaiwopu lake, Alik Lake and Selectyteniz Lake in Central Asia are used to reconstruct lake volume changes. Firstly, stereo mapping technologies derived from ZY-3 high resolution data are used to map the high-precision 3-D lake bathmetry, so as to create "Area-Level-Volume" based on contours of lake bathmetry. Secondly, time series lake areas in the last 50 years are mapped with multi-source and multi-temporal remote sensing images. Based on lake storage curves and time series lake areas, lake volumes in the last 5 decades can be reconstructed, and the spatio-temporal characteristics of lake volume changes and their mechanisms are also analyzed. The results showed that the high-precision lake hydrological elements are reconstructed on arid drying lakes through the application of stereo mapping technology in remote sensing.

  4. An Optical Parametric Amplifier for Profiling Gases of Atmospheric Interest

    NASA Technical Reports Server (NTRS)

    Heaps, William (Technical Monitor); Burris, John; Richter, Dale

    2004-01-01

    This paper describes the development of a lidar transmitter using an optical parametric amplifier. It is designed for profiling gases of atmospheric interest at high spatial and temporal precision in the near-IR. Discussions on desirable characteristics for such a transmitter with specific reference to the case of CO, are made.

  5. Radiocarbon content in the annual tree rings during last 150 years and time variation of cosmic rays

    NASA Technical Reports Server (NTRS)

    Kocharov, G. E.; Metskvarishvili, R. Y.; Tsereteli, S. L.

    1985-01-01

    The results of the high accuracy measurements of radiocarbon abundance in precisely dated tree rings in the interval 1800 to 1950 yrs are discussed. Radiocarbon content caused by solar activity is established. The temporal dependence of cosmic rays is constructed, by use of radio abundance data.

  6. Towards circuit optogenetics.

    PubMed

    Chen, I-Wen; Papagiakoumou, Eirini; Emiliani, Valentina

    2018-06-01

    Optogenetics neuronal targeting combined with single-photon wide-field illumination has already proved its enormous potential in neuroscience, enabling the optical control of entire neuronal networks and disentangling their role in the control of specific behaviors. However, establishing how a single or a sub-set of neurons controls a specific behavior, or how functionally identical neurons are connected in a particular task, or yet how behaviors can be modified in real-time by the complex wiring diagram of neuronal connections requires more sophisticated approaches enabling to drive neuronal circuits activity with single-cell precision and millisecond temporal resolution. This has motivated on one side the development of flexible optical methods for two-photon (2P) optogenetic activation using either, or a hybrid of two approaches: scanning and parallel illumination. On the other side, it has stimulated the engineering of new opsins with modified spectral characteristics, channel kinetics and spatial distribution of expression, offering the necessary flexibility of choosing the appropriate opsin for each application. The need for optical manipulation of multiple targets with millisecond temporal resolution has imposed three-dimension (3D) parallel holographic illumination as the technique of choice for optical control of neuronal circuits organized in 3D. Today 3D parallel illumination exists in several complementary variants, each with a different degree of simplicity, light uniformity, temporal precision and axial resolution. In parallel, the possibility to reach hundreds of targets in 3D volumes has prompted the development of low-repetition rate amplified laser sources enabling high peak power, while keeping low average power for stimulating each cell. All together those progresses open the way for a precise optical manipulation of neuronal circuits with unprecedented precision and flexibility. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    PubMed

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  8. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity.

    PubMed

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns.

  9. Learning of Precise Spike Times with Homeostatic Membrane Potential Dependent Synaptic Plasticity

    PubMed Central

    Albers, Christian; Westkott, Maren; Pawelzik, Klaus

    2016-01-01

    Precise spatio-temporal patterns of neuronal action potentials underly e.g. sensory representations and control of muscle activities. However, it is not known how the synaptic efficacies in the neuronal networks of the brain adapt such that they can reliably generate spikes at specific points in time. Existing activity-dependent plasticity rules like Spike-Timing-Dependent Plasticity are agnostic to the goal of learning spike times. On the other hand, the existing formal and supervised learning algorithms perform a temporally precise comparison of projected activity with the target, but there is no known biologically plausible implementation of this comparison. Here, we propose a simple and local unsupervised synaptic plasticity mechanism that is derived from the requirement of a balanced membrane potential. Since the relevant signal for synaptic change is the postsynaptic voltage rather than spike times, we call the plasticity rule Membrane Potential Dependent Plasticity (MPDP). Combining our plasticity mechanism with spike after-hyperpolarization causes a sensitivity of synaptic change to pre- and postsynaptic spike times which can reproduce Hebbian spike timing dependent plasticity for inhibitory synapses as was found in experiments. In addition, the sensitivity of MPDP to the time course of the voltage when generating a spike allows MPDP to distinguish between weak (spurious) and strong (teacher) spikes, which therefore provides a neuronal basis for the comparison of actual and target activity. For spatio-temporal input spike patterns our conceptually simple plasticity rule achieves a surprisingly high storage capacity for spike associations. The sensitivity of the MPDP to the subthreshold membrane potential during training allows robust memory retrieval after learning even in the presence of activity corrupted by noise. We propose that MPDP represents a biophysically plausible mechanism to learn temporal target activity patterns. PMID:26900845

  10. Demonstration of a Fast, Precise Propane Measurement Using Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zahniser, M. S.; Roscioli, J. R.; Nelson, D. D.; Herndon, S. C.

    2016-12-01

    Propane is one of the primary components of emissions from natural gas extraction and processing activities. In addition to being an air pollutant, its ratio to other hydrocarbons such as methane and ethane can serve as a "fingerprint" of a particular facility or process, aiding in identifying emission sources. Quantifying propane has typically required laboratory analysis of flask samples, resulting in low temporal resolution and making plume-based measurements infeasible. Here we demonstrate fast (1-second), high precision (<300 ppt) measurements of propane using high resolution mid-infrared spectroscopy at 2967 wavenumbers. In addition, we explore the impact of nearby water and ethane absorption lines on the accuracy and precision of the propane measurement. Finally, we discuss development of a dual-laser instrument capable of simultaneous measurements of methane, ethane, and propane (the C1-C3 compounds), all within a small spatial package that can be easily deployed aboard a mobile platform.

  11. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses

    PubMed Central

    Das, Jayajit

    2016-01-01

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. PMID:26958894

  12. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture

    NASA Astrophysics Data System (ADS)

    Elarab, Manal; Ticlavilca, Andres M.; Torres-Rua, Alfonso F.; Maslova, Inga; McKee, Mac

    2015-12-01

    Precision agriculture requires high-resolution information to enable greater precision in the management of inputs to production. Actionable information about crop and field status must be acquired at high spatial resolution and at a temporal frequency appropriate for timely responses. In this study, high spatial resolution imagery was obtained through the use of a small, unmanned aerial system called AggieAirTM. Simultaneously with the AggieAir flights, intensive ground sampling for plant chlorophyll was conducted at precisely determined locations. This study reports the application of a relevance vector machine coupled with cross validation and backward elimination to a dataset composed of reflectance from high-resolution multi-spectral imagery (VIS-NIR), thermal infrared imagery, and vegetative indices, in conjunction with in situ SPAD measurements from which chlorophyll concentrations were derived, to estimate chlorophyll concentration from remotely sensed data at 15-cm resolution. The results indicate that a relevance vector machine with a thin plate spline kernel type and kernel width of 5.4, having LAI, NDVI, thermal and red bands as the selected set of inputs, can be used to spatially estimate chlorophyll concentration with a root-mean-squared-error of 5.31 μg cm-2, efficiency of 0.76, and 9 relevance vectors.

  13. Urban-scale mapping of PM2.5 distribution via data fusion between high-density sensor network and MODIS Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Ba, Yu Tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Tang, Yu jia; Zhang, Da wei

    2017-04-01

    High-resolution mapping of PM2.5 is the prerequisite for precise analytics and subsequent anti-pollution interventions. Considering the large variances of particulate distribution, urban-scale mapping is challenging either with ground-based fixed stations, with satellites or via models. In this study, a dynamic fusion method between high-density sensor network and MODIS Aerosol Optical Depth (AOD) was introduced. The sensor network was deployed in Beijing ( > 1000 fixed monitors across 16000 km2 area) to provide raw observations with high temporal resolution (sampling interval < 1 hour), high spatial resolution in flat areas ( < 1 km), and low spatial resolution in mountainous areas ( > 5 km). The MODIS AOD was calibrated to provide distribution map with low temporal resolution (daily) and moderate spatial resolution ( = 3 km). By encoding the data quality and defects (e.g. could, reflectance, abnormal), a hybrid interpolation procedure with cross-validation generated PM2.5 distribution with both high temporal and spatial resolution. Several no-pollutant and high-pollution periods were tested to validate the proposed fusion method for capturing the instantaneous patterns of PM2.5 emission.

  14. Temporal precision and the capacity of auditory-verbal short-term memory.

    PubMed

    Gilbert, Rebecca A; Hitch, Graham J; Hartley, Tom

    2017-12-01

    The capacity of serially ordered auditory-verbal short-term memory (AVSTM) is sensitive to the timing of the material to be stored, and both temporal processing and AVSTM capacity are implicated in the development of language. We developed a novel "rehearsal-probe" task to investigate the relationship between temporal precision and the capacity to remember serial order. Participants listened to a sub-span sequence of spoken digits and silently rehearsed the items and their timing during an unfilled retention interval. After an unpredictable delay, a tone prompted report of the item being rehearsed at that moment. An initial experiment showed cyclic distributions of item responses over time, with peaks preserving serial order and broad, overlapping tails. The spread of the response distributions increased with additional memory load and correlated negatively with participants' auditory digit spans. A second study replicated the negative correlation and demonstrated its specificity to AVSTM by controlling for differences in visuo-spatial STM and nonverbal IQ. The results are consistent with the idea that a common resource underpins both the temporal precision and capacity of AVSTM. The rehearsal-probe task may provide a valuable tool for investigating links between temporal processing and AVSTM capacity in the context of speech and language abilities.

  15. Long-Term Temporal Imprecision of Information Coding in the Anterior Cingulate Cortex of Mice with Peripheral Inflammation or Nerve Injury

    PubMed Central

    Li, Xiang-Yao; Wang, Ning; Wang, Yong-Jie; Zuo, Zhen-Xing; Koga, Kohei; Luo, Fei

    2014-01-01

    Temporal properties of spike firing in the central nervous system (CNS) are critical for neuronal coding and the precision of information storage. Chronic pain has been reported to affect cognitive and emotional functions, in addition to trigger long-term plasticity in sensory synapses and behavioral sensitization. Less is known about the possible changes in temporal precision of cortical neurons in chronic pain conditions. In the present study, we investigated the temporal precision of action potential firing in the anterior cingulate cortex (ACC) by using both in vivo and in vitro electrophysiological approaches. We found that peripheral inflammation caused by complete Freund's adjuvant (CFA) increased the standard deviation (SD) of spikes latency (also called jitter) of ∼51% of recorded neurons in the ACC of adult rats in vivo. Similar increases in jitter were found in ACC neurons using in vitro brain slices from adult mice with peripheral inflammation or nerve injury. Bath application of glutamate receptor antagonists CNQX and AP5 abolished the enhancement of jitter induced by CFA injection or nerve injury, suggesting that the increased jitter depends on the glutamatergic synaptic transmission. Activation of adenylyl cyclases (ACs) by bath application of forskolin increased jitter, whereas genetic deletion of AC1 abolished the change of jitter caused by CFA inflammation. Our study provides strong evidence for long-term changes of temporal precision of information coding in cortical neurons after peripheral injuries and explains neuronal mechanism for chronic pain caused cognitive and emotional impairment. PMID:25100600

  16. Fiber-array based optogenetic prosthetic system for stimulation therapy

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Cote, Chris; Tejeda, Hector; Mohanty, Samarendra

    2012-02-01

    Recent advent of optogenetics has enabled activation of genetically-targeted neuronal cells using low intensity blue light with high temporal precision. Since blue light is attenuated rapidly due to scattering and absorption in neural tissue, optogenetic treatment of neurological disorders may require stimulation of specific cell types in multiple regions of the brain. Further, restoration of certain neural functions (vision, and auditory etc) requires accurate spatio-temporal stimulation patterns rather than just precise temporal stimulation. In order to activate multiple regions of the central nervous system in 3D, here, we report development of an optogenetic prosthetic comprising of array of fibers coupled to independently-controllable LEDs. This design avoids direct contact of LEDs with the brain tissue and thus does not require electrical and heat isolation, which can non-specifically stimulate and damage the local brain regions. The intensity, frequency, and duty cycle of light pulses from each fiber in the array was controlled independently using an inhouse developed LabView based program interfaced with a microcontroller driving the individual LEDs. While the temporal profile of the light pulses was controlled by varying the current driving the LED, the beam profile emanating from each fiber tip could be sculpted by microfabrication of the fiber tip. The fiber array was used to stimulate neurons, expressing channelrhodopsin-2, in different locations within the brain or retina. Control of neural activity in the mice cortex, using the fiber-array based prosthetic, is evaluated from recordings made with multi-electrode array (MEA). We also report construction of a μLED array based prosthetic for spatio-temporal stimulation of cortex.

  17. The synaptic ribbon is critical for sound encoding at high rates and with temporal precision

    PubMed Central

    Chakrabarti, Rituparna; Picher, Maria Magdalena; Neef, Jakob; Jung, SangYong; Gültas, Mehmet; Maxeiner, Stephan

    2018-01-01

    We studied the role of the synaptic ribbon for sound encoding at the synapses between inner hair cells (IHCs) and spiral ganglion neurons (SGNs) in mice lacking RIBEYE (RBEKO/KO). Electron and immunofluorescence microscopy revealed a lack of synaptic ribbons and an assembly of several small active zones (AZs) at each synaptic contact. Spontaneous and sound-evoked firing rates of SGNs and their compound action potential were reduced, indicating impaired transmission at ribbonless IHC-SGN synapses. The temporal precision of sound encoding was impaired and the recovery of SGN-firing from adaptation indicated slowed synaptic vesicle (SV) replenishment. Activation of Ca2+-channels was shifted to more depolarized potentials and exocytosis was reduced for weak depolarizations. Presynaptic Ca2+-signals showed a broader spread, compatible with the altered Ca2+-channel clustering observed by super-resolution immunofluorescence microscopy. We postulate that RIBEYE disruption is partially compensated by multi-AZ organization. The remaining synaptic deficit indicates ribbon function in SV-replenishment and Ca2+-channel regulation. PMID:29328020

  18. Spatio-temporal conditional inference and hypothesis tests for neural ensemble spiking precision

    PubMed Central

    Harrison, Matthew T.; Amarasingham, Asohan; Truccolo, Wilson

    2014-01-01

    The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatio-temporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of precise spiking patterns from collections of neurons that is robust to arbitrarily complex and nonstationary coarse spiking dynamics. The main idea is to focus statistical modeling and inference, not on the full distribution of the data, but rather on families of conditional distributions of precise spiking given different types of coarse spiking. The framework is then used to develop families of hypothesis tests for probing the spatio-temporal precision of spiking patterns. Relationships among different conditional distributions are used to improve multiple hypothesis testing adjustments and to design novel Monte Carlo spike resampling algorithms. Of special note are algorithms that can locally jitter spike times while still preserving the instantaneous peri-stimulus time histogram (PSTH) or the instantaneous total spike count from a group of recorded neurons. The framework can also be used to test whether first-order maximum entropy models with possibly random and time-varying parameters can account for observed patterns of spiking. STCI provides a detailed example of the generic principle of conditional inference, which may be applicable in other areas of neurostatistical analysis. PMID:25380339

  19. Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell

    PubMed Central

    Lim, Chun Ping; Mai, Phuong Nguyen Quoc; Roizman Sade, Dan; Lam, Yee Cheong; Cohen, Yehuda

    2016-01-01

    Life of bacteria is governed by the physical dimensions of life in microscales, which is dominated by fast diffusion and flow at low Reynolds numbers. Microbial biofilms are structurally and functionally heterogeneous and their development is suggested to be interactively related to their microenvironments. In this study, we were guided by the challenging requirements of precise tools and engineered procedures to achieve reproducible experiments at high spatial and temporal resolutions. Here, we developed a robust precise engineering approach allowing for the quantification of real-time, high-content imaging of biofilm behaviour under well-controlled flow conditions. Through the merging of engineering and microbial ecology, we present a rigorous methodology to quantify biofilm development at resolutions of single micrometre and single minute, using a newly developed flow cell. We designed and fabricated a high-precision flow cell to create defined and reproducible flow conditions. We applied high-content confocal laser scanning microscopy and developed image quantification using a model biofilm of a defined opportunistic strain, Pseudomonas putida OUS82. We observed complex patterns in the early events of biofilm formation, which were followed by total dispersal. These patterns were closely related to the flow conditions. These biofilm behavioural phenomena were found to be highly reproducible, despite the heterogeneous nature of biofilm. PMID:28721252

  20. Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent

    2010-06-15

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  1. Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope

    DOEpatents

    Bennett, Corey Vincent [Livermore, CA

    2011-11-22

    A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.

  2. Nonlinear computations shaping temporal processing of precortical vision.

    PubMed

    Butts, Daniel A; Cui, Yuwei; Casti, Alexander R R

    2016-09-01

    Computations performed by the visual pathway are constructed by neural circuits distributed over multiple stages of processing, and thus it is challenging to determine how different stages contribute on the basis of recordings from single areas. In the current article, we address this problem in the lateral geniculate nucleus (LGN), using experiments combined with nonlinear modeling capable of isolating various circuit contributions. We recorded cat LGN neurons presented with temporally modulated spots of various sizes, which drove temporally precise LGN responses. We utilized simultaneously recorded S-potentials, corresponding to the primary retinal ganglion cell (RGC) input to each LGN cell, to distinguish the computations underlying temporal precision in the retina from those in the LGN. Nonlinear models with excitatory and delayed suppressive terms were sufficient to explain temporal precision in the LGN, and we found that models of the S-potentials were nearly identical, although with a lower threshold. To determine whether additional influences shaped the response at the level of the LGN, we extended this model to use the S-potential input in combination with stimulus-driven terms to predict the LGN response. We found that the S-potential input "explained away" the major excitatory and delayed suppressive terms responsible for temporal patterning of LGN spike trains but revealed additional contributions, largely PULL suppression, to the LGN response. Using this novel combination of recordings and modeling, we were thus able to dissect multiple circuit contributions to LGN temporal responses across retina and LGN, and set the foundation for targeted study of each stage. Copyright © 2016 the American Physiological Society.

  3. High speed FPGA-based Phasemeter for the far-infrared laser interferometers on EAST

    NASA Astrophysics Data System (ADS)

    Yao, Y.; Liu, H.; Zou, Z.; Li, W.; Lian, H.; Jie, Y.

    2017-12-01

    The far-infrared laser-based HCN interferometer and POlarimeter/INTerferometer\\break (POINT) system are important diagnostics for plasma density measurement on EAST tokamak. Both HCN and POINT provide high spatial and temporal resolution of electron density measurement and used for plasma density feedback control. The density is calculated by measuring the real-time phase difference between the reference beams and the probe beams. For long-pulse operations on EAST, the calculation of density has to meet the requirements of Real-Time and high precision. In this paper, a Phasemeter for far-infrared laser-based interferometers will be introduced. The FPGA-based Phasemeter leverages fast ADCs to obtain the three-frequency signals from VDI planar-diode Mixers, and realizes digital filters and an FFT algorithm in FPGA to provide real-time, high precision electron density output. Implementation of the Phasemeter will be helpful for the future plasma real-time feedback control in long-pulse discharge.

  4. Limiting Energy Dissipation Induces Glassy Kinetics in Single-Cell High-Precision Responses.

    PubMed

    Das, Jayajit

    2016-03-08

    Single cells often generate precise responses by involving dissipative out-of-thermodynamic-equilibrium processes in signaling networks. The available free energy to fuel these processes could become limited depending on the metabolic state of an individual cell. How does limiting dissipation affect the kinetics of high-precision responses in single cells? I address this question in the context of a kinetic proofreading scheme used in a simple model of early-time T cell signaling. Using exact analytical calculations and numerical simulations, I show that limiting dissipation qualitatively changes the kinetics in single cells marked by emergence of slow kinetics, large cell-to-cell variations of copy numbers, temporally correlated stochastic events (dynamic facilitation), and ergodicity breaking. Thus, constraints in energy dissipation, in addition to negatively affecting ligand discrimination in T cells, can create a fundamental difficulty in determining single-cell kinetics from cell-population results. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Temporal processing dysfunction in schizophrenia.

    PubMed

    Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P

    2008-07-01

    Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.

  6. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression.

    PubMed

    Butts, Daniel A; Weng, Chong; Jin, Jianzhong; Alonso, Jose-Manuel; Paninski, Liam

    2011-08-03

    Visual neurons can respond with extremely precise temporal patterning to visual stimuli that change on much slower time scales. Here, we investigate how the precise timing of cat thalamic spike trains-which can have timing as precise as 1 ms-is related to the stimulus, in the context of both artificial noise and natural visual stimuli. Using a nonlinear modeling framework applied to extracellular data, we demonstrate that the precise timing of thalamic spike trains can be explained by the interplay between an excitatory input and a delayed suppressive input that resembles inhibition, such that neuronal responses only occur in brief windows where excitation exceeds suppression. The resulting description of thalamic computation resembles earlier models of contrast adaptation, suggesting a more general role for mechanisms of contrast adaptation in visual processing. Thus, we describe a more complex computation underlying thalamic responses to artificial and natural stimuli that has implications for understanding how visual information is represented in the early stages of visual processing.

  7. Implementation of high precision optical and radiometric LRO tracking data in the orbit determination to supplement the baseline S-band tracking

    NASA Astrophysics Data System (ADS)

    Mao, D.; Torrence, M. H.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.

    2016-12-01

    LRO has been in a polar lunar orbit for 7 year since it was launched in June 2009. Seven instruments are onboard LRO to perform a global and detailed geophysical, geological and geochemical mapping of the Moon, some of which have very high spatial resolution. To take full advantage of the high resolution LRO datasets from these instruments, the spacecraft orbit must be reconstructed precisely. The baseline LRO tracking was the NASA's White Sands station in New Mexico and a commercial network, the Universal Space Network (USN), providing up to 20 hours per day of almost continuous S-band radio frequency link to LRO. The USN stations produce S-band range data with a 0.4 m precision and Doppler data with a 0.8 mm/s precision. Using the S-band tracking data together with the high-resolution gravity field model from the GRAIL mission, definitive LRO orbit solutions are obtained with an accuracy of 10 m in total position and 0.5 m radially. Confirmed by the 0.50-m high-resolution NAC images from the LROC team, these orbits well represent the LRO orbit "truth". In addition to the S-band data, one-way Laser Ranging (LR) to LRO provides a unique LRO optical tracking dataset over 5 years, from June 2009 to September 2014. Ten international satellite laser ranging stations contributed over 4000 hours LR data with the 0.05 - 0.10 m normal point precision. Another set of high precision LRO tracking data is provided by the Deep Space Network (DSN), which produces radiometric tracking data more precise than the USN S-band data. In the last two years of the LRO mission, the temporal coverage of the USN data has decreased significantly. We show that LR and DSN data can be a good supplement to the baseline tracking data for the orbit reconstruction.

  8. Using Aoristic Analysis to Link Remote and Ground-Level Phenological Observations

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.

    2013-12-01

    Phenology is about observing events in time and space. With the advent of publically accessible geospatial datastreams and easy to use mapping software, specifying where an event occurs is much less of a challenge than it was just two decades ago. In contrast, specifying when an event occurs remains a nontrivial function of a population of organismal responses, sampling interval, compositing period, and reporting precision. I explore how aoristic analysis can be used to analyzing spatiotemporal events for which the location is known to acceptable levels of precision but for which temporal coordinates are poorly specified or only partially bounded. Aoristic analysis was developed in the late 1990s in the field of quantitative criminology to leverage temporally imprecise geospatial data of crime reports. Here I demonstrate how aoristic analysis can be used to link remotely sensed observations of land surface phenology to ground-level observations of organismal phenophase transitions. Explicit representation of the windows of temporal uncertainty with aoristic weights enables cross-validation exercises and forecasting efforts to avoid false precision.

  9. Is the Cell Nucleus a Necessary Component in Precise Temporal Patterning?

    PubMed

    Albert, Jaroslav; Rooman, Marianne

    2015-01-01

    One of the functions of the cell nucleus is to help regulate gene expression by controlling molecular traffic across the nuclear envelope. Here we investigate, via stochastic simulation, what effects, if any, does segregation of a system into the nuclear and cytoplasmic compartments have on the stochastic properties of a motif with a negative feedback. One of the effects of the nuclear barrier is to delay the nuclear protein concentration, allowing it to behave in a switch-like manner. We found that this delay, defined as the time for the nuclear protein concentration to reach a certain threshold, has an extremely narrow distribution. To show this, we considered two models. In the first one, the proteins could diffuse freely from cytoplasm to nucleus (simple model); and in the second one, the proteins required assistance from a special class of proteins called importins. For each model, we generated fifty parameter sets, chosen such that the temporal profiles they effectuated were very similar, and whose average threshold time was approximately 150 minutes. The standard deviation of the threshold times computed over one hundred realizations were found to be between 1.8 and 7.16 minutes across both models. To see whether a genetic motif in a prokaryotic cell can achieve this degree of precision, we also simulated five variations on the coherent feed-forward motif (CFFM), three of which contained a negative feedback. We found that the performance of these motifs was nowhere near as impressive as the one found in the eukaryotic cell; the best standard deviation was 6.6 minutes. We argue that the significance of these results, the fact and necessity of spatio-temporal precision in the developmental stages of eukaryotes, and the absence of such a precision in prokaryotes, all suggest that the nucleus has evolved, in part, under the selective pressure to achieve highly predictable phenotypes.

  10. Detecting declines in the abundance of a bull trout (Salvelinus confluentus) population: Understanding the accuracy, precision, and costs of our efforts

    USGS Publications Warehouse

    Al-Chokhachy, R.; Budy, P.; Conner, M.

    2009-01-01

    Using empirical field data for bull trout (Salvelinus confluentus), we evaluated the trade-off between power and sampling effort-cost using Monte Carlo simulations of commonly collected mark-recapture-resight and count data, and we estimated the power to detect changes in abundance across different time intervals. We also evaluated the effects of monitoring different components of a population and stratification methods on the precision of each method. Our results illustrate substantial variability in the relative precision, cost, and information gained from each approach. While grouping estimates by age or stage class substantially increased the precision of estimates, spatial stratification of sampling units resulted in limited increases in precision. Although mark-resight methods allowed for estimates of abundance versus indices of abundance, our results suggest snorkel surveys may be a more affordable monitoring approach across large spatial scales. Detecting a 25% decline in abundance after 5 years was not possible, regardless of technique (power = 0.80), without high sampling effort (48% of study site). Detecting a 25% decline was possible after 15 years, but still required high sampling efforts. Our results suggest detecting moderate changes in abundance of freshwater salmonids requires considerable resource and temporal commitments and highlight the difficulties of using abundance measures for monitoring bull trout populations.

  11. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  12. Temporal tuning in the bat auditory cortex is sharper when studied with natural echolocation sequences.

    PubMed

    Beetz, M Jerome; Hechavarría, Julio C; Kössl, Manfred

    2016-06-30

    Precise temporal coding is necessary for proper acoustic analysis. However, at cortical level, forward suppression appears to limit the ability of neurons to extract temporal information from natural sound sequences. Here we studied how temporal processing can be maintained in the bats' cortex in the presence of suppression evoked by natural echolocation streams that are relevant to the bats' behavior. We show that cortical neurons tuned to target-distance actually profit from forward suppression induced by natural echolocation sequences. These neurons can more precisely extract target distance information when they are stimulated with natural echolocation sequences than during stimulation with isolated call-echo pairs. We conclude that forward suppression does for time domain tuning what lateral inhibition does for selectivity forms such as auditory frequency tuning and visual orientation tuning. When talking about cortical processing, suppression should be seen as a mechanistic tool rather than a limiting element.

  13. Extended Kalman filtering for continuous volumetric MR-temperature imaging.

    PubMed

    Denis de Senneville, Baudouin; Roujol, Sébastien; Hey, Silke; Moonen, Chrit; Ries, Mario

    2013-04-01

    Real time magnetic resonance (MR) thermometry has evolved into the method of choice for the guidance of high-intensity focused ultrasound (HIFU) interventions. For this role, MR-thermometry should preferably have a high temporal and spatial resolution and allow observing the temperature over the entire targeted area and its vicinity with a high accuracy. In addition, the precision of real time MR-thermometry for therapy guidance is generally limited by the available signal-to-noise ratio (SNR) and the influence of physiological noise. MR-guided HIFU would benefit of the large coverage volumetric temperature maps, including characterization of volumetric heating trajectories as well as near- and far-field heating. In this paper, continuous volumetric MR-temperature monitoring was obtained as follows. The targeted area was continuously scanned during the heating process by a multi-slice sequence. Measured data and a priori knowledge of 3-D data derived from a forecast based on a physical model were combined using an extended Kalman filter (EKF). The proposed reconstruction improved the temperature measurement resolution and precision while maintaining guaranteed output accuracy. The method was evaluated experimentally ex vivo on a phantom, and in vivo on a porcine kidney, using HIFU heating. On the in vivo experiment, it allowed the reconstruction from a spatio-temporally under-sampled data set (with an update rate for each voxel of 1.143 s) to a 3-D dataset covering a field of view of 142.5×285×54 mm(3) with a voxel size of 3×3×6 mm(3) and a temporal resolution of 0.127 s. The method also provided noise reduction, while having a minimal impact on accuracy and latency.

  14. Automated extraction and validation of children's gait parameters with the Kinect.

    PubMed

    Motiian, Saeid; Pergami, Paola; Guffey, Keegan; Mancinelli, Corrie A; Doretto, Gianfranco

    2015-12-02

    Gait analysis for therapy regimen prescription and monitoring requires patients to physically access clinics with specialized equipment. The timely availability of such infrastructure at the right frequency is especially important for small children. Besides being very costly, this is a challenge for many children living in rural areas. This is why this work develops a low-cost, portable, and automated approach for in-home gait analysis, based on the Microsoft Kinect. A robust and efficient method for extracting gait parameters is introduced, which copes with the high variability of noisy Kinect skeleton tracking data experienced across the population of young children. This is achieved by temporally segmenting the data with an approach based on coupling a probabilistic matching of stride template models, learned offline, with the estimation of their global and local temporal scaling. A preliminary study conducted on healthy children between 2 and 4 years of age is performed to analyze the accuracy, precision, repeatability, and concurrent validity of the proposed method against the GAITRite when measuring several spatial and temporal children's gait parameters. The method has excellent accuracy and good precision, with segmenting temporal sequences of body joint locations into stride and step cycles. Also, the spatial and temporal gait parameters, estimated automatically, exhibit good concurrent validity with those provided by the GAITRite, as well as very good repeatability. In particular, on a range of nine gait parameters, the relative and absolute agreements were found to be good and excellent, and the overall agreements were found to be good and moderate. This work enables and validates the automated use of the Kinect for children's gait analysis in healthy subjects. In particular, the approach makes a step forward towards developing a low-cost, portable, parent-operated in-home tool for clinicians assisting young children.

  15. Object-Driven and Temporal Action Rules Mining

    ERIC Educational Resources Information Center

    Hajja, Ayman

    2013-01-01

    In this thesis, I present my complete research work in the field of action rules, more precisely object-driven and temporal action rules. The drive behind the introduction of object-driven and temporally based action rules is to bring forth an adapted approach to extract action rules from a subclass of systems that have a specific nature, in which…

  16. High-Precision U-Pb Geochronology and Correlation: An example Using the Neoproterozic-Cambrian Transition

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Grotzinger, J. P.; Amthor, J.; Martin, M. E.

    2001-05-01

    The precise, global correlation of Precambrian and Paleozoic sedimentary rocks can be achieved using temporally calibrated chemostratigraphic records. This approach is essential for determining rates and causes of environmental and faunal change, including mass extinctions. For example, The Neoproterozoic is marked by major environmental change, including periods of global glaciation, large fluctuations in the sequestration of carbon and major tectonic reorganization followed by the explosive diversification of animals in the earliest Cambrian. The extreme climatic change associated with these glaciations have been implicated as a possible trigger for the Cambrian explosion. The recognition of thin zircon-bearing air-fall ash in Neoproterozoic and Cambrian rocks has allowed the establishment of a high-precision temporal framework for animal evolution and is helping to untangle the history of glaciations. In some cases analytical uncertainties translate to age uncertainties of less than 1 Ma and when integrated with chemostratigraphy, the potential for global correlations at even higher resolution. Progress in the global correlation of Neoproterozoic strata has been achieved through the use of C and Sr isotope chemostratigraphy although it has been hampered by a lack of precise geochronological and faunal control. For example, the period from ca 800-580 Ma is characterized by at least two and perhaps as many as four glacial events that are interpreted by many to be global glaciations on a "Snowball Earth". A lack of precise chronological constraints on the number and duration of glaciations, multiple large excursions in the carbon isotopic record, and an absence of detailed biostratigraphy have complicated global correlation and hindered our understanding of this important period of Earth history. However, the ongoing integration of chemostratigraphic and geochronological data are improving temporal resolution and detailed correlations. These data are critical for understanding the causes and effects of Neoproterozoic glaciations. The Cambrian-Precambrian boundary is generally associated with a negative shift in carbon values although global isochroneity has not yet been demonstrated and unconformities mark the boundary in many places. New data suggest an age of 542 Ma for the excursion and boundary in Oman; results from Namibia, Oman, and Siberia are all consistent with this result. It has yet to be demonstrated that the paleontologically defined boundary coincides with the isotopic shift or is globally isochronous. The emerging geochronological framework, when combined with integrated paleontological, chemostratigraphic, and geological data will allow detailed global correlation and evaluation of models that invoke both intrinsic and extrinsic triggers for evolution.

  17. Pyramidal cell-interneuron interactions underlie hippocampal ripple oscillations.

    PubMed

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2014-07-16

    High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin- (PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV interneuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked interneuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations

    PubMed Central

    Stark, Eran; Roux, Lisa; Eichler, Ronny; Senzai, Yuta; Royer, Sebastien; Buzsáki, György

    2015-01-01

    SUMMARY High-frequency ripple oscillations, observed most prominently in the hippocampal CA1 pyramidal layer, are associated with memory consolidation. The cellular and network mechanisms underlying the generation, frequency control, and spatial coherence of the rhythm are poorly understood. Using multisite optogenetic manipulations in freely behaving rodents, we found that depolarization of a small group of nearby pyramidal cells was sufficient to induce high-frequency oscillations, whereas closed-loop silencing of pyramidal cells or activation of parvalbumin-(PV) or somatostatin-immunoreactive interneurons aborted spontaneously occurring ripples. Focal pharmacological blockade of GABAA receptors abolished ripples. Localized PV inter-neuron activation paced ensemble spiking, and simultaneous induction of high-frequency oscillations at multiple locations resulted in a temporally coherent pattern mediated by phase-locked inter-neuron spiking. These results constrain competing models of ripple generation and indicate that temporally precise local interactions between excitatory and inhibitory neurons support ripple generation in the intact hippocampus. PMID:25033186

  19. Quantifying auditory temporal stability in a large database of recorded music.

    PubMed

    Ellis, Robert J; Duan, Zhiyan; Wang, Ye

    2014-01-01

    "Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.

  20. A dissociation between selective attention and conscious awareness in the representation of temporal order information.

    PubMed

    Eimer, Martin; Grubert, Anna

    2015-09-01

    Previous electrophysiological studies have shown that attentional selection processes are highly sensitive to the temporal order of task-relevant visual events. When two successively presented colour-defined target stimuli are separated by a stimulus onset asynchrony (SOA) of only 10 ms, the onset latencies of N2pc components to these stimuli (which reflect their attentional selection) precisely match their objective temporal separation. We tested whether such small onset differences are accessible to conscious awareness by instructing participants to report the category (letter or digit) of the first of two target-colour items that were separated by an SOA of 10, 20, or 30 ms. Performance was at chance level for the 10 ms SOA, demonstrating that temporal order information which is available to attentional control processes cannot be utilized for conscious temporal order judgments. These results provide new evidence that selective attention and conscious awareness are functionally separable, and support the hypothesis that attention and awareness operate at different stages of cognitive processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals

    PubMed Central

    Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.

    2016-01-01

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179

  2. Behavioral and Single-Neuron Sensitivity to Millisecond Variations in Temporally Patterned Communication Signals.

    PubMed

    Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A

    2016-08-24

    In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.

  3. Adaptive spatio-temporal filtering of disturbed ECGs: a multi-channel approach to heartbeat detection in smart clothing.

    PubMed

    Wiklund, Urban; Karlsson, Marcus; Ostlund, Nils; Berglin, Lena; Lindecrantz, Kaj; Karlsson, Stefan; Sandsjö, Leif

    2007-06-01

    Intermittent disturbances are common in ECG signals recorded with smart clothing: this is mainly because of displacement of the electrodes over the skin. We evaluated a novel adaptive method for spatio-temporal filtering for heartbeat detection in noisy multi-channel ECGs including short signal interruptions in single channels. Using multi-channel database recordings (12-channel ECGs from 10 healthy subjects), the results showed that multi-channel spatio-temporal filtering outperformed regular independent component analysis. We also recorded seven channels of ECG using a T-shirt with textile electrodes. Ten healthy subjects performed different sequences during a 10-min recording: resting, standing, flexing breast muscles, walking and pushups. Using adaptive multi-channel filtering, the sensitivity and precision was above 97% in nine subjects. Adaptive multi-channel spatio-temporal filtering can be used to detect heartbeats in ECGs with high noise levels. One application is heartbeat detection in noisy ECG recordings obtained by integrated textile electrodes in smart clothing.

  4. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    PubMed

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  5. All-Fiber, Directly Chirped Laser Source for Chirped-Pulse-Amplification

    NASA Astrophysics Data System (ADS)

    Xin, Ran

    Chirped-pulse-amplification (CPA) technology is widely used to produce ultra-short optical pulses (sub picosecond to femtoseconds) with high pulse energy. A chirped pulse laser source with flexible dispersion control is highly desirable as a CPA seed. This thesis presents an all-fiber, directly chirped laser source (DCLS) that produces nanosecond, linearly-chirped laser pulses at 1053 nm for seeding high energy CPA systems. DCLS produces a frequency chirp on an optical pulse through direct temporal phase modulation. DCLS provides programmable control for the temporal phase of the pulse, high pulse energy and diffraction-limited beam performance, which are beneficial for CPA systems. The DCLS concept is first described. Its key enabling technologies are identified and their experimental demonstration is presented. These include high-precision temporal phase control using an arbitrary waveform generator, multi-pass phase modulation to achieve high modulation depth, regenerative amplification in a fiber ring cavity and a negative feedback system that controls the amplifier cavity dynamics. A few technical challenges that arise from the multi-pass architecture are described and their solutions are presented, such as polarization management and gain-spectrum engineering in the DCLS fiber cavity. A DCLS has been built and its integration into a high energy OPCPA system is demonstrated. DCLS produces a 1-ns chirped pulse with a 3-nm bandwidth. The temporal phase and group delay dispersion on the DCLS output pulse is measured using temporal interferometry. The measured temporal phase has an ˜1000 rad amplitude and is close to a quadratic shape. The chirped pulse is amplified from 0.9 nJ to 76 mJ in an OPCPA system. The amplified pulse is compressed to close to its Fourier transform limit, producing an intensity autocorrelation trace with a 1.5-ps width. Direct compressed-pulse duration control by adjusting the phase modulation drive amplitude is demonstrated. Limitation to pulse compression is investigated using numerical simulation.

  6. On the use of orientation filters for 3D reconstruction in event-driven stereo vision

    PubMed Central

    Camuñas-Mesa, Luis A.; Serrano-Gotarredona, Teresa; Ieng, Sio H.; Benosman, Ryad B.; Linares-Barranco, Bernabe

    2014-01-01

    The recently developed Dynamic Vision Sensors (DVS) sense visual information asynchronously and code it into trains of events with sub-micro second temporal resolution. This high temporal precision makes the output of these sensors especially suited for dynamic 3D visual reconstruction, by matching corresponding events generated by two different sensors in a stereo setup. This paper explores the use of Gabor filters to extract information about the orientation of the object edges that produce the events, therefore increasing the number of constraints applied to the matching algorithm. This strategy provides more reliably matched pairs of events, improving the final 3D reconstruction. PMID:24744694

  7. Simultaneous neural and movement recording in large-scale immersive virtual environments.

    PubMed

    Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard

    2013-10-01

    Virtual reality (VR) allows precise control and manipulation of rich, dynamic stimuli that, when coupled with on-line motion capture and neural monitoring, can provide a powerful means both of understanding brain behavioral relations in the high dimensional world and of assessing and treating a variety of neural disorders. Here we present a system that combines state-of-the-art, fully immersive, 3D, multi-modal VR with temporally aligned electroencephalographic (EEG) recordings. The VR system is dynamic and interactive across visual, auditory, and haptic interactions, providing sight, sound, touch, and force. Crucially, it does so with simultaneous EEG recordings while subjects actively move about a 20 × 20 ft² space. The overall end-to-end latency between real movement and its simulated movement in the VR is approximately 40 ms. Spatial precision of the various devices is on the order of millimeters. The temporal alignment with the neural recordings is accurate to within approximately 1 ms. This powerful combination of systems opens up a new window into brain-behavioral relations and a new means of assessment and rehabilitation of individuals with motor and other disorders.

  8. Thermospheric density variations: Observability using precision satellite orbits and effects on orbit propagation

    NASA Astrophysics Data System (ADS)

    Lechtenberg, Travis; McLaughlin, Craig A.; Locke, Travis; Krishna, Dhaval Mysore

    2013-01-01

    paper examines atmospheric density estimated using precision orbit ephemerides (POE) from the CHAMP and GRACE satellites during short periods of greater atmospheric density variability. The results of the calibration of CHAMP densities derived using POEs with those derived using accelerometers are examined for three different types of density perturbations, [traveling atmospheric disturbances (TADs), geomagnetic cusp phenomena, and midnight density maxima] in order to determine the temporal resolution of POE solutions. In addition, the densities are compared to High-Accuracy Satellite Drag Model (HASDM) densities to compare temporal resolution for both types of corrections. The resolution for these models of thermospheric density was found to be inadequate to sufficiently characterize the short-term density variations examined here. Also examined in this paper is the effect of differing density estimation schemes by propagating an initial orbit state forward in time and examining induced errors. The propagated POE-derived densities incurred errors of a smaller magnitude than the empirical models and errors on the same scale or better than those incurred using the HASDM model.

  9. Distinct neuronal coding schemes in memory revealed by selective erasure of fast synchronous synaptic transmission.

    PubMed

    Xu, Wei; Morishita, Wade; Buckmaster, Paul S; Pang, Zhiping P; Malenka, Robert C; Südhof, Thomas C

    2012-03-08

    Neurons encode information by firing spikes in isolation or bursts and propagate information by spike-triggered neurotransmitter release that initiates synaptic transmission. Isolated spikes trigger neurotransmitter release unreliably but with high temporal precision. In contrast, bursts of spikes trigger neurotransmission reliably (i.e., boost transmission fidelity), but the resulting synaptic responses are temporally imprecise. However, the relative physiological importance of different spike-firing modes remains unclear. Here, we show that knockdown of synaptotagmin-1, the major Ca(2+) sensor for neurotransmitter release, abrogated neurotransmission evoked by isolated spikes but only delayed, without abolishing, neurotransmission evoked by bursts of spikes. Nevertheless, knockdown of synaptotagmin-1 in the hippocampal CA1 region did not impede acquisition of recent contextual fear memories, although it did impair the precision of such memories. In contrast, knockdown of synaptotagmin-1 in the prefrontal cortex impaired all remote fear memories. These results indicate that different brain circuits and types of memory employ distinct spike-coding schemes to encode and transmit information. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis

    NASA Astrophysics Data System (ADS)

    Besnard, Fabrice; Refahi, Yassin; Morin, Valérie; Marteaux, Benjamin; Brunoud, Géraldine; Chambrier, Pierre; Rozier, Frédérique; Mirabet, Vincent; Legrand, Jonathan; Lainé, Stéphanie; Thévenon, Emmanuel; Farcot, Etienne; Cellier, Coralie; Das, Pradeep; Bishopp, Anthony; Dumas, Renaud; Parcy, François; Helariutta, Ykä; Boudaoud, Arezki; Godin, Christophe; Traas, Jan; Guédon, Yann; Vernoux, Teva

    2014-01-01

    How biological systems generate reproducible patterns with high precision is a central question in science. The shoot apical meristem (SAM), a specialized tissue producing plant aerial organs, is a developmental system of choice to address this question. Organs are periodically initiated at the SAM at specific spatial positions and this spatiotemporal pattern defines phyllotaxis. Accumulation of the plant hormone auxin triggers organ initiation, whereas auxin depletion around organs generates inhibitory fields that are thought to be sufficient to maintain these patterns and their dynamics. Here we show that another type of hormone-based inhibitory fields, generated directly downstream of auxin by intercellular movement of the cytokinin signalling inhibitor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), is involved in regulating phyllotactic patterns. We demonstrate that AHP6-based fields establish patterns of cytokinin signalling in the meristem that contribute to the robustness of phyllotaxis by imposing a temporal sequence on organ initiation. Our findings indicate that not one but two distinct hormone-based fields may be required for achieving temporal precision during formation of reiterative structures at the SAM, thus indicating an original mechanism for providing robustness to a dynamic developmental system.

  11. High-precision U-Pb zircon geochronological constraints on the End-Triassic Mass Extinction, the late Triassic Astronomical Time Scale and geochemical evolution of CAMP magmatism

    NASA Astrophysics Data System (ADS)

    Blackburn, T. J.; Olsen, P. E.; Bowring, S. A.; McLean, N. M.; Kent, D. V.; Puffer, J. H.; McHone, G.; Rasbury, T.

    2012-12-01

    Mass extinction events that punctuate Earth's history have had a large influence on the evolution, diversity and composition of our planet's biosphere. The approximate temporal coincidence between the five major extinction events over the last 542 million years and the eruption of Large Igneous Provinces (LIPs) has led to the speculation that climate and environmental perturbations generated by the emplacement of a large volume of magma in a short period of time triggered each global biologic crisis. Establishing a causal link between extinction and the onset and tempo of LIP eruption has proved difficult because of the geographic separation between LIP volcanic deposits and stratigraphic sequences preserving evidence of the extinction. In most cases, the uncertainties on available radioisotopic dates used to correlate between geographically separated study areas often exceed the duration of both the extinction interval and LIP volcanism by an order of magnitude. The "end-Triassic extinction" (ETE) is one of the "big five" and is characterized by the disappearance of several terrestrial and marine species and dominance of Dinosaurs for the next 134 million years. Speculation on the cause has centered on massive climate perturbations thought to accompany the eruption of flood basalts related to the Central Atlantic Magmatic Province (CAMP), the most aerially extensive and volumetrically one of the largest LIPs on Earth. Despite an approximate temporal coincidence between extinction and volcanism, there lacks evidence placing the eruption of CAMP prior to or at the initiation of the extinction. Estimates of the timing and/or duration of CAMP volcanism provided by astrochronology and Ar-Ar geochronology differ by an order of magnitude, precluding high-precision tests of the relationship between LIP volcanism and the mass extinction, the causes of which are dependent upon the rate of magma eruption. Here we present high precision zircon U-Pb ID-TIMS geochronologic data for eight CAMP flows and sills from the eastern U.S. and Morocco. These data are used first to independently test the astronomically calibrated time scale and sediment accumulation rates within the Triassic-Jurassic rift basins along the eastern North America. The U-Pb, paleontological, magnetostratigraphic and astronomical data are combined to constrain the onset and duration of the CAMP and clarify the temporal relationship between the CAMP and the ETE. The dataset together allows more precise estimates of eruptive volume per unit time, a requirement for rigorous evaluation of climate-driven models for the extinction.

  12. Spatio-temporal filtering techniques for the detection of disaster-related communication.

    PubMed

    Fitzhugh, Sean M; Ben Gibson, C; Spiro, Emma S; Butts, Carter T

    2016-09-01

    Individuals predominantly exchange information with one another through informal, interpersonal channels. During disasters and other disrupted settings, information spread through informal channels regularly outpaces official information provided by public officials and the press. Social scientists have long examined this kind of informal communication in the rumoring literature, but studying rumoring in disrupted settings has posed numerous methodological challenges. Measuring features of informal communication-timing, content, location-with any degree of precision has historically been extremely challenging in small studies and infeasible at large scales. We address this challenge by using online, informal communication from a popular microblogging website and for which we have precise spatial and temporal metadata. While the online environment provides a new means for observing rumoring, the abundance of data poses challenges for parsing hazard-related rumoring from countless other topics in numerous streams of communication. Rumoring about disaster events is typically temporally and spatially constrained to places where that event is salient. Accordingly, we use spatio and temporal subsampling to increase the resolution of our detection techniques. By filtering out data from known sources of error (per rumor theories), we greatly enhance the signal of disaster-related rumoring activity. We use these spatio-temporal filtering techniques to detect rumoring during a variety of disaster events, from high-casualty events in major population centers to minimally destructive events in remote areas. We consistently find three phases of response: anticipatory excitation where warnings and alerts are issued ahead of an event, primary excitation in and around the impacted area, and secondary excitation which frequently brings a convergence of attention from distant locales onto locations impacted by the event. Our results demonstrate the promise of spatio-temporal filtering techniques for "tuning" measurement of hazard-related rumoring to enable observation of rumoring at scales that have long been infeasible. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The pre-orogenic detrital zircon record of the Variscan orogeny: Preliminary results

    NASA Astrophysics Data System (ADS)

    Stephan, Tobias; Kroner, Uwe

    2017-04-01

    To test plate-tectonic constellations in consideration of the long-term development of sedimentary transport paths, temporally and spatially highly resolved records of provenance analysis are mandatory. The interpretation of existing studies focus on small-scale areas within an orogen thereby neglecting the differing distribution of provenance data in the entire orogenic system. This study reviews a large data set of compiled geochronological data to document the development of pre-orogenic tectonic units on the example of the Variscan orogeny. Constrained by tectonic and geological models, the temporal distribution of U-Pb detrital zircon ages, used as a proxy for sedimentary provenance, shows that some minima and maxima of zircon abundance are nearly synchronous for thousands of kilometres along the orogeny. Age spectra of Precambrian to Lower Palaeozoic samples were constructed on the basis of 38729 U-Pb ages from 685 samples that were compiled from 102 publications. The age compilation combines thermal ionization mass spectrometry (TIMS), laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS), sensitive high-resolution ion microprobe (SHRIMP), and secondary ion mass spectrometry (SIMS) analyses. The data was re-processed using a common age calculation and concordance filter to ensure comparability. The concordance of each zircon grain was calculated from 206Pb/238U and 207Pb/235U ages to guarantee that only concordant grains, i.e., with <10% normal and <5% reverse discordance, were included in the age compilation. In order to ignore a metamorphic overprint and hence a blur of the younger age spectra, the compilation is constrained to age data older than 400 Ma only. If a precise sample age is not documented by the author, the weighted-mean age of the youngest zircon population (n > 3) is used for the maximum age of deposition. In addition to the location of >600 samples, the precise depositional ages result in a spatially and temporally high resolution. To avoid the different levels of analytical precision of the compiled TIMS, LA-ICP-MS, SHRIMP, and SIMS data, detrital zircon ages are plotted as kernel density estimates. Spatial and temporal distribution of the kernel density estimates, as well as further statistical techniques (e.g. multidimensional scaling) are used to discriminate groups of similar age distributions. Preliminary results reveal four major sources for the pre-orogenic sedimentary units (i.e. Saharan Metacraton, West-African craton, Amazonas craton and Fennoscandian shield). The mixing of several source signals in Gondwana derived sediment spectra point to vast deltaic systems along the Gondwanan shelf area.

  14. Temporal Imaging CeBr3 Compton Camera: A New Concept for Nuclear Decommissioning and Nuclear Waste Management

    NASA Astrophysics Data System (ADS)

    Iltis, A.; Snoussi, H.; Magalhaes, L. Rodrigues de; Hmissi, M. Z.; Zafiarifety, C. Tata; Tadonkeng, G. Zeufack; Morel, C.

    2018-01-01

    During nuclear decommissioning or waste management operations, a camera that could make an image of the contamination field and identify and quantify the contaminants would be a great progress. Compton cameras have been proposed, but their limited efficiency for high energy gamma rays and their cost have severely limited their application. Our objective is to promote a Compton camera for the energy range (200 keV - 2 MeV) that uses fast scintillating crystals and a new concept for locating scintillation event: Temporal Imaging. Temporal Imaging uses monolithic plates of fast scintillators and measures photons time of arrival distribution in order to locate each gamma ray with a high precision in space (X,Y,Z), time (T) and energy (E). This provides a native estimation of the depth of interaction (Z) of every detected gamma ray. This also allows a time correction for the propagation time of scintillation photons inside the crystal, therefore resulting in excellent time resolution. The high temporal resolution of the system makes it possible to veto quite efficiently background by using narrow time coincidence (< 300 ps). It is also possible to reconstruct the direction of propagation of the photons inside the detector using timing constraints. The sensitivity of our system is better than 1 nSv/h in a 60 s acquisition with a 22Na source. The project TEMPORAL is funded by the ANDRA/PAI under the grant No. RTSCNADAA160019.

  15. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder.

    PubMed

    Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang

    2016-10-21

    During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as "frame difference" and "optical flow", may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a "multi-block temporal-analyzing LBP (Local Binary Pattern)" algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder.

  16. Temporal Delineation and Quantification of Short Term Clustered Mining Seismicity

    NASA Astrophysics Data System (ADS)

    Woodward, Kyle; Wesseloo, Johan; Potvin, Yves

    2017-07-01

    The assessment of the temporal characteristics of seismicity is fundamental to understanding and quantifying the seismic hazard associated with mining, the effectiveness of strategies and tactics used to manage seismic hazard, and the relationship between seismicity and changes to the mining environment. This article aims to improve the accuracy and precision in which the temporal dimension of seismic responses can be quantified and delineated. We present a review and discussion on the occurrence of time-dependent mining seismicity with a specific focus on temporal modelling and the modified Omori law (MOL). This forms the basis for the development of a simple weighted metric that allows for the consistent temporal delineation and quantification of a seismic response. The optimisation of this metric allows for the selection of the most appropriate modelling interval given the temporal attributes of time-dependent mining seismicity. We evaluate the performance weighted metric for the modelling of a synthetic seismic dataset. This assessment shows that seismic responses can be quantified and delineated by the MOL, with reasonable accuracy and precision, when the modelling is optimised by evaluating the weighted MLE metric. Furthermore, this assessment highlights that decreased weighted MLE metric performance can be expected if there is a lack of contrast between the temporal characteristics of events associated with different processes.

  17. Fuzzy Temporal Logic Based Railway Passenger Flow Forecast Model

    PubMed Central

    Dou, Fei; Jia, Limin; Wang, Li; Xu, Jie; Huang, Yakun

    2014-01-01

    Passenger flow forecast is of essential importance to the organization of railway transportation and is one of the most important basics for the decision-making on transportation pattern and train operation planning. Passenger flow of high-speed railway features the quasi-periodic variations in a short time and complex nonlinear fluctuation because of existence of many influencing factors. In this study, a fuzzy temporal logic based passenger flow forecast model (FTLPFFM) is presented based on fuzzy logic relationship recognition techniques that predicts the short-term passenger flow for high-speed railway, and the forecast accuracy is also significantly improved. An applied case that uses the real-world data illustrates the precision and accuracy of FTLPFFM. For this applied case, the proposed model performs better than the k-nearest neighbor (KNN) and autoregressive integrated moving average (ARIMA) models. PMID:25431586

  18. Neural timing signal for precise tactile timing judgments

    PubMed Central

    Watanabe, Junji; Nishida, Shin'ya

    2016-01-01

    The brain can precisely encode the temporal relationship between tactile inputs. While behavioural studies have demonstrated precise interfinger temporal judgments, the underlying neural mechanism remains unknown. Computationally, two kinds of neural responses can act as the information source. One is the phase-locked response to the phase of relatively slow inputs, and the other is the response to the amplitude change of relatively fast inputs. To isolate the contributions of these components, we measured performance of a synchrony judgment task for sine wave and amplitude-modulation (AM) wave stimuli. The sine wave stimulus was a low-frequency sinusoid, with the phase shifted in the asynchronous stimulus. The AM wave stimulus was a low-frequency sinusoidal AM of a 250-Hz carrier, with only the envelope shifted in the asynchronous stimulus. In the experiment, three stimulus pairs, two synchronous ones and one asynchronous one, were sequentially presented to neighboring fingers, and participants were asked to report which one was the asynchronous pair. We found that the asynchrony of AM waves could be detected as precisely as single impulse pair, with the threshold asynchrony being ∼20 ms. On the other hand, the asynchrony of sine waves could not be detected at all in the range from 5 to 30 Hz. Our results suggest that the timing signal for tactile judgments is provided not by the stimulus phase information but by the envelope of the response of the high-frequency-sensitive Pacini channel (PC), although they do not exclude a possible contribution of the envelope of non-PCs. PMID:26843600

  19. Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference

    PubMed Central

    Campbell, Kieran R.

    2016-01-01

    Single cell gene expression profiling can be used to quantify transcriptional dynamics in temporal processes, such as cell differentiation, using computational methods to label each cell with a ‘pseudotime’ where true time series experimentation is too difficult to perform. However, owing to the high variability in gene expression between individual cells, there is an inherent uncertainty in the precise temporal ordering of the cells. Pre-existing methods for pseudotime estimation have predominantly given point estimates precluding a rigorous analysis of the implications of uncertainty. We use probabilistic modelling techniques to quantify pseudotime uncertainty and propagate this into downstream differential expression analysis. We demonstrate that reliance on a point estimate of pseudotime can lead to inflated false discovery rates and that probabilistic approaches provide greater robustness and measures of the temporal resolution that can be obtained from pseudotime inference. PMID:27870852

  20. Noise in two-color electronic distance meter measurements revisited

    USGS Publications Warehouse

    Langbein, J.

    2004-01-01

    Frequent, high-precision geodetic data have temporally correlated errors. Temporal correlations directly affect both the estimate of rate and its standard error; the rate of deformation is a key product from geodetic measurements made in tectonically active areas. Various models of temporally correlated errors are developed and these provide relations between the power spectral density and the data covariance matrix. These relations are applied to two-color electronic distance meter (EDM) measurements made frequently in California over the past 15-20 years. Previous analysis indicated that these data have significant random walk error. Analysis using the noise models developed here indicates that the random walk model is valid for about 30% of the data. A second 30% of the data can be better modeled with power law noise with a spectral index between 1 and 2, while another 30% of the data can be modeled with a combination of band-pass-filtered plus random walk noise. The remaining 10% of the data can be best modeled as a combination of band-pass-filtered plus power law noise. This band-pass-filtered noise is a product of an annual cycle that leaks into adjacent frequency bands. For time spans of more than 1 year these more complex noise models indicate that the precision in rate estimates is better than that inferred by just the simpler, random walk model of noise.

  1. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  2. Dietary influences on cognitive function with aging: from high-fat diets to healthful eating.

    PubMed

    Parrott, Matthew D; Greenwood, Carol E

    2007-10-01

    Human epidemiologic studies provide convincing evidence that dietary patterns practiced during adulthood are important contributors to age-related cognitive decline and dementia risk. Diets high in fat, especially trans and saturated fats, adversely affect cognition, while those high in fruits, vegetables, cereals, and fish are associated with better cognitive function and lower risk of dementia. While the precise physiologic mechanisms underlying these dietary influences are not completely understood, modulation of brain insulin activity and neuroinflammation likely contribute. Not surprisingly, deficits in cognitive functions, especially those dependent on the medial temporal lobes, are apparent in type 2 diabetes mellitus (T2DM). Special care in food selection at meals should be exercised by those with T2DM since ingestion of rapidly absorbed, high-glycemic index carbohydrate foods further impairs medial temporal lobe function, with food-induced increases in oxidative stress and cytokine release likely explaining the association between food ingestion and reduction in cognitive function in those with T2DM.

  3. Electro-optical design of a long slit streak tube

    NASA Astrophysics Data System (ADS)

    Tian, Liping; Tian, Jinshou; Wen, Wenlong; Chen, Ping; Wang, Xing; Hui, Dandan; Wang, Junfeng

    2017-11-01

    A small size and long slit streak tube with high spatial resolution was designed and optimized. Curved photocathode and screen were adopted to increase the photocathode working area and spatial resolution. High physical temporal resolution obtained by using a slit accelerating electrode. Deflection sensitivity of the streak tube was improved by adopting two-folded deflection plates. The simulations indicate that the photocathode effective working area can reach 30mm × 5mm. The static spatial resolution is higher than 40lp/mm and 12lp/mm along scanning and slit directions respectively while the physical temporal resolution is higher than 60ps. The magnification is 0.75 and 0.77 in scanning and slit directions. And also, the deflection sensitivity is as high as 37mm/kV. The external dimension of the streak tube are only ∅74mm×231mm. Thus, it can be applied to laser imaging radar system for large field of view and high range precision detection.

  4. Optimizing a Sensor Network with Data from Hazard Mapping Demonstrated in a Heavy-Vehicle Manufacturing Facility.

    PubMed

    Berman, Jesse D; Peters, Thomas M; Koehler, Kirsten A

    2018-05-28

    To design a method that uses preliminary hazard mapping data to optimize the number and location of sensors within a network for a long-term assessment of occupational concentrations, while preserving temporal variability, accuracy, and precision of predicted hazards. Particle number concentrations (PNCs) and respirable mass concentrations (RMCs) were measured with direct-reading instruments in a large heavy-vehicle manufacturing facility at 80-82 locations during 7 mapping events, stratified by day and season. Using kriged hazard mapping, a statistical approach identified optimal orders for removing locations to capture temporal variability and high prediction precision of PNC and RMC concentrations. We compared optimal-removal, random-removal, and least-optimal-removal orders to bound prediction performance. The temporal variability of PNC was found to be higher than RMC with low correlation between the two particulate metrics (ρ = 0.30). Optimal-removal orders resulted in more accurate PNC kriged estimates (root mean square error [RMSE] = 49.2) at sample locations compared with random-removal order (RMSE = 55.7). For estimates at locations having concentrations in the upper 10th percentile, the optimal-removal order preserved average estimated concentrations better than random- or least-optimal-removal orders (P < 0.01). However, estimated average concentrations using an optimal-removal were not statistically different than random-removal when averaged over the entire facility. No statistical difference was observed for optimal- and random-removal methods for RMCs that were less variable in time and space than PNCs. Optimized removal performed better than random-removal in preserving high temporal variability and accuracy of hazard map for PNC, but not for the more spatially homogeneous RMC. These results can be used to reduce the number of locations used in a network of static sensors for long-term monitoring of hazards in the workplace, without sacrificing prediction performance.

  5. Alpha7 Nicotinic Acetylcholine Receptors and Temporal Memory: Synergistic Effects of Combining Prenatal Choline and Nicotine on Reinforcement-Induced Resetting of an Interval Clock

    ERIC Educational Resources Information Center

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function…

  6. Calculations Supporting Management Zones

    USDA-ARS?s Scientific Manuscript database

    Since the early 1990’s the tools of precision farming (GPS, yield monitors, soil sensors, etc.) have documented how spatial and temporal variability are important factors impacting crop yield response. For precision farming, variability can be measured then used to divide up a field so that manageme...

  7. Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  8. Microbarograph - ESRL Hi-Res Microbarograph, Condon - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  9. Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  10. Microbarograph - ESRL Hi-Res Microbarograph, Troutdale - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  11. Microbarograph - ESRL Hi-Res Microbarograph, Condon - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  12. Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  13. Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  14. Microbarograph - ESRL Hi-Res Microbarograph, Goldendale - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  15. Microbarograph - ESRL Hi-Res Microbarograph, Walla Walla - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  16. Microbarograph - ESRL Hi-Res Microbarograph, Wasco Airport - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  17. Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  18. Microbarograph - ESRL Hi-Res Microbarograph, John Day - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  19. Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  20. Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  1. Microbarograph - ESRL Hi-Res Microbarograph, Boardman - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  2. Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  3. Microbarograph - ESRL Hi-Res Microbarograph, Bonneville - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  4. Microbarograph - ESRL Hi-Res Microbarograph, Umatilla - Raw Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  5. Microbarograph - ESRL Hi-Res Microbarograph, John Day - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  6. Microbarograph - ESRL Hi-Res Microbarograph, Hood River - Reviewed Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine

    High-precision barometers (Paroscientific 6000-16B-IS) are combined with Nishiyama-Bedard Quad Disk pressure probes, measuring pressure (mb) at the surface, nominally 2 m above ground level. Data are sampled at 20 Hz for potential studies of turbulence. The sensors' high accuracy makes them useful for determining horizontal pressure gradients and their relation to wind ramp events, as well as the temporal variability of pressure associated with mountain wakes and waves. **Note different ASCII file formats for Goldendale (z04) and Walla Walla (z09) sites.**

  7. Spectroscopic diagnostics of solar flares

    NASA Astrophysics Data System (ADS)

    Bely-Dubau, F.; Dubau, J.; Faucher, P.; Loulergue, M.; Steenman-Clarke, L.

    Observations made with the X-ray polychromator (XRP) on board the Solar Maximum Mission satellite were analyzed. Data from the bent crystal spectrometer portion of the XRP experiment, in the spectral domain 1 to 3 A, with high spectral and temporal resolution, were used. Results for the spectrum analysis of iron are given. The possibility of polarization effects is considered. Although it is demonstrated that hyperfine analyses of a given spectrum are obtainable, provided calculations include large quantities of high precision atomic data, the interpretation is limited by the hypothesis of homogeneity of the emitting plasma.

  8. Systematic characterization of maturation time of fluorescent proteins in living cells

    PubMed Central

    Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe

    2017-01-01

    Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486

  9. Performance on Tests of Central Auditory Processing by Individuals Exposed to High-Intensity Blasts

    DTIC Science & Technology

    2012-07-01

    percent (gap detected on at least four of the six presentations), with all longer durations receiving a score greater than 50 percent. Binaural ...Processing and Sound Localization Temporal precision of neural firing is also involved in binaural processing and localization of sound in space. The...Masking Level Difference (MLD) test evaluates the integrity of the earliest sites of binaural comparison and sensitivity to interaural phase in the

  10. Terrestrial 3D laser scanning to track the increase in canopy height of both monocot and dicot crop species under field conditions.

    PubMed

    Friedli, Michael; Kirchgessner, Norbert; Grieder, Christoph; Liebisch, Frank; Mannale, Michael; Walter, Achim

    2016-01-01

    Plant growth is a good indicator of crop performance and can be measured by different methods and on different spatial and temporal scales. In this study, we measured the canopy height growth of maize (Zea mays), soybean (Glycine max) and wheat (Triticum aestivum) under field conditions by terrestrial laser scanning (TLS). We tested the hypotheses whether such measurements are capable to elucidate (1) differences in architecture that exist between genotypes; (2) genotypic differences between canopy height growth during the season and (3) short-term growth fluctuations (within 24 h), which could e.g. indicate responses to rapidly fluctuating environmental conditions. The canopies were scanned with a commercially available 3D laser scanner and canopy height growth over time was analyzed with a novel and simple approach using spherical targets with fixed positions during the whole season. This way, a high precision of the measurement was obtained allowing for comparison of canopy parameters (e.g. canopy height growth) at subsequent time points. Three filtering approaches for canopy height calculation from TLS were evaluated and the most suitable approach was used for the subsequent analyses. For wheat, high coefficients of determination (R(2)) of the linear regression between manually measured and TLS-derived canopy height were achieved. The temporal resolution that can be achieved with our approach depends on the scanned crop. For maize, a temporal resolution of several hours can be achieved, whereas soybean is ideally scanned only once per day, after leaves have reached their most horizontal orientation. Additionally, we could show for maize that plant architectural traits are potentially detectable with our method. The TLS approach presented here allows for measuring canopy height growth of different crops under field conditions with a high temporal resolution, depending on crop species. This method will enable advances in automated phenotyping for breeding and precision agriculture applications. In future studies, the TLS method can be readily applied to detect the effects of plant stresses such as drought, limited nutrient availability or compacted soil on different genotypes or on spatial variance in fields.

  11. Wireless inertial measurement of head kinematics in freely-moving rats

    PubMed Central

    Pasquet, Matthieu O.; Tihy, Matthieu; Gourgeon, Aurélie; Pompili, Marco N.; Godsil, Bill P.; Léna, Clément; Dugué, Guillaume P.

    2016-01-01

    While miniature inertial sensors offer a promising means for precisely detecting, quantifying and classifying animal behaviors, versatile inertial sensing devices adapted for small, freely-moving laboratory animals are still lacking. We developed a standalone and cost-effective platform for performing high-rate wireless inertial measurements of head movements in rats. Our system is designed to enable real-time bidirectional communication between the headborne inertial sensing device and third party systems, which can be used for precise data timestamping and low-latency motion-triggered applications. We illustrate the usefulness of our system in diverse experimental situations. We show that our system can be used for precisely quantifying motor responses evoked by external stimuli, for characterizing head kinematics during normal behavior and for monitoring head posture under normal and pathological conditions obtained using unilateral vestibular lesions. We also introduce and validate a novel method for automatically quantifying behavioral freezing during Pavlovian fear conditioning experiments, which offers superior performance in terms of precision, temporal resolution and efficiency. Thus, this system precisely acquires movement information in freely-moving animals, and can enable objective and quantitative behavioral scoring methods in a wide variety of experimental situations. PMID:27767085

  12. Photoelectrocyclization as an activation mechanism for organelle-specific live-cell imaging probes.

    PubMed

    Tran, Mai N; Chenoweth, David M

    2015-05-26

    Photoactivatable fluorophores are useful tools in live-cell imaging owing to their potential for precise spatial and temporal control. In this report, a new photoactivatable organelle-specific live-cell imaging probe based on a 6π electrocyclization/oxidation mechanism is described. It is shown that this new probe is water-soluble, non-cytotoxic, cell-permeable, and useful for mitochondrial imaging. The probe displays large Stokes shifts in both pre-activated and activated forms, allowing simultaneous use with common dyes and fluorescent proteins. Sequential single-cell activation experiments in dense cellular environments demonstrate high spatial precision and utility in single- or multi-cell labeling experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Precision Continuum Receivers for Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.

    2011-01-01

    Cryogenically cooled HEMT (High Electron Mobility Transistor) amplifiers find widespread use in radioastronomy receivers. In recent years, these devices have also been commonly employed in broadband receivers for precision measurements of the Cosmic Microwave Background (CMB) radiation. In this setting, the combination of ultra-low-noise and low-spectral-resolution observations reinforce the importance achieving suitable control over the device environment to achieve fundamentally limited receiver performance. The influence of the intrinsic amplifier stability at low frequencies on data quality (e.g., achievable noise and residual temporal correlations), observational and calibration strategies, as well as architectural mitigation approaches in this setting will be discussed. The implications of device level 1/f fluctuations reported in the literature on system performance will be reviewed.

  14. Quantifying Auditory Temporal Stability in a Large Database of Recorded Music

    PubMed Central

    Ellis, Robert J.; Duan, Zhiyan; Wang, Ye

    2014-01-01

    “Moving to the beat” is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical “energy”) in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file’s temporal structure (e.g., “average tempo”, “time signature”), none has sought to quantify the temporal stability of a series of detected beats. Such a method-a “Balanced Evaluation of Auditory Temporal Stability” (BEATS)–is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications. PMID:25469636

  15. Early NICER Observations of Magnetars and Young Pulsars

    NASA Astrophysics Data System (ADS)

    Nynka, Melania

    2018-01-01

    Neutron star Interior Composition ExploreR (NICER) is an X-ray telescope attached to the International Space Station (ISS). Launched in June 2017, it is designed to precisely measure the masses and radii of neutron stars (NS) and probe NS equations of state. But its precision timing capabilities and large effective area uniquely position NICER for the study of magnetars. The NICER Magnetar & Magnetosphere (M&M) science working group focuses on studying highly-magnetized neutron stars, a diverse program that includes magnetars, high-B pulsars, rotation powered pulsars, and isolated neutron stars. Our ongoing campaign has already observed targets such as 4U 0142+61, a magnetar in outburst with coincident NuSTAR and Swift observations, the radio rotation powered Vela pulsar PSR B0833-45, and a transient magnetar XTE J1810-197. I will discuss the goals of the M&M program, spectral and temporal results from the observed targets, and an overview of upcoming observations.

  16. Moving Object Detection Using Scanning Camera on a High-Precision Intelligent Holder

    PubMed Central

    Chen, Shuoyang; Xu, Tingfa; Li, Daqun; Zhang, Jizhou; Jiang, Shenwang

    2016-01-01

    During the process of moving object detection in an intelligent visual surveillance system, a scenario with complex background is sure to appear. The traditional methods, such as “frame difference” and “optical flow”, may not able to deal with the problem very well. In such scenarios, we use a modified algorithm to do the background modeling work. In this paper, we use edge detection to get an edge difference image just to enhance the ability of resistance illumination variation. Then we use a “multi-block temporal-analyzing LBP (Local Binary Pattern)” algorithm to do the segmentation. In the end, a connected component is used to locate the object. We also produce a hardware platform, the core of which consists of the DSP (Digital Signal Processor) and FPGA (Field Programmable Gate Array) platforms and the high-precision intelligent holder. PMID:27775671

  17. GOCE, Satellite Gravimetry and Antarctic Mass Transports

    NASA Astrophysics Data System (ADS)

    Rummel, Reiner; Horwath, Martin; Yi, Weiyong; Albertella, Alberta; Bosch, Wolfgang; Haagmans, Roger

    2011-09-01

    In 2009 the European Space Agency satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) was launched. Its objectives are the precise and detailed determination of the Earth's gravity field and geoid. Its core instrument, a three axis gravitational gradiometer, measures the gravity gradient components V xx , V yy , V zz and V xz (second-order derivatives of the gravity potential V) with high precision and V xy , V yz with low precision, all in the instrument reference frame. The long wavelength gravity field is recovered from the orbit, measured by GPS (Global Positioning System). Characteristic elements of the mission are precise star tracking, a Sun-synchronous and very low (260 km) orbit, angular control by magnetic torquing and an extremely stiff and thermally stable instrument environment. GOCE is complementary to GRACE (Gravity Recovery and Climate Experiment), another satellite gravity mission, launched in 2002. While GRACE is designed to measure temporal gravity variations, albeit with limited spatial resolution, GOCE is aiming at maximum spatial resolution, at the expense of accuracy at large spatial scales. Thus, GOCE will not provide temporal variations but is tailored to the recovery of the fine scales of the stationary field. GRACE is very successful in delivering time series of large-scale mass changes of the Antarctic ice sheet, among other things. Currently, emphasis of respective GRACE analyses is on regional refinement and on changes of temporal trends. One of the challenges is the separation of ice mass changes from glacial isostatic adjustment. Already from a few months of GOCE data, detailed gravity gradients can be recovered. They are presented here for the area of Antarctica. As one application, GOCE gravity gradients are an important addition to the sparse gravity data of Antarctica. They will help studies of the crustal and lithospheric field. A second area of application is ocean circulation. The geoid surface from the gravity field model GOCO01S allows us now to generate rather detailed maps of the mean dynamic ocean topography and of geostrophic flow velocities in the region of the Antarctic Circumpolar Current.

  18. Design and evaluation of an innovative MRI-compatible Braille stimulator with high spatial and temporal resolution.

    PubMed

    Debowska, Weronika; Wolak, Tomasz; Soluch, Pawel; Orzechowski, Mateusz; Kossut, Malgorzata

    2013-02-15

    Neural correlates of Braille reading have been widely studied with different neuroimaging techniques. Nevertheless, the exact brain processes underlying this unique activity are still unknown, due to suboptimal accuracy of imaging and/or stimuli delivery methods. To study somatosensory perception effectively, the stimulation must reflect parameters of the natural stimulus and must be applied with precise timing. In functional magnetic resonance imaging (fMRI) providing these characteristics requires technologically advanced solutions and there have been several successful direct tactile stimulation devices designed that allow investigation of somatotopic organization of brain sensory areas. They may, however, be of limited applicability in studying brain mechanisms related to such distinctive tactile activity as Braille reading. In this paper we describe the design and experimental evaluation of an innovative MRI-compatible Braille Character Stimulator (BCS) enabling precise and stable delivery of standardized Braille characters with high temporal resolution. Our device is fully programmable, flexible in stimuli delivery and can be easily implemented in any research unit. The Braille Character Stimulator was tested with a same-different discrimination task on Braille characters during an event-related fMRI experiment in eleven right-handed sighted adult subjects. The results show significant activations in several cortical areas, including bilateral primary (SI) and secondary somatosensory (SII) cortices, bilateral premotor and supplementary motor areas, inferior frontal gyri, inferior temporal gyri and precuneus, as well as contralateral (to the stimulated hand) thalamus. The results validate the use of the BCS as a method of effective stimuli application in fMRI studies, in both sighted and visually impaired subjects. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Modeling Pathologic Response of Esophageal Cancer to Chemoradiation Therapy Using Spatial-Temporal {sup 18}F-FDG PET Features, Clinical Parameters, and Demographics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan

    2014-01-01

    Purpose: To construct predictive models using comprehensive tumor features for the evaluation of tumor response to neoadjuvant chemoradiation therapy (CRT) in patients with esophageal cancer. Methods and Materials: This study included 20 patients who underwent trimodality therapy (CRT + surgery) and underwent {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) both before and after CRT. Four groups of tumor features were examined: (1) conventional PET/CT response measures (eg, standardized uptake value [SUV]{sub max}, tumor diameter); (2) clinical parameters (eg, TNM stage, histology) and demographics; (3) spatial-temporal PET features, which characterize tumor SUV intensity distribution, spatial patterns, geometry, and associated changesmore » resulting from CRT; and (4) all features combined. An optimal feature set was identified with recursive feature selection and cross-validations. Support vector machine (SVM) and logistic regression (LR) models were constructed for prediction of pathologic tumor response to CRT, cross-validations being used to avoid model overfitting. Prediction accuracy was assessed by area under the receiver operating characteristic curve (AUC), and precision was evaluated by confidence intervals (CIs) of AUC. Results: When applied to the 4 groups of tumor features, the LR model achieved AUCs (95% CI) of 0.57 (0.10), 0.73 (0.07), 0.90 (0.06), and 0.90 (0.06). The SVM model achieved AUCs (95% CI) of 0.56 (0.07), 0.60 (0.06), 0.94 (0.02), and 1.00 (no misclassifications). With the use of spatial-temporal PET features combined with conventional PET/CT measures and clinical parameters, the SVM model achieved very high accuracy (AUC 1.00) and precision (no misclassifications)—results that were significantly better than when conventional PET/CT measures or clinical parameters and demographics alone were used. For groups with many tumor features (groups 3 and 4), the SVM model achieved significantly higher accuracy than did the LR model. Conclusions: The SVM model that used all features including spatial-temporal PET features accurately and precisely predicted pathologic tumor response to CRT in esophageal cancer.« less

  20. Does the Data Resolution/origin Matter? Satellite, Airborne and Uav Imagery to Tackle Plant Invasions

    NASA Astrophysics Data System (ADS)

    Müllerová, Jana; Brůna, Josef; Dvořák, Petr; Bartaloš, Tomáš; Vítková, Michaela

    2016-06-01

    Invasive plant species represent a serious threat to biodiversity and landscape as well as human health and socio-economy. To successfully fight plant invasions, new methods enabling fast and efficient monitoring, such as remote sensing, are needed. In an ongoing project, optical remote sensing (RS) data of different origin (satellite, aerial and UAV), spectral (panchromatic, multispectral and color), spatial (very high to medium) and temporal resolution, and various technical approaches (object-, pixelbased and combined) are tested to choose the best strategies for monitoring of four invasive plant species (giant hogweed, black locust, tree of heaven and exotic knotweeds). In our study, we address trade-offs between spectral, spatial and temporal resolutions required for balance between the precision of detection and economic feasibility. For the best results, it is necessary to choose best combination of spatial and spectral resolution and phenological stage of the plant in focus. For species forming distinct inflorescences such as giant hogweed iterative semi-automated object-oriented approach was successfully applied even for low spectral resolution data (if pixel size was sufficient) whereas for lower spatial resolution satellite imagery or less distinct species with complicated architecture such as knotweed, combination of pixel and object based approaches was used. High accuracies achieved for very high resolution data indicate the possible application of described methodology for monitoring invasions and their long-term dynamics elsewhere, making management measures comparably precise, fast and efficient. This knowledge serves as a basis for prediction, monitoring and prioritization of management targets.

  1. Nonparametric Identification of Causal Effects under Temporal Dependence

    ERIC Educational Resources Information Center

    Dafoe, Allan

    2018-01-01

    Social scientists routinely address temporal dependence by adopting a simple technical fix. However, the correct identification strategy for a causal effect depends on causal assumptions. These need to be explicated and justified; almost no studies do so. This article addresses this shortcoming by offering a precise general statement of the…

  2. Technical Note: High temporal resolution characterization of gating response time.

    PubMed

    Wiersma, Rodney D; McCabe, Bradley P; Belcher, Andrew H; Jensen, Patrick J; Smith, Brett; Aydogan, Bulent

    2016-06-01

    Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.

  3. Technical Note: High temporal resolution characterization of gating response time

    PubMed Central

    Wiersma, Rodney D.; McCabe, Bradley P.; Belcher, Andrew H.; Jensen, Patrick J.; Smith, Brett; Aydogan, Bulent

    2016-01-01

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ON and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly. PMID:27277028

  4. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound.

    PubMed

    Ding, Ting; Zhang, Siyuan; Fu, Quanyou; Xu, Zhian; Wan, Mingxi

    2014-01-01

    This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. PubMed Central

    LINKE, R.; LEICHTLE, A.; SHEIKH, F.; SCHMIDT, C.; FRENZEL, H.; GRAEFE, H.; WOLLENBERG, B.; MEYER, J.E.

    2013-01-01

    SUMMARY Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear. PMID:24043916

  6. Spatiotemporal dynamics of similarity-based neural representations of facial identity.

    PubMed

    Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene

    2017-01-10

    Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.

  7. Bringing the light to high throughput screening: use of optogenetic tools for the development of recombinant cellular assays

    NASA Astrophysics Data System (ADS)

    Agus, Viviana; Di Silvio, Alberto; Rolland, Jean Francois; Mondini, Anna; Tremolada, Sara; Montag, Katharina; Scarabottolo, Lia; Redaelli, Loredana; Lohmer, Stefan

    2015-03-01

    The use of light-activated proteins represents a powerful tool to control biological processes with high spatial and temporal precision. These so called "optogenetic" technologies have been successfully validated in many recombinant systems, and have been widely applied to the study of cellular mechanisms in intact tissues or behaving animals; to do that, complex, high-intensity, often home-made instrumentations were developed to achieve the optimal power and precision of light stimulation. In our study we sought to determine if this optical modulation can be obtained also in a miniaturized format, such as a 384-well plate, using the instrumentations normally dedicated to fluorescence analysis in High Throughput Screening (HTS) activities, such as for example the FLIPR (Fluorometric Imaging Plate Reader) instrument. We successfully generated optogenetic assays for the study of different ion channel targets: the CaV1.3 calcium channel was modulated by the light-activated Channelrhodopsin-2, the HCN2 cyclic nucleotide gated (CNG) channel was modulated by the light activated bPAC adenylyl cyclase, and finally the genetically encoded voltage indicator ArcLight was efficiently used to measure potassium, sodium or chloride channel activity. Our results showed that stable, robust and miniaturized cellular assays can be developed using different optogenetic tools, and efficiently modulated by the FLIPR instrument LEDs in a 384-well format. The spatial and temporal resolution delivered by this technology might enormously advantage the early stages of drug discovery, leading to the identification of more physiological and effective drug molecules.

  8. Temporal Response Properties of Accessory Olfactory Bulb Neurons: Limitations and Opportunities for Decoding.

    PubMed

    Yoles-Frenkel, Michal; Kahan, Anat; Ben-Shaul, Yoram

    2018-05-23

    The vomeronasal system (VNS) is a major vertebrate chemosensory system that functions in parallel to the main olfactory system (MOS). Despite many similarities, the two systems dramatically differ in the temporal domain. While MOS responses are governed by breathing and follow a subsecond temporal scale, VNS responses are uncoupled from breathing and evolve over seconds. This suggests that the contribution of response dynamics to stimulus information will differ between these systems. While temporal dynamics in the MOS are widely investigated, similar analyses in the accessory olfactory bulb (AOB) are lacking. Here, we have addressed this issue using controlled stimulus delivery to the vomeronasal organ of male and female mice. We first analyzed the temporal properties of AOB projection neurons and demonstrated that neurons display prolonged, variable, and neuron-specific characteristics. We then analyzed various decoding schemes using AOB population responses. We showed that compared with the simplest scheme (i.e., integration of spike counts over the entire response period), the division of this period into smaller temporal bins actually yields poorer decoding accuracy. However, optimal classification accuracy can be achieved well before the end of the response period by integrating spike counts within temporally defined windows. Since VNS stimulus uptake is variable, we analyzed decoding using limited information about stimulus uptake time, and showed that with enough neurons, such time-invariant decoding is feasible. Finally, we conducted simulations that demonstrated that, unlike the main olfactory bulb, the temporal features of AOB neurons disfavor decoding with high temporal accuracy, and, rather, support decoding without precise knowledge of stimulus uptake time. SIGNIFICANCE STATEMENT A key goal in sensory system research is to identify which metrics of neuronal activity are relevant for decoding stimulus features. Here, we describe the first systematic analysis of temporal coding in the vomeronasal system (VNS), a chemosensory system devoted to socially relevant cues. Compared with the main olfactory system, timescales of VNS function are inherently slower and variable. Using various analyses of real and simulated data, we show that the consideration of response times relative to stimulus uptake can aid the decoding of stimulus information from neuronal activity. However, response properties of accessory olfactory bulb neurons favor decoding schemes that do not rely on the precise timing of stimulus uptake. Such schemes are consistent with the variable nature of VNS stimulus uptake. Copyright © 2018 the authors 0270-6474/18/384957-20$15.00/0.

  9. Assessment of skills using a virtual reality temporal bone surgery simulator.

    PubMed

    Linke, R; Leichtle, A; Sheikh, F; Schmidt, C; Frenzel, H; Graefe, H; Wollenberg, B; Meyer, J E

    2013-08-01

    Surgery on the temporal bone is technically challenging due to its complex anatomy. Precise anatomical dissection of the human temporal bone is essential and is fundamental for middle ear surgery. We assessed the possible application of a virtual reality temporal bone surgery simulator to the education of ear surgeons. Seventeen ENT physicians with different levels of surgical training and 20 medical students performed an antrotomy with a computer-based virtual temporal bone surgery simulator. The ease, accuracy and timing of the simulated temporal bone surgery were assessed using the automatic assessment software provided by the simulator device and additionally with a modified Final Product Analysis Scale. Trained ENT surgeons, physicians without temporal bone surgical training and medical students were all able to perform the antrotomy. However, the highly trained ENT surgeons were able to complete the surgery in approximately half the time, with better handling and accuracy as assessed by the significant reduction in injury to important middle ear structures. Trained ENT surgeons achieved significantly higher scores using both dissection analysis methods. Surprisingly, there were no significant differences in the results between medical students and physicians without experience in ear surgery. The virtual temporal bone training system can stratify users of known levels of experience. This system can be used not only to improve the surgical skills of trained ENT surgeons for more successful and injury-free surgeries, but also to train inexperienced physicians/medical students in developing their surgical skills for the ear.

  10. Engineered CRISPR Systems for Next Generation Gene Therapies.

    PubMed

    Pineda, Michael; Moghadam, Farzaneh; Ebrahimkhani, Mo R; Kiani, Samira

    2017-09-15

    An ideal in vivo gene therapy platform provides safe, reprogrammable, and precise strategies which modulate cell and tissue gene regulatory networks with a high temporal and spatial resolution. Clustered regularly interspaced short palindromic repeats (CRISPR), a bacterial adoptive immune system, and its CRISPR-associated protein 9 (Cas9), have gained attention for the ability to target and modify DNA sequences on demand with unprecedented flexibility and precision. The precision and programmability of Cas9 is derived from its complexation with a guide-RNA (gRNA) that is complementary to a desired genomic sequence. CRISPR systems open-up widespread applications including genetic disease modeling, functional screens, and synthetic gene regulation. The plausibility of in vivo genetic engineering using CRISPR has garnered significant traction as a next generation in vivo therapeutic. However, there are hurdles that need to be addressed before CRISPR-based strategies are fully implemented. Some key issues center on the controllability of the CRISPR platform, including minimizing genomic-off target effects and maximizing in vivo gene editing efficiency, in vivo cellular delivery, and spatial-temporal regulation. The modifiable components of CRISPR systems: Cas9 protein, gRNA, delivery platform, and the form of CRISPR system delivered (DNA, RNA, or ribonucleoprotein) have recently been engineered independently to design a better genome engineering toolbox. This review focuses on evaluating CRISPR potential as a next generation in vivo gene therapy platform and discusses bioengineering advancements that can address challenges associated with clinical translation of this emerging technology.

  11. Stable and simple quantitative phase-contrast imaging by Fresnel biprism

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram

    2018-03-01

    Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.

  12. Measurement of cochlear length using the 'A' value for cochlea basal diameter: A feasibility study.

    PubMed

    Deep, Nicholas L; Howard, Brittany E; Holbert, Sarah O; Hoxworth, Joseph M; Barrs, David M

    2017-07-01

    To determine whether the cochlea basal diameter (A value) measurement can be consistently and precisely obtained from high-resolution temporal bone imaging for use in cochlear length estimation. A feasibility study at a tertiary referral center was performed using the temporal bone CTs of 40 consecutive patients. The distance from the round window to the lateral wall was measured for each cochlea by two independent reviewers, a neuroradiologist and an otolaryngologist. The interrater reliability was calculated using the intraclass correlation coefficient (ICC) and the Bland-Altman plot. Forty patients (19 males, 21 females) for a total of 80 cochleae were included. Interrater reliability on the same ear had a high level of agreement by both the ICC and the Bland-Altman plot. ICCs were 0.90 (95% CI: 0.82, 0.94) for the left ear and 0.96 (95% CI: 0.92, 0.98) for the right ear. Bland-Altman plot confirmed interrater reliability with all 96% of measurements falling within the 95% limits of agreement. Measurement between the round window and lateral cochlear wall can be consistently and reliably obtained from high-resolution temporal bone CT scans. Thus, it is feasible to utilize this method to estimate the cochlear length of patients undergoing cochlear implantation.

  13. Purely temporal figure-ground segregation.

    PubMed

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  14. Temporal motifs reveal collaboration patterns in online task-oriented networks

    NASA Astrophysics Data System (ADS)

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  15. Temporal motifs reveal collaboration patterns in online task-oriented networks.

    PubMed

    Xuan, Qi; Fang, Huiting; Fu, Chenbo; Filkov, Vladimir

    2015-05-01

    Real networks feature layers of interactions and complexity. In them, different types of nodes can interact with each other via a variety of events. Examples of this complexity are task-oriented social networks (TOSNs), where teams of people share tasks towards creating a quality artifact, such as academic research papers or software development in commercial or open source environments. Accomplishing those tasks involves both work, e.g., writing the papers or code, and communication, to discuss and coordinate. Taking into account the different types of activities and how they alternate over time can result in much more precise understanding of the TOSNs behaviors and outcomes. That calls for modeling techniques that can accommodate both node and link heterogeneity as well as temporal change. In this paper, we report on methodology for finding temporal motifs in TOSNs, limited to a system of two people and an artifact. We apply the methods to publicly available data of TOSNs from 31 Open Source Software projects. We find that these temporal motifs are enriched in the observed data. When applied to software development outcome, temporal motifs reveal a distinct dependency between collaboration and communication in the code writing process. Moreover, we show that models based on temporal motifs can be used to more precisely relate both individual developer centrality and team cohesion to programmer productivity than models based on aggregated TOSNs.

  16. Functional localization of the human color center by decreased water displacement using diffusion-weighted fMRI.

    PubMed

    Williams, Rebecca J; Reutens, David C; Hocking, Julia

    2015-11-01

    Decreased water displacement following increased neural activity has been observed using diffusion-weighted functional MRI (DfMRI) at high b-values. The physiological mechanisms underlying the diffusion signal change may be unique from the standard blood oxygenation level-dependent (BOLD) contrast and closer to the source of neural activity. Whether DfMRI reflects neural activity more directly than BOLD outside the primary cerebral regions remains unclear. Colored and achromatic Mondrian visual stimuli were statistically contrasted to functionally localize the human color center Area V4 in neurologically intact adults. Spatial and temporal properties of DfMRI and BOLD activation were examined across regions of the visual cortex. At the individual level, DfMRI activation patterns showed greater spatial specificity to V4 than BOLD. The BOLD activation patterns were more prominent in the primary visual cortex than DfMRI, where activation was localized to the ventral temporal lobe. Temporally, the diffusion signal change in V4 and V1 both preceded the corresponding hemodynamic response, however the early diffusion signal change was more evident in V1. DfMRI may be of use in imaging applications implementing cognitive subtraction paradigms, and where highly precise individual functional localization is required.

  17. High-precision U-Pb geochronology of the Jurassic Yanliao Biota from Jianchang (western Liaoning Province, China): Age constraints on the rise of feathered dinosaurs and eutherian mammals

    NASA Astrophysics Data System (ADS)

    Chu, Zhuyin; He, Huaiyu; Ramezani, Jahandar; Bowring, Samuel A.; Hu, Dongyu; Zhang, Lijun; Zheng, Shaolin; Wang, Xiaolin; Zhou, Zhonghe; Deng, Chenglong; Guo, Jinghui

    2016-10-01

    The Yanliao Biota of northeastern China comprises the oldest feathered dinosaurs, transitional pterosaurs, as well as the earliest eutherian mammals, multituberculate mammals, and new euharamiyidan species that are key elements of the Mesozoic biotic record. Recent discovery of the Yanliao Biota in the Daxishan section near the town of Linglongta, Jianchang County in western Liaoning Province have greatly enhanced our knowledge of the transition from dinosaurs to birds, primitive to derived pterosaurs, and the early evolution of mammals. Nevertheless, fundamental questions regarding the correlation of fossil-bearing strata, rates of dinosaur and mammalian evolution, and their relationship to environmental change in deep time remain unresolved due to the paucity of precise and accurate temporal constraints. These limitations underscore the importance of placing the rich fossil record of Jianchang within a high-resolution chronostratigraphic framework that has thus far been hampered by the relatively low precision of in situ radioisotopic dating techniques. Here we present high-precision U-Pb zircon geochronology by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) from three interstratified ash beds previously dated by secondary-ion mass spectrometry (SIMS) technique. The results constrain the key fossil horizons of the Daxishan section to an interval spanning 160.89 to 160.25 Ma with 2σ analytical uncertainties that range from ±46 to ±69 kyr. These data place the Yanliao Biota from Jianchang in the Oxfordian Stage of the Late Jurassic, and mark the Daxishan section as the site of Earth's oldest precisely dated feathered dinosaurs and eutherian mammals.

  18. Object detection in cinematographic video sequences for automatic indexing

    NASA Astrophysics Data System (ADS)

    Stauder, Jurgen; Chupeau, Bertrand; Oisel, Lionel

    2003-06-01

    This paper presents an object detection framework applied to cinematographic post-processing of video sequences. Post-processing is done after production and before editing. At the beginning of each shot of a video, a slate (also called clapperboard) is shown. The slate contains notably an electronic audio timecode that is necessary for audio-visual synchronization. This paper presents an object detection framework to detect slates in video sequences for automatic indexing and post-processing. It is based on five steps. The first two steps aim to reduce drastically the video data to be analyzed. They ensure high recall rate but have low precision. The first step detects images at the beginning of a shot possibly showing up a slate while the second step searches in these images for candidates regions with color distribution similar to slates. The objective is to not miss any slate while eliminating long parts of video without slate appearance. The third and fourth steps are statistical classification and pattern matching to detected and precisely locate slates in candidate regions. These steps ensure high recall rate and high precision. The objective is to detect slates with very little false alarms to minimize interactive corrections. In a last step, electronic timecodes are read from slates to automize audio-visual synchronization. The presented slate detector has a recall rate of 89% and a precision of 97,5%. By temporal integration, much more than 89% of shots in dailies are detected. By timecode coherence analysis, the precision can be raised too. Issues for future work are to accelerate the system to be faster than real-time and to extend the framework for several slate types.

  19. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD.

    PubMed

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-05-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This 'on-line' system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R 2 = 0.69) than the traditional method (R 2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method.

  20. Limits to the precision of gradient sensing with spatial communication and temporal integration.

    PubMed

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-02-09

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a "local" and a "global" molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation-dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model "regional excitation-global inhibition." Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account.

  1. Technical Note: High temporal resolution characterization of gating response time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu; McCabe, Bradley P.; Belcher, Andrew H.

    2016-06-15

    Purpose: Low temporal latency between a gating ON/OFF signal and the LINAC beam ON/OFF during respiratory gating is critical for patient safety. Here the authors describe a novel method to precisely measure gating lag times at high temporal resolutions. Methods: A respiratory gating simulator with an oscillating platform was modified to include a linear potentiometer for position measurement. A photon diode was placed at linear accelerator isocenter for beam output measurement. The output signals of the potentiometer and diode were recorded simultaneously at 2500 Hz with an analog to digital converter for four different commercial respiratory gating systems. The ONmore » and OFF of the beam signal were located and compared to the expected gating window for both phase and position based gating and the temporal lag times extracted. Results: For phase based gating, a real-time position management (RPM) infrared marker tracking system with a single camera and a RPM system with a stereoscopic camera were measured to have mean gate ON/OFF lag times of 98/90 and 86/44 ms, respectively. For position based gating, an AlignRT 3D surface system and a Calypso magnetic fiducial tracking system were measured to have mean gate ON/OFF lag times of 356/529 and 209/60 ms, respectively. Conclusions: Temporal resolution of the method was high enough to allow characterization of individual gate cycles and was primary limited by the sampling speed of the data recording device. Significant variation of mean gate ON/OFF lag time was found between different gating systems. For certain gating devices, individual gating cycle lag times can vary significantly.« less

  2. Precise, High-throughput Analysis of Bacterial Growth.

    PubMed

    Kurokawa, Masaomi; Ying, Bei-Wen

    2017-09-19

    Bacterial growth is a central concept in the development of modern microbial physiology, as well as in the investigation of cellular dynamics at the systems level. Recent studies have reported correlations between bacterial growth and genome-wide events, such as genome reduction and transcriptome reorganization. Correctly analyzing bacterial growth is crucial for understanding the growth-dependent coordination of gene functions and cellular components. Accordingly, the precise quantitative evaluation of bacterial growth in a high-throughput manner is required. Emerging technological developments offer new experimental tools that allow updates of the methods used for studying bacterial growth. The protocol introduced here employs a microplate reader with a highly optimized experimental procedure for the reproducible and precise evaluation of bacterial growth. This protocol was used to evaluate the growth of several previously described Escherichia coli strains. The main steps of the protocol are as follows: the preparation of a large number of cell stocks in small vials for repeated tests with reproducible results, the use of 96-well plates for high-throughput growth evaluation, and the manual calculation of two major parameters (i.e., maximal growth rate and population density) representing the growth dynamics. In comparison to the traditional colony-forming unit (CFU) assay, which counts the cells that are cultured in glass tubes over time on agar plates, the present method is more efficient and provides more detailed temporal records of growth changes, but has a stricter detection limit at low population densities. In summary, the described method is advantageous for the precise and reproducible high-throughput analysis of bacterial growth, which can be used to draw conceptual conclusions or to make theoretical observations.

  3. Multisite tumor sampling enhances the detection of intratumor heterogeneity at all different temporal stages of tumor evolution.

    PubMed

    Erramuzpe, Asier; Cortés, Jesús M; López, José I

    2018-02-01

    Intratumor heterogeneity (ITH) is an inherent process of tumor development that has received much attention in previous years, as it has become a major obstacle for the success of targeted therapies. ITH is also temporally unpredictable across tumor evolution, which makes its precise characterization even more problematic since detection success depends on the precise temporal snapshot at which ITH is analyzed. New and more efficient strategies for tumor sampling are needed to overcome these difficulties which currently rely entirely on the pathologist's interpretation. Recently, we showed that a new strategy, the multisite tumor sampling, works better than the routine sampling protocol for the ITH detection when the tumor time evolution was not taken into consideration. Here, we extend this work and compare the ITH detections of multisite tumor sampling and routine sampling protocols across tumor time evolution, and in particular, we provide in silico analyses of both strategies at early and late temporal stages for four different models of tumor evolution (linear, branched, neutral, and punctuated). Our results indicate that multisite tumor sampling outperforms routine protocols in detecting ITH at all different temporal stages of tumor evolution. We conclude that multisite tumor sampling is more advantageous than routine protocols in detecting intratumor heterogeneity.

  4. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap.

    PubMed

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin'ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap.

  5. Audio-Visual Temporal Recalibration Can be Constrained by Content Cues Regardless of Spatial Overlap

    PubMed Central

    Roseboom, Warrick; Kawabe, Takahiro; Nishida, Shin’Ya

    2013-01-01

    It has now been well established that the point of subjective synchrony for audio and visual events can be shifted following exposure to asynchronous audio-visual presentations, an effect often referred to as temporal recalibration. Recently it was further demonstrated that it is possible to concurrently maintain two such recalibrated estimates of audio-visual temporal synchrony. However, it remains unclear precisely what defines a given audio-visual pair such that it is possible to maintain a temporal relationship distinct from other pairs. It has been suggested that spatial separation of the different audio-visual pairs is necessary to achieve multiple distinct audio-visual synchrony estimates. Here we investigated if this is necessarily true. Specifically, we examined whether it is possible to obtain two distinct temporal recalibrations for stimuli that differed only in featural content. Using both complex (audio visual speech; see Experiment 1) and simple stimuli (high and low pitch audio matched with either vertically or horizontally oriented Gabors; see Experiment 2) we found concurrent, and opposite, recalibrations despite there being no spatial difference in presentation location at any point throughout the experiment. This result supports the notion that the content of an audio-visual pair alone can be used to constrain distinct audio-visual synchrony estimates regardless of spatial overlap. PMID:23658549

  6. EEG-fMRI evaluation of patients with mesial temporal lobe sclerosis.

    PubMed

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-02-01

    This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques.

  7. EEG-fMRI Evaluation of Patients with Mesial Temporal Lobe Sclerosis

    PubMed Central

    Avesani, Mirko; Giacopuzzi, Silvia; Bongiovanni, Luigi Giuseppe; Borelli, Paolo; Cerini, Roberto; Pozzi Mucelli, Roberto; Fiaschi, Antonio

    2014-01-01

    Summary This preliminary study sought more information on blood oxygen level dependent (BOLD) activation, especially contralateral temporal/extratemporal spread, during continuous EEG-fMRI recordings in four patients with mesial temporal sclerosis (MTS). In two patients, EEG showed unilateral focal activity during the EEG-fMRI session concordant with the interictal focus previously identified with standard and video-poly EEG. In the other two patients EEG demonstrated a contralateral diffusion of the irritative focus. In the third patient (with the most drug-resistant form and also extratemporal clinical signs), there was an extratemporal diffusion over frontal regions, ipsilateral to the irritative focus. fMRI analysis confirmed a single activation in the mesial temporal region in two patients whose EEG showed unilateral focal activity, while it demonstrated a bilateral activation in the mesial temporal regions in the other two patients. In the third patient, fMRI demonstrated an activation in the supplementary motxor area. This study confirms the most significant activation with a high firing rate of the irritative focus, but also suggests the importance of using new techniques (such as EEG-fMRI to examine cerebral blood flow) to identify the controlateral limbic activation, and any other extratemporal activations, possible causes of drug resistance in MTS that may require a more precise pre-surgical evaluation with invasive techniques. PMID:24571833

  8. Hydrologic Evaluation of TRMM Multisatellite Precipitation Analysis for Nanliu River Basin in Humid Southwestern China.

    PubMed

    Zhao, Yinjun; Xie, Qiongying; Lu, Yuan; Hu, Baoqing

    2017-06-01

    The accuracy of Tropical Rainfall Measuring Mission (TRMM) multi-satellite precipitation analysis (TMPA) daily accumulated precipitation products (3B42RTV7 and 3B42V7) was evaluated for a small basin (the Nanliu river basin). A direct comparison was performed against gauge observations from a period of 9 years (2000-2009) at temporal and spatial scales. The results show that the temporal-spatial precipitation characteristics of the Nanliu river basin are highly consistent with 3B42V7 relative to 3B42RTV7, with higher correlation coefficient (CC) approximately 0.9 at all temporal scales except for the daily scale and a lower relative bias percentage. 3B42V7 slightly overestimates precipitation at all temporal scales except the yearly scale; it slightly underestimates the precipitation at the daily spatial scale. The results also reveal that the precision of TMPA products increases with longer time-aggregated data, and the detection capability of daily TMPA precipitation products are enhanced by augmentation with daily precipitation rates. In addition, daily TMPA products were input into the Xin'anjiang hydrologic model; the results show that 3B42V7-based simulated outputs were well in line with actual stream flow observations, with a high CC (0.90) and Nash-Sutcliffe efficiency coefficient (NSE, 0.79), and the results adequately captured the pattern of the observed flow curve.

  9. A Critical Test of Temporal and Spatial Accuracy of the Tobii T60XL Eye Tracker

    ERIC Educational Resources Information Center

    Morgante, James D.; Zolfaghari, Rahman; Johnson, Scott P.

    2012-01-01

    Infant eye tracking is becoming increasingly popular for its presumed precision relative to traditional looking time paradigms and potential to yield new insights into developmental processes. However, there is strong reason to suspect that the temporal and spatial resolution of popular eye tracking systems is not entirely accurate, potentially…

  10. Neuronal Ensemble Synchrony during Human Focal Seizures

    PubMed Central

    Ahmed, Omar J.; Harrison, Matthew T.; Eskandar, Emad N.; Cosgrove, G. Rees; Madsen, Joseph R.; Blum, Andrew S.; Potter, N. Stevenson; Hochberg, Leigh R.; Cash, Sydney S.

    2014-01-01

    Seizures are classically characterized as the expression of hypersynchronous neural activity, yet the true degree of synchrony in neuronal spiking (action potentials) during human seizures remains a fundamental question. We quantified the temporal precision of spike synchrony in ensembles of neocortical neurons during seizures in people with pharmacologically intractable epilepsy. Two seizure types were analyzed: those characterized by sustained gamma (∼40–60 Hz) local field potential (LFP) oscillations or by spike-wave complexes (SWCs; ∼3 Hz). Fine (<10 ms) temporal synchrony was rarely present during gamma-band seizures, where neuronal spiking remained highly irregular and asynchronous. In SWC seizures, phase locking of neuronal spiking to the SWC spike phase induced synchrony at a coarse 50–100 ms level. In addition, transient fine synchrony occurred primarily during the initial ∼20 ms period of the SWC spike phase and varied across subjects and seizures. Sporadic coherence events between neuronal population spike counts and LFPs were observed during SWC seizures in high (∼80 Hz) gamma-band and during high-frequency oscillations (∼130 Hz). Maximum entropy models of the joint neuronal spiking probability, constrained only on single neurons' nonstationary coarse spiking rates and local network activation, explained most of the fine synchrony in both seizure types. Our findings indicate that fine neuronal ensemble synchrony occurs mostly during SWC, not gamma-band, seizures, and primarily during the initial phase of SWC spikes. Furthermore, these fine synchrony events result mostly from transient increases in overall neuronal network spiking rates, rather than changes in precise spiking correlations between specific pairs of neurons. PMID:25057195

  11. Evaluating the temporal link between Siberian Traps magmatism and the end-Permian mass extinction (Invited)

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.

    2013-12-01

    Interest in Large Igneous Provinces as agents for massive climatic and biological change is steadily increasing, though the temporal constraints on both are seldom precise enough to allow detailed testing of a causal relationship. The end-Permian mass extinction is one of the most biologically important and intensely studied events in Earth history and has been linked to many possible trigger mechanisms, from voluminous volcanism to bolide impact. Proposed kill mechanisms range from acidic and/or anoxic oceans to a cocktail of toxic gases, although the link between trigger and kill mechanisms is unconstrained due to the lack of a high-precision timeline. Critical to assessing the plausibility of different trigger and kill mechanisms is an accurate age model for the biotic crisis and the perturbations to the global carbon cycle and ocean chemistry. Recent work using the EARTHTIME U/Pb tracer solution has refined the timing of the onset and duration of the marine mass extinction event and the earliest Triassic recovery at the GSSP for the Permian-Triassic boundary in Meishan, China. This work constrains the mass extinction duration to less than 100 kyr and provides an accurate and precise time point for the onset of extinction, against which the timing of potential trigger mechanisms may be compared. For more than two decades, eruption and emplacement of the Siberian traps has been implicated as a potential trigger of the end-Permian extinction. In this scenario, magmatism drives the biotic crisis through mobilization of volatiles from the sedimentary rock with which intruding and erupting magmas interact. Massive volatile release is believed to trigger major changes in atmospheric chemistry and temperature, both of which have been proposed as kill mechanisms. Current temporal constrains on the timing and duration of the Siberian magmatism are an order of magnitude less precise than those for the mass extinction event and associated environmental perturbations, limiting detailed testing of a causal relationship. We present new high-precision U/Pb geochronology on zircon crystals isolated from a suite of shallowly intruded dolerites in the Noril'sk region and two welded tuffs in the Maymecha river-valley. These two sections are the most extensively studied in the magmatic province and although there are thick exposures of lava and volcaniclastic rock elsewhere, the Noril'sk and Maymecha-Kotuy sections are thought to be representative of the entire extrusive stratigraphy. Our dates suggest that intrusive and extrusive magmatism began within analytical uncertainty of the onset of mass extinction, permitting a causal connection with age precision at the ~ × 0.06 Ma level. The new dates also allow projection of the extinction interval and associated chemostratigraphy onto the Siberian trap stratigraphy, which suggests that ~300m of volcanicalstic rocks and ~1800m of lavas in the Maymecha-Kotuy section were erupted just prior to the onset of mass extinction. Comparison of a detailed eruption history to biological and chemical records over the extinction and recovery intervals allows for better evaluation of plausible kill mechanisms.

  12. The impact of spatial and temporal patterns on multi-cellular behavior

    NASA Astrophysics Data System (ADS)

    Nikolic, Djordje L.

    What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.

  13. Avulsion research using flume experiments and highly accurate and temporal-rich SfM datasets

    NASA Astrophysics Data System (ADS)

    Javernick, L.; Bertoldi, W.; Vitti, A.

    2017-12-01

    SfM's ability to produce high-quality, large-scale digital elevation models (DEMs) of complicated and rapidly evolving systems has made it a valuable technique for low-budget researchers and practitioners. While SfM has provided valuable datasets that capture single-flood event DEMs, there is an increasing scientific need to capture higher temporal resolution datasets that can quantify the evolutionary processes instead of pre- and post-flood snapshots. However, flood events' dangerous field conditions and image matching challenges (e.g. wind, rain) prevent quality SfM-image acquisition. Conversely, flume experiments offer opportunities to document flood events, but achieving consistent and accurate DEMs to detect subtle changes in dry and inundated areas remains a challenge for SfM (e.g. parabolic error signatures).This research aimed at investigating the impact of naturally occurring and manipulated avulsions on braided river morphology and on the encroachment of floodplain vegetation, using laboratory experiments. This required DEMs with millimeter accuracy and precision and at a temporal resolution to capture the processes. SfM was chosen as it offered the most practical method. Through redundant local network design and a meticulous ground control point (GCP) survey with a Leica Total Station in red laser configuration (reported 2 mm accuracy), the SfM residual errors compared to separate ground truthing data produced mean errors of 1.5 mm (accuracy) and standard deviations of 1.4 mm (precision) without parabolic error signatures. Lighting conditions in the flume were limited to uniform, oblique, and filtered LED strips, which removed glint and thus improved bed elevation mean errors to 4 mm, but errors were further reduced by means of an open source software for refraction correction. The obtained datasets have provided the ability to quantify how small flood events with avulsion can have similar morphologic and vegetation impacts as large flood events without avulsion. Further, this research highlights the potential application of SfM in the laboratory and ability to document physical and biological processes at greater spatial and temporal resolution. Marie Sklodowska-Curie Individual Fellowship: River-HMV, 656917

  14. High Precision, Absolute Total Column Ozone Measurements from the Pandora Spectrometer System: Comparisons with Data from a Brewer Double Monochromator and Aura OMI

    NASA Technical Reports Server (NTRS)

    Tzortziou, Maria A.; Herman, Jay R.; Cede, Alexander; Abuhassan, Nader

    2012-01-01

    We present new, high precision, high temporal resolution measurements of total column ozone (TCO) amounts derived from ground-based direct-sun irradiance measurements using our recently deployed Pandora single-grating spectrometers. Pandora's small size and portability allow deployment at multiple sites within an urban air-shed and development of a ground-based monitoring network for studying small-scale atmospheric dynamics, spatial heterogeneities in trace gas distribution, local pollution conditions, photochemical processes and interdependencies of ozone and its major precursors. Results are shown for four mid- to high-latitude sites where different Pandora instruments were used. Comparisons with a well calibrated double-grating Brewer spectrometer over a period of more than a year in Greenbelt MD showed excellent agreement and a small bias of approximately 2 DU (or, 0.6%). This was constant with slant column ozone amount over the full range of observed solar zenith angles (15-80), indicating adequate Pandora stray light correction. A small (1-2%) seasonal difference was found, consistent with sensitivity studies showing that the Pandora spectral fitting TCO retrieval has a temperature dependence of 1% per 3K, with an underestimation in temperature (e.g., during summer) resulting in an underestimation of TCO. Pandora agreed well with Aura-OMI (Ozone Measuring Instrument) satellite data, with average residuals of <1% at the different sites when the OMI view was within 50 km from the Pandora location and OMI-measured cloud fraction was <0.2. The frequent and continuous measurements by Pandora revealed significant short-term (hourly) temporal changes in TCO, not possible to capture by sun-synchronous satellites, such as OMI, alone.

  15. Spatiotemporal dynamics of similarity-based neural representations of facial identity

    PubMed Central

    Vida, Mark D.; Nestor, Adrian; Plaut, David C.; Behrmann, Marlene

    2017-01-01

    Humans’ remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level “image-based” and higher level “identity-based” model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise. PMID:28028220

  16. High-resolution continuous flow analysis setup for water isotopic measurement from ice cores using laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. D.; Baisden, W. T.; Bertler, N. A. N.; Keller, E. D.; Gkinis, V.

    2014-12-01

    Here we present an experimental setup for water stable isotopes (δ18O and δD) continuous flow measurements. It is the first continuous flow laser spectroscopy system that is using Off-Axis Integrated Cavity Output Spectroscopy (OA-ICOS; analyzer manufactured by Los Gatos Research - LGR) in combination with an evaporation unit to continuously analyze sample from an ice core. A Water Vapor Isotopic Standard Source (WVISS) calibration unit, manufactured by LGR, was modified to: (1) increase the temporal resolution by reducing the response time (2) enable measurements on several water standards, and (3) to reduce the influence from memory effects. While this setup was designed for the Continuous Flow Analysis (CFA) of ice cores, it can also continuously analyze other liquid or vapor sources. The modified setup provides a shorter response time (~54 and 18 s for 2013 and 2014 setup, respectively) compared to the original WVISS unit (~62 s), which is an improvement in measurement resolution. Another improvement compared to the original WVISS is that the modified setup has a reduced memory effect. Stability tests comparing the modified WVISS and WVISS setups were performed and Allan deviations (σAllan) were calculated to determine precision at different averaging times. For the 2013 modified setup the precision after integration times of 103 s are 0.060 and 0.070‰ for δ18O and δD, respectively. For the WVISS setup the corresponding σAllan values are 0.030, 0.060 and 0.043‰ for δ18O, δD and δ17O, respectively. For the WVISS setup the precision is 0.035, 0.070 and 0.042‰ after 103 s for δ18O, δD and δ17O, respectively. Both the modified setups and WVISS setup are influenced by instrumental drift with δ18O being more drift sensitive than δD. The σAllan values for δ18O of 0.30 and 0.18‰ for the modified (2013) and WVISS setup, respectively after averaging times of 104 s (2.78 h). The Isotopic Water Analyzer (IWA)-modified WVISS setup used during the 2013 Roosevelt Island Climate Evolution (RICE) ice core processing campaign achieved high precision measurements, in particular for δD, with high temporal resolution for the upper part of the core, where a seasonally resolved isotopic signal is preserved.

  17. [Applying temporally-adjusted land use regression models to estimate ambient air pollution exposure during pregnancy].

    PubMed

    Zhang, Y J; Xue, F X; Bai, Z P

    2017-03-06

    The impact of maternal air pollution exposure on offspring health has received much attention. Precise and feasible exposure estimation is particularly important for clarifying exposure-response relationships and reducing heterogeneity among studies. Temporally-adjusted land use regression (LUR) models are exposure assessment methods developed in recent years that have the advantage of having high spatial-temporal resolution. Studies on the health effects of outdoor air pollution exposure during pregnancy have been increasingly carried out using this model. In China, research applying LUR models was done mostly at the model construction stage, and findings from related epidemiological studies were rarely reported. In this paper, the sources of heterogeneity and research progress of meta-analysis research on the associations between air pollution and adverse pregnancy outcomes were analyzed. The methods of the characteristics of temporally-adjusted LUR models were introduced. The current epidemiological studies on adverse pregnancy outcomes that applied this model were systematically summarized. Recommendations for the development and application of LUR models in China are presented. This will encourage the implementation of more valid exposure predictions during pregnancy in large-scale epidemiological studies on the health effects of air pollution in China.

  18. High-precision GPS autonomous platforms for sea ice dynamics and physical oceanography

    NASA Astrophysics Data System (ADS)

    Elosegui, P.; Wilkinson, J.; Olsson, M.; Rodwell, S.; James, A.; Hagan, B.; Hwang, B.; Forsberg, R.; Gerdes, R.; Johannessen, J.; Wadhams, P.; Nettles, M.; Padman, L.

    2012-12-01

    Project "Arctic Ocean sea ice and ocean circulation using satellite methods" (SATICE), is the first high-rate, high-precision, continuous GPS positioning experiment on sea ice in the Arctic Ocean. The SATICE systems collect continuous, dual-frequency carrier-phase GPS data while drifting on sea ice. Additional geophysical measurements also collected include ocean water pressure, ocean surface salinity, atmospheric pressure, snow-depth, air-ice-ocean temperature profiles, photographic imagery, and others, enabling sea ice drift, freeboard, weather, ice mass balance, and sea-level height determination. Relatively large volumes of data from each buoy are streamed over a satellite link to a central computer on the Internet in near real time, where they are processed to estimate the time-varying buoy positions. SATICE system obtains continuous GPS data at sub-minute intervals with a positioning precision of a few centimetres in all three dimensions. Although monitoring of sea ice motions goes back to the early days of satellite observations, these autonomous platforms bring out a level of spatio-temporal detail that has never been seen before, especially in the vertical axis. These high-resolution data allows us to address new polar science questions and challenge our present understanding of both sea ice dynamics and Arctic oceanography. We will describe the technology behind this new autonomous platform, which could also be adapted to other applications that require high resolution positioning information with sustained operations and observations in the polar marine environment, and present results pertaining to sea ice dynamics and physical oceanography.

  19. No evidence for change of the atmospheric helium isotope composition since 1978 from re-analysis of the Cape Grim Air Archive

    NASA Astrophysics Data System (ADS)

    Mabry, Jennifer C.; Lan, Tefang; Boucher, Christine; Burnard, Peter G.; Brennwald, Matthias S.; Langenfelds, Ray; Marty, Bernard

    2015-10-01

    The helium isotope composition of air might have changed since the industrial revolution due to the release of 4He-rich crustal helium during exploitation of fossil fuels. Thereby, variation of the atmospheric helium isotope ratio (3He/4He) has been proposed as a possible new atmospheric tracer of industrial activity. However, the magnitude of such change is debated, with possible values ranging from 0 to about 2 ‰ /yr (Sano et al., 1989; Hoffman and Nier, 1993; Pierson-Wickmann et al., 2001; Brennwald et al., 2013; Lupton and Evans, 2013). A new analytical facility for high precision (2‰, 2σ) analysis of the 3He/4He ratio of air has been developed at CRPG Nancy (France) capable of investigating permil level variations. Previously, Brennwald et al. (2013) analyzed a selection of air samples archived since 1978 at Cape Grim, Tasmania, by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). They reported a mean temporal decrease of the 3He/4He ratio of 0.23-0.30‰/yr. Re-analysis of aliquots of the same samples using the new high-precision instrument showed no significant temporal decrease of the 3He/4He ratio (0.0095 ± 0.033‰ /yr, 2σ) in the time interval 1978-2011. These new data constrain the mean He content of globally produced natural gas to about 0.034% or less, which is about 3× lower than commonly quoted.

  20. A high-precision, distributed geodetic strainmeter based on dual coaxial cable Bragg gratings

    NASA Astrophysics Data System (ADS)

    Fu, J.; Wei, T.; Wei, M.; Shen, Y.

    2014-12-01

    Observations of surface deformation are essential for understanding a wide range of geophysical problems, including earthquakes, volcanoes, landslides, and glaciers. Current geodetic technologies, such as GPS, InSAR, borehole and laser strainmeters, are costly and limited in their temporal or spatial resolution. Here we present a new type of strainmeter based on coaxial cable Bragg grating (CCBG) sensing technology that provides high-precision, distributed strain measurements at a moderate cost. The coaxial-cable-based strainmeter is designed to cover a long distance (~ km) under harsh environmental conditions such as extreme temperatures. To minimize the environmental noises, two CCBGs are introduced into the geodetic strainmeter: one is used to measure the strain applied on it, and the other acts as a reference only to detect the environmental noises. The environmental noises are removed using the inputs from the strained CCBG and the reference CCBG in a frequency mixer. The test results show that the geodetic strainmeter with dual CCBGs has micron-strain accuracy in the lab.

  1. Configuration and Specifications of AN Unmanned Aerial Vehicle for Precision Agriculture

    NASA Astrophysics Data System (ADS)

    Erena, M.; Montesinos, S.; Portillo, D.; Alvarez, J.; Marin, C.; Fernandez, L.; Henarejos, J. M.; Ruiz, L. A.

    2016-06-01

    Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

  2. Fine-grained versus categorical: Pupil size differentiates between strategies for spatial working memory performance.

    PubMed

    Starc, Martina; Anticevic, Alan; Repovš, Grega

    2017-05-01

    Pupillometry provides an accessible option to track working memory processes with high temporal resolution. Several studies showed that pupil size increases with the number of items held in working memory; however, no study has explored whether pupil size also reflects the quality of working memory representations. To address this question, we used a spatial working memory task to investigate the relationship of pupil size with spatial precision of responses and indicators of reliance on generalized spatial categories. We asked 30 participants (15 female, aged 19-31) to remember the position of targets presented at various locations along a hidden radial grid. After a delay, participants indicated the remembered location with a high-precision joystick providing a parametric measure of trial-to-trial accuracy. We recorded participants' pupil dilations continuously during task performance. Results showed a significant relation between pupil dilation during preparation/early encoding and the precision of responses, possibly reflecting the attentional resources devoted to memory encoding. In contrast, pupil dilation at late maintenance and response predicted larger shifts of responses toward prototypical locations, possibly reflecting larger reliance on categorical representation. On an intraindividual level, smaller pupil dilations during encoding predicted larger dilations during late maintenance and response. On an interindividual level, participants relying more on categorical representation also produced larger precision errors. The results confirm the link between pupil size and the quality of spatial working memory representation. They suggest compensatory strategies of spatial working memory performance-loss of precise spatial representation likely increases reliance on generalized spatial categories. © 2017 Society for Psychophysiological Research.

  3. α7 Nicotinic acetylcholine receptors and temporal memory: Synergistic effects of combining prenatal choline and nicotine on reinforcement-induced resetting of an interval clock

    PubMed Central

    Cheng, Ruey-Kuang; Meck, Warren H.; Williams, Christina L.

    2006-01-01

    We previously showed that prenatal choline supplementation could increase the precision of timing and temporal memory and facilitate simultaneous temporal processing in mature and aged rats. In the present study, we investigated the ability of adult rats to selectively control the reinforcement-induced resetting of an internal clock as a function of prenatal drug treatments designed to affect the α7 nicotinic acetylcholine receptor (α7 nAChR). Male Sprague-Dawley rats were exposed to prenatal choline (CHO), nicotine (NIC), methyllycaconitine (MLA), choline + nicotine (CHO + NIC), choline + nicotine + methyllycaconitine (CHO + NIC + MLA), or a control treatment (CON). Beginning at 4-mo-of-age, rats were trained on a peak-interval timing procedure in which food was available at 10-, 30-, and 90-sec criterion durations. At steady-state performance there were no differences in timing accuracy, precision, or resetting among the CON, MLA, and CHO + NIC + MLA treatments. It was observed that the CHO and NIC treatments produced a small, but significant increase in timing precision, but no change in accuracy or resetting. In contrast, the CHO + NIC prenatal treatment produced a dramatic increase in timing precision and selective control of the resetting mechanism with no change in overall timing accuracy. The synergistic effect of combining prenatal CHO and NIC treatments suggests an organizational change in α7 nAChR function that is dependent upon a combination of selective and nonselective nAChR stimulation during early development. PMID:16547161

  4. Adaptive optics optical coherence tomography with dynamic retinal tracking

    PubMed Central

    Kocaoglu, Omer P.; Ferguson, R. Daniel; Jonnal, Ravi S.; Liu, Zhuolin; Wang, Qiang; Hammer, Daniel X.; Miller, Donald T.

    2014-01-01

    Adaptive optics optical coherence tomography (AO-OCT) is a highly sensitive and noninvasive method for three dimensional imaging of the microscopic retina. Like all in vivo retinal imaging techniques, however, it suffers the effects of involuntary eye movements that occur even under normal fixation. In this study we investigated dynamic retinal tracking to measure and correct eye motion at KHz rates for AO-OCT imaging. A customized retina tracking module was integrated into the sample arm of the 2nd-generation Indiana AO-OCT system and images were acquired on three subjects. Analyses were developed based on temporal amplitude and spatial power spectra in conjunction with strip-wise registration to independently measure AO-OCT tracking performance. After optimization of the tracker parameters, the system was found to correct eye movements up to 100 Hz and reduce residual motion to 10 µm root mean square. Between session precision was 33 µm. Performance was limited by tracker-generated noise at high temporal frequencies. PMID:25071963

  5. Turbulence measurements in high Reynolds number boundary layers

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Smits, Alexander

    2013-11-01

    Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  6. Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks

    PubMed Central

    Li, Gang; He, Bin; Huang, Hongwei; Tang, Limin

    2016-01-01

    The spatial–temporal correlation is an important feature of sensor data in wireless sensor networks (WSNs). Most of the existing works based on the spatial–temporal correlation can be divided into two parts: redundancy reduction and anomaly detection. These two parts are pursued separately in existing works. In this work, the combination of temporal data-driven sleep scheduling (TDSS) and spatial data-driven anomaly detection is proposed, where TDSS can reduce data redundancy. The TDSS model is inspired by transmission control protocol (TCP) congestion control. Based on long and linear cluster structure in the tunnel monitoring system, cooperative TDSS and spatial data-driven anomaly detection are then proposed. To realize synchronous acquisition in the same ring for analyzing the situation of every ring, TDSS is implemented in a cooperative way in the cluster. To keep the precision of sensor data, spatial data-driven anomaly detection based on the spatial correlation and Kriging method is realized to generate an anomaly indicator. The experiment results show that cooperative TDSS can realize non-uniform sensing effectively to reduce the energy consumption. In addition, spatial data-driven anomaly detection is quite significant for maintaining and improving the precision of sensor data. PMID:27690035

  7. Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals

    PubMed Central

    Koos, Tibor; Buzsáki, György

    2012-01-01

    Neuronal control with high temporal precision is possible with optogenetics, yet currently available methods do not enable to control independently multiple locations in the brains of freely moving animals. Here, we describe a diode-probe system that allows real-time and location-specific control of neuronal activity at multiple sites. Manipulation of neuronal activity in arbitrary spatiotemporal patterns is achieved by means of an optoelectronic array, manufactured by attaching multiple diode-fiber assemblies to high-density silicon probes or wire tetrodes and implanted into the brains of animals that are expressing light-responsive opsins. Each diode can be controlled separately, allowing localized light stimulation of neuronal activators and silencers in any temporal configuration and concurrent recording of the stimulated neurons. Because the only connections to the animals are via a highly flexible wire cable, unimpeded behavior is allowed for circuit monitoring and multisite perturbations in the intact brain. The capacity of the system to generate unique neural activity patterns facilitates multisite manipulation of neural circuits in a closed-loop manner and opens the door to addressing novel questions. PMID:22496529

  8. Precisely cyclic sand: self-organization of periodically sheared frictional grains.

    PubMed

    Royer, John R; Chaikin, Paul M

    2015-01-06

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain-friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many-degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic.

  9. High-performance execution of psychophysical tasks with complex visual stimuli in MATLAB

    PubMed Central

    Asaad, Wael F.; Santhanam, Navaneethan; McClellan, Steven

    2013-01-01

    Behavioral, psychological, and physiological experiments often require the ability to present sensory stimuli, monitor and record subjects' responses, interface with a wide range of devices, and precisely control the timing of events within a behavioral task. Here, we describe our recent progress developing an accessible and full-featured software system for controlling such studies using the MATLAB environment. Compared with earlier reports on this software, key new features have been implemented to allow the presentation of more complex visual stimuli, increase temporal precision, and enhance user interaction. These features greatly improve the performance of the system and broaden its applicability to a wider range of possible experiments. This report describes these new features and improvements, current limitations, and quantifies the performance of the system in a real-world experimental setting. PMID:23034363

  10. Axonal synapse sorting in medial entorhinal cortex

    NASA Astrophysics Data System (ADS)

    Schmidt, Helene; Gour, Anjali; Straehle, Jakob; Boergens, Kevin M.; Brecht, Michael; Helmstaedter, Moritz

    2017-09-01

    Research on neuronal connectivity in the cerebral cortex has focused on the existence and strength of synapses between neurons, and their location on the cell bodies and dendrites of postsynaptic neurons. The synaptic architecture of individual presynaptic axonal trees, however, remains largely unknown. Here we used dense reconstructions from three-dimensional electron microscopy in rats to study the synaptic organization of local presynaptic axons in layer 2 of the medial entorhinal cortex, the site of grid-like spatial representations. We observe path-length-dependent axonal synapse sorting, such that axons of excitatory neurons sequentially target inhibitory neurons followed by excitatory neurons. Connectivity analysis revealed a cellular feedforward inhibition circuit involving wide, myelinated inhibitory axons and dendritic synapse clustering. Simulations show that this high-precision circuit can control the propagation of synchronized activity in the medial entorhinal cortex, which is known for temporally precise discharges.

  11. Precisely cyclic sand: Self-organization of periodically sheared frictional grains

    PubMed Central

    Royer, John R.; Chaikin, Paul M.

    2015-01-01

    The disordered static structure and chaotic dynamics of frictional granular matter has occupied scientists for centuries, yet there are few organizational principles or guiding rules for this highly hysteretic, dissipative material. We show that cyclic shear of a granular material leads to dynamic self-organization into several phases with different spatial and temporal order. Using numerical simulations, we present a phase diagram in strain–friction space that shows chaotic dispersion, crystal formation, vortex patterns, and most unusually a disordered phase in which each particle precisely retraces its unique path. However, the system is not reversible. Rather, the trajectory of each particle, and the entire frictional, many–degrees-of-freedom system, organizes itself into a limit cycle absorbing state. Of particular note is that fact that the cyclic states are spatially disordered, whereas the ordered states are chaotic. PMID:25538298

  12. Spatial control of recollision wave packets with attosecond precision.

    PubMed

    Kitzler, Markus; Lezius, Matthias

    2005-12-16

    We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.

  13. Shapes displayed with durations in the microsecond range do not obey Bloch's law of temporal summation

    PubMed Central

    Greene, Ernest; Ogden, R. Todd

    2013-01-01

    Shape patterns were displayed with simultaneous brief flashes from a light-emitting diode array. Flash durations in the microsecond range and luminous intensities were adjusted to vary the degree of successful shape recognition. Four experiments were conducted to test whether Bloch's law would apply in this task. Bloch's law holds that for very brief flashes the perceptual threshold is determined by the total number of photons being delivered, i.e., there is reciprocity of intensity and duration. The present results did not find that effectiveness of flashes was based on the total quantity of photons, as predicted by Bloch's law. Additionally, the evidence points to a visual mechanism that has ultra-high temporal precision that either registers the rate of photon flux or the duration of flashes. PMID:24349700

  14. A fully-automated multiscale kernel graph cuts based particle localization scheme for temporal focusing two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Li, Chunqiang; Xiao, Chuan; Sun, Wenqing; Qian, Wei

    2017-03-01

    The temporal focusing two-photon microscope (TFM) is developed to perform depth resolved wide field fluorescence imaging by capturing frames sequentially. However, due to strong nonignorable noises and diffraction rings surrounding particles, further researches are extremely formidable without a precise particle localization technique. In this paper, we developed a fully-automated scheme to locate particles positions with high noise tolerance. Our scheme includes the following procedures: noise reduction using a hybrid Kalman filter method, particle segmentation based on a multiscale kernel graph cuts global and local segmentation algorithm, and a kinematic estimation based particle tracking method. Both isolated and partial-overlapped particles can be accurately identified with removal of unrelated pixels. Based on our quantitative analysis, 96.22% isolated particles and 84.19% partial-overlapped particles were successfully detected.

  15. Seasonal Plasticity of Precise Spike Timing in the Avian Auditory System

    PubMed Central

    Sen, Kamal; Rubel, Edwin W; Brenowitz, Eliot A.

    2015-01-01

    Vertebrate audition is a dynamic process, capable of exhibiting both short- and long-term adaptations to varying listening conditions. Precise spike timing has long been known to play an important role in auditory encoding, but its role in sensory plasticity remains largely unexplored. We addressed this issue in Gambel's white-crowned sparrow (Zonotrichia leucophrys gambelii), a songbird that shows pronounced seasonal fluctuations in circulating levels of sex-steroid hormones, which are known to be potent neuromodulators of auditory function. We recorded extracellular single-unit activity in the auditory forebrain of males and females under different breeding conditions and used a computational approach to explore two potential strategies for the neural discrimination of sound level: one based on spike counts and one based on spike timing reliability. We report that breeding condition has robust sex-specific effects on spike timing. Specifically, in females, breeding condition increases the proportion of cells that rely solely on spike timing information and increases the temporal resolution required for optimal intensity encoding. Furthermore, in a functionally distinct subset of cells that are particularly well suited for amplitude encoding, female breeding condition enhances spike timing-based discrimination accuracy. No effects of breeding condition were observed in males. Our results suggest that high-resolution temporal discharge patterns may provide a plastic neural substrate for sensory coding. PMID:25716843

  16. Totomatix: a novel automatic set-up to control diurnal, diel and long-term plant nitrate nutrition

    PubMed Central

    Adamowicz, Stéphane; Le Bot, Jacques; Huanosto Magaña, Ruth; Fabre, José

    2012-01-01

    Background Stand-alone nutritional set-ups are useful tools to grow plants at defined nutrient availabilities and to measure nutrient uptake rates continuously, in particular that for nitrate. Their use is essential when the measurements are meant to cover long time periods. These complex systems have, however, important drawbacks, including poor long-term reliability and low precision at high nitrate concentration. This explains why the information dealing with diel dynamics of nitrate uptake rate is scarce and concerns mainly young plants grown at low nitrate concentration. Scope The novel system detailed in this paper has been developed to allow versatile use in growth rooms, greenhouses or open fields at nitrate concentrations ranging from a few micro- to several millimoles per litres. The system controls, at set frequencies, the solution nitrate concentration, pH and volumes. Nitrate concentration is measured by spectral deconvolution of UV spectra. The main advantages of the set-up are its low maintenance (weekly basis), an ability to diagnose interference or erroneous analyses and high precision of nitrate concentration measurements (0·025 % at 3 mm). The paper details the precision of diurnal nitrate uptake rate measurements, which reveals sensitivity to solution volume at low nitrate concentration, whereas at high concentration, it is mostly sensitive to the precision of volume estimates. Conclusions This novel set-up allows us to measure and characterize the dynamics of plant nitrate nutrition at high temporal resolution (minutes to hours) over long-term experiments (up to 1 year). It is reliable and also offers a novel method to regulate up to seven N treatments by adjusting the daily uptake of test plants relative to controls, in variable environments such as open fields and glasshouses. PMID:21985796

  17. High sensitive and high temporal and spatial resolved image of reactive species in atmospheric pressure surface discharge reactor by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Feng, Chun-Lei; Wang, Zhi-Wei; Ding, Hongbin

    2017-05-01

    The current paucity of spatial and temporal characterization of reactive oxygen and nitrogen species (RONS) concentration has been a major hurdle to the advancement and clinical translation of low temperature atmospheric plasmas. In this study, an advanced laser induced fluorescence (LIF) system has been developed to be an effective antibacterial surface discharge reactor for the diagnosis of RONS, where the highest spatial and temporal resolution of the LIF system has been achieved to ˜100 μm scale and ˜20 ns scale, respectively. Measurements on an oxidative OH radical have been carried out as typical RONS for the benchmark of the whole LIF system, where absolute number density calibration has been performed on the basis of the laser Rayleigh scattering method. Requirements for pixel resolved spatial distribution and outer plasma region detection become challenging tasks due to the low RONS concentration (˜ppb level) and strong interference, especially the discharge induced emission and pulsed laser induced stray light. In order to design the highly sensitive LIF system, a self-developed fluorescence telescope, the optimization of high precision synchronization among a tunable pulsed laser, a surface discharge generator, intensified Charge Coupled Device (iCCD) camera, and an oscilloscope have been performed. Moreover, an image BOXCAR approach has been developed to remarkably improve the sensitivity of the whole LIF system by optimizing spatial and temporal gating functions via both hardware and software, which has been integrated into our automatic control and data acquisition system on the LabVIEW platform. In addition, a reciprocation averaging measurement has been applied to verify the accuracy of the whole LIF detecting system, indicating the relative standard deviation of ˜3%.

  18. Single molecule tracking fluorescence microscopy in mitochondria reveals highly dynamic but confined movement of Tom40

    NASA Astrophysics Data System (ADS)

    Kuzmenko, Anton; Tankov, Stoyan; English, Brian P.; Tarassov, Ivan; Tenson, Tanel; Kamenski, Piotr; Elf, Johan; Hauryliuk, Vasili

    2011-12-01

    Tom40 is an integral protein of the mitochondrial outer membrane, which as the central component of the Translocase of the Outer Membrane (TOM) complex forms a channel for protein import. We characterize the diffusion properties of individual Tom40 molecules fused to the photoconvertable fluorescent protein Dendra2 with millisecond temporal resolution. By imaging individual Tom40 molecules in intact isolated yeast mitochondria using photoactivated localization microscopy with sub-diffraction limited spatial precision, we demonstrate that Tom40 movement in the outer mitochondrial membrane is highly dynamic but confined in nature, suggesting anchoring of the TOM complex as a whole.

  19. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    PubMed

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. Copyright © 2015. Published by Elsevier B.V.

  20. Limits to the precision of gradient sensing with spatial communication and temporal integration

    PubMed Central

    Mugler, Andrew; Levchenko, Andre; Nemenman, Ilya

    2016-01-01

    Gradient sensing requires at least two measurements at different points in space. These measurements must then be communicated to a common location to be compared, which is unavoidably noisy. Although much is known about the limits of measurement precision by cells, the limits placed by the communication are not understood. Motivated by recent experiments, we derive the fundamental limits to the precision of gradient sensing in a multicellular system, accounting for communication and temporal integration. The gradient is estimated by comparing a “local” and a “global” molecular reporter of the external concentration, where the global reporter is exchanged between neighboring cells. Using the fluctuation–dissipation framework, we find, in contrast to the case when communication is ignored, that precision saturates with the number of cells independently of the measurement time duration, because communication establishes a maximum length scale over which sensory information can be reliably conveyed. Surprisingly, we also find that precision is improved if the local reporter is exchanged between cells as well, albeit more slowly than the global reporter. The reason is that whereas exchange of the local reporter weakens the comparison, it decreases the measurement noise. We term such a model “regional excitation–global inhibition.” Our results demonstrate that fundamental sensing limits are necessarily sharpened when the need to communicate information is taken into account. PMID:26792517

  1. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring.

    PubMed

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-08-20

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA.

  2. Combining HJ CCD, GF-1 WFV and MODIS Data to Generate Daily High Spatial Resolution Synthetic Data for Environmental Process Monitoring

    PubMed Central

    Wu, Mingquan; Huang, Wenjiang; Niu, Zheng; Wang, Changyao

    2015-01-01

    The limitations of satellite data acquisition mean that there is a lack of satellite data with high spatial and temporal resolutions for environmental process monitoring. In this study, we address this problem by applying the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) and the Spatial and Temporal Data Fusion Approach (STDFA) to combine Huanjing satellite charge coupled device (HJ CCD), Gaofen satellite no. 1 wide field of view camera (GF-1 WFV) and Moderate Resolution Imaging Spectroradiometer (MODIS) data to generate daily high spatial resolution synthetic data for land surface process monitoring. Actual HJ CCD and GF-1 WFV data were used to evaluate the precision of the synthetic images using the correlation analysis method. Our method was tested and validated for two study areas in Xinjiang Province, China. The results show that both the ESTARFM and STDFA can be applied to combine HJ CCD and MODIS reflectance data, and GF-1 WFV and MODIS reflectance data, to generate synthetic HJ CCD data and synthetic GF-1 WFV data that closely match actual data with correlation coefficients (r) greater than 0.8989 and 0.8643, respectively. Synthetic red- and near infrared (NIR)-band data generated by ESTARFM are more suitable for the calculation of Normalized Different Vegetation Index (NDVI) than the data generated by STDFA. PMID:26308017

  3. Development of on-off spiking in superior paraolivary nucleus neurons of the mouse

    PubMed Central

    Felix, Richard A.; Vonderschen, Katrin; Berrebi, Albert S.

    2013-01-01

    The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues. PMID:23515791

  4. Water vapor δ17O measurements using an off-axis integrated cavity output spectrometer and seasonal variation in 17O-excess of precipitation in the east-central United States

    NASA Astrophysics Data System (ADS)

    Tian, C.; Wang, L.; Novick, K. A.

    2016-12-01

    High-precision triple oxygen isotope analysis can be used to improve our understanding of multiple hydrological and meteorological processes. Recent studies focus on understanding 17O-excess variation of tropical storms, high-latitude snow and ice-core as well as spatial distribution of meteoric water (tap water). The temporal scale of 17O-excess variation in middle-latitude precipitation is needed to better understand which processes control on the 17O-excess variations. This study focused on assessing how the accuracy and precision of vapor δ17O laser spectroscopy measurements depend on vapor concentration, delta range, and averaging-time. Meanwhile, we presented 17O-excess data from two-year, event based precipitation sampling in the east-central United States. A Triple Water Vapor Isotope Analyzer (T-WVIA) was used to evaluate the accuracy and precision of δ2H, δ18O and δ17O measurements. GISP and SLAP2 from IAEA and four working standards were used to evaluate the sensitivity in the three factors. Overall, the accuracy and precision of all isotope measurements were sensitive to concentration, with higher accuracy and precision generally observed under moderate vapor concentrations (i.e., 10000-15000 ppm) for all isotopes. Precision was also sensitive to the range of delta values, though the effect was not as large when compared to the sensitivity to concentration. The precision was much less sensitive to averaging time when compared with concentration and delta range effects. The preliminary results showed that 17O-excess variation was lower in summer (23±17 per meg) than in winter (34±16 per meg), whereas spring values (30±21 per meg) was similar to fall (29±13 per meg). That means kinetic fractionation influences the isotopic composition and 17O-excess in different seasons.

  5. Correlation between Preoperative High Resolution Computed Tomography (CT) Findings with Surgical Findings in Chronic Otitis Media (COM) Squamosal Type.

    PubMed

    Karki, S; Pokharel, M; Suwal, S; Poudel, R

    Background The exact role of High resolution computed tomography (HRCT) temporal bone in preoperative assessment of Chronic suppurative otitis media atticoantral disease still remains controversial. Objective To evaluate the role of high resolution computed tomography temporal bone in Chronic suppurative otitis media atticoantral disease and to compare preoperative computed tomographic findings with intra-operative findings. Method Prospective, analytical study conducted among 65 patients with chronic suppurative otitis media atticoantral disease in Department of Radiodiagnosis, Kathmandu University Dhulikhel Hospital between January 2015 to July 2016. The operative findings were compared with results of imaging. The parameters of comparison were erosion of ossicles, scutum, facial canal, lateral semicircular canal, sigmoid and tegmen plate along with extension of disease to sinus tympani and facial recess. Sensitivity, specificity, negative predictive value, positive predictive values were calculated. Result High resolution computed tomography temporal bone offered sensitivity (Se) and specificity (Sp) of 100% for visualization of sigmoid and tegmen plate erosion. The performance of HRCT in detecting malleus (Se=100%, Sp=95.23%), incus (Se=100%,Sp=80.48%) and stapes (Se=96.55%, Sp=71.42%) erosion was excellent. It offered precise information about facial canal erosion (Se=100%, Sp=75%), scutum erosion (Se=100%, Sp=96.87%) and extension of disease to facial recess and sinus tympani (Se=83.33%,Sp=100%). high resolution computed tomography showed specificity of 100% for lateral semicircular canal erosion (Sp=100%) but with low sensitivity (Se=53.84%). Conclusion The findings of high resolution computed tomography and intra-operative findings were well comparable except for lateral semicircular canal erosion. high resolution computed tomography temporal bone acts as a road map for surgeon to identify the extent of disease, plan for appropriate procedure that is required and prepare for potential complications that can be encountered during surgery.

  6. Audio-visual temporal perception in children with restored hearing.

    PubMed

    Gori, Monica; Chilosi, Anna; Forli, Francesca; Burr, David

    2017-05-01

    It is not clear how audio-visual temporal perception develops in children with restored hearing. In this study we measured temporal discrimination thresholds with an audio-visual temporal bisection task in 9 deaf children with restored audition, and 22 typically hearing children. In typically hearing children, audition was more precise than vision, with no gain in multisensory conditions (as previously reported in Gori et al. (2012b)). However, deaf children with restored audition showed similar thresholds for audio and visual thresholds and some evidence of gain in audio-visual temporal multisensory conditions. Interestingly, we found a strong correlation between auditory weighting of multisensory signals and quality of language: patients who gave more weight to audition had better language skills. Similarly, auditory thresholds for the temporal bisection task were also a good predictor of language skills. This result supports the idea that the temporal auditory processing is associated with language development. Copyright © 2017. Published by Elsevier Ltd.

  7. Measurement of optical Feshbach resonances in an ideal gas.

    PubMed

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  8. Constraining regional scale carbon budgets at the US West Coast using a high-resolution atmospheric inverse modeling approach

    NASA Astrophysics Data System (ADS)

    Goeckede, M.; Michalak, A. M.; Vickers, D.; Turner, D.; Law, B.

    2009-04-01

    The study presented is embedded within the NACP (North American Carbon Program) West Coast project ORCA2, which aims at determining the regional carbon balance of the US states Oregon, California and Washington. Our work specifically focuses on the effect of disturbance history and climate variability, aiming at improving our understanding of e.g. drought stress and stand age on carbon sources and sinks in complex terrain with fine-scale variability in land cover types. The ORCA2 atmospheric inverse modeling approach has been set up to capture flux variability on the regional scale at high temporal and spatial resolution. Atmospheric transport is simulated coupling the mesoscale model WRF (Weather Research and Forecast) with the STILT (Stochastic Time Inverted Lagrangian Transport) footprint model. This setup allows identifying sources and sinks that influence atmospheric observations with highly resolved mass transport fields and realistic turbulent mixing. Terrestrial biosphere carbon fluxes are simulated at spatial resolutions of up to 1km and subdaily timesteps, considering effects of ecoregion, land cover type and disturbance regime on the carbon budgets. Our approach assimilates high-precision atmospheric CO2 concentration measurements and eddy-covariance data from several sites throughout the model domain, as well as high-resolution remote sensing products (e.g. LandSat, MODIS) and interpolated surface meteorology (DayMet, SOGS, PRISM). We present top-down modeling results that have been optimized using Bayesian inversion, reflecting the information on regional scale carbon processes provided by the network of high-precision CO2 observations. We address the level of detail (e.g. spatial and temporal resolution) that can be resolved by top-down modeling on the regional scale, given the uncertainties introduced by various sources for model-data mismatch. Our results demonstrate the importance of accurate modeling of carbon-water coupling, with the representation of water availability and drought stress playing a dominant role to capture spatially variable CO2 exchange rates in a region characterized by strong climatic gradients.

  9. Zooming in on Life Events: Is Hedonic Adaptation Sensitive to the Temporal Distance from the Event?

    ERIC Educational Resources Information Center

    Uglanova, Ekaterina A.; Staudinger, Ursula M.

    2013-01-01

    This paper analyzed the effect of major positive and negative life events (marriage, divorce, birth of child, widowhood, and unemployment) on life satisfaction. For the first time, this study estimated the effects of life events not with a precision of 12 months but of 3 months. Specifically, two questions were addressed: (1) Does the precision of…

  10. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    PubMed

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal models. Overall results suggest that adaptation and anticipation mechanisms both play an important role during sensorimotor synchronization with tempo-changing sequences. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Discrimination of communication vocalizations by single neurons and groups of neurons in the auditory midbrain.

    PubMed

    Schneider, David M; Woolley, Sarah M N

    2010-06-01

    Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.

  12. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution

    NASA Astrophysics Data System (ADS)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.

    2018-02-01

    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  13. Monitoring gait in multiple sclerosis with novel wearable motion sensors.

    PubMed

    Moon, Yaejin; McGinnis, Ryan S; Seagers, Kirsten; Motl, Robert W; Sheth, Nirav; Wright, John A; Ghaffari, Roozbeh; Sosnoff, Jacob J

    2017-01-01

    Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6-2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic.

  14. A multiplexed magnetic tweezer with precision particle tracking and bi-directional force control.

    PubMed

    Johnson, Keith C; Clemmens, Emilie; Mahmoud, Hani; Kirkpatrick, Robin; Vizcarra, Juan C; Thomas, Wendy E

    2017-01-01

    In the past two decades, methods have been developed to measure the mechanical properties of single biomolecules. One of these methods, Magnetic tweezers, is amenable to aquisition of data on many single molecules simultaneously, but to take full advantage of this "multiplexing" ability, it is necessary to simultaneously incorprorate many capabilities that ahve been only demonstrated separately. Our custom built magnetic tweezer combines high multiplexing, precision bead tracking, and bi-directional force control into a flexible and stable platform for examining single molecule behavior. This was accomplished using electromagnets, which provide high temporal control of force while achieving force levels similar to permanent magnets via large paramagnetic beads. Here we describe the instrument and its ability to apply 2-260 pN of force on up to 120 beads simultaneously, with a maximum spatial precision of 12 nm using a variety of bead sizes and experimental techniques. We also demonstrate a novel method for increasing the precision of force estimations on heterogeneous paramagnetic beads using a combination of density separation and bi-directional force correlation which reduces the coefficient of variation of force from 27% to 6%. We then use the instrument to examine the force dependence of uncoiling and recoiling velocity of type 1 fimbriae from Eschericia coli ( E. coli ) bacteria, and see similar results to previous studies. This platform provides a simple, effective, and flexible method for efficiently gathering single molecule force spectroscopy measurements.

  15. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-01-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology. It also presents, for the first time, a method to manually calibrate temperatures along the optical fiber.

  16. A quantitative image cytometry technique for time series or population analyses of signaling networks.

    PubMed

    Ozaki, Yu-ichi; Uda, Shinsuke; Saito, Takeshi H; Chung, Jaehoon; Kubota, Hiroyuki; Kuroda, Shinya

    2010-04-01

    Modeling of cellular functions on the basis of experimental observation is increasingly common in the field of cellular signaling. However, such modeling requires a large amount of quantitative data of signaling events with high spatio-temporal resolution. A novel technique which allows us to obtain such data is needed for systems biology of cellular signaling. We developed a fully automatable assay technique, termed quantitative image cytometry (QIC), which integrates a quantitative immunostaining technique and a high precision image-processing algorithm for cell identification. With the aid of an automated sample preparation system, this device can quantify protein expression, phosphorylation and localization with subcellular resolution at one-minute intervals. The signaling activities quantified by the assay system showed good correlation with, as well as comparable reproducibility to, western blot analysis. Taking advantage of the high spatio-temporal resolution, we investigated the signaling dynamics of the ERK pathway in PC12 cells. The QIC technique appears as a highly quantitative and versatile technique, which can be a convenient replacement for the most conventional techniques including western blot, flow cytometry and live cell imaging. Thus, the QIC technique can be a powerful tool for investigating the systems biology of cellular signaling.

  17. A Ground-Based Profiling Differential Absorption LIDAR System for Measuring CO2 in the Planetary Boundary Layer

    NASA Technical Reports Server (NTRS)

    Andrews, Arlyn E.; Burris, John F.; Abshire, James B.; Krainak, Michael A.; Riris, Haris; Sun, Xiao-Li; Collatz, G. James

    2002-01-01

    Ground-based LIDAR observations can potentially provide continuous profiles of CO2 through the planetary boundary layer and into the free troposphere. We will present initial atmospheric measurements from a prototype system that is based on components developed by the telecommunications industry. Preliminary measurements and instrument performance calculations indicate that an optimized differential absorption LIDAR (DIAL) system will be capable of providing continuous hourly averaged profiles with 250m vertical resolution and better than 1 ppm precision at 1 km. Precision increases (decreases) at lower (higher) altitudes and is directly proportional to altitude resolution and acquisition time. Thus, precision can be improved if temporal or vertical resolution is sacrificed. Our approach measures absorption by CO2 of pulsed laser light at 1.6 microns backscattered from atmospheric aerosols. Aerosol concentrations in the planetary boundary layer are relatively high and are expected to provide adequate signal returns for the desired resolution. The long-term goal of the project is to develop a rugged, autonomous system using only commercially available components that can be replicated inexpensively for deployment in a monitoring network.

  18. Temporal change of EIA asymmetry revealed by a beacon receiver network in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Maruyama, Takashi; Yokoyama, Tatsuhiro; Nishioka, Michi; Ishii, Mamoru

    2015-05-01

    To reveal the temporal change of the equatorial ionization anomaly (EIA) asymmetry, a multipoint satellite-ground beacon experiment was conducted along the meridional plane of the Thailand-Indonesia sector. The observation includes one station near the magnetic equator and four stations at off-equator latitudes. This is the first EIA asymmetry study with high spatial resolution using GNU Radio Beacon Receiver (GRBR) observations in Southeast Asia. GRBR-total electron contents (TECs) from 97 polar-orbit satellite passes in March 2012 were analyzed in this study. Successive passes captured rapid evolution of EIA asymmetry, especially during geomagnetic disturbances. The penetrating electric fields that occur during geomagnetic disturbed days are not the cause of the asymmetry. Instead, high background TEC associated with an intense electric field empowers the neutral wind to produce severe asymmetry of the EIA. Such rapid evolution of EIA asymmetry was not seen during nighttime, when meridional wind mainly controlled the asymmetric structures. Additional data are necessary to identify the source of the variations, i.e., atmospheric waves. Precisely capturing the locations of the crests and the evolution of the asymmetry enhances understanding of the temporal change of EIA asymmetry at the local scale and leads to a future local modeling for TEC prediction in Southeast Asia.

  19. Monitoring Ground Deformation of Subway Area during the Construction Based on the Method of Multi-Temporal Coherent Targets Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wu, J.; Zhao, J.; Yuan, M.

    2018-04-01

    Multi-temporal coherent targets analysis is a high-precision and high-spatial-resolution monitoring method for urban surface deformation based on Differential Synthetic Aperture Radar (DInSAR), and has been successfully applied to measure land subsidence, landslide and strain accumulation caused by fault movement and so on. In this paper, the multi-temporal coherent targets analysis is used to study the settlement of subway area during the period of subway construction. The eastern extension of Shanghai Metro Line. 2 is taking as an example to study the subway settlement during the construction period. The eastern extension of Shanghai Metro Line. 2 starts from Longyang Road and ends at Pudong airport. Its length is 29.9 kilometers from east to west and it is a key transportation line to the Pudong Airport. 17 PalSAR images during 2007 and 2010 are applied to analyze and invert the settlement of the buildings nearby the subway based on the multi-temporal coherent targets analysis. But there are three significant deformation areas nearby the Line 2 between 2007 and 2010, with maximum subsidence rate up to 30 mm/y in LOS. The settlement near the Longyang Road station and Chuansha Town are both caused by newly construction and city expansion. The deformation of the coastal dikes suffer from heavy settlement and the rate is up to -30 mm/y. In general, the area close to the subway line is relatively stable during the construction period.

  20. Two distinct modes of forebrain circuit dynamics underlie temporal patterning in the vocalizations of young songbirds

    PubMed Central

    Aronov, Dmitriy; Veit, Lena; Goldberg, Jesse H.; Fee, Michale S.

    2011-01-01

    Accurate timing is a critical aspect of motor control, yet the temporal structure of many mature behaviors emerges during learning from highly variable exploratory actions. How does a developing brain acquire the precise control of timing in behavioral sequences? To investigate the development of timing, we analyzed the songs of young juvenile zebra finches. These highly variable vocalizations, akin to human babbling, gradually develop into temporally-stereotyped adult songs. We find that the durations of syllables and silences in juvenile singing are formed by a mixture of two distinct modes of timing – a random mode producing broadly-distributed durations early in development, and a stereotyped mode underlying the gradual emergence of stereotyped durations. Using lesions, inactivations, and localized brain cooling we investigated the roles of neural dynamics within two premotor cortical areas in the production of these temporal modes. We find that LMAN (lateral magnocellular nucleus of the nidopallium) is required specifically for the generation of the random mode of timing, and that mild cooling of LMAN causes an increase in the durations produced by this mode. On the contrary, HVC (used as a proper name) is required specifically for producing the stereotyped mode of timing, and its cooling causes a slowing of all stereotyped components. These results show that two neural pathways contribute to the timing of juvenile songs, and suggest an interesting organization in the forebrain, whereby different brain areas are specialized for the production of distinct forms of neural dynamics. PMID:22072687

  1. Cortical thinning in type 2 diabetes mellitus and recovering effects of insulin therapy.

    PubMed

    Chen, Zhiye; Sun, Jie; Yang, Yang; Lou, Xin; Wang, Yulin; Wang, Yan; Ma, Lin

    2015-02-01

    The purpose of this study was to explore the brain structural changes in type 2 diabetes and the effect of insulin on the brain using a surface-based cortical thickness analysis. High-resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MRI were obtained from 11 patients with type 2 diabetes before and after insulin therapy. The cortical thickness over the entire brain was calculated, and cross-sectional and longitudinal surface-based cortical thickness analyses were also performed. Regional cortical thinning was demonstrated in the middle temporal gyrus, posterior cingulate gyrus, precuneus, right lateral occipital gyrus and entorhinal cortex bilaterally for patients with type 2 diabetes mellitus compared with normal controls. Cortical thickening was seen in the middle temporal gyrus, entorhinal cortex and left inferior temporal gyrus bilaterally after patients underwent 1 year of insulin therapy. These findings suggest that insulin therapy may have recovering effects on the brain cortex in type 2 diabetes mellitus. The precise mechanism should be investigated further. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Qualification of a multi-diagnostic detonator-output characterization procedure utilizing PMMA witness blocks

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Murphy, Michael; Lieber, Mark

    2017-06-01

    Experiments were conducted in an effort to qualify a multi-diagnostic characterization procedure for the performance output of a detonator when fired into a poly(methyl methacrylate) (PMMA) witness block. A suite of optical diagnostics were utilized in combination to both bound the shock wave interaction state at the detonator/PMMA interface and characterize the nature of the shock wave decay in PMMA. The diagnostics included the Shock Wave Image Framing Technique (SWIFT), a photocathode tube streak camera, and photonic Doppler velocimetry (PDV). High-precision, optically clear witness blocks permitted dynamic flow visualization of the shock wave in PMMA via focused shadowgraphy. SWIFT- and streak-imaging diagnostics captured the spatiotemporally evolving shock wave, providing a two-dimensional temporally discrete image set and a one-dimensional temporally continuous image, respectively. PDV provided the temporal velocity history of the detonator output along the detonator axis. Through combination of the results obtained, a bound was able to be placed on the interface condition and a more-physical profile representing the shock wave decay in PMMA for an exploding-bridgewire detonator was achieved.

  3. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing

    PubMed Central

    Kurt, Simone; Sausbier, Matthias; Rüttiger, Lukas; Brandt, Niels; Moeller, Christoph K.; Kindler, Jennifer; Sausbier, Ulrike; Zimmermann, Ulrike; van Straaten, Harald; Neuhuber, Winfried; Engel, Jutta; Knipper, Marlies; Ruth, Peter; Schulze, Holger

    2012-01-01

    Large conductance, voltage- and Ca2+-activated K+ (BK) channels in inner hair cells (IHCs) of the cochlea are essential for hearing. However, germline deletion of BKα, the pore-forming subunit KCNMA1 of the BK channel, surprisingly did not affect hearing thresholds in the first postnatal weeks, even though altered IHC membrane time constants, decreased IHC receptor potential alternating current/direct current ratio, and impaired spike timing of auditory fibers were reported in these mice. To investigate the role of IHC BK channels for central auditory processing, we generated a conditional mouse model with hair cell-specific deletion of BKα from postnatal day 10 onward. This had an unexpected effect on temporal coding in the central auditory system: neuronal single and multiunit responses in the inferior colliculus showed higher excitability and greater precision of temporal coding that may be linked to the improved discrimination of temporally modulated sounds observed in behavioral training. The higher precision of temporal coding, however, was restricted to slower modulations of sound and reduced stimulus-driven activity. This suggests a diminished dynamic range of stimulus coding that is expected to impair signal detection in noise. Thus, BK channels in IHCs are crucial for central coding of the temporal fine structure of sound and for detection of signals in a noisy environment.—Kurt, S., Sausbier, M., Rüttiger, L., Brandt, N., Moeller, C. K., Kindler, J., Sausbier, U., Zimmermann, U., van Straaten, H., Neuhuber, W., Engel, J., Knipper, M., Ruth, P., Schulze, H. Critical role for cochlear hair cell BK channels for coding the temporal structure and dynamic range of auditory information for central auditory processing. PMID:22691916

  4. Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment

    NASA Astrophysics Data System (ADS)

    Suárez, F.; Aravena, J. E.; Hausner, M. B.; Childress, A. E.; Tyler, S. W.

    2011-03-01

    In shallow thermohaline-driven lakes it is important to measure temperature on fine spatial and temporal scales to detect stratification or different hydrodynamic regimes. Raman spectra distributed temperature sensing (DTS) is an approach available to provide high spatial and temporal temperature resolution. A vertical high-resolution DTS system was constructed to overcome the problems of typical methods used in the past, i.e., without disturbing the water column, and with resistance to corrosive environments. This paper describes a method to quantitatively assess accuracy, precision and other limitations of DTS systems to fully utilize the capacity of this technology, with a focus on vertical high-resolution to measure temperatures in shallow thermohaline environments. It also presents a new method to manually calibrate temperatures along the optical fiber achieving significant improved resolution. The vertical high-resolution DTS system is used to monitor the thermal behavior of a salt-gradient solar pond, which is an engineered shallow thermohaline system that allows collection and storage of solar energy for a long period of time. The vertical high-resolution DTS system monitors the temperature profile each 1.1 cm vertically and in time averages as small as 10 s. Temperature resolution as low as 0.035 °C is obtained when the data are collected at 5-min intervals.

  5. Improving regression-model-based streamwater constituent load estimates derived from serially correlated data

    USGS Publications Warehouse

    Aulenbach, Brent T.

    2013-01-01

    A regression-model based approach is a commonly used, efficient method for estimating streamwater constituent load when there is a relationship between streamwater constituent concentration and continuous variables such as streamwater discharge, season and time. A subsetting experiment using a 30-year dataset of daily suspended sediment observations from the Mississippi River at Thebes, Illinois, was performed to determine optimal sampling frequency, model calibration period length, and regression model methodology, as well as to determine the effect of serial correlation of model residuals on load estimate precision. Two regression-based methods were used to estimate streamwater loads, the Adjusted Maximum Likelihood Estimator (AMLE), and the composite method, a hybrid load estimation approach. While both methods accurately and precisely estimated loads at the model’s calibration period time scale, precisions were progressively worse at shorter reporting periods, from annually to monthly. Serial correlation in model residuals resulted in observed AMLE precision to be significantly worse than the model calculated standard errors of prediction. The composite method effectively improved upon AMLE loads for shorter reporting periods, but required a sampling interval of at least 15-days or shorter, when the serial correlations in the observed load residuals were greater than 0.15. AMLE precision was better at shorter sampling intervals and when using the shortest model calibration periods, such that the regression models better fit the temporal changes in the concentration–discharge relationship. The models with the largest errors typically had poor high flow sampling coverage resulting in unrepresentative models. Increasing sampling frequency and/or targeted high flow sampling are more efficient approaches to ensure sufficient sampling and to avoid poorly performing models, than increasing calibration period length.

  6. High precision laser ranging by time-of-flight measurement of femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Lee, Joohyung; Lee, Keunwoo; Lee, Sanghyun; Kim, Seung-Woo; Kim, Young-Jin

    2012-06-01

    Time-of-flight (TOF) measurement of femtosecond light pulses was investigated for laser ranging of long distances with sub-micrometer precision in the air. The bandwidth limitation of the photo-detection electronics used in timing femtosecond pulses was overcome by adopting a type-II nonlinear second-harmonic crystal that permits the production of a balanced optical cross-correlation signal between two overlapping light pulses. This method offered a sub-femtosecond timing resolution in determining the temporal offset between two pulses through lock-in control of the pulse repetition rate with reference to the atomic clock. The exceptional ranging capability was verified by measuring various distances of 1.5, 60 and 700 m. This method is found well suited for future space missions based on formation-flying satellites as well as large-scale industrial applications for land surveying, aircraft manufacturing and shipbuilding.

  7. Precision Neutron Time-of-Flight Detectors Provide Insight into NIF Implosion Dynamics

    NASA Astrophysics Data System (ADS)

    Schlossberg, David; Eckart, M. J.; Grim, G. P.; Hartouni, E. P.; Hatarik, R.; Moore, A. S.; Waltz, C. S.

    2017-10-01

    During inertial confinement fusion, higher-order moments of neutron time-of-flight (nToF) spectra can provide essential information for optimizing implosions. The nToF diagnostic suite at the National Ignition Facility (NIF) was recently upgraded to include novel, quartz Cherenkov detectors. These detectors exploit the rapid Cherenkov radiation process, in contrast with conventional scintillator decay times, to provide high temporal-precision measurements that support higher-order moment analyses. Preliminary measurements have been made on the NIF during several implosions and initial results are presented here. Measured line-of-sight asymmetries, for example in ion temperatures, will be discussed. Finally, advanced detector optimization is shown to advance accessible physics, with possibilities for energy discrimination, gamma source identification, and further reduction in quartz response times. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  8. Application of Raytracing Through the High Resolution Numerical Weather Model HIRLAM for the Analysis of European VLBI

    NASA Technical Reports Server (NTRS)

    Garcia-Espada, Susana; Haas, Rudiger; Colomer, Francisco

    2010-01-01

    An important limitation for the precision in the results obtained by space geodetic techniques like VLBI and GPS are tropospheric delays caused by the neutral atmosphere, see e.g. [1]. In recent years numerical weather models (NWM) have been applied to improve mapping functions which are used for tropospheric delay modeling in VLBI and GPS data analyses. In this manuscript we use raytracing to calculate slant delays and apply these to the analysis of Europe VLBI data. The raytracing is performed through the limited area numerical weather prediction (NWP) model HIRLAM. The advantages of this model are high spatial (0.2 deg. x 0.2 deg.) and high temporal resolution (in prediction mode three hours).

  9. Three-dimensional super-resolved live cell imaging through polarized multi-angle TIRF.

    PubMed

    Zheng, Cheng; Zhao, Guangyuan; Liu, Wenjie; Chen, Youhua; Zhang, Zhimin; Jin, Luhong; Xu, Yingke; Kuang, Cuifang; Liu, Xu

    2018-04-01

    Measuring three-dimensional nanoscale cellular structures is challenging, especially when the structure is dynamic. Owing to the informative total internal reflection fluorescence (TIRF) imaging under varied illumination angles, multi-angle (MA) TIRF has been examined to offer a nanoscale axial and a subsecond temporal resolution. However, conventional MA-TIRF still performs badly in lateral resolution and fails to characterize the depth image in densely distributed regions. Here, we emphasize the lateral super-resolution in the MA-TIRF, exampled by simply introducing polarization modulation into the illumination procedure. Equipped with a sparsity and accelerated proximal algorithm, we examine a more precise 3D sample structure compared with previous methods, enabling live cell imaging with a temporal resolution of 2 s and recovering high-resolution mitochondria fission and fusion processes. We also shared the recovery program, which is the first open-source recovery code for MA-TIRF, to the best of our knowledge.

  10. Large scale mass redistribution and surface displacement from GRACE and SLR

    NASA Astrophysics Data System (ADS)

    Cheng, M.; Ries, J. C.; Tapley, B. D.

    2012-12-01

    Mass transport between the atmosphere, ocean and solid earth results in the temporal variations in the Earth gravity field and loading induced deformation of the Earth. Recent space-borne observations, such as GRACE mission, are providing extremely high precision temporal variations of gravity field. The results from 10-yr GRACE data has shown a significant annual variations of large scale vertical and horizontal displacements occurring over the Amazon, Himalayan region and South Asia, African, and Russian with a few mm amplitude. Improving understanding from monitoring and modeling of the large scale mass redistribution and the Earth's response are a critical for all studies in the geosciences, in particular for determination of Terrestrial Reference System (TRS), including geocenter motion. This paper will report results for the observed seasonal variations in the 3-dimentional surface displacements of SLR and GPS tracking stations and compare with the prediction from time series of GRACE monthly gravity solution.

  11. Enhanced dual-frequency pattern scheme based on spatial-temporal fringes method

    NASA Astrophysics Data System (ADS)

    Wang, Minmin; Zhou, Canlin; Si, Shuchun; Lei, Zhenkun; Li, Xiaolei; Li, Hui; Li, YanJie

    2018-07-01

    One of the major challenges of employing a dual-frequency phase-shifting algorithm for phase retrieval is its sensitivity to noise. Yun et al proposed a dual-frequency method based on the Fourier transform profilometry, yet the low-frequency lobes are close to each other for accurate band-pass filtering. In the light of this problem, a novel dual-frequency pattern based on the spatial-temporal fringes (STF) method is developed in this paper. Three fringe patterns with two different frequencies are required. The low-frequency phase is obtained from two low-frequency fringe patterns by the STF method, so the signal lobes can be extracted accurately as they are far away from each other. The high-frequency phase is retrieved from another fringe pattern without the impact of the DC component. Simulations and experiments are conducted to demonstrate the excellent precision of the proposed method.

  12. IDE spatio-temporal impact fluxes and high time-resolution studies of multi-impact events and long-lived debris clouds

    NASA Technical Reports Server (NTRS)

    Mulholland, J. Derral; Singer, S. Fred; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Montague, Nancy L.; Wortman, Jim J.; Kassel, Phillip C.; Kinard, William H.

    1992-01-01

    The purpose of the Interplanetary Dust Experiment (IDE) on the Long Duration Exposure Facility (LDEF) was to sample the cosmic dust environment and to use the spatio-temporal aspect of the experiment to distinguish between the various components of the environment: zodiacal cloud, beta meteoroids, meteor streams, interstellar dust, and orbital debris. It was found that the introduction of precise time and even rudimentary directionality as co-lateral observables in sampling the particulate environment in near-Earth space produces an enormous qualitative improvement in the information content of the impact data. The orbital debris population is extremely clumpy, being dominated by persistent clouds in which the fluxes may rise orders of magnitude above the background. The IDE data suggest a strategy to minimize the damage to sensitive spacecraft components, using the observed characteristics of cloud encounters.

  13. Optogenetic control of ATP release

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew A.; Joshi, Bipin; Gu, Ling; Feranchak, Andrew; Mohanty, Samarendra K.

    2013-03-01

    Controlled release of ATP can be used for understanding extracellular purinergic signaling. While coarse mechanical forces and hypotonic stimulation have been utilized in the past to initiate ATP release from cells, these methods are neither spatially accurate nor temporally precise. Further, these methods cannot be utilized in a highly effective cell-specific manner. To mitigate the uncertainties regarding cellular-specificity and spatio-temporal release of ATP, we herein demonstrate use of optogenetics for ATP release. ATP release in response to optogenetic stimulation was monitored by Luciferin-Luciferase assay (North American firefly, photinus pyralis) using luminometer as well as mesoscopic bioluminescence imaging. Our result demonstrates repetitive release of ATP subsequent to optogenetic stimulation. It is thus feasible that purinergic signaling can be directly detected via imaging if the stimulus can be confined to single cell or in a spatially-defined group of cells. This study opens up new avenue to interrogate the mechanisms of purinergic signaling.

  14. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity.

    PubMed

    Baird, Emily; Fernandez, Diana C; Wcislo, William T; Warrant, Eric J

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion-a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus.

  15. Flight control and landing precision in the nocturnal bee Megalopta is robust to large changes in light intensity

    PubMed Central

    Baird, Emily; Fernandez, Diana C.; Wcislo, William T.; Warrant, Eric J.

    2015-01-01

    Like their diurnal relatives, Megalopta genalis use visual information to control flight. Unlike their diurnal relatives, however, they do this at extremely low light intensities. Although Megalopta has developed optical specializations to increase visual sensitivity, theoretical studies suggest that this enhanced sensitivity does not enable them to capture enough light to use visual information to reliably control flight in the rainforest at night. It has been proposed that Megalopta gain extra sensitivity by summing visual information over time. While enhancing the reliability of vision, this strategy would decrease the accuracy with which they can detect image motion—a crucial cue for flight control. Here, we test this temporal summation hypothesis by investigating how Megalopta's flight control and landing precision is affected by light intensity and compare our findings with the results of similar experiments performed on the diurnal bumblebee Bombus terrestris, to explore the extent to which Megalopta's adaptations to dim light affect their precision. We find that, unlike Bombus, light intensity does not affect flight and landing precision in Megalopta. Overall, we find little evidence that Megalopta uses a temporal summation strategy in dim light, while we find strong support for the use of this strategy in Bombus. PMID:26578977

  16. Spatial and temporal distribution of trunk-injected imidacloprid in apple tree canopies.

    PubMed

    Aćimović, Srđan G; VanWoerkom, Anthony H; Reeb, Pablo D; Vandervoort, Christine; Garavaglia, Thomas; Cregg, Bert M; Wise, John C

    2014-11-01

    Pesticide use in orchards creates drift-driven pesticide losses which contaminate the environment. Trunk injection of pesticides as a target-precise delivery system could greatly reduce pesticide losses. However, pesticide efficiency after trunk injection is associated with the underinvestigated spatial and temporal distribution of the pesticide within the tree crown. This study quantified the spatial and temporal distribution of trunk-injected imidacloprid within apple crowns after trunk injection using one, two, four or eight injection ports per tree. The spatial uniformity of imidacloprid distribution in apple crowns significantly increased with more injection ports. Four ports allowed uniform spatial distribution of imidacloprid in the crown. Uniform and non-uniform spatial distributions were established early and lasted throughout the experiment. The temporal distribution of imidacloprid was significantly non-uniform. Upper and lower crown positions did not significantly differ in compound concentration. Crown concentration patterns indicated that imidacloprid transport in the trunk occurred through radial diffusion and vertical uptake with a spiral pattern. By showing where and when a trunk-injected compound is distributed in the apple tree canopy, this study addresses a key knowledge gap in terms of explaining the efficiency of the compound in the crown. These findings allow the improvement of target-precise pesticide delivery for more sustainable tree-based agriculture. © 2014 Society of Chemical Industry.

  17. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-08-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04) ‰ for δ13C and (-4.3 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.

  18. Detection of long duration cloud contamination in hyper-temporal NDVI imagery

    NASA Astrophysics Data System (ADS)

    Ali, A.; de Bie, C. A. J. M.; Skidmore, A. K.; Scarrott, R. G.

    2012-04-01

    NDVI time series imagery are commonly used as a reliable source for land use and land cover mapping and monitoring. However long duration cloud can significantly influence its precision in areas where persistent clouds prevails. Therefore quantifying errors related to cloud contamination are essential for accurate land cover mapping and monitoring. This study aims to detect long duration cloud contamination in hyper-temporal NDVI imagery based land cover mapping and monitoring. MODIS-Terra NDVI imagery (250 m; 16-day; Feb'03-Dec'09) were used after necessary pre-processing using quality flags and upper envelope filter (ASAVOGOL). Subsequently stacked MODIS-Terra NDVI image (161 layers) was classified for 10 to 100 clusters using ISODATA. After classifications, 97 clusters image was selected as best classified with the help of divergence statistics. To detect long duration cloud contamination, mean NDVI class profiles of 97 clusters image was analyzed for temporal artifacts. Results showed that long duration clouds affect the normal temporal progression of NDVI and caused anomalies. Out of total 97 clusters, 32 clusters were found with cloud contamination. Cloud contamination was found more prominent in areas where high rainfall occurs. This study can help to stop error propagation in regional land cover mapping and monitoring, caused by long duration cloud contamination.

  19. Classification of small lesions in dynamic breast MRI: Eliminating the need for precise lesion segmentation through spatio-temporal analysis of contrast enhancement over time.

    PubMed

    Nagarajan, Mahesh B; Huber, Markus B; Schlossbauer, Thomas; Leinsinger, Gerda; Krol, Andrzej; Wismüller, Axel

    2013-10-01

    Characterizing the dignity of breast lesions as benign or malignant is specifically difficult for small lesions; they don't exhibit typical characteristics of malignancy and are harder to segment since margins are harder to visualize. Previous attempts at using dynamic or morphologic criteria to classify small lesions (mean lesion diameter of about 1 cm) have not yielded satisfactory results. The goal of this work was to improve the classification performance in such small diagnostically challenging lesions while concurrently eliminating the need for precise lesion segmentation. To this end, we introduce a method for topological characterization of lesion enhancement patterns over time. Three Minkowski Functionals were extracted from all five post-contrast images of sixty annotated lesions on dynamic breast MRI exams. For each Minkowski Functional, topological features extracted from each post-contrast image of the lesions were combined into a high-dimensional texture feature vector. These feature vectors were classified in a machine learning task with support vector regression. For comparison, conventional Haralick texture features derived from gray-level co-occurrence matrices (GLCM) were also used. A new method for extracting thresholded GLCM features was also introduced and investigated here. The best classification performance was observed with Minkowski Functionals area and perimeter , thresholded GLCM features f8 and f9, and conventional GLCM features f4 and f6. However, both Minkowski Functionals and thresholded GLCM achieved such results without lesion segmentation while the performance of GLCM features significantly deteriorated when lesions were not segmented ( p < 0.05). This suggests that such advanced spatio-temporal characterization can improve the classification performance achieved in such small lesions, while simultaneously eliminating the need for precise segmentation.

  20. Research on characteristics of forward scattering light based on Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Jin, Wei-qi

    2008-03-01

    In ocean inspection, laser system has the advantages of high precision, high efficiency and being enacted on the temperature or salinity of seawater. It has been developed greatly in recent years. But it is not yet a mature inspection technique because of the complicacy of oceanic channel and water-scattering. There are many problems to be resolved. In this paper, the work principle and of general developing situation of ocean lidar techniques are introduced first. The author points out that the intense scattering and absorbing acting on light by water is the bottleneck to limit the development of ocean lidar. The Monet Carlo method is adopted finally to be a basal way of study in this paper after discussing several method of studying the light transmitting in seawater. Based on the theory of photon transmitted in the seawater and the particularity of underwater target detecting, we have studied the characters of laser scattering on underwater target surface and spatial and temporal characters of forward scattering. Starting from the particularity of underwater target detecting, a new model to describe the characters of laser scattering is presented. Based on this model, we developed the fast arithmetic, which enhanced the computation speed greatly and the precision was also assured. It made detecting real-time realizable. Basing on the Monte Carlo simulation and starting from the theory of photon transmitted in the seawater, we studied how the parameters of water quality and other systemic parameters affect the light forward scattering through seawater at spatial and temporal region and provided the theoretical sustentation of enhancing the SNR and operational distance.

  1. Calibration of the Late Cretaceous to Paleocene geomagnetic polarity and astrochronological time scales: new results from high-precision U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Ramezani, Jahandar; Clyde, William; Wang, Tiantian; Johnson, Kirk; Bowring, Samuel

    2016-04-01

    Reversals in the Earth's magnetic polarity are geologically abrupt events of global magnitude that makes them ideal timelines for stratigraphic correlation across a variety of depositional environments, especially where diagnostic marine fossils are absent. Accurate and precise calibration of the Geomagnetic Polarity Timescale (GPTS) is thus essential to the reconstruction of Earth history and to resolving the mode and tempo of biotic and environmental change in deep time. The Late Cretaceous - Paleocene GPTS is of particular interest as it encompasses a critical period of Earth history marked by the Cretaceous greenhouse climate, the peak of dinosaur diversity, the end-Cretaceous mass extinction and its paleoecological aftermaths. Absolute calibration of the GPTS has been traditionally based on sea-floor spreading magnetic anomaly profiles combined with local magnetostratigraphic sequences for which a numerical age model could be established by interpolation between an often limited number of 40Ar/39Ar dates from intercalated volcanic ash deposits. Although the Neogene part of the GPTS has been adequately calibrated using cyclostratigraphy-based, astrochronological schemes, the application of these approaches to pre-Neogene parts of the timescale has been complicated given the uncertainties of the orbital models and the chaotic behavior of the solar system this far back in time. Here we present refined chronostratigraphic frameworks based on high-precision U-Pb geochronology of ash beds from the Western Interior Basin of North America and the Songliao Basin of Northeast China that places tight temporal constraints on the Late Cretaceous to Paleocene GPTS, either directly or by testing their astrochronological underpinnings. Further application of high-precision radioisotope geochronology and calibrated astrochronology promises a complete and robust Cretaceous-Paleogene GPTS, entirely independent of sea-floor magnetic anomaly profiles.

  2. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    PubMed Central

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  3. Resolution, the key to unlocking granite petrogenesis using zircon U-Pb - Lu-Hf studies

    NASA Astrophysics Data System (ADS)

    Tapster, Simon; Horstwood, Matthew; Roberts, Nick M. W.; Deady, Eimear; Shail, Robin

    2017-04-01

    Coarse-scale understanding of crustal evolution and source contributions to igneous systems has been drastically enhanced by coupled zircon U-Pb and Lu-Hf data sets. These are now common place and potentially offer advantages over whole-rock analyses by resolving heterogeneous source components in the complex crystal cargos of single hand-samples. However, the application of coupled zircon U-Pb and Lu-Hf studies to address detailed petrogenetic questions faces a crisis of resolution - On the one hand, micro-beam analytical techniques have high spatial resolution, capable of interrogating crystals with complex growth histories. Yet, the >1-2% temporal resolution of these techniques places a fundamental limitation on their utility for developing petrogenetic models. This limitation in data interpretation arises from timescales of crystal recycling or changes in source evolution that are often shorter than the U-Pb analytical precision. Conversely, high-precision CA-ID-TIMS U-Pb analysis of single whole zircons and solution MC-ICP-MS Lu-Hf isotopes of column washes (Hf masses equating to ca. 10-50 ng) have much greater temporal resolution (<0.1%), yet lack the spatial resolution to deal with complex crystal growth. Analyses homogenize any heterogeneity within the zircon and convolute the petrogenetic model. A balance must be struck between spatial and temporal resolution to address petrogenetic issues. Here, we demonstrate that micro-sampling of complex xenocryst-rich zircon crystals (e.g. <40 µm zircon tips) from the granitic post-Variscan Cornubian Batholith (SW England), in tandem with low-common Pb blank CA-ID-TIMS U-Pb chemistry, permits the analysis of zircon volumes that approach those of LA-ICPMS analyses, whilst simultaneously retaining the majority of the temporal resolution associated with the CA-ID-TIMS U-Pb technique. The low volume of zircon within these analyses may only provide <5 ng Hf, and therefore gaining useful precision from Lu-Hf isotopes is beyond the scope of typical solution MC-ICP-MS techniques. However, we demonstrate that an uncertainty level of ca. 1 ɛHf can be achieved with as little as 0.4 ng Hf through the use of low-volume solution introduction methods - thus bridging the gap in resolving power between in-situ and isotope dilution coupled zircon U-Pb - Lu-Hf studies. We demonstrate the potential of this approach to unravel intra- and inter-sample heterogeneity and address models for granite genesis using a new regional data set for 21 samples encompassing all major granite types within the Early Permian Cornubian Batholith (SW England). The data provide a refined chronological framework for magma source evolution over 20 Myrs of crust-mantle melt extraction and upper crustal batholith construction. The resulting petrogenetic model will also be evaluated through the lens of low- temporal resolution commonly employed in granitic zircon U-Pb - Lu-Hf studies in order to highlight the enhanced insights into geological processes gained though our approach. The current limitations to data interpretation and directions of future research will be discussed.

  4. The effects of selective and divided attention on sensory precision and integration.

    PubMed

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2016-02-12

    In our daily lives, our capacity to selectively attend to stimuli within or across sensory modalities enables enhanced perception of the surrounding world. While previous research on selective attention has studied this phenomenon extensively, two important questions still remain unanswered: (1) how selective attention to a single modality impacts sensory integration processes, and (2) the mechanism by which selective attention improves perception. We explored how selective attention impacts performance in both a spatial task and a temporal numerosity judgment task, and employed a Bayesian Causal Inference model to investigate the computational mechanism(s) impacted by selective attention. We report three findings: (1) in the spatial domain, selective attention improves precision of the visual sensory representations (which were relatively precise), but not the auditory sensory representations (which were fairly noisy); (2) in the temporal domain, selective attention improves the sensory precision in both modalities (both of which were fairly reliable to begin with); (3) in both tasks, selective attention did not exert a significant influence over the tendency to integrate sensory stimuli. Therefore, it may be postulated that a sensory modality must possess a certain inherent degree of encoding precision in order to benefit from selective attention. It also appears that in certain basic perceptual tasks, the tendency to integrate crossmodal signals does not depend significantly on selective attention. We conclude with a discussion of how these results relate to recent theoretical considerations of selective attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. High frame-rate resolution of cell division during Candida albicans filamentation

    PubMed Central

    Thomson, Darren D.; Berman, Judith; Brand, Alexandra C.

    2016-01-01

    The commensal yeast, Candida albicans, is an opportunistic pathogen in humans and forms filaments called hyphae and pseudohyphae, in which cell division requires precise temporal and spatial control to produce mononuclear cell compartments. High-frame-rate live-cell imaging (1 frame/min) revealed that nuclear division did not occur across the septal plane. We detected the presence of nucleolar fragments that may be extrachromosomal molecules carrying the ribosomal RNA genes. Cells occasionally maintained multiple nucleoli, suggesting either polyploidy, multiple nuclei and/or aneuploidy of ChrR., while the migration pattern of sister nuclei differed between unbranched and branched hyphae. The presented movie challenges and extends previous concepts of C. albicans cell division. PMID:26854071

  6. Time-resolved x-ray spectra from laser-generated high-density plasmas

    NASA Astrophysics Data System (ADS)

    Andiel, U.; Eidmann, Klaus; Witte, Klaus-Juergen

    2001-04-01

    We focused frequency doubled ultra short laser pulses on solid C, F, Na and Al targets, K-shell emission was systematically investigated by time resolved spectroscopy using a sub-ps streak camera. A large number of laser shots can be accumulated when triggering the camera with an Auston switch system at very high temporal precision. The system provides an outstanding time resolution of 1.7ps accumulating thousands of laser shots. The time duration of the He-(alpha) K-shell resonance lines was observed in the range of (2-4)ps and shows a decrease with the atomic number. The experimental results are well reproduced by hydro code simulations post processed with an atomic kinetics code.

  7. Processing and Analysis of Multibeam Sonar Data and Images near the Yellow River Estuary

    NASA Astrophysics Data System (ADS)

    Tang, Q.

    2017-12-01

    Yellow River Estuary is a typical high-suspended particulate matter estuary in the world. A lot of sediments from Yellow River and other substances produced by human activity cause high-concentration suspended matter and depositional system in the estuary and adjacent water area. Multibeam echo sounder (MBES) was developed in the 1970s, and it not only provided high-precision bathymetric data, but also provided seabed backscatter strength data and water column data with high temporal and spatial resolution. Here, based on high-precision sonar data of the seabed and water column collected by SeaBat7125 MBES system near the Yellow River Estuary, we use advanced data and image processing methods to generate seabed sonar images and water suspended particulate matter acoustic images. By analyzing these data and images, we get a lot of details of the seabed and whole water column features, and we also acquire their shape, size and basic physical characteristics of suspended particulate matters in the experiment area near the Yellow River Estuary. This study shows great potential for monitoring suspended particulate matter use MBES, and the research results will contribute to a comprehensive understanding of sediment transportation, evolution of river trough and shoal in Yellow River Estuary.

  8. 3D Laser Triangulation for Plant Phenotyping in Challenging Environments

    PubMed Central

    Kjaer, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    To increase the understanding of how the plant phenotype is formed by genotype and environmental interactions, simple and robust high-throughput plant phenotyping methods should be developed and considered. This would not only broaden the application range of phenotyping in the plant research community, but also increase the ability for researchers to study plants in their natural environments. By studying plants in their natural environment in high temporal resolution, more knowledge on how multiple stresses interact in defining the plant phenotype could lead to a better understanding of the interaction between plant responses and epigenetic regulation. In the present paper, we evaluate a commercial 3D NIR-laser scanner (PlantEye, Phenospex B.V., Herleen, The Netherlands) to track daily changes in plant growth with high precision in challenging environments. Firstly, we demonstrate that the NIR laser beam of the scanner does not affect plant photosynthetic performance. Secondly, we demonstrate that it is possible to estimate phenotypic variation amongst the growth pattern of ten genotypes of Brassica napus L. (rapeseed), using a simple linear correlation between scanned parameters and destructive growth measurements. Our results demonstrate the high potential of 3D laser triangulation for simple measurements of phenotypic variation in challenging environments and in a high temporal resolution. PMID:26066990

  9. Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution

    PubMed Central

    Han, Xue; Boyden, Edward S.

    2007-01-01

    The quest to determine how precise neural activity patterns mediate computation, behavior, and pathology would be greatly aided by a set of tools for reliably activating and inactivating genetically targeted neurons, in a temporally precise and rapidly reversible fashion. Having earlier adapted a light-activated cation channel, channelrhodopsin-2 (ChR2), for allowing neurons to be stimulated by blue light, we searched for a complementary tool that would enable optical neuronal inhibition, driven by light of a second color. Here we report that targeting the codon-optimized form of the light-driven chloride pump halorhodopsin from the archaebacterium Natronomas pharaonis (hereafter abbreviated Halo) to genetically-specified neurons enables them to be silenced reliably, and reversibly, by millisecond-timescale pulses of yellow light. We show that trains of yellow and blue light pulses can drive high-fidelity sequences of hyperpolarizations and depolarizations in neurons simultaneously expressing yellow light-driven Halo and blue light-driven ChR2, allowing for the first time manipulations of neural synchrony without perturbation of other parameters such as spiking rates. The Halo/ChR2 system thus constitutes a powerful toolbox for multichannel photoinhibition and photostimulation of virally or transgenically targeted neural circuits without need for exogenous chemicals, enabling systematic analysis and engineering of the brain, and quantitative bioengineering of excitable cells. PMID:17375185

  10. Juvenile Osprey Navigation during Trans-Oceanic Migration

    PubMed Central

    Horton, Travis W.; Bierregaard, Richard O.; Zawar-Reza, Peyman; Holdaway, Richard N.; Sagar, Paul

    2014-01-01

    To compensate for drift, an animal migrating through air or sea must be able to navigate. Although some species of bird, fish, insect, mammal, and reptile are capable of drift compensation, our understanding of the spatial reference frame, and associated coordinate space, in which these navigational behaviors occur remains limited. Using high resolution satellite-monitored GPS track data, we show that juvenile ospreys (Pandion haliaetus) are capable of non-stop constant course movements over open ocean spanning distances in excess of 1500 km despite the perturbing effects of winds and the lack of obvious landmarks. These results are best explained by extreme navigational precision in an exogenous spatio-temporal reference frame, such as positional orientation relative to Earth's magnetic field and pacing relative to an exogenous mechanism of keeping time. Given the age (<1 year-old) of these birds and knowledge of their hatching site locations, we were able to transform Enhanced Magnetic Model coordinate locations such that the origin of the magnetic coordinate space corresponded with each bird's nest. Our analyses show that trans-oceanic juvenile osprey movements are consistent with bicoordinate positional orientation in transformed magnetic coordinate or geographic space. Through integration of movement and meteorological data, we propose a new theoretical framework, chord and clock navigation, capable of explaining the precise spatial orientation and temporal pacing performed by juvenile ospreys during their long-distance migrations over open ocean. PMID:25493430

  11. Stochastic precision analysis of 2D cardiac strain estimation in vivo

    NASA Astrophysics Data System (ADS)

    Bunting, E. A.; Provost, J.; Konofagou, E. E.

    2014-11-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ɛ)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

  12. Fast, High-Precision Optical Polarization Synthesizer for Ultracold-Atom Experiments

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Brakhane, Stefan; Alt, Wolfgang; Meschede, Dieter; Zopes, Jonathan; Alberti, Andrea

    2018-03-01

    We present a technique for the precision synthesis of arbitrary polarization states of light with a high modulation bandwidth. Our approach consists of superimposing two laser light fields with the same wavelength, but with opposite circular polarizations, where the phase and the amplitude of each light field are individually controlled. We find that the polarization-synthesized beam reaches a degree of polarization of 99.99%, which is mainly limited by static spatial variations of the polarization state over the beam profile. We also find that the depolarization caused by temporal fluctuations of the polarization state is about 2 orders of magnitude smaller. In a recent work, Robens et al. [Low-Entropy States of Neutral Atoms in Polarization-Synthesized Optical Lattices, Phys. Rev. Lett. 118, 065302 (2017), 10.1103/PhysRevLett.118.065302] demonstrated an application of the polarization synthesizer to create two independently controllable optical lattices which trap atoms depending on their internal spin state. We use ultracold atoms in polarization-synthesized optical lattices to give an independent, in situ demonstration of the performance of the polarization synthesizer.

  13. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  14. Spatial and Temporal Regulation of Receptor Endocytosis in Neuronal Dendrites Revealed by Imaging of Single Vesicle Formation.

    PubMed

    Rosendale, Morgane; Jullié, Damien; Choquet, Daniel; Perrais, David

    2017-02-21

    Endocytosis in neuronal dendrites is known to play a critical role in synaptic transmission and plasticity such as long-term depression (LTD). However, the inability to detect endocytosis directly in living neurons has hampered studies of its dynamics and regulation. Here, we visualized the formation of individual endocytic vesicles containing pHluorin-tagged receptors with high temporal resolution in the dendrites of cultured hippocampal neurons. We show that transferrin receptors (TfRs) are constitutively internalized at optically static clathrin-coated structures. These structures are slightly enriched near synapses that represent preferential sites for the endocytosis of postsynaptic AMPA-type receptors (AMPARs), but not for non-synaptic TfRs. Moreover, the frequency of AMPAR endocytosis events increases after the induction of NMDAR-dependent chemical LTD, but the activity of perisynaptic endocytic zones is not differentially regulated. We conclude that endocytosis is a highly dynamic and stereotyped process that internalizes receptors in precisely localized endocytic zones. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Temporal competition between differentiation programs determines cell fate choice

    NASA Astrophysics Data System (ADS)

    Kuchina, Anna; Espinar, Lorena; Cagatay, Tolga; Balbin, Alejandro; Alvarado, Alma; Garcia-Ojalvo, Jordi; Suel, Gurol

    2011-03-01

    During pluripotent differentiation, cells adopt one of several distinct fates. The dynamics of this decision-making process are poorly understood, since cell fate choice may be governed by interactions between differentiation programs that are active at the same time. We studied the dynamics of decision-making in the model organism Bacillus subtilis by simultaneously measuring the activities of competing differentiation programs (sporulation and competence) in single cells. We discovered a precise switch-like point of cell fate choice previously hidden by cell-cell variability. Engineered artificial crosslinks between competence and sporulation circuits revealed that the precision of this choice is generated by temporal competition between the key players of two differentiation programs. Modeling suggests that variable progression towards a switch-like decision might represent a general strategy to maximize adaptability and robustness of cellular decision-making.

  16. On a concept of computer game implementation based on a temporal logic

    NASA Astrophysics Data System (ADS)

    Szymańska, Emilia; Adamek, Marek J.; Mulawka, Jan J.

    2017-08-01

    Time is a concept which underlies all the contemporary civilization. Therefore, it was necessary to create mathematical tools that allow a precise way to describe the complex time dependencies. One such tool is temporal logic. Its definition, description and characteristics will be presented in this publication. Then the authors will conduct a discussion on the usefulness of this tool in context of creating storyline in computer games such as RPG genre.

  17. The gait standard deviation, a single measure of kinematic variability.

    PubMed

    Sangeux, Morgan; Passmore, Elyse; Graham, H Kerr; Tirosh, Oren

    2016-05-01

    Measurement of gait kinematic variability provides relevant clinical information in certain conditions affecting the neuromotor control of movement. In this article, we present a measure of overall gait kinematic variability, GaitSD, based on combination of waveforms' standard deviation. The waveform standard deviation is the common numerator in established indices of variability such as Kadaba's coefficient of multiple correlation or Winter's waveform coefficient of variation. Gait data were collected on typically developing children aged 6-17 years. Large number of strides was captured for each child, average 45 (SD: 11) for kinematics and 19 (SD: 5) for kinetics. We used a bootstrap procedure to determine the precision of GaitSD as a function of the number of strides processed. We compared the within-subject, stride-to-stride, variability with the, between-subject, variability of the normative pattern. Finally, we investigated the correlation between age and gait kinematic, kinetic and spatio-temporal variability. In typically developing children, the relative precision of GaitSD was 10% as soon as 6 strides were captured. As a comparison, spatio-temporal parameters required 30 strides to reach the same relative precision. The ratio stride-to-stride divided by normative pattern variability was smaller in kinematic variables (the smallest for pelvic tilt, 28%) than in kinetic and spatio-temporal variables (the largest for normalised stride length, 95%). GaitSD had a strong, negative correlation with age. We show that gait consistency may stabilise only at, or after, skeletal maturity. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cochlear neuropathy and the coding of supra-threshold sound.

    PubMed

    Bharadwaj, Hari M; Verhulst, Sarah; Shaheen, Luke; Liberman, M Charles; Shinn-Cunningham, Barbara G

    2014-01-01

    Many listeners with hearing thresholds within the clinically normal range nonetheless complain of difficulty hearing in everyday settings and understanding speech in noise. Converging evidence from human and animal studies points to one potential source of such difficulties: differences in the fidelity with which supra-threshold sound is encoded in the early portions of the auditory pathway. Measures of auditory subcortical steady-state responses (SSSRs) in humans and animals support the idea that the temporal precision of the early auditory representation can be poor even when hearing thresholds are normal. In humans with normal hearing thresholds (NHTs), paradigms that require listeners to make use of the detailed spectro-temporal structure of supra-threshold sound, such as selective attention and discrimination of frequency modulation (FM), reveal individual differences that correlate with subcortical temporal coding precision. Animal studies show that noise exposure and aging can cause a loss of a large percentage of auditory nerve fibers (ANFs) without any significant change in measured audiograms. Here, we argue that cochlear neuropathy may reduce encoding precision of supra-threshold sound, and that this manifests both behaviorally and in SSSRs in humans. Furthermore, recent studies suggest that noise-induced neuropathy may be selective for higher-threshold, lower-spontaneous-rate nerve fibers. Based on our hypothesis, we suggest some approaches that may yield particularly sensitive, objective measures of supra-threshold coding deficits that arise due to neuropathy. Finally, we comment on the potential clinical significance of these ideas and identify areas for future investigation.

  19. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    PubMed Central

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  20. G-Quadruplexes in DNA Replication: A Problem or a Necessity?

    PubMed

    Valton, Anne-Laure; Prioleau, Marie-Noëlle

    2016-11-01

    DNA replication is a highly regulated process that ensures the correct duplication of the genome at each cell cycle. A precise cell type-specific temporal program controls the duplication of complex vertebrate genomes in an orderly manner. This program is based on the regulation of both replication origin firing and replication fork progression. G-quadruplexes (G4s), DNA secondary structures displaying noncanonical Watson-Crick base pairing, have recently emerged as key controllers of genome duplication. Here we discuss the various means by which G4s affect this fundamental cellular process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Evoking prescribed spike times in stochastic neurons

    NASA Astrophysics Data System (ADS)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  2. Persistence and stochastic periodicity in the intensity dynamics of a fiber laser during the transition to optical turbulence

    NASA Astrophysics Data System (ADS)

    Carpi, Laura; Masoller, Cristina

    2018-02-01

    Many natural systems display transitions among different dynamical regimes, which are difficult to identify when the data are noisy and high dimensional. A technologically relevant example is a fiber laser, which can display complex dynamical behaviors that involve nonlinear interactions of millions of cavity modes. Here we study the laminar-turbulence transition that occurs when the laser pump power is increased. By applying various data analysis tools to empirical intensity time series we characterize their persistence and demonstrate that at the transition temporal correlations can be precisely represented by a surprisingly simple model.

  3. Practicability of monitoring soil Cd, Hg, and Pb pollution based on a geochemical survey in China.

    PubMed

    Xia, Xueqi; Yang, Zhongfang; Li, Guocheng; Yu, Tao; Hou, Qingye; Mutelo, Admire Muchimamui

    2017-04-01

    Repeated visiting, i.e., sampling and analysis at two or more temporal points, is one of the important ways of monitoring soil heavy metal contamination. However, with the concern about the cost, determination of the number of samples and the temporal interval, and their capability to detect a certain change is a key technical problem to be solved. This depends on the spatial variation of the parameters in the monitoring units. The "National Multi-Purpose Regional Geochemical Survey" (NMPRGS) project in China, acquired the spatial distribution of heavy metals using a high density sampling method in the most arable regions in China. Based on soil Cd, Hg, and Pb data and taking administrative regions as the monitoring units, the number of samples and temporal intervals that may be used for monitoring soil heavy metal contamination were determined. It was found that there is a large variety of spatial variation of the elements in each NMPRGS region. This results in the difficulty in the determination of the minimum detectable changes (MDC), the number of samples, and temporal intervals for revisiting. This paper recommends a suitable set of the number of samples (n r ) for each region under the balance of cost, practicability, and monitoring precision. Under n r , MDC values are acceptable for all the regions, and the minimum temporal intervals are practical with the range of 3.3-13.3 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European domain.

  5. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M.

    2016-10-01

    The Cretaceous-Paleogene (K-Pg) boundary is the best known and most widely recognized global time horizon in Earth history and coincides with one of the two largest known mass extinctions. We present a series of new high-precision uranium-lead (U-Pb) age determinations by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) method from volcanic ash deposits within a tightly constrained magnetobiostratigraphic framework across the K-Pg boundary in the Denver Basin, Colorado, USA. This new timeline provides a precise interpolated absolute age for the K-Pg boundary of 66.021 ± 0.024 / 0.039 / 0.081 Ma, constrains the ages of magnetic polarity Chrons C28 to C30, and offers a direct and independent test of early Paleogene astronomical and 40Ar/39Ar based timescales. Temporal calibration of paleontological and palynological data from the same deposits shows that the interval between the extinction of the dinosaurs and the appearance of earliest Cenozoic mammals in the Denver Basin lasted ∼185 ky (and no more than 570 ky) and the 'fern spike' lasted ∼1 ky (and no more than 71 ky) after the K-Pg boundary layer was deposited, indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event.

  6. Enabling Characteristics Of Optical Autocovariance Lidar For Global Wind And Aerosol Profiling

    NASA Astrophysics Data System (ADS)

    Grund, C. J.; Stephens, M.; Lieber, M.; Weimer, C.

    2008-12-01

    Systematic global wind measurements with 70 km horizontal resolution and, depending on altitude from the PBL to stratosphere, 250m-2km vertical resolution and 0.5m/s - 2 m/s velocity precision are recognized as key to the understanding and monitoring of complex climate modulations, validation of models, and improved precision and range for weather forecasts. Optical Autocovariance Wind Lidar (OAWL) is a relatively new interferometric direct detection Doppler lidar approach that promises to meet the required wind profile resolution at substantial mass, cost, and power savings, and at reduced technical risk for a space-based system meeting the most demanding velocity precision and spatial and temporal resolution requirements. A proof of concept Optical Autocovariance Wind Lidar (OAWL) has been demonstrated, and a robust multi- wavelength, field-widened (more than 100 microR) lidar system suitable for high altitude (over 16km) aircraft demonstration is under construction. Other advantages of the OAWL technique include insensitivity to aerosol/molecular backscatter mixing ratio, freedom from complex receiver/transmitter optical frequency lock loops, prospects for practical continuous large-area coverage wind profiling from GEO, and the availability of simultaneous multiple wavelength High Spectral Resolution Lidar (OA-HSRL) for aerosol identification and optical property measurements. We will discuss theory, development and demonstration status, advantages, limitations, and space-based performance of OAWL and OA-HSRL, as well as the potential for combined mission synergies.

  7. An approach for real-time fast point positioning of the BeiDou Navigation Satellite System using augmentation information

    NASA Astrophysics Data System (ADS)

    Tu, Rui; Zhang, Rui; Zhang, Pengfei; Liu, Jinhai; Lu, Xiaochun

    2018-07-01

    This study proposes an approach to facilitate real-time fast point positioning of the BeiDou Navigation Satellite System (BDS) based on regional augmentation information. We term this as the precise positioning based on augmentation information (BPP) approach. The coordinates of the reference stations were highly constrained to extract the augmentation information, which contained not only the satellite orbit clock error correlated with the satellite running state, but also included the atmosphere error and unmodeled error, which are correlated with the spatial and temporal states. Based on these mixed augmentation corrections, a precise point positioning (PPP) model could be used for the coordinates estimation of the user stations, and the float ambiguity could be easily fixed for the single-difference between satellites. Thus, this technique provided a quick and high-precision positioning service. Three different datasets with small, medium, and large baselines (0.6 km, 30 km and 136 km) were used to validate the feasibility and effectiveness of the proposed BPP method. The validations showed that using the BPP model, 1–2 cm positioning service can be provided in a 100 km wide area after just 2 s of initialization. Thus, as the proposed approach not only capitalized on both PPP and RTK but also provided consistent application, it can be used for area augmentation positioning.

  8. Characteristics of digital micromirror projection for 3D shape measurement at extreme speed

    NASA Astrophysics Data System (ADS)

    Höfling, Roland; Aswendt, Petra; Leischnig, Frank; Förster, Matthias

    2015-03-01

    3D shape measurement is one of the growing industrial applications of the Texas Instruments DLP® micro-mirror device. This paper presents investigations on precision and repeatability of that spatial light modulators output when it is driven up to its high-speed limit. The study concerns the basic switching behavior of the individual micro-mirror at different frame rates ranging over three orders of magnitude. The 3D shape measuring methodologies are focused on phase encoded triangulation, i.e. the projection of sinusoidal patterns. The DLP chip is a bi-stable device providing an on/off pattern at each certain moment in time, i.e. it has a native binary output. Sinusoidal patterns are the result of either a temporal integration of multiple on/off patterns or a spatial integration within one on/off pattern. Both approaches are studied experimentally with respect to precision and stability of the pattern output. The STAR-07 industrial projection unit, based upon the 0.7" DLP Discovery™4100 chipset, has been used for this work and the pattern frame rates cover the range from 225 frames per second (fps) to 50,000 fps. The STAR-07 output is detected by a photodiode, amplified, and analyzed in a Yokogawa digital storage oscilloscope. All results prove the very high precision and repeatability of the STAR-07 pattern projection, up to the extreme speed of 50,000 fps.

  9. Monitoring gait in multiple sclerosis with novel wearable motion sensors

    PubMed Central

    McGinnis, Ryan S.; Seagers, Kirsten; Motl, Robert W.; Sheth, Nirav; Wright, John A.; Ghaffari, Roozbeh; Sosnoff, Jacob J.

    2017-01-01

    Background Mobility impairment is common in people with multiple sclerosis (PwMS) and there is a need to assess mobility in remote settings. Here, we apply a novel wireless, skin-mounted, and conformal inertial sensor (BioStampRC, MC10 Inc.) to examine gait characteristics of PwMS under controlled conditions. We determine the accuracy and precision of BioStampRC in measuring gait kinematics by comparing to contemporary research-grade measurement devices. Methods A total of 45 PwMS, who presented with diverse walking impairment (Mild MS = 15, Moderate MS = 15, Severe MS = 15), and 15 healthy control subjects participated in the study. Participants completed a series of clinical walking tests. During the tests participants were instrumented with BioStampRC and MTx (Xsens, Inc.) sensors on their shanks, as well as an activity monitor GT3X (Actigraph, Inc.) on their non-dominant hip. Shank angular velocity was simultaneously measured with the inertial sensors. Step number and temporal gait parameters were calculated from the data recorded by each sensor. Visual inspection and the MTx served as the reference standards for computing the step number and temporal parameters, respectively. Accuracy (error) and precision (variance of error) was assessed based on absolute and relative metrics. Temporal parameters were compared across groups using ANOVA. Results Mean accuracy±precision for the BioStampRC was 2±2 steps error for step number, 6±9ms error for stride time and 6±7ms error for step time (0.6–2.6% relative error). Swing time had the least accuracy±precision (25±19ms error, 5±4% relative error) among the parameters. GT3X had the least accuracy±precision (8±14% relative error) in step number estimate among the devices. Both MTx and BioStampRC detected significantly distinct gait characteristics between PwMS with different disability levels (p<0.01). Conclusion BioStampRC sensors accurately and precisely measure gait parameters in PwMS across diverse walking impairment levels and detected differences in gait characteristics by disability level in PwMS. This technology has the potential to provide granular monitoring of gait both inside and outside the clinic. PMID:28178288

  10. High resolution and high precision on line isotopic analysis of Holocene and glacial ice performed in the field

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Johnsen, S. J.; Blunier, T.; Bigler, M.; Stowasser, C.; Schüpbach, S.; Leuenberger, D.

    2010-12-01

    Ice core records as obtained from polar ice caps provide a wealth of paleoclimatic information. One of the main features of ice cores is their potential for high temporal resolution. The isotopic signature of the ice, expressed through the relative abundances of the two heavy isotopologues H218O and HD16O, is a widely used proxy for the reconstruction of past temperature and accumulation. One step further the combined information obtained from these two isotopologues, commonly referred to as the deuterium excess, can be utilized to infer additional information about the source of the precipitated moisture. Until very recently isotopic analysis of polar ice was performed with isotope Ratio Mass Spectrometry (IRMS) in a discrete fashion resulting in a high workload related to the preparation of samples. Most important though the available temporal resolution of the ice core was in many cases not fully exploited. In order to overcome these limitations we have developed a system that interfaces a commercially available IR laser cavity ring-down spectrometer tailored for water isotope analysis to a stream of liquid water as extracted from a continuously melted ice rod. The system offers the possibility for simultaneous δ18O and δD analysis with a sample requirement of approximately 0.1 ml/min. The system has been deployed in the field during the NEEM ice core drilling project on 2009 and 2010. In this study we present actual on line measurements of Holocene and glacial ice. We also discuss how parameters as the melt rate, acquisition rate and integration time affect the obtained precision and resolution and we describe data analysis techniques that can improve these last two parameters. By applying spectral methods we are able to quantify the smoothing effects imposed by diffusion of the sample in the sample transfer lines and the optical cavity of the instrument. We demonstrate that with an acquisition rate of 0.2 Hz we are able to obtain a precision of 0.5‰ and 0.15‰ for δD and δ18O respectively. This is comparable to the performance of traditional IRMS systems for δD but slightly less precise for δ18O. With this acquisition rate the system’s 3db bandwidth is 0.006 Hz. With a melt rate equal to 3 cm/min, the latter translates to signals with wavelengths of 8.3 cm. We will comment on the quality of the acquired ice core data and their potential use for dating, paleotemperature reconstruction, isotopic firn diffusion and deuterium excess studies.

  11. Interaction Mechanisms of Cavitation Bubbles Induced by Spatially and Temporally Separated fs-Laser Pulses

    PubMed Central

    Tinne, Nadine; Kaune, Brigitte; Krüger, Alexander; Ripken, Tammo

    2014-01-01

    The emerging use of femtosecond lasers with high repetition rates in the MHz regime together with limited scan speed implies possible mutual optical and dynamical interaction effects of the individual cutting spots. In order to get more insight into the dynamics a time-resolved photographic analysis of the interaction of cavitation bubbles is presented. Particularly, we investigated the influence of fs-laser pulses and their resulting bubble dynamics with various spatial as well as temporal separations. Different time courses of characteristic interaction effects between the cavitation bubbles were observed depending on pulse energy and spatio-temporal pulse separation. These ranged from merely no interaction to the phenomena of strong water jet formation. Afterwards, the mechanisms are discussed regarding their impact on the medical application of effective tissue cutting lateral to the laser beam direction with best possible axial precision: the mechanical forces of photodisruption as well as the occurring water jet should have low axial extend and a preferably lateral priority. Furthermore, the overall efficiency of energy conversion into controlled mechanical impact should be maximized compared to the transmitted pulse energy and unwanted long range mechanical side effects, e.g. shock waves, axial jet components. In conclusion, these experimental results are of great importance for the prospective optimization of the ophthalmic surgical process with high-repetition rate fs-lasers. PMID:25502697

  12. Improving image-quality of interference fringes of out-of-plane vibration using temporal speckle pattern interferometry and standard deviation for piezoelectric plates.

    PubMed

    Chien-Ching Ma; Ching-Yuan Chang

    2013-07-01

    Interferometry provides a high degree of accuracy in the measurement of sub-micrometer deformations; however, the noise associated with experimental measurement undermines the integrity of interference fringes. This study proposes the use of standard deviation in the temporal domain to improve the image quality of patterns obtained from temporal speckle pattern interferometry. The proposed method combines the advantages of both mean and subtractive methods to remove background noise and ambient disturbance simultaneously, resulting in high-resolution images of excellent quality. The out-of-plane vibration of a thin piezoelectric plate is the main focus of this study, providing information useful to the development of energy harvesters. First, ten resonant states were measured using the proposed method, and both mode shape and resonant frequency were investigated. We then rebuilt the phase distribution of the first resonant mode based on the clear interference patterns obtained using the proposed method. This revealed instantaneous deformations in the dynamic characteristics of the resonant state. The proposed method also provides a frequency-sweeping function, facilitating its practical application in the precise measurement of resonant frequency. In addition, the mode shapes and resonant frequencies obtained using the proposed method were recorded and compared with results obtained using finite element method and laser Doppler vibrometery, which demonstrated close agreement.

  13. All-passive pixel super-resolution of time-stretch imaging

    PubMed Central

    Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.

    2017-01-01

    Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936

  14. Automated Plantation Mapping in Indonesia Using Remote Sensing Data

    NASA Astrophysics Data System (ADS)

    Karpatne, A.; Jia, X.; Khandelwal, A.; Kumar, V.

    2017-12-01

    Plantation mapping is critical for understanding and addressing deforestation, a key driver of climate change and ecosystem degradation. Unfortunately, most plantation maps are limited to small areas for specific years because they rely on visual inspection of imagery. In this work, we propose a data-driven approach which automatically generates yearly plantation maps for large regions using MODIS multi-spectral data. While traditional machine learning algorithms face manifold challenges in this task, e.g. imperfect training labels, spatio-temporal data heterogeneity, noisy and high-dimensional data, lack of evaluation data, etc., we introduce a novel deep learning-based framework that combines existing imperfect plantation products as training labels and models the spatio-temporal relationships of land covers. We also explores the post-processing steps based on Hidden Markov Model that further improve the detection accuracy. Then we conduct extensive evaluation of the generated plantation maps. Specifically, by randomly sampling and comparing with high-resolution Digital Globe imagery, we demonstrate that the generated plantation maps achieve both high precision and high recall. When compared with existing plantation mapping products, our detection can avoid both false positives and false negatives. Finally, we utilize the generated plantation maps in analyzing the relationship between forest fires and growth of plantations, which assists in better understanding the cause of deforestation in Indonesia.

  15. Latitudinal Expansion of the Holocene Optimum in the East Asian Monsoon Region

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Sun, L.; Zhan, T.; Huang, W.; Zhou, X.; Hao, Q.; He, X.; Zhao, C.; Zhang, J.; Qiao, Y.; Ge, J.; Yan, P.; Shao, D.; Chu, Z.; Yang, W.

    2014-12-01

    With increasingly abundant high resolution and high precision records of East Asian monsoon, its spatial and temporal dynamics during the Holocene have been extensively studied. However, partly due to the lack of records in high latitude areas and the age uncertainties, these studies characterized a wide range of spatial-temporal patterns of Holocene Optimum (HO). We reconstructed a 14,000-year record of vegetation using sediments from a crater lake in Northeast China. Analyses of the vegetation time series show that HO began around 6,000 a BP in Northeast China, significantly later than generally recognized. By comparison with Holocene records of vegetation in other regions of the East Asia, we found a marked northward shift of initial time of HO from 10,600 a BP in South China to 6,000 a BP in Northeast China, which appeared to be forced by the shrinkage of the northern hemisphere ice-sheet (NHIS) during early to mid Holocene. Finally, we fitted a regression model of initial HO time on latitude, which allows us to make prediction of initial HO time based on their geographical locations. This study reveals a strong relationship between latitude and initial HO times and provides a window towards understanding the joint forcing of high and low latitude factors on regional climate.

  16. High precision time calibration of the Permo-Triassic boundary mass extinction by U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Schaltegger, Urs

    2014-05-01

    U-Pb dating using Chemical Abrasion, Isotope Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS) is the analytical method of choice for geochronologists, who are seeking highest temporal resolution and a high degree of accuracy for single grains of zircon. The use of double-isotope tracer solutions, cross-calibrated and assessed in different EARTHTIME labs, coinciding with the reassessment of the uranium decay constants and further improvements in ion counting technology led to unprecedented precision better than 0.1% for single grain, and 0.05% for population ages, respectively. These analytical innovations now allow calibrating magmatic and biological timescales at resolution adequate for both groups of processes. To construct a revised and high resolution calibrated time scale for the Permian-Triassic boundary (PTB) we use (i) high-precision U-Pb zircon age determinations of a unique succession of volcanic ash beds interbedded with shallow to deep water fossiliferous sediments in the Nanpanjiang Basin (South China) combined with (ii) accurate quantitative biochronology based on ammonoids and conodonts and (iii) carbon isotope excursions across the PTB. Using these alignments allows (i) positioning the PTB in different depositional environments and (ii) solving age/stratigraphic contradictions generated by the index, water depth-controlled conodont Hindeodus parvus, whose diachronous first occurrences are arbitrarily used for placing the base of the Triassic. This new age framework provides the basis for a combined calibration of chemostratigraphic records with high-resolution biochronozones of the Late Permian and Early Triassic. Besides the general improvement of the radio-isotopic calibration of the PTB at the ±100 ka level, this will also lead to a better understanding of cause and effect relations involved in this mass extinction.

  17. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration

    PubMed Central

    Horton, Travis W.; Holdaway, Richard N.; Zerbini, Alexandre N.; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J.

    2011-01-01

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored. PMID:21508023

  18. Straight as an arrow: humpback whales swim constant course tracks during long-distance migration.

    PubMed

    Horton, Travis W; Holdaway, Richard N; Zerbini, Alexandre N; Hauser, Nan; Garrigue, Claire; Andriolo, Artur; Clapham, Phillip J

    2011-10-23

    Humpback whale seasonal migrations, spanning greater than 6500 km of open ocean, demonstrate remarkable navigational precision despite following spatially and temporally distinct migration routes. Satellite-monitored radio tag-derived humpback whale migration tracks in both the South Atlantic and South Pacific include constant course segments of greater than 200 km, each spanning several days of continuous movement. The whales studied here maintain these directed movements, often with better than 1° precision, despite the effects of variable sea-surface currents. Such remarkable directional precision is difficult to explain by established models of directional orientation, suggesting that alternative compass mechanisms should be explored.

  19. Precise orbit computation and sea surface modeling

    NASA Technical Reports Server (NTRS)

    Wakker, Karel F.; Ambrosius, B. A. C.; Rummel, R.; Vermaat, E.; Deruijter, W. P. M.; Vandermade, J. W.; Zimmerman, J. T. F.

    1991-01-01

    The research project described below is part of a long-term program at Delft University of Technology aiming at the application of European Remote Sensing satellite (ERS-1) and TOPEX/POSEIDON altimeter measurements for geophysical purposes. This program started in 1980 with the processing of Seasat laser range and altimeter height measurements and concentrates today on the analysis of Geosat altimeter data. The objectives of the TOPEX/POSEIDON research project are the tracking of the satellite by the Dutch mobile laser tracking system MTLRS-2, the computation of precise TOPEX/POSEIDON orbits, the analysis of the spatial and temporal distribution of the orbit errors, the improvement of ERS-1 orbits through the information obtained from the altimeter crossover difference residuals for crossing ERS-1 and TOPEX/POSEIDON tracks, the combination of ERS-1 and TOPEX/POSEIDON altimeter data into a single high-precision data set, and the application of this data set to model the sea surface. The latter application will focus on the determination of detailed regional mean sea surfaces, sea surface variability, ocean topography, and ocean currents in the North Atlantic, the North Sea, the seas around Indonesia, the West Pacific, and the oceans around South Africa.

  20. Patterned optogenetic modulation of neurovascular and metabolic signals

    PubMed Central

    Richner, Thomas J; Baumgartner, Ryan; Brodnick, Sarah K; Azimipour, Mehdi; Krugner-Higby, Lisa A; Eliceiri, Kevin W; Williams, Justin C; Pashaie, Ramin

    2015-01-01

    The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling. PMID:25388678

  1. The compression of perceived time in a hot environment depends on physiological and psychological factors.

    PubMed

    Tamm, Maria; Jakobson, Ainika; Havik, Merle; Burk, Andres; Timpmann, Saima; Allik, Jüri; Oöpik, Vahur; Kreegipuu, Kairi

    2014-01-01

    The human perception of time was observed under extremely hot conditions. Young healthy men performed a time production task repeatedly in 4 experimental trials in either a temperate (22 °C, relative humidity 35%) or a hot (42 °C, relative humidity 18%) environment and with or without a moderate-intensity treadmill exercise. Within 1 hour, the produced durations indicated a significant compression of short intervals (0.5 to 10 s) in the combination of exercising and high ambient temperature, while neither variable/condition alone was enough to yield the effect. Temporal judgement was analysed in relation to different indicators of arousal, such as critical flicker frequency (CFF), core temperature, heart rate, and subjective ratings of fatigue and exertion. The arousal-sensitive internal clock model (originally proposed by Treisman) is used to explain the temporal compression while exercising in heat. As a result, we suggest that the psychological response to heat stress, the more precisely perceived fatigue, is important in describing the relationship between core temperature and time perception. Temporal compression is related to higher core temperature, but only if a certain level of perceived fatigue is accounted for, implying the existence of a thermoemotional internal clock.

  2. Achieving Consistent Doppler Measurements from SDO/HMI Vector Field Inversions

    NASA Technical Reports Server (NTRS)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.; Barnes, Graham

    2016-01-01

    NASA's Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft-Sun velocity varies by +/-3 kms-1 over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne-Eddington inversions in the HMI pipeline. The procedure ultimately uses 32 velocity-dependent coefficients to adjust 10 million pixels-a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.

  3. Quantifying the Uncertainty in High Spatial and Temporal Resolution Synthetic Land Surface Reflectance at Pixel Level Using Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Kong, J.; Ryu, Y.

    2017-12-01

    Algorithms for fusing high temporal frequency and high spatial resolution satellite images are widely used to develop dense time-series land surface observations. While many studies have revealed that the synthesized frequent high spatial resolution images could be successfully applied in vegetation mapping and monitoring, validation and correction of fused images have not been focused than its importance. To evaluate the precision of fused image in pixel level, in-situ reflectance measurements which could account for the pixel-level heterogeneity are necessary. In this study, the synthetic images of land surface reflectance were predicted by the coarse high-frequency images acquired from MODIS and high spatial resolution images from Landsat-8 OLI using the Flexible Spatiotemporal Data Fusion (FSDAF). Ground-based reflectance was measured by JAZ Spectrometer (Ocean Optics, Dunedin, FL, USA) on rice paddy during five main growth stages in Cheorwon-gun, Republic of Korea, where the landscape heterogeneity changes through the growing season. After analyzing the spatial heterogeneity and seasonal variation of land surface reflectance based on the ground measurements, the uncertainties of the fused images were quantified at pixel level. Finally, this relationship was applied to correct the fused reflectance images and build the seasonal time series of rice paddy surface reflectance. This dataset could be significant for rice planting area extraction, phenological stages detection, and variables estimation.

  4. Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry

    NASA Astrophysics Data System (ADS)

    Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.

    2018-03-01

    Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.

  5. Motor contributions to the temporal precision of auditory attention.

    PubMed

    Morillon, Benjamin; Schroeder, Charles E; Wyart, Valentin

    2014-10-15

    In temporal-or dynamic-attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory 'active sensing'.

  6. Time perception of visual motion is tuned by the motor representation of human actions

    PubMed Central

    Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry

    2013-01-01

    Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903

  7. Spatiotemporal dynamics of random stimuli account for trial-to-trial variability in perceptual decision making

    PubMed Central

    Park, Hame; Lueckmann, Jan-Matthis; von Kriegstein, Katharina; Bitzer, Sebastian; Kiebel, Stefan J.

    2016-01-01

    Decisions in everyday life are prone to error. Standard models typically assume that errors during perceptual decisions are due to noise. However, it is unclear how noise in the sensory input affects the decision. Here we show that there are experimental tasks for which one can analyse the exact spatio-temporal details of a dynamic sensory noise and better understand variability in human perceptual decisions. Using a new experimental visual tracking task and a novel Bayesian decision making model, we found that the spatio-temporal noise fluctuations in the input of single trials explain a significant part of the observed responses. Our results show that modelling the precise internal representations of human participants helps predict when perceptual decisions go wrong. Furthermore, by modelling precisely the stimuli at the single-trial level, we were able to identify the underlying mechanism of perceptual decision making in more detail than standard models. PMID:26752272

  8. The Ventral Anterior Temporal Lobe has a Necessary Role in Exception Word Reading.

    PubMed

    Ueno, Taiji; Meteyard, Lotte; Hoffman, Paul; Murayama, Kou

    2018-06-06

    An influential account of reading holds that words with exceptional spelling-to-sound correspondences (e.g., PINT) are read via activation of their lexical-semantic representations, supported by the anterior temporal lobe (ATL). This account has been inconclusive because it is based on neuropsychological evidence, in which lesion-deficit relationships are difficult to localize precisely, and functional neuroimaging data, which is spatially precise but cannot demonstrate whether the ATL activity is necessary for exception word reading. To address these issues, we used a technique with good spatial specificity-repetitive transcranial magnetic stimulation (rTMS)-to demonstrate a necessary role of ATL in exception word reading. Following rTMS to left ventral ATL, healthy Japanese adults made more regularization errors in reading Japanese exception words. We successfully simulated these results in a computational model in which exception word reading was underpinned by semantic activations. The ATL is critically and selectively involved in reading exception words.

  9. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Single Event Resolution of Plant Plasma Membrane Protein Endocytosis by TIRF Microscopy.

    PubMed

    Johnson, Alexander; Vert, Grégory

    2017-01-01

    Endocytosis is a key process in the internalization of extracellular materials and plasma membrane proteins, such as receptors and transporters, thereby controlling many aspects of cell signaling and cellular homeostasis. Endocytosis in plants has an essential role not only for basic cellular functions but also for growth and development, nutrient delivery, toxin avoidance, and pathogen defense. The precise mechanisms of endocytosis in plants remain quite elusive. The lack of direct visualization and examination of single events of endocytosis has greatly hampered our ability to precisely monitor the cell surface lifetime and the recruitment profile of proteins driving endocytosis or endocytosed cargos in plants. Here, we discuss the necessity to systematically implement total internal reflection fluorescence microcopy (TIRF) in the Plant Cell Biology community and present reliable protocols for high spatial and temporal imaging of endocytosis in plants using clathrin-mediated endocytosis as a test case, since it represents the major route for internalization of cell-surface proteins in plants. We developed a robust method to directly visualize cell surface proteins using TIRF microscopy combined to a high throughput, automated and unbiased analysis pipeline to determine the temporal recruitment profile of proteins to single sites of endocytosis, using the departure of clathrin as a physiological reference for scission. Using this 'departure assay', we assessed the recruitment of two different AP-2 subunits, alpha and mu, to the sites of endocytosis and found that AP2A1 was recruited in concert with clathrin, while AP2M was not. This validated approach therefore offers a powerful solution to better characterize the plant endocytic machinery and the dynamics of one's favorite cargo protein.

  11. A wide range real-time synchronous demodulation system for the dispersion interferometer on HL-2M

    NASA Astrophysics Data System (ADS)

    Wu, Tongyu; Zhang, Wei; Yin, Zejie

    2017-09-01

    A real-time synchronous demodulation system has been developed for the dispersion interferometer on a HL-2M tokamak. The system is based on the phase extraction method which uses a ratio of modulation amplitudes. A high-performance field programmable gate array with pipeline process capabilities is used to realize the real time synchronous demodulation algorithm. A fringe jump correction algorithm is applied to follow the fast density changes of the plasma. By using the Peripheral Component Interconnect Express protocol, the electronics can perform real-time density feedback with a temporal resolution of 100 ns. Some experimental results presented show that the electronics can obtain a wide measurement range of 2.28 × 1022 m-2 with high precision.

  12. Acquisition of peak responding: what is learned?

    PubMed

    Balci, Fuat; Gallistel, Charles R; Allen, Brian D; Frank, Krystal M; Gibson, Jacqueline M; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later.

  13. Acquisition of peak responding: What is learned?

    PubMed Central

    Balci, Fuat; Gallistel, Charles R.; Allen, Brian D.; Frank, Krystal M.; Gibson, Jacqueline M.; Brunner, Daniela

    2009-01-01

    We investigated how the common measures of timing performance behaved in the course of training on the peak procedure in C3H mice. Following fixed interval (FI) pre-training, mice received 16 days of training in the peak procedure. The peak time and spread were derived from the average response rates while the start and stop times and their relative variability were derived from a single-trial analysis. Temporal precision (response spread) appeared to improve in the course of training. This apparent improvement in precision was, however, an averaging artifact; it was mediated by the staggered appearance of timed stops, rather than by the delayed occurrence of start times. Trial-by-trial analysis of the stop times for individual subjects revealed that stops appeared abruptly after three to five sessions and their timing did not change as training was prolonged. Start times and the precision of start and stop times were generally stable throughout training. Our results show that subjects do not gradually learn to time their start or stop of responding. Instead, they learn the duration of the FI, with robust temporal control over the start of the response; the control over the stop of response appears abruptly later. PMID:18950695

  14. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    PubMed Central

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  15. Temporal expectation and spectral expectation operate in distinct fashion on neuronal populations.

    PubMed

    Hsu, Yi-Fang; Hämäläinen, Jarmo A; Waszak, Florian

    2013-11-01

    The formation of temporal expectation (i.e., the prediction of "when") is of prime importance to sensory processing. It can modulate sensory processing at early processing stages probably via the entrainment of low-frequency neuronal oscillations in the brain. However, sensory predictions involve not only temporal expectation but also spectral expectation (i.e., the prediction of "what"). Here we investigated how temporal expectation may interrelate with spectral expectation by explicitly setting up temporal expectation and spectral expectation in a target detection task. We found that reaction time (RT) was shorter when targets were temporally expected than when they were temporally unexpected. The temporal expectation effect was larger with than without spectral expectation. However, this interaction in the behavioural data did not result from an interaction in the electroencephalography (EEG), where we observed independent main effects of temporal expectation and spectral expectation. More precisely, we found that the N1 and P2 event-related potential (ERP) components and the entrainment of low-frequency neuronal oscillations were exclusively modulated by temporal expectation, whilst only the P3 ERP component was modulated by spectral expectation. Our results, thus, support the idea that temporal expectation and spectral expectation operate in distinct fashion on neuronal populations. © 2013 Elsevier Ltd. All rights reserved.

  16. Gauge Adjusted Global Satellite Mapping of Precipitation (GSMAP_GAUGE)

    NASA Astrophysics Data System (ADS)

    Mega, T.; Ushio, T.; Yoshida, S.; Kawasaki, Z.; Kubota, T.; Kachi, M.; Aonashi, K.; Shige, S.

    2013-12-01

    Precipitation is one of the most important parameters on the earth system, and the global distribution of precipitation and its change are essential data for modeling the water cycle, maintaining the ecosystem environment, agricultural production, improvements of the weather forecast precision, flood warning and so on. The GPM (Global Precipitation Measurement) project is led mainly by the United States and Japan, and is now being actively promoted in Europe, France, India, and China with international cooperation. In this project, the microwave radiometers observing microwave emission from rain will be placed on many low-orbit satellites, to reduce the interval to about 3 hours in observation time for each location on the earth. However, the problem of sampling error arises if the global precipitation estimates are less than three hours. Therefore, it is necessary to utilize a gap-filling technique to generate precipitation maps with high temporal resolution, which is quite important for operational uses such as flash flood warning systems. Global Satellite Mapping of Precipitation (GSMaP) project was established by the Japan Science and Technology Agency (JST) in 2002 to produce global precipitation products with high resolution and high precision from not only microwave radiometers but also geostationary infrared radiometers. Currently, the GSMaP_MVK product has been successfully producing fairly good pictures in near real time, and the products shows a comparable score compared with other high-resolution precipitation systems (Ushio et al. 2009 and Kubota et al. 2009). However some evaluations particularly of the operational applications show the tendency of underestimation compared to some ground based observations for the cases showing extremely high precipitation rates. This is partly because the spatial and temporal samplings of the satellite estimates are different from that of the ground based estimates. The microwave imager observes signals from precipitation instantaneously, while the ground based rain gauges collects precipitation particles for one hour at a certain point. This discrepancy can cause the mismatch between the two estimates, and we need to fill the gap of the precipitation estimates between the satellite and rain gauge attributable to the spatial and temporal resolution difference. To that end, the gauge adjusted product named as GSMaP_Gauge has been developed. In this product, the CPC global gauge data analysis by Xie et al. (2007) and Chen et al. (2008) is used for the adjustment of the GSMaP_MVK data. In this presentation, the algorithm concept, examples of the product, and some validation results are presented.

  17. High-throughput sequencing methods to study neuronal RNA-protein interactions.

    PubMed

    Ule, Jernej

    2009-12-01

    UV-cross-linking and RNase protection, combined with high-throughput sequencing, have provided global maps of RNA sites bound by individual proteins or ribosomes. Using a stringent purification protocol, UV-CLIP (UV-cross-linking and immunoprecipitation) was able to identify intronic and exonic sites bound by splicing regulators in mouse brain tissue. Ribosome profiling has been used to quantify ribosome density on budding yeast mRNAs under different environmental conditions. Post-transcriptional regulation in neurons requires high spatial and temporal precision, as is evident from the role of localized translational control in synaptic plasticity. It remains to be seen if the high-throughput methods can be applied quantitatively to study the dynamics of RNP (ribonucleoprotein) remodelling in specific neuronal populations during the neurodegenerative process. It is certain, however, that applications of new biochemical techniques followed by high-throughput sequencing will continue to provide important insights into the mechanisms of neuronal post-transcriptional regulation.

  18. Architecture and applications of a high resolution gated SPAD image sensor

    PubMed Central

    Burri, Samuel; Maruyama, Yuki; Michalet, Xavier; Regazzoni, Francesco; Bruschini, Claudio; Charbon, Edoardo

    2014-01-01

    We present the architecture and three applications of the largest resolution image sensor based on single-photon avalanche diodes (SPADs) published to date. The sensor, fabricated in a high-voltage CMOS process, has a resolution of 512 × 128 pixels and a pitch of 24 μm. The fill-factor of 5% can be increased to 30% with the use of microlenses. For precise control of the exposure and for time-resolved imaging, we use fast global gating signals to define exposure windows as small as 4 ns. The uniformity of the gate edges location is ∼140 ps (FWHM) over the whole array, while in-pixel digital counting enables frame rates as high as 156 kfps. Currently, our camera is used as a highly sensitive sensor with high temporal resolution, for applications ranging from fluorescence lifetime measurements to fluorescence correlation spectroscopy and generation of true random numbers. PMID:25090572

  19. Satellite Laser Ranging operations

    NASA Technical Reports Server (NTRS)

    Pearlman, Michael R.

    1994-01-01

    Satellite Laser Ranging (SLR) is currently providing precision orbit determination for measurements of: 1) Ocean surface topography from satellite borne radar altimetry, 2) Spatial and temporal variations of the gravity field, 3) Earth and ocean tides, 4) Plate tectonic and regional deformation, 5) Post-glacial uplift and subsidence, 6) Variations in the Earth's center-of-mass, and 7) Variations in Earth rotation. SLR also supports specialized programs in time transfer and classical geodetic positioning, and will soon provide precision ranging to support experiments in relativity.

  20. Mobile mapping of methane emissions and isoscapes

    NASA Astrophysics Data System (ADS)

    Takriti, Mounir; Ward, Sue; Wynn, Peter; Elias, Dafydd; McNamara, Niall

    2017-04-01

    Methane (CH4) is a potent greenhouse gas emitted from a variety of natural and anthropogenic sources. It is crucial to accurately and efficiently detect CH4 emissions and identify their sources to improve our understanding of changing emission patterns as well as to identify ways to curtail their release into the atmosphere. However, using established methods this can be challenging as well as time and resource intensive due to the temporal and spatial heterogeneity of many sources. To address this problem, we have developed a vehicle mounted mobile system that combines high precision CH4 measurements with isotopic mapping and dual isotope source characterisation. We here present details of the development and testing of a unique system for the detection and isotopic analysis of CH4 plumes built around a Picarro isotopic (13C/12C) gas analyser and a high precision Los Gatos greenhouse gas analyser. Combined with micrometeorological measurements and a mechanism for collecting discrete samples for high precision dual isotope (13C/12C, 2H/1H) analysis the system enables mapping of concentrations as well as directional and isotope based source verification. We then present findings from our mobile methane surveys around the North West of England. This area includes a variety of natural and anthropogenic methane sources within a relatively small geographical area, including livestock farming, urban and industrial gas infrastructure, landfills and waste water treatment facilities, and wetlands. We show that the system was successfully able to locate leaks from natural gas infrastructure and emissions from agricultural activities and to distinguish isotope signatures from these sources.

  1. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments.

    PubMed

    Tigges, Jan; Lakes, Tobia

    2017-10-04

    Urban forests reduce greenhouse gas emissions by storing and sequestering considerable amounts of carbon. However, few studies have considered the local scale of urban forests to effectively evaluate their potential long-term carbon offset. The lack of precise, consistent and up-to-date forest details is challenging for long-term prognoses. Therefore, this review aims to identify uncertainties in urban forest carbon offset assessment and discuss the extent to which such uncertainties can be reduced by recent progress in high resolution remote sensing. We do this by performing an extensive literature review and a case study combining remote sensing and life cycle assessment of urban forest carbon offset in Berlin, Germany. Recent progress in high resolution remote sensing and methods is adequate for delivering more precise details on the urban tree canopy, individual tree metrics, species, and age structures compared to conventional land use/cover class approaches. These area-wide consistent details can update life cycle inventories for more precise future prognoses. Additional improvements in classification accuracy can be achieved by a higher number of features derived from remote sensing data of increasing resolution, but first studies on this subject indicated that a smart selection of features already provides sufficient data that avoids redundancies and enables more efficient data processing. Our case study from Berlin could use remotely sensed individual tree species as consistent inventory of a life cycle assessment. However, a lack of growth, mortality and planting data forced us to make assumptions, therefore creating uncertainty in the long-term prognoses. Regarding temporal changes and reliable long-term estimates, more attention is required to detect changes of gradual growth, pruning and abrupt changes in tree planting and mortality. As such, precise long-term urban ecological monitoring using high resolution remote sensing should be intensified, especially due to increasing climate change effects. This is important for calibrating and validating recent prognoses of urban forest carbon offset, which have so far scarcely addressed longer timeframes. Additionally, higher resolution remote sensing of urban forest carbon estimates can improve upscaling approaches, which should be extended to reach a more precise global estimate for the first time. Urban forest carbon offset can be made more relevant by making more standardized assessments available for science and professional practitioners, and the increasing availability of high resolution remote sensing data and the progress in data processing allows for precisely that.

  2. Simulating Spatiotemporal Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and In Situ Observations

    PubMed Central

    Tang, Chuanjiang; Fu, Xinyu; Jiang, Dong; Zhang, Xinyue; Zhou, Su

    2014-01-01

    Net primary productivity (NPP) is an important indicator for grassland resource management and sustainable development. In this paper, the NPP of Sichuan grasslands was estimated by the Carnegie-Ames-Stanford Approach (CASA) model. The results were validated with in situ data. The overall precision reached 70%; alpine meadow had the highest precision at greater than 75%, among the three types of grasslands validated. The spatial and temporal variations of Sichuan grasslands were analyzed. The absorbed photosynthetic active radiation (APAR), light use efficiency (ε), and NPP of Sichuan grasslands peaked in August, which was a vigorous growth period during 2011. High values of APAR existed in the southwest regions in altitudes from 2000 m to 4000 m. Light use efficiency (ε) varied in the different types of grasslands. The Sichuan grassland NPP was mainly distributed in the region of 3000–5000 m altitude. The NPP of alpine meadow accounted for 50% of the total NPP of Sichuan grasslands. PMID:25250396

  3. GPS Time Series and Geodynamic Implications for the Hellenic Arc Area, Greece

    NASA Astrophysics Data System (ADS)

    Hollenstein, Ch.; Heller, O.; Geiger, A.; Kahle, H.-G.; Veis, G.

    The quantification of crustal deformation and its temporal behavior is an important contribution to earthquake hazard assessment. With GPS measurements, especially from continuous operating stations, pre-, co-, post- and interseismic movements can be recorded and monitored. We present results of a continuous GPS network which has been operated in the Hellenic Arc area, Greece, since 1995. In order to obtain coordinate time series of high precision which are representative for crustal deformation, a main goal was to eliminate effects which are not of tectonic origin. By applying different steps of improvement, non-tectonic irregularities were reduced significantly, and the precision could be improved by an average of 40%. The improved time series are used to study the crustal movements in space and time. They serve as a base for the estimation of velocities and for the visualization of the movements in terms of trajectories. Special attention is given to large earthquakes (M>6), which occurred near GPS sites during the measuring time span.

  4. Neural evidence for moral intuition and the temporal dynamics of interactions between emotional processes and moral cognition.

    PubMed

    Gui, Dan-Yang; Gan, Tian; Liu, Chao

    2016-01-01

    Behavioral and neurological studies have revealed that emotions influence moral cognition. Although moral stimuli are emotionally charged, the time course of interactions between emotions and moral judgments remains unknown. In the present study, we investigated the temporal dynamics of the interaction between emotional processes and moral cognition. The results revealed that when making moral judgments, the time course of the event-related potential (ERP) waveform was significantly different between high emotional arousal and low emotional arousal contexts. Different stages of processing were distinguished, showing distinctive interactions between emotional processes and moral reasoning. The precise time course of moral intuition and moral reasoning sheds new light on theoretical models of moral psychology. Specifically, the N1 component (interpreted as representing moral intuition) did not appear to be influenced by emotional arousal. However, the N2 component and late positive potential were strongly affected by emotional arousal; the slow wave was influenced by both emotional arousal and morality, suggesting distinct moral processing at different emotional arousal levels.

  5. Four-dimensional maps of the human somatosensory system

    PubMed Central

    Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.

    2016-01-01

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579

  6. Four-dimensional maps of the human somatosensory system.

    PubMed

    Avanzini, Pietro; Abdollahi, Rouhollah O; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A

    2016-03-29

    A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans.

  7. Optical mapping of optogenetically shaped cardiac action potentials.

    PubMed

    Park, Sarah A; Lee, Shin-Rong; Tung, Leslie; Yue, David T

    2014-08-19

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation.

  8. Optical mapping of optogenetically shaped cardiac action potentials

    PubMed Central

    Park, Sarah A.; Lee, Shin-Rong; Tung, Leslie; Yue, David T.

    2014-01-01

    Light-mediated silencing and stimulation of cardiac excitability, an important complement to electrical stimulation, promises important discoveries and therapies. To date, cardiac optogenetics has been studied with patch-clamp, multielectrode arrays, video microscopy, and an all-optical system measuring calcium transients. The future lies in achieving simultaneous optical acquisition of excitability signals and optogenetic control, both with high spatio-temporal resolution. Here, we make progress by combining optical mapping of action potentials with concurrent activation of channelrhodopsin-2 (ChR2) or halorhodopsin (eNpHR3.0), via an all-optical system applied to monolayers of neonatal rat ventricular myocytes (NRVM). Additionally, we explore the capability of ChR2 and eNpHR3.0 to shape action-potential waveforms, potentially aiding the study of short/long QT syndromes that result from abnormal changes in action potential duration (APD). These results show the promise of an all-optical system to acquire action potentials with precise temporal optogenetics control, achieving a long-sought flexibility beyond the means of conventional electrical stimulation. PMID:25135113

  9. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  10. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.

    PubMed

    Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R

    2015-02-13

    The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.

  11. Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul

    USGS Publications Warehouse

    Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg

    2011-01-01

    We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.

  12. Design, simulation and evaluation of uniform magnetic field systems for head-free eye movement recordings with scleral search coils.

    PubMed

    Eibenberger, Karin; Eibenberger, Bernhard; Rucci, Michele

    2016-08-01

    The precise measurement of eye movements is important for investigating vision, oculomotor control and vestibular function. The magnetic scleral search coil technique is one of the most precise measurement techniques for recording eye movements with very high spatial (≈ 1 arcmin) and temporal (>kHz) resolution. The technique is based on measuring voltage induced in a search coil through a large magnetic field. This search coil is embedded in a contact lens worn by a human subject. The measured voltage is in direct relationship to the orientation of the eye in space. This requires a magnetic field with a high homogeneity in the center, since otherwise the field inhomogeneity would give the false impression of a rotation of the eye due to a translational movement of the head. To circumvent this problem, a bite bar typically restricts head movement to a minimum. However, the need often emerges to precisely record eye movements under natural viewing conditions. To this end, one needs a uniform magnetic field that is uniform over a large area. In this paper, we present the numerical and finite element simulations of the magnetic flux density of different coil geometries that could be used for search coil recordings. Based on the results, we built a 2.2 × 2.2 × 2.2 meter coil frame with a set of 3 × 4 coils to generate a 3D magnetic field and compared the measured flux density with our simulation results. In agreement with simulation results, the system yields a highly uniform field enabling high-resolution recordings of eye movements.

  13. Evidence for an All-Or-None Perceptual Response: Single-Trial Analyses of Magnetoencephalography Signals Indicate an Abrupt Transition Between Visual Perception and Its Absence

    PubMed Central

    Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.

    2014-01-01

    Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091

  14. Dynamics of Reactive Microbial Hotspots in Concentration Gradient.

    NASA Astrophysics Data System (ADS)

    Hubert, A.; Farasin, J.; Tabuteau, H.; Dufresne, A.; Meheust, Y.; Le Borgne, T.

    2017-12-01

    In subsurface environments, bacteria play a major role in controlling the kinetics of a broad range of biogeochemical reactions. In such environments, nutrients fluxes and solute concentrations needed for bacteria metabolism may be highly variable in space and intermittent in time. This can lead to the formation of reactive hotspots where and when conditions are favorable to particular microorganisms, hence inducing biogeochemical reaction kinetics that differ significantly from those measured in homogeneous model environments. To investigate the impact of chemical gradients on the spatial structure and temporal dynamics of subsurface microorganism populations, we develop microfluidic cells allowing for a precise control of flow and chemical gradient conditions, as well as quantitative monitoring of the bacteria's spatial distribution and biofilm development. Using the non-motile Escherichia coli JW1908-1 strain and Gallionella capsiferriformans ES-2 as model organisms, we investigate the behavior and development of bacteria over a range of single and double concentration gradients in the concentrations of nutrients, electron donors and electron acceptors. We measure bacterial activity and population growth locally in precisely known hydrodynamic and chemical environments. This approach allows time-resolved monitoring of the location and intensity of reactive hotspots in micromodels as a function of the flow and chemical gradient conditions. We compare reactive microbial hotspot dynamics in our micromodels to classic growth laws and well-known growth parameters for the laboratory model bacteria Escherichia coli.We also discuss consequences for the formation and temporal dynamics of biofilms in the subsurface.

  15. Modeling and query the uncertainty of network constrained moving objects based on RFID data

    NASA Astrophysics Data System (ADS)

    Han, Liang; Xie, Kunqing; Ma, Xiujun; Song, Guojie

    2007-06-01

    The management of network constrained moving objects is more and more practical, especially in intelligent transportation system. In the past, the location information of moving objects on network is collected by GPS, which cost high and has the problem of frequent update and privacy. The RFID (Radio Frequency IDentification) devices are used more and more widely to collect the location information. They are cheaper and have less update. And they interfere in the privacy less. They detect the id of the object and the time when moving object passed by the node of the network. They don't detect the objects' exact movement in side the edge, which lead to a problem of uncertainty. How to modeling and query the uncertainty of the network constrained moving objects based on RFID data becomes a research issue. In this paper, a model is proposed to describe the uncertainty of network constrained moving objects. A two level index is presented to provide efficient access to the network and the data of movement. The processing of imprecise time-slice query and spatio-temporal range query are studied in this paper. The processing includes four steps: spatial filter, spatial refinement, temporal filter and probability calculation. Finally, some experiments are done based on the simulated data. In the experiments the performance of the index is studied. The precision and recall of the result set are defined. And how the query arguments affect the precision and recall of the result set is also discussed.

  16. Impact of orbit modeling on DORIS station position and Earth rotation estimates

    NASA Astrophysics Data System (ADS)

    Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav

    2014-04-01

    The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyhan, Marguerite; Sobolevsky, Stanislav; Kang, Chaogui

    Air pollution related to traffic emissions pose an especially significant problem in cities; this is due to its adverse impact on human health and well-being. Previous studies which have aimed to quantify emissions from the transportation sector have been limited by either simulated or coarsely resolved traffic volume data. Emissions inventories form the basis of urban pollution models, therefore in this study, Global Positioning System (GPS) trajectory data from a taxi fleet of over 15,000 vehicles were analyzed with the aim of predicting air pollution emissions for Singapore. This novel approach enabled the quantification of instantaneous drive cycle parameters inmore » high spatio-temporal resolution, which provided the basis for a microscopic emissions model. Carbon dioxide (CO2), nitrogen oxides (NOx), volatile organic compounds (VOCs) and particulate matter (PM) emissions were thus estimated. Highly localized areas of elevated emissions levels were identified, with a spatio-temporal precision not possible with previously used methods for estimating emissions. Relatively higher emissions areas were mainly concentrated in a few districts that were the Singapore Downtown Core area, to the north of the central urban region and to the east of it. Daily emissions quantified for the total motor vehicle population of Singapore were found to be comparable to another emissions dataset Results demonstrated that high resolution spatio-temporal vehicle traces detected using GPS in large taxi fleets could be used to infer highly localized areas of elevated acceleration and air pollution emissions in cities, and may become a complement to traditional emission estimates, especially in emerging cities and countries where reliable fine-grained urban air quality data is not easily available. This is the first study of its kind to investigate measured microscopic vehicle movement in tandem with microscopic emissions modeling for a substantial study domain.« less

  18. Analysis of several methods and inertial sensors locations to assess gait parameters in able-bodied subjects.

    PubMed

    Ben Mansour, Khaireddine; Rezzoug, Nasser; Gorce, Philippe

    2015-10-01

    The purpose of this paper was to determine which types of inertial sensors and which advocated locations should be used for reliable and accurate gait event detection and temporal parameter assessment in normal adults. In addition, we aimed to remove the ambiguity found in the literature of the definition of the initial contact (IC) from the lumbar accelerometer. Acceleration and angular velocity data was gathered from the lumbar region and the distal edge of each shank. This data was evaluated in comparison to an instrumented treadmill and an optoelectronic system during five treadmill speed sessions. The lumbar accelerometer showed that the peak of the anteroposterior component was the most accurate for IC detection. Similarly, the valley that followed the peak of the vertical component was the most precise for terminal contact (TC) detection. Results based on ANOVA and Tukey tests showed that the set of inertial methods was suitable for temporal gait assessment and gait event detection in able-bodied subjects. For gait event detection, an exception was found with the shank accelerometer. The tool was suitable for temporal parameters assessment, despite the high root mean square error on the detection of IC (RMSEIC) and TC (RMSETC). The shank gyroscope was found to be as accurate as the kinematic method since the statistical tests revealed no significant difference between the two techniques for the RMSE off all gait events and temporal parameters. The lumbar and shank accelerometers were the most accurate alternative to the shank gyroscope for gait event detection and temporal parameters assessment, respectively. Copyright © 2015. Published by Elsevier B.V.

  19. New Results from an Old Friend: The Crab Nebula and its Pulsar

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.

    2011-01-01

    The Crab nebula and its associated pulsar have been the target of thousands of observations at all wavelengths over the years. Nevertheless, the system continues to provide new surprises and observational insights into its physical mechanisms. We shall discuss a number of new results we have obtained through Chandra observations. Results include highly detailed pulse-phase spectroscopy which poses challenges to our understanding of pulsar emission mechanisms, a new and precise look at the pulsar geometry, the results of a search for the site of the recently-discovered gamma-ray flares, and a study of the spatial and temporal variation(s) of the southern jet.

  20. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, Scott B.; Diddams, Scott A.

    2011-11-15

    We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36-GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The comb's 36-GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.

  1. Determination of atomic positions from time resolved high resolution transmission electron microscopy images.

    PubMed

    Hussaini, Zahra; Lin, Pin Ann; Natarajan, Bharath; Zhu, Wenhui; Sharma, Renu

    2018-03-01

    For many reaction processes, such as catalysis, phase transformations, nanomaterial synthesis etc., nanoscale observations at high spatial (sub-nanometer) and temporal (millisecond) resolution are required to characterize and comprehend the underlying factors that favor one reaction over another. The combination of such spatial and temporal resolution (up to 600 µs), while rich in information, produces a large number of snapshots, each of which must be analyzed to obtain the structural (and thereby chemical) information. Here we present a methodology for automated quantitative measurement of real-time atomic position fluctuations in a nanoparticle. We leverage a combination of several image processing algorithms to precisely identify the positions of the atomic columns in each image. A geometric model is then used to measure the time-evolution of distances and angles between neighboring atomic columns to identify different phases and quantify local structural fluctuations. We apply this technique to determine the atomic-level fluctuations in the relative fractions of metal and metal-carbide phases in a cobalt catalyst nanoparticle during single-walled carbon nanotube (SWCNT) growth. These measurements provided a means to obtain the number of carbon atoms incorporated into and released from the catalyst particle, thereby helping resolve carbon reaction pathways during SWCNT growth. Further we demonstrate the use of this technique to measure the reaction kinetics of iron oxide reduction. Apart from reducing the data analysis time, the statistical approach allows us to measure atomic distances with sub-pixel resolution. We show that this method can be applied universally to measure atomic positions with a precision of 0.01 nm from any set of atomic-resolution video images. With the advent of high time-resolution direct detection cameras, we anticipate such methods will be essential in addressing the metrology problem of quantifying large datasets of time-resolved images in future. Published by Elsevier B.V.

  2. Change Detection in High-Resolution Remote Sensing Images Using Levene-Test and Fuzzy Evaluation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.; Wang, H. B.; Fan, W. F.; Liu, Y.; Liu, H. J.

    2018-04-01

    High-resolution remote sensing images possess complex spatial structure and rich texture information, according to these, this paper presents a new method of change detection based on Levene-Test and Fuzzy Evaluation. It first got map-spots by segmenting two overlapping images which had been pretreated, extracted features such as spectrum and texture. Then, changed information of all map-spots which had been treated by the Levene-Test were counted to obtain the candidate changed regions, hue information (H component) was extracted through the IHS Transform and conducted change vector analysis combined with the texture information. Eventually, the threshold was confirmed by an iteration method, the subject degrees of candidate changed regions were calculated, and final change regions were determined. In this paper experimental results on multi-temporal ZY-3 high-resolution images of some area in Jiangsu Province show that: Through extracting map-spots of larger difference as the candidate changed regions, Levene-Test decreases the computing load, improves the precision of change detection, and shows better fault-tolerant capacity for those unchanged regions which are of relatively large differences. The combination of Hue-texture features and fuzzy evaluation method can effectively decrease omissions and deficiencies, improve the precision of change detection.

  3. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  4. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    NASA Astrophysics Data System (ADS)

    Pfister, T.; Günther, P.; Nöthen, M.; Czarske, J.

    2010-02-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained.

  5. Study on analysis from sources of error for Airborne LIDAR

    NASA Astrophysics Data System (ADS)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  6. Recognize PM2.5 sources and emission patterns via high-density sensor network: An application case in Beijing

    NASA Astrophysics Data System (ADS)

    Ba, Yu tao; xian Liu, Bao; Sun, Feng; Wang, Li hua; Zhang, Da wei; Yin, Wen jun

    2017-04-01

    Beijing suffered severe air pollution during wintertime, 2016, with the unprecedented high level pollutants monitored. As the most dominant pollutant, fine particulate matter (PM2.5) was measured via high-density sensor network (>1000 fixed monitors across 16000 km2 area). This campaign provided precise observations (spatial resolution ≈ 3 km, temporal resolution = 10 min, error of measure < 5 ug/m3) to track potential emission sources. In addition, these observations coupled with WRF-Chem model (Weather Research and Forecasting model coupled with Chemistry) were analyzed to elucidate the effects of atmospheric transportations across regions, both horizontal and vertical, on emission patterns during this haze period. The results quantified the main cause of regional transport and local emission, and highlighted the importance of cross-region cooperation in anti-pollution campaigns.

  7. Diagnostic applications of an optoelectronic device for high temporal resolution of erythrocyte sedimentation (ESR-graphy)

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Buravleva, Ekaterina; Bulargina, Yulia; Gurfinkel, Youri I.

    2001-10-01

    An automatic device for high-temporal resolution of the process of erythrocytes sedimentation in blood was designed. The position of the boundary between red blood and plasma is registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. ESR-grams demonstrate non-monotonous character of erythrocytes sedimentation in blood. Blood of particular donor being in a stable physiological state taken on different days is characterized by similar ESR-grams. Pathological deviations from a normal physiological state are reflected in the shortening of duration of each process stage and increasing of average sedimentation rate. Intravenous infusion of some medical preparations may lead either to improving (prolonging of macrokinetic stages, decreasing of sedimentation rate), or to worsening of studied parameters depending on an individual. The low extent of blood dilution with saline in vitro lead as a rule to decreasing of sedimentation rate and improving of microkinetic parameters of the process. Adding of highly diluted hydrogen peroxide to blood samples of patients resulted in the improving of sedimentation kinetics. ESR-graphy may widen opportunities of practical medicine in diagnostics, prognostics and drug therapy.

  8. Millisecond-timescale local network coding in the rat primary somatosensory cortex.

    PubMed

    Eldawlatly, Seif; Oweiss, Karim G

    2011-01-01

    Correlation among neocortical neurons is thought to play an indispensable role in mediating sensory processing of external stimuli. The role of temporal precision in this correlation has been hypothesized to enhance information flow along sensory pathways. Its role in mediating the integration of information at the output of these pathways, however, remains poorly understood. Here, we examined spike timing correlation between simultaneously recorded layer V neurons within and across columns of the primary somatosensory cortex of anesthetized rats during unilateral whisker stimulation. We used bayesian statistics and information theory to quantify the causal influence between the recorded cells with millisecond precision. For each stimulated whisker, we inferred stable, whisker-specific, dynamic bayesian networks over many repeated trials, with network similarity of 83.3±6% within whisker, compared to only 50.3±18% across whiskers. These networks further provided information about whisker identity that was approximately 6 times higher than what was provided by the latency to first spike and 13 times higher than what was provided by the spike count of individual neurons examined separately. Furthermore, prediction of individual neurons' precise firing conditioned on knowledge of putative pre-synaptic cell firing was 3 times higher than predictions conditioned on stimulus onset alone. Taken together, these results suggest the presence of a temporally precise network coding mechanism that integrates information across neighboring columns within layer V about vibrissa position and whisking kinetics to mediate whisker movement by motor areas innervated by layer V.

  9. Rapid Forgetting Results From Competition Over Time Between Items in Visual Working Memory

    PubMed Central

    2016-01-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other’s representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. PMID:27668485

  10. Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.

    PubMed

    Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G

    2017-02-01

    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Construction of Endo-Time and its Manipulation in Autopoietic Systems

    NASA Astrophysics Data System (ADS)

    Balaž, Igor

    2005-10-01

    Two main factors determine construction of internal temporal architecture in autopoietic systems: external pressure and network of internal interdependences. External influences are given for systems and they are only able to incorporate them into its own functional and temporal blueprint, with very small space for further manipulations. But, internal processes, or more precisely, irreversible reductions toward determined states are enclosed into mobile and alterative network of re-productive cycles. On that basis autopoietic systems are able to construct and manipulate with different temporal strategies as reversibility, delaying, circularity, spiral flows, different distribution of times and so on. Special case is construction of transient time fields, called here intersubjective times, that arise as fusions of two or more specific temporal architectures during their interactions. This paper describes construction of internal proliferation of time patterns and analyze their functional usefulness.

  12. High-precision morphology: bifocal 4D-microscopy enables the comparison of detailed cell lineages of two chordate species separated for more than 525 million years.

    PubMed

    Stach, Thomas; Anselmi, Chiara

    2015-12-23

    Understanding the evolution of divergent developmental trajectories requires detailed comparisons of embryologies at appropriate levels. Cell lineages, the accurate visualization of cleavage patterns, tissue fate restrictions, and morphogenetic movements that occur during the development of individual embryos are currently available for few disparate animal taxa, encumbering evolutionarily meaningful comparisons. Tunicates, considered to be close relatives of vertebrates, are marine invertebrates whose fossil record dates back to 525 million years ago. Life-history strategies across this subphylum are radically different, and include biphasic ascidians with free swimming larvae and a sessile adult stage, and the holoplanktonic larvaceans. Despite considerable progress, notably on the molecular level, the exact extent of evolutionary conservation and innovation during embryology remain obscure. Here, using the innovative technique of bifocal 4D-microscopy, we demonstrate exactly which characteristics in the cell lineages of the ascidian Phallusia mammillata and the larvacean Oikopleura dioica were conserved and which were altered during evolution. Our accurate cell lineage trees in combination with detailed three-dimensional representations clearly identify conserved correspondence in relative cell position, cell identity, and fate restriction in several lines from all prospective larval tissues. At the same time, we precisely pinpoint differences observable at all levels of development. These differences comprise fate restrictions, tissue types, complex morphogenetic movement patterns, numerous cases of heterochronous acceleration in the larvacean embryo, and differences in bilateral symmetry. Our results demonstrate in extraordinary detail the multitude of developmental levels amenable to evolutionary innovation, including subtle changes in the timing of fate restrictions as well as dramatic alterations in complex morphogenetic movements. We anticipate that the precise spatial and temporal cell lineage data will moreover serve as a high-precision guide to devise experimental investigations of other levels, such as molecular interactions between cells or changes in gene expression underlying the documented structural evolutionary changes. Finally, the quantitative amount of digital high-precision morphological data will enable and necessitate software-based similarity assessments as the basis of homology hypotheses.

  13. The Pathways for Intelligible Speech: Multivariate and Univariate Perspectives

    PubMed Central

    Evans, S.; Kyong, J.S.; Rosen, S.; Golestani, N.; Warren, J.E.; McGettigan, C.; Mourão-Miranda, J.; Wise, R.J.S.; Scott, S.K.

    2014-01-01

    An anterior pathway, concerned with extracting meaning from sound, has been identified in nonhuman primates. An analogous pathway has been suggested in humans, but controversy exists concerning the degree of lateralization and the precise location where responses to intelligible speech emerge. We have demonstrated that the left anterior superior temporal sulcus (STS) responds preferentially to intelligible speech (Scott SK, Blank CC, Rosen S, Wise RJS. 2000. Identification of a pathway for intelligible speech in the left temporal lobe. Brain. 123:2400–2406.). A functional magnetic resonance imaging study in Cerebral Cortex used equivalent stimuli and univariate and multivariate analyses to argue for the greater importance of bilateral posterior when compared with the left anterior STS in responding to intelligible speech (Okada K, Rong F, Venezia J, Matchin W, Hsieh IH, Saberi K, Serences JT,Hickok G. 2010. Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. 20: 2486–2495.). Here, we also replicate our original study, demonstrating that the left anterior STS exhibits the strongest univariate response and, in decoding using the bilateral temporal cortex, contains the most informative voxels showing an increased response to intelligible speech. In contrast, in classifications using local “searchlights” and a whole brain analysis, we find greater classification accuracy in posterior rather than anterior temporal regions. Thus, we show that the precise nature of the multivariate analysis used will emphasize different response profiles associated with complex sound to speech processing. PMID:23585519

  14. Optimizing occupational exposure measurement strategies when estimating the log-scale arithmetic mean value--an example from the reinforced plastics industry.

    PubMed

    Lampa, Erik G; Nilsson, Leif; Liljelind, Ingrid E; Bergdahl, Ingvar A

    2006-06-01

    When assessing occupational exposures, repeated measurements are in most cases required. Repeated measurements are more resource intensive than a single measurement, so careful planning of the measurement strategy is necessary to assure that resources are spent wisely. The optimal strategy depends on the objectives of the measurements. Here, two different models of random effects analysis of variance (ANOVA) are proposed for the optimization of measurement strategies by the minimization of the variance of the estimated log-transformed arithmetic mean value of a worker group, i.e. the strategies are optimized for precise estimation of that value. The first model is a one-way random effects ANOVA model. For that model it is shown that the best precision in the estimated mean value is always obtained by including as many workers as possible in the sample while restricting the number of replicates to two or at most three regardless of the size of the variance components. The second model introduces the 'shared temporal variation' which accounts for those random temporal fluctuations of the exposure that the workers have in common. It is shown for that model that the optimal sample allocation depends on the relative sizes of the between-worker component and the shared temporal component, so that if the between-worker component is larger than the shared temporal component more workers should be included in the sample and vice versa. The results are illustrated graphically with an example from the reinforced plastics industry. If there exists a shared temporal variation at a workplace, that variability needs to be accounted for in the sampling design and the more complex model is recommended.

  15. Prognostic factors for seizure outcome in patients with MRI-negative temporal lobe epilepsy: A meta-analysis and systematic review.

    PubMed

    Wang, Xiu; Zhang, Chao; Wang, Yao; Hu, Wenhan; Shao, Xiaoqiu; Zhang, Jian-Guo; Zhang, Kai

    2016-05-01

    To perform a systematic review and meta-analysis to identify predictors of postoperative seizure freedom in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy. Publications were screened from electronic databases (MEDLINE, EMBASE), epilepsy archives, and bibliographies of relevant articles that were written in English. We recorded all possible risk factors that might predict seizure outcome after surgery. We calculated odds ratio (OR) with corresponding 95% confidence intervals (95% CI) of predictors for postoperative seizure freedom. Heterogeneity was assessed with I(2). All meta-analyses were performed using Review Manager. Epilepsy duration (OR=2.57, 95% CI=1.21-5.47, p<0.05, I(2)=1%) and ictal or interictal electroencephalographic anomalies precisely localized in the ipsilateral temporal lobe (OR=3.89, 95% CI=1.66-9.08, p<0.01, I(2)=0 and OR=3.38, 95% CI=1.57-7.25, p<0.05, I(2)=0, respectively) were significantly associated with a higher rate of seizure freedom after surgery. However, the positron emission tomography (PET) results were not predictive of postoperative seizure freedom (OR=2.11, 95% CI=0.95-4.65, p=0.06, I(2)=0). No significant difference in seizure freedom was observed between the positive and negative pathology groups (OR=1.36, 95% CI=0.70-2.63, p=0.36, I(2)=0). A shorter epilepsy duration and scalp electroencephalogram (EEG) signals localized precisely in the temporal lobe predicted a better seizure outcome in patients with MRI-negative temporal lobe epilepsy. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  16. Optimizing 1-μs-Resolution Single-Molecule Force Spectroscopy on a Commercial Atomic Force Microscope.

    PubMed

    Edwards, Devin T; Faulk, Jaevyn K; Sanders, Aric W; Bull, Matthew S; Walder, Robert; LeBlanc, Marc-Andre; Sousa, Marcelo C; Perkins, Thomas T

    2015-10-14

    Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 μs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-μs temporal resolution was achieved using an ultrashort (L = 9 μm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-μm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-μs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.

  17. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  18. Biologically Relevant Heterogeneity: Metrics and Practical Insights.

    PubMed

    Gough, Albert; Stern, Andrew M; Maier, John; Lezon, Timothy; Shun, Tong-Ying; Chennubhotla, Chakra; Schurdak, Mark E; Haney, Steven A; Taylor, D Lansing

    2017-03-01

    Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications, including basic biomedical research, drug discovery, diagnostics, and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high-throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell-level data, as well as the need for standard metrics of the spatial, temporal, and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high-throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics, and the design of optimal therapeutic strategies for individual patients.

  19. A semi-analytical model of a time reversal cavity for high-amplitude focused ultrasound applications

    NASA Astrophysics Data System (ADS)

    Robin, J.; Tanter, M.; Pernot, M.

    2017-09-01

    Time reversal cavities (TRC) have been proposed as an efficient approach for 3D ultrasound therapy. They allow the precise spatio-temporal focusing of high-power ultrasound pulses within a large region of interest with a low number of transducers. Leaky TRCs are usually built by placing a multiple scattering medium, such as a random rod forest, in a reverberating cavity, and the final peak pressure gain of the device only depends on the temporal length of its impulse response. Such multiple scattering in a reverberating cavity is a complex phenomenon, and optimisation of the device’s gain is usually a cumbersome process, mostly empirical, and requiring numerical simulations with extremely long computation times. In this paper, we present a semi-analytical model for the fast optimisation of a TRC. This model decouples ultrasound propagation in an empty cavity and multiple scattering in a multiple scattering medium. It was validated numerically and experimentally using a 2D-TRC and numerically using a 3D-TRC. Finally, the model was used to determine rapidly the optimal parameters of the 3D-TRC which had been confirmed by numerical simulations.

  20. Coastal Application of Altimetric Measurement using Wideband Signals of Opportunity Reflectometry

    NASA Astrophysics Data System (ADS)

    Shah, R.; Garrison, J. L.; Li, Z.; Ho, S. C.

    2017-12-01

    The majority of the world's population live in coastal regions, making this region subject to growing stress from resource exploitation, marine operations, and other human activities. The coastal ocean is also a highly dynamic region driven by the interfaces between land, sea, and air. Understanding the evolution over short temporal and small spatial scales of the coastal ocean environment is a complex and long-standing challenge. Over the last decade, it has been well established that submesoscale processes are highly energetic and have a temporal scale of hours at a 10-km of spatial scale. These processes fundamentally impact ocean dynamics, biological processes, trace gas mixing and transport. Satellite altimeters, which have played a significant role in mapping the variability of the Earth's open ocean, have known limitations in coastal areas resulting from land contamination and rapid variations due to tides and atmospheric effects. This study will evaluate the potential application of an emerging remote sensing technology (Signals of Opportunity Reflectometry: SoOp-R) to the problem of resolving submesoscale processes in the coastal regions, with spatial scales on the order of 10 km and temporal scales on the order of 1 day. SoOp-R reutilizes existing powerful communication satellite transmissions as illumination sources in a bistatic radar configuration. A number of direct broadcast satellites (DBS), currently operating in geostationary orbit, occupy very large bandwidth (400-500 MHz) spectral allocations in the Ku- and Ka- bands. Theoretically, sea surface height (SSH) can be estimated by measuring the reflected path delay of these signals with very high precision (on the order of 4-5 cm) due to the large bandwidth and high signal- to-noise ratio. SoOp-R instruments are passive, requiring only low-power receivers which could be launched on constellations of small satellites. The distribution of altimetry measurements, combined with the off-nadir geometry, will enable high temporal coverage. This study will assess the potential of resolving coastal processes using wideband SoOp-R. Theoretical predictions will be compared to results from an ongoing experimental campaign and evaluated against science-driven requirements.

  1. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions.

    PubMed

    Chen, Lei L; Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G; Jimenez, Arnie; Velasco, Marco A; Tripp, Sheryl R; Andtbacka, Robert H I; Gouw, Launce; Rodgers, George M; Zhang, Liansheng; Chan, Benjamin K; Cassidy, Pamela B; Benjamin, Robert S; Leachman, Sancy A; Frazier, Marsha L

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation.

  2. SCF-KIT signaling induces endothelin-3 synthesis and secretion: Thereby activates and regulates endothelin-B-receptor for generating temporally- and spatially-precise nitric oxide to modulate SCF- and or KIT-expressing cell functions

    PubMed Central

    Zhu, Jing; Schumacher, Jonathan; Wei, Chongjuan; Ramdas, Latha; Prieto, Victor G.; Jimenez, Arnie; Velasco, Marco A.; Tripp, Sheryl R.; Andtbacka, Robert H. I.; Gouw, Launce; Rodgers, George M.; Zhang, Liansheng; Chan, Benjamin K.; Cassidy, Pamela B.; Benjamin, Robert S.; Leachman, Sancy A.; Frazier, Marsha L.

    2017-01-01

    We demonstrate that SCF-KIT signaling induces synthesis and secretion of endothelin-3 (ET3) in human umbilical vein endothelial cells and melanoma cells in vitro, gastrointestinal stromal tumors, human sun-exposed skin, and myenteric plexus of human colon post-fasting in vivo. This is the first report of a physiological mechanism of ET3 induction. Integrating our finding with supporting data from literature leads us to discover a previously unreported pathway of nitric oxide (NO) generation derived from physiological endothelial NO synthase (eNOS) or neuronal NOS (nNOS) activation (referred to as the KIT-ET3-NO pathway). It involves: (1) SCF-expressing cells communicate with neighboring KIT-expressing cells directly or indirectly (cleaved soluble SCF). (2) SCF-KIT signaling induces timely local ET3 synthesis and secretion. (3) ET3 binds to ETBR on both sides of intercellular space. (4) ET3-binding-initiated-ETBR activation increases cytosolic Ca2+, activates cell-specific eNOS or nNOS. (5) Temporally- and spatially-precise NO generation. NO diffuses into neighboring cells, thus acts in both SCF- and KIT-expressing cells. (6) NO modulates diverse cell-specific functions by NO/cGMP pathway, controlling transcriptional factors, or other mechanisms. We demonstrate the critical physiological role of the KIT-ET3-NO pathway in fulfilling high demand (exceeding basal level) of endothelium-dependent NO generation for coping with atherosclerosis, pregnancy, and aging. The KIT-ET3-NO pathway most likely also play critical roles in other cell functions that involve dual requirement of SCF-KIT signaling and NO. New strategies (e.g. enhancing the KIT-ET3-NO pathway) to harness the benefit of endogenous eNOS and nNOS activation and precise NO generation for correcting pathophysiology and restoring functions warrant investigation. PMID:28880927

  3. Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants.

    PubMed

    Varala, Kranthi; Marshall-Colón, Amy; Cirrone, Jacopo; Brooks, Matthew D; Pasquino, Angelo V; Léran, Sophie; Mittal, Shipra; Rock, Tara M; Edwards, Molly B; Kim, Grace J; Ruffel, Sandrine; McCombie, W Richard; Shasha, Dennis; Coruzzi, Gloria M

    2018-06-19

    This study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our "just-in-time" analysis of time-series transcriptome data uncovered a temporal cascade of cis elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes. We experimentally determined a network precision cutoff, using TF-regulated genome-wide targets of three TF hubs (CRF4, SNZ, and CDF1), used to "prune" the network to 155 TFs and 608 targets. This network precision was reconfirmed using genome-wide TF-target regulation data for four additional TFs (TGA1, HHO5/6, and PHL1) not used in network pruning. These higher-confidence edges in the GRN were further filtered by independent TF-target binding data, used to calculate a TF "N-specificity" index. This refined GRN identifies the temporal relationship of known/validated regulators of N signaling (NLP7/8, TGA1/4, NAC4, HRS1, and LBD37/38/39) and 146 additional regulators. Six TFs-CRF4, SNZ, CDF1, HHO5/6, and PHL1-validated herein regulate a significant number of genes in the dynamic N response, targeting 54% of N-uptake/assimilation pathway genes. Phenotypically, inducible overexpression of CRF4 in planta regulates genes resulting in altered biomass, root development, and 15 NO 3 - uptake, specifically under low-N conditions. This dynamic N-signaling GRN now provides the temporal "transcriptional logic" for 155 candidate TFs to improve nitrogen use efficiency with potential agricultural applications. Broadly, these time-based approaches can uncover the temporal transcriptional logic for any biological response system in biology, agriculture, or medicine. Copyright © 2018 the Author(s). Published by PNAS.

  4. Development of a multispectral sensor for crop canopy temperature measurement

    USDA-ARS?s Scientific Manuscript database

    Quantifying spatial and temporal variability in plant stress has precision agriculture applications in controlling variable rate irrigation and variable rate nutrient application. One approach to plant stress detection is crop canopy temperature measurement by the use of thermographic or radiometric...

  5. Computerized video-enhanced high temporal resolution of erythrocytes sedimentation rate (ESR-graphy) reveals complex dynamic and self-organizing properties of whole blood

    NASA Astrophysics Data System (ADS)

    Voeikov, Vladimir L.; Kondakov, Sergey E.; Buravleva, Ekaterina; Kaganovsky, Isaak; Reznikov, Mikhail

    2000-05-01

    An automatic device for high-temporal resolution of the process of red blood sedimentation was designed. The position of the boundary between red blood and plasma may be registered each 30 sec in several pipettes simultaneously with +/- 10 mkm precision. Fractional rates of the boundary movement are deduced with high accuracy. Data are processed by a PC and presented as velocity-time curves (ESR-grams) and the curves describing time evolution of the boundary position. Several unexpected phenomena in the process of red blood sedimentation have been revealed. Upward fast movements of the boundary up to 1 mm were noted. In patients' blood sets of 5 - 10 milliHz oscillations of sedimentation rate were usually developing at early stages of blood sedimentation. In non-diluted healthy donors' blood high amplitude periodic oscillations were either absent, or were emerging only after blood resided in pipettes for several hours. When blood was diluted to a certain degree with physiological saline or with own plasma long-term low frequency (1 - 3 milliHz) rate oscillations regularly appeared. Non-trivial dependence of patterns of ESR-grams on diluting of blood with own plasma or saline was observed. Thus, non-linear dynamic behavior of living blood has been revealed due to application of the principles of the system of technical vision for the detailed analysis of red blood sedimentation kinetics.

  6. Millisecond resolution electron fluxes from the Cluster satellites: Calibrated EDI ambient electron data

    NASA Astrophysics Data System (ADS)

    Förster, Matthias; Rashev, Mikhail; Haaland, Stein

    2017-04-01

    The Electron Drift Instrument (EDI) onboard Cluster can measure 500 eV and 1 keV electron fluxes with high time resolution during passive operation phases in its Ambient Electron (AE) mode. Data from this mode is available in the Cluster Science Archive since October 2004 with a cadence of 16 Hz in the normal mode or 128 Hz for burst mode telemetry intervals. The fluxes are recorded at pitch angles of 0, 90, and 180 degrees. This paper describes the calibration and validation of these measurements. The high resolution AE data allow precise temporal and spatial diagnostics of magnetospheric boundaries and will be used for case studies and statistical studies of low energy electron fluxes in the near-Earth space. We show examples of applications.

  7. Femtosecond visualization of lattice dynamics in shock-compressed matter.

    PubMed

    Milathianaki, D; Boutet, S; Williams, G J; Higginbotham, A; Ratner, D; Gleason, A E; Messerschmidt, M; Seibert, M M; Swift, D C; Hering, P; Robinson, J; White, W E; Wark, J S

    2013-10-11

    The ultrafast evolution of microstructure is key to understanding high-pressure and strain-rate phenomena. However, the visualization of lattice dynamics at scales commensurate with those of atomistic simulations has been challenging. Here, we report femtosecond x-ray diffraction measurements unveiling the response of copper to laser shock-compression at peak normal elastic stresses of ~73 gigapascals (GPa) and strain rates of 10(9) per second. We capture the evolution of the lattice from a one-dimensional (1D) elastic to a 3D plastically relaxed state within a few tens of picoseconds, after reaching shear stresses of 18 GPa. Our in situ high-precision measurement of material strength at spatial (<1 micrometer) and temporal (<50 picoseconds) scales provides a direct comparison with multimillion-atom molecular dynamics simulations.

  8. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  9. Temporal variations of potential fecundity of southern blue whiting (Micromesistius australis australis) in the Southeast Pacific

    NASA Astrophysics Data System (ADS)

    Flores, Andrés; Wiff, Rodrigo; Díaz, Eduardo; Carvajal, Bernardita

    2017-08-01

    Fecundity is a key aspect of fish species reproductive biology because it relates directly to total egg production. Yet, despite such importance, fecundity estimates are lacking or scarce for several fish species. The gravimetric method is the most-used one to estimate fecundity by essentially scaling up the oocyte density to the ovary weight. It is a relatively simple and precise technique, but also time consuming because it requires counting all oocytes in an ovary subsample. The auto-diametric method, on the other hand, is relatively new for estimating fecundity, representing a rapid alternative, because it requires only an estimation of mean oocyte density from mean oocyte diameter. Using the extensive database available from commercial fishery and design surveys for southern blue whiting Micromesistius australis australis in the Southeast Pacific, we compared estimates of fecundity using both gravimetric and auto-diametric methods. Temporal variations in potential fecundity from the auto-diametric method were evaluated using generalised linear models considering predictors from maternal characteristics such as female size, condition factor, oocyte size, and gonadosomatic index. A global and time-invariant auto-diametric equation was evaluated using a simulation procedure based on non-parametric bootstrap. Results indicated there were not significant differences regarding fecundity estimates between the gravimetric and auto-diametric method (p > 0.05). Simulation showed the application of a global equation is unbiased and sufficiently precise to estimate time-invariant fecundity of this species. Temporal variations on fecundity were explained by maternal characteristic, revealing signals of fecundity down-regulation. We discuss how oocyte size and nutritional condition (measured as condition factor) are one of the important factors determining fecundity. We highlighted also the relevance of choosing the appropriate sampling period to conduct maturity studies and ensure precise estimates of fecundity of this species.

  10. Blue light-mediated transcriptional activation and repression of gene expression in bacteria

    PubMed Central

    Jayaraman, Premkumar; Devarajan, Kavya; Chua, Tze Kwang; Zhang, Hanzhong; Gunawan, Erry; Poh, Chueh Loo

    2016-01-01

    Light-regulated modules offer unprecedented new ways to control cellular behavior in precise spatial and temporal resolution. The availability of such tools may dramatically accelerate the progression of synthetic biology applications. Nonetheless, current optogenetic toolbox of prokaryotes has potential issues such as lack of rapid and switchable control, less portable, low dynamic expression and limited parts. To address these shortcomings, we have engineered a novel bidirectional promoter system for Escherichia coli that can be induced or repressed rapidly and reversibly using the blue light dependent DNA-binding protein EL222. We demonstrated that by modulating the dosage of light pulses or intensity we could control the level of gene expression precisely. We show that both light-inducible and repressible system can function in parallel with high spatial precision in a single cell and can be switched stably between ON- and OFF-states by repetitive pulses of blue light. In addition, the light-inducible and repressible expression kinetics were quantitatively analysed using a mathematical model. We further apply the system, for the first time, to optogenetically synchronize two receiver cells performing different logic behaviors over time using blue light as a molecular clock signal. Overall, our modular approach layers a transformative platform for next-generation light-controllable synthetic biology systems in prokaryotes. PMID:27353329

  11. Optimized spectroscopic scheme for enhanced precision CO measurements with applications to urban source attribution

    NASA Astrophysics Data System (ADS)

    Nottrott, A.; Hoffnagle, J.; Farinas, A.; Rella, C.

    2014-12-01

    Carbon monoxide (CO) is an urban pollutant generated by internal combustion engines which contributes to the formation of ground level ozone (smog). CO is also an excellent tracer for emissions from mobile combustion sources. In this work we present an optimized spectroscopic sampling scheme that enables enhanced precision CO measurements. The scheme was implemented on the Picarro G2401 Cavity Ring-Down Spectroscopy (CRDS) analyzer which measures CO2, CO, CH4 and H2O at 0.2 Hz. The optimized scheme improved the raw precision of CO measurements by 40% from 5 ppb to 3 ppb. Correlations of measured CO2, CO, CH4 and H2O from an urban tower were partitioned by wind direction and combined with a concentration footprint model for source attribution. The application of a concentration footprint for source attribution has several advantages. The upwind extent of the concentration footprint for a given sensor is much larger than the flux footprint. Measurements of mean concentration at the sensor location can be used to estimate source strength from a concentration footprint, while measurements of the vertical concentration flux are necessary to determine source strength from the flux footprint. Direct measurement of vertical concentration flux requires high frequency temporal sampling and increases the cost and complexity of the measurement system.

  12. A biological timer in the fat body comprising Blimp-1, βFtz-f1 and Shade regulates pupation timing in Drosophila melanogaster.

    PubMed

    Akagi, Kazutaka; Sarhan, Moustafa; Sultan, Abdel-Rahman S; Nishida, Haruka; Koie, Azusa; Nakayama, Takumi; Ueda, Hitoshi

    2016-07-01

    During the development of multicellular organisms, many events occur with precise timing. In Drosophila melanogaster, pupation occurs about 12 h after puparium formation and its timing is believed to be determined by the release of a steroid hormone, ecdysone (E), from the prothoracic gland. Here, we demonstrate that the ecdysone-20-monooxygenase Shade determines pupation timing by converting E to 20-hydroxyecdysone (20E) in the fat body, which is the organ that senses nutritional status. The timing of shade expression is determined by its transcriptional activator βFtz-f1. The βftz-f1 gene is activated after a decline in the expression of its transcriptional repressor Blimp-1, which is temporally expressed around puparium formation in response to a high titer of 20E. The expression level and stability of Blimp-1 is critical for the precise timing of pupation. Thus, we propose that Blimp-1 molecules function like sand in an hourglass in this precise developmental timer system. Furthermore, our data suggest that a biological advantage results from both the use of a transcriptional repressor for time determination and the association of developmental timing with nutritional status of the organism. © 2016. Published by The Company of Biologists Ltd.

  13. A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory.

    PubMed

    Ranganath, Charan

    2010-11-01

    There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.

  14. Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy

    NASA Astrophysics Data System (ADS)

    Smith, Keith; Ricaud, Benjamin; Shahid, Nauman; Rhodes, Stephen; Starr, John M.; Ibáñez, Augustin; Parra, Mario A.; Escudero, Javier; Vandergheynst, Pierre

    2017-02-01

    Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task’s transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140 ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180 ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.

  15. A la Recherche du Temps Perdu: extracting temporal relations from medical text in the 2012 i2b2 NLP challenge.

    PubMed

    Cherry, Colin; Zhu, Xiaodan; Martin, Joel; de Bruijn, Berry

    2013-01-01

    An analysis of the timing of events is critical for a deeper understanding of the course of events within a patient record. The 2012 i2b2 NLP challenge focused on the extraction of temporal relationships between concepts within textual hospital discharge summaries. The team from the National Research Council Canada (NRC) submitted three system runs to the second track of the challenge: typifying the time-relationship between pre-annotated entities. The NRC system was designed around four specialist modules containing statistical machine learning classifiers. Each specialist targeted distinct sets of relationships: local relationships, 'sectime'-type relationships, non-local overlap-type relationships, and non-local causal relationships. The best NRC submission achieved a precision of 0.7499, a recall of 0.6431, and an F1 score of 0.6924, resulting in a statistical tie for first place. Post hoc improvements led to a precision of 0.7537, a recall of 0.6455, and an F1 score of 0.6954, giving the highest scores reported on this task to date. Methods for general relation extraction extended well to temporal relations, and gave top-ranked state-of-the-art results. Careful ordering of predictions within result sets proved critical to this success.

  16. Posttranscriptional control of neuronal development by microRNA networks.

    PubMed

    Gao, Fen-Biao

    2008-01-01

    The proper development of the nervous system requires precise spatial and temporal control of gene expression at both the transcriptional and translational levels. In different experimental model systems, microRNAs (miRNAs) - a class of small, endogenous, noncoding RNAs that control the translation and stability of many mRNAs - are emerging as important regulators of various aspects of neuronal development. Further dissection of the in vivo physiological functions of individual miRNAs promises to offer novel mechanistic insights into the gene regulatory networks that ensure the precise assembly of a functional nervous system.

  17. An ultra-sparse code underliesthe generation of neural sequences in a songbird

    NASA Astrophysics Data System (ADS)

    Hahnloser, Richard H. R.; Kozhevnikov, Alexay A.; Fee, Michale S.

    2002-09-01

    Sequences of motor activity are encoded in many vertebrate brains by complex spatio-temporal patterns of neural activity; however, the neural circuit mechanisms underlying the generation of these pre-motor patterns are poorly understood. In songbirds, one prominent site of pre-motor activity is the forebrain robust nucleus of the archistriatum (RA), which generates stereotyped sequences of spike bursts during song and recapitulates these sequences during sleep. We show that the stereotyped sequences in RA are driven from nucleus HVC (high vocal centre), the principal pre-motor input to RA. Recordings of identified HVC neurons in sleeping and singing birds show that individual HVC neurons projecting onto RA neurons produce bursts sparsely, at a single, precise time during the RA sequence. These HVC neurons burst sequentially with respect to one another. We suggest that at each time in the RA sequence, the ensemble of active RA neurons is driven by a subpopulation of RA-projecting HVC neurons that is active only at that time. As a population, these HVC neurons may form an explicit representation of time in the sequence. Such a sparse representation, a temporal analogue of the `grandmother cell' concept for object recognition, eliminates the problem of temporal interference during sequence generation and learning attributed to more distributed representations.

  18. ACHIEVING CONSISTENT DOPPLER MEASUREMENTS FROM SDO /HMI VECTOR FIELD INVERSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuck, Peter W.; Antiochos, S. K.; Leka, K. D.

    NASA’s Solar Dynamics Observatory is delivering vector magnetic field observations of the full solar disk with unprecedented temporal and spatial resolution; however, the satellite is in a highly inclined geosynchronous orbit. The relative spacecraft–Sun velocity varies by ±3 km s{sup −1} over a day, which introduces major orbital artifacts in the Helioseismic Magnetic Imager (HMI) data. We demonstrate that the orbital artifacts contaminate all spatial and temporal scales in the data. We describe a newly developed three-stage procedure for mitigating these artifacts in the Doppler data obtained from the Milne–Eddington inversions in the HMI pipeline. The procedure ultimately uses 32more » velocity-dependent coefficients to adjust 10 million pixels—a remarkably sparse correction model given the complexity of the orbital artifacts. This procedure was applied to full-disk images of AR 11084 to produce consistent Dopplergrams. The data adjustments reduce the power in the orbital artifacts by 31 dB. Furthermore, we analyze in detail the corrected images and show that our procedure greatly improves the temporal and spectral properties of the data without adding any new artifacts. We conclude that this new procedure makes a dramatic improvement in the consistency of the HMI data and in its usefulness for precision scientific studies.« less

  19. The locus coeruleus-norepinephrine network optimizes coupling of cerebral blood volume with oxygen demand.

    PubMed

    Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken

    2012-12-01

    Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.

  20. Active Longitude and Solar Flare Occurrences

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ludmány, A.; Baranyi, T.

    2016-02-01

    The aim of the present work is to specify the spatio-temporal characteristics of flare activity observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Geostationary Operational Environmental Satellite (GOES) in connection with the behavior of the longitudinal domain of enhanced sunspot activity known as active longitude (AL). By using our method developed for this purpose, we identified the AL in every Carrington Rotation provided by the Debrecen Photoheliographic Data. The spatial probability of flare occurrence has been estimated depending on the longitudinal distance from AL in the northern and southern hemispheres separately. We have found that more than 60% of the RHESSI and GOES flares is located within +/- 36^\\circ from the AL. Hence, the most flare-productive active regions tend to be located in or close to the active longitudinal belt. This observed feature may allow for the prediction of the geo-effective position of the domain of enhanced flaring probability. Furthermore, we studied the temporal properties of flare occurrence near the AL and several significant fluctuations were found. More precisely, the results of the method are the following fluctuations: 0.8, 1.3, and 1.8 years. These temporal and spatial properties of the solar flare occurrence within the active longitudinal belts could provide us with an enhanced solar flare forecasting opportunity.

  1. Edge orientation signals in tactile afferents of macaques

    PubMed Central

    Suresh, Aneesha K.

    2016-01-01

    The orientation of edges indented into the skin has been shown to be encoded in the responses of neurons in primary somatosensory cortex in a manner that draws remarkable analogies to their counterparts in primary visual cortex. According to the classical view, orientation tuning arises from the integration of untuned input from thalamic neurons with aligned but spatially displaced receptive fields (RFs). In a recent microneurography study with human subjects, the precise temporal structure of the responses of individual mechanoreceptive afferents to scanned edges was found to carry information about their orientation. This putative mechanism could in principle contribute to or complement the classical rate-based code for orientation. In the present study, we further examine orientation information carried by mechanoreceptive afferents of Rhesus monkeys. To this end, we record the activity evoked in cutaneous mechanoreceptive afferents when edges are indented into or scanned across the skin. First, we confirm that information about the edge orientation can be extracted from the temporal patterning in afferent responses of monkeys, as is the case in humans. Second, we find that while the coarse temporal profile of the response can be predicted linearly from the layout of the RF, the fine temporal profile cannot. Finally, we show that orientation signals in tactile afferents are often highly dependent on stimulus features other than orientation, which complicates putative decoding strategies. We discuss the challenges associated with establishing a neural code at the somatosensory periphery, where afferents are exquisitely sensitive and nearly deterministic. PMID:27655968

  2. Precision of working memory for visual motion sequences and transparent motion surfaces

    PubMed Central

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2012-01-01

    Recent studies investigating working memory for location, colour and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (Zhang & Luck (2008) vs. Bays et al (2009)). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence, rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features. PMID:22135378

  3. Moments in Time

    PubMed Central

    Wittmann, Marc

    2011-01-01

    It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310

  4. The neuromechanics of hearing

    NASA Astrophysics Data System (ADS)

    Araya, Mussie K.; Brownell, William E.

    2015-12-01

    Hearing requires precise detection and coding of acoustic signals by the inner ear and equally precise communication of the information through the auditory brainstem. A membrane based motor in the outer hair cell lateral wall contributes to the transformation of sound into a precise neural code. Structural, molecular and energetic similarities between the outer hair cell and auditory brainstem neurons suggest that a similar membrane based motor may contribute to signal processing in the auditory CNS. Cooperative activation of voltage gated ion channels enhances neuronal temporal processing and increases the upper frequency limit for phase locking. We explore the possibility that membrane mechanics contribute to ion channel cooperativity as a consequence of the nearly instantaneous speed of electromechanical signaling and the fact that membrane composition and mechanics modulate ion channel function.

  5. Incorporation of feedback during beat synchronization is an index of neural maturation and reading skills.

    PubMed

    Woodruff Carr, Kali; Fitzroy, Ahren B; Tierney, Adam; White-Schwoch, Travis; Kraus, Nina

    2017-01-01

    Speech communication involves integration and coordination of sensory perception and motor production, requiring precise temporal coupling. Beat synchronization, the coordination of movement with a pacing sound, can be used as an index of this sensorimotor timing. We assessed adolescents' synchronization and capacity to correct asynchronies when given online visual feedback. Variability of synchronization while receiving feedback predicted phonological memory and reading sub-skills, as well as maturation of cortical auditory processing; less variable synchronization during the presence of feedback tracked with maturation of cortical processing of sound onsets and resting gamma activity. We suggest the ability to incorporate feedback during synchronization is an index of intentional, multimodal timing-based integration in the maturing adolescent brain. Precision of temporal coding across modalities is important for speech processing and literacy skills that rely on dynamic interactions with sound. Synchronization employing feedback may prove useful as a remedial strategy for individuals who struggle with timing-based language learning impairments. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. On the temporal development of erythrocyte sedimentation rate using sealed vacuum tubes.

    PubMed

    Kallner, A

    1991-07-01

    The temporal development of the erythrocyte sedimentation rate (ESR) was studied in wide, short vacuum tubes. It was found that in about 3% of the specimens arriving in the laboratory the ESR developed in three different phases during 60 min, whereas the other showed only two. The specimens with three phases behaved similarly in the Westergren method. It was shown that the Westergren ESR can be estimated with an acceptable accuracy already from measurements obtained after 30 min. Reproducibility and precision were improved by using a special instrument. Several advantages by this procedure were recognized, e.g., quicker results, identification of several otherwise missed rapid ESR. Accurate timing of the readings further improves accuracy and precision, and permits estimation of ESR (Westergren) up to 100 mm. In view of the obvious phases in the development of the ESR, it is proposed that this abbreviation is interpreted as erythrocyte sedimentation reaction and that the kind of quantity that is length is expressed in mm.

  7. The ability to tap to a beat relates to cognitive, linguistic, and perceptual skills

    PubMed Central

    Tierney, Adam T.; Kraus, Nina

    2013-01-01

    Reading-impaired children have difficulty tapping to a beat. Here we tested whether this relationship between reading ability and synchronized tapping holds in typically-developing adolescents. We also hypothesized that tapping relates to two other abilities. First, since auditory-motor synchronization requires monitoring of the relationship between motor output and auditory input, we predicted that subjects better able to tap to the beat would perform better on attention tests. Second, since auditory-motor synchronization requires fine temporal precision within the auditory system for the extraction of a sound’s onset time, we predicted that subjects better able to tap to the beat would be less affected by backward masking, a measure of temporal precision within the auditory system. As predicted, tapping performance related to reading, attention, and backward masking. These results motivate future research investigating whether beat synchronization training can improve not only reading ability, but potentially executive function and basic auditory processing as well. PMID:23400117

  8. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing.

    PubMed

    Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-03-05

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.

  9. Cognitive assessment of mice strains heterozygous for cell-adhesion genes reveals strain-specific alterations in timing

    PubMed Central

    Gallistel, C. R.; Tucci, Valter; Nolan, Patrick M.; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro

    2014-01-01

    We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability. PMID:24446498

  10. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    PubMed

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Meteor tracking via local pattern clustering in spatio-temporal domain

    NASA Astrophysics Data System (ADS)

    Kukal, Jaromír.; Klimt, Martin; Švihlík, Jan; Fliegel, Karel

    2016-09-01

    Reliable meteor detection is one of the crucial disciplines in astronomy. A variety of imaging systems is used for meteor path reconstruction. The traditional approach is based on analysis of 2D image sequences obtained from a double station video observation system. Precise localization of meteor path is difficult due to atmospheric turbulence and other factors causing spatio-temporal fluctuations of the image background. The proposed technique performs non-linear preprocessing of image intensity using Box-Cox transform as recommended in our previous work. Both symmetric and asymmetric spatio-temporal differences are designed to be robust in the statistical sense. Resulting local patterns are processed by data whitening technique and obtained vectors are classified via cluster analysis and Self-Organized Map (SOM).

  12. Temporal focusing-based multiphoton excitation microscopy via digital micromirror device.

    PubMed

    Yih, Jenq-Nan; Hu, Yvonne Yuling; Sie, Yong Da; Cheng, Li-Chung; Lien, Chi-Hsiang; Chen, Shean-Jen

    2014-06-01

    This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable with that of a setup incorporating a 600  lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated. Similar to a grating, the DMD diffracts illuminating light frequencies for temporal focusing; additionally, it generates arbitrary patterns. Since the DMD is placed on the image-conjugate plane of the objective lens' focal plane, the MPE pattern can be projected on the focal plane precisely.

  13. Motor contributions to the temporal precision of auditory attention

    PubMed Central

    Morillon, Benjamin; Schroeder, Charles E.; Wyart, Valentin

    2014-01-01

    In temporal—or dynamic—attending theory, it is proposed that motor activity helps to synchronize temporal fluctuations of attention with the timing of events in a task-relevant stream, thus facilitating sensory selection. Here we develop a mechanistic behavioural account for this theory by asking human participants to track a slow reference beat, by noiseless finger pressing, while extracting auditory target tones delivered on-beat and interleaved with distractors. We find that overt rhythmic motor activity improves the segmentation of auditory information by enhancing sensitivity to target tones while actively suppressing distractor tones. This effect is triggered by cyclic fluctuations in sensory gain locked to individual motor acts, scales parametrically with the temporal predictability of sensory events and depends on the temporal alignment between motor and attention fluctuations. Together, these findings reveal how top-down influences associated with a rhythmic motor routine sharpen sensory representations, enacting auditory ‘active sensing’. PMID:25314898

  14. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials.

    PubMed

    Lee, Ted T; García, José R; Paez, Julieta I; Singh, Ankur; Phelps, Edward A; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  15. Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Ted T.; García, José R.; Paez, Julieta I.; Singh, Ankur; Phelps, Edward A.; Weis, Simone; Shafiq, Zahid; Shekaran, Asha; Del Campo, Aránzazu; García, Andrés J.

    2015-03-01

    Materials engineered to elicit targeted cellular responses in regenerative medicine must display bioligands with precise spatial and temporal control. Although materials with temporally regulated presentation of bioadhesive ligands using external triggers, such as light and electric fields, have recently been realized for cells in culture, the impact of in vivo temporal ligand presentation on cell-material responses is unknown. Here, we present a general strategy to temporally and spatially control the in vivo presentation of bioligands using cell-adhesive peptides with a protecting group that can be easily removed via transdermal light exposure to render the peptide fully active. We demonstrate that non-invasive, transdermal time-regulated activation of cell-adhesive RGD peptide on implanted biomaterials regulates in vivo cell adhesion, inflammation, fibrous encapsulation, and vascularization of the material. This work shows that triggered in vivo presentation of bioligands can be harnessed to direct tissue reparative responses associated with implanted biomaterials.

  16. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat

    PubMed Central

    Washington, Stuart D.; Tillinghast, John S.

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research. PMID:25926767

  17. Conjugating time and frequency: hemispheric specialization, acoustic uncertainty, and the mustached bat.

    PubMed

    Washington, Stuart D; Tillinghast, John S

    2015-01-01

    A prominent hypothesis of hemispheric specialization for human speech and music states that the left and right auditory cortices (ACs) are respectively specialized for precise calculation of two canonically-conjugate variables: time and frequency. This spectral-temporal asymmetry does not account for sex, brain-volume, or handedness, and is in opposition to closed-system hypotheses that restrict this asymmetry to humans. Mustached bats have smaller brains, but greater ethological pressures to develop such a spectral-temporal asymmetry, than humans. Using the Heisenberg-Gabor Limit (i.e., the mathematical basis of the spectral-temporal asymmetry) to frame mustached bat literature, we show that recent findings in bat AC (1) support the notion that hemispheric specialization for speech and music is based on hemispheric differences in temporal and spectral resolution, (2) discredit closed-system, handedness, and brain-volume theories, (3) underscore the importance of sex differences, and (4) provide new avenues for phonological research.

  18. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    NASA Astrophysics Data System (ADS)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single best Landsat images. Such an approach does not provide timely results, and cloud cover reduces the utility of map outputs. In a second study, I develop a method to exhaustively mine the recently opened Landsat archive for cloud-free observations and automatically map forest cover loss for Sumatra and Kalimantan for the 2000-2005 interval. In a comparison with a reference dataset consisting of 64 Landsat sample blocks, I show that my method, using per pixel time-series, provides more accurate forest cover loss maps for multiyear intervals than approaches using image composites. In a third study, I disaggregate Landsat-mapped forest cover loss, mapped over a multiyear interval, by year using annual forest cover loss maps generated from coarse spatial, high temporal resolution MODIS imagery. I further disaggregate and analyze forest cover loss by forest land use, and provinces. Forest cover loss trends show high spatial and temporal variability. These results underline the importance of annual mapping for the quantification of forest cover loss in Indonesia, specifically in the light of the developing Reducing Emissions from Deforestation and Forest Degradation in Developing Countries policy framework (REDD). All three studies highlight the advances in quantifying forest cover loss in the humid tropics made by integrating coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data. The three methods presented can be combined into an integrated monitoring strategy.

  19. Fast, High-Precision Readout Circuit for Detector Arrays

    NASA Technical Reports Server (NTRS)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  20. Temporal predictive mechanisms modulate motor reaction time during initiation and inhibition of speech and hand movement.

    PubMed

    Johari, Karim; Behroozmand, Roozbeh

    2017-08-01

    Skilled movement is mediated by motor commands executed with extremely fine temporal precision. The question of how the brain incorporates temporal information to perform motor actions has remained unanswered. This study investigated the effect of stimulus temporal predictability on response timing of speech and hand movement. Subjects performed a randomized vowel vocalization or button press task in two counterbalanced blocks in response to temporally-predictable and unpredictable visual cues. Results indicated that speech and hand reaction time was decreased for predictable compared with unpredictable stimuli. This finding suggests that a temporal predictive code is established to capture temporal dynamics of sensory cues in order to produce faster movements in responses to predictable stimuli. In addition, results revealed a main effect of modality, indicating faster hand movement compared with speech. We suggest that this effect is accounted for by the inherent complexity of speech production compared with hand movement. Lastly, we found that movement inhibition was faster than initiation for both hand and speech, suggesting that movement initiation requires a longer processing time to coordinate activities across multiple regions in the brain. These findings provide new insights into the mechanisms of temporal information processing during initiation and inhibition of speech and hand movement. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Low-Cost, Reliable, High-Throughput System for Rodent Behavioral Phenotyping in a Home Cage Environment

    PubMed Central

    Parkison, Steven A.; Carlson, Jay D.; Chaudoin, Tammy R.; Hoke, Traci A.; Schenk, A. Katrin; Goulding, Evan H.; Pérez, Lance C.; Bonasera, Stephen J.

    2016-01-01

    Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-of-a-kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience. PMID:23366406

  2. First Application of the Zeeman Technique to Remotely Measure Auroral Electrojet Intensity From Space

    NASA Technical Reports Server (NTRS)

    Yee, J. H.; Gjerloev, J.; Wu, D.; Schwartz, M. J.

    2017-01-01

    Using the O2 118 GHz spectral radiance measurements obtained by the Microwave Limb Sounder instrument on board the Aura spacecraft, we demonstrate that the Zeeman effect can be used to remotely measure the magnetic field perturbations produced by the auroral electrojet near the Hall current closure altitudes. Our derived current-induced magnetic field perturbations are found to be highly correlated with those coincidently obtained by ground magnetometers. These perturbations are also found to be linearly correlated with auroral electrojet strength. The statistically derived polar maps of our measured magnetic field perturbation reveal a spatial-temporal morphology consistent with that produced by the Hall current during substorms and storms. With today's technology, a constellation of compact, low-power, high spectral-resolution cubesats would have the capability to provide high precision and spatiotemporal magnetic field samplings needed for auroral electrojet measurements to gain insights into the spatiotemporal behavior of the auroral electrojet system.

  3. Standardization of soil apparent electrical conductivity using multi-temporal surveys across multiple production fields

    USDA-ARS?s Scientific Manuscript database

    Apparent soil electrical conductivity (ECa) is an efficient technique for understanding within-field variability of physical and chemical soil characteristics. Commercial devices are readily available for collecting ECa on whole fields and used broadly for crop management in precision agriculture; h...

  4. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Aradopsis Gynoecium patterning

    USDA-ARS?s Scientific Manuscript database

    Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin remodeling factors cont...

  5. Octopus Cells in the Posteroventral Cochlear Nucleus Provide the Main Excitatory Input to the Superior Paraolivary Nucleus

    PubMed Central

    Felix II, Richard A.; Gourévitch, Boris; Gómez-Álvarez, Marcelo; Leijon, Sara C. M.; Saldaña, Enrique; Magnusson, Anna K.

    2017-01-01

    Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds. PMID:28620283

  6. Utility of 3D printed temporal bones in pre-surgical planning for complex BoneBridge cases.

    PubMed

    Mukherjee, Payal; Cheng, Kai; Flanagan, Sean; Greenberg, Simon

    2017-08-01

    With the advent of single-sided hearing loss increasingly being treated with cochlear implantation, bone conduction implants are reserved for cases of conductive and mixed hearing loss with greater complexity. The BoneBridge (BB, MED-EL, Innsbruck, Austria) is an active fully implantable device with no attenuation of sound energy through soft tissue. However, the floating mass transducer (FMT) part of the device is very bulky, which limits insertion in complicated ears. In this study, 3D printed temporal bones of patients were used to study its utility in preoperative planning on complicated cases. Computed tomography (CT) scans of 16 ears were used to 3D print their temporal bones. Three otologists graded the use of routine preoperative planning provided by MED-EL and that of operating on the 3D printed bone of the patient. Data were collated to assess the advantage and disadvantage of the technology. There was a statistically significant benefit in using 3D printed temporal bones to plan surgery for difficult cases of BoneBridge surgery compared to the current standard. Surgeons preferred to have the printed bones in theatre to plan their drill sites and make the transition of the planning to the patient's operation more precise. 3D printing is an innovative use of technology in the use of preoperative planning for complex ear surgery. Surgical planning can be done on the patient's own anatomy which may help to decrease operating time, reduce cost, increase surgical precision and thus reduce complications.

  7. Uncovering Neuronal Networks Defined by Consistent Between-Neuron Spike Timing from Neuronal Spike Recordings

    PubMed Central

    2018-01-01

    Abstract It is widely assumed that distributed neuronal networks are fundamental to the functioning of the brain. Consistent spike timing between neurons is thought to be one of the key principles for the formation of these networks. This can involve synchronous spiking or spiking with time delays, forming spike sequences when the order of spiking is consistent. Finding networks defined by their sequence of time-shifted spikes, denoted here as spike timing networks, is a tremendous challenge. As neurons can participate in multiple spike sequences at multiple between-spike time delays, the possible complexity of networks is prohibitively large. We present a novel approach that is capable of (1) extracting spike timing networks regardless of their sequence complexity, and (2) that describes their spiking sequences with high temporal precision. We achieve this by decomposing frequency-transformed neuronal spiking into separate networks, characterizing each network’s spike sequence by a time delay per neuron, forming a spike sequence timeline. These networks provide a detailed template for an investigation of the experimental relevance of their spike sequences. Using simulated spike timing networks, we show network extraction is robust to spiking noise, spike timing jitter, and partial occurrences of the involved spike sequences. Using rat multineuron recordings, we demonstrate the approach is capable of revealing real spike timing networks with sub-millisecond temporal precision. By uncovering spike timing networks, the prevalence, structure, and function of complex spike sequences can be investigated in greater detail, allowing us to gain a better understanding of their role in neuronal functioning. PMID:29789811

  8. Atypical spatiotemporal signatures of working memory brain processes in autism.

    PubMed

    Urbain, C M; Pang, E W; Taylor, M J

    2015-08-11

    Working memory (WM) impairments may contribute to the profound behavioural manifestations in children with autism spectrum disorder (ASD). However, previous behavioural results are discrepant as are the few functional magnetic resonance imaging (fMRI) results collected in adults and adolescents with ASD. Here we investigate the precise temporal dynamics of WM-related brain activity using magnetoencephalography (MEG) in 20 children with ASD and matched controls during an n-back WM task across different load levels (1-back vs 2-back). Although behavioural results were similar between ASD and typically developing (TD) children, the between-group comparison performed on functional brain activity showed atypical WM-related brain processes in children with ASD compared with TD children. These atypical responses were observed in the ASD group from 200 to 600 ms post stimulus in both the low- (1-back) and high- (2-back) memory load conditions. During the 1-back condition, children with ASD showed reduced WM-related activations in the right hippocampus and the cingulate gyrus compared with TD children who showed more activation in the left dorso-lateral prefrontal cortex and the insulae. In the 2-back condition, children with ASD showed less activity in the left insula and midcingulate gyrus and more activity in the left precuneus than TD children. In addition, reduced activity in the anterior cingulate cortex was correlated with symptom severity in children with ASD. Thus, this MEG study identified the precise timing and sources of atypical WM-related activity in frontal, temporal and parietal regions in children with ASD. The potential impacts of such atypicalities on social deficits of autism are discussed.

  9. Biomimetic engineering of a generic cell-on-membrane architecture by microfluidic engraving for on-chip bioassays.

    PubMed

    Lee, Sang-Wook; Noh, Ji-Yoon; Park, Seung Chul; Chung, Jin-Ho; Lee, Byoungho; Lee, Sin-Doo

    2012-05-22

    We develop a biomimetic cell-on-membrane architecture in close-volume format which allows the interfacial biocompatibility and the reagent delivery capability for on-chip bioassays. The key concept lies in the microfluidic engraving of lipid membranes together with biological cells on a supported substrate with topographic patterns. The simultaneous engraving process of a different class of fluids is promoted by the front propagation of an air-water interface inside a flow-cell. This highly parallel, microfluidic cell-on-membrane approach opens a door to the natural biocompatibility in mimicking cellular stimuli-response behavior essential for diverse on-chip bioassays that can be precisely controlled in the spatial and temporal manner.

  10. a New Approach for Subway Tunnel Deformation Monitoring: High-Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Li, J.; Wan, Y.; Gao, X.

    2012-07-01

    With the improvement of the accuracy and efficiency of laser scanning technology, high-resolution terrestrial laser scanning (TLS) technology can obtain high precise points-cloud and density distribution and can be applied to high-precision deformation monitoring of subway tunnels and high-speed railway bridges and other fields. In this paper, a new approach using a points-cloud segmentation method based on vectors of neighbor points and surface fitting method based on moving least squares was proposed and applied to subway tunnel deformation monitoring in Tianjin combined with a new high-resolution terrestrial laser scanner (Riegl VZ-400). There were three main procedures. Firstly, a points-cloud consisted of several scanning was registered by linearized iterative least squares approach to improve the accuracy of registration, and several control points were acquired by total stations (TS) and then adjusted. Secondly, the registered points-cloud was resampled and segmented based on vectors of neighbor points to select suitable points. Thirdly, the selected points were used to fit the subway tunnel surface with moving least squares algorithm. Then a series of parallel sections obtained from temporal series of fitting tunnel surfaces were compared to analysis the deformation. Finally, the results of the approach in z direction were compared with the fiber optical displacement sensor approach and the results in x, y directions were compared with TS respectively, and comparison results showed the accuracy errors of x, y, z directions were respectively about 1.5 mm, 2 mm, 1 mm. Therefore the new approach using high-resolution TLS can meet the demand of subway tunnel deformation monitoring.

  11. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis.

    PubMed

    Dolenšek, Jurij; Špelič, Denis; Klemen, Maša Skelin; Žalik, Borut; Gosak, Marko; Rupnik, Marjan Slak; Stožer, Andraž

    2015-10-28

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.

  12. High-harmonic and single attosecond pulse generation using plasmonic field enhancement in ordered arrays of gold nanoparticles with chirped laser pulses.

    PubMed

    Yang, Ying-Ying; Scrinzi, Armin; Husakou, Anton; Li, Qian-Guang; Stebbings, Sarah L; Süßmann, Frederik; Yu, Hai-Juan; Kim, Seungchul; Rühl, Eckart; Herrmann, Joachim; Lin, Xue-Chun; Kling, Matthias F

    2013-01-28

    Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.

  13. Identified Cellular Correlates of Neocortical Ripple and High-Gamma Oscillations during Spindles of Natural Sleep.

    PubMed

    Averkin, Robert G; Szemenyei, Viktor; Bordé, Sándor; Tamás, Gábor

    2016-11-23

    Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, S.; Kille, N.; Ortega, I.; Sinreich, R.; Thomson, D.; Hannigan, J.; Volkamer, R.

    2015-11-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and FTIR spectrometers making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun Differential Optical Absorption Spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Photochemistry and Pollution Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives, and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution, and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  15. Development of a digital mobile solar tracker

    NASA Astrophysics Data System (ADS)

    Baidar, Sunil; Kille, Natalie; Ortega, Ivan; Sinreich, Roman; Thomson, David; Hannigan, James; Volkamer, Rainer

    2016-03-01

    We have constructed and deployed a fast digital solar tracker aboard a moving ground-based platform. The tracker consists of two rotating mirrors, a lens, an imaging camera, and a motion compensation system that provides the Euler angles of the mobile platform in real time. The tracker can be simultaneously coupled to UV-Vis and Fourier transform infrared spectrometers, making it a versatile tool to measure the absorption of trace gases using solar incoming radiation. The integrated system allows the tracker to operate autonomously while the mobile laboratory is in motion. Mobile direct sun differential optical absorption spectroscopy (mobile DS-DOAS) observations using this tracker were conducted during summer 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) in Colorado, USA. We demonstrate an angular precision of 0.052° (about 1/10 of the solar disk diameter) during research drives and verify this tracking precision from measurements of the center to limb darkening (CLD, the changing appearance of Fraunhofer lines) in the mobile DS-DOAS spectra. The high photon flux from direct sun observation enables measurements of nitrogen dioxide (NO2) slant columns with high temporal resolution and reveals spatial detail in the variations of NO2 vertical column densities (VCDs). The NO2 VCD from DS-DOAS is compared with a co-located MAX-DOAS instrument. Overall good agreement is observed amid a highly heterogeneous air mass.

  16. A true minimally invasive approach for cochlear implantation: high accuracy in cranial base navigation through flat-panel-based volume computed tomography.

    PubMed

    Majdani, Omid; Bartling, Soenke H; Leinung, Martin; Stöver, Timo; Lenarz, Minoo; Dullin, Christian; Lenarz, Thomas

    2008-02-01

    High-precision intraoperative navigation using high-resolution flat-panel volume computed tomography makes feasible the possibility of minimally invasive cochlear implant surgery, including cochleostomy. Conventional cochlear implant surgery is typically performed via mastoidectomy with facial recess to identify and avoid damage to vital anatomic landmarks. To accomplish this procedure via a minimally invasive approach--without performing mastoidectomy--in a precise fashion, image-guided technology is necessary. With such an approach, surgical time and expertise may be reduced, and hearing preservation may be improved. Flat-panel volume computed tomography was used to scan 4 human temporal bones. A drilling channel was planned preoperatively from the mastoid surface to the round window niche, providing a margin of safety to all functional important structures (e.g., facial nerve, chorda tympani, incus). Postoperatively, computed tomographic imaging and conventional surgical exploration of the drilled route to the cochlea were performed. All 4 specimens showed a cochleostomy located at the scala tympani anterior inferior to the round window. The chorda tympani was damaged in 1 specimen--this was preoperatively planned as a narrow facial recess was encountered. Using flat-panel volume computed tomography for image-guided surgical navigation, we were able to perform minimally invasive cochlear implant surgery defined as a narrow, single-channel mastoidotomy with cochleostomy. Although this finding is preliminary, it is technologically achievable.

  17. Gamma oscillations: precise temporal coordination without a metronome.

    PubMed

    Nikolić, Danko; Fries, Pascal; Singer, Wolf

    2013-02-01

    Gamma oscillations in the brain should not be conceptualized as a sine wave with constant oscillation frequency. Rather, these oscillations serve to concentrate neuronal discharges to particular phases of the oscillation cycle and thereby provide the substrate for various, functionally relevant synchronization phenomena. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Modes of Learning: Whitehead's Metaphysics and the Stages of Education

    ERIC Educational Resources Information Center

    Allan, George

    2012-01-01

    Educators are familiar with Alfred North Whitehead's three stages of education: romance, precision, and generalization. Philosophers are familiar with his metaphysical theories about the primacy of temporal processes. In "Modes of Learning," George Allan brings these two sides of Whitehead's thought together for the first time in a book…

  19. Online High Temporal Resolution Measurement of Atmospheric Sulfate and Sulfur Trioxide with a Light Emitting Diode and Liquid Core Waveguide-Based Sensor.

    PubMed

    Tian, Yong; Shen, Huiyan; Wang, Qiang; Liu, Aifeng; Gao, Wei; Chen, Xu-Wei; Chen, Ming-Li; Zhao, Zongshan

    2018-06-13

    High temporal resolution components analysis is still a great challenge for the frontier of atmospheric aerosol research. Here, an online high time resolution method for monitoring soluble sulfate and sulfur trioxide in atmospheric aerosols was developed by integrating a membrane-based parallel plate denuder, a particle collector, and a liquid waveguide capillary cell into a flow injection analysis system. The BaCl 2 solution (containing HCl, glycerin, and ethanol) was enabled to quantitatively transform sulfate into a well-distributed BaSO 4 solution for turbidimetric detection. The time resolution for monitoring the soluble sulfate and sulfur trioxide was 15 h -1 . The limits of detection were 86 and 7.3 μg L -1 ( S/ N = 3) with a 20 and 200 μL SO 4 2- solution injection, respectively. Both the interday and intraday precision values (relative standard deviation) were less than 6.0%. The analytical results of the certificated reference materials (GBW(E)08026 and GNM-M07117-2013) were identical to the certified values (no significant difference at a 95% confidence level). The validity and practicability of the developed device were also evaluated during a firecracker day and a routine day, obviously revealing the continuous variance in atmospheric sulfate and sulfur trioxide in both interday and intraday studies.

  20. Multiple Frequency Audio Signal Communication as a Mechanism for Neurophysiology and Video Data Synchronization

    PubMed Central

    Topper, Nicholas C.; Burke, S.N.; Maurer, A.P.

    2014-01-01

    BACKGROUND Current methods for aligning neurophysiology and video data are either prepackaged, requiring the additional purchase of a software suite, or use a blinking LED with a stationary pulse-width and frequency. These methods lack significant user interface for adaptation, are expensive, or risk a misalignment of the two data streams. NEW METHOD A cost-effective means to obtain high-precision alignment of behavioral and neurophysiological data is obtained by generating an audio-pulse embedded with two domains of information, a low-frequency binary-counting signal and a high, randomly changing frequency. This enabled the derivation of temporal information while maintaining enough entropy in the system for algorithmic alignment. RESULTS The sample to frame index constructed using the audio input correlation method described in this paper enables video and data acquisition to be aligned at a sub-frame level of precision. COMPARISONS WITH EXISTING METHOD Traditionally, a synchrony pulse is recorded on-screen via a flashing diode. The higher sampling rate of the audio input of the camcorder enables the timing of an event to be detected with greater precision. CONCLUSIONS While On-line analysis and synchronization using specialized equipment may be the ideal situation in some cases, the method presented in the current paper presents a viable, low cost alternative, and gives the flexibility to interface with custom off-line analysis tools. Moreover, the ease of constructing and implements this set-up presented in the current paper makes it applicable to a wide variety of applications that require video recording. PMID:25256648

  1. Multiple frequency audio signal communication as a mechanism for neurophysiology and video data synchronization.

    PubMed

    Topper, Nicholas C; Burke, Sara N; Maurer, Andrew Porter

    2014-12-30

    Current methods for aligning neurophysiology and video data are either prepackaged, requiring the additional purchase of a software suite, or use a blinking LED with a stationary pulse-width and frequency. These methods lack significant user interface for adaptation, are expensive, or risk a misalignment of the two data streams. A cost-effective means to obtain high-precision alignment of behavioral and neurophysiological data is obtained by generating an audio-pulse embedded with two domains of information, a low-frequency binary-counting signal and a high, randomly changing frequency. This enabled the derivation of temporal information while maintaining enough entropy in the system for algorithmic alignment. The sample to frame index constructed using the audio input correlation method described in this paper enables video and data acquisition to be aligned at a sub-frame level of precision. Traditionally, a synchrony pulse is recorded on-screen via a flashing diode. The higher sampling rate of the audio input of the camcorder enables the timing of an event to be detected with greater precision. While on-line analysis and synchronization using specialized equipment may be the ideal situation in some cases, the method presented in the current paper presents a viable, low cost alternative, and gives the flexibility to interface with custom off-line analysis tools. Moreover, the ease of constructing and implements this set-up presented in the current paper makes it applicable to a wide variety of applications that require video recording. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. MagPy: A Python toolbox for controlling Magstim transcranial magnetic stimulators.

    PubMed

    McNair, Nicolas A

    2017-01-30

    To date, transcranial magnetic stimulation (TMS) studies manipulating stimulation parameters have largely used blocked paradigms. However, altering these parameters on a trial-by-trial basis in Magstim stimulators is complicated by the need to send regular (1Hz) commands to the stimulator. Additionally, effecting such control interferes with the ability to send TMS pulses or simultaneously present stimuli with high-temporal precision. This manuscript presents the MagPy toolbox, a Python software package that provides full control over Magstim stimulators via the serial port. It is able to maintain this control with no impact on concurrent processing, such as stimulus delivery. In addition, a specially-designed "QuickFire" serial cable is specified that allows MagPy to trigger TMS pulses with very low-latency. In a series of experimental simulations, MagPy was able to maintain uninterrupted remote control over the connected Magstim stimulator across all testing sessions. In addition, having MagPy enabled had no effect on stimulus timing - all stimuli were presented for precisely the duration specified. Finally, using the QuickFire cable, MagPy was able to elicit TMS pulses with sub-millisecond latencies. The MagPy toolbox allows for experiments that require manipulating stimulation parameters from trial to trial. Furthermore, it can achieve this in contexts that require tight control over timing, such as those seeking to combine TMS with fMRI or EEG. Together, the MagPy toolbox and QuickFire serial cable provide an effective means for controlling Magstim stimulators during experiments while ensuring high-precision timing. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Optical control of antibacterial activity

    NASA Astrophysics Data System (ADS)

    Velema, Willem A.; van der Berg, Jan Pieter; Hansen, Mickel J.; Szymanski, Wiktor; Driessen, Arnold J. M.; Feringa, Ben L.

    2013-11-01

    Bacterial resistance is a major problem in the modern world, stemming in part from the build-up of antibiotics in the environment. Novel molecular approaches that enable an externally triggered increase in antibiotic activity with high spatiotemporal resolution and auto-inactivation are highly desirable. Here we report a responsive, broad-spectrum, antibacterial agent that can be temporally activated with light, whereupon it auto-inactivates on the scale of hours. The use of such a ‘smart’ antibiotic might prevent the build-up of active antimicrobial material in the environment. Reversible optical control over active drug concentration enables us to obtain pharmacodynamic information. Precisely localized control of activity is achieved, allowing the growth of bacteria to be confined to defined patterns, which has potential for the development of treatments that avoid interference with the endogenous microbial population in other parts of the organism.

  4. Nanoscale optical interferometry with incoherent light

    PubMed Central

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-01-01

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications. PMID:26880171

  5. Nanoscale optical interferometry with incoherent light.

    PubMed

    Li, Dongfang; Feng, Jing; Pacifici, Domenico

    2016-02-16

    Optical interferometry has empowered an impressive variety of biosensing and medical imaging techniques. A widely held assumption is that devices based on optical interferometry require coherent light to generate a precise optical signature in response to an analyte. Here we disprove that assumption. By directly embedding light emitters into subwavelength cavities of plasmonic interferometers, we demonstrate coherent generation of surface plasmons even when light with extremely low degrees of spatial and temporal coherence is employed. This surprising finding enables novel sensor designs with cheaper and smaller light sources, and consequently increases accessibility to a variety of analytes, such as biomarkers in physiological fluids, or even airborne nanoparticles. Furthermore, these nanosensors can now be arranged along open detection surfaces, and in dense arrays, accelerating the rate of parallel target screening used in drug discovery, among other high volume and high sensitivity applications.

  6. Investigation of breadboard temperature profiling system for SSME fuel preburner diagnostics

    NASA Technical Reports Server (NTRS)

    Shirley, J. A.

    1986-01-01

    The feasibility of measuring temperatures in the space shuttle main engine (SSME) fuel preburner using spontaneous Raman scattering from molecular hydrogen was studied. Laser radiation is transmitted to the preburner through a multimode optical fiber. Backscattered Raman-shifted light is collected and focused into a second fiber which connects to a remote-located spectrograph and a mutlichannel optical detector. Optics collimate and focus laser light from the transmitter fiber defining the probe volume. The high pressure, high temperature preburner environment was simulated by a heated pressure cell. Temperatures determined by the distribution of Q-branch co-vibrational transitions demonstrate precision and accuracy of 3%. It is indicated heat preburner temperatures can be determined with 5% accuracy with spatial resolution less than 1 cm and temporal resolution of 10 millisec at the nominal preburner operation conditions.

  7. Study on Water Distribution Imaging in the Sand Using Propagation Velocity of Sound with Scanning Laser Doppler Vibrometer

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Nakagawa, Yutaka; Shirakawa, Takashi; Sano, Motoaki; Ohaba, Motoyoshi; Shibusawa, Sakae

    2013-07-01

    We propose a method for the monitoring and imaging of the water distribution in the rooting zone of plants using sound vibration. In this study, the water distribution measurement in the horizontal and vertical directions in the soil layer was examined to confirm whether a temporal change in the volume water content of the soil could be estimated from a temporal changes in propagation velocity. A scanning laser Doppler vibrometer (SLDV) is used for measurement of the vibration velocity of the soil surface, because the highly precise vibration velocity measurement of several many points can be carried out automatically. Sand with a uniform particle size distribution is used for the soil, as it has high plasticity; that is, the sand can return to a dry state easily even if it is soaked with water. A giant magnetostriction vibrator or a flat speaker is used as a sound source. Also, a soil moisture sensor, which measures the water content of the soil using the electric permittivity, is installed in the sand. From the experimental results of the vibration measurement and soil moisture sensors, we can confirm that the temporal changes of the water distribution in sand using the negative pressure irrigation system in both the horizontal and vertical directions can be estimated using the propagation velocity of sound. Therefore, in the future, we plan to develop an insertion-type sound source and receiver using the acceleration sensors, and we intend to examine whether our method can be applied even in commercial soil with growing plants.

  8. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  9. Are there local-scale effects of altitude, slope and aspect on temporal trends in a spatially high-resolved plant phenological network in the Swiss Alps 1971-2000?

    NASA Astrophysics Data System (ADS)

    Jeanneret, François; Rutishauser, This; Kottmann, Silvan; Brügger, Robert

    2010-05-01

    Shifts in phenology of plants and animals have been widely observed as consequence of climate change impacts and temperature increase. Species-specific data are often assigned to limited and generalized site information on the precise location of the observation. However, as much meta-information as possible on the individual plant under observations is necessary to assess the impacts of changing weather patterns at the local scale that are related to changes in radiation, fog, frost and dominating circulation. Here we used plant phenological data of the BERNCLIM network that collects data in the Canton of Bern (Switzerland) and adjacent areas covering a total area of 7,000 km2 since 1970. The number of observation sites reached up to 600 observation sites with detailed meta-information of several locations within each site. The precision of coordinates for each location is generally less than one hectare. This information allows to differentiate several terrain-types, based on altitude, slope and aspect. We used original observations and two interpolated data sets based of the blooming of hazel (Corylus avellana L.) for early spring, dandelion (Taraxacum officinale aggr.) for mid spring, and apple trees (Malus domestica Borkh.) for late spring. In addition we used interpolated data by using averaged maximum differences between several locations of a site and an algorithm based on constant spatial patterns in the 1971-1974 period. Phenological maps were created using multiple linear regression models with longitude, latitude, altitude, slope and aspect as independent variables and phenological date of each phase as dependent variable models in a Geographical Information System (GIS). For this contribution we analysed the impact of local terrain differences on phenological trends of three plant species. Specifically, we addressed the question whether differences in altitude, slope and aspect lead to systematic differences in temporal trends for the 1971-2000 period. Whereas altitude shows generally high correlations with phenology, we aimed at quantifying additional impacts on phenological trends such as microclimate and local adaptation of individual plants. We present results from an ongoing analysis and discuss the impact and additional uncertainties of local parameters on phenological observations and trends. Strongest variations between locations are expected for Corylus and Malus whereas Taraxacum is most strongly influenced by temperature along altitudinal gradients. This information derived from a regional observations network with long-term observations and high precision meta-information can be useful for detailed analyses of large data sets that stored in a number of European databases.

  10. Monitoring on Xi'an ground fissures deformation with TerraSAR-X data

    USGS Publications Warehouse

    Zhao, C.; Zhang, Q.; Zhu, W.; Lu, Z.

    2012-01-01

    Owing to the fine resolution of TerraSAR-X data provided since 2007, this paper applied 6 TerraSAR data (strip mode) during 3rd Dec. 2009 to 23rd Mar. 2010 to detect and monitor the active fissures over Xi'an region. Three themes have been designed for high precision detection and monitoring of Xi'an-Chang'an fissures, as small baseline subsets (SBAS) to test the atmospheric effects of differential interferograms pair stepwise, 2-pass differential interferogram with very short baseline perpendicular to generate the whole deformation map with 44 days interval, and finally, corner reflector (CR) technique was used to closely monitor the relative deformation time series between two CRs settled crossing two ground fissures. Results showed that TerraSAR data are a good choice for small-scale ground fissures detection and monitoring, while special considerations should be taken for their great temporal and baseline decorrelation. Secondly, ground fissures in Xi'an were mostly detected at the joint section of stable and deformable regions. Lastly, CR-InSAR had potential ability to monitor relative deformation crossing fissures with millimeter precision.

  11. Optical Probes for Neurobiological Sensing and Imaging.

    PubMed

    Kim, Eric H; Chin, Gregory; Rong, Guoxin; Poskanzer, Kira E; Clark, Heather A

    2018-05-15

    Fluorescent nanosensors and molecular probes are next-generation tools for imaging chemical signaling inside and between cells. Electrophysiology has long been considered the gold standard in elucidating neural dynamics with high temporal resolution and precision, particularly on the single-cell level. However, electrode-based techniques face challenges in illuminating the specific chemicals involved in neural cell activation with adequate spatial information. Measuring chemical dynamics is of fundamental importance to better understand synergistic interactions between neurons as well as interactions between neurons and non-neuronal cells. Over the past decade, significant technological advances in optical probes and imaging methods have enabled entirely new possibilities for studying neural cells and circuits at the chemical level. These optical imaging modalities have shown promise for combining chemical, temporal, and spatial information. This potential makes them ideal candidates to unravel the complex neural interactions at multiple scales in the brain, which could be complemented by traditional electrophysiological methods to obtain a full spatiotemporal picture of neurochemical dynamics. Despite the potential, only a handful of probe candidates have been utilized to provide detailed chemical information in the brain. To date, most live imaging and chemical mapping studies rely on fluorescent molecular indicators to report intracellular calcium (Ca 2+ ) dynamics, which correlates with neuronal activity. Methodological advances for monitoring a full array of chemicals in the brain with improved spatial, temporal, and chemical resolution will thus enable mapping of neurochemical circuits with finer precision. On the basis of numerous studies in this exciting field, we review the current efforts to develop and apply a palette of optical probes and nanosensors for chemical sensing in the brain. There is a strong impetus to further develop technologies capable of probing entire neurobiological units with high spatiotemporal resolution. Thus, we introduce selected applications for ion and neurotransmitter detection to investigate both neurons and non-neuronal brain cells. We focus on families of optical probes because of their ability to sense a wide array of molecules and convey spatial information with minimal damage to tissue. We start with a discussion of currently available molecular probes, highlight recent advances in genetically modified fluorescent probes for ions and small molecules, and end with the latest research in nanosensors for biological imaging. Customizable, nanoscale optical sensors that accurately and dynamically monitor the local environment with high spatiotemporal resolution could lead to not only new insights into the function of all cell types but also a broader understanding of how diverse neural signaling systems act in conjunction with neighboring cells in a spatially relevant manner.

  12. Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tekavec, Patrick F.; Dyke, Thomas R.; Marcus, Andrew H.

    2006-11-21

    Studies of wave packet dynamics often involve phase-selective measurements of coherent optical signals generated from sequences of ultrashort laser pulses. In wave packet interferometry (WPI), the separation between the temporal envelopes of the pulses must be precisely monitored or maintained. Here we introduce a new (and easy to implement) experimental scheme for phase-selective measurements that combines acousto-optic phase modulation with ultrashort laser excitation to produce an intensity-modulated fluorescence signal. Synchronous detection, with respect to an appropriately constructed reference, allows the signal to be simultaneously measured at two phases differing by 90 deg. Our method effectively decouples the relative temporal phasemore » from the pulse envelopes of a collinear train of optical pulse pairs. We thus achieve a robust and high signal-to-noise scheme for WPI applications, such as quantum state reconstruction and electronic spectroscopy. The validity of the method is demonstrated, and state reconstruction is performed, on a model quantum system - atomic Rb vapor. Moreover, we show that our measurements recover the correct separation between the absorptive and dispersive contributions to the system susceptibility.« less

  13. Airborne hyperspectral imaging for the detection of powdery mildew in wheat

    NASA Astrophysics Data System (ADS)

    Franke, Jonas; Mewes, Thorsten; Menz, Gunter

    2008-08-01

    Plant stresses, in particular fungal diseases, show a high variability in spatial and temporal dimension with respect to their impact on the host. Recent "Precision Agriculture"-techniques allow for a spatially and temporally adjusted pest control that might reduce the amount of cost-intensive and ecologically harmful agrochemicals. Conventional stressdetection techniques such as random monitoring do not meet demands of such optimally placed management actions. The prerequisite is an accurate sensor-based detection of stress symptoms. The present study focuses on a remotely sensed detection of the fungal disease powdery mildew (Blumeria graminis) in wheat, Europe's main crop. In a field experiment, the potential of hyperspectral data for an early detection of stress symptoms was tested. A sophisticated endmember selection procedure was used and, additionally, a linear spectral mixture model was applied to a pixel spectrum with known characteristics, in order to derive an endmember representing 100% powdery mildew-infected wheat. Regression analyses of matched fraction estimates of this endmember and in-field-observed powdery mildew severities showed promising results (r=0.82 and r2=0.67).

  14. Synthetic Pulse Dilation - PMT Model for high bandwidth gamma measurements

    NASA Astrophysics Data System (ADS)

    Geppert-Kleinrath, H.; Herrmann, H. W.; Kim, Y. H.; Zylstra, A. B.; Meaney, K. D.; Lopez, F. E.; Khater, H.; Horsfield, C. J.; Gales, S.; Leatherland, A.; Hilsabeck, T.; Kilkenny, J. D.; Hares, J. D.; Dymoke-Bradshaw, T.; Milnes, J.

    2017-10-01

    The Cherenkov mechanism used in Gas Cherenkov Detectors (GCD) is exceptionally fast. However, the temporal resolution of GCDs, such as the Gamma Reaction History diagnostic (GRH), is limited by the current state-of-the-art photomultiplier tube (PMT) to 100 ps. The new pulse dilation - PMT (PD-PMT) for NIF allows for a temporal resolution comparable to that of the gas cell, or of 10ps. Enhanced resolution will contribute to the quest for ignition in a crucial way through precision measurement of reaction history and areal density (ρ R) history, leading to better constrained models. Features such as onset of alpha heating, shock reverberations and burn truncation due to dynamically evolving failure modes will become visible for the first time. PD-PMT will be deployed on GCD-3 at NIF in 2018. Our synthetic PD-PMT model evaluates the capabilities of these future measurements, as well as minimum yield requirements for measurements performed in a well at 3.9 m from target chamber center (TCC), and within a diagnostic inserter at 0.2m from TCC.

  15. Multi-Scale Modeling to Improve Single-Molecule, Single-Cell Experiments

    NASA Astrophysics Data System (ADS)

    Munsky, Brian; Shepherd, Douglas

    2014-03-01

    Single-cell, single-molecule experiments are producing an unprecedented amount of data to capture the dynamics of biological systems. When integrated with computational models, observations of spatial, temporal and stochastic fluctuations can yield powerful quantitative insight. We concentrate on experiments that localize and count individual molecules of mRNA. These high precision experiments have large imaging and computational processing costs, and we explore how improved computational analyses can dramatically reduce overall data requirements. In particular, we show how analyses of spatial, temporal and stochastic fluctuations can significantly enhance parameter estimation results for small, noisy data sets. We also show how full probability distribution analyses can constrain parameters with far less data than bulk analyses or statistical moment closures. Finally, we discuss how a systematic modeling progression from simple to more complex analyses can reduce total computational costs by orders of magnitude. We illustrate our approach using single-molecule, spatial mRNA measurements of Interleukin 1-alpha mRNA induction in human THP1 cells following stimulation. Our approach could improve the effectiveness of single-molecule gene regulation analyses for many other process.

  16. Shallow deformation of the San Andreas fault 5 years following the 2004 Parkfield earthquake (Mw6) combining ERS2 and Envisat InSAR.

    PubMed

    Bacques, Guillaume; de Michele, Marcello; Raucoules, Daniel; Aochi, Hideo; Rolandone, Frédérique

    2018-04-16

    This study focuses on the shallow deformation that occurred during the 5 years following the Parkfield earthquake (28/09/2004, Mw 6, San Andreas Fault, California). We use Synthetic Aperture Radar interferometry (InSAR) to provide precise measurements of transient deformations after the Parkfield earthquake between 2005 and 2010. We propose a method to combine both ERS2 and ENVISAT interferograms to increase the temporal data sampling. Firstly, we combine 5 years of available Synthetic Aperture Radar (SAR) acquisitions including both ERS-2 and Envisat. Secondly, we stack selected interferograms (both from ERS2 and Envisat) for measuring the temporal evolution of the ground velocities at given time intervals. Thanks to its high spatial resolution, InSAR could provide new insights on the surface fault motion behavior over the 5 years following the Parkfield earthquake. As a complement to previous studies in this area, our results suggest that shallow transient deformations affected the Creeping-Parkfield-Cholame sections of the San Andreas Fault after the 2004 Mw6 Parkfield earthquake.

  17. High-speed Fourier ptychographic microscopy based on programmable annular illuminations.

    PubMed

    Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian

    2018-05-16

    High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.

  18. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multi-Scale Mission (MMS) Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean; Queen, Steve; Placanica, Sam

    2015-01-01

    NASA's Magnetospheric Multi-Scale (MMS) mission successfully launched on March 13, 2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers---specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per-second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  19. Vibrational dephasing in matter-wave interferometers

    NASA Astrophysics Data System (ADS)

    Rembold, A.; Schütz, G.; Röpke, R.; Chang, W. T.; Hwang, I. S.; Günther, A.; Stibor, A.

    2017-03-01

    Matter-wave interferometry is a highly sensitive tool to measure small perturbations in a quantum system. This property allows the creation of precision sensors for dephasing mechanisms such as mechanical vibrations. They are a challenge for phase measurements under perturbing conditions that cannot be perfectly decoupled from the interferometer, e.g. for mobile interferometric devices or vibrations with a broad frequency range. Here, we demonstrate a method based on second-order correlation theory in combination with Fourier analysis, to use an electron interferometer as a sensor that precisely characterizes the mechanical vibration spectrum of the interferometer. Using the high spatial and temporal single-particle resolution of a delay line detector, the data allows to reveal the original contrast and spatial periodicity of the interference pattern from ‘washed-out’ matter-wave interferograms that have been vibrationally disturbed in the frequency region between 100 and 1000 Hz. Other than with electromagnetic dephasing, due to excitations of higher harmonics and additional frequencies induced from the environment, the parts in the setup oscillate with frequencies that can be different to the applied ones. The developed numerical search algorithm is capable to determine those unknown oscillations and corresponding amplitudes. The technique can identify vibrational dephasing and decrease damping and shielding requirements in electron, ion, neutron, atom and molecule interferometers that generate a spatial fringe pattern on the detector plane.

  20. Precision Closed-Loop Orbital Maneuvering System Design and Performance for the Magnetospheric Multiscale Formation

    NASA Technical Reports Server (NTRS)

    Chai, Dean J.; Queen, Steven Z.; Placanica, Samuel J.

    2015-01-01

    NASAs Magnetospheric Multiscale (MMS) mission successfully launched on March 13,2015 (UTC) consists of four identically instrumented spin-stabilized observatories that function as a constellation to study magnetic reconnection in space. The need to maintain sufficiently accurate spatial and temporal formation resolution of the observatories must be balanced against the logistical constraints of executing overly-frequent maneuvers on a small fleet of spacecraft. These two considerations make for an extremely challenging maneuver design problem. This paper focuses on the design elements of a 6-DOF spacecraft attitude control and maneuvering system capable of delivering the high-precision adjustments required by the constellation designers specifically, the design, implementation, and on-orbit performance of the closed-loop formation-class maneuvers that include initialization, maintenance, and re-sizing. The maneuvering control system flown on MMS utilizes a micro-gravity resolution accelerometer sampled at a high rate in order to achieve closed-loop velocity tracking of an inertial target with arc-minute directional and millimeter-per second magnitude accuracy. This paper summarizes the techniques used for correcting bias drift, sensor-head offsets, and centripetal aliasing in the acceleration measurements. It also discusses the on-board pre-maneuver calibration and compensation algorithms as well as the implementation of the post-maneuver attitude adjustments.

  1. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE PAGES

    Chae, Jungseok; An, Sangmin; Ramer, Georg; ...

    2017-08-03

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  2. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  3. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction.

    PubMed

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-07-03

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient's upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision.

  4. Research on a dem Coregistration Method Based on the SAR Imaging Geometry

    NASA Astrophysics Data System (ADS)

    Niu, Y.; Zhao, C.; Zhang, J.; Wang, L.; Li, B.; Fan, L.

    2018-04-01

    Due to the systematic error, especially the horizontal deviation that exists in the multi-source, multi-temporal DEMs (Digital Elevation Models), a method for high precision coregistration is needed. This paper presents a new fast DEM coregistration method based on a given SAR (Synthetic Aperture Radar) imaging geometry to overcome the divergence and time-consuming problem of the conventional DEM coregistration method. First, intensity images are simulated for two DEMs under the given SAR imaging geometry. 2D (Two-dimensional) offsets are estimated in the frequency domain using the intensity cross-correlation operation in the FFT (Fast Fourier Transform) tool, which can greatly accelerate the calculation process. Next, the transformation function between two DEMs is achieved via the robust least-square fitting of 2D polynomial operation. Accordingly, two DEMs can be precisely coregistered. Last, two DEMs, i.e., one high-resolution LiDAR (Light Detection and Ranging) DEM and one low-resolution SRTM (Shutter Radar Topography Mission) DEM, covering the Yangjiao landslide region of Chongqing are taken as an example to test the new method. The results indicate that, in most cases, this new method can achieve not only a result as much as 80 times faster than the minimum elevation difference (Least Z-difference, LZD) DEM registration method, but also more accurate and more reliable results.

  5. A Hybrid FPGA-Based System for EEG- and EMG-Based Online Movement Prediction

    PubMed Central

    Wöhrle, Hendrik; Tabie, Marc; Kim, Su Kyoung; Kirchner, Frank; Kirchner, Elsa Andrea

    2017-01-01

    A current trend in the development of assistive devices for rehabilitation, for example exoskeletons or active orthoses, is to utilize physiological data to enhance their functionality and usability, for example by predicting the patient’s upcoming movements using electroencephalography (EEG) or electromyography (EMG). However, these modalities have different temporal properties and classification accuracies, which results in specific advantages and disadvantages. To use physiological data analysis in rehabilitation devices, the processing should be performed in real-time, guarantee close to natural movement onset support, provide high mobility, and should be performed by miniaturized systems that can be embedded into the rehabilitation device. We present a novel Field Programmable Gate Array (FPGA) -based system for real-time movement prediction using physiological data. Its parallel processing capabilities allows the combination of movement predictions based on EEG and EMG and additionally a P300 detection, which is likely evoked by instructions of the therapist. The system is evaluated in an offline and an online study with twelve healthy subjects in total. We show that it provides a high computational performance and significantly lower power consumption in comparison to a standard PC. Furthermore, despite the usage of fixed-point computations, the proposed system achieves a classification accuracy similar to systems with double precision floating-point precision. PMID:28671632

  6. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale [Nanophotonic AFM Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chae, Jungseok; An, Sangmin; Ramer, Georg

    The atomic force microscope (AFM) offers a rich observation window on the nanoscale, yet many dynamic phenomena are too fast and too weak for direct AFM detection. Integrated cavity-optomechanics is revolutionizing micromechanical sensing; however, it has not yet impacted AFM. Here, we make a groundbreaking advance by fabricating picogram-scale probes integrated with photonic resonators to realize functional AFM detection that achieve high temporal resolution (<10 ns) and picometer vertical displacement uncertainty simultaneously. The ability to capture fast events with high precision is leveraged to measure the thermal conductivity (η), for the first time, concurrently with chemical composition at the nanoscalemore » in photothermal induced resonance experiments. The intrinsic η of metal–organic-framework individual microcrystals, not measurable by macroscale techniques, is obtained with a small measurement uncertainty (8%). The improved sensitivity (50×) increases the measurement throughput 2500-fold and enables chemical composition measurement of molecular monolayer-thin samples. In conclusion, our paradigm-shifting photonic readout for small probes breaks the common trade-off between AFM measurement precision and ability to capture transient events, thus transforming the ability to observe nanoscale dynamics in materials.« less

  7. Rapid forgetting results from competition over time between items in visual working memory.

    PubMed

    Pertzov, Yoni; Manohar, Sanjay; Husain, Masud

    2017-04-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other's representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Precision of working memory for visual motion sequences and transparent motion surfaces.

    PubMed

    Zokaei, Nahid; Gorgoraptis, Nikos; Bahrami, Bahador; Bays, Paul M; Husain, Masud

    2011-12-01

    Recent studies investigating working memory for location, color, and orientation support a dynamic resource model. We examined whether this might also apply to motion, using random dot kinematograms (RDKs) presented sequentially or simultaneously. Mean precision for motion direction declined as sequence length increased, with precision being lower for earlier RDKs. Two alternative models of working memory were compared specifically to distinguish between the contributions of different sources of error that corrupt memory (W. Zhang & S. J. Luck, 2008 vs. P. M. Bays, R. F. G. Catalao, & M. Husain, 2009). The latter provided a significantly better fit for the data, revealing that decrease in memory precision for earlier items is explained by an increase in interference from other items in a sequence rather than random guessing or a temporal decay of information. Misbinding feature attributes is an important source of error in working memory. Precision of memory for motion direction decreased when two RDKs were presented simultaneously as transparent surfaces, compared to sequential RDKs. However, precision was enhanced when one motion surface was prioritized, demonstrating that selective attention can improve recall precision. These results are consistent with a resource model that can be used as a general conceptual framework for understanding working memory across a range of visual features.

  9. PLDAPS: A Hardware Architecture and Software Toolbox for Neurophysiology Requiring Complex Visual Stimuli and Online Behavioral Control.

    PubMed

    Eastman, Kyler M; Huk, Alexander C

    2012-01-01

    Neurophysiological studies in awake, behaving primates (both human and non-human) have focused with increasing scrutiny on the temporal relationship between neural signals and behaviors. Consequently, laboratories are often faced with the problem of developing experimental equipment that can support data recording with high temporal precision and also be flexible enough to accommodate a wide variety of experimental paradigms. To this end, we have developed a MATLAB toolbox that integrates several modern pieces of equipment, but still grants experimenters the flexibility of a high-level programming language. Our toolbox takes advantage of three popular and powerful technologies: the Plexon apparatus for neurophysiological recordings (Plexon, Inc., Dallas, TX, USA), a Datapixx peripheral (Vpixx Technologies, Saint-Bruno, QC, Canada) for control of analog, digital, and video input-output signals, and the Psychtoolbox MATLAB toolbox for stimulus generation (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007). The PLDAPS ("Platypus") system is designed to support the study of the visual systems of awake, behaving primates during multi-electrode neurophysiological recordings, but can be easily applied to other related domains. Despite its wide range of capabilities and support for cutting-edge video displays and neural recording systems, the PLDAPS system is simple enough for someone with basic MATLAB programming skills to design their own experiments.

  10. High-Dimensional Bayesian Geostatistics

    PubMed Central

    Banerjee, Sudipto

    2017-01-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920

  11. Methods for building an inexpensive computer-controlled olfactometer for temporally precise experiments

    PubMed Central

    Lundström, Johan N.; Gordon, Amy R.; Alden, Eva C.; Boesveldt, Sanne; Albrecht, Jessica

    2010-01-01

    Many human olfactory experiments call for fast and stable stimulus-rise times as well as exact and stable stimulus-onset times. Due to these temporal demands, an olfactometer is often needed. However, an olfactometer is a piece of equipment that either comes with a high price tag or requires a high degree of technical expertise to build and/or to run. Here, we detail the construction of an olfactometer that is constructed almost exclusively with “off-the-shelf” parts, requires little technical knowledge to build, has relatively low price tags, and is controlled by E-Prime, a turnkey-ready and easily-programmable software commonly used in psychological experiments. The olfactometer can present either solid or liquid odor sources, and it exhibits a fast stimulus-rise time and a fast and stable stimulus-onset time. We provide a detailed description of the olfactometer construction, a list of its individual parts and prices, as well as potential modifications to the design. In addition, we present odor onset and concentration curves as measured with a photoionization detector, together with corresponding GC/MS analyses of signal-intensity drop (5.9%) over a longer period of use. Finally, we present data from behavioral and psychophysiological recordings demonstrating that the olfactometer is suitable for use during event-related EEG experiments. PMID:20688109

  12. Cross-correlation-based earthquake relocation and ambient noise imaging at Axial Seamount

    NASA Astrophysics Data System (ADS)

    Tan, Y. J.; Waldhauser, F.; Tolstoy, M.; Wilcock, W. S. D.

    2016-12-01

    The seismic network that was installed on Axial Seamount as part of the Ocean Observatory Initiative's Cabled Array has been streaming live data since November 2014, encompassing an eruption in April-May of 2015. The network includes two broadband and five short-period seismometers spanning the southern half of the caldera. Almost 200,000 local earthquakes were detected in the first year of operation. Earthquake locations based on phase picks delineate outward dipping ring faults inferred to have accommodated deflation and guided dike propagation during the eruption (Wilcock et al., submitted). We will present results from our current effort of computing cross-correlation-based double-difference hypocenter locations to derive a more detailed image of the structures that provide insight into the active processes leading up to, during, and after the volcano's eruption. The new high-resolution hypocenters will form the base catalog for real-time double-difference monitoring of the seismicity recorded by the Cabled Array, allowing for high-precision evaluation of variation in seismogenic properties. We will also present results of measurements of temporal velocity changes associated with the eruption using seismic noise cross-correlations. This method has the potential to reveal areas of dike injection and magma withdrawal, as well as for real-time monitoring of temporal velocity variations associated with active volcanic processes.

  13. Spatiotemporal imaging of cortical activation during verb generation and picture naming.

    PubMed

    Edwards, Erik; Nagarajan, Srikantan S; Dalal, Sarang S; Canolty, Ryan T; Kirsch, Heidi E; Barbaro, Nicholas M; Knight, Robert T

    2010-03-01

    One hundred and fifty years of neurolinguistic research has identified the key structures in the human brain that support language. However, neither the classic neuropsychological approaches introduced by Broca (1861) and Wernicke (1874), nor modern neuroimaging employing PET and fMRI has been able to delineate the temporal flow of language processing in the human brain. We recorded the electrocorticogram (ECoG) from indwelling electrodes over left hemisphere language cortices during two common language tasks, verb generation and picture naming. We observed that the very high frequencies of the ECoG (high-gamma, 70-160 Hz) track language processing with spatial and temporal precision. Serial progression of activations is seen at a larger timescale, showing distinct stages of perception, semantic association/selection, and speech production. Within the areas supporting each of these larger processing stages, parallel (or "incremental") processing is observed. In addition to the traditional posterior vs. anterior localization for speech perception vs. production, we provide novel evidence for the role of premotor cortex in speech perception and of Wernicke's and surrounding cortex in speech production. The data are discussed with regards to current leading models of speech perception and production, and a "dual ventral stream" hybrid of leading speech perception models is given. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  14. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.

    PubMed

    Remer, Itay; Bilenca, Alberto

    2015-11-01

    Photoplethysmography is a well-established technique for the noninvasive measurement of blood pulsation. However, photoplethysmographic devices typically need to be in contact with the surface of the tissue and provide data from a single contact point. Extensions of conventional photoplethysmography to measurements over a wide field-of-view exist, but require advanced signal processing due to the low signal-to-noise-ratio of the photoplethysmograms. Here, we present a noncontact method based on temporal sampling of time-integrated speckle using a camera-phone for noninvasive, widefield measurements of physiological parameters across the human fingertip including blood pulsation and resting heart-rate frequency. The results show that precise estimation of these parameters with high spatial resolution is enabled by measuring the local temporal variation of speckle patterns of backscattered light from subcutaneous skin, thereby opening up the possibility for accurate high resolution blood pulsation imaging on a camera-phone. Camera-phone laser speckle imager along with measured relative blood perfusion maps of a fingertip showing skin perfusion response to a pulse pressure applied to the upper arm. The figure is for illustration only; the imager was stabilized on a stand throughout the experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Biologically Relevant Heterogeneity: Metrics and Practical Insights

    PubMed Central

    Gough, A; Stern, AM; Maier, J; Lezon, T; Shun, T-Y; Chennubhotla, C; Schurdak, ME; Haney, SA; Taylor, DL

    2017-01-01

    Heterogeneity is a fundamental property of biological systems at all scales that must be addressed in a wide range of biomedical applications including basic biomedical research, drug discovery, diagnostics and the implementation of precision medicine. There are a number of published approaches to characterizing heterogeneity in cells in vitro and in tissue sections. However, there are no generally accepted approaches for the detection and quantitation of heterogeneity that can be applied in a relatively high throughput workflow. This review and perspective emphasizes the experimental methods that capture multiplexed cell level data, as well as the need for standard metrics of the spatial, temporal and population components of heterogeneity. A recommendation is made for the adoption of a set of three heterogeneity indices that can be implemented in any high throughput workflow to optimize the decision-making process. In addition, a pairwise mutual information method is suggested as an approach to characterizing the spatial features of heterogeneity, especially in tissue-based imaging. Furthermore, metrics for temporal heterogeneity are in the early stages of development. Example studies indicate that the analysis of functional phenotypic heterogeneity can be exploited to guide decisions in the interpretation of biomedical experiments, drug discovery, diagnostics and the design of optimal therapeutic strategies for individual patients. PMID:28231035

  16. The standardized EEG electrode array of the IFCN.

    PubMed

    Seeck, Margitta; Koessler, Laurent; Bast, Thomas; Leijten, Frans; Michel, Christoph; Baumgartner, Christoph; He, Bin; Beniczky, Sándor

    2017-10-01

    Standardized EEG electrode positions are essential for both clinical applications and research. The aim of this guideline is to update and expand the unifying nomenclature and standardized positioning for EEG scalp electrodes. Electrode positions were based on 20% and 10% of standardized measurements from anatomical landmarks on the skull. However, standard recordings do not cover the anterior and basal temporal lobes, which is the most frequent source of epileptogenic activity. Here, we propose a basic array of 25 electrodes including the inferior temporal chain, which should be used for all standard clinical recordings. The nomenclature in the basic array is consistent with the 10-10-system. High-density scalp EEG arrays (64-256 electrodes) allow source imaging with even sub-lobar precision. This supplementary exam should be requested whenever necessary, e.g. search for epileptogenic activity in negative standard EEG or for presurgical evaluation. In the near future, nomenclature for high density electrodes arrays beyond the 10-10 system needs to be defined, to allow comparison and standardized recordings across centers. Contrary to the established belief that smaller heads needs less electrodes, in young children at least as many electrodes as in adults should be applied due to smaller skull thickness and the risk of spatial aliasing. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. High-Dimensional Bayesian Geostatistics.

    PubMed

    Banerjee, Sudipto

    2017-06-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

  18. Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique

    PubMed Central

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai

    2016-01-01

    On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19–334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths. PMID:26861330

  19. Post-Seismic Deformation from the 2009 Mw 6.3 Dachaidan Earthquake in the Northern Qaidam Basin Detected by Small Baseline Subset InSAR Technique.

    PubMed

    Liu, Yang; Xu, Caijun; Wen, Yangmao; Li, Zhicai

    2016-02-05

    On 28 August 2009, one thrust-faulting Mw 6.3 earthquake struck the northern Qaidam basin, China. Due to the lack of ground observations in this remote region, this study presents high-precision and high spatio-temporal resolution post-seismic deformation series with a small baseline subset InSAR technique. At the temporal scale, this changes from fast to slow with time, with a maximum uplift up to 7.4 cm along the line of sight 334 days after the event. At the spatial scale, this is more obvious at the hanging wall than that at the footwall, and decreases from the middle to both sides at the hanging wall. We then propose a method to calculate the correlation coefficient between co-seismic and post-seismic deformation by normalizing them. The correlation coefficient is found to be 0.73, indicating a similar subsurface process occurring during both phases. The results indicate that afterslip may dominate the post-seismic deformation during 19-334 days after the event, which mainly occurs with the fault geometry and depth similar to those of the c-seismic rupturing, and partly extends to the shallower and deeper depths.

  20. The plutonic-volcanic connection in porphyry copper deposits: Evidence from zircon geochemistry and high-precision CA-ID-TIMS geochronology

    NASA Astrophysics Data System (ADS)

    Buret, Y.; Von Quadt, A.; Wotzlaw, J. F.; Heinrich, C. A.

    2016-12-01

    Porphyry Cu deposits represent the interface between plutonic and volcanic domains of upper crustal magmatic systems. These deposits are typically composed of multiple porphyritic intrusions which constrain the duration of ore formation to a maximum of several 104 years [1] and are commonly intruded into the base of volcanoes. The relationship between volcanic activity and porphyry stocks is often difficult to establish, as they are rarely exposed together unless later faulting and/or tilting occurred [2]. In order to investigate the relationships between extrusive magmatism and porphyry Cu formation we compare zircon petrochronology from late stage volcanic units with the nearby world class Bajo de la Alumbrera porphyry Cu deposit, from the Late Miocene Farallón Negro Volcanic Complex (FNVC) in Northwest Argentina. In this study we texturally characterise zircon crystals by CL-imaging prior to obtaining in-situ geochemical and geochronological information by LA-ICP-MS. Analysed zircon grains were then extracted and analysed by high precision CA-ID-TIMS. This approach has the two-fold benefit of screening for inherited cores, and obtaining texturally defined geochemical information, prior to dissolution of the zircon crystal for CA-ID-TIMS analysis. We use this information to establish temporal and geochemical links between studied volcanic and porphyry units in the FNVC. The results of this study suggest a close temporal and genetic link between the Bajo de la Alumbrera porphyry Cu deposit and the late stage volcanism at the FNVC. Voluminous explosive volcanism immediately following porphyry formation has important implications for the thermal and rheological state of the magma that is parental to the porphyries and fed the eruption. Further work investigating the geochemistry of other accessory and major minerals could shed further light on the evolution of the magmatic body prior to eruption/ emplacement. References: [1] Buret et al. (2016) EPSL 450:120-131; [2] Dilles (1987) Econ Geol 82:1750-1789.

  1. Advancing UAS methods for monitoring coastal environments

    NASA Astrophysics Data System (ADS)

    Ridge, J.; Seymour, A.; Rodriguez, A. B.; Dale, J.; Newton, E.; Johnston, D. W.

    2017-12-01

    Utilizing fixed-wing Unmanned Aircraft Systems (UAS), we are working to improve coastal monitoring by increasing the accuracy, precision, temporal resolution, and spatial coverage of habitat distribution maps. Generally, multirotor aircraft are preferred for precision imaging, but recent advances in fixed-wing technology have greatly increased their capabilities and application for fine-scale (decimeter-centimeter) measurements. Present mapping methods employed by North Carolina coastal managers involve expensive, time consuming and localized observation of coastal environments, which often lack the necessary frequency to make timely management decisions. For example, it has taken several decades to fully map oyster reefs along the NC coast, making it nearly impossible to track trends in oyster reef populations responding to harvesting pressure and water quality degradation. It is difficult for the state to employ manned flights for collecting aerial imagery to monitor intertidal oyster reefs, because flights are usually conducted after seasonal increases in turbidity. In addition, post-storm monitoring of coastal erosion from manned platforms is often conducted days after the event and collects oblique aerial photographs which are difficult to use for accurately measuring change. Here, we describe how fixed wing UAS and standard RGB sensors can be used to rapidly quantify and assess critical coastal habitats (e.g., barrier islands, oyster reefs, etc.), providing for increased temporal frequency to isolate long-term and event-driven (storms, harvesting) impacts. Furthermore, drone-based approaches can accurately image intertidal habitats as well as resolve information such as vegetation density and bathymetry from shallow submerged areas. We obtain UAS imagery of a barrier island and oyster reefs under ideal conditions (low tide, turbidity, and sun angle) to create high resolution (cm scale) maps and digital elevation models to assess habitat condition. Concurrently, we test the accuracy of UAS platforms and image analysis tools against traditional high-resolution mapping equipment (GPS and terrestrial lidar) and in situ sampling (density quadrats) to conduct error analysis of UAS orthoimagery and data processing.

  2. First measurements of continuous δ18O-CO2 with a Fourier Transform InfraRed spectrometer in Heidelberg, Germany

    NASA Astrophysics Data System (ADS)

    Vardag, S. N.; Hammer, S.; Sabasch, M.; Griffith, D. W. T.; Levin, I.

    2014-07-01

    The continuous in-situ measurement of δ18O in atmospheric CO2 opens a new door to differentiating between CO2 source and sink components with high temporal resolution. Continuous 13C-CO2 measurement systems have been commercially available already for some time, but until now, only few instruments have been able to provide a continuous measurement of the oxygen isotope ratio in CO2. Besides precise 13C/12C observations, the Fourier Transform InfraRed (FTIR) spectrometer also measures the 18O/16O ratio of CO2, but the precision and accuracy of the measurements has not been evaluated yet. Here we present a first analysis of δ18O-CO2 (and δ13C-CO2) measurements with the FTIR in Heidelberg. We find that our spectrometer measures 18O in CO2 with a reproducibility of better than 0.3‰ at a temporal resolution of less than 10 min, as determined from surveillance gas measurements over a period of ten months. An Allan deviation test shows that the δ18O repeatability reaches 0.15‰ for half-hourly means. The compatibility of our spectroscopic measurements was determined by comparing FTIR measurements of calibration gases and ambient air to mass-spectrometric measurements of flask samples, filled with the cylinder gases or episodically collected over a diurnal cycle (event). We found that direct cylinder gas measurements agree to 0.01 ± 0.04‰ (mean and standard deviation) for δ13C-CO2 and 0.01 ± 0.11‰ for δ18O. Two weekly episodes of recent ambient air measurements, one in winter and one in summer, are discussed in view of the question, which potential insights and new challenges combined highly resolved δ18O-CO2 and δ13C-CO2 records may provide in terms of better understanding regional scale continental carbon exchange processes.

  3. Spatiotemporal Patterns of Contact Across the Rat Vibrissal Array During Exploratory Behavior

    PubMed Central

    Hobbs, Jennifer A.; Towal, R. Blythe; Hartmann, Mitra J. Z.

    2016-01-01

    The rat vibrissal system is an important model for the study of somatosensation, but the small size and rapid speed of the vibrissae have precluded measuring precise vibrissal-object contact sequences during behavior. We used a laser light sheet to quantify, with 1 ms resolution, the spatiotemporal structure of whisker-surface contact as five naïve rats freely explored a flat, vertical glass wall. Consistent with previous work, we show that the whisk cycle cannot be uniquely defined because different whiskers often move asynchronously, but that quasi-periodic (~8 Hz) variations in head velocity represent a distinct temporal feature on which to lock analysis. Around times of minimum head velocity, whiskers protract to make contact with the surface, and then sustain contact with the surface for extended durations (~25–60 ms) before detaching. This behavior results in discrete temporal windows in which large numbers of whiskers are in contact with the surface. These “sustained collective contact intervals” (SCCIs) were observed on 100% of whisks for all five rats. The overall spatiotemporal structure of the SCCIs can be qualitatively predicted based on information about head pose and the average whisk cycle. In contrast, precise sequences of whisker-surface contact depend on detailed head and whisker kinematics. Sequences of vibrissal contact were highly variable, equally likely to propagate in all directions across the array. Somewhat more structure was found when sequences of contacts were examined on a row-wise basis. In striking contrast to the high variability associated with contact sequences, a consistent feature of each SCCI was that the contact locations of the whiskers on the glass converged and moved more slowly on the sheet. Together, these findings lead us to propose that the rat uses a strategy of “windowed sampling” to extract an object's spatial features: specifically, the rat spatially integrates quasi-static mechanical signals across whiskers during the period of sustained contact, resembling an “enclosing” haptic procedure. PMID:26778990

  4. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    PubMed Central

    Ferrando-May, Elisa; Tomas, Martin; Blumhardt, Philipp; Stöckl, Martin; Fuchs, Matthias; Leitenstorfer, Alfred

    2013-01-01

    Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly non-linear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to non-linear photoperturbation experiments. PMID:23882280

  5. A multi-emitter fitting algorithm for potential live cell super-resolution imaging over a wide range of molecular densities.

    PubMed

    Takeshima, T; Takahashi, T; Yamashita, J; Okada, Y; Watanabe, S

    2018-05-25

    Multi-emitter fitting algorithms have been developed to improve the temporal resolution of single-molecule switching nanoscopy, but the molecular density range they can analyse is narrow and the computation required is intensive, significantly limiting their practical application. Here, we propose a computationally fast method, wedged template matching (WTM), an algorithm that uses a template matching technique to localise molecules at any overlapping molecular density from sparse to ultrahigh density with subdiffraction resolution. WTM achieves the localization of overlapping molecules at densities up to 600 molecules μm -2 with a high detection sensitivity and fast computational speed. WTM also shows localization precision comparable with that of DAOSTORM (an algorithm for high-density super-resolution microscopy), at densities up to 20 molecules μm -2 , and better than DAOSTORM at higher molecular densities. The application of WTM to a high-density biological sample image demonstrated that it resolved protein dynamics from live cell images with subdiffraction resolution and a temporal resolution of several hundred milliseconds or less through a significant reduction in the number of camera images required for a high-density reconstruction. WTM algorithm is a computationally fast, multi-emitter fitting algorithm that can analyse over a wide range of molecular densities. The algorithm is available through the website. https://doi.org/10.17632/bf3z6xpn5j.1. © 2018 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  6. Photon event distribution sampling: an image formation technique for scanning microscopes that permits tracking of sub-diffraction particles with high spatial and temporal resolutions.

    PubMed

    Larkin, J D; Publicover, N G; Sutko, J L

    2011-01-01

    In photon event distribution sampling, an image formation technique for scanning microscopes, the maximum likelihood position of origin of each detected photon is acquired as a data set rather than binning photons in pixels. Subsequently, an intensity-related probability density function describing the uncertainty associated with the photon position measurement is applied to each position and individual photon intensity distributions are summed to form an image. Compared to pixel-based images, photon event distribution sampling images exhibit increased signal-to-noise and comparable spatial resolution. Photon event distribution sampling is superior to pixel-based image formation in recognizing the presence of structured (non-random) photon distributions at low photon counts and permits use of non-raster scanning patterns. A photon event distribution sampling based method for localizing single particles derived from a multi-variate normal distribution is more precise than statistical (Gaussian) fitting to pixel-based images. Using the multi-variate normal distribution method, non-raster scanning and a typical confocal microscope, localizations with 8 nm precision were achieved at 10 ms sampling rates with acquisition of ~200 photons per frame. Single nanometre precision was obtained with a greater number of photons per frame. In summary, photon event distribution sampling provides an efficient way to form images when low numbers of photons are involved and permits particle tracking with confocal point-scanning microscopes with nanometre precision deep within specimens. © 2010 The Authors Journal of Microscopy © 2010 The Royal Microscopical Society.

  7. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    PubMed

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  8. Reversal of age-related neural timing delays with training

    PubMed Central

    Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina

    2013-01-01

    Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541

  9. Figure-ground segregation can rely on differences in motion direction.

    PubMed

    Kandil, Farid I; Fahle, Manfred

    2004-12-01

    If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.

  10. Assessing stapes piston position using computed tomography: a cadaveric study.

    PubMed

    Hahn, Yoav; Diaz, Rodney; Hartman, Jonathan; Bobinski, Matthew; Brodie, Hilary

    2009-02-01

    Temporal bone computed tomographic (CT) scanning in the postoperative stapedotomy patient is inaccurate in assessing stapes piston position within the vestibule. Poststapedotomy patients that have persistent vertigo may undergo CT scanning to assess the position of the stapes piston within the vestibule to rule out overly deep insertion. Vertigo is a recognized complication of the deep piston, and CT evaluation is often recommended. The accuracy of CT scan in this setting is unestablished. Stapedotomy was performed on 12 cadaver ears, and stainless steel McGee pistons were placed. The cadaver heads were then scanned using a fine-cut temporal bone protocol. Temporal bone dissection was performed with microscopic measurement of the piston depth in the vestibule. These values were compared with depth of intravestibular penetration measured on CT scan by 4 independent measurements. The intravestibular penetration as assessed by computed tomography was consistently greater than the value found on cadaveric anatomic dissection. The radiographic bias was greater when piston location within the vestibule was shallower. The axial CT scan measurement was 0.53 mm greater, on average, than the anatomic measurement. On average, the coronal CT measurement was 0.68 mm greater than the anatomic measurement. The degree of overestimation of penetration, however, was highly inconsistent. Standard temporal bone CT scan is neither an accurate nor precise examination of stapes piston depth within the vestibule. We found that CT measurement consistently overstated intravestibular piston depth. Computed tomography is not a useful study in the evaluation of piston depth for poststapedectomy vertigo and is of limited value in this setting.

  11. Thresholds of Auditory-Motor Coupling Measured with a Simple Task in Musicians and Non-Musicians: Was the Sound Simultaneous to the Key Press?

    PubMed Central

    van Vugt, Floris T.; Tillmann, Barbara

    2014-01-01

    The human brain is able to predict the sensory effects of its actions. But how precise are these predictions? The present research proposes a tool to measure thresholds between a simple action (keystroke) and a resulting sound. On each trial, participants were required to press a key. Upon each keystroke, a woodblock sound was presented. In some trials, the sound came immediately with the downward keystroke; at other times, it was delayed by a varying amount of time. Participants were asked to verbally report whether the sound came immediately or was delayed. Participants' delay detection thresholds (in msec) were measured with a staircase-like procedure. We hypothesised that musicians would have a lower threshold than non-musicians. Comparing pianists and brass players, we furthermore hypothesised that, as a result of a sharper attack of the timbre of their instrument, pianists might have lower thresholds than brass players. Our results show that non-musicians exhibited higher thresholds for delay detection (180±104 ms) than the two groups of musicians (102±65 ms), but there were no differences between pianists and brass players. The variance in delay detection thresholds could be explained by variance in sensorimotor synchronisation capacities as well as variance in a purely auditory temporal irregularity detection measure. This suggests that the brain's capacity to generate temporal predictions of sensory consequences can be decomposed into general temporal prediction capacities together with auditory-motor coupling. These findings indicate that the brain has a relatively large window of integration within which an action and its resulting effect are judged as simultaneous. Furthermore, musical expertise may narrow this window down, potentially due to a more refined temporal prediction. This novel paradigm provides a simple test to estimate the temporal precision of auditory-motor action-effect coupling, and the paradigm can readily be incorporated in studies investigating both healthy and patient populations. PMID:24498299

  12. Dynamical Constants and Time Universals: A First Step toward a Metrical Definition of Ordered and Abnormal Cognition.

    PubMed

    Elliott, Mark A; du Bois, Naomi

    2017-01-01

    From the point of view of the cognitive dynamicist the organization of brain circuitry into assemblies defined by their synchrony at particular (and precise) oscillation frequencies is important for the correct correlation of all independent cortical responses to the different aspects of a given complex thought or object. From the point of view of anyone operating complex mechanical systems, i.e., those comprising independent components that are required to interact precisely in time, it follows that the precise timing of such a system is essential - not only essential but measurable, and scalable. It must also be reliable over observations to bring about consistent behavior, whatever that behavior is. The catastrophic consequence of an absence of such precision, for instance that required to govern the interference engine in many automobiles, is indicative of how important timing is for the function of dynamical systems at all levels of operation. The dynamics and temporal considerations combined indicate that it is necessary to consider the operating characteristic of any dynamical, cognitive brain system in terms, superficially at least, of oscillation frequencies. These may, themselves, be forensic of an underlying time-related taxonomy. Currently there are only two sets of relevant and necessarily systematic observations in this field: one of these reports the precise dynamical structure of the perceptual systems engaged in dynamical binding across form and time; the second, derived both empirically from perceptual performance data, as well as obtained from theoretical models, demonstrates a timing taxonomy related to a fundamental operator referred to as the time quantum. In this contribution both sets of theory and observations are reviewed and compared for their predictive consistency. Conclusions about direct comparability are discussed for both theories of cognitive dynamics and time quantum models. Finally, a brief review of some experimental data measuring sensitivity to visual information presented to the visual blind field (blindsight), as well as from studies of temporal processing in autism and schizophrenia, indicates that an understanding of a precise and metrical dynamic structure may be very important for an operational understanding of perception as well as more general cognitive function in psychopathology.

  13. Precise orbit determination for the most recent altimeter missions: towards the 1 mm/y stability of the radial orbit error at regional scales

    NASA Astrophysics Data System (ADS)

    Couhert, Alexandre

    The reference Ocean Surface Topography Mission/Jason-2 satellite (CNES/NASA) has been in orbit for six years (since June 2008). It extends the continuous record of highly accurate sea surface height measurements begun in 1992 by the Topex/Poseidon mission and continued in 2001 by the Jason-1 mission. The complementary missions CryoSat-2 (ESA), HY-2A (CNSA) and SARAL/AltiKa (CNES/ISRO), with lower altitudes and higher inclinations, were launched in April 2010, August 2011 and February 2013, respectively. Although the three last satellites fly in different orbits, they contribute to the altimeter constellation while enhancing the global coverage. The CNES Precision Orbit Determination (POD) Group delivers precise and homogeneous orbit solutions for these independent altimeter missions. The focus of this talk will be on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular orbit errors dependant on the tracking technique, the reference frame accuracy and stability, the modeling of the temporal variations of the geopotential. Strategies are then explored to meet a 1 mm/y radial orbit stability over decadal periods at regional scales, and the challenge of evaluating such an improvement is discussed.

  14. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  15. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process.

    PubMed

    Blessing, William; Ootsuka, Youichirou

    2016-01-01

    Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1-2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1-2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity.

  16. Timing of activities of daily life is jaggy: How episodic ultradian changes in body and brain temperature are integrated into this process

    PubMed Central

    Blessing, William; Ootsuka, Youichirou

    2016-01-01

    ABSTRACT Charles Darwin noted that natural selection applies even to the hourly organization of daily life. Indeed, in many species, the day is segmented into active periods when the animal searches for food, and inactive periods when the animal digests and rests. This episodic temporal patterning is conventionally referred to as ultradian (<24 hours) rhythmicity. The average time between ultradian events is approximately 1–2 hours, but the interval is highly variable. The ultradian pattern is stochastic, jaggy rather than smooth, so that although the next event is likely to occur within 1–2 hours, it is not possible to predict the precise timing. When models of circadian timing are applied to the ultradian temporal pattern, the underlying assumption of true periodicity (stationarity) has distorted the analyses, so that the ultradian pattern is frequently averaged away and ignored. Each active ultradian episode commences with an increase in hippocampal theta rhythm, indicating the switch of attention to the external environment. During each active episode, behavioral and physiological processes, including changes in body and brain temperature, occur in an integrated temporal order, confirming organization by programs endogenous to the central nervous system. We describe methods for analyzing episodic ultradian events, including the use of wavelet mathematics to determine their timing and amplitude, and the use of fractal-based procedures to determine their complexity. PMID:28349079

  17. Crop Yield Predictions - High Resolution Statistical Model for Intra-season Forecasts Applied to Corn in the US

    NASA Astrophysics Data System (ADS)

    Cai, Y.

    2017-12-01

    Accurately forecasting crop yields has broad implications for economic trading, food production monitoring, and global food security. However, the variation of environmental variables presents challenges to model yields accurately, especially when the lack of highly accurate measurements creates difficulties in creating models that can succeed across space and time. In 2016, we developed a sequence of machine-learning based models forecasting end-of-season corn yields for the US at both the county and national levels. We combined machine learning algorithms in a hierarchical way, and used an understanding of physiological processes in temporal feature selection, to achieve high precision in our intra-season forecasts, including in very anomalous seasons. During the live run, we predicted the national corn yield within 1.40% of the final USDA number as early as August. In the backtesting of the 2000-2015 period, our model predicts national yield within 2.69% of the actual yield on average already by mid-August. At the county level, our model predicts 77% of the variation in final yield using data through the beginning of August and improves to 80% by the beginning of October, with the percentage of counties predicted within 10% of the average yield increasing from 68% to 73%. Further, the lowest errors are in the most significant producing regions, resulting in very high precision national-level forecasts. In addition, we identify the changes of important variables throughout the season, specifically early-season land surface temperature, and mid-season land surface temperature and vegetation index. For the 2017 season, we feed 2016 data to the training set, together with additional geospatial data sources, aiming to make the current model even more precise. We will show how our 2017 US corn yield forecasts converges in time, which factors affect the yield the most, as well as present our plans for 2018 model adjustments.

  18. Comparison of temporal to pulmonary artery temperature in febrile patients.

    PubMed

    Furlong, Donna; Carroll, Diane L; Finn, Cynthia; Gay, Diane; Gryglik, Christine; Donahue, Vivian

    2015-01-01

    As a routine part of clinical care, temperature measurement is a key indicator of illness. With the criterion standard of temperature measurement from the pulmonary artery catheter thermistor (PAT), which insertion of PAT carries significant risk to the patient, a noninvasive method that is accurate and precise is needed. The purpose of this study was to measure the precision and accuracy of 2 commonly used methods of collecting body temperature: PAT considered the criterion standard and the temporal artery thermometer (TAT) in those patients with a temperature greater than 100.4°F. This is a repeated-measures design with each patient with a PAT in the intensive care unit acting as their own control to investigate the difference in PAT readings and readings from TAT in the core mode. Accuracy and precision were analyzed. There were 60 subjects, 41 males and 19 females, with mean age of 60.8 years, and 97% (n = 58) were post-cardiac surgery. There was a statistically significant difference between PAT and TAT (101.0°F [SD, 0.5°F] vs 100.5°F [SD, 0.8°F]; bias, -0.49°F; P < .001). Differences in temperature between the 2 methods were clinically significant (ie, >0.9°F different) in 15 of 60 cases (25%). No TAT measurements were 0.9 F greater than the corresponding PAT measurement (0%; 95% confidence interval, 0%-6%). These data demonstrate the accuracy of TAT when compared with PAT in those with temperatures of 100.4°F or greater. This study demonstrates that TAT set to core mode is accurate with a 0.5°F lower temperature than PAT. There was 25% in variability in precision of TAT.

  19. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    NASA Astrophysics Data System (ADS)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA approach.

  20. Temporal Control of Gene Expression by Combining Electroporation and the Tetracycline Inducible Systems in Vertebrate Embryos

    NASA Astrophysics Data System (ADS)

    Dubrulle, Julien; Pourquié, Olivier

    The electroporation technique has revolutionized vertebrate embryology. It has greatly contributed to our understanding of how genes and proteins can interact and regulate various aspects of vertebrate development in the last decade. This technique provides an efficient way to transfect embryonic cells in vivo with exogenous DNA by cre ating transient holes in the plasma membrane with short, squared electric pulses of low voltage (Itasaki et al., 1999; Momose et al., 1999; Muramatsu et al., 1997; Nakamura et al., 2004; Ogura, 2002). It has been particularly well-developed in the chick model since the large size of the embryo and its easy accessibility enables to target specific tissues with great precision. With the electroporation, it is possible to precisely choose which type of cells to transfect by performing a local injection of DNA close to the cells of interest, followed by the application of a small current through the targeted area. To date, all three germ layers — endoderm, mesoderm and ectoderm — as well as an increasing number of differentiated structures have been efficiently transfected (Dubrulle et al., 2001; Grapin-Botton et al., 2001; Itasaki et al., 1999; Luo and Redies, 2005; Scaal et al., 2004) and the continuous improvement in electrode design makes it even possible to aim at sub-populations of cells within a given tissue. In addition to this spatial precision, the technique also allows great temporal precision; any stage of development, ranging from pre-gastrulation stage to adulthood can be reached as long as the cells or structures are accessible for local DNA injection and electrode placement (Bigey et al., 2002; Iimura and Pourquie, 2006).

  1. Scent Lure Effect on Camera-Trap Based Leopard Density Estimates

    PubMed Central

    Braczkowski, Alexander Richard; Balme, Guy Andrew; Dickman, Amy; Fattebert, Julien; Johnson, Paul; Dickerson, Tristan; Macdonald, David Whyte; Hunter, Luke

    2016-01-01

    Density estimates for large carnivores derived from camera surveys often have wide confidence intervals due to low detection rates. Such estimates are of limited value to authorities, which require precise population estimates to inform conservation strategies. Using lures can potentially increase detection, improving the precision of estimates. However, by altering the spatio-temporal patterning of individuals across the camera array, lures may violate closure, a fundamental assumption of capture-recapture. Here, we test the effect of scent lures on the precision and veracity of density estimates derived from camera-trap surveys of a protected African leopard population. We undertook two surveys (a ‘control’ and ‘treatment’ survey) on Phinda Game Reserve, South Africa. Survey design remained consistent except a scent lure was applied at camera-trap stations during the treatment survey. Lures did not affect the maximum movement distances (p = 0.96) or temporal activity of female (p = 0.12) or male leopards (p = 0.79), and the assumption of geographic closure was met for both surveys (p >0.05). The numbers of photographic captures were also similar for control and treatment surveys (p = 0.90). Accordingly, density estimates were comparable between surveys (although estimates derived using non-spatial methods (7.28–9.28 leopards/100km2) were considerably higher than estimates from spatially-explicit methods (3.40–3.65 leopards/100km2). The precision of estimates from the control and treatment surveys, were also comparable and this applied to both non-spatial and spatial methods of estimation. Our findings suggest that at least in the context of leopard research in productive habitats, the use of lures is not warranted. PMID:27050816

  2. A Multi-Temporal Remote Sensing Approach to Freshwater Turtle Conservation

    NASA Astrophysics Data System (ADS)

    Mui, Amy B.

    Freshwater turtles are a globally declining taxa, and estimates of population status are not available for many species. Primary causes of decline stem from widespread habitat loss and degradation, and obtaining spatially-explicit information on remaining habitat across a relevant spatial scale has proven challenging. The discipline of remote sensing science has been employed widely in studies of biodiversity conservation, but it has not been utilized as frequently for cryptic, and less vagile species such as turtles, despite their vulnerable status. The work presented in this thesis investigates how multi-temporal remote sensing imagery can contribute key information for building spatially-explicit and temporally dynamic models of habitat and connectivity for the threatened, Blanding's turtle (Emydoidea blandingii) in southern Ontario, Canada. I began with outlining a methodological approach for delineating freshwater wetlands from high spatial resolution remote sensing imagery, using a geographic object-based image analysis (GEOBIA) approach. This method was applied to three different landscapes in southern Ontario, and across two biologically relevant seasons during the active (non-hibernating) period of Blanding's turtles. Next, relevant environmental variables associated with turtle presence were extracted from remote sensing imagery, and a boosted regression tree model was developed to predict the probability of occurrence of this species. Finally, I analysed the movement potential for Blanding's turtles in a disturbed landscape using a combination of approaches. Results indicate that (1) a parsimonious GEOBIA approach to land cover mapping, incorporating texture, spectral indices, and topographic information can map heterogeneous land cover with high accuracy, (2) remote-sensing derived environmental variables can be used to build habitat models with strong predictive power, and (3) connectivity potential is best estimated using a variety of approaches, though accurate estimates across human-altered landscapes is challenging. Overall, this body of work supports the use of remote sensing imagery in species distribution models to strengthen the precision, and power of predictive models, and also draws attention to the need to consider a multi-temporal examination of species habitat requirements.

  3. Stratigraphic framework for Pliocene paleoclimate reconstruction: The correlation conundrum

    USGS Publications Warehouse

    Dowsett, H.J.; Robinson, M.M.

    2006-01-01

    Pre-Holocene paleoclimate reconstructions face a correlation conundrum because complications inherent in the stratigraphic record impede the development of synchronous reconstruction. The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstructions have carefully balanced temporal resolution and paleoclimate proxy data to achieve a useful and reliable product and are the most comprehensive pre-Pleistocene data sets available for analysis of warmer-than-present climate and for climate modeling experiments. This paper documents the stratigraphic framework for the mid-Pliocene sea surface temperature (SST) reconstruction of the North Atlantic and explores the relationship between stratigraphic/temporal resolution and various paleoceanographic estimates of SST. The magnetobiostratigraphic framework for the PRISM North Atlantic region is constructed from planktic foraminifer, calcareous nannofossil and paleomagnetic reversal events recorded in deep-sea cores and calibrated to age. Planktic foraminifer census data from multiple samples within the mid-Pliocene yield multiple SST estimates for each site. Extracting a single SST value at each site from multiple estimates, given the limitations of the material and stratigraphic resolution, is problematic but necessary for climate model experiments. The PRISM reconstruction, unprecedented in its integration of many different types of data at a focused stratigraphic interval, utilizes a time slab approach and is based on warm peak average temperatures. A greater understanding of the dynamics of the climate system and significant advances in models now mandate more precise, globally distributed yet temporally synchronous SST estimates than are available through averaging techniques. Regardless of the precision used to correlate between sequences within the midd-Pliocene, a truly synoptic reconstruction in the temporal sense is unlikely. SST estimates from multiple proxies promise to further refine paleoclimate reconstructions but must consider the complications associated with each method, what each proxy actually records, and how these different proxies compare in time-averaged samples.

  4. Timing Precision and Rhythm in Developmental Dyslexia.

    ERIC Educational Resources Information Center

    Wolff, Peter H.

    2002-01-01

    Indicates that during a motor sequencing task, dyslexic students anticipated the signal of an isochronic pacing metronome by intervals that were two or three times as long as those of age matched normal readers or normal adults. Discusses the implications of the findings for temporal information processing deficits on one hand, and impaired…

  5. The Intertemporal Stability of Teacher Effect Estimates. Working Paper 2008-22

    ERIC Educational Resources Information Center

    McCaffrey, Daniel F.; Sass, Tim R.; Lockwood, J.R.

    2008-01-01

    Recently, a number of school districts have begun using measures of teachers' contributions to student test scores or teacher "value added" to determine salaries and other monetary rewards. In this paper we investigate the precision of value-added measures by analyzing their inter-temporal stability. We find that these measures of…

  6. Risk Assessment for the Southern Pine Beetle

    Treesearch

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  7. Speed, Accuracy, and Serial Order in Sequence Production

    ERIC Educational Resources Information Center

    Pfordresher, Peter Q.; Palmer, Caroline; Jungers, Melissa K.

    2007-01-01

    The production of complex sequences like music or speech requires the rapid and temporally precise production of events (e.g., notes and chords), often at fast rates. Memory retrieval in these circumstances may rely on the simultaneous activation of both the current event and the surrounding context (Lashley, 1951). We describe an extension to a…

  8. Detection and localization of change points in temporal networks with the aid of stochastic block models

    NASA Astrophysics Data System (ADS)

    De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan

    2016-11-01

    A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.

  9. Dissociating movement from movement timing in the rat primary motor cortex.

    PubMed

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  10. The Temporal Dynamics of Arc Expression Regulate Cognitive Flexibility.

    PubMed

    Wall, Mark J; Collins, Dawn R; Chery, Samantha L; Allen, Zachary D; Pastuzyn, Elissa D; George, Arlene J; Nikolova, Viktoriya D; Moy, Sheryl S; Philpot, Benjamin D; Shepherd, Jason D; Müller, Jürgen; Ehlers, Michael D; Mabb, Angela M; Corrêa, Sonia A L

    2018-06-27

    Neuronal activity regulates the transcription and translation of the immediate-early gene Arc/Arg3.1, a key mediator of synaptic plasticity. Proteasome-dependent degradation of Arc tightly limits its temporal expression, yet the significance of this regulation remains unknown. We disrupted the temporal control of Arc degradation by creating an Arc knockin mouse (ArcKR) where the predominant Arc ubiquitination sites were mutated. ArcKR mice had intact spatial learning but showed specific deficits in selecting an optimal strategy during reversal learning. This cognitive inflexibility was coupled to changes in Arc mRNA and protein expression resulting in a reduced threshold to induce mGluR-LTD and enhanced mGluR-LTD amplitude. These findings show that the abnormal persistence of Arc protein limits the dynamic range of Arc signaling pathways specifically during reversal learning. Our work illuminates how the precise temporal control of activity-dependent molecules, such as Arc, regulates synaptic plasticity and is crucial for cognition. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  11. High-Precision, Continuous GPS Data Reveals Seasonal Groundwater Influence on the Deformation of the Salmon Falls Landslide, a Slow-Moving, Rotational Feature in Central Idaho

    NASA Astrophysics Data System (ADS)

    Lauer, I. H.; Crosby, B. T.

    2017-12-01

    The development of predictive tools for landslide initiation and deformation serve both the natural hazard and geomorphic communities. Founded on both field observations and physical laws, these tools require a mechanistic understanding of the connection between forcing and response. Water has a well-documented influence on slope stability, impacting both soil plasticity and pore water pressure. High precision, high frequency GPS measurements of deformation paired with similar frequency water table measurements enable new insight into the lag and sensitivity present in the coupled hillslope-groundwater system, especially in the rotational domain, which is underrepresented in current literature. Our study explores the influence of groundwater on a slow-moving, deep-seated, rotational slide in southern Idaho using daily, mm precision GPS positions and contemporaneous groundwater levels measurements in adjacent wells, lakes, and streams. Seven semi-permanent GPS stations are spatially distributed across the slide and record three-dimensional velocities up to 11 cm/yr, which compare well with historical measurements from the early 2000's. Water level loggers are located in a rough cross-section through the study area and documents rises in water level during spring 2017 and a subsequent 1.5m drop in the following summer. We hypothesize a correlation of groundwater levels and landslide velocity, which varies seasonally and spatially across the body of the slide. We will present whether deformation is spatially contemporaneous or initiate in one region and propagates down-feature. We will also discuss whether temporal lag exists between water level change and deformation and if hysteresis complicates correlation between forcing and response. Results will bolster the breadth of case-studies available for this landslide morphology and provide regional land managers with predictors for increased landslide activity and associated hazards, such as rockfall or landslide dam outburst events. The data from this study will also be integrated into a newly developed field-education module under the GETSI curriculum project. Our project provides a core dataset for how how-precision GPS positioning can be applied to solve societally relevant issues such as hazard prediction or early warning systems.

  12. Cortical activity patterns predict speech discrimination ability

    PubMed Central

    Engineer, Crystal T; Perez, Claudia A; Chen, YeTing H; Carraway, Ryan S; Reed, Amanda C; Shetake, Jai A; Jakkamsetti, Vikram; Chang, Kevin Q; Kilgard, Michael P

    2010-01-01

    Neural activity in the cerebral cortex can explain many aspects of sensory perception. Extensive psychophysical and neurophysiological studies of visual motion and vibrotactile processing show that the firing rate of cortical neurons averaged across 50–500 ms is well correlated with discrimination ability. In this study, we tested the hypothesis that primary auditory cortex (A1) neurons use temporal precision on the order of 1–10 ms to represent speech sounds shifted into the rat hearing range. Neural discrimination was highly correlated with behavioral performance on 11 consonant-discrimination tasks when spike timing was preserved and was not correlated when spike timing was eliminated. This result suggests that spike timing contributes to the auditory cortex representation of consonant sounds. PMID:18425123

  13. Sub-Fourier characteristics of a δ-kicked-rotor resonance.

    PubMed

    Talukdar, I; Shrestha, R; Summy, G S

    2010-07-30

    We experimentally investigate the sub-Fourier behavior of a δ-kicked-rotor resonance by performing a measurement of the fidelity or overlap of a Bose-Einstein condensate exposed to a periodically pulsed standing wave. The temporal width of the fidelity resonance peak centered at the Talbot time and zero initial momentum exhibits an inverse cube pulse number (1/N3)-dependent scaling compared to a 1/N2 dependence for the mean energy width at the same resonance. A theoretical analysis shows that for an accelerating potential the width of the resonance in acceleration space depends on 1/N3, a property which we also verify experimentally. Such a sub-Fourier effect could be useful for high precision gravity measurements.

  14. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  15. Electro-optic modulation for high-speed characterization of entangled photon pairs

    DOE PAGES

    Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...

    2015-11-10

    In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less

  16. Compressed sensing based missing nodes prediction in temporal communication network

    NASA Astrophysics Data System (ADS)

    Cheng, Guangquan; Ma, Yang; Liu, Zhong; Xie, Fuli

    2018-02-01

    The reconstruction of complex network topology is of great theoretical and practical significance. Most research so far focuses on the prediction of missing links. There are many mature algorithms for link prediction which have achieved good results, but research on the prediction of missing nodes has just begun. In this paper, we propose an algorithm for missing node prediction in complex networks. We detect the position of missing nodes based on their neighbor nodes under the theory of compressed sensing, and extend the algorithm to the case of multiple missing nodes using spectral clustering. Experiments on real public network datasets and simulated datasets show that our algorithm can detect the locations of hidden nodes effectively with high precision.

  17. Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes

    NASA Technical Reports Server (NTRS)

    Hochen, R.; Justie, B.

    1976-01-01

    The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.

  18. Monitoring flood extent and area through multi-sensor, multi-temporal remote sensing: the Strymonas (Greece) river flood

    NASA Astrophysics Data System (ADS)

    Refice, Alberto; Tijani, Khalid; Lovergine, Francesco P.; D'Addabbo, Annarita; Nutricato, Raffaele; Morea, Alberto

    2017-04-01

    Satellite monitoring of flood events at high spatial and temporal resolution is considered a difficult problem, mainly due to the lack of data with sufficient acquisition frequency and timeliness. The problem is worsened by the typically cloudy weather conditions associated to floods, which obstacle the propagation of e.m. waves in the optical spectral range, forbidding acquisitions by optical sensors. This problem is not present for longer wavelengths, so that radar imaging sensors are recognized as viable solutions for long-term flood monitoring. In selected cases, however, weather conditions may remain clear for sufficient amounts of time, enabling monitoring of the evolution of flood events through long time series of satellite images, both optical and radar. In this contribution, we present a case study of long-term integrated monitoring of a flood event which affected part of the Strymonas river basin, a transboundary river with source in Bulgaria, which flows then through Greece up to the Aegean Sea. The event, which affected the floodplain close to the river mouth, started at the beginning of April 2015, due to heavy rain, and lasted for several months, with some water pools still present at the beginning of September. Due to the arid climate characterizing the area, weather conditions were cloud-free for most of the period covering the event. We collected one high-resolution, X-band, COSMO-SkyMed, 5 C-band, Sentinel-1 SAR images, and 11 optical Landsat-8 images of the area. SAR images were calibrated, speckle-filtered and precisely geocoded; optical images were radiometrically corrected to obtain ground reflectance values from which NDVI maps were derived. The images were then thresholded to obtain binary flood maps for each day. Threshold values for microwave and optical data were calibrated by comparing one SAR and one optical image acquired on the same date. Results allow to draw a multi-temporal map of the flood evolution with high temporal resolution. The extension of flooded area can also be tracked in time, allowing to envisage testing of evapotranspiration/absorption models.

  19. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region

    NASA Astrophysics Data System (ADS)

    Li, Bai; Tanaka, Kisei R.; Chen, Yong; Brady, Damian C.; Thomas, Andrew C.

    2017-09-01

    The Finite-Volume Community Ocean Model (FVCOM) is an advanced coastal circulation model widely utilized for its ability to simulate spatially and temporally evolving three-dimensional geophysical conditions of complex and dynamic coastal regions. While a body of literature evaluates model skill in surface fields, independent studies validating model skill in bottom fields over large spatial and temporal scales are scarce because these fields cannot be remotely sensed. In this study, an evaluation of FVCOM skill in modeling bottom water temperature was conducted by comparison to hourly in situ observed bottom temperatures recorded by the Environmental Monitors on Lobster Traps (eMOLT), a program that attached thermistors to commercial lobster traps from 2001 to 2013. Over 2 × 106 pairs of FVCOM-eMOLT records were evaluated by a series of statistical measures to quantify accuracy and precision of the modeled data across the Northwest Atlantic Shelf region. The overall comparison between modeled and observed data indicates reliable skill of FVCOM (r2 = 0.72; root mean squared error = 2.28 °C). Seasonally, the average absolute errors show higher model skill in spring, fall and winter than summer. We speculate that this is due to the increased difficulty of modeling high frequency variability in the exact position of the thermocline and frontal zones. The spatial patterns of the residuals suggest that there is improved similarity between modeled and observed data at higher latitudes. We speculate that this is due to increased tidal mixing at higher latitudes in our study area that reduces stratification in winter, allowing improved model accuracy. Modeled bottom water temperatures around Cape Cod, the continental shelf edges, and at one location at the entrance to Penobscot Bay were characterized by relatively high errors. Constraints for future uses of FVCOM bottom water temperature are provided based on the uncertainties in temporal-spatial patterns. This study is novel as it is the first skill assessment of a regional ocean circulation model in bottom fields at high spatial and temporal scales in the Northwest Atlantic Shelf region.

  20. A numerical similarity approach for using retired Current Procedural Terminology (CPT) codes for electronic phenotyping in the Scalable Collaborative Infrastructure for a Learning Health System (SCILHS).

    PubMed

    Klann, Jeffrey G; Phillips, Lori C; Turchin, Alexander; Weiler, Sarah; Mandl, Kenneth D; Murphy, Shawn N

    2015-12-11

    Interoperable phenotyping algorithms, needed to identify patient cohorts meeting eligibility criteria for observational studies or clinical trials, require medical data in a consistent structured, coded format. Data heterogeneity limits such algorithms' applicability. Existing approaches are often: not widely interoperable; or, have low sensitivity due to reliance on the lowest common denominator (ICD-9 diagnoses). In the Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS) we endeavor to use the widely-available Current Procedural Terminology (CPT) procedure codes with ICD-9. Unfortunately, CPT changes drastically year-to-year - codes are retired/replaced. Longitudinal analysis requires grouping retired and current codes. BioPortal provides a navigable CPT hierarchy, which we imported into the Informatics for Integrating Biology and the Bedside (i2b2) data warehouse and analytics platform. However, this hierarchy does not include retired codes. We compared BioPortal's 2014AA CPT hierarchy with Partners Healthcare's SCILHS datamart, comprising three-million patients' data over 15 years. 573 CPT codes were not present in 2014AA (6.5 million occurrences). No existing terminology provided hierarchical linkages for these missing codes, so we developed a method that automatically places missing codes in the most specific "grouper" category, using the numerical similarity of CPT codes. Two informaticians reviewed the results. We incorporated the final table into our i2b2 SCILHS/PCORnet ontology, deployed it at seven sites, and performed a gap analysis and an evaluation against several phenotyping algorithms. The reviewers found the method placed the code correctly with 97 % precision when considering only miscategorizations ("correctness precision") and 52 % precision using a gold-standard of optimal placement ("optimality precision"). High correctness precision meant that codes were placed in a reasonable hierarchal position that a reviewer can quickly validate. Lower optimality precision meant that codes were not often placed in the optimal hierarchical subfolder. The seven sites encountered few occurrences of codes outside our ontology, 93 % of which comprised just four codes. Our hierarchical approach correctly grouped retired and non-retired codes in most cases and extended the temporal reach of several important phenotyping algorithms. We developed a simple, easily-validated, automated method to place retired CPT codes into the BioPortal CPT hierarchy. This complements existing hierarchical terminologies, which do not include retired codes. The approach's utility is confirmed by the high correctness precision and successful grouping of retired with non-retired codes.

Top