Dijkstra, Feike A; Carrillo, Yolima; Blumenthal, Dana M; Mueller, Kevin E; LeCain, Dan R; Morgan, Jack A; Zelikova, Tamara J; Williams, David G; Follett, Ronald F; Pendall, Elise
2018-05-01
Temporal variation in soil nitrogen (N) availability affects growth of grassland communities that differ in their use and reuse of N. In a 7-year-long climate change experiment in a semi-arid grassland, the temporal stability of plant biomass production varied with plant N turnover (reliance on externally acquired N relative to internally recycled N). Species with high N turnover were less stable in time compared to species with low N turnover. In contrast, N turnover at the community level was positively associated with asynchrony in biomass production, which in turn increased community temporal stability. Elevated CO 2 and summer irrigation, but not warming, enhanced community N turnover and stability, possibly because treatments promoted greater abundance of species with high N turnover. Our study highlights the importance of plant N turnover for determining the temporal stability of individual species and plant communities affected by climate change. © 2018 John Wiley & Sons Ltd/CNRS.
Concurrent temporal stability of the apparent electrical conductivity and soil water content
USDA-ARS?s Scientific Manuscript database
Knowledge of spatio-temporal soil water content (SWC) variability within agricultural fields is useful to improve crop management. Spatial patterns of soil water contents can be characterized using the temporal stability analysis, however high density sampling is required. Soil apparent electrical c...
NASA Astrophysics Data System (ADS)
Park, D. K.; Kim, Y. J.; Yang, S. E.; Kwon, N. Y.; Lee, H. G.; Ko, T. K.
2009-10-01
High temperature superconducting (HTS) magnets have been studied for insert coils of high field nuclear magnetic resonance (NMR) magnets but the temporal stability required for NMR is hard to achieve due to low index value and high joint resistance. In this research, the HTS power supply with magnets using coated conductor (CC) was investigated and tested in helium cryogenic system. All joints were conducted by soldering after etching stabilizer of the CC to minimize joint resistance. The pumping rate was determined by current amplitude and timing sequential control of heaters and the electromagnet. Operating characteristics were analyzed to enhance charging efficiency and the feasibility of temporally stable CC magnet during persistent mode was studied.
High nutrient availability reduces the diversity and stability of the equine caecal microbiota
Hansen, Naja C. K.; Avershina, Ekaterina; Mydland, Liv T.; Næsset, Jon A.; Austbø, Dag; Moen, Birgitte; Måge, Ingrid; Rudi, Knut
2015-01-01
Background It is well known that nutrient availability can alter the gut microbiota composition, while the effect on diversity and temporal stability remains largely unknown. Methods Here we address the equine caecal microbiota temporal stability, diversity, and functionality in response to diets with different levels of nutrient availability. Hay (low and slower nutrient availability) versus a mixture of hay and whole oats (high and more rapid nutrient availability) were used as experimental diets. Results We found major effects on the microbiota despite that the caecal pH was far from sub-clinical acidosis. We found that the low nutrient availability diet was associated with a higher level of both diversity and temporal stability of the caecal microbiota than the high nutrient availability diet. These observations concur with general ecological theories, suggesting a stabilising effect of biological diversity and that high nutrient availability has a destabilising effect through reduced diversity. Conclusion Nutrient availability does not only change the composition but also the ecology of the caecal microbiota. PMID:26246403
Grazing weakens temporal stabilizing effects of diversity in the Eurasian steppe.
Ren, Haiyan; Taube, Friedhelm; Stein, Claudia; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin
2018-01-01
Many biodiversity experiments have demonstrated that plant diversity can stabilize productivity in experimental grasslands. However, less is known about how diversity-stability relationships are mediated by grazing. Grazing is known for causing species losses, but its effects on plant functional groups (PFGs) composition and species asynchrony, which are closely correlated with ecosystem stability, remain unclear. We conducted a six-year grazing experiment in a semi-arid steppe, using seven levels of grazing intensity (0, 1.5, 3.0, 4.5, 6.0, 7.5, and 9.0 sheep per hectare) and two grazing systems (i.e., a traditional, continuous grazing system during the growing period (TGS), and a mixed one rotating grazing and mowing annually (MGS)), to examine the effects of grazing system and grazing intensity on the abundance and composition of PFGs and diversity-stability relationships. Ecosystem stability was similar between mixed and continuous grazing treatments. However, within the two grazing systems, stability was maintained through different pathways, that is, along with grazing intensity, persistence biomass variations in MGS, and compensatory interactions of PFGs in their biomass variations in TGS. Ecosystem temporal stability was not decreased by species loss but rather remain unchanged by the strong compensatory effects between PFGs, or a higher grazing-induced decrease in species asynchrony at higher diversity, and a higher grazing-induced increase in the temporal variation of productivity in diverse communities. Ecosystem stability of aboveground net primary production was not related to species richness in both grazing systems. High grazing intensity weakened the temporal stabilizing effects of diversity in this semi-arid grassland. Our results demonstrate that the productivity of dominant PFGs is more important than species richness for maximizing stability in this system. This study distinguishes grazing intensity and grazing system from diversity effects on the temporal stability, highlighting the need to better understand how grazing regulates ecosystem stability, plant diversity, and their synergic relationships.
Community temporal variability increases with fluctuating resource availability
Li, Wei; Stevens, M. Henry H.
2017-01-01
An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs. PMID:28345592
Community temporal variability increases with fluctuating resource availability
NASA Astrophysics Data System (ADS)
Li, Wei; Stevens, M. Henry H.
2017-03-01
An increase in the quantity of available resources is known to affect temporal variability of aggregate community properties. However, it is unclear how might fluctuations in resource availability alter community-level temporal variability. Here we conduct a microcosm experiment with laboratory protist community subjected to manipulated resource pulses that vary in intensity, duration and time of supply, and examine the impact of fluctuating resource availability on temporal variability of the recipient community. The results showed that the temporal variation of total protist abundance increased with the magnitude of resource pulses, as protist community receiving infrequent resource pulses (i.e., high-magnitude nutrients per pulse) was relatively more unstable than community receiving multiple resource pulses (i.e., low-magnitude nutrients per pulse), although the same total amounts of nutrients were added to each community. Meanwhile, the timing effect of fluctuating resources did not significantly alter community temporal variability. Further analysis showed that fluctuating resource availability increased community temporal variability by increasing the degree of community-wide species synchrony and decreasing the stabilizing effects of dominant species. Hence, the importance of fluctuating resource availability in influencing community stability and the regulatory mechanisms merit more attention, especially when global ecosystems are experiencing high rates of anthropogenic nutrient inputs.
NASA Astrophysics Data System (ADS)
Qu, W.; Bogena, H. R.; Huisman, J. A.; Martinez, G.; Pachepsky, Y. A.; Vereecken, H.
2013-12-01
Soil water content is a key variable in the soil, vegetation and atmosphere continuum with high spatial and temporal variability. Temporal stability of soil water content (SWC) has been observed in multiple monitoring studies and the quantification of controls on soil moisture variability and temporal stability presents substantial interest. The objective of this work was to assess the effect of soil hydraulic parameters on the temporal stability. The inverse modeling based on large observed time series SWC with in-situ sensor network was used to estimate the van Genuchten-Mualem (VGM) soil hydraulic parameters in a small grassland catchment located in western Germany. For the inverse modeling, the shuffled complex evaluation (SCE) optimization algorithm was coupled with the HYDRUS 1D code. We considered two cases: without and with prior information about the correlation between VGM parameters. The temporal stability of observed SWC was well pronounced at all observation depths. Both the spatial variability of SWC and the robustness of temporal stability increased with depth. Calibrated models both with and without prior information provided reasonable correspondence between simulated and measured time series of SWC. Furthermore, we found a linear relationship between the mean relative difference (MRD) of SWC and the saturated SWC (θs). Also, the logarithm of saturated hydraulic conductivity (Ks), the VGM parameter n and logarithm of α were strongly correlated with the MRD of saturation degree for the prior information case, but no correlation was found for the non-prior information case except at the 50cm depth. Based on these results we propose that establishing relationships between temporal stability and spatial variability of soil properties presents a promising research avenue for a better understanding of the controls on soil moisture variability. Correlation between Mean Relative Difference of soil water content (or saturation degree) and inversely estimated soil hydraulic parameters (log10(Ks), log10(α), n, and θs) at 5-cm, 20-cm and 50-cm depths. Solid circles represent parameters estimated by using prior information; open circles represent parameters estimated without using prior information.
Anastos, N; Barnett, N W; Pfeffer, F M; Lewis, S W
2006-01-01
This paper reports an investigation into the temporal stability of aqueous solutions of psilocin and psilocybin reference drug standards over a period of fourteen days. This study was performed using high performance liquid chromatography utilising a (95:5% v/v) methanol: 10 mM ammonium formate, pH 3.5 mobile phase and absorption detection at 269 nm. It was found that the exclusion of light significantly prolonged the useful life of standards, with aqueous solutions of both psilocin and psilocybin being stable over a period of seven days.
Henderson, Peter A.; Magurran, Anne E.
2014-01-01
To understand how ecosystems are structured and stabilized, and to identify when communities are at risk of damage or collapse, we need to know how the abundances of the taxa in the entire assemblage vary over ecologically meaningful timescales. Here, we present an analysis of species temporal variability within a single large vertebrate community. Using an exceptionally complete 33-year monthly time series following the dynamics of 81 species of fishes, we show that the most abundant species are least variable in terms of temporal biomass, because they are under density-dependent (negative feedback) regulation. At the other extreme, a relatively large number of low abundance transient species exhibit the greatest population variability. The high stability of the consistently common high abundance species—a result of density-dependence—is reflected in the observation that they consistently represent over 98% of total fish biomass. This leads to steady ecosystem nutrient and energy flux irrespective of the changes in species number and abundance among the large number of low abundance transient species. While the density-dependence of the core species ensures stability under the existing environmental regime, the pool of transient species may support long-term stability by replacing core species should environmental conditions change. PMID:25100702
Quantifying auditory temporal stability in a large database of recorded music.
Ellis, Robert J; Duan, Zhiyan; Wang, Ye
2014-01-01
"Moving to the beat" is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical "energy") in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file's temporal structure (e.g., "average tempo", "time signature"), none has sought to quantify the temporal stability of a series of detected beats. Such a method--a "Balanced Evaluation of Auditory Temporal Stability" (BEATS)--is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications.
Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest
Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi
2016-01-01
Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085
Temporal Stability and Authenticity of Self-Representations in Adulthood
Diehl, Manfred; Jacobs, Laurie M.; Hastings, Catherine T.
2008-01-01
The temporal stability of role-specific self-representations was examined in a sample of 188 young, middle-aged, and older adults. Considerable stability was observed for all self-representations. Central self-descriptors showed significantly greater temporal stability than peripheral self-descriptors. Temporal stability of self-representations was positively associated with self-concept clarity, self-esteem, and positive affect (PA). Age differences were obtained for three of the five self-representations, with older adults showing significantly lower stabilities for self with family, self with friend, and self with significant other compared to young and middle-aged adults. Assessment of the authenticity of adults’ role-specific self-representations showed that greater authenticity tended to be associated with greater temporal stability. Authenticity and the number of positive daily events were significant positive predictors of the stability of self-representations. PMID:18820732
Schmiege, Sarah J.; Bryan, Angela D.
2011-01-01
Background Adolescents involved with the criminal justice system are at particularly high-risk for the Human Immunodeficiency Virus and sexually transmitted infections. Purpose The purpose of this study was to longitudinally examine gender-specific models of condom use, incorporating temporal stability of intentions. Methods Adolescents on probation (N=728) were recruited to complete longitudinal surveys including measures of Theory of Planned Behavior and gender-specific constructs, relationship length, and condom use. Results Gender-specific models of condom use behavior suggested by previous research were mostly replicated. For young women, the effect of baseline intentions on subsequent condom use behavior was stronger when intentions were either stable or increasing. For young men, more stable, increasing intentions were directly associated with more condom use. There was preliminary evidence to suggest an association between temporal stability of intentions and decreasing condom use in stable relationships. Conclusions Intervention efforts should be tailored by gender and aim to forestall decreasing intentions and condom use over time by addressing difficulties in maintaining condom use. PMID:21347619
Lepš, Jan; Májeková, Maria; Vítová, Alena; Doležal, Jiří; de Bello, Francesco
2018-02-01
The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its effect remaining significant also after accounting for fertilization. The weakening of the portfolio effect with species richness decline is a crucial driver of community destabilization. However, the positive effect of species richness on temporal stability of total biomass was not due to increased compensatory dynamics, since synchrony increased with species richness. This shows that the negative effect of eutrophication on community stability does not operate through increasing synchrony, but through the reduction of diversity. © 2017 by the Ecological Society of America.
USDA-ARS?s Scientific Manuscript database
Aboveground net primary productivity (ANPP) varies in response to temporal fluctuations in weather. Temporal stability (mean/standard deviation) of community ANPP may be increased, on average, by increasing plant species richness, but stability also may differ widely at a given richness level imply...
Stability of Synchronization Clusters and Seizurability in Temporal Lobe Epilepsy
Palmigiano, Agostina; Pastor, Jesús; García de Sola, Rafael; Ortega, Guillermo J.
2012-01-01
Purpose Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes. Methods The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery. Discussion We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases. PMID:22844524
Temporal stability of novelty exploration in mice exposed to different open field tests.
Kalueff, Allan V; Keisala, Tiina; Minasyan, Anna; Kuuslahti, Marianne; Tuohimaa, Pentti
2006-03-01
We investigated behavioural activity and temporal distribution (patterning) of mouse exploration in different open field (OF) arenas. Mice of 129S1 (S1) strain were subjected in parallel to three different OF arenas (Experiment 1), two different OF arenas in two trials (Experiment 2) or two trials of the same OF test (Experiment 3). Overall, mice demonstrated a high degree of similarity in the temporal profile of novelty-induced horizontal and vertical exploration (regardless of the size, colour and shape of the OF), which remained stable in subsequent OF exposures. In Experiments 4 and 5, we tested F1 hybrid mice (BALB/c-S1; NMRI-S1), and Vitamin D receptor knockout mice (generated on S1 genetic background), again showing strikingly similar temporal patterns of their OF exploration, despite marked behavioural strain differences in anxiety and activity. These results suggest that mice are characterised by stability of temporal organization of their exploration in different OF novelty situations.
Temporal Stability of the NDVI-LAI Relationship in a Napa Valley Vineyard
NASA Technical Reports Server (NTRS)
Johnson, L. F.
2003-01-01
Remotely sensed normalized difference vegetation index (NDVI) values, derived from high-resolution satellite images, were compared with ground measurements of vineyard leaf area index (LAI) periodically during the 2001 growing season. The two variables were strongly related at six ground calibration sites on each of four occasions (r squared = 0.91 to 0.98). Linear regression equations relating the two variables did not significantly differ by observation date, and a single equation accounted for 92 percent of the variance in the combined dataset. Temporal stability of the relationship opens the possibility of transforming NDVI maps to LAI in the absence of repeated ground calibration fieldwork. In order to take advantage of this circumstance, however, steps should be taken to assure temporal consistency in spectral data values comprising the NDVI.
Mediator of moderators: temporal stability of intention and the intention-behavior relation.
Sheeran, Paschal; Abraham, Charles
2003-02-01
Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Jeong, Mi-Yun; Chung, Ki Soo; Wu, Jeong Weon
2014-11-01
Fine-structured polymerized cholesteric liquid crystal (PCLC) wedge laser devices have been realized, with high fine spatial tunability of the lasing wavelength. With resolution less than 0.3 nm in a broad spectral range, more than one hundred laser lines could be obtained in a PCLC cell without extra devices. For practical device application, we studied the stability of the device in detail over time, and in response to strong external light sources, and thermal perturbation. The PCLC wedge cells had good temporal stability for 1 year and showed good stability for strong perturbations, with the lasing wavelength shifting less than 1 nm, while the laser peak intensities decreased by up to 34%, and the high energy band edge of the photonic band gap (PBG) was red shifted 3 nm by temperature perturbation. However, when we consider the entire lasing spectrum for the PCLC cell, the 1-nm wavelength shift may not matter. Although the laser peak intensities were decreased by up to 34% in total for all of the perturbation cases, the remaining 34% laser peak intensity is considerable extent to make use. This good stability of the PCLC laser device is due to the polymerization of the CLC by UV curing. This study will be helpful for practical CLC laser device development.
Fitzsimmons-Craft, Ellen E; Bardone-Cone, Anna M
2014-01-01
This study examined the one-year temporal stability and the predictive and incremental validity of the Body, Eating, and Exercise Comparison Measure (BEECOM) in a sample of 237 college women who completed study measures at two time points about one year apart. One-year temporal stability was high for the BEECOM total and subscale (i.e., Body, Eating, and Exercise Comparison Orientation) scores. Additionally, the BEECOM exhibited predictive validity in that it accounted for variance in body dissatisfaction and eating disorder symptomatology one year later. These findings held even after controlling for body mass index and existing measures of social comparison orientation. However, results regarding the incremental validity of the BEECOM, or its ability to predict change in these constructs over time, were more mixed. Overall, this study demonstrated additional psychometric properties of the BEECOM among college women, further establishing the usefulness of this measure for more comprehensively assessing eating disorder-related social comparison. Copyright © 2013 Elsevier Ltd. All rights reserved.
Advances in the stability of high precision crystal resonators
NASA Technical Reports Server (NTRS)
Ballato, A.; Vig, J. R.
1979-01-01
Advances in technology directed toward minimizing the temporal changes in frequency of crystal resonators are described. Specific emphasis is placed on reducing their susceptibility to temperature, acceleration, and other environmental effects.
NASA Technical Reports Server (NTRS)
Hsieh, Cheng; O'Donnell, Timothy P.
1991-01-01
The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.
ERIC Educational Resources Information Center
Antshel, Kevin M.; Faraone, Stephen V.; Maglione, Katherine; Doyle, Alysa; Fried, Ronna; Seidman, Larry; Biederman, Joseph
2008-01-01
A study was conducted to establish the relationship between Attention-Deficit/Hyperactivity (ADHD) disorder and high-IQ children and whether ADHD has a high predictive value among youths with high-IQ. Results further supported the hypothesis for the predictive validity of ADHD in high-IQ youths.
Perturbations to trophic interactions and the stability of complex food webs
O'Gorman, Eoin J.; Emmerson, Mark C.
2009-01-01
The pattern of predator–prey interactions is thought to be a key determinant of ecosystem processes and stability. Complex ecological networks are characterized by distributions of interaction strengths that are highly skewed, with many weak and few strong interactors present. Theory suggests that this pattern promotes stability as weak interactors dampen the destabilizing potential of strong interactors. Here, we present an experimental test of this hypothesis and provide empirical evidence that the loss of weak interactors can destabilize communities in nature. We ranked 10 marine consumer species by the strength of their trophic interactions. We removed the strongest and weakest of these interactors from experimental food webs containing >100 species. Extinction of strong interactors produced a dramatic trophic cascade and reduced the temporal stability of key ecosystem process rates, community diversity and resistance to changes in community composition. Loss of weak interactors also proved damaging for our experimental ecosystems, leading to reductions in the temporal and spatial stability of ecosystem process rates, community diversity, and resistance. These results highlight the importance of conserving species to maintain the stabilizing pattern of trophic interactions in nature, even if they are perceived to have weak effects in the system. PMID:19666606
Temporal Stability of the Ford Insomnia Response to Stress Test (FIRST).
Jarrin, Denise C; Chen, Ivy Y; Ivers, Hans; Drake, Christopher L; Morin, Charles M
2016-10-15
The Ford Insomnia Response to Stress Test (FIRST) is a self-report tool that measures sleep reactivity (i.e., vulnerability to experience situational insomnia under stressful conditions). Sleep reactivity has been termed a "trait-like" vulnerability; however, evidence of its long-term stability is lacking. The main objective of the current psychometric study was to investigate the temporal stability of the FIRST over two 6-mo intervals in a population-based sample of adults with and without insomnia. The temporal stability of the FIRST was also compared with the temporal stability of other scales associated with insomnia (trait-anxiety, arousability). Participants included 1,122 adults (mean age = 49.9 y, standard deviation = 14.8; 38.8% male) presenting with an insomnia syndrome (n = 159), insomnia symptoms (n = 152), or good sleep (n = 811). Participants completed the FIRST, the State-Trait Anxiety Inventory (trait-anxiety), and the Arousal Predisposition Scale (arousability) on three different occasions: baseline and at 6- and 12-mo follow-up. Intraclass correlation coefficients (ICCs) were computed for all scales (baseline to 6 mo and 6 to 12 mo). The FIRST yielded strong temporal stability from baseline to 6 mo among those with insomnia syndrome (ICC = 0.81), symptoms (ICC = 0.78), and good sleep (ICC = 0.81). Similar results were observed for 6 to 12 mo among those with insomnia syndrome (ICC = 0.74), insomnia symptoms (ICC = 0.82), and good sleep (ICC = 0.84). The stability of the FIRST was not comparable with the stability of trait-anxiety, but was somewhat comparable with the stability of arousability. Overall, the FIRST is a temporally reliable stable scale over 6-mo intervals. Future research is needed to corroborate the stability and trait-like measures of sleep reactivity with physiological, behavioural and personality measures. © 2016 American Academy of Sleep Medicine
Quantifying Auditory Temporal Stability in a Large Database of Recorded Music
Ellis, Robert J.; Duan, Zhiyan; Wang, Ye
2014-01-01
“Moving to the beat” is both one of the most basic and one of the most profound means by which humans (and a few other species) interact with music. Computer algorithms that detect the precise temporal location of beats (i.e., pulses of musical “energy”) in recorded music have important practical applications, such as the creation of playlists with a particular tempo for rehabilitation (e.g., rhythmic gait training), exercise (e.g., jogging), or entertainment (e.g., continuous dance mixes). Although several such algorithms return simple point estimates of an audio file’s temporal structure (e.g., “average tempo”, “time signature”), none has sought to quantify the temporal stability of a series of detected beats. Such a method-a “Balanced Evaluation of Auditory Temporal Stability” (BEATS)–is proposed here, and is illustrated using the Million Song Dataset (a collection of audio features and music metadata for nearly one million audio files). A publically accessible web interface is also presented, which combines the thresholdable statistics of BEATS with queryable metadata terms, fostering potential avenues of research and facilitating the creation of highly personalized music playlists for clinical or recreational applications. PMID:25469636
NASA Astrophysics Data System (ADS)
Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William
2016-12-01
The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.
NASA Astrophysics Data System (ADS)
Zimmermann, A.
2007-05-01
The diverse tree species composition, irregular shaped tree crowns and a multi-layered forest structure affect the redistribution of rainfall in lower montane rain forests. In addition, abundant epiphyte biomass and associated canopy humus influence spatial patterns of throughfall. The spatial variability of throughfall amounts controls spatial patterns of solute concentrations and deposition. Moreover, the living and dead biomass interacts with the rainwater during the passage through the canopy and creates a chemical variability of its own. Since spatial and temporal patterns are intimately linked, the analysis of temporal solute concentration dynamics is an important step to understand the emerging spatial patterns. I hypothesized that: (1) the spatial variability of volumes and chemical composition of throughfall is particularly high compared with other forests because of the high biodiversity and epiphytism, (2) the temporal stability of the spatial pattern is high because of stable structures in the canopy (e.g. large epiphytes) that show only minor changes during the short term observation period, and (3) the element concentrations decrease with increasing rainfall because of exhausting element pools in the canopy. The study area at 1950 m above sea level is located in the south Ecuadorian Andes far away from anthropogenic emission sources and marine influences. Rain and throughfall were collected from August to October 2005 on an event and within-event basis for five precipitation periods and analyzed for pH, K, Na, Ca, Mg, NH4+, Cl-, NO3-, PO43-, TN, TP and TOC. Throughfall amounts and most of the solutes showed a high spatial variability, thereby the variability of H+, K, Ca, Mg, Cl- and NO3- exceeded those from a Brazilian tropical rain forest. The temporal persistence of the spatial patterns was high for throughfall amounts and varied depending on the solute. Highly persistent time stability patterns were detected for K, Mg and TOC concentrations. Time stability patterns of solute deposition were somewhat weaker than for concentrations for most of the solutes. Epiphytes strongly affected time stability patterns in that collectors situated below thick moss mats or arboreal bromeliads were in large part responsible for the extreme persistence with low throughfall amounts and high ion concentrations (H+ showed low concentrations). Rainfall solute concentrations were low compared with a variety of other tropical lowland and montane forest sites and showed a small temporal variability during the study period for both between and within-event dynamics, respectively. Throughfall solute concentrations were more within the range when compared with other sites and showed highly variable within-event dynamics. For most of the solutes, within-event concentrations did not reach low, constant concentrations in later event stages, rather concentrations fluctuated (e.g. Cl-) or increased (e.g. K and TOC). The within-event throughfall solute concentration dynamics in this lower montane rain forest contrast to recent observations from lowland tropical rain forests in Panama and Brazil. The observed within-event patterns are attributed (1) to the influence of epiphytes and associated canopy humus, and (2) to low rainfall intensities.
ERIC Educational Resources Information Center
Falk, Simone
2011-01-01
In this paper, sung speech is used as a methodological tool to explore temporal variability in the timing of word-internal consonants and vowels. It is hypothesized that temporal variability/stability becomes clearer under the varying rhythmical conditions induced by song. This is explored cross-linguistically in German--a language that exhibits a…
Biodiversity and ecosystem stability in a decade-long grassland experiment.
Tilman, David; Reich, Peter B; Knops, Johannes M H
2006-06-01
Human-driven ecosystem simplification has highlighted questions about how the number of species in an ecosystem influences its functioning. Although biodiversity is now known to affect ecosystem productivity, its effects on stability are debated. Here we present a long-term experimental field test of the diversity-stability hypothesis. During a decade of data collection in an experiment that directly controlled the number of perennial prairie species, growing-season climate varied considerably, causing year-to-year variation in abundances of plant species and in ecosystem productivity. We found that greater numbers of plant species led to greater temporal stability of ecosystem annual aboveground plant production. In particular, the decadal temporal stability of the ecosystem, whether measured with intervals of two, five or ten years, was significantly greater at higher plant diversity and tended to increase as plots matured. Ecosystem stability was also positively dependent on root mass, which is a measure of perenniating biomass. Temporal stability of the ecosystem increased with diversity, despite a lower temporal stability of individual species, because of both portfolio (statistical averaging) and overyielding effects. However, we found no evidence of a covariance effect. Our results indicate that the reliable, efficient and sustainable supply of some foods (for example, livestock fodder), biofuels and ecosystem services can be enhanced by the use of biodiversity.
Temporal Stability of Multiple Response Systems to 7.5% Carbon Dioxide Challenge
Roberson-Nay, Roxann; Gorlin, Eugenia I.; Beadel, Jessica R.; Cash, Therese; Vrana, Scott; Teachman, Bethany A.
2017-01-01
Self-reported anxiety, and potentially physiological response, to maintained inhalation of carbon dioxide (CO2) enriched air shows promise as a putative marker of panic reactivity and vulnerability. Temporal stability of response systems during low-dose, steady-state CO2 breathing challenge is lacking. Outcomes on multiple levels were measured two times, one week apart, in 93 individuals. Stability was highest during the CO2 breathing phase compared to pre-CO2 and recovery phases, with anxiety ratings, respiratory rate, skin conductance level, and heart rate demonstrating good to excellent temporal stability (ICCs ≥ 0.71). Cognitive symptoms tied to panic were somewhat less stable (ICC = 0.58) than physical symptoms (ICC = 0.74) during CO2 breathing. Escape/avoidance behaviors and DSM-5 panic attacks were not stable. Large effect sizes between task phases also were observed. Overall, results suggest good-excellent levels of temporal stability for multiple outcomes during respiratory stimulation via 7.5% CO2. PMID:28163046
Stabilized linear semi-implicit schemes for the nonlocal Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Du, Qiang; Ju, Lili; Li, Xiao; Qiao, Zhonghua
2018-06-01
Comparing with the well-known classic Cahn-Hilliard equation, the nonlocal Cahn-Hilliard equation is equipped with a nonlocal diffusion operator and can describe more practical phenomena for modeling phase transitions of microstructures in materials. On the other hand, it evidently brings more computational costs in numerical simulations, thus efficient and accurate time integration schemes are highly desired. In this paper, we propose two energy-stable linear semi-implicit methods with first and second order temporal accuracies respectively for solving the nonlocal Cahn-Hilliard equation. The temporal discretization is done by using the stabilization technique with the nonlocal diffusion term treated implicitly, while the spatial discretization is carried out by the Fourier collocation method with FFT-based fast implementations. The energy stabilities are rigorously established for both methods in the fully discrete sense. Numerical experiments are conducted for a typical case involving Gaussian kernels. We test the temporal convergence rates of the proposed schemes and make a comparison of the nonlocal phase transition process with the corresponding local one. In addition, long-time simulations of the coarsening dynamics are also performed to predict the power law of the energy decay.
2011-01-01
Background Implicitly, parasite molecular studies assume temporal genetic stability. In this study we tested, for the first time to our knowledge, the extent of changes in genetic diversity and structure of Sarcoptes mite populations from Pyrenean chamois (Rupicapra pyrenaica) in Asturias (Spain), using one multiplex of 9 microsatellite markers and Sarcoptes samples from sympatric Pyrenean chamois, red deer (Cervus elaphus), roe deer (Capreolus capreolus) and red fox (Vulpes vulpes). Results The analysis of an 11-years interval period found little change in the genetic diversity (allelic diversity, and observed and expected heterozygosity). The temporal stability in the genetic diversity was confirmed by population structure analysis, which was not significantly variable over time. Population structure analysis revealed temporal stability in the genetic diversity of Sarcoptes mite under the host-taxon law (herbivore derived- and carnivore derived-Sarcoptes mite) among the sympatric wild animals from Asturias. Conclusions The confirmation of parasite temporal genetic stability is of vital interest to allow generalizations to be made, which have further implications regarding the genetic structure, epidemiology and monitoring protocols of the ubiquitous Sarcoptes mite. This could eventually be applied to other parasite species. PMID:21794141
NASA Technical Reports Server (NTRS)
Vedantam, Nanda Kishore
2003-01-01
The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.
Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M; Weisser, Wolfgang W; Wilcke, Wolfgang; Schmid, Bernhard
2010-10-13
The diversity-stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands.
NASA Astrophysics Data System (ADS)
Martinez, P.; Kasper, M.; Costille, A.; Sauvage, J. F.; Dohlen, K.; Puget, P.; Beuzit, J. L.
2013-06-01
Context. Observing sequences have shown that the major noise source limitation in high-contrast imaging is the presence of quasi-static speckles. The timescale on which quasi-static speckles evolve is determined by various factors, mechanical or thermal deformations, among others. Aims: Understanding these time-variable instrumental speckles and, especially, their interaction with other aberrations, referred to as the pinning effect, is paramount for the search for faint stellar companions. The temporal evolution of quasi-static speckles is, for instance, required for quantifying the gain expected when using angular differential imaging (ADI) and to determining the interval on which speckle nulling techniques must be carried out. Methods: Following an early analysis of a time series of adaptively corrected, coronagraphic images obtained in a laboratory condition with the high-order test bench (HOT) at ESO Headquarters, we confirm our results with new measurements carried out with the SPHERE instrument during its final test phase in Europe. The analysis of the residual speckle pattern in both direct and differential coronagraphic images enables the characterization of the temporal stability of quasi-static speckles. Data were obtained in a thermally actively controlled environment reproducing realistic conditions encountered at the telescope. Results: The temporal evolution of the quasi-static wavefront error exhibits a linear power law, which can be used to model quasi-static speckle evolution in the context of forthcoming high-contrast imaging instruments, with implications for instrumentation (design, observing strategies, data reduction). Such a model can be used for instance to derive the timescale on which non-common path aberrations must be sensed and corrected. We found in our data that quasi-static wavefront error increases with ~0.7 Å per minute.
Temporal Stability of DSM-5 Posttraumatic Stress Disorder Criteria in a Problem Drinking Sample
Keane, Terence M.; Rubin, Amy; Lachowicz, Mark; Brief, Deborah; Enggasser, Justin L.; Roy, Monica; Hermos, John; Helmuth, Eric; Rosenbloom, David
2014-01-01
The Diagnostic and Statistical Manual-5 (DSM-5) reformulated Posttraumatic Stress Disorder (PTSD) based partially on research showing there were four main factors that underlie the symptoms of the disorder. The primary aim of this study was to examine the temporal stability of the DSM-5 factors as measured by the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5; Weathers et al., 2010). Confirmatory factor analyses were conducted to examine the structure of DSM-5 PTSD, and temporal stability over three time points was examined to determine if the measure reflects a consistent construct over time. Our sample was 507 combat-exposed veterans of Iraq and Afghanistan who enrolled in an online intervention for problem drinking and combat-related stress (masked for review). We administered the PCL-5 at baseline, 8-week post intervention, and 3-month follow-up assessments. The DSM-5 model provided an adequate fit to the data at baseline. Tests of equality of form and equality of factor loadings demonstrated stability of the factor structure over time, indicating temporal stability. This study confirms the results of previous research supporting the DSM-5 model of PTSD symptoms (Elhai et al., 2012; Miller et al., 2012). This is the first study to demonstrate the temporal stability of the PCL-5, indicating its use in longitudinal studies will measure the same construct over time. PMID:24932642
Nikkilä, Janne; Immonen, Outi; Kekkonen, Riina; Lahti, Leo; Palva, Airi; de Vos, Willem M.
2011-01-01
Background While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT)Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. Principal Findings A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. Conclusions/Significance A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the individual and common core microbiota in healthy adults. The findings provide new approaches to define intestinal health and to further characterize the microbial communities inhabiting the human gut. PMID:21829582
Proulx, Raphaël; Wirth, Christian; Voigt, Winfried; Weigelt, Alexandra; Roscher, Christiane; Attinger, Sabine; Baade, Jussi; Barnard, Romain L.; Buchmann, Nina; Buscot, François; Eisenhauer, Nico; Fischer, Markus; Gleixner, Gerd; Halle, Stefan; Hildebrandt, Anke; Kowalski, Esther; Kuu, Annely; Lange, Markus; Milcu, Alex; Niklaus, Pascal A.; Oelmann, Yvonne; Rosenkranz, Stephan; Sabais, Alexander; Scherber, Christoph; Scherer-Lorenzen, Michael; Scheu, Stefan; Schulze, Ernst-Detlef; Schumacher, Jens; Schwichtenberg, Guido; Soussana, Jean-François; Temperton, Vicky M.; Weisser, Wolfgang W.; Wilcke, Wolfgang; Schmid, Bernhard
2010-01-01
The diversity–stability hypothesis states that current losses of biodiversity can impair the ability of an ecosystem to dampen the effect of environmental perturbations on its functioning. Using data from a long-term and comprehensive biodiversity experiment, we quantified the temporal stability of 42 variables characterizing twelve ecological functions in managed grassland plots varying in plant species richness. We demonstrate that diversity increases stability i) across trophic levels (producer, consumer), ii) at both the system (community, ecosystem) and the component levels (population, functional group, phylogenetic clade), and iii) primarily for aboveground rather than belowground processes. Temporal synchronization across studied variables was mostly unaffected with increasing species richness. This study provides the strongest empirical support so far that diversity promotes stability across different ecological functions and levels of ecosystem organization in grasslands. PMID:20967213
Investigating local controls on soil moisture temporal stability using an inverse modeling approach
NASA Astrophysics Data System (ADS)
Bogena, Heye; Qu, Wei; Huisman, Sander; Vereecken, Harry
2013-04-01
A better understanding of the temporal stability of soil moisture and its relation to local and nonlocal controls is a major challenge in modern hydrology. Both local controls, such as soil and vegetation properties, and non-local controls, such as topography and climate variability, affect soil moisture dynamics. Wireless sensor networks are becoming more readily available, which opens up opportunities to investigate spatial and temporal variability of soil moisture with unprecedented resolution. In this study, we employed the wireless sensor network SoilNet developed by the Forschungszentrum Jülich to investigate soil moisture variability of a grassland headwater catchment in Western Germany within the framework of the TERENO initiative. In particular, we investigated the effect of soil hydraulic parameters on the temporal stability of soil moisture. For this, the HYDRUS-1D code coupled with a global optimizer (DREAM) was used to inversely estimate Mualem-van Genuchten parameters from soil moisture observations at three depths under natural (transient) boundary conditions for 83 locations in the headwater catchment. On the basis of the optimized parameter sets, we then evaluated to which extent the variability in soil hydraulic conductivity, pore size distribution, air entry suction and soil depth between these 83 locations controlled the temporal stability of soil moisture, which was independently determined from the observed soil moisture data. It was found that the saturated hydraulic conductivity (Ks) was the most significant attribute to explain temporal stability of soil moisture as expressed by the mean relative difference (MRD).
Spatial and Temporal Dynamics of Pacific Oyster Hemolymph Microbiota across Multiple Scales
Lokmer, Ana; Goedknegt, M. Anouk; Thieltges, David W.; Fiorentino, Dario; Kuenzel, Sven; Baines, John F.; Wegner, K. Mathias
2016-01-01
Unveiling the factors and processes that shape the dynamics of host associated microbial communities (microbiota) under natural conditions is an important part of understanding and predicting an organism's response to a changing environment. The microbiota is shaped by host (i.e., genetic) factors as well as by the biotic and abiotic environment. Studying natural variation of microbial community composition in multiple host genetic backgrounds across spatial as well as temporal scales represents a means to untangle this complex interplay. Here, we combined a spatially-stratified with a longitudinal sampling scheme within differentiated host genetic backgrounds by reciprocally transplanting Pacific oysters between two sites in the Wadden Sea (Sylt and Texel). To further differentiate contingent site from host genetic effects, we repeatedly sampled the same individuals over a summer season to examine structure, diversity and dynamics of individual hemolymph microbiota following experimental removal of resident microbiota by antibiotic treatment. While a large proportion of microbiome variation could be attributed to immediate environmental conditions, we observed persistent effects of antibiotic treatment and translocation suggesting that hemolymph microbial community dynamics is subject to within-microbiome interactions and host population specific factors. In addition, the analysis of spatial variation revealed that the within-site microenvironmental heterogeneity resulted in high small-scale variability, as opposed to large-scale (between-site) stability. Similarly, considerable within-individual temporal variability was in contrast with the overall temporal stability at the site level. Overall, our longitudinal, spatially-stratified sampling design revealed that variation in hemolymph microbiota is strongly influenced by site and immediate environmental conditions, whereas internal microbiome dynamics and oyster-related factors add to their long-term stability. The combination of small and large scale resolution of spatial and temporal observations therefore represents a crucial but underused tool to study host-associated microbiome dynamics. PMID:27630625
Boal, C.W.; Snyder, H.A.; Bibles, Brent D.; Estabrook, T.S.
2003-01-01
We mapped Red-tailed Hawk (Buteo jamaicensis) territories in the Luquillo Experimental Forest (LEF) of Puerto Rico in 1998. We combined our 1998 data with that collected during previous studies of Red-tailed Hawks in the LEF to examine population numbers and spatial stability of territorial boundaries over a 26-yr period. We also investigated potential relationships between Red-tailed Hawk territory sizes and topographic and climatic factors. Mean size of 16 defended territories during 1998 was 124.3 ?? 12.0 ha, which was not significantly different from our calculations of mean territory sizes derived from data collected in 1974 and 1984. Aspect and slope influenced territory size with the smallest territories having high slope and easterly aspects. Territory size was small compared to that reported for other parts of the species' range. In addition, there was remarkably little temporal change in the spatial distribution, area, and boundaries of Red-tailed Hawk territories among the study periods. Further, there was substantial boundary overlap (21-27%) between defended territories among the different study periods. The temporal stability of the spatial distribution of Red-tailed Hawk territories in the study area leads us to believe the area might be at or near saturation.
Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas
NASA Technical Reports Server (NTRS)
Lawson, Anthony Layiwola
2001-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.
Stable and simple quantitative phase-contrast imaging by Fresnel biprism
NASA Astrophysics Data System (ADS)
Ebrahimi, Samira; Dashtdar, Masoomeh; Sánchez-Ortiga, Emilio; Martínez-Corral, Manuel; Javidi, Bahram
2018-03-01
Digital holographic (DH) microscopy has grown into a powerful nondestructive technique for the real-time study of living cells including dynamic membrane changes and cell fluctuations in nanometer and sub-nanometer scales. The conventional DH microscopy configurations require a separately generated coherent reference wave that results in a low phase stability and a necessity to precisely adjust the intensity ratio between two overlapping beams. In this work, we present a compact, simple, and very stable common-path DH microscope, employing a self-referencing configuration. The microscope is implemented by a diode laser as the source and a Fresnel biprism for splitting and recombining the beams simultaneously. In the overlapping area, linear interference fringes with high contrast are produced. The frequency of the interference pattern could be easily adjusted by displacement of the biprism along the optical axis without a decrease in fringe contrast. To evaluate the validity of the method, the spatial noise and temporal stability of the setup are compared with the common off-axis DH microscope based on a Mach-Zehnder interferometer. It is shown that the proposed technique has low mechanical noise as well as superb temporal stability with sub-nanometer precision without any external vibration isolation. The higher temporal stability improves the capabilities of the microscope for studying micro-object fluctuations, particularly in the case of biological specimens. Experimental results are presented using red blood cells and silica microspheres to demonstrate the system performance.
Stability measures in arid ecosystems
NASA Astrophysics Data System (ADS)
Nosshi, M. I.; Brunsell, N. A.; Koerner, S.
2015-12-01
Stability, the capacity of ecosystems to persist in the face of change, has proven its relevance as a fundamental component of ecological theory. Here, we would like to explore meaningful and quantifiable metrics to define stability, with a focus on highly variable arid and semi-arid savanna ecosystems. Recognizing the importance of a characteristic timescale to any definition of stability, our metrics will be focused scales from annual to multi-annual, capturing different aspects of stability. Our three measures of stability, in increasing order of temporal scale, are: (1) Ecosystem resistance, quantified as the degree to which the system maintains its mean state in response to a perturbation (drought), based on inter-annual variability in Normalized Difference Vegetation Index (NDVI). (2) An optimization approach, relevant to arid systems with pulse dynamics, that models vegetation structure and function based on a trade off between the ability to respond to resource availability and avoid stress. (3) Community resilience, measured as species turnover rate (β diversity). Understanding the nature of stability in structurally-diverse arid ecosystems, which are highly variable, yields theoretical insight which has practical implications.
Temporal Stability and Convergent Validity of the Behavior Assessment System for Children.
ERIC Educational Resources Information Center
Merydith, Scott P.
2001-01-01
Assesses the temporal stability and convergent validity of the Behavioral Assessment System for Children (BASC). Teachers and parents rated kindergarten and first-grade students using BASC. Teachers were more stable in rating children's externalizing behaviors and attention problems. Discusses results in terms of the accuracy of information…
Biodiversity, productivity and the temporal stability of productivity: patterns and processes
USDA-ARS?s Scientific Manuscript database
Theory predicts that the temporal stability of productivity, measured as the ratio of the mean to the standard deviation of community biomass, increases with species richness and evenness. We used experimental species mixtures of grassland plants to test this hypothesis and identify the mechanisms i...
Temporal (In)Stability of Employee Preferences for Rewards
ERIC Educational Resources Information Center
Wine, Byron; Gilroy, Shawn; Hantula, Donald A.
2012-01-01
This study examined the temporal stability of employee preferences for rewards over seven monthly evaluations. Participants completed a ranking stimulus preference assessment monthly, and the latter six monthly assessments were compared to the initial assessment. Correlations of preferences from month to month ranged from r = -0.89 to 0.99.…
Structural stability as a consistent predictor of phenological events.
Song, Chuliang; Saavedra, Serguei
2018-06-13
The timing of the first and last seasonal appearance of a species in a community typically follows a pattern that is governed by temporal factors. While it has been shown that changes in the environment are linked to phenological changes, the direction of this link appears elusive and context-dependent. Thus, finding consistent predictors of phenological events is of central importance for a better assessment of expected changes in the temporal dynamics of ecological communities. Here we introduce a measure of structural stability derived from species interaction networks as an estimator of the expected range of environmental conditions compatible with the existence of a community. We test this measure as a predictor of changes in species richness recorded on a daily basis in a high-arctic plant-pollinator community during two spring seasons. We find that our measure of structural stability is the only consistent predictor of changes in species richness among different ecological and environmental variables. Our findings suggest that measures based on the notion of structural stability can synthesize the expected variation of environmental conditions tolerated by a community, and explain more consistently the phenological changes observed in ecological communities. © 2018 The Author(s).
Courtright, Brett A E; Jenekhe, Samson A
2015-12-02
We report a comparative study of polyethylenimine (PEI) and ethoxylated-polyethylenimine (PEIE) cathode buffer layers in high performance inverted organic photovoltaic devices. The work function of the indium-tin oxide (ITO)/zinc oxide (ZnO) cathode was reduced substantially (Δφ = 0.73-1.09 eV) as the molecular weight of PEI was varied from 800 g mol(-1) to 750 000 g mol(-1) compared with the observed much smaller reduction when using a PEIE thin film (Δφ = 0.56 eV). The reference inverted polymer solar cells based on the small band gap polymer PBDTT-FTTE (ITO/ZnO/PBDTT-FTTE:PC70BM/MoO3/Ag), without a cathode buffer layer, had an average power conversion efficiency (PCE) of 6.06 ± 0.22%. Incorporation of a PEIE cathode buffer layer in the same PBDTT-FTTE:PC70BM blend devices gave an enhanced performance with a PCE of 7.37 ± 0.53%. In contrast, an even greater photovoltaic efficiency with a PCE of 8.22 ± 0.10% was obtained in similar PBDTT-FTTE:PC70BM blend solar cells containing a PEI cathode buffer layer. The temporal stability of the inverted polymer solar cells was found to increase with increasing molecular weight of the cathode buffer layer. The results show that PEI is superior to PEIE as a cathode buffer layer in high performance organic photovoltaic devices and that the highest molecular weight PEI interlayer provides the highest temporal stability.
Stability of the Tonks–Langmuir discharge pre-sheath
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tskhakaya, D. D.; Kos, L.; Tskhakaya, D.
The article formulates the stability problem of the plasma sheath in the Tonks–Langmuir discharge. Using the kinetic description of the ion gas, i.e., the stability of the potential shape in the quasi-neutral pre-sheath regarding the high and low frequency, the perturbations are investigated. The electrons are assumed to be Maxwell–Boltzmann distributed. Regarding high-frequency perturbations, the pre-sheath is shown to be stable. The stability problem regarding low-frequency perturbations can be reduced to an analysis of the “diffusion like” equation, which results in the instability of the potential distribution in the pre-sheath. By means of the Particle in Cell simulations, also themore » nonlinear stage of low frequency oscillations is investigated. Comparing the figure obtained with the figure for linear stage, one can find obvious similarity in the spatial-temporal behavior of the potential.« less
NASA Astrophysics Data System (ADS)
Chifflard, Peter; Weishaupt, Philipp; Reiss, Martin
2017-04-01
Spatial and temporal patterns of throughfall can affect the heterogeneity of ecological, biogeochemical and hydrological processes at a forest floor and further the underlying soil. Previous research suggests different factors controlling the spatial and temporal patterns of throughfall, but most studies focus on coniferous forest, where the vegetation coverage is more or less constant over time. In deciduous forests the leaf area index varies due to the leaf fall in autumn which implicates a specific spatial and temporal variability of throughfall and furthermore of the soil moisture. Therefore, in the present study, the measurements of throughfall and soil moisture in a deciduous forest in the low mountain ranges focused especially on the period of leaf fall. The aims of this study were: 1) to detect the spatial and temporal variability of both the throughfall and the soil moisture, 2) to examine the temporal stability of the spatial patterns of the throughfall and soil moisture and 3) relate the soil moisture patterns to the throughfall patterns and further to the canopy characteristics. The study was carried out in a small catchment on middle Hesse (Germany) which is covered by beech forest. Annual mean air temperature is 9.4°C (48.9˚F) and annual mean precipitation is 650 mm. Base materials for soil genesis is greywacke and clay shale from Devonian deposits. The soil type at the study plot is a shallow cambisol. The study plot covers an area of about 150 m2 where 77 throughfall samplers where installed. The throughfall and the soil moisture (FDR-method, 20 cm depth) was measured immediately after every rainfall event at the 77 measurement points. During the period of October to December 2015 altogether 7 events were investigated. The geostatistical method kriging was used to interpolate between the measurements points to visualize the spatial patterns of each investigated parameter. Time-stability-plots were applied to examine temporal scatters of each investigated parameter. The spearmen and pearson correlation coefficients were applied to detect the relationship between the different investigated parameters. First results show that the spatial variability of throughfall decreases if the total amount of the throughfall increases. The soil moisture shows a similar behavior. It`s spatial variability decreases if higher soil moisture values were measured. Concerning the temporal stability of throughfall it can be shown that it is very high during the leaf-free period, although the rainfall events have different total througfall amounts. The soil moisture patterns consists of a low temporal stability and additionally only during one event a significant correlations between throughfall and soil moisture patterns exists. This implies that other factors than the throughfall patterns control the spatial patterns of soil moisture.
ERIC Educational Resources Information Center
Romer, Natalie; Merrell, Kenneth W.
2013-01-01
This study focused on evaluating the temporal stability of self-reported and teacher-reported perceptions of students' social and emotional skills and assets. We used a test-retest reliability procedure over repeated administrations of the child, adolescent, and teacher versions of the "Social-Emotional Assets and Resilience Scales".…
NASA Astrophysics Data System (ADS)
Martucci, Giovanni; Simeonov, Valentin; Renaud, Ludovic; Haefele, Alexander
2018-04-01
RAman Lidar for Meteorological Observations (RALMO) is operated at MeteoSwiss and provides continuous measurements of water vapor and temperature since 2010. While the water vapor has been acquired by a Licel acquisition system since 2008, the temperature channels have been migrated to a Fastcom P7888 acquisition system, since August 2015. We present a characterization of this new acquisition system, namely its dead-time, desaturation, temporal stability of the Pure Rotational Raman signals and the retrieval of the PRR-temperature.
Temporal and voltage stress stability of high performance indium-zinc-oxide thin film transistors
NASA Astrophysics Data System (ADS)
Song, Yang; Katsman, Alexander; Butcher, Amy L.; Paine, David C.; Zaslavsky, Alexander
2017-10-01
Thin film transistors (TFTs) based on transparent oxide semiconductors, such as indium zinc oxide (IZO), are of interest due to their improved characteristics compared to traditional a-Si TFTs. Previously, we reported on top-gated IZO TFTs with an in-situ formed HfO2 gate insulator and IZO active channel, showing high performance: on/off ratio of ∼107, threshold voltage VT near zero, extracted low-field mobility μ0 = 95 cm2/V·s, and near-perfect subthreshold slope at 62 mV/decade. Since device stability is essential for technological applications, in this paper we report on the temporal and voltage stress stability of IZO TFTs. Our devices exhibit a small negative VT shift as they age, consistent with an increasing carrier density resulting from an increasing oxygen vacancy concentration in the channel. Under gate bias stress, freshly annealed TFTs show a negative VT shift during negative VG gate bias stress, while aged (>1 week) TFTs show a positive VT shift during negative VG stress. This indicates two competing mechanisms, which we identify as the field-enhanced generation of oxygen vacancies and the field-assisted migration of oxygen vacancies, respectively. A simplified kinetic model of the vacancy concentration evolution in the IZO channel under electrical stress is provided.
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
A fully-implicit high-order system thermal-hydraulics model for advanced non-LWR safety analyses
Hu, Rui
2016-11-19
An advanced system analysis tool is being developed for advanced reactor safety analysis. This paper describes the underlying physics and numerical models used in the code, including the governing equations, the stabilization schemes, the high-order spatial and temporal discretization schemes, and the Jacobian Free Newton Krylov solution method. The effects of the spatial and temporal discretization schemes are investigated. Additionally, a series of verification test problems are presented to confirm the high-order schemes. Furthermore, it is demonstrated that the developed system thermal-hydraulics model can be strictly verified with the theoretical convergence rates, and that it performs very well for amore » wide range of flow problems with high accuracy, efficiency, and minimal numerical diffusions.« less
Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.
NASA Technical Reports Server (NTRS)
Biringen, Sedat; Hatay, Ferhat F.
1993-01-01
The nonlinear temporal evolution of disturbances in compressible flow between infinitely long, concentric cylinders is investigated through direct numerical simulations of the full, three-dimensional Navier-Stokes and energy equations. Counter-rotating cylinders separated by wide gaps are considered with supersonic velocities of the inner cylinder. Initially, the primary disturbance grows exponentially in accordance with linear stability theory. As the disturbances evolve, higher harmonics and subharmonics are generated in a cascading order eventually reaching a saturation state. Subsequent highly nonlinear stages of the evolution are governed by the interaction of the disturbance modes, particularly the axial subharmonics. Nonlinear evolution of the disturbance field is characterized by the formation of high-shear layers extending from the inner cylinder towards the center of the gap in the form of jets similar to the ejection events in transitional and turbulent wall-bounded shear flows.
Houadria, Mickal; Blüthgen, Nico; Salas-Lopez, Alex; Schmitt, Mona-Isabel; Arndt, Johanna; Schneider, Eric; Orivel, Jérôme; Menzel, Florian
2016-01-01
The diversity-stability relationship has been under intense scrutiny for the past decades, and temporal asynchrony is recognized as an important aspect of ecosystem stability. In contrast to relatively well-studied interannual and seasonal asynchrony, few studies investigate the role of circadian cycles for ecosystem stability. Here, we studied multifunctional redundancy of diurnal and nocturnal ant communities in four tropical rain forest sites. We analyzed how it was influenced by species richness, functional performance, and circadian asynchrony. In two neotropical sites, species richness and functional redundancy were lower at night. In contrast, these parameters did not differ in the two paleotropical sites we studied. Circadian asynchrony between species was pronounced in the neotropical sites, and increased circadian functional redundancy. In general, species richness positively affected functional redundancy, but the effect size depended on the temporal and spatial breadth of the species with highest functional performance. Our analysis shows that high levels of trophic performance were only reached through the presence of such high-performing species, but not by even contributions of multiple, less-efficient species. Thus, these species can increase current functional performance, but reduce overall functional redundancy. Our study highlights that diurnal and nocturnal ecosystem properties of the very same habitat can markedly differ in terms of species richness and functional redundancy. Consequently, like the need to study multiple ecosystem functions, multiple periods of the circadian cycle need to be assessed in order to fully understand the diversity-stability relationship in an ecosystem.
Bansal, Arjun K.; Singer, Jedediah M.; Anderson, William S.; Golby, Alexandra; Madsen, Joseph R.
2012-01-01
The cerebral cortex needs to maintain information for long time periods while at the same time being capable of learning and adapting to changes. The degree of stability of physiological signals in the human brain in response to external stimuli over temporal scales spanning hours to days remains unclear. Here, we quantitatively assessed the stability across sessions of visually selective intracranial field potentials (IFPs) elicited by brief flashes of visual stimuli presented to 27 subjects. The interval between sessions ranged from hours to multiple days. We considered electrodes that showed robust visual selectivity to different shapes; these electrodes were typically located in the inferior occipital gyrus, the inferior temporal cortex, and the fusiform gyrus. We found that IFP responses showed a strong degree of stability across sessions. This stability was evident in averaged responses as well as single-trial decoding analyses, at the image exemplar level as well as at the category level, across different parts of visual cortex, and for three different visual recognition tasks. These results establish a quantitative evaluation of the degree of stationarity of visually selective IFP responses within and across sessions and provide a baseline for studies of cortical plasticity and for the development of brain-machine interfaces. PMID:22956795
Femtosecond MeV Electron Energy-Loss Spectroscopy
NASA Astrophysics Data System (ADS)
Li, R. K.; Wang, X. J.
2017-11-01
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. In this paper, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the "reference-beam technique" relaxes the energy stability requirement of the rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving sub-electron-volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.
Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud
2018-06-01
In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.
Flower diversity and bee reproduction in an arid ecosystem.
Dorado, Jimena; Vázquez, Diego P
2016-01-01
Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.
Vogtmann, Emily; Hua, Xing; Zhou, Liang; Wan, Yunhu; Suman, Shalabh; Zhu, Bin; Dagnall, Casey L; Hutchinson, Amy; Jones, Kristine; Hicks, Belynda D; Sinha, Rashmi; Shi, Jianxin; Abnet, Christian C
2018-05-01
Background: Few studies have prospectively evaluated the association between oral microbiota and health outcomes. Precise estimates of the intrasubject microbial metric stability will allow better study planning. Therefore, we conducted a study to evaluate the temporal variability of oral microbiota. Methods: Forty individuals provided six oral samples using the OMNIgene ORAL kit and Scope mouthwash oral rinses approximately every two months over 10 months. DNA was extracted using the QIAsymphony and the V4 region of the 16S rRNA gene was amplified and sequenced using the MiSeq. To estimate temporal variation, we calculated intraclass correlation coefficients (ICCs) for a variety of metrics and examined stability after clustering samples into distinct community types using Dirichlet multinomial models (DMMs). Results: The ICCs for the alpha diversity measures were high, including for number of observed bacterial species [0.74; 95% confidence interval (CI): 0.65-0.82 and 0.79; 95% CI: 0.75-0.94] from OMNIgene ORAL and Scope mouthwash, respectively. The ICCs for the relative abundance of the top four phyla and beta diversity matrices were lower. Three clusters provided the best model fit for the DMM from the OMNIgene ORAL samples, and the probability of remaining in a specific cluster was high (59.5%-80.7%). Conclusions: The oral microbiota appears to be stable over time for multiple metrics, but some measures, particularly relative abundance, were less stable. Impact: We used this information to calculate stability-adjusted power calculations that will inform future field study protocols and experimental analytic designs. Cancer Epidemiol Biomarkers Prev; 27(5); 594-600. ©2018 AACR . ©2018 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Cooper, Robert J.; Magee, Elliott; Everdell, Nick; Magazov, Salavat; Varela, Marta; Airantzis, Dimitrios; Gibson, Adam P.; Hebden, Jeremy C.
2014-05-01
We detail the design, construction and performance of the second generation UCL time-resolved optical tomography system, known as MONSTIR II. Intended primarily for the study of the newborn brain, the system employs 32 source fibres that sequentially transmit picosecond pulses of light at any four wavelengths between 650 and 900 nm. The 32 detector channels each contain an independent photo-multiplier tube and temporally correlated photon-counting electronics that allow the photon transit time between each source and each detector position to be measured with high temporal resolution. The system's response time, temporal stability, cross-talk, and spectral characteristics are reported. The efficacy of MONSTIR II is demonstrated by performing multi-spectral imaging of a simple phantom.
Yoho, Michael; Porterfield, Donivan R.; Landsberger, Sheldon
2015-09-22
In this study, twenty-one high purity germanium (HPGe) background spectra were collected over 2 years at Los Alamos National Laboratory. A quality assurance methodology was developed to monitor spectral background levels from thermal and fast neutron flux levels and naturally occurring radioactive material decay series radionuclides. 238U decay products above 222Rn demonstrated minimal temporal variability beyond that expected from counting statistics. 238U and 232Th progeny below Rn gas displayed at most twice the expected variability. Further, an analysis of the 139 keV 74Ge(n, γ) and 691 keV 72Ge(n, n') spectral features demonstrated temporal stability for both thermal and fastmore » neutron fluxes.« less
ERIC Educational Resources Information Center
Kim, Jungmeen; Cicchetti, Dante
2009-01-01
This study investigated mean-level changes and intraindividual variability of self-esteem among maltreated (N = 142) and nonmaltreated (N = 109) school-aged children from low-income families. Longitudinal factor analysis revealed higher temporal stability of self-esteem among maltreated children compared to nonmaltreated children. Cross-domain…
On the nonlinear stability of a high-speed, axisymmetric boundary layer
NASA Technical Reports Server (NTRS)
Pruett, C. David; Ng, Lian L.; Erlebacher, Gordon
1991-01-01
The stability of a high-speed, axisymmetric boundary layer is investigated using secondary instability theory and direct numerical simulation. Parametric studies based on the temporal secondary instability theory identify subharmonic secondary instability as a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are validated by direct numerical simulation at temporally-evolving primary and secondary disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the secondary disturbance, predicted growth rates agree to several significant digits with values obtained from the spectrally-accurate solution of the compressible Navier-Stokes equations. Qualitative agreement persists to large amplitudes of the secondary disturbance. Moderate transverse curvature is shown to significantly affect the growth rate of axisymmetric second mode disturbances, the likely candidates of primary instability. The influence of curvature on secondary instability is largely indirect but most probably significant, through modulation of the primary disturbance amplitude. Subharmonic secondary instability is shown to be predominantly inviscid in nature, and to account for spikes in the Reynolds stress components at or near the critical layer.
Pietka, Magdalena; Watrobska-Swietlikowska, Dorota; Szczepanek, Kinga; Szybinski, Piotr; Sznitowska, Małgorzata; Kłęk, Stanisław
2014-09-12
Modern home parenteral nutrition (HPN) requires the preparation of tailored admixtures. The physicians' demands for their composition are often at the variance with pharmaceutical principles, which causes the necessity of either the preparation of ex tempore admixtures or stability testing ensuring long shelf life. Both approaches are not cost-effective. The aim of the study was to use the cooperation among physicians and pharmacists to assure both: cost-effectiveness and patient-tailored HPN admixtures. The first part of the study consisted of the thorough analysis of prescriptions for the most demanding 47 HPN patients (27 females and 20 males, mean age 53.1 year) treated at one HPN center to create few as possible long-shelf life admixtures. The second part of the study consisted of stability testing and modifications. The analysis showed over 137 variations needed to cover all macro- and micronutrients requirements. Their cost as ex-tempore solutions was extremely high (over 110 000 EURO/month) due to logistics and similarly high if stability test for variation were to be performed (68 500 EURO). Therefore prescription was prepared de novo within team of physicians and pharmacists and four base models were designed. Water and electrolytes, particularly magnesium and calcium showed to be the major issues. Stability tests failed in one admixture due to high electrolytes concentration. It was corrected, and the new formula passes the test. Five basic models were then used for creation of new bags. Cost of such an activity were 3 700 EURO (p<0.01) CONCLUSIONS: The cooperation within the members of nutritional support team could improve the cost-effectiveness and quality of HPN. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Assessing Temporal Stability for Coarse Scale Satellite Moisture Validation in the Maqu Area, Tibet
Bhatti, Haris Akram; Rientjes, Tom; Verhoef, Wouter; Yaseen, Muhammad
2013-01-01
This study evaluates if the temporal stability concept is applicable to a time series of satellite soil moisture images so to extend the common procedure of satellite image validation. The area of study is the Maqu area, which is located in the northeastern part of the Tibetan plateau. The network serves validation purposes of coarse scale (25–50 km) satellite soil moisture products and comprises 20 stations with probes installed at depths of 5, 10, 20, 40, 80 cm. The study period is 2009. The temporal stability concept is applied to all five depths of the soil moisture measuring network and to a time series of satellite-based moisture products from the Advance Microwave Scanning Radiometer (AMSR-E). The in-situ network is also assessed by Pearsons's correlation analysis. Assessments by the temporal stability concept proved to be useful and results suggest that probe measurements at 10 cm depth best match to the satellite observations. The Mean Relative Difference plot for satellite pixels shows that a RMSM pixel can be identified but in our case this pixel does not overlay any in-situ station. Also, the RMSM pixel does not overlay any of the Representative Mean Soil Moisture (RMSM) stations of the five probe depths. Pearson's correlation analysis on in-situ measurements suggests that moisture patterns over time are more persistent than over space. Since this study presents first results on the application of the temporal stability concept to a series of satellite images, we recommend further tests to become more conclusive on effectiveness to broaden the procedure of satellite validation. PMID:23959237
Spatio-temporal patterns of key exploited marine species in the Northwestern Mediterranean Sea.
Morfin, Marie; Fromentin, Jean-Marc; Jadaud, Angélique; Bez, Nicolas
2012-01-01
This study analyzes the temporal variability/stability of the spatial distributions of key exploited species in the Gulf of Lions (Northwestern Mediterranean Sea). To do so, we analyzed data from the MEDITS bottom-trawl scientific surveys from 1994 to 2010 at 66 fixed stations and selected 12 key exploited species. We proposed a geostatistical approach to handle zero-inflated and non-stationary distributions and to test for the temporal stability of the spatial structures. Empirical Orthogonal Functions and other descriptors were then applied to investigate the temporal persistence and the characteristics of the spatial patterns. The spatial structure of the distribution (i.e. the pattern of spatial autocorrelation) of the 12 key species studied remained highly stable over the time period sampled. The spatial distributions of all species obtained through kriging also appeared to be stable over time, while each species displayed a specific spatial distribution. Furthermore, adults were generally more densely concentrated than juveniles and occupied areas included in the distribution of juveniles. Despite the strong persistence of spatial distributions, we also observed that the area occupied by each species was correlated to its abundance: the more abundant the species, the larger the occupation area. Such a result tends to support MacCall's basin theory, according to which density-dependence responses would drive the expansion of those 12 key species in the Gulf of Lions. Further analyses showed that these species never saturated their habitats, suggesting that they are below their carrying capacity; an assumption in agreement with the overexploitation of several of these species. Finally, the stability of their spatial distributions over time and their potential ability to diffuse outside their main habitats give support to Marine Protected Areas as a potential pertinent management tool.
Ellen B. Drogin Rodgers; Brett A. Wright; Kenneth F. Backman
2003-01-01
The intent of this study of Virginia hunters/nonhunters was to test the efficacy of panel research for assessing the temporal stability of hunting participation and constraints. Findings suggest that participation/nonparticipation patterns were stable across time periods for the population, yet dynamic at the individual level. Although the structure of perceived...
ERIC Educational Resources Information Center
Lowe, Patricia A.; Reynolds, Cecil R.
2006-01-01
The psychometric properties of the Adult Manifest Anxiety Scale-Elderly Version (AMAS-E) scores were evaluated in two studies. In Study 1, the temporal stability and construct validity of the AMAS-E test scores were examined in a group of 226 older adults, aged 60 years and older. Results indicated adequate to excellent temporal stability (2-week…
The Structure and Temporal Stability of the Child and Adolescent Perfectionism Scale
ERIC Educational Resources Information Center
O'Connor, Rory C.; Dixon, Diane; Rasmussen, Susan
2009-01-01
In this study, the authors examined the factor structure and temporal stability of the Child and Adolescent Perfectionism Scale (CAPS; G. L. Flett, P. L. Hewitt, D. J. Boucher, L. A. Davidson, & Y. Munro, 1997) in 2 samples of adolescents (15-16 years old). In Sample 1 (n = 624), confirmatory factor analysis did not support a 2-factor structure…
ERIC Educational Resources Information Center
Bardone-Cone, Anna M.; Boyd, Clarissa A.
2007-01-01
Most of the major instruments in the eating disorder field have documented psychometric support only in predominantly White samples. The current study examined the internal consistency, temporal stability, and convergent and discriminant validity of a variety of eating disorder measures in Black (n = 97) and White (n = 179) female undergraduates.…
ERIC Educational Resources Information Center
Leopold, Daniel R.; Christopher, Micaela E.; Burns, G. Leonard; Becker, Stephen P.; Olson, Richard K.; Willcutt, Erik G.
2016-01-01
Background: Although multiple cross-sectional studies have shown symptoms of sluggish cognitive tempo (SCT) and attention-deficit/hyperactivity disorder (ADHD) to be statistically distinct, studies have yet to examine the temporal stability and measurement invariance of SCT in a longitudinal sample. To date, only six studies have assessed SCT…
DeFaveri, Jacquelin; Merilä, Juha
2015-01-01
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707
DeFaveri, Jacquelin; Merilä, Juha
2015-01-01
Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.
Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected into a High-Density Gas
NASA Technical Reports Server (NTRS)
Lawson, Anthony L.; Parthasarathy, Ramkumar N.
2002-01-01
It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.
Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics
NASA Astrophysics Data System (ADS)
Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.
2018-01-01
Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.
Gender-specific effects of emotional modulation on visual temporal order thresholds.
Liang, Wei; Zhang, Jiyuan; Bao, Yan
2015-09-01
Emotions affect temporal information processing in the low-frequency time window of a few seconds, but little is known about their effect in the high-frequency domain of some tens of milliseconds. The present study aims to investigate whether negative and positive emotional states influence the ability to discriminate the temporal order of visual stimuli, and whether gender plays a role in temporal processing. Due to the hemispheric lateralization of emotion, a hemispheric asymmetry between the left and the right visual field might be expected. Using a block design, subjects were primed with neutral, negative and positive emotional pictures before performing temporal order judgment tasks. Results showed that male subjects exhibited similarly reduced order thresholds under negative and positive emotional states, while female subjects demonstrated increased threshold under positive emotional state and reduced threshold under negative emotional state. Besides, emotions influenced female subjects more intensely than male subjects, and no hemispheric lateralization was observed. These observations indicate an influence of emotional states on temporal order processing of visual stimuli, and they suggest a gender difference, which is possibly associated with a different emotional stability.
Phase stabilization of multidimensional amplification architectures for ultrashort pulses
NASA Astrophysics Data System (ADS)
Müller, M.; Kienel, M.; Klenke, A.; Eidam, T.; Limpert, J.; Tünnermann, A.
2015-03-01
The active phase stabilization of spatially and temporally combined ultrashort pulses is investigated theoretically and experimentally. Particularly, considering a combining scheme applying 2 amplifier channels and 4 divided-pulse replicas a bistable behavior is observed. The reason is mutual influence of the optical error signals that is intrinsic to temporal polarization beam combining. A successful mitigation strategy is proposed and is analyzed theoretically and experimentally.
NASA Astrophysics Data System (ADS)
Garrido, Marie; Lafabrie, Céline; Torre, Franck; Fernandez, Catherine; Pasqualini, Vanina
2013-09-01
Understanding what controls the capacity of a coastal lagoon ecosystem to recover following climatic and anthropogenic perturbations and how these perturbations can alter this capacity is critical to efficient environmental management. The goal of this study was to examine the resilience and stability of Cymodocea nodosa-dominated seagrass meadows in Urbino lagoon (Corsica, Mediterranean Sea) by characterizing the spatio-temporal dynamics of seagrass meadows over a 40-year period and comparing (anthropogenic and climatic) environmental fluctuations. The spatio-temporal evolution of seagrass meadows was investigated using previous maps (1973, 1979, 1990, 1994, 1996, 1999) and a 2011 map realized by aerial photography-remote sensing combined with GIS technology. Environmental fluctuation was investigated via physical-chemical parameters (rainfall, water temperature, salinity, turbidity, dissolved oxygen) and human-impact changes (aquaculture, artificial channel). The results showed a severe decline (estimated at -49%) in seagrass meadows between 1973 and 1994 followed by a period of strong recovery (estimated to +42%) between 1994 and 2011. Increased turbidity, induced either by rainfall events, dredging or phytoplankton growth, emerged as the most important driver of the spatio-temporal evolution of Cymodocea nodosa-dominated meadows in Urbino lagoon over the last four decades. Climate events associated to increased turbidity and reduced salinity and temperature could heavily impact seagrass dynamics. This study shows that Urbino lagoon, a system relatively untouched by human impact, shelters seagrass meadows that exhibit high resilience and stability.
Jiddawi, Narriman S.; Eklöf, Johan S.
2017-01-01
Marine protected areas (MPAs) have been shown to increase long-term temporal stability of fish communities and enhance ecosystem resilience to anthropogenic disturbance. Yet, the potential ability of MPAs to buffer effects of environmental variability at shorter time scales remains widely unknown. In the tropics, the yearly monsoon cycle is a major natural force affecting marine organisms in tropical regions, and its timing and severity are predicted to change over the coming century, with potentially severe effects on marine organisms, ecosystems and ecosystem services. Here, we assessed the ability of MPAs to buffer effects of monsoon seasonality on seagrass-associated fish communities, using a field survey in two MPAs (no-take zones) and two unprotected (open-access) sites around Zanzibar (Tanzania). We assessed the temporal stability of fish density and community structure within and outside MPAs during three monsoon seasons in 2014–2015, and investigated several possible mechanisms that could regulate temporal stability. Our results show that MPAs did not affect fish density and diversity, but that juvenile fish densities were temporally more stable within MPAs. Second, fish community structure was more stable within MPAs for juvenile and adult fish, but not for subadult fish or the total fish community. Third, the observed effects may be due to a combination of direct and indirect (seagrass-mediated) effects of seasonality and, potentially, fluctuating fishing pressure outside MPAs. In summary, these MPAs may not have the ability to enhance fish density and diversity and to buffer effects of monsoon seasonality on the whole fish community. However, they may increase the temporal stability of certain groups, such as juvenile fish. Consequently, our results question whether MPAs play a general role in the maintenance of biodiversity and ecosystem functioning under changing environmental conditions in tropical seagrass fish communities. PMID:28854231
Perspectives on the geographic stability and mobility of people in cities
Hanson, Susan
2005-01-01
A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616
2014-06-20
concentrated on SACCON. The planform and section profiles were defined in cooperation between DLR and EADS -MAS during the early stages of AVT-161. DLR...however most predictions were made as first-order temporal predictions. Given the highly unsteady flow fields observed by the experiments, unsteady
Beever, E.A.; Huso, M.; Pyke, D.A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations - metrics of longer-term and recent grazing intensity, respectively, - as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance-response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1-2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems. ?? 2006 Blackwell Publishing Ltd.
Beever, Erik A.; Huso, Manuela M. P.; Pyke, David A.
2006-01-01
Disturbances and ecosystem recovery from disturbance both involve numerous processes that operate on multiple spatial and temporal scales. Few studies have investigated how gradients of disturbance intensity and ecosystem responses are distributed across multiple spatial resolutions and also how this relationship changes through time during recovery. We investigated how cover of non-native species and soil-aggregate stability (a measure of vulnerability to erosion by water) in surface and subsurface soils varied spatially during grazing by burros and cattle and whether patterns in these variables changed after grazer removal from Mojave National Preserve, California, USA. We compared distance from water and number of ungulate defecations — metrics of longer-term and recent grazing intensity, respectively, — as predictors of our response variables. We used information-theoretic analyses to compare hierarchical linear models that accounted for important covariates and allowed for interannual variation in the disturbance–response relationship at local and landscape scales. Soil stability was greater under perennial vegetation than in bare interspaces, and surface soil stability decreased with increasing numbers of ungulate defecations. Stability of surface samples was more affected by time since removal of grazers than was stability of subsurface samples, and subsurface soil stability in bare spaces was not related to grazing intensity, time since removal, or any of our other predictors. In the high rainfall year (2003) after cattle had been removed for 1–2 years, cover of all non-native plants averaged nine times higher than in the low-rainfall year (2002). Given the heterogeneity in distribution of large-herbivore impacts that we observed at several resolutions, hierarchical analyses provided a more complete understanding of the spatial and temporal complexities of disturbance and recovery processes in arid ecosystems.
Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias
2010-08-01
One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.
Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking.
Chini, Giorgia; Ranavolo, Alberto; Draicchio, Francesco; Casali, Carlo; Conte, Carmela; Martino, Giovanni; Leonardi, Luca; Padua, Luca; Coppola, Gianluca; Pierelli, Francesco; Serrao, Mariano
2017-02-01
This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.
Ultrafast chirped optical waveform recording using referenced heterodyning and a time microscope
Bennett, Corey Vincent
2010-06-15
A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
Ultrafast chirped optical waveform recorder using referenced heterodyning and a time microscope
Bennett, Corey Vincent [Livermore, CA
2011-11-22
A new technique for capturing both the amplitude and phase of an optical waveform is presented. This technique can capture signals with many THz of bandwidths in a single shot (e.g., temporal resolution of about 44 fs), or be operated repetitively at a high rate. That is, each temporal window (or frame) is captured single shot, in real time, but the process may be run repeatedly or single-shot. This invention expands upon previous work in temporal imaging by adding heterodyning, which can be self-referenced for improved precision and stability, to convert frequency chirp (the second derivative of phase with respect to time) into a time varying intensity modulation. By also including a variety of possible demultiplexing techniques, this process is scalable to recoding continuous signals.
NASA Astrophysics Data System (ADS)
Sathiyaraj, P.; Samuel, E. James jebaseelan
2018-01-01
The aim of this study is to evaluate the methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride gel (MAGAT) by cone beam computed tomography (CBCT) attached with modern linear accelerator. To compare the results of standard diagnostic computed tomography (CT) with CBCT, different parameters such as linearity, sensitivity and temporal stability were checked. MAGAT gel showed good linearity for both diagnostic CT and CBCT measurements. Sensitivity and temporal stability were also comparable with diagnostic CT measurements. In both the modalities, the sensitivity of the MAGAT increased to 4 days and decreased till the 10th day of post irradiation. Since all measurements (linearity, sensitivity and temporal stability) from diagnostic CT and CBCT were comparable, CBCT could be a potential tool for dose analysis study for polymer gel dosimeter.
Fraschetti, Simonetta; Guarnieri, Giuseppe; Bevilacqua, Stanislao; Terlizzi, Antonio; Boero, Ferdinando
2013-01-01
Rare evidences support that Marine Protected Areas (MPAs) enhance the stability of marine habitats and assemblages. Based on nine years of observation (2001–2009) inside and outside a well managed MPA, we assessed the potential of conservation and management actions to modify patterns of spatial and/or temporal variability of Posidonia oceanica meadows, the lower midlittoral and the shallow infralittoral rock assemblages. Significant differences in both temporal variations and spatial patterns were observed between protected and unprotected locations. A lower temporal variability in the protected vs. unprotected assemblages was found in the shallow infralittoral, demonstrating that, at least at local scale, protection can enhance community stability. Macrobenthos with long-lived and relatively slow-growing invertebrates and structurally complex algal forms were homogeneously distributed in space and went through little fluctuations in time. In contrast, a mosaic of disturbed patches featured unprotected locations, with small-scale shifts from macroalgal stands to barrens, and harsh temporal variations between the two states. Opposite patterns of spatial and temporal variability were found for the midlittoral assemblages. Despite an overall clear pattern of seagrass regression through time, protected meadows showed a significantly higher shoot density than unprotected ones, suggesting a higher resistance to local human activities. Our results support the assumption that the exclusion/management of human activities within MPAs enhance the stability of the structural components of protected marine systems, reverting or arresting threat-induced trajectories of change. PMID:24349135
Yiou, Eric; Fourcade, Paul; Artico, Romain; Caderby, Teddy
2016-06-01
Many daily motor tasks have to be performed under a temporal pressure constraint. This study aimed to explore the influence of such constraint on motor performance and postural stability during gait initiation. Young healthy participants initiated gait at maximal velocity under two conditions of temporal pressure: in the low-pressure condition, gait was self-initiated (self-initiated condition, SI); in the high-pressure condition, it was initiated as soon as possible after an acoustic signal (reaction-time condition, RT). Gait was initiated with and without an environmental constraint in the form of an obstacle to be cleared placed in front of participants. Results showed that the duration of postural adjustments preceding swing heel-off ("anticipatory postural adjustments", APAs) was shorter, while their amplitude was larger in RT compared to SI. These larger APAs allowed the participants to reach equivalent postural stability and motor performance in both RT and SI. In addition, the duration of the execution phase of gait initiation increased greatly in the condition with an obstacle to be cleared (OBST) compared to the condition without an obstacle (NO OBST), thereby increasing lateral instability and thus involving larger mediolateral APA. Similar effects of temporal pressure were obtained in NO OBST and OBST. This study shows the adaptability of the postural system to temporal pressure in healthy young adults initiating gait. The outcome of this study may provide a basis for better understanding the aetiology of balance impairments with the risk of falling in frail populations while performing daily complex tasks involving a whole-body progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osaka, Taito; Hirano, Takashi; Morioka, Yuki
Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less
Osaka, Taito; Hirano, Takashi; Morioka, Yuki; ...
2017-10-13
Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less
Wilberg, Theresa; Karterud, Sigmund; Pedersen, Geir; Urnes, Øyvind; Costa, Paul T
2009-03-01
We lack knowledge of the temporal stability of major personality dimensions in patients with personality disorders (PDs). The Revised NEO Personality Inventory (NEO-PI-R) is a self-report instrument that operationalizes the Five-Factor Model of personality. This study investigated the relative stability, mean level stability, and individual level stability of the NEO-PI-R scores in patients with PDs (n = 393) and patients with symptom disorders only (n = 131). The NEO-PI-R was administered at admission to short-term day treatment and after an average of 19 months. The results showed a moderate to high degree of stability of NEO-PI-R scale scores with no substantial difference in stability between patients with and without PD. Changes in NEO-PI-R scores were associated with changes in symptom distress. Neuroticism was the least stable domain. The study indicates that the Five-Factor Model of personality dimensions and traits are fairly stable in patients with PDs. The lower stability of Neuroticism may partly be explained by its inherent state aspects.
Milanović, Jovica V
2017-08-13
Future power systems will be significantly different compared with their present states. They will be characterized by an unprecedented mix of a wide range of electricity generation and transmission technologies, as well as responsive and highly flexible demand and storage devices with significant temporal and spatial uncertainty. The importance of probabilistic approaches towards power system stability analysis, as a subsection of power system studies routinely carried out by power system operators, has been highlighted in previous research. However, it may not be feasible (or even possible) to accurately model all of the uncertainties that exist within a power system. This paper describes for the first time an integral approach to probabilistic stability analysis of power systems, including small and large angular stability and frequency stability. It provides guidance for handling uncertainties in power system stability studies and some illustrative examples of the most recent results of probabilistic stability analysis of uncertain power systems.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
Rucco, Rosaria; Agosti, Valeria; Jacini, Francesca; Sorrentino, Pierpaolo; Varriale, Pasquale; De Stefano, Manuela; Milan, Graziella; Montella, Patrizia; Sorrentino, Giuseppe
2017-02-01
Alzheimer's disease (AD) and behavioral variant of Frontotemporal Dementia (bvFTD) are characterized respectively by atrophy in the medial temporal lobe with memory loss and prefrontal and anterior temporal degeneration with dysexecutive syndrome. In this study, we hypothesized that specific gait patterns are induced by either frontal or temporal degeneration. To test this hypothesis, we studied the gait pattern in bvFTD (23) and AD (22) patients in single and dual task ("motor" and "cognitive") conditions. To detect subtle alterations, we performed motion analysis estimating both spatio-temporal parameters and joint excursions. In the single task condition, the bvFTD group was more unstable and slower compared to healthy subjects, while only two stability parameters were compromised in the AD group. During the motor dual task, both velocity and stability parameters worsened further in the bvFTD group. In the same experimental conditions, AD patients showed a significantly lower speed and stride length than healthy subjects. During the cognitive dual task, a further impairment of velocity and stability parameters was observed in the bvFTD group. Interestingly, during the cognitive dual task, the gait performance of the AD group markedly deteriorated, as documented by the impairment of more indices of velocity and stability. Finally, the kinematic data of thigh, knee, and ankle were more helpful in revealing gait impairment than the spatio-temporal parameters alone. In conclusion, our data showed that the dysexecutive syndrome induces specific gait alterations. Furthermore, our results suggest that the gait worsens in the AD patients when the cognitive resources are stressed. Copyright © 2016 Elsevier B.V. All rights reserved.
Temporal dynamics of different cases of bi-stable figure-ground perception.
Kogo, Naoki; Hermans, Lore; Stuer, David; van Ee, Raymond; Wagemans, Johan
2015-01-01
Segmentation of a visual scene in "figure" and "ground" is essential for perception of the three-dimensional layout of a scene. In cases of bi-stable perception, two distinct figure-ground interpretations alternate over time. We were interested in the temporal dynamics of these alternations, in particular when the same image is presented repeatedly, with short blank periods in-between. Surprisingly, we found that the intermittent presentation of Rubin's classical "face-or-vase" figure, which is frequently taken as a standard case of bi-stable figure-ground perception, often evoked perceptual switches during the short presentations and stabilization was not prominent. Interestingly, bi-stable perception of Kanizsa's anomalous transparency figure did strongly stabilize across blanks. We also found stabilization for the Necker cube, which we used for comparison. The degree of stabilization (and the lack of it) varied across stimuli and across individuals. Our results indicate, against common expectation, that the stabilization phenomenon cannot be generally evoked by intermittent presentation. We argue that top-down feedback factors such as familiarity, semantics, expectation, and perceptual bias contribute to the complex processes underlying the temporal dynamics of bi-stable figure-ground perception. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Odonnell, Timothy P. (Inventor); Hsieh, Cheng H. (Inventor)
1994-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
Ultra high purity, dimensionally stable INVAR 36
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M. (Inventor); Lane, Marc S. (Inventor); Hsieh, Cheng H. (Inventor); Odonnell, Timothy P. (Inventor)
1995-01-01
An INVAR 36 material having long-term dimensional stability is produced by sintering a blend of powders of nickel and iron under pressure in an inert atmosphere to form an alloy containing less than 0.01 parts of carbon and less than 0.1 part aggregate and preferably 0.01 part individually of Mn, Si, P, S and Al impurities. The sintered alloy is heat treated and slowly and uniformly cooled to form a material having a coefficient of thermal expansion of less than 1 ppm/C and a temporal stability of less than 1 ppm/year.
Dimensional stability. [of glass and glass-ceramic materials in diffraction telescopes
NASA Technical Reports Server (NTRS)
Hochen, R.; Justie, B.
1976-01-01
The temporal stability of glass and glass-ceramic materials is important to the success of a large diffraction-limited telescope. The results are presented of an experimental study of the dimensional stability of glasses and glass ceramics being considered for substrates of massive diffraction-limited mirrors designed for several years of service in earth orbit. The purpose of the study was to measure the relative change in length of the candidate substrate materials, to the order of 5 parts in 10 to the 8th power, as a function of several years time. The development of monolithic test etalons, the development and improvement of two types of ultra-high precision interferometers, and certain aspects of tests data presently achieved are discussed.
Femtosecond MeV Electron Energy-Loss Spectroscopy
Li, R. K.; Wang, X. J.
2017-11-09
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Femtosecond MeV Electron Energy-Loss Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R. K.; Wang, X. J.
Pump-probe electron energy-loss spectroscopy (EELS) with femtosecond temporal resolution will be a transformative research tool for studying nonequilibrium chemistry and electronic dynamics of matter. Here in this article, we propose a concept of femtosecond EELS utilizing mega-electron-volt electron beams from a radio-frequency (rf) photocathode source. The high acceleration gradient and high beam energy of the rf gun are critical to the generation of 10-fs electron beams, which enables an improvement of the temporal resolution by more than 1 order of magnitude beyond the state of the art. In our proposal, the “referencebeam technique” relaxes the energy stability requirement of themore » rf power source by roughly 2 orders of magnitude. The requirements for the electron-beam quality, photocathode, spectrometer, and detector are also discussed. Supported by particle-tracking simulations, we demonstrate the feasibility of achieving subelectron- volt energy resolution and approximately 10-fs temporal resolution with existing or near-future hardware performance.« less
Hagberg, Gisela E; Bianciardi, Marta; Brainovich, Valentina; Cassara, Antonino Mario; Maraviglia, Bruno
2012-02-15
Although the majority of fMRI studies exploit magnitude changes only, there is an increasing interest regarding the potential additive information conveyed by the phase signal. This integrated part of the complex number furnished by the MR scanners can also be used for exploring direct detection of neuronal activity and for thermography. Few studies have explicitly addressed the issue of the available signal stability in the context of phase time-series, and therefore we explored the spatial pattern of frequency specific phase fluctuations, and evaluated the effect of physiological noise components (heart beat and respiration) on the phase signal. Three categories of retrospective noise reduction techniques were explored and the temporal signal stability was evaluated in terms of a physiologic noise model, for seven fMRI measurement protocols in eight healthy subjects at 3T, for segmented CSF, gray and white matter voxels. We confirmed that for most processing methods, an efficient use of the phase information is hampered by the fact that noise from physiological and instrumental sources contributes significantly more to the phase than to the magnitude instability. Noise regression based on the phase evolution of the central k-space point, RETROICOR, or an orthonormalized combination of these were able to reduce their impact, but without bringing phase stability down to levels expected from the magnitude signal. Similar results were obtained after targeted removal of scan-to-scan variations in the bulk magnetic field by the dynamic off-resonance in k-space (DORK) method and by the temporal off-resonance alignment of single-echo time series technique (TOAST). We found that spatial high-pass filtering was necessary, and in vivo a Gaussian filter width of 20mm was sufficient to suppress physiological noise and bring the phase fluctuations to magnitude levels. Stronger filters brought the fluctuations down to levels dictated by thermal noise contributions, and for 62.5mm(3) voxels the phase stability was as low as 5 mrad (0.27°). In conditions of low SNR(o) and high temporal sampling rate (short TR); we achieved an upper bound for the phase instabilities at 0.0017 ppm, which is close to the dHb contribution to the GM/WM phase contrast. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lawson, Anthony L.; Parthasarathy, Ramkumar N.
2005-01-01
The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.
Jueterbock, Alexander; Coyer, James A; Olsen, Jeanine L; Hoarau, Galice
2018-06-15
The spatial distribution of genetic diversity and structure has important implications for conservation as it reveals a species' strong and weak points with regard to stability and evolutionary capacity. Temporal genetic stability is rarely tested in marine species other than commercially important fishes, but is crucial for the utility of temporal snapshots in conservation management. High and stable diversity can help to mitigate the predicted northward range shift of seaweeds under the impact of climate change. Given the key ecological role of fucoid seaweeds along rocky shores, the positive effect of genetic diversity may reach beyond the species level to stabilize the entire intertidal ecosystem along the temperate North Atlantic. In this study, we estimated the effective population size, as well as temporal changes in genetic structure and diversity of the seaweed F. serratus using 22 microsatellite markers. Samples were taken across latitudes and a range of temperature regimes at seven locations with decadal sampling (2000 and 2010). Across latitudes, genetic structure and diversity remained stable over 5-10 generations. Stable small-scale structure enhanced regional diversity throughout the species' range. In accordance with its biogeographic history, effective population size and diversity peaked in the species' mid-range in Brittany (France), and declined towards its leading and trailing edge to the north and south. At the species' southern edge, multi-locus-heterozygosity displayed a strong decline from 1999 to 2010. Temporally stable genetic structure over small spatial scales is a potential driver for local adaptation and species radiation in the genus Fucus. Survival and adaptation of the low-diversity leading edge of F. serratus may be enhanced by regional gene flow and 'surfing' of favorable mutations or impaired by the accumulation of deleterious mutations. Our results have clear implications for the conservation of F. serratus at its genetically unique southern edge in Northwest Iberia, where increasing temperatures are likely the major cause for the decline not only of F. serratus, but also other intertidal and subtidal macroalgae. We expect that F. serratus will disappear from Northwest Iberia by 2100 if genetic rescue is not induced by the influx of genetic variation from Brittany.
Flower diversity and bee reproduction in an arid ecosystem
Vázquez, Diego P.
2016-01-01
Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative—instead of positive—effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources. PMID:27547556
van Lettow, Britt; de Vries, Hein; Burdorf, Alex; Conner, Mark; van Empelen, Pepijn
2015-05-01
Prototypes (i.e., social images) predict health-related behaviours and intentions within the context of the Theory of Planned Behaviour (TPB). This study tested the moderating role of temporal stability of drinker prototype perceptions on prototype-intentions and prototype-behaviour relationships, within an augmented TPB. The study examined abstainer, moderate drinker, heavy drinker, tipsy, and drunk prototypes. An online prospective study with 1-month follow-up was conducted among 410 young adults (18-25 years old, Mage = 21.0, SD = 2.14, 21.7% male). Assessed were prototype perceptions (favourability and similarity, T1, T2), stability of prototype perceptions, TPB variables (T1), intentions (T2), and drinking behaviour (T2). Intention analyses were corrected for baseline behaviour; drinking behaviour analyses were corrected for intentions and baseline behaviour. Hierarchical regressions showed that prototype stability moderated the relationships of drunk and abstainer prototype similarity with intentions. Similarity to the abstainer prototype explained intentions to drink sensibly more strongly among individuals with stable perceptions than among those with unstable perceptions. Conversely, intentions were explained stronger among individuals with stable perceptions of dissimilarity to the drunk prototype than among those with unstable perceptions. No moderation effects were found for stability of favourability or for relationships with behaviour. Stable prototype similarity perceptions were more predictive of intentions than unstable perceptions. These perceptions were most relevant in enhancing the explanation of young adults' intended drinking behaviour. Specifically, young adults' health intentions seem to be guided by the dissociation from the drunk prototype and association with the abstainer prototype. Statement of contribution What is already known on this subject? Prototypes have augmented the Theory of Planned Behaviour in explaining risk behaviour. Temporal stability has been shown to successfully extend the TPB in explaining intentions. Temporal stability of TPB variables can moderate the relationships with behaviour and intentions. What does this study add? Stability of prototype perceptions moderates the prototype-intentions relationship. Stability of abstainer and drunk prototype similarity enhances the explanation of (intentional) drinking. Stable prototype perceptions are more explanatory than unstable perceptions. © 2014 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Song, Yongli; Zhang, Tonghua; Tadé, Moses O.
2009-12-01
The dynamical behavior of a delayed neural network with bi-directional coupling is investigated by taking the delay as the bifurcating parameter. Some parameter regions are given for conditional/absolute stability and Hopf bifurcations by using the theory of functional differential equations. As the propagation time delay in the coupling varies, stability switches for the trivial solution are found. Conditions ensuring the stability and direction of the Hopf bifurcation are determined by applying the normal form theory and the center manifold theorem. We also discuss the spatio-temporal patterns of bifurcating periodic oscillations by using the symmetric bifurcation theory of delay differential equations combined with representation theory of Lie groups. In particular, we obtain that the spatio-temporal patterns of bifurcating periodic oscillations will alternate according to the change of the propagation time delay in the coupling, i.e., different ranges of delays correspond to different patterns of neural activities. Numerical simulations are given to illustrate the obtained results and show the existence of bursts in some interval of the time for large enough delay.
Frequency stabilization of diode-laser-pumped solid state lasers
NASA Technical Reports Server (NTRS)
Byer, Robert L.
1988-01-01
The goal of the NASA Sunlite program is to fly two diode-laser-pumped solid-state lasers on the space shuttle and while doing so to perform a measurement of their frequency stability and temporal coherence. These measurements will be made by combining the outputs of the two lasers on an optical radiation detector and spectrally analyzing the beat note. Diode-laser-pumped solid-state lasers have several characteristics that will make them useful in space borne experiments. First, this laser has high electrical efficiency. Second, it is of a technology that enables scaling to higher powers in the future. Third, the laser can be made extremely reliable, which is crucial for many space based applications. Fourth, they are frequency and amplitude stable and have high temporal coherence. Diode-laser-pumped solid-state lasers are inherently efficient. Recent results have shown 59 percent slope efficiency for a diode-laser-pumped solid-state laser. As for reliability, the laser proposed should be capable of continuous operation. This is possible because the diode lasers can be remote from the solid state gain medium by coupling through optical fibers. Diode lasers are constructed with optical detectors for monitoring their output power built into their mounting case. A computer can actively monitor the output of each diode laser. If it sees any variation in the output power that might indicate a problem, the computer can turn off that diode laser and turn on a backup diode laser. As for stability requirements, it is now generally believed that any laser can be stabilized if the laser has a frequency actuator capable of tuning the laser frequency as far as it is likely to drift in a measurement time.
Temporal variability of bacterial communities in cryoconite on an alpine glacier.
Franzetti, Andrea; Navarra, Federico; Tagliaferri, Ilario; Gandolfi, Isabella; Bestetti, Giuseppina; Minora, Umberto; Azzoni, Roberto Sergio; Diolaiuti, Guglielmina; Smiraglia, Claudio; Ambrosini, Roberto
2017-04-01
Cryoconite holes, that is, small ponds that form on glacier surface, are considered the most biologically active environments on glaciers. Bacterial communities in these environments have been extensively studied, but often through snapshot studies based on the assumption of a general stability of community structure. In this study, the temporal variation of bacterial communities in cryoconite holes on the Forni Glacier (Italian Alps) was investigated by high throughput DNA sequencing. A temporal change of bacterial communities was observed with autotrophic Cyanobacteria populations dominating communities after snowmelt, and heterotrophic Sphingobacteriales populations increasing in abundance later in the season. Bacterial communities also varied according to hole depth and area, amount of organic matter in the cryoconite and oxygen concentration. However, variation in environmental features explained a lower fraction of the variation in bacterial communities than temporal variation. Temporal change along ablation season seems therefore more important than local environmental conditions in shaping bacterial communities of cryoconite of the Forni Glacier. These findings challenge the assumption that bacterial communities of cryoconite holes are stable. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Romero-García, Marta; de la Cueva-Ariza, Laura; Benito-Aracil, Llucia; Lluch-Canut, Teresa; Trujols-Albet, Joan; Martínez-Momblan, Maria Antonia; Juvé-Udina, Maria-Eulàlia; Delgado-Hito, Pilar
2018-06-01
The aim of this study was to develop and validate the Nursing Intensive-Care Satisfaction Scale to measures satisfaction with nursing care from the critical care patient's perspective. Instruments that measure satisfaction with nursing cares have been designed and validated without taking the patient's perspective into consideration. Despite the benefits and advances in measuring satisfaction with nursing care, none instrument is specifically designed to assess satisfaction in intensive care units. Instrument development. The population were all discharged patients (January 2013 - January 2015) from three Intensive Care Units of a third level hospital (N = 200). All assessment instruments were given to discharged patients and 48 hours later, to analyse the temporal stability, only the questionnaire was given again. The validation process of the scale included the analysis of internal consistency, temporal stability; validity of construct through a confirmatory factor analysis; and criterion validity. Reliability was 0.95. The intraclass correlation coefficient for the total scale was 0.83 indicating a good temporal stability. Construct validity showed an acceptable fit and factorial structure with four factors, in accordance with the theoretical model, being Consequences factor the best correlated with other factors. Criterion validity, presented a correlation between low and high (range: 0.42-0.68). The scale has been designed and validated incorporating the perspective of critical care patients. Thanks to its reliability and validity, this questionnaire can be used both in research and in clinical practice. The scale offers a possibility to assess and develop interventions to improve patient satisfaction with nursing care. © 2018 John Wiley & Sons Ltd.
Daily emotional stress reactivity in emerging adulthood: temporal stability and its predictors.
Howland, Maryhope; Armeli, Stephen; Feinn, Richard; Tennen, Howard
2017-03-01
Emotional reactivity to stress is associated with both mental and physical health and has been assumed to be a stable feature of the person. However, recent evidence suggests that the within-person association between stress and negative affect (i.e., affective stress-reactivity) may increase over time and in times of high stress, at least in older adult populations. The objective of the current study was to examine the across-time stability of stress-reactivity in a younger sample - emerging adulthood - and examine neuroticism, overall stress, social support and life events as potential moderators of stability. Undergraduate students (N = 540, mean age = 18.76 years) participated in a measurement burst design, completing a 30-day daily diary annually for four years. Moderators were assessed once at every burst, while negative affect and stress were assessed daily via a secure website. Findings suggest a relatively high degree of rank-order and mean-level stability in stress-reactivity across the four years, and within-person changes in neuroticism and overall stress predicted concurrent shifts in stress-reactivity. Unlike older samples, there was no evidence of an overall linear change in stability over time, though there was significant variability in linear change trajectories.
De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol
2014-07-01
Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.
Tagliapietra, D; Pessa, G; Cornello, M; Zitelli, A; Magni, P
2016-03-01
We describe the temporal distribution of intertidal macrozoobenthic assemblages in a small marsh pond of the Lagoon of Venice colonized by the seagrass Nanozostera noltii (Hornemman) Tomlinson et Posluzny. Three stations ranging in the degree of N. noltii cover were selected about 100 m apart and sampled 9 times at regular intervals from March 1996 to March 1997. We applied the concepts of resistance and resilience to "natural stress" (e.g. extent of protection from seagrass meadows, exposure of macrozoobenthic assemblages to high temperatures in summer) with the aim to assess the stability of a community along a gradient of seagrass coverage. Results showed that the most structured and taxa-rich macrozoobenthic assemblage occurred at the station covered by a continuous stand of N. noltii, where permanent taxa (i.e. found in 100% of samples) were almost double than those found at the other stations. During the annual cycle, the macrozoobenthic assemblages showed a cyclical pattern, with temporal fluctuations increasing as they moved further away from the seagrass beds. We propose the role of N. noltii offering structural complexity and stability as the more probable explanation to the observed differences between stations in the intertidal assemblages. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effect of emotional arousal on inter-temporal decision-making: an fMRI study.
Sohn, Jin-Hun; Kim, Hyo-Eun; Sohn, Sunju; Seok, Ji-Woo; Choi, Damee; Watanuki, Shigeki
2015-03-07
Previous research has shown that emotion can significantly impact decision-making in humans. The current study examined whether or not and how situationally induced emotion influences people to make inter-temporal choices. Affective pictures were used as experiment stimuli to provoke emotion, immediately followed by subjects' performance of a delay-discounting task to measure impulsivity during functional magnetic resonance imaging. Results demonstrate a subsequent process of increased impulsive decision-making following a prior exposure to both high positive and negative arousal stimuli, compared to the experiment subjects' experiences with neutral stimuli. Findings indicate that increased impulsive decision-making behaviors can occur with high arousal and can be characterized by decreased activities in the cognitive control regions such as prefronto-parietal regions. These results suggest that 'stabilization of high emotional arousal' may facilitate a reduction of impulsive decision-making and implementation of longer term goals.
Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien
2010-01-01
From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Environmental Stability of Plasmonic Biosensors Based on Natural versus Artificial Antibody.
Luan, Jingyi; Xu, Ting; Cashin, John; Morrissey, Jeremiah J; Kharasch, Evan D; Singamaneni, Srikanth
2018-06-13
Plasmonic biosensors based on the refractive index sensitivity of localized surface plasmon resonance (LSPR) are considered to be highly promising for on-chip and point-of-care biodiagnostics. However, most of the current plasmonic biosensors employ natural antibodies as biorecognition elements, which can easily lose their biorecognition ability upon exposure to environmental stressors (e.g., temperature and humidity). Plasmonic biosensors relying on molecular imprints as recognition elements (artificial antibodies) are hypothesized to be an attractive alternative for applications in resource-limited settings due to their excellent thermal, chemical, and environmental stability. In this work, we provide a comprehensive comparison of the stability of plasmonic biosensors based on natural and artificial antibodies. Although the natural antibody-based plasmonic biosensors exhibit superior sensitivity, their stability (temporal, thermal, and chemical) was found to be vastly inferior to those based on artificial antibodies. Our results convincingly demonstrate that these novel classes of artificial antibody-based plasmonic biosensors are highly attractive for point-of-care and resource-limited conditions where tight control over transport, storage, and handling conditions is not possible.
Asynchrony among local communities stabilises ecosystem function of metacommunities.
Wilcox, Kevin R; Tredennick, Andrew T; Koerner, Sally E; Grman, Emily; Hallett, Lauren M; Avolio, Meghan L; La Pierre, Kimberly J; Houseman, Gregory R; Isbell, Forest; Johnson, David Samuel; Alatalo, Juha M; Baldwin, Andrew H; Bork, Edward W; Boughton, Elizabeth H; Bowman, William D; Britton, Andrea J; Cahill, James F; Collins, Scott L; Du, Guozhen; Eskelinen, Anu; Gough, Laura; Jentsch, Anke; Kern, Christel; Klanderud, Kari; Knapp, Alan K; Kreyling, Juergen; Luo, Yiqi; McLaren, Jennie R; Megonigal, Patrick; Onipchenko, Vladimir; Prevéy, Janet; Price, Jodi N; Robinson, Clare H; Sala, Osvaldo E; Smith, Melinda D; Soudzilovskaia, Nadejda A; Souza, Lara; Tilman, David; White, Shannon R; Xu, Zhuwen; Yahdjian, Laura; Yu, Qiang; Zhang, Pengfei; Zhang, Yunhai
2017-12-01
Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Assessment of ground-based monitoring techniques applied to landslide investigations
NASA Astrophysics Data System (ADS)
Uhlemann, S.; Smith, A.; Chambers, J.; Dixon, N.; Dijkstra, T.; Haslam, E.; Meldrum, P.; Merritt, A.; Gunn, D.; Mackay, J.
2016-01-01
A landslide complex in the Whitby Mudstone Formation at Hollin Hill, North Yorkshire, UK is periodically re-activated in response to rainfall-induced pore-water pressure fluctuations. This paper compares long-term measurements (i.e., 2009-2014) obtained from a combination of monitoring techniques that have been employed together for the first time on an active landslide. The results highlight the relative performance of the different techniques, and can provide guidance for researchers and practitioners for selecting and installing appropriate monitoring techniques to assess unstable slopes. Particular attention is given to the spatial and temporal resolutions offered by the different approaches that include: Real Time Kinematic-GPS (RTK-GPS) monitoring of a ground surface marker array, conventional inclinometers, Shape Acceleration Arrays (SAA), tilt meters, active waveguides with Acoustic Emission (AE) monitoring, and piezometers. High spatial resolution information has allowed locating areas of stability and instability across a large slope. This has enabled identification of areas where further monitoring efforts should be focused. High temporal resolution information allowed the capture of 'S'-shaped slope displacement-time behaviour (i.e. phases of slope acceleration, deceleration and stability) in response to elevations in pore-water pressures. This study shows that a well-balanced suite of monitoring techniques that provides high temporal and spatial resolutions on both measurement and slope scale is necessary to fully understand failure and movement mechanisms of slopes. In the case of the Hollin Hill landslide it enabled detailed interpretation of the geomorphological processes governing landslide activity. It highlights the benefit of regularly surveying a network of GPS markers to determine areas for installation of movement monitoring techniques that offer higher resolution both temporally and spatially. The small sensitivity of tilt meter measurements to translational movements limited the ability to record characteristic 'S'-shaped landslide movements at Hollin Hill, which were identified using SAA and AE measurements. This high sensitivity to landslide movements indicates the applicability of SAA and AE monitoring to be used in early warning systems, through detecting and quantifying accelerations of slope movement.
Westerhof, Gerben J; Keyes, Corey L M
2006-09-01
This study empirically tested the self-systems theory of subjective change in light of the rapid change after the fall of the Berlin Wall. The theory predicts that individuals have a tendency to perceive stability and that perceived stability exerts a strong positive effect on subjective well-being. We would expect perceptions of decline and, to a lesser extent, perceptions of improvement to be related to lower levels of subjective well-being. Data were from respondents aged 40-85 years who participated in the German Aging Survey. We used measures of well-being and temporal comparisons during the past 10 years (1986-1996). West Germans reported more stability than East Germans, in particular in the public domain and in older age groups. Compared with perceptions of stability, perceptions of decline were related to less life satisfaction and more negative affect, and perceptions of growth to more negative affect. Temporal comparisons were unrelated to positive affect. Our findings both confirm and reject the self-systems theory of subjective change as it relates to the fall of the Berlin Wall. Studying temporal comparisons is important in understanding the effects of historical events and their timing within an individual life course.
Morphometric changes in Yellow-headed Blackbirds during summer in central North Dakota
Twedt, D.J.; Linz, G.M.
2002-01-01
Temporal stability of morphometric measurements is desirable when using avian morphology as a predictor of geographic origin. Therefore, to assess their temporal stability, we examined changes in morphology of Yellow-headed Blackbirds (Xanthocephalus xanthocephalus) from central North Dakota during summer. Measurements differed among age classes and between sexes. As expected, due to growth and maturation, measurements on hatching-year birds increased over summer. Measurements of adult plumage fluctuated with prebasic molt and exhibited age-specific discontinuities. Body mass of adult birds increased over summer, whereas both culmen length and skull length decreased. Only body length and length of internal skeletal elements were temporally stable in adult Yellow-headed Blackbirds.
Mapping child maltreatment risk: a 12-year spatio-temporal analysis of neighborhood influences.
Gracia, Enrique; López-Quílez, Antonio; Marco, Miriam; Lila, Marisol
2017-10-18
'Place' matters in understanding prevalence variations and inequalities in child maltreatment risk. However, most studies examining ecological variations in child maltreatment risk fail to take into account the implications of the spatial and temporal dimensions of neighborhoods. In this study, we conduct a high-resolution small-area study to analyze the influence of neighborhood characteristics on the spatio-temporal epidemiology of child maltreatment risk. We conducted a 12-year (2004-2015) small-area Bayesian spatio-temporal epidemiological study with all families with child maltreatment protection measures in the city of Valencia, Spain. As neighborhood units, we used 552 census block groups. Cases were geocoded using the family address. Neighborhood-level characteristics analyzed included three indicators of neighborhood disadvantage-neighborhood economic status, neighborhood education level, and levels of policing activity-, immigrant concentration, and residential instability. Bayesian spatio-temporal modelling and disease mapping methods were used to provide area-specific risk estimations. Results from a spatio-temporal autoregressive model showed that neighborhoods with low levels of economic and educational status, with high levels of policing activity, and high immigrant concentration had higher levels of substantiated child maltreatment risk. Disease mapping methods were used to analyze areas of excess risk. Results showed chronic spatial patterns of high child maltreatment risk during the years analyzed, as well as stability over time in areas of low risk. Areas with increased or decreased child maltreatment risk over the years were also observed. A spatio-temporal epidemiological approach to study the geographical patterns, trends over time, and the contextual determinants of child maltreatment risk can provide a useful method to inform policy and action. This method can offer a more accurate description of the problem, and help to inform more localized prevention and intervention strategies. This new approach can also contribute to an improved epidemiological surveillance system to detect ecological variations in risk, and to assess the effectiveness of the initiatives to reduce this risk.
Measuring the iron spectral opacity in solar conditions using a double ablation front scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colaitis, A.; Ducret, J. E.; Turck-Chieze, S
We propose a new method to achieve hydrodynamic conditions relevant for the investigation of the radiation transport properties of the plasma at the base of the solar convection zone. The method is designed in the framework of opacity measurements with high-power lasers and exploits the temporal and spatial stability of hydrodynamic parameters in counter-propagating Double Ablation Front (DAF) structures.
Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papp, Scott B.; Diddams, Scott A.
2011-11-15
We report on the fabrication of high-Q, fused-quartz microresonators and the parametric generation of a frequency comb with 36-GHz line spacing using them. We have characterized the intrinsic stability of the comb in both the time and frequency domains to assess its suitability for future precision metrology applications. Intensity autocorrelation measurements and line-by-line comb control reveal near-transform-limited picosecond pulse trains that are associated with good relative phase and amplitude stability of the comb lines. The comb's 36-GHz line spacing can be readily photodetected, which enables measurements of its intrinsic and absolute phase fluctuations.
USDA-ARS?s Scientific Manuscript database
Soil-structural stability (expressed in terms of aggregate stability and pore size distribution) depends on (i) soil inherent properties, (ii) extrinsic condition prevailing in the soil that may vary temporally and spatially, and (iii) addition of soil amendments. Different soil management practices...
NASA Astrophysics Data System (ADS)
Piburn, J.; Stewart, R.; Morton, A.
2017-10-01
Identifying erratic or unstable time-series is an area of interest to many fields. Recently, there have been successful developments towards this goal. These new developed methodologies however come from domains where it is typical to have several thousand or more temporal observations. This creates a challenge when attempting to apply these methodologies to time-series with much fewer temporal observations such as for socio-cultural understanding, a domain where a typical time series of interest might only consist of 20-30 annual observations. Most existing methodologies simply cannot say anything interesting with so few data points, yet researchers are still tasked to work within in the confines of the data. Recently a method for characterizing instability in a time series with limitedtemporal observations was published. This method, Attribute Stability Index (ASI), uses an approximate entropy based method tocharacterize a time series' instability. In this paper we propose an explicitly spatially weighted extension of the Attribute StabilityIndex. By including a mechanism to account for spatial autocorrelation, this work represents a novel approach for the characterizationof space-time instability. As a case study we explore national youth male unemployment across the world from 1991-2014.
Salorinne, Kirsi; Man, Renee W Y; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M
2017-05-22
NHC-Au I complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching of the particles after 24 h; however larger plasmonic particles showed greater resistance to thiol treatment. These water-soluble, bio-compatible nanoparticles are promising candidates for use in photoacoustic imaging, with even the smallest nanoparticles giving reliable photoacoustic signals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The numerical dynamic for highly nonlinear partial differential equations
NASA Technical Reports Server (NTRS)
Lafon, A.; Yee, H. C.
1992-01-01
Problems associated with the numerical computation of highly nonlinear equations in computational fluid dynamics are set forth and analyzed in terms of the potential ranges of spurious behaviors. A reaction-convection equation with a nonlinear source term is employed to evaluate the effects related to spatial and temporal discretizations. The discretization of the source term is described according to several methods, and the various techniques are shown to have a significant effect on the stability of the spurious solutions. Traditional linearized stability analyses cannot provide the level of confidence required for accurate fluid dynamics computations, and the incorporation of nonlinear analysis is proposed. Nonlinear analysis based on nonlinear dynamical systems complements the conventional linear approach and is valuable in the analysis of hypersonic aerodynamics and combustion phenomena.
Naicker, Preshanta; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Modenese, Luca; Kavanagh, Justin J
2017-02-01
Anticholinergic medications largely exert their effects due to actions on the muscarinic receptor, which mediates the functions of acetylcholine in the peripheral and central nervous systems. In the central nervous system, acetylcholine plays an important role in the modulation of movement. This study investigated the effects of over-the-counter medications with varying degrees of central anticholinergic properties on fixation stability, saccadic response time and the dynamics associated with this eye movement during a temporally-cued visual reaction time task, in order to establish the significance of central cholinergic pathways in influencing eye movements during reaction time tasks. Twenty-two participants were recruited into the placebo-controlled, human double-blind, four-way crossover investigation. Eye tracking technology recorded eye movements while participants reacted to visual stimuli following temporally informative and uninformative cues. The task was performed pre-ingestion as well as 0.5 and 2 h post-ingestion of promethazine hydrochloride (strong centrally acting anticholinergic), hyoscine hydrobromide (moderate centrally acting anticholinergic), hyoscine butylbromide (anticholinergic devoid of central properties) and a placebo. Promethazine decreased fixation stability during the reaction time task. In addition, promethazine was the only drug to increase saccadic response time during temporally informative and uninformative cued trials, whereby effects on response time were more pronounced following temporally informative cues. Promethazine also decreased saccadic amplitude and increased saccadic duration during the temporally-cued reaction time task. Collectively, the results of the study highlight the significant role that central cholinergic pathways play in the control of eye movements during tasks that involve stimulus identification and motor responses following temporal cues.
Incidental rewarding cues influence economic decisions in people with obesity.
Simmank, Jakob; Murawski, Carsten; Bode, Stefan; Horstmann, Annette
2015-01-01
Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short.
Smit, Dirk J A; Anokhin, Andrey P
2017-05-01
The brain continuously develops and reorganizes to support an expanding repertoire of behaviors and increasingly complex cognition. These processes may, however, also result in the appearance or disappearance of specific neurodevelopmental disorders such as attention problems. To investigate whether brain activity changed during adolescence, how genetics shape this change, and how these changes were related to attention problems, we measured EEG activity in 759 twins and siblings, assessed longitudinally in four waves (12, 14, 16, and 18years of age). Attention problems were assessed with the SWAN at waves 12, 14, and 16. To characterize functional brain development, we used a measure of temporal stability (TS) of brain oscillations over the recording time of 5min reflecting the tendency of a brain to maintain the same oscillatory state for longer or shorter periods. Increased TS may reflect the brain's tendency to maintain stability, achieve focused attention, and thus reduce "mind wandering" and attention problems. The results indicate that brain TS is increased across the scalp from 12 to 18. TS showed large individual differences that were heritable. Change in TS (alpha oscillations) was heritable between 12 and 14 and between 14 and 16 for the frontal brain areas. Absolute levels of brain TS at each wave were positively correlated with attention problems but not significantly. High and low attention problems subjects showed different developmental trajectories in TS, which was significant in a cluster of frontal leads. These results indicate that trajectories in brain TS development are a biomarker for the developing brain. TS in brain oscillations is highly heritable, and age-related change in TS is also heritable in selected brain areas. These results suggest that high and low attention problems subjects are at different stages of brain development. Copyright © 2016. Published by Elsevier B.V.
Incidental rewarding cues influence economic decisions in people with obesity
Simmank, Jakob; Murawski, Carsten; Bode, Stefan; Horstmann, Annette
2015-01-01
Recent research suggests that obesity is linked to prominent alterations in learning and decision-making. This general difference may also underlie the preference for immediately consumable, highly palatable but unhealthy and high-calorie foods. Such poor food-related inter-temporal decision-making can explain weight gain; however, it is not yet clear whether this deficit can be generalized to other domains of inter-temporal decision-making, for example financial decisions. Further, little is known about the stability of decision-making behavior in obesity, especially in the presence of rewarding cues. To answer these questions, obese and lean participants (n = 52) completed two sessions of a novel priming paradigm including a computerized monetary delay discounting task. In the first session, general differences between groups in financial delay discounting were measured. In the second session, we tested the general stability of discount rates. Additionally, participants were primed by affective visual cues of different contextual categories before making financial decisions. We found that the obese group showed stronger discounting of future monetary rewards than the lean group, but groups did not differ in their general stability between sessions nor in their sensitivity toward changes in reward magnitude. In the obese group, a fast decrease of subjective value over time was directly related to a higher tendency for opportunistic eating. Obese in contrast to lean people were primed by the affective cues, showing a sex-specific pattern of priming direction. Our findings demonstrate that environments rich of cues, aiming at inducing unhealthy consumer decisions, can be highly detrimental for obese people. It also underscores that obesity is not merely a medical condition but has a strong cognitive component, meaning that current dietary and medical treatment strategies may fall too short. PMID:26528158
Event-Based Tone Mapping for Asynchronous Time-Based Image Sensor
Simon Chane, Camille; Ieng, Sio-Hoi; Posch, Christoph; Benosman, Ryad B.
2016-01-01
The asynchronous time-based neuromorphic image sensor ATIS is an array of autonomously operating pixels able to encode luminance information with an exceptionally high dynamic range (>143 dB). This paper introduces an event-based methodology to display data from this type of event-based imagers, taking into account the large dynamic range and high temporal accuracy that go beyond available mainstream display technologies. We introduce an event-based tone mapping methodology for asynchronously acquired time encoded gray-level data. A global and a local tone mapping operator are proposed. Both are designed to operate on a stream of incoming events rather than on time frame windows. Experimental results on real outdoor scenes are presented to evaluate the performance of the tone mapping operators in terms of quality, temporal stability, adaptation capability, and computational time. PMID:27642275
Fox, Jessica L.; Aptekar, Jacob W.; Zolotova, Nadezhda M.; Shoemaker, Patrick A.; Frye, Mark A.
2014-01-01
The behavioral algorithms and neural subsystems for visual figure–ground discrimination are not sufficiently described in any model system. The fly visual system shares structural and functional similarity with that of vertebrates and, like vertebrates, flies robustly track visual figures in the face of ground motion. This computation is crucial for animals that pursue salient objects under the high performance requirements imposed by flight behavior. Flies smoothly track small objects and use wide-field optic flow to maintain flight-stabilizing optomotor reflexes. The spatial and temporal properties of visual figure tracking and wide-field stabilization have been characterized in flies, but how the two systems interact spatially to allow flies to actively track figures against a moving ground has not. We took a systems identification approach in flying Drosophila and measured wing-steering responses to velocity impulses of figure and ground motion independently. We constructed a spatiotemporal action field (STAF) – the behavioral analog of a spatiotemporal receptive field – revealing how the behavioral impulse responses to figure tracking and concurrent ground stabilization vary for figure motion centered at each location across the visual azimuth. The figure tracking and ground stabilization STAFs show distinct spatial tuning and temporal dynamics, confirming the independence of the two systems. When the figure tracking system is activated by a narrow vertical bar moving within the frontal field of view, ground motion is essentially ignored despite comprising over 90% of the total visual input. PMID:24198267
Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael
2017-07-01
The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.
Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.
Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto
2015-01-01
We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).
Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.
Gloria-Soria, A; Kellner, D A; Brown, J E; Gonzalez-Acosta, C; Kamgang, B; Lutwama, J; Powell, J R
2016-06-01
The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success. © 2016 The Royal Entomological Society.
The teamwork in assertive community treatment (TACT) scale: development and validation.
Wholey, Douglas R; Zhu, Xi; Knoke, David; Shah, Pri; Zellmer-Bruhn, Mary; Witheridge, Thomas F
2012-11-01
Team design is meticulously specified for assertive community treatment (ACT) teams, yet performance can vary across ACT teams, even those with high fidelity. By developing and validating the Teamwork in Assertive Community Treatment (TACT) scale, investigators examined the role of team processes in ACT performance. The TACT scale measuring ACT teamwork was developed from a conceptual model grounded in organizational research and adapted for the ACT and mental health context. TACT subscales were constructed after exploratory and confirmatory factor analyses. The reliability, discriminant validity, predictive validity, temporal stability, internal consistency, and within-team agreement were established with surveys from approximately 300 members of 26 Minnesota ACT teams who completed the questionnaire three times, at six-month intervals. Nine TACT subscales emerged from the analyses: exploration, exploitation of new and existing knowledge, psychological safety, goal agreement, conflict, constructive controversy, information accessibility, encounter preparedness, and consumer-centered care. These nine subscales demonstrated fit and temporal stability (confirmatory factor analysis), high internal consistency (Cronbach's alpha), and within-team agreement and between-team differences (rwg and intraclass correlations). Correlational analyses of the subscales revealed that they measure related yet distinctive aspects of ACT team processes, and regression analyses demonstrated predictive validity (encounter preparedness is related to staff outcomes). The TACT scale demonstrated high reliability and validity and can be included in research and evaluation of teamwork in ACT and mental health teams.
He, Xiaorui; Qian, Jiazhong; Liu, Zufa; Lu, Yuehan; Ma, Lei; Zhao, Weidong; Kang, Bo
2017-12-01
Understanding the temporospatial variation in nitrogen pollution in groundwater and the associated controlling factors is important to establish management practices that ensure sustainable use of groundwater. In this study, we analyzed inorganic nitrogen content (nitrate, nitrite, and ammonium) in 1164 groundwater samples from shallow, middle-deep, and deep aquifers in Zhanjiang, a highly urbanized city in the southern China. Our data span a range of 7 years from 2005 to 2011. Results show that shallow aquifers had been heavily contaminated by nitrate and ammonium. Temporal patterns show that N contamination levels remained high and relatively stable over time in urban areas. This stability and high concentration is hypothesized as a result of uncontrolled, illicit sewer discharges from nearby business facilities. Groundwater in urban land and farmland displays systematic differences in geochemical characteristics. Collectively, our findings demonstrate the importance of continuously monitoring groundwater quality and strictly regulating sewage discharges in Zhanjiang.
NASA Astrophysics Data System (ADS)
Wilkinson, A.; Guala, M.; Hondzo, M.
2017-12-01
Harmful Algal Blooms (HAB) are made up of potentially toxic freshwater microorganisms called cyanobacteria, because of this they are a ecological and public health hazard. The occurrences of toxic HAB are unpredictable and highly spatially and temporary variable in freshwater ecosystems. To study the abiotic drivers for toxic HAB, a floating research station has been deployed in a hyper-eutrophic lake in Madison Lake, Minnesota, from June-October 2016. This research station provides full depth water quality (hourly) and meteorological monitoring (5 minutes). Water quality monitoring is performed by an autonomously traversed water quality sonde that provides chemical, physical and biological measurements; including phycocyanin, a photosynthetic pigment distinct to cyanobacteria. A bloom of cyanobacteria recorded in the epiliminion in mid-July was driven by prolonged strong thermal stratification in the water column, high surface water temperatures and high phosphate concentrations in the epiliminion. The high biovolume (BV) persisted until late September and was sustained below the surface after stratification weakened, when the thermocline did not confine cyanobacteria-rich layers any more, and cyanobacteria vertical heterogeneities decayed in the water column. High correlations among BV stratification, surface water temperature, and stratification stability informed the development of a quantitative relationship to determine how BV heterogeneities vary with thermal structure in the water column. The BV heterogeneity decreased with thermal stratification stability and surface water temperature, and the dynamic lake stability described by the Lake Number. Finally the location of maximum BV accumulation showed diurnal patterns ie. BV peaks were observed at 1 m depth during the day and deeper layers during the night, which followed patterns in light penetration and thermocline depth. These findings capture cyanobacteria vertical and temporal heterogeneities on a on full depth, seasonal scale and quantify BV distribution throughout the water column under different stratification conditions, which can be important for mitigating risks of contamination of drinking water and recreational exposure.
Kreisinger, Jakub; Kropáčková, Lucie; Petrželková, Adéla; Adámková, Marie; Tomášek, Oldřich; Martin, Jean-François; Michálková, Romana; Albrecht, Tomáš
2017-01-01
Animal bodies are inhabited by a taxonomically and functionally diverse community of symbiotic and commensal microorganisms. From an ecological and evolutionary perspective, inter-individual variation in host-associated microbiota contributes to physiological and immune system variation. As such, host-associated microbiota may be considered an integral part of the host’s phenotype, serving as a substrate for natural selection. This assumes that host-associated microbiota exhibits high temporal stability, however, and that its composition is shaped by trans-generational transfer or heritable host-associated microbiota modulators encoded by the host genome. Although this concept is widely accepted, its crucial assumptions have rarely been tested in wild vertebrate populations. We performed 16S rRNA metabarcoding on an extensive set of fecal microbiota (FM) samples from an insectivorous, long-distance migratory bird, the barn swallow (Hirundo rustica). Our data revealed clear differences in FM among juveniles and adults as regards taxonomic and functional composition, diversity and co-occurrence network complexity. Multiple FM samples from the same juvenile or adult collected within single breeding seasons exhibited higher similarity than expected by chance, as did adult FM samples over two consecutive years. Despite low effect sizes for FM stability over time at the community level, we identified an adult FM subset with relative abundances exhibiting significant temporal consistency, possibly inducing long-term effects on the host phenotype. Our data also indicate a slight maternal (but not paternal) effect on FM composition in social offspring, though this is unlikely to persist into adulthood. We discuss our findings in the context of both evolution and ecology of microbiota vs. host interactions and barn swallow biology. PMID:28220109
Wide field of view common-path lateral-shearing digital holographic interference microscope
NASA Astrophysics Data System (ADS)
Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun
2017-12-01
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes.
Halamish, Vered; Nussinson, Ravit; Ben-Ari, Liat
2013-09-01
Metamemory judgments may rely on 2 bases of information: subjective experience and abstract theories about memory. On the basis of construal level theory, we predicted that psychological distance and construal level (i.e., concrete vs. abstract thinking) would have a qualitative impact on the relative reliance on these 2 bases: When considering learning from proximity or under a low-construal mindset, learners would rely more heavily on their experience, whereas when considering learning from a distance or under a high-construal mindset, they would rely more heavily on their abstract theories. Consistent with this prediction, results of 2 experiments revealed that temporal distance (Experiment 1) and construal level (Experiment 2) affected the stability bias--the failure to predict the benefits of learning. When considering learning from proximity or using a low-construal mindset, participants relied less heavily on their theory regarding the benefits of learning and were therefore insensitive to future learning. However, when considering learning from temporal distance or using a high-construal mindset, participants relied more heavily on their theory and were therefore better able to predict the benefits of future learning, thus overcoming the stability bias. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Wide field of view common-path lateral-shearing digital holographic interference microscope.
Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun
2017-12-01
Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang Jie; Shu Ting; Wang Hui
2012-07-15
The influence of fibrous velvet cathodes on the electrical stability of a planar high-power diode powered by a {approx}230 kV, {approx}110 ns pulse has been investigated. The current density was on the order of {approx}123 A/cm{sup 2}. A combination of time-resolved electrical and optical diagnostics has been employed to study the basic phenomenology of the temporal and spatial evolution of the diode plasmas. Additionally, an impedance model was used to extract information about this plasma from voltage and current profiles. The results from the two diagnostics were compared. By comparison with commercial polymer velvet cathode, the dense carbon fiber velvetmore » cathode showed superior long-term electrical stability as judged by the change in cathode turn-on field, ignition delays, diode impedance, and surface plasma characteristics during the voltage flattop, a promising result for applications where reliable operation at high power is required. Finally, it was shown that the interaction of the electron beam with the stainless steel anode did not lead to the formation of anode plasma. These results may be of interest to the high power microwave systems with cold cathodes.« less
NASA Astrophysics Data System (ADS)
Lazecky, Milan; Rapant, Petr; Blaha, Pavel; Perissin, Daniele
2016-08-01
For the work, we have achieved 20 Radarsat-2 acquisitions in fine beam mode within ESA project C1P.21629 - Evaluation of Potential Threats to Stability of Linear Structures using InSAR Technology. These acquisitions show deformations in Brno city between August 2014 and October 2015 with a regular step of 24 days temporal difference. Also, we have additionally achieved a series of 75 Cosmo SkyMed images with temporal step every 16 days in average, for dates between June 2011 and July 2014. The Cosmo SkyMed dataset partially overlaps with the reference measurements of tilt and height changes. After the end of the intensive measurements, the PS InSAR time series can deliver knowledge about continuation of movement and depict the date of final stabilization of the area. The accuracy can be validated using the limited number of the continuing warranty levelling mission. We have realized that the available dataset can be used also for monitoring of other events. We provide an example of potential detection of a cavity under a house in Brno-Bystrc.
Memory processing in great apes: the effect of time and sleep
Martin-Ordas, Gema; Call, Josep
2011-01-01
Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference. PMID:21632621
Memory processing in great apes: the effect of time and sleep.
Martin-Ordas, Gema; Call, Josep
2011-12-23
Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference.
Temporally variable environments maintain more beta-diversity in Mediterranean landscapes
NASA Astrophysics Data System (ADS)
Martin, Beatriz; Ferrer, Miguel
2015-10-01
We examined the relationships between different environmental factors and the alpha and beta-diversity of terrestrial vertebrates (birds, mammals, amphibians and reptiles) in a Mediterranean region at the landscape level. We investigated whether the mechanisms underlying alpha and beta-diversity patterns are influenced by energy availability, habitat heterogeneity and temporal variability and if the drivers of the diversity patterns differed between both components of diversity. We defined alpha-diversity as synonym of species richness whereas beta-diversity was measured as distinctiveness. We evaluated a total of 13 different predictors using generalized linear mixed model (GLMM) analysis. Habitat spatial heterogeneity increased alpha-diversity, but contrastingly, it did not significantly affect beta-diversity among sites. Disturbed landscapes may show higher habitat spatial variation and higher alpha-diversity due to the contribution of highly generalist species that are wide-distributed and do not differ in composition (beta-diversity) among different sites within the region. Contrastingly, higher beta-diversity levels were negatively related to more stable sites in terms of temporal environmental variation. This negative relationship between environmental stability and beta-diversity levels is explained in terms of species adaptation to the local environmental conditions. Our study highlights the importance of temporal environmental variability in maintaining beta-diversity patterns under highly variable environmental conditions.
Hopper, Richard A; Sandercoe, Gavin; Woo, Albert; Watts, Robyn; Kelley, Patrick; Ettinger, Russell E; Saltzman, Babette
2010-11-01
Le Fort III distraction requires generation of bone in the pterygomaxillary region. The authors performed retrospective digital analysis on temporal fine-cut computed tomographic images to quantify both radiographic evidence of pterygomaxillary region bone formation and relative maxillary stability. Fifteen patients with syndromic midface hypoplasia were included in the study. The average age of the patients was 8.7 years; 11 had either Crouzon or Apert syndrome. The average displacement of the maxilla during distraction was 16.2 mm (range, 7 to 31 mm). Digital analysis was performed on fine-cut computed tomographic scans before surgery, at device removal, and at annual follow-up. Seven patients also had mid-consolidation computed tomographic scans. Relative maxillary stability and density of radiographic bone in the pterygomaxillary region were calculated between each scan. There was no evidence of clinically significant maxillary relapse, rotation, or growth between the end of consolidation and 1-year follow-up, other than a relatively small 2-mm subnasal maxillary vertical growth. There was an average radiographic ossification of 0.5 mm/mm advancement at the time of device removal, with a 25th percentile value of 0.3 mm/mm. The time during consolidation that each patient reached the 25th percentile of pterygomaxillary region bone density observed in this series of clinically stable advancements ranged from 1.3 to 9.8 weeks (average, 3.7 weeks). There was high variability in the amount of bone formed in the pterygomaxillary region associated with clinical stability of the advanced Le Fort III segment. These data suggest that a subsection of patients generate the minimal amount of pterygomaxillary region bone formation associated with advancement stability as early as 4 weeks into consolidation.
Huttunen, K-L; Mykrä, H; Oksanen, J; Astorga, A; Paavola, R; Muotka, T
2017-05-03
One of the key challenges to understanding patterns of β diversity is to disentangle deterministic patterns from stochastic ones. Stochastic processes may mask the influence of deterministic factors on community dynamics, hindering identification of the mechanisms causing variation in community composition. We studied temporal β diversity (among-year dissimilarity) of macroinvertebrate communities in near-pristine boreal streams across 14 years. To assess whether the observed β diversity deviates from that expected by chance, and to identify processes (deterministic vs. stochastic) through which different explanatory factors affect community variability, we used a null model approach. We observed that at the majority of sites temporal β diversity was low indicating high community stability. When stochastic variation was unaccounted for, connectivity was the only variable explaining temporal β diversity, with weakly connected sites exhibiting higher community variability through time. After accounting for stochastic effects, connectivity lost importance, suggesting that it was related to temporal β diversity via random colonization processes. Instead, β diversity was best explained by in-stream vegetation, community variability decreasing with increasing bryophyte cover. These results highlight the potential of stochastic factors to dampen the influence of deterministic processes, affecting our ability to understand and predict changes in biological communities through time.
Spatial-temporal variability of soil moisture and its estimation across scales
NASA Astrophysics Data System (ADS)
Brocca, L.; Melone, F.; Moramarco, T.; Morbidelli, R.
2010-02-01
The soil moisture is a quantity of paramount importance in the study of hydrologic phenomena and soil-atmosphere interaction. Because of its high spatial and temporal variability, the soil moisture monitoring scheme was investigated here both for soil moisture retrieval by remote sensing and in view of the use of soil moisture data in rainfall-runoff modeling. To this end, by using a portable Time Domain Reflectometer, a sequence of 35 measurement days were carried out within a single year in seven fields located inside the Vallaccia catchment, central Italy, with area of 60 km2. Every sampling day, soil moisture measurements were collected at each field over a regular grid with an extension of 2000 m2. The optimization of the monitoring scheme, with the aim of an accurate mean soil moisture estimation at the field and catchment scale, was addressed by the statistical and the temporal stability. At the field scale, the number of required samples (NRS) to estimate the field-mean soil moisture within an accuracy of 2%, necessary for the validation of remotely sensed soil moisture, ranged between 4 and 15 for almost dry conditions (the worst case); at the catchment scale, this number increased to nearly 40 and it refers to almost wet conditions. On the other hand, to estimate the mean soil moisture temporal pattern, useful for rainfall-runoff modeling, the NRS was found to be lower. In fact, at the catchment scale only 10 measurements collected in the most "representative" field, previously determined through the temporal stability analysis, can reproduce the catchment-mean soil moisture with a determination coefficient, R2, higher than 0.96 and a root-mean-square error, RMSE, equal to 2.38%. For the "nonrepresentative" fields the accuracy in terms of RMSE decreased, but similar R2 coefficients were found. This insight can be exploited for the sampling in a generic field when it is sufficient to know an index of soil moisture temporal pattern to be incorporated in conceptual rainfall-runoff models. The obtained results can address the soil moisture monitoring network design from which a reliable soil moisture temporal pattern at the catchment scale can be derived.
Daily Emotional Stress Reactivity in Emerging Adulthood: Temporal Stability and its Predictors
Howland, Maryhope; Armeli, Stephen; Feinn, Richard; Tennen, Howard
2017-01-01
Background & Objectives Emotional reactivity to stress is associated with both mental and physical health and has been assumed to be a stable feature of the person. However recent evidence suggests that the within-person association between stress and negative affect (e.g. affective stress-reactivity) may increase over time and in times of high stress, at least in older adult populations. The objective of the current study was to examine the across-time stability of stress-reactivity in a younger sample—emerging adulthood—and examine neuroticism, overall stress, social support and life events as potential moderators of stability. Design & Methods Undergraduate students (N = 540, mean age = 18.76 years) participated in a measurement burst design, completing a 30-day daily diary annually for four years. Moderators were assessed once at every burst, while negative affect and stress were assessed daily via a secure website. Results & Conclusions Findings suggest a relatively high degree of rank-order and mean-level stability in stress-reactivity across the four years, and within-person changes in neuroticism and overall stress predicted concurrent shifts in stress-reactivity. Unlike older samples, there was no evidence of an overall linear change in stability over time, though there was significant variability in linear change trajectories. PMID:27635675
Siira, Virva; Wahlberg, Karl-Erik; Hakko, Helinä; Tienari, Pekka
2013-11-30
Stability has been considered an important aspect of vulnerability to schizophrenia. The temporal stability of the scales in the Minnesota Multiphasic Personality Inventory (MMPI) was examined, using adoptees from the Finnish Adoptive Family Study of Schizophrenia. Adoptees who were high-risk (HR) offspring of biological mothers having a schizophrenia spectrum disorder (n=28) and low-risk (LR) controls (n=46) were evaluated using 15 MMPI scales at the initial assessment (HR, mean age 24 years; LR, mean age 23 years) and at the follow-up assessment after a mean interval of 11 years. Stability of the MMPI scales was also assessed in the groups of adoptees, assigned according to the adoptive parents'(n=44) communication style using Communication Deviance (CD) scale as an environmental factor. Initial Lie, Frequency, Correction, Psychopathic Deviate, Schizophrenia, Manifest Hostility, Hypomania, Phobias, Psychoticism, Religious Fundamentalism, Social Maladjustment, Paranoid Schizophrenia, Golden-Meehl Indicators, Schizophrenia Proneness and 8-6 scale scores significantly predicted the MMPI scores at the follow-up assessment indicating stability in the characteristics of thinking, affective expression, social relatedness and volition. Low CD in the family had an effect on the stabilization of personality traits such as social withdrawal and restricted affectivity assessed by Correction and Hostility. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Implicit time accurate simulation of unsteady flow
NASA Astrophysics Data System (ADS)
van Buuren, René; Kuerten, Hans; Geurts, Bernard J.
2001-03-01
Implicit time integration was studied in the context of unsteady shock-boundary layer interaction flow. With an explicit second-order Runge-Kutta scheme, a reference solution to compare with the implicit second-order Crank-Nicolson scheme was determined. The time step in the explicit scheme is restricted by both temporal accuracy as well as stability requirements, whereas in the A-stable implicit scheme, the time step has to obey temporal resolution requirements and numerical convergence conditions. The non-linear discrete equations for each time step are solved iteratively by adding a pseudo-time derivative. The quasi-Newton approach is adopted and the linear systems that arise are approximately solved with a symmetric block Gauss-Seidel solver. As a guiding principle for properly setting numerical time integration parameters that yield an efficient time accurate capturing of the solution, the global error caused by the temporal integration is compared with the error resulting from the spatial discretization. Focus is on the sensitivity of properties of the solution in relation to the time step. Numerical simulations show that the time step needed for acceptable accuracy can be considerably larger than the explicit stability time step; typical ratios range from 20 to 80. At large time steps, convergence problems that are closely related to a highly complex structure of the basins of attraction of the iterative method may occur. Copyright
Bowles, Marlin L; Jones, Michael D
2013-03-01
Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.
NASA Astrophysics Data System (ADS)
Feltz, W. F.; Smith, W. L.; Howell, H. B.; Knuteson, R. O.; Woolf, H.; Revercomb, H. E.
2003-05-01
The Department of Energy Atmospheric Radiation Measurement Program (ARM) has funded the development and installation of five ground-based atmospheric emitted radiance interferometer (AERI) systems at the Southern Great Plains (SGP) site. The purpose of this paper is to provide an overview of the AERI instrument, improvement of the AERI temperature and moisture retrieval technique, new profiling utility, and validation of high-temporal-resolution AERI-derived stability indices important for convective nowcasting. AERI systems have been built at the University of Wisconsin-Madison, Madison, Wisconsin, and deployed in the Oklahoma-Kansas area collocated with National Oceanic and Atmospheric Administration 404-MHz wind profilers at Lamont, Vici, Purcell, and Morris, Oklahoma, and Hillsboro, Kansas. The AERI systems produce absolutely calibrated atmospheric infrared emitted radiances at one-wavenumber resolution from 3 to 20 m at less than 10-min temporal resolution. The instruments are robust, are automated in the field, and are monitored via the Internet in near-real time. The infrared radiances measured by the AERI systems contain meteorological information about the vertical structure of temperature and water vapor in the planetary boundary layer (PBL; 0-3 km). A mature temperature and water vapor retrieval algorithm has been developed over a 10-yr period that provides vertical profiles at less than 10-min temporal resolution to 3 km in the PBL. A statistical retrieval is combined with the hourly Geostationary Operational Environmental Satellite (GOES) sounder water vapor or Rapid Update Cycle, version 2, numerical weather prediction (NWP) model profiles to provide a nominal hybrid first guess of temperature and moisture to the AERI physical retrieval algorithm. The hourly satellite or NWP data provide a best estimate of the atmospheric state in the upper PBL; the AERI radiances provide the mesoscale temperature and moisture profile correction in the PBL to the large-scale GOES and NWP model profiles at high temporal resolution. The retrieval product has been named AERIplus because the first guess used for the mathematical physical inversion uses an optimal combination of statistical climatological, satellite, and numerical model data to provide a best estimate of the atmospheric state. The AERI physical retrieval algorithm adjusts the boundary layer temperature and moisture structure provided by the hybrid first guess to fit the observed AERI downwelling radiance measurement. This provides a calculated AERI temperature and moisture profile using AERI-observed radiances `plus' the best-known atmospheric state above the boundary layer using NWP or satellite data. AERIplus retrieval accuracy for temperature has been determined to be better than 1 K, and water vapor retrieval accuracy is approximately 5% in absolute water vapor when compared with well-calibrated radiosondes from the surface to an altitude of 3 km. Because AERI can monitor the thermodynamics where the atmosphere usually changes most rapidly, atmospheric stability tendency information is readily available from the system. High-temporal-resolution retrieval of convective available potential energy, convective inhibition, and PBL equivalent potential temperature e are provided in near-real time from all five AERI systems at the ARM SGP site, offering a unique look at the atmospheric state. This new source of meteorological data has shown excellent skill in detecting rapid synoptic and mesoscale meteorological changes within clear atmospheric conditions. This method has utility in nowcasting temperature inversion strength and destabilization caused by e advection. This high-temporal-resolution monitoring of rapid atmospheric destabilization is especially important for nowcasting severe convection.
Exploring space-time structure of human mobility in urban space
NASA Astrophysics Data System (ADS)
Sun, J. B.; Yuan, J.; Wang, Y.; Si, H. B.; Shan, X. M.
2011-03-01
Understanding of human mobility in urban space benefits the planning and provision of municipal facilities and services. Due to the high penetration of cell phones, mobile cellular networks provide information for urban dynamics with a large spatial extent and continuous temporal coverage in comparison with traditional approaches. The original data investigated in this paper were collected by cellular networks in a southern city of China, recording the population distribution by dividing the city into thousands of pixels. The space-time structure of urban dynamics is explored by applying Principal Component Analysis (PCA) to the original data, from temporal and spatial perspectives between which there is a dual relation. Based on the results of the analysis, we have discovered four underlying rules of urban dynamics: low intrinsic dimensionality, three categories of common patterns, dominance of periodic trends, and temporal stability. It implies that the space-time structure can be captured well by remarkably few temporal or spatial predictable periodic patterns, and the structure unearthed by PCA evolves stably over time. All these features play a critical role in the applications of forecasting and anomaly detection.
Behavioral Changes Predicting Temporal Changes in Perceived Popular Status
Bowker, Julie C.; Rubin, Kenneth H.; Buskirk-Cohen, Alison; Rose-Krasnor, Linda; Booth-LaForce, Cathryn
2009-01-01
The primary objectives of this investigation were to determine the extent to which young adolescents are stable in high perceived popular status across the middle school transition and to examine whether changes in social behaviors predict the stability, gain, and loss of perceived popular status after the transition. The sample included 672 young adolescents (323 boys) who completed peer-nomination assessments of social behavior and perceived popularity at the end of elementary school (5th grade) and the beginning of middle school (6th grade). Findings indicated that 62 percent of perceived popular adolescents remained stable in their high popular status across the middle school transition. Multinomial logistic regression analyses revealed that a combination of aggression and arrogance/conceit was associated with stable and newly-gained perceived popular status after the middle school transition. Taken together, findings highlight the significance of contextual and temporal changes in adolescents’ perceived popular status. PMID:20209113
Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation
NASA Astrophysics Data System (ADS)
Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.
2013-06-01
Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.
NASA Astrophysics Data System (ADS)
Panagiotopoulos, Paris; Kolesik, Miroslav; Moloney, Jerome V.
2016-09-01
We numerically investigate the scaling behavior of midinfrared filaments at extremely high input energies. It is shown that, given sufficient power, kilometer-scale, low-loss atmospheric filamentation is attainable by prechirping the pulse. Fully resolved four-dimensional (x y z t ) simulations show that, while in a spatially imperfect beam the modulation instability can lead to multiple hot-spot formation, the individual filaments are still stabilized by the recently proposed mechanism that relies on the temporal walk-off of short-wavelength radiation.
Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E
2017-11-20
This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.
Slope stability radar for monitoring mine walls
NASA Astrophysics Data System (ADS)
Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis
2001-11-01
Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.
Mesoscale Variation of Mechanisms Contributing to Stability in Rocky Shore Communities
Valdivia, Nelson; González, Andrés E.; Manzur, Tatiana; Broitman, Bernardo R.
2013-01-01
Environmental fluctuations can generate asynchronous species’ fluctuations and community stability, due to compensatory dynamics of species with different environmental tolerances. We tested this hypothesis in intertidal hard-bottom communities of north-central Chile, where a persistent upwelling centre maintains a mosaic in sea surface temperatures (SST) over 10s of kilometres along the shore. Coastal upwelling implies colder and temporally more stable SST relative to downstream sites. Uni- and multivariate analyses of multiyear timeseries of SST and species abundances showed more asynchronous fluctuations and higher stability in sites characterised by warmer and more variable SST. Nevertheless, these effects were weakened after including data obtained in sites affected by less persistent upwelling centres. Further, dominant species were more stable in sites exposed to high SST variability. The strength of other processes that can influence community stability, chiefly statistical averaging and overyielding, did not vary significantly between SST regimes. Our results provide observational evidence supporting the idea that exogenously driven compensatory dynamics and the stabilising effects of dominant species can determine the stability of ecosystems facing environmental fluctuations. PMID:23326592
NASA Astrophysics Data System (ADS)
Cui, Qian; Shi, Jiancheng; Xu, Yuanliu
2011-12-01
Water is the basic needs for human society, and the determining factor of stability of ecosystem as well. There are lots of lakes on Tibet Plateau, which will lead to flood and mudslide when the water expands sharply. At present, water area is extracted from TM or SPOT data for their high spatial resolution; however, their temporal resolution is insufficient. MODIS data have high temporal resolution and broad coverage. So it is valuable resource for detecting the change of water area. Because of its low spatial resolution, mixed-pixels are common. In this paper, four spectral libraries are built using MOD09A1 product, based on that, water body is extracted in sub-pixels utilizing Multiple Endmembers Spectral Mixture Analysis (MESMA) using MODIS daily reflectance data MOD09GA. The unmixed result is comparing with contemporaneous TM data and it is proved that this method has high accuracy.
Angal, Amit; Chander, Gyanesh; Xiong, Xiaoxiong; Choi, Tae-young; Wu, Aisheng
2011-01-01
To provide highly accurate quantitative measurements of the Earth's surface, a comprehensive calibration and validation of the satellite sensors is required. The NASA Moderate Resolution Imaging Spectroradiometer (MODIS) Characterization Support Team, in collaboration with United States Geological Survey, Earth Resources Observation and Science Center, has previously demonstrated the use of African desert sites to monitor the long-term calibration stability of Terra MODIS and Landsat 7 (L7) Enhanced Thematic Mapper plus (ETM+). The current study focuses on evaluating the suitability of the Sonoran Desert test site for post-launch long-term radiometric calibration as well as cross-calibration purposes. Due to the lack of historical and on-going in situ ground measurements, the Sonoran Desert is not usually used for absolute calibration. An in-depth evaluation (spatial, temporal, and spectral stability) of this site using well calibrated L7 ETM+ measurements and local climatology data has been performed. The Sonoran Desert site produced spatial variability of about 3 to 5% in the reflective solar regions, and the temporal variations of the site after correction for view-geometry impacts were generally around 3%. The results demonstrate that, barring the impacts due to occasional precipitation, the Sonoran Desert site can be effectively used for cross-calibration and long-term stability monitoring of satellite sensors, thus, providing a good test site in the western hemisphere.
SWiFT site atmospheric characterization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Christopher Lee; Ennis, Brandon Lee
2016-01-01
Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with themore » average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mein, S; Rankine, L; Department of Radiation Oncology, Washington University School of Medicine
Purpose: To develop, evaluate and apply a novel high-resolution 3D remote dosimetry protocol for validation of MRI guided radiation therapy treatments (MRIdian by ViewRay™). We demonstrate the first application of the protocol (including two small but required new correction terms) utilizing radiochromic 3D plastic PRESAGE™ with optical-CT readout. Methods: A detailed study of PRESAGE™ dosimeters (2kg) was conducted to investigate the temporal and spatial stability of radiation induced optical density change (ΔOD) over 8 days. Temporal stability was investigated on 3 dosimeters irradiated with four equally-spaced square 6MV fields delivering doses between 10cGy and 300cGy. Doses were imaged (read-out) bymore » optical-CT at multiple intervals. Spatial stability of ΔOD response was investigated on 3 other dosimeters irradiated uniformly with 15MV extended-SSD fields with doses of 15cGy, 30cGy and 60cGy. Temporal and spatial (radial) changes were investigated using CERR and MATLAB’s Curve Fitting Tool-box. A protocol was developed to extrapolate measured ΔOD readings at t=48hr (the typical shipment time in remote dosimetry) to time t=1hr. Results: All dosimeters were observed to gradually darken with time (<5% per day). Consistent intra-batch sensitivity (0.0930±0.002 ΔOD/cm/Gy) and linearity (R2=0.9996) was observed at t=1hr. A small radial effect (<3%) was observed, attributed to curing thermodynamics during manufacture. The refined remote dosimetry protocol (including polynomial correction terms for temporal and spatial effects, CT and CR) was then applied to independent dosimeters irradiated with MR-IGRT treatments. Excellent line profile agreement and 3D-gamma results for 3%/3mm, 10% threshold were observed, with an average passing rate 96.5%± 3.43%. Conclusion: A novel 3D remote dosimetry protocol is presented capable of validation of advanced radiation treatments (including MR-IGRT). The protocol uses 2kg radiochromic plastic dosimeters read-out by optical-CT within a week of treatment. The protocol requires small corrections for temporal and spatially-dependent behaviors observed between irradiation and readout.« less
Modification and Mobility of Dunes and Ripples in Middle and High Southern Latitude Dune Fields
NASA Astrophysics Data System (ADS)
Banks, M.; Fenton, L. K.; Chojnacki, M.; Silvestro, S.
2017-12-01
Change detection analyses of aeolian bedforms (dunes and ripples), using multi-temporal images (0.25 m/pixel) acquired by the High Resolution Imaging Science Experiment (HiRISE), reveal changes and migration of some bedforms. We now have a database of 200 dune fields with migration rates for bedforms that are mobile. Results show that most northern (N) hemisphere bedforms show movement, while 50% of southern (S) hemisphere bedforms show no detectable changes. In particular, bedforms located >70° N are consistently mobile and exhibit high sand fluxes while S hemisphere bedforms progressively decrease in mobility with proximity to the S pole. We analyze HiRISE image pairs covering dune fields south of 40° S for evidence of movement and apply a dune stability index (SI) based on the presence/lack of superposed non-aeolian features and degree of degradation by non-aeolian processes (0-6, higher numbers indicating increasing evidence of stability/modification). Combining mobility data and SI for 71 dune fields, we find a clear trend of decreasing sand mobility and increasing SI with latitude: 1) both dunes and ripples are more commonly mobile at lower latitudes, although some high-latitude ripples are migrating, 2) dune fields with low SIs (≤3) tend to be active while those with higher SIs tend to be inactive, and 3) ripple migration rates decrease slightly with increasing latitude and SI, although this may be attributable to regional variations. The elevation of dune fields generally increases with increasing S latitude suggesting elevation, and decreasing pressure, may contribute to decreasing mobility. A change in dominance of active to inactive bedforms and a morphological shift to higher SIs (SI=2) both occur at 60º S and coincide with the edge of high concentrations of H2O-equivalent hydrogen content observed by the Neutron Spectrometer. This is consistent with previous studies suggesting stabilizing agents (e.g., ground ice), likely limit sediment movement (i.e. sand availability). Active dune fields with morphologies consistent with stability (i.e. migrating ripples with SI=3) may indicate possible competing influences of aeolian and non-aeolian processes (i.e. polar processes), or perhaps a temporal shift from earlier conditions dominated by polar processes to recent increases in aeolian activity.
TTC-Pluronic 3D radiochromic gel dosimetry of ionizing radiation
NASA Astrophysics Data System (ADS)
Kozicki, Marek; Kwiatos, Klaudia; Kadlubowski, Slawomir; Dudek, Mariusz
2017-07-01
This work reports the first results obtained using a new 3D radiochromic gel dosimeter. The dosimeter is an aqueous physical gel matrix made of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic F-127, PEO-PPO-PEO) doped with a representative of tetrazolium salts, 2, 3, 5-triphenyltetrazolium chloride (TTC). There were several reasons for the choice of Pluronic as a gel forming substrate: (i) the high degree of transparency and colourlessness; (ii) the possibility of gel dosimeter preparation at both high and low temperatures due to the phase behaviour of Pluronic; (iii) the broad temperature range over which the TTC-Pluronic dosimeter is stable; and (iv) the non-toxicity of Pluronic. A reason for the choice of TTC was its ionising radiation-induced transformation to water-insoluble formazan, which was assumed to impact beneficially on the spatial stability of the dose distribution. If irradiated, the TTC-Pluronic gels become red but transparent in the irradiated part, while the non-irradiated part remains crystal clear. The best obtained composition is characterised by <4 Gy dose threshold, a dose sensitivity of 0.002 31 (Gy × cm)-1, a large linear dose range of >500 Gy and a dynamic dose response much greater than 500 Gy (7.5% TTC, 25% Pluronic F-127, 50 mmol dm-3 tetrakis). Temporal and spatial stability studies revealed that the TTC-Pluronic gels (7.5% TTC, 25% Pluronic F-127) were stable for more than one week. The addition of compounds boosting the gels’ dose performance caused deterioration of the gels’ temporal stability but did not impact the stability of the 3D dose distribution. The proposed method of preparation allows for the repeatable manufacture of the gels. There were no differences observed between gels irradiated fractionally and non-fractionally. The TTC-Pluronic dose response might be affected by the radiation source dose rate—this, however, requires further examination.
Consistency of Reporting for Stressful Life Events Among Nondeployed Soldiers.
Pless Kaiser, Anica; Proctor, Susan P; Vasterling, Jennifer J
2016-10-01
Measurement of stress exposure is central to understanding military mental health outcomes. Although temporal stability of combat event reporting has been examined, less is known about the stability of reporting for noncombat events in military samples. Objectives are to examine consistency in reporting stressful life events in nondeployed U.S. Army soldiers and its association with posttraumatic stress disorder (PTSD) symptomatology. Examined reporting consistency over approximately 8 months among 466 soldiers. Regression models examined factors associated with decreased, increased, and stable reporting. Stability of the number of events endorsed over time was high. However, item-level agreement was slight to moderate (kappas: .13-.54), with inconsistencies due primarily to decreased reporting. After adjusting for covariates and initial PTSD, second assessment PTSD was associated with increased and stable reporting. Inconsistent reporting extends beyond combat events to other stressful life events in military personnel and is associated with PTSD. © 2016 Wiley Periodicals, Inc.
Patterns of Stochastic Behavior in Dynamically Unstable High-Dimensional Biochemical Networks
Rosenfeld, Simon
2009-01-01
The question of dynamical stability and stochastic behavior of large biochemical networks is discussed. It is argued that stringent conditions of asymptotic stability have very little chance to materialize in a multidimensional system described by the differential equations of chemical kinetics. The reason is that the criteria of asymptotic stability (Routh-Hurwitz, Lyapunov criteria, Feinberg’s Deficiency Zero theorem) would impose the limitations of very high algebraic order on the kinetic rates and stoichiometric coefficients, and there are no natural laws that would guarantee their unconditional validity. Highly nonlinear, dynamically unstable systems, however, are not necessarily doomed to collapse, as a simple Jacobian analysis would suggest. It is possible that their dynamics may assume the form of pseudo-random fluctuations quite similar to a shot noise, and, therefore, their behavior may be described in terms of Langevin and Fokker-Plank equations. We have shown by simulation that the resulting pseudo-stochastic processes obey the heavy-tailed Generalized Pareto Distribution with temporal sequence of pulses forming the set of constituent-specific Poisson processes. Being applied to intracellular dynamics, these properties are naturally associated with burstiness, a well documented phenomenon in the biology of gene expression. PMID:19838330
Temporal variability of urinary cadmium in spot urine samples and first morning voids.
Vacchi-Suzzi, Caterina; Porucznik, Christina A; Cox, Kyley J; Zhao, Yuan; Ahn, Hongshik; Harrington, James M; Levine, Keith E; Demple, Bruce; Marsit, Carmen J; Gonzalez, Adam; Luft, Benjamin; Meliker, Jaymie R
2017-05-01
Cadmium is a carcinogenic heavy metal. Urinary levels of cadmium are considered to be an indicator of long-term body burden, as cadmium accumulates in the kidneys and has a half-life of at least 10 years. However, the temporal stability of the biomarker in urine samples from a non-occupationally exposed population has not been rigorously established. We used repeated measurements of urinary cadmium (U-Cd) in spot urine samples and first morning voids from two separate cohorts, to assess the temporal stability of the samples. Urine samples from two cohorts including individuals of both sexes were measured for cadmium and creatinine. The first cohort (Home Observation of Perinatal Exposure (HOPE)) consisted of 21 never-smokers, who provided four first morning urine samples 2-5 days apart, and one additional sample roughly 1 month later. The second cohort (World Trade Center-Health Program (WTC-HP)) consisted of 78 individuals, including 52 never-smokers, 22 former smokers and 4 current smokers, who provided 2 spot urine samples 6 months apart, on average. Intra-class correlation was computed for groups of replicates from each individual to assess temporal variability. The median creatinine-adjusted U-Cd level (0.19 and 0.21 μg/g in the HOPE and WTC-HP, respectively) was similar to levels recorded in the United States by the National Health and Nutrition Examination Survey. The intra-class correlation (ICC) was high (0.76 and 0.78 for HOPE and WTC-HP, respectively) and similar between cohorts, irrespective of whether samples were collected days or months apart. Both single spot or first morning urine cadmium samples show good to excellent reproducibility in low-exposure populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Ying; Wang, Bing; Yi, Yong
2013-09-15
The effect of surface Mo coating on the high-current electron emission performances for polymer velvet cathode has been investigated in a diode with A-K gap of 11.5 cm by the combination of time-resolved electrical diagnostic and temporal pressure variation. Compared with uncoated polymer velvet cathode under the single-pulsed emission mode, the Mo-coated one shows lower outgassing levels (∼0.40 Pa L), slower cathode plasma expansion velocity (∼2.30 cm/μs), and higher emission stability as evidences by the change in cathode current, temporal pressure variation, and diode perveance. Moreover, after Mo coating, the emission consistency of the polymer velvet cathode between two adjacentmore » pulses is significantly improved in double-pulsed emission mode with ∼500 ns interval between two pulses, which further confirms the effectiveness of Mo coating for enhancement of electron emission performance of polymer velvet cathodes. These results should be of interest to the high-repetitive high-power microwave systems with cold cathodes.« less
NASA Astrophysics Data System (ADS)
Zapata-Mesa, Natalya; Montoya-Bustamante, Sebastián; Murillo-García, Oscar E.
2017-11-01
Mutualistic interactions, such as seed dispersal, are important for the maintenance of structure and stability of tropical communities. However, there is a lack of information about spatial and temporal variation in plant-animal interaction networks. Thus, our goal was to assess the effect of bat's foraging strategies on temporal variation in the structure and robustness of bat-fruit networks in both a dry and a rain tropical forest. We evaluated monthly variation in bat-fruit networks by using seven structure metrics: network size, average path length, nestedness, modularity, complementary specialization, normalized degree and betweenness centrality. Seed dispersal networks showed variations in size, species composition and modularity; did not present nested structures and their complementary specialization was high compared to other studies. Both networks presented short path lengths, and a constantly high robustness, despite their monthly variations. Sedentary bat species were recorded during all the study periods and occupied more central positions than nomadic species. We conclude that foraging strategies are important structuring factors that affect the dynamic of networks by determining the functional roles of frugivorous bats over time; thus sedentary bats are more important than nomadic species for the maintenance of the network structure, and their conservation is a must.
DeWaard, Jack
2015-07-01
Prior research on the association between country-level patterns of international migration and anti-foreigner sentiment shows that larger foreign-born concentrations increase perceptions of threat among native-born individuals in receiving countries, which, in turn, give rise to exclusionary preferences. While recent work has assembled a list of limiting conditions that shape the strength of this association, I argue that these efforts are premature because they are based on a narrow way of conceptualising and measuring international migration. In contrast to concepts and measures privileging the size of the foreign-born population in receiving countries, I draw from other literatures highlighting the temporal dynamics of migration. In considering the role of the temporal dynamics of international migration in explaining variation in anti-foreigner sentiment, the question is whether and how the temporal stability of the foreign-born population in receiving countries matters. My results suggest that it does. The size and temporal stability of the foreign-born population play opposing roles in aggravating and ameliorating anti-foreigner sentiment, respectively, with each operating via different pathways at the individual level. My work thus breaks new ground by challenging existing theoretical constructs and operationalisations in the group-threat literature.
DeWaard, Jack
2014-01-01
Prior research on the association between country-level patterns of international migration and anti-foreigner sentiment shows that larger foreign-born concentrations increase perceptions of threat among native-born individuals in receiving countries, which, in turn, give rise to exclusionary preferences. While recent work has assembled a list of limiting conditions that shape the strength of this association, I argue that these efforts are premature because they are based on a narrow way of conceptualising and measuring international migration. In contrast to concepts and measures privileging the size of the foreign-born population in receiving countries, I draw from other literatures highlighting the temporal dynamics of migration. In considering the role of the temporal dynamics of international migration in explaining variation in anti-foreigner sentiment, the question is whether and how the temporal stability of the foreign-born population in receiving countries matters. My results suggest that it does. The size and temporal stability of the foreign-born population play opposing roles in aggravating and ameliorating anti-foreigner sentiment, respectively, with each operating via different pathways at the individual level. My work thus breaks new ground by challenging existing theoretical constructs and operationalisations in the group-threat literature. PMID:26146481
Pellkofer, Sarah; van der Heijden, Marcel G. A.; Schmid, Bernhard; Wagg, Cameron
2016-01-01
Background Over the past two decades many studies have demonstrated that plant species diversity promotes primary productivity and stability in grassland ecosystems. Additionally, soil community characteristics have also been shown to influence the productivity and composition of plant communities, yet little is known about whether soil communities also play a role in stabilizing the productivity of an ecosystem. Methodology/Principal Findings Here we use microcosms to assess the effects of the presence of soil communities on plant community dynamics and stability over a one-year time span. Microcosms were filled with sterilized soil and inoculated with either unaltered field soil or field soil sterilized to eliminate the naturally occurring soil biota. Eliminating the naturally occurring soil biota not only resulted in lower plant productivity, and reduced plant species diversity, and evenness, but also destabilized the net aboveground productivity of the plant communities over time, which was largely driven by changes in abundance of the dominant grass Lolium perenne. In contrast, the grass and legumes contributed more to net aboveground productivity of the plant communities in microcosms where soil biota had been inoculated. Additionally, the forbs exhibited compensatory dynamics with grasses and legumes, thus lowering temporal variation in productivity in microcosms that received the unaltered soil inocula. Overall, asynchrony among plant species was higher in microcosms where an unaltered soil community had been inoculated, which lead to higher temporal stability in community productivity. Conclusions/Significance Our results suggest that soil communities increase plant species asynchrony and stabilize plant community productivity by equalizing the performance among competing plant species through potential antagonistic and facilitative effects on individual plant species. PMID:26829481
NASA Astrophysics Data System (ADS)
Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming
2018-02-01
Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.
Temporal flow instability for Magnus-Robins effect at high rotation rates
NASA Astrophysics Data System (ADS)
Sengupta, T. K.; Kasliwal, A.; de, S.; Nair, M.
2003-06-01
The lift and drag coefficients of a circular cylinder, translating and spinning at a supercritical rate is studied theoretically to explain the experimentally observed violation of maximum mean lift coefficient principle, that was proposed heuristically by Prandtl on the basis of inviscid flow model. It is also noted experimentally that flow past a rotating and translating cylinder experiences temporal instability-a fact not corroborated by any theoretical studies so far. In the present paper we report very accurate solution of Navier-Stokes equation that displays the above-mentioned instability and the violation of the maximum limit. The calculated lift coefficient exceeds the limit of /4π, instantaneously as well as in time-averaged sense. The main purpose of the present paper is to explain the observed temporal instability sequence in terms of a new theory of instability based on full Navier-Stokes equation that does not require making any assumption about the flow field, unlike other stability theories.
Higher-order hybrid implicit/explicit FDTD time-stepping
NASA Astrophysics Data System (ADS)
Tierens, W.
2016-12-01
Both partially implicit FDTD methods, and symplectic FDTD methods of high temporal accuracy (3rd or 4th order), are well documented in the literature. In this paper we combine them: we construct a conservative FDTD method which is fourth order accurate in time and is partially implicit. We show that the stability condition for this method depends exclusively on the explicit part, which makes it suitable for use in e.g. modelling wave propagation in plasmas.
Wagner, Wolfgang; Pathe, Carsten; Doubkova, Marcela; Sabel, Daniel; Bartsch, Annett; Hasenauer, Stefan; Blöschl, Günter; Scipal, Klaus; Martínez-Fernández, José; Löw, Alexander
2008-01-01
The high spatio-temporal variability of soil moisture is the result of atmospheric forcing and redistribution processes related to terrain, soil, and vegetation characteristics. Despite this high variability, many field studies have shown that in the temporal domain soil moisture measured at specific locations is correlated to the mean soil moisture content over an area. Since the measurements taken by Synthetic Aperture Radar (SAR) instruments are very sensitive to soil moisture it is hypothesized that the temporally stable soil moisture patterns are reflected in the radar backscatter measurements. To verify this hypothesis 73 Wide Swath (WS) images have been acquired by the ENVISAT Advanced Synthetic Aperture Radar (ASAR) over the REMEDHUS soil moisture network located in the Duero basin, Spain. It is found that a time-invariant linear relationship is well suited for relating local scale (pixel) and regional scale (50 km) backscatter. The observed linear model coefficients can be estimated by considering the scattering properties of the terrain and vegetation and the soil moisture scaling properties. For both linear model coefficients, the relative error between observed and modelled values is less than 5 % and the coefficient of determination (R2) is 86 %. The results are of relevance for interpreting and downscaling coarse resolution soil moisture data retrieved from active (METOP ASCAT) and passive (SMOS, AMSR-E) instruments. PMID:27879759
Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland
USDA-ARS?s Scientific Manuscript database
There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...
Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland
USDA-ARS?s Scientific Manuscript database
Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...
Yiou, Eric; Artico, Romain; Teyssedre, Claudine A; Labaune, Ombeline; Fourcade, Paul
2016-01-01
Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or "initial center-of-mass set") on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot-off increased with obstacle distance, allowing a further step to be taken. These effects of obstacle height and distance were globally similar under low and high-temporal pressure. Collectively, these findings imply that the CNS is able to predict the potential instability elicited by the obstacle clearance and that it scales the spatiotemporal parameters of APAs accordingly.
Yiou, Eric; Artico, Romain; Teyssedre, Claudine A.; Labaune, Ombeline; Fourcade, Paul
2016-01-01
Despite the abundant literature on obstacle crossing in humans, the question of how the central nervous system (CNS) controls postural stability during gait initiation with the goal to clear an obstacle remains unclear. Stabilizing features of gait initiation include anticipatory postural adjustments (APAs) and lateral swing foot placement. To answer the above question, 14 participants initiated gait as fast as possible in three conditions of obstacle height, three conditions of obstacle distance and one obstacle-free (control) condition. Each of these conditions was performed with two levels of temporal pressure: reaction-time (high-pressure) and self-initiated (low-pressure) movements. A mechanical model of the body falling laterally under the influence of gravity and submitted to an elastic restoring force is proposed to assess the effect of initial (foot-off) center-of-mass position and velocity (or “initial center-of-mass set”) on the stability at foot-contact. Results showed that the anticipatory peak of mediolateral (ML) center-of-pressure shift, the initial ML center-of-mass velocity and the duration of the swing phase, of gait initiation increased with obstacle height, but not with obstacle distance. These results suggest that ML APAs are scaled with swing duration in order to maintain an equivalent stability across experimental conditions. This statement is strengthened by the results obtained with the mechanical model, which showed how stability would be degraded if there was no adaptation of the initial center-of-mass set to swing duration. The anteroposterior (AP) component of APAs varied also according to obstacle height and distance, but in an opposite way to the ML component. Indeed, results showed that the anticipatory peak of backward center-of-pressure shift and the initial forward center-of-mass set decreased with obstacle height, probably in order to limit the risk to trip over the obstacle, while the forward center-of-mass velocity at foot-off increased with obstacle distance, allowing a further step to be taken. These effects of obstacle height and distance were globally similar under low and high-temporal pressure. Collectively, these findings imply that the CNS is able to predict the potential instability elicited by the obstacle clearance and that it scales the spatiotemporal parameters of APAs accordingly. PMID:27656138
Automated Geo/Co-Registration of Multi-Temporal Very-High-Resolution Imagery.
Han, Youkyung; Oh, Jaehong
2018-05-17
For time-series analysis using very-high-resolution (VHR) multi-temporal satellite images, both accurate georegistration to the map coordinates and subpixel-level co-registration among the images should be conducted. However, applying well-known matching methods, such as scale-invariant feature transform and speeded up robust features for VHR multi-temporal images, has limitations. First, they cannot be used for matching an optical image to heterogeneous non-optical data for georegistration. Second, they produce a local misalignment induced by differences in acquisition conditions, such as acquisition platform stability, the sensor's off-nadir angle, and relief displacement of the considered scene. Therefore, this study addresses the problem by proposing an automated geo/co-registration framework for full-scene multi-temporal images acquired from a VHR optical satellite sensor. The proposed method comprises two primary steps: (1) a global georegistration process, followed by (2) a fine co-registration process. During the first step, two-dimensional multi-temporal satellite images are matched to three-dimensional topographic maps to assign the map coordinates. During the second step, a local analysis of registration noise pixels extracted between the multi-temporal images that have been mapped to the map coordinates is conducted to extract a large number of well-distributed corresponding points (CPs). The CPs are finally used to construct a non-rigid transformation function that enables minimization of the local misalignment existing among the images. Experiments conducted on five Kompsat-3 full scenes confirmed the effectiveness of the proposed framework, showing that the georegistration performance resulted in an approximately pixel-level accuracy for most of the scenes, and the co-registration performance further improved the results among all combinations of the georegistered Kompsat-3 image pairs by increasing the calculated cross-correlation values.
Time-Warp–Invariant Neuronal Processing
Gütig, Robert; Sompolinsky, Haim
2009-01-01
Fluctuations in the temporal durations of sensory signals constitute a major source of variability within natural stimulus ensembles. The neuronal mechanisms through which sensory systems can stabilize perception against such fluctuations are largely unknown. An intriguing instantiation of such robustness occurs in human speech perception, which relies critically on temporal acoustic cues that are embedded in signals with highly variable duration. Across different instances of natural speech, auditory cues can undergo temporal warping that ranges from 2-fold compression to 2-fold dilation without significant perceptual impairment. Here, we report that time-warp–invariant neuronal processing can be subserved by the shunting action of synaptic conductances that automatically rescales the effective integration time of postsynaptic neurons. We propose a novel spike-based learning rule for synaptic conductances that adjusts the degree of synaptic shunting to the temporal processing requirements of a given task. Applying this general biophysical mechanism to the example of speech processing, we propose a neuronal network model for time-warp–invariant word discrimination and demonstrate its excellent performance on a standard benchmark speech-recognition task. Our results demonstrate the important functional role of synaptic conductances in spike-based neuronal information processing and learning. The biophysics of temporal integration at neuronal membranes can endow sensory pathways with powerful time-warp–invariant computational capabilities. PMID:19582146
NASA Astrophysics Data System (ADS)
Walker, Karolina A.; Unbehauen, Michael L.; Lohan, Silke B.; Saeidpour, Siavash; Meinke, Martina C.; Zimmer, Reinhold; Haag, Rainer
2018-05-01
Spin-labeling active compounds is a convenient way to prepare them for EPR spectroscopy with minimal alteration of the target molecule. In this study we present the labeling reaction of dexamethasone (Dx) with either TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) or PCA (3-(carboxy)-2,2,5,5-tetramethyl-1-pyrrolidinyloxy) with high yields. According to NMR data, both labels are attached at the primary hydroxy group of the steroid. In subsequent spin-stability measurements both compounds were applied onto HaCaT cells. When the signal of Dx-TEMPO decreased below the detection limit within 3 h, the signal of Dx-PCA remained stable for the same period of time.
Computational multiheterodyne spectroscopy
Burghoff, David; Yang, Yang; Hu, Qing
2016-01-01
Dual-comb spectroscopy allows for high-resolution spectra to be measured over broad bandwidths, but an essential requirement for coherent integration is the availability of a phase reference. Usually, this means that the combs’ phase and timing errors must be measured and either minimized by stabilization or removed by correction, limiting the technique’s applicability. We demonstrate that it is possible to extract the phase and timing signals of a multiheterodyne spectrum completely computationally, without any extra measurements or optical elements. These techniques are viable even when the relative linewidth exceeds the repetition rate difference and can tremendously simplify any dual-comb system. By reconceptualizing frequency combs in terms of the temporal structure of their phase noise, not their frequency stability, we can greatly expand the scope of multiheterodyne techniques. PMID:27847870
Life-history strategies associated with local population variability confer regional stability.
Pribil, Stanislav; Houlahan, Jeff E
2003-07-07
A widely held ecological tenet is that, at the local scale, populations of K-selected species (i.e. low fecundity, long lifespan and large body size) will be less variable than populations of r-selected species (i.e. high fecundity, short lifespan and small body size). We examined the relationship between long-term population trends and life-history attributes for 185 bird species in the Czech Republic and found that, at regional spatial scales and over moderate temporal scales (100-120 years), K-selected bird species were more likely to show both large increases and decreases in population size than r-selected species. We conclude that life-history attributes commonly associated with variable populations at the local scale, confer stability at the regional scale.
DeFuentes-Merillas, Laura; Koeter, Maarten W J; Schippers, Gerard M; van den Brink, Wim
2004-01-01
To estimate the 2-year cumulative incidence of pathological scratchcard gambling (PSG) among a representative sample of high-risk scratchcard buyers, to assess the 2-year temporal stability of PSG and scratchcard-related problems and to estimate the adjusted 1-year prevalence for PSG taking into account the temporal dynamics of this diagnosis. A prospective study with two assessments was applied to a non-proportional stratified random sample of 12,222 adult scratchcard buyers in the Netherlands. A cost-effective design was used and only those scratchcard buyers (n=201) who had already experienced some scratchcard-related problems at initial assessment were followed-up 2 years later. Two independent cohorts of buyers with scratchcard-related problems were followed-up: a cohort of 173 potential problematic scratchcard gamblers (PPSG) at increased risk for PSG and a cohort of 28 pathological scratchcard gamblers. Incidence and prevalence estimates were calculated for the total sample of adult scratchcard buyers and for the Dutch adult population. Of the PPSG group 6.72% (95% CI 2.30-8.90%) became addicted to scratchcards during the 2-year period. The 2-year cumulative incidence of PSG among Dutch adult scratchcard players was 0.24% (95% CI 0.16-0.34%). The stability of the Diagnostic and Statistical Manual 4th edition (DSM-IV) diagnosis of PSG ranged from 11.1% to 42.9%, depending on whether or not those lost to follow-up were considered to be cases of PSG. Taking into account the dynamics of this disorder, using the most conservative assumption, the adjusted 1-year prevalence of PSG for the total sample of adult scratchcard buyers was 0.33% (95% CI 0.23-0.45%). PSG proves to be a rare phenomenon among adult scratchcard buyers in the Netherlands. Both incidence and prevalence of the DSM-IV diagnosis PSG were low. Stability of the DSM-IV diagnosis PSG, DSM-IV criteria and South Oaks Gambling Screening-S (SOGS-S) problems were low. Prevalence was stable over the time because incidence and recovery rates were very similar.
Mogeni, Polycarp; Omedo, Irene; Nyundo, Christopher; Kamau, Alice; Noor, Abdisalan; Bejon, Philip
2017-06-30
Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic parasitaemia in multiple sites. We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over varying transmission intensity. Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p < 0.001). However, statistical significance of hotspots was lowest at extremely low and extremely high MPFs, with a peak in statistical significance at an MPF of ~0.3. In four sites with longitudinal data we noted temporal instability and variable negative correlations between MPF and average age of symptomatic malaria across all sites, suggesting varying degrees of temporal stability. We observed geographical micro-variation in malaria transmission at sites with a variety of transmission intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for responding to apparent clustering of cases.
Moschino, Vanessa; Delaney, Eugenia; Meneghetti, Francesca; Ros, Luisa Da
2011-06-01
Transplanted Mytilus galloprovincialis and native Ruditapes philippinarum were deployed in 10 sampling stations with different pollution impact within the Lagoon of Venice to evaluate the temporal variations and the suitability of the following cytochemical and histochemical biomarkers just as indicators of environmental stress: lysosomal membrane stability, lipofuscins, neutral lipids and lysosome to cytoplasm volume ratio. The physiological status of the organisms was also investigated by determining the survival in air capability and the reburrowing rate (clams). The biological parameters were assessed in June and October. Furthermore, for a better definition of the environmental aspects of the study sites, heavy metal, PAH and PCB concentrations were also evaluated in the sediments. As a whole, the biological responses examined in both species from all the sampling sites showed significant differences between the two seasonal campaigns, only lysosomal membrane stability exhibited less variability. Pollutants in sediments generally showed low-intermediate contamination levels, few hotspots persisting mostly in the inner areas of the lagoon, the most influenced by the industrial zone. Transplanted mussels were more responsive than native clams and the biological responses of both species varied temporally. The range of the spatial variability was always narrow and reflected only partially the broader variability shown by the chemical content in the sediments. In this sense, biological responses seemed to be particularly influenced by the high temporal and spatial heterogeneity that characterise the Lagoon of Venice, as well as most of the transitional environments.
Temporal Stability of Gifted Children's Intelligence.
ERIC Educational Resources Information Center
Spangler, Robert S.; Sabatino, David A.
1995-01-01
The longitudinal stability of the Wechsler Intelligence Scale for Children-Revised was examined for consistency in determining eligibility for gifted programs among 66 elementary children. All subtest scales except one remained extremely stable, producing less than one scale score point difference across three test administrations. Children…
A Portable Infrasonic Detection System
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Burkett, Cecil G.; Zuckerwar, Allan J.; Lawrenson, Christopher C.; Masterman, Michael
2008-01-01
During last couple of years, NASA Langley has designed and developed a portable infrasonic detection system which can be used to make useful infrasound measurements at a location where it was not possible previously. The system comprises an electret condenser microphone, having a 3-inch membrane diameter, and a small, compact windscreen. Electret-based technology offers the lowest possible background noise, because Johnson noise generated in the supporting electronics (preamplifier) is minimized. The microphone features a high membrane compliance with a large backchamber volume, a prepolarized backplane and a high impedance preamplifier located inside the backchamber. The windscreen, based on the high transmission coefficient of infrasound through matter, is made of a material having a low acoustic impedance and sufficiently thick wall to insure structural stability. Close-cell polyurethane foam has been found to serve the purpose well. In the proposed test, test parameters will be sensitivity, background noise, signal fidelity (harmonic distortion), and temporal stability. The design and results of the compact system, based upon laboratory and field experiments, will be presented.
A study of the temporal stability of multiple cell vortices
NASA Technical Reports Server (NTRS)
Khorrami, Mehdi R.
1989-01-01
The effect of initial mean velocity field on the stability characteristics of longitudinal vortices is documented in detail. The temporal stability of isolated multiple cell vortices is considered. The types of vortices studied include single cell as well as two and three cell vortices. It is shown that cell multiplicity in the vortex core has drastic effects on the stability characteristics. On the basis of numerical calculations, it is concluded that the growth rates of instabilities in multiple cell vortices are substantially larger (two to threefold increases are observed) than those of a single cell vortex. It is also determined that there is a substantial increase in the effective range of axial and azimuthal wavenumbers where instabilities are present. But most importantly, there is the appearance of a variety of viscous modes of instability. In the case of vortices, these latter instabilities which highlight the importance of viscous forces have never been reported before. These effects are discussed in detail for the case of a two cell vortex.
Comparison of Several Numerical Methods for Simulation of Compressible Shear Layers
NASA Technical Reports Server (NTRS)
Kennedy, Christopher A.; Carpenter, Mark H.
1997-01-01
An investigation is conducted on several numerical schemes for use in the computation of two-dimensional, spatially evolving, laminar variable-density compressible shear layers. Schemes with various temporal accuracies and arbitrary spatial accuracy for both inviscid and viscous terms are presented and analyzed. All integration schemes use explicit or compact finite-difference derivative operators. Three classes of schemes are considered: an extension of MacCormack's original second-order temporally accurate method, a new third-order variant of the schemes proposed by Rusanov and by Kutier, Lomax, and Warming (RKLW), and third- and fourth-order Runge-Kutta schemes. In each scheme, stability and formal accuracy are considered for the interior operators on the convection-diffusion equation U(sub t) + aU(sub x) = alpha U(sub xx). Accuracy is also verified on the nonlinear problem, U(sub t) + F(sub x) = 0. Numerical treatments of various orders of accuracy are chosen and evaluated for asymptotic stability. Formally accurate boundary conditions are derived for several sixth- and eighth-order central-difference schemes. Damping of high wave-number data is accomplished with explicit filters of arbitrary order. Several schemes are used to compute variable-density compressible shear layers, where regions of large gradients exist.
[Psychometric properties of a self-efficacy scale for physical activity in Brazilian adults].
Rech, Cassiano Ricardo; Sarabia, Tais Taiana; Fermino, Rogério César; Hallal, Pedro Curi; Reis, Rodrigo Siqueira
2011-04-01
To test the validity and reliability of a self-efficacy scale for physical activity (PA) in Brazilian adults. A self-efficacy scale was applied jointly with a multidimensional questionnaire through face-to-face interviews with 1,418 individuals (63.4% women) aged ≥ 18 years. The scale was submitted to validity (factorial and construct) and reliability analysis (internal consistency and temporal stability). A test-retest procedure was conducted with 74 individuals to evaluate temporal stability. Exploratory factor analyses revealed two independent factors: self-efficacy for walking and self-efficacy for moderate and vigorous PA (MVPA). Together, these two factors explained 65.4% of the total variance of the scale (20.9% and 44.5% for walking and MVPA, respectively). Cronbach's alpha values were 0.83 for walking and 0.90 for MVPA, indicating high internal consistency. Both factors were significantly and positively correlated (rho ≥ 0.17, P < 0.001) with quality of life indicators (health perception, self-satisfaction, and energy for daily activities), indicating an adequate construct validity. The scale's validity, internal consistency, and reliability were adequate to evaluate self-efficacy for PA in Brazilian adults.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.
1980-01-01
Analytical and computational techniques were developed to predict the stability behavior of liquid propellant rocket combustors using damping devices such as acoustic liners, slot absorbers, and injector face baffles. Models were developed to determine the frequency and decay rate of combustor oscillations, the spatial and temporal pressure waveforms, and the stability limits in terms of combustion response model parameters.
Temporal Dynamics of the Human Vaginal Microbiota
Gajer, Pawel; Brotman, Rebecca M.; Bai, Guoyun; Sakamoto, Joyce; Schütte, Ursel M.E.; Zhong, Xue; Koenig, Sara S.K.; Fu, Li; Ma, Zhanshan; Zhou, Xia; Abdo, Zaid; Forney, Larry J.; Ravel, Jacques
2012-01-01
Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition and sexual activity. The women studied are healthy, thus it appears that neither variation in community composition per se, nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis, in which there is microbial imbalance accompanied by symptoms. PMID:22553250
Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David
2014-01-22
Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.
HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
Olivares-González, Lorena; Martínez-Fernández de la Cámara, Cristina; Hervás, David; Millán, José María; Rodrigo, Regina
2018-05-01
Retinitis pigmentosa (RP) is a group of inherited retinal dystrophies characterized by progressive and irreversible loss of vision due to rod and cone degeneration. Evidence suggests that an inappropriate oxygen level could contribute to its pathogenesis. Rod cell death could increase oxygen concentration, reduce hypoxia-inducible factor 1 (HIF-1α) and contribute to cone cell death. The purposes of this study were: 1) to analyze the temporal profile of HIF-1α, its downstream effectors VEGF, endothelin-1 (ET-1), iNOS, and glucose transporter 1 (GLUT1), and neuroinflammation in retinas of the murine model of rd10 ( retinal degeneration 10) mice with RP; 2) to study oxygen bioavailability in these retinas; and 3) to investigate how stabilizing HIF-1α proteins with dimethyloxaloglycine (DMOG), a prolyl hydroxylase inhibitor, affects retinal degeneration, neuroinflammation, and antioxidant response in rd10 mice. A generalized down-regulation of HIF-1α and its downstream targets was detected in parallel with reactive gliosis, suggesting high oxygen levels during retinal degeneration. At postnatal d 18, DMOG treatment reduced photoreceptor cell death and glial activation. In summary, retinas of rd10 mice seem to be exposed to a hyperoxic environment even at early stages of degeneration. HIF-1α stabilization could have a temporal neuroprotective effect on photoreceptor cell survival, glial activation, and antioxidant response at early stages of RP.-Olivares-González, L., Martínez-Fernández de la Cámara, C., Hervás, D., Millán, J. M., Rodrigo, R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa.
Stability of a non-orthogonal stagnation flow to three dimensional disturbances
NASA Technical Reports Server (NTRS)
Lasseigne, D. G.; Jackson, T. L.
1991-01-01
A similarity solution for a low Mach number nonorthogonal flow impinging on a hot or cold plate is presented. For the constant density case, it is known that the stagnation point shifts in the direction of the incoming flow and that this shift increases as the angle of attack decreases. When the effects of density variations are included, a critical plate temperature exists; above this temperature the stagnation point shifts away from the incoming stream as the angle is decreased. This flow field is believed to have application to the reattachment zone of certain separated flows or to a lifting body at a high angle of attack. Finally, the stability of this nonorthogonal flow to self similar, 3-D disturbances is examined. Stability properties of the flow are given as a function of the parameters of this study; ratio of the plate temperature to that of the outer potential flow and angle of attack. In particular, it is shown that the angle of attack can be scaled out by a suitable definition of an equivalent wavenumber and temporal growth rate, and the stability problem for the nonorthogonal case is identical to the stability problem for the orthogonal case.
Stabilizing effect of elasticity on the inertial instability of submerged viscoelastic liquid jets
NASA Astrophysics Data System (ADS)
Keshavarz, Bavand; McKinley, Gareth
2017-11-01
The stability of submerged Newtonian and viscoelastic liquid jets is studied experimentally using flow visualization. Precise control of the amplitude and frequency of the imposed linear perturbations is achieved through a piezoelectric actuator attached to the nozzle. By illuminating the jet with a strobe light driven at a frequency slightly less than the frequency of the perturbation we slow down the apparent motion by large factors ( 100 , 000) and capture the phenomena with high temporal and spatial resolution. Newtonian liquid jets become unstable at moderate Reynolds numbers (Rej 150) and sinuous or varicose patterns emerge and grow in amplitude. As the jet moves downstream, the varicose waves gradually pile up in the sinuous ones due to the difference in their corresponding wave speeds, leading to a unique chevron-like morphology. Experiments with model viscoelastic polymer solutions show that this inertial instability is fully stabilized sufficiently large levels of elasticity. We compare our experimental results with the theoretical predictions of an elastic Rayleigh equation for an axisymmetric jet and show that the presence of streamline tension is indeed the stabilizing effect for inertioelastic jets.
López, Almudena; Vera, Manuel; Planas, Miquel; Bouza, Carmen
2015-01-01
This study was focused on conservation genetics of threatened Hippocampus guttulatus on the Atlantic coast of NW Iberian Peninsula. Information about spatial structure and temporal stability of wild populations was obtained based on microsatellite markers, and used for monitoring a captive breeding program firstly initiated in this zone at the facilities of the Institute of Marine Research (Vigo, Spain). No significant major genetic structure was observed regarding the biogeographical barrier of Cape Finisterre. However, two management units under continuous gene flow are proposed based on the allelic differentiation between South-Atlantic and Cantabrian subpopulations, with small to moderate contemporary effective size based on single-sample methods. Temporal stability was observed in South-Atlantic population samples of H. guttulatus for the six-year period studied, suggesting large enough effective population size to buffer the effects of genetic drift within the time frame of three generations. Genetic analysis of wild breeders and offspring in captivity since 2009 allowed us to monitor the breeding program founded in 2006 in NW Spain for this species. Similar genetic diversity in the renewed and founder broodstock, regarding the wild population of origin, supports suitable renewal and rearing processes to maintain genetic variation in captivity. Genetic parentage proved single-brood monogamy in the wild and in captivity, but flexible short- and long-term mating system under captive conditions, from strict monogamy to polygamy within and/or among breeding seasons. Family analysis showed high reproductive success in captivity under genetic management assisted by molecular relatedness estimates to avoid inbreeding. This study provides genetic information about H. guttulatus in the wild and captivity within an uncovered geographical range for this data deficient species, to be taken into account for management and conservation purposes. PMID:25646777
ERIC Educational Resources Information Center
Lowe, Patricia A.; Papanastasiou, Elena C.; DeRuyck, Kimberly A.; Reynolds, Cecil R.
2005-01-01
In this study, the authors investigated the temporal stability and construct validity of the Adult Manifest Anxiety Scale-College Version (AMAS-C; C. R. Reynolds, B. O. Richmond, & P. A. Lowe, 2003b) scores. Results indicated that the AMAS-C scores had adequate to excellent test score stability, and evidence supported the construct validity of the…
What do we know about Indonesian tropical lakes? Insights from high frequency measurement
NASA Astrophysics Data System (ADS)
Budi Santoso, Arianto; Triwisesa, Endra; Fakhrudin, Muh.; Harsono, Eko; Agita Rustini, Hadiid
2018-02-01
When measuring ecological variables in lakes, sampling frequency is critical in capturing an environmental pattern. Discrete sampling of traditional monitoring programs is likely to result in vital knowledge gaps in understanding any processes particularly those with fine temporal scale characteristics. The development of high frequency measurements offer a sophisticated range of information in recording any events in lakes at a finer time scale. We present physical indices of a tropical deep Lake Maninjau arrayed from OnLine Monitoring System (OLM). It is revealed that Lake Maninjau mostly has a diurnal thermal stratification pattern. The calculated lake stability (Schmidt stability), however, follows a seasonal pattern; low in December-January and around August, and high in May and September. Using a 3D numerical model simulation (ELCOM), we infer how wind and solar radiation intensity control lake’s temperature profiles. In this review, we highlight the needs of high frequency measurement establishment in Indonesian tropical lakes to better understand the unique processes and to support the authorities’ decision making in maximizing the provision of ecosystem services supplied by lakes and reservoirs.
NASA Astrophysics Data System (ADS)
Heidt, Alexander M.
2014-03-01
This talk will give an overview of the unique properties of supercontinuum generation (SCG) in all-normal dispersion (ANDi) fibers pumped by ultrashort pulses and the possibilities they offer for ultrafast photonics applications. In contrast to their anomalously pumped counterparts, the SCG process in ANDi fibers conserves a single ultrashort pulse in the time domain, completely suppresses soliton formation and decay, and avoids noise-amplifying nonlinear dynamics. The resulting spectra combine the best of both worlds - the broad, more than octave-spanning bandwidths usually associated with anomalous dispersion pumping with the high temporal coherence, pulse-to-pulse stability and well-defined temporal pulse characteristics known from the normal dispersion regime. These characteristics are ideally suited for ultrafast photonics, and I will present application examples including the generation of high quality single-cycle pulses and their amplification, as well as ultrafast spectroscopy. This talk will also explore the exciting new possibilities enabled by extending this approach into the mid-IR spectral region using novel soft glass fiber designs.
Spatial and Temporal Analysis of Bias HAST System Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfeifer, Kent B.; Furrer, III, Clint T; Sandoval, Paul Anthony
2017-03-01
High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volumemore » of the HAST chamber with respect to the single traceable standard.« less
NASA Astrophysics Data System (ADS)
Martin, S.; Conklin, M. H.; Bales, R. C.
2014-12-01
High temporal resolution data is required to take channel bed movement data beyond time integrated changes between measurements where many of the subtleties of bedload movement patterns are often missed. This study used continuous bedload scour sensors (flexible, fluid-filled pans connected to a pressure transducer) to collect high temporal resolution, long term bedload movement data for 4 high elevation (1500-1800 m) Sierra Nevada headwater streams draining 1 km2 catchments and to investigate the physical channel characteristics under which they perform best. Data collected by the scour sensors were used to investigate the disturbance and recovery patterns of these streams, to relate the observed patterns to channel bed stability, and to evaluate whether the channel bed is acting as a sediment source, sink, or storage across various temporal scales. Finally, attempts are made to identify discharge thresholds for bed movement from scour sensor and discharge data and to compare these threshold values to observed changes in the channel bed. Bedload scour data, turbidity data, and stream discharge data were collected at 15 minute intervals for (WY 2011 to WY 2014), including both above average (2011) and below average (2012, 2013, 2014) water years. Bedload scour sensors were found to have a relatively high (60%) failure rate in these systems. In addition, they required in situ calibrations as the factory and laboratory calibrations did not translate well to the field deployments. Data from the working sensors, showed patterns of abrupt channel bed disturbance (scour and/or fill) on an hour to day temporal scale followed by gradual recovery on a day to month scale back to a stable equilibrium bed surface elevation. These observed patterns suggest the bed acts as a short term source or sink for sediment, but is roughly sediment neutral over longer time periods implying the changes in bed elevation are reflective of fluctuations in storage rather than a true source or sink. Overall, these sensors show promise for collecting continuous data for high gradient, forested, mountain streams. Additional benefits include their relatively low cost both monetarily (under $1000) and in labor compared to traditional methods as well as not requiring the trade-off between temporal resolution and length of study that traditional methods do.
NASA Astrophysics Data System (ADS)
Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.
2017-01-01
Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.
The relationship between the spatial scaling of biodiversity and ecosystem stability
Delsol, Robin; Loreau, Michel; Haegeman, Bart
2018-01-01
Aim Ecosystem stability and its link with biodiversity have mainly been studied at the local scale. Here we present a simple theoretical model to address the joint dependence of diversity and stability on spatial scale, from local to continental. Methods The notion of stability we use is based on the temporal variability of an ecosystem-level property, such as primary productivity. In this way, our model integrates the well-known species–area relationship (SAR) with a recent proposal to quantify the spatial scaling of stability, called the invariability–area relationship (IAR). Results We show that the link between the two relationships strongly depends on whether the temporal fluctuations of the ecosystem property of interest are more correlated within than between species. If fluctuations are correlated within species but not between them, then the IAR is strongly constrained by the SAR. If instead individual fluctuations are only correlated by spatial proximity, then the IAR is unrelated to the SAR. We apply these two correlation assumptions to explore the effects of species loss and habitat destruction on stability, and find a rich variety of multi-scale spatial dependencies, with marked differences between the two assumptions. Main conclusions The dependence of ecosystem stability on biodiversity across spatial scales is governed by the spatial decay of correlations within and between species. Our work provides a point of reference for mechanistic models and data analyses. More generally, it illustrates the relevance of macroecology for ecosystem functioning and stability. PMID:29651225
NASA Astrophysics Data System (ADS)
Al-Durgham, K.; Lichti, D. D.; Detchev, I.; Kuntze, G.; Ronsky, J. L.
2018-05-01
A fundamental task in photogrammetry is the temporal stability analysis of a camera/imaging-system's calibration parameters. This is essential to validate the repeatability of the parameters' estimation, to detect any behavioural changes in the camera/imaging system and to ensure precise photogrammetric products. Many stability analysis methods exist in the photogrammetric literature; each one has different methodological bases, and advantages and disadvantages. This paper presents a simple and rigorous stability analysis method that can be straightforwardly implemented for a single camera or an imaging system with multiple cameras. The basic collinearity model is used to capture differences between two calibration datasets, and to establish the stability analysis methodology. Geometric simulation is used as a tool to derive image and object space scenarios. Experiments were performed on real calibration datasets from a dual fluoroscopy (DF; X-ray-based) imaging system. The calibration data consisted of hundreds of images and thousands of image observations from six temporal points over a two-day period for a precise evaluation of the DF system stability. The stability of the DF system - for a single camera analysis - was found to be within a range of 0.01 to 0.66 mm in terms of 3D coordinates root-mean-square-error (RMSE), and 0.07 to 0.19 mm for dual cameras analysis. It is to the authors' best knowledge that this work is the first to address the topic of DF stability analysis.
Fjøsne, Trine; Myromslien, Frøydis D; Wilson, Robert C; Rudi, Knut
2018-05-01
Soil represents one of the most complex microbial ecosystems on earth. It is well-known that invertebrates such as earthworms have a major impact on transformations of organic material in soil, while their effect on the soil microbiota remains largely unknown. The aim of our work was therefore to investigate the association of earthworms with temporal stability, composition and diversity in two soil microbiota experimental series. We found that earthworms were consistently associated with an increase in subgroups of Gammaproteobacteria, despite major differences in microbiota composition and temporal stability across the experimental series. Our results therefore suggest that earthworms can affect subpopulation dynamics in the soil microbiota, irrespective of the total microbiota composition. If the soil microbiota is comprised of independent microbiota components, this can contribute to our general understanding of the complexity of the soil microbiota.
Stenkamp, K; Palva, J M; Uusisaari, M; Schuchmann, S; Schmitz, D; Heinemann, U; Kaila, K
2001-05-01
The decrease in brain CO(2) partial pressure (pCO(2)) that takes place both during voluntary and during pathological hyperventilation is known to induce gross alterations in cortical functions that lead to subjective sensations and altered states of consciousness. The mechanisms that mediate the effects of the decrease in pCO(2) at the neuronal network level are largely unexplored. In the present work, the modulation of gamma oscillations by hypocapnia was studied in rat hippocampal slices. Field potential oscillations were induced by the cholinergic agonist carbachol under an N-methyl-D-aspartate (NMDA)-receptor blockade and were recorded in the dendritic layer of the CA3 region with parallel measurements of changes in interstitial and intraneuronal pH (pH(o) and pH(i), respectively). Hypocapnia from 5 to 1% CO(2) led to a stable monophasic increase of 0.5 and 0.2 units in pH(o) and pH(i), respectively. The mean oscillation frequency increased slightly but significantly from 32 to 34 Hz and the mean gamma-band amplitude (20 to 80 Hz) decreased by 20%. Hypocapnia induced a dramatic enhancement of the temporal stability of the oscillations, as was indicated by a two-fold increase in the exponential decay time constant fitted to the autocorrelogram. A rise in pH(i) evoked by the weak base trimethylamine (TriMA) was associated with a slight increase in oscillation frequency (37 to 39 Hz) and a decrease in amplitude (30%). Temporal stability, on the other hand, was decreased by TriMA, which suggests that its enhancement in 1% CO(2) was related to the rise in pH(o). In 1% CO(2), the decay-time constant of the evoked monosynaptic pyramidal inhibitory postsynaptic current (IPSC) was unaltered but its amplitude was enhanced. This increase in IPSC amplitude seems to significantly contribute to the enhancement of temporal stability because the enhancement was almost fully reversed by a low concentration of bicuculline. These results suggest that changes in brain pCO(2) can have a strong influence on the temporal modulation of gamma rhythms.
L-Band Transmit/Receive Module for Phase-Stable Array Antennas
NASA Technical Reports Server (NTRS)
Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir
2008-01-01
Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has never been demonstrated. By adding the calibration loop to an existing high-efficiency T/R module, there is a demonstrated order-of-magnitude improvement in the amplitude and phase stability.
A decade of understanding spatio-temporal regulation of DNA repair by the nuclear architecture.
Saad, Hicham; Cobb, Jennifer A
2016-10-01
The nucleus is a hub for gene expression and is a highly organized entity. The nucleoplasm is heterogeneous, owing to the preferential localization of specific metabolic factors, which lead to the definition of nuclear compartments or bodies. The genome is organized into chromosome territories, as well as heterochromatin and euchromatin domains. Recent observations have indicated that nuclear organization is important for maintaining genomic stability. For example, nuclear organization has been implicated in stabilizing damaged DNA, repair-pathway choice, and in preventing chromosomal rearrangements. Over the past decade, several studies have revealed that dynamic changes in the nuclear architecture are important during double-strand break repair. Stemming from work in yeast, relocation of a damaged site prior to repair appears to be at least partially conserved in multicellular eukaryotes. In this review, we will discuss genome and nucleoplasm architecture, particularly the importance of the nuclear periphery in genome stability. We will also discuss how the site of relocation regulates repair-pathway choice.
The Intertemporal Stability of Teacher Effect Estimates. Working Paper 2008-22
ERIC Educational Resources Information Center
McCaffrey, Daniel F.; Sass, Tim R.; Lockwood, J.R.
2008-01-01
Recently, a number of school districts have begun using measures of teachers' contributions to student test scores or teacher "value added" to determine salaries and other monetary rewards. In this paper we investigate the precision of value-added measures by analyzing their inter-temporal stability. We find that these measures of…
NASA Astrophysics Data System (ADS)
Yang, T.; Wang, L.
A numerical study is made on the fully developed bifurcation structure and stability of forced convection in a rotating curved duct of square cross-section. Solution structure is determined as variation of a parameter that indicates the effect of rotation (Coriolis-force-driven multiplicity). Three solutions for the flows in a stationary curved duct obtained in the work of Yang and Wang [1] are used as initial solutions of continuation calculations to unfold the solution branches. Twenty-one solution branches are found comparing with five obtained by Selmi and Nandakumar [2]. Dynamic responses of the multiple solutions to finite random disturbances are examined by the direct transient computation. Results show that characteristics of physically realizable fully developed flows changes significantly with variation of effect of rotation. Fourteen sub-ranges are identified according to characteristics of physically realizable solutions. As rotation effect changes, possible physically realizable fully-developed flows can be stable steady 2-cell state, stable multi-cell state, temporal periodic oscillation between symmetric/asymmetric 2-cell/4-cell flows, temporal oscillation with intermittency, temporal chaotic oscillation and temporal oscillation with pseudo intermittency. Among these possible physically realizable fully developed flows, stable multi-cell state and stable steady 2-cell state exist as dual stable. And oscillation with pseudo intermittency is a new phenomenon. In addition to the temporal oscillation with intermittency, sudden shift from stationary stable solution to temporal chaotic oscillation is identified to be another way of onset of chaos.
Austin, Peter C.; van Klaveren, David; Vergouwe, Yvonne; Nieboer, Daan; Lee, Douglas S.; Steyerberg, Ewout W.
2018-01-01
Background Stability in baseline risk and estimated predictor effects both geographically and temporally is a desirable property of clinical prediction models. However, this issue has received little attention in the methodological literature. Our objective was to examine methods for assessing temporal and geographic heterogeneity in baseline risk and predictor effects in prediction models. Methods We studied 14,857 patients hospitalized with heart failure at 90 hospitals in Ontario, Canada, in two time periods. We focussed on geographic and temporal variation in baseline risk (intercept) and predictor effects (regression coefficients) of the EFFECT-HF mortality model for predicting 1-year mortality in patients hospitalized for heart failure. We used random effects logistic regression models for the 14,857 patients. Results The baseline risk of mortality displayed moderate geographic variation, with the hospital-specific probability of 1-year mortality for a reference patient lying between 0.168 and 0.290 for 95% of hospitals. Furthermore, the odds of death were 11% lower in the second period than in the first period. However, we found minimal geographic or temporal variation in predictor effects. Among 11 tests of differences in time for predictor variables, only one had a modestly significant P value (0.03). Conclusions This study illustrates how temporal and geographic heterogeneity of prediction models can be assessed in settings with a large sample of patients from a large number of centers at different time periods. PMID:29350215
Hill, Richard; Saetnan, Eli R; Scullion, John; Gwynn-Jones, Dylan; Ostle, Nick; Edwards, Arwyn
2016-06-01
Microbial responses to Arctic climate change could radically alter the stability of major stores of soil carbon. However, the sensitivity of plot-scale experiments simulating climate change effects on Arctic heathland soils to potential confounding effects of spatial and temporal changes in soil microbial communities is unknown. Here, the variation in heathland soil bacterial communities at two survey sites in Sweden between spring and summer 2013 and at scales between 0-1 m and, 1-100 m and between sites (> 100 m) were investigated in parallel using 16S rRNA gene T-RFLP and amplicon sequencing. T-RFLP did not reveal spatial structuring of communities at scales < 100 m in any site or season. However, temporal changes were striking. Amplicon sequencing corroborated shifts from r- to K-selected taxon-dominated communities, influencing in silico predictions of functional potential. Network analyses reveal temporal keystone taxa, with a spring betaproteobacterial sub-network centred upon a Burkholderia operational taxonomic unit (OTU) and a reconfiguration to a summer sub-network centred upon an alphaproteobacterial OTU. Although spatial structuring effects may not confound comparison between plot-scale treatments, temporal change is a significant influence. Moreover, the prominence of two temporally exclusive keystone taxa suggests that the stability of Arctic heathland soil bacterial communities could be disproportionally influenced by seasonal perturbations affecting individual taxa. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Adenylate Energy Pool and Energy Charge in Maturing Rape Seeds 1
Ching, Te May; Crane, Jim M.; Stamp, David L.
1974-01-01
A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number. PMID:16658964
NASA Astrophysics Data System (ADS)
Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.
2018-06-01
Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.
SU-E-T-675: Remote Dosimetry with a Novel PRESAGE Formulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mein, S; Juang, T; Malcolm, J
2015-06-15
Purpose: 3D-gel dosimetry provides high-resolution treatment validation; however, scanners aren’t widely available. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote site for irradiation, then shipped back for scanning and analysis, affording a convenient service for treatment validation to institutions lacking the necessary equipment and resources. Previous works demonstrated the high-resolution performance and temporal stability of PRESAGE. Here the newest formulation is investigated for remote dosimetry use. Methods: A new formulation of PRESAGE was created with the aim of improved color stability post irradiation. Dose sensitivity was determined by irradiating cuvettes on a Varianmore » Linac (6MV) from 0–15Gy and measuring change in optical density at 633nm. Sensitivity readings were tracked over time in a temperature control study to determine long-term stability. A large volume study was performed to evaluate the accuracy for remote dosimetry. A 1kg dosimeter was pre-scanned, irradiated on-site with an 8Gy 4field box treatment, post-scanned and shipped to Princess Margaret Hospital for remote reading on an identical scanner. Results: Dose sensitivities ranged from 0.0194–0.0295 ΔOD/(Gy*cm)—similar to previous formulations. Post-irradiated cuvettes stored at 10°C retained 100% initial sensitivity over 5 days and 98.6% over 10 weeks while cuvettes stored at room temperature fell to 95.8% after 5 days and 37.4% after 10 weeks. The immediate and 5-day scans of the 4field box dosimeter data was reconstructed, registered to the corresponding eclipse dose-distribution, and compared with analytical tools in CERR. Immediate and 5-day scans looked visually similar. Line profiles revealed close agreement aside from a slight elevation in dose at the edge in the 5-day readout. Conclusion: The remote dosimetry formulation exhibits excellent temporal stability in small volumes. While immediate and 5-day readout scans of large volume dosimeters show promising agreement, further development is required to reduce an apparent time dependent edge elevation.« less
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
An Ecohydrological Approach to the Resiliency and Stability of Ecosystems
NASA Astrophysics Data System (ADS)
Peña Alzate, S.; Canon Barriga, J. E.
2013-12-01
We introduce a simplified ecohydrological model to quantitatively assess the resiliency and stability of ecosystems. The proposed model couples a hydrological soil moisture balance with a set of spatiotemporal dynamics of systems and agent-based algorithms to represent the interactions among several plant populations in a gridded area under different water, soil and temperature constraints. The model also allows disturbances, representing mostly the effects of deforestation practices. The simulated ecosystem, composed by a set of plant populations, includes allometric rules (i.e., power laws for generational and reproductive times, linear approximations for water and temperature gains, losses and optimal values and a set of intra and interspecific interaction rules based on high, optimal and low competition responses among the populations). Disturbances are determined by a clearance of populations in a defined area within the model's domain. The effects of climate variability can be also incorporated through precipitation and temperature time series that exhibit trends and heteroskedasticity. Resiliency and stability are calculated with modified indices that are used in hydrology, in this case to determine the ability of the ecosystem to recover from a disturbance. The model represents different types of plant phenotypes showing exponential growth in the first steps of the simulations. The indices, evaluated on each population and over the structure of the entire ecosystem, show how different populations respond differently to disturbances, following behaviors similar to those expected in nature, like high reproduction rates on gregarious plants with short generation times, and low densities in plants with high generations times. The selection of plant populations was mainly focused on the concept of biodiversity with emphasis on tropical regions. The model can represent the spatial and temporal succession of the ecosystem after being disturbed. The model also shows the differences between a disturbed and undisturbed ecosystem in a temporal scale, and how the differences in the phenotypical characteristics of plant populations can be advantageous or disadvantageous when they are disturbed. This ecohydrological model is intended to be used as an aid for making decisions about restoration and conservation practices, and also to help understanding resilience and stability of ecosystems, especially in tropical forests under climate change scenarios. Acknowledgements: authors thank the financial support of COLCIENCIAS (program Jovenes Investigadores e innovadores 2012), GAIA group and Universidad de Antioquia through its Sustainability Program 2011-2012.
Algorithm for Stabilizing a POD-Based Dynamical System
NASA Technical Reports Server (NTRS)
Kalb, Virginia L.
2010-01-01
This algorithm provides a new way to improve the accuracy and asymptotic behavior of a low-dimensional system based on the proper orthogonal decomposition (POD). Given a data set representing the evolution of a system of partial differential equations (PDEs), such as the Navier-Stokes equations for incompressible flow, one may obtain a low-dimensional model in the form of ordinary differential equations (ODEs) that should model the dynamics of the flow. Temporal sampling of the direct numerical simulation of the PDEs produces a spatial time series. The POD extracts the temporal and spatial eigenfunctions of this data set. Truncated to retain only the most energetic modes followed by Galerkin projection of these modes onto the PDEs obtains a dynamical system of ordinary differential equations for the time-dependent behavior of the flow. In practice, the steps leading to this system of ODEs entail numerically computing first-order derivatives of the mean data field and the eigenfunctions, and the computation of many inner products. This is far from a perfect process, and often results in the lack of long-term stability of the system and incorrect asymptotic behavior of the model. This algorithm describes a new stabilization method that utilizes the temporal eigenfunctions to derive correction terms for the coefficients of the dynamical system to significantly reduce these errors.
Mitigating Uncertainty from Vegetation Spatial Complexity with Highly Portable Lidar
NASA Astrophysics Data System (ADS)
Paynter, I.; Schaaf, C.; Peri, F.; Saenz, E. J.; Genest, D.; Strahler, A. H.; Li, Z.
2015-12-01
To fully utilize the excellent spatial coverage and temporal resolution offered by satellite resources for estimating ecological variables, fine-scale observations are required for comparison, calibration and validation. Lidar instruments have proved effective in estimating the properties of vegetation components of ecosystems, but they are often challenged by occlusion, especially in structurally complex and spatially fragmented ecosystems such as tropical forests. Increasing the range of view angles, both horizontally and vertically, by increasing the number of scans, can mitigate occlusion. However these scans must occur within the window of temporal stability for the ecosystem and vegetation property being measured. The Compact Biomass Lidar (CBL) is a TLS optimized for portability and scanning speed, developed and operated by University of Massachusetts Boston. This 905nm wavelength scanner achieves an angular resolution of 0.25 degrees at a rate of 33 seconds per scan. The ability to acquire many scans within narrow windows of temporal stability for ecological variables has facilitated the more complete investigation of ecosystem structural characteristics, and their expression as a function of view angle. The lightweight CBL has facilitated the use of alternative deployment platforms including towers, trams and masts, allowing analysis of the vertical structure of ecosystems, even in highly enclosed environments such as the sub-canopy of tropical forests where aerial vehicles cannot currently operate. We will present results from view angle analyses of lidar surveys of tropical rainforest in La Selva, Costa Rica where the CBL was deployed at heights up to 10m in Carbono long-term research plots utilizing a portable mast, and on a 25m stationary tower; and temperate forest at Harvard Forest, Massachusetts, USA, where the CBL has been deployed biannually at long-term research plots of hardwood and hemlock, as well as at heights of up to 25m utilizing a stationary tower.
NASA Astrophysics Data System (ADS)
Juchem Neto, J. P.; Claeyssen, J. C. R.; Pôrto Júnior, S. S.
2018-03-01
In this paper we introduce capital transport cost in a unidimensional spatial Solow-Swan model of economic growth with capital-induced labor migration, considered in an unbounded domain. Proceeding with a stability analysis, we show that there is a critical value for the capital transport cost where the dynamic behavior of the economy changes, provided that the intensity of capital-induced labor migration is strong enough. On the one hand, if the capital transport cost is higher than this critical value, the spatially homogeneous equilibrium of coexistence of the model is stable, and the economy converges to this spatially homogeneous state in the long run; on the other hand, if transport cost is lower than this critical value, the equilibrium is unstable, and the economy may develop different spatio-temporal dynamics, including the formation of stable economic agglomerations and spatio-temporal economic cycles, depending on the other parameters in the model. Finally, numerical simulations support the results of the stability analysis, and illustrate the spatio-temporal dynamics generated by the model, suggesting that the economy as a whole benefits from the formation of economic agglomerations and cycles, with a higher capital transport cost reducing this gain.
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers
Yao, B. C.; Rao, Y. J.; Wang, Z. N.; Wu, Y.; Zhou, J. H.; Wu, H.; Fan, M. Q.; Cao, X. L.; Zhang, W. L.; Chen, Y. F.; Li, Y. R.; Churkin, D.; Turitsyn, S.; Wong, C. W.
2015-01-01
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses. PMID:26687730
Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers.
Yao, B C; Rao, Y J; Wang, Z N; Wu, Y; Zhou, J H; Wu, H; Fan, M Q; Cao, X L; Zhang, W L; Chen, Y F; Li, Y R; Churkin, D; Turitsyn, S; Wong, C W
2015-12-21
Pulse generation often requires a stabilized cavity and its corresponding mode structure for initial phase-locking. Contrastingly, modeless cavity-free random lasers provide new possibilities for high quantum efficiency lasing that could potentially be widely tunable spectrally and temporally. Pulse generation in random lasers, however, has remained elusive since the discovery of modeless gain lasing. Here we report coherent pulse generation with modeless random lasers based on the unique polarization selectivity and broadband saturable absorption of monolayer graphene. Simultaneous temporal compression of cavity-free pulses are observed with such a polarization modulation, along with a broadly-tunable pulsewidth across two orders of magnitude down to 900 ps, a broadly-tunable repetition rate across three orders of magnitude up to 3 MHz, and a singly-polarized pulse train at 41 dB extinction ratio, about an order of magnitude larger than conventional pulsed fiber lasers. Moreover, our graphene-based pulse formation also demonstrates robust pulse-to-pulse stability and wide-wavelength operation due to the cavity-less feature. Such a graphene-based architecture not only provides a tunable pulsed random laser for fiber-optic sensing, speckle-free imaging, and laser-material processing, but also a new way for the non-random CW fiber lasers to generate widely tunable and singly-polarized pulses.
A latent class approach to the external validation of respiratory and non-respiratory panic subtypes
Roberson-Nay, R.; Latendresse, S. J.; Kendler, K. S.
2013-01-01
Background The phenotypic variance observed in panic disorder (PD) appears to be best captured by a respiratory and non-respiratory panic subtype. We compared respiratory and non-respiratory panic subtypes across a series of external validators (temporal stability, psychiatric co-morbidity, treatment response) to determine whether subtypes are best conceptualized as differing: (1) only on their symptom profiles with no other differences between them; (2) on a quantitative (i.e. severity) dimension only; or (3) qualitatively from one another. Method Data from a large epidemiological survey (National Epidemiologic Survey on Alcohol and Related Conditions) and a clinical trial (Cross-National Collaborative Panic Study) were used. All analytic comparisons were examined within a latent class framework. Results High temporal stability of panic subtypes was observed, particularly among females. Respiratory panic was associated with greater odds of lifetime major depression and a range of anxiety disorders as well as increased treatment utilization, but no demographic differences. Treatment outcome data did not suggest that the two PD subtypes were associated with differential response to either imipramine or alprazolam. Conclusions These data suggest that respiratory and non-respiratory panic represent valid subtypes along the PD continuum, with the respiratory variant representing a more severe form of the disorder. PMID:21846423
Jones; Diddams; Ranka; Stentz; Windeler; Hall; Cundiff
2000-04-28
We stabilized the carrier-envelope phase of the pulses emitted by a femtosecond mode-locked laser by using the powerful tools of frequency-domain laser stabilization. We confirmed control of the pulse-to-pulse carrier-envelope phase using temporal cross correlation. This phase stabilization locks the absolute frequencies emitted by the laser, which we used to perform absolute optical frequency measurements that were directly referenced to a stable microwave clock.
Blood Flow in the Stenotic Carotid Bifurcation
NASA Astrophysics Data System (ADS)
Rayz, Vitaliy
2005-11-01
The carotid artery is prone to atherosclerotic disease and the growth of plaque in the vessel, leading often to severe occlusion or plaque rupture, resulting in emboli and thrombus, and, possibly, stroke. Modeling the flow in stenotic blood vessels can elucidate the influence of the flow on plaque growth and stability. Numerical simulations are carried out to model the complex flows in anatomically realistic, patient-specific geometries constructed from magnetic resonance images. The 3-D unsteady Navier-Stokes equations are solved in a finite-volume formulation, using an iterative pressure-correction algorithm. The flow field computed is highly three-dimensional, with high-speed jets and strong recirculating secondary flows. Sharp spatial and temporal variations of the velocities and shear stresses are observed. The results are in a good agreement with the available experimental and clinical data. The influence of non-Newtonian blood behavior and arterial wall compliance are considered. Transitional and turbulent regimes have been looked at using LES. This work supports the conjecture that numerical simulations can provide a diagnostic tool for assessing plaque stability.
Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim
2015-01-01
Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly. PMID:26393511
Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim
2015-01-01
Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial heterogeneity in species responses can provide further insurance against natural disturbances in coral reef ecosystems by promoting high levels of key species (herbivores). They can also allow the ecosystem to recover more quickly.
NASA Astrophysics Data System (ADS)
Shen, Qin; Gao, Guangyao; Hu, Wei; Fu, Bojie
2016-09-01
Knowledge of the spatial-temporal variability of soil water content (SWC) is critical for understanding a range of hydrological processes. In this study, the spatial variance and temporal stability of SWC were investigated in a cropland-shelterbelt-desert site at the oasis-desert ecotone in the middle of the Heihe River Basin, China. The SWC was measured on 65 occasions to a depth of 2.8 m at 45 locations during two growing seasons from 2012 to 2013. The standard deviation of the SWC versus the mean SWC exhibited a convex upward relationship in the shelterbelt with the greatest spatial variation at the SWC of around 22.0%, whereas a linearly increasing relationship was observed for the cropland, desert, and land use pattern. The standard deviation of the relative difference was positively linearly correlated with the SWC (p < 0.05) for the land use pattern, whereas such a relationship was not found in the three land use types. The spatial pattern of the SWC was more time stable for the land use pattern, followed by desert, shelterbelt, and cropland. The spatial pattern of SWC changed dramatically among different soil layers. The locations representing the mean SWC varied with the depth, and no location could represent the whole soil profile due to different soil texture, root distribution and irrigation management. The representative locations of each soil layer could be used to estimate the mean SWC well. The statistics of temporal stability of the SWC could be presented equally well with a low frequency of observation (30-day interval) as with a high frequency (5-day interval). Sampling frequency had little effect on the selection of the representative locations of the field mean SWC. This study provides useful information for designing the optimal strategy for sampling SWC at the oasis-desert ecotone in the arid inland river basin.
Murdoch, Maureen; Pryor, John B; Griffin, Joan M; Ripley, Diane Cowper; Gackstetter, Gary D; Polusny, Melissa A; Hodges, James S
2011-01-01
The Department of Defense's "gold standard" sexual harassment measure, the Sexual Harassment Core Measure (SHCore), is based on an earlier measure that was developed primarily in college women. Furthermore, the SHCore requires a reading grade level of 9.1. This may be higher than some troops' reading abilities and could generate unreliable estimates of their sexual harassment experiences. Results from 108 male and 96 female soldiers showed that the SHCore's temporal stability and alternate-forms reliability was significantly worse (a) in soldiers without college experience compared to soldiers with college experience and (b) in men compared to women. For men without college experience, almost 80% of the temporal variance in SHCore scores was attributable to error. A plain language version of the SHCore had mixed effects on temporal stability depending on education and gender. The SHCore may be particularly ill suited for evaluating population trends of sexual harassment in military men without college experience.
Neher, Chris J.; Duffield, John; Bair, Lucas S.; Patterson, David A.; Neher, Katherine
2017-01-01
We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.
Composition and temporal stability of turf sediments on inner-shelf coral reefs.
Gordon, Sophie E; Goatley, Christopher H R; Bellwood, David R
2016-10-15
Elevated sediment loads within the epilithic algal matrix (EAM) of coral reefs can increase coral mortality and inhibit herbivory. Yet the composition, distribution and temporal variability of EAM sediment loads are poorly known, especially on inshore reefs. This study quantified EAM sediment loads (including organic particulates) and algal length across the reef profile of two bays at Orpheus Island (inner-shelf Great Barrier Reef) over a six month period. We examined the total sediment mass, organic load, carbonate and silicate content, and the particle sizes of EAM sediments. Throughout the study period, all EAM sediment variables exhibited marked variation among reef zones. However, EAM sediment loads and algal length were consistent between bays and over time, despite major seasonal variation in climate including a severe tropical cyclone. This study provides a comprehensive description of EAM sediments on inshore reefs and highlights the exceptional temporal stability of EAM sediments on coral reefs. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Neher, Chris; Duffield, John; Bair, Lucas; Patterson, David; Neher, Katherine
2017-12-01
We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.
Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang; Liang, Yuting
2017-01-01
To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P < 0.001 [where w is a measure of the rate of log(species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P < 0.001), and then macrobenthos (w = 0.1273, P < 0.001). During dredging, the alpha diversities of both bacterial and microeukaryotic communities were more resistant, but their beta diversities were less resistant than that of macrobenthos. After recovery for 1 year, all three sediment communities were not resilient and had reached an alternative state. The alterations in sediment community structure and stability resulted in functional changes in nitrogen and carbon cycling in sediments. Sediment pH, dissolved oxygen, redox potential, and temperature were the most important factors influencing the stability of sediment communities and ecosystem multifunctionality. This study suggests that discordant temporal turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances. Understanding the temporal turnover and stability of biotic communities is crucial for predicting the responses of sediment ecosystems to dredging disturbance. Most studies to date focused on the bacterial or macrobenthic community, only at two discontinuous time points, before and after dredging, and hence, it was difficult to analyze the community succession. This study first compared the stabilities and temporal changes of sediment bacterial, microeukaryotic, and macrobenthic communities at a continuous time course. The results showed that discordant responses of the three communities are mainly related to their different biological inherent attributes, and sensitivities to sediment geochemical variables change with dredging, resulting in changes in sediment ecosystem multifunctionality. Copyright © 2016 American Society for Microbiology.
Zhang, Na; Xiao, Xian; Pei, Meng; Liu, Xiang
2016-01-01
ABSTRACT To study the stability and succession of sediment microbial and macrobenthic communities in response to anthropogenic disturbance, a time-series sampling was conducted before, during, and 1 year after dredging in the Guan River in Changzhou, China, which was performed with cutter suction dredgers from 10 April to 20 May 2014. The microbial communities were analyzed by sequencing bacterial 16S rRNA and eukaryotic 18S rRNA gene amplicons with Illumina MiSeq, and the macrobenthic community was identified using a morphological approach simultaneously. The results indicated that dredging disturbance significantly altered the composition and structures of sediment communities. The succession rates of communities were estimated by comparing the slopes of time-decay relationships. The temporal turnover of microeukaryotes (w = 0.3251, P < 0.001 [where w is a measure of the rate of log(species turnover) across log(time)]) was the highest, followed by that of bacteria (w = 0.2450, P < 0.001), and then macrobenthos (w = 0.1273, P < 0.001). During dredging, the alpha diversities of both bacterial and microeukaryotic communities were more resistant, but their beta diversities were less resistant than that of macrobenthos. After recovery for 1 year, all three sediment communities were not resilient and had reached an alternative state. The alterations in sediment community structure and stability resulted in functional changes in nitrogen and carbon cycling in sediments. Sediment pH, dissolved oxygen, redox potential, and temperature were the most important factors influencing the stability of sediment communities and ecosystem multifunctionality. This study suggests that discordant temporal turnovers and nonresilience of sediment communities under dredging resulted in functional changes, which are important for predicting sediment ecosystem functions under anthropogenic disturbances. IMPORTANCE Understanding the temporal turnover and stability of biotic communities is crucial for predicting the responses of sediment ecosystems to dredging disturbance. Most studies to date focused on the bacterial or macrobenthic community, only at two discontinuous time points, before and after dredging, and hence, it was difficult to analyze the community succession. This study first compared the stabilities and temporal changes of sediment bacterial, microeukaryotic, and macrobenthic communities at a continuous time course. The results showed that discordant responses of the three communities are mainly related to their different biological inherent attributes, and sensitivities to sediment geochemical variables change with dredging, resulting in changes in sediment ecosystem multifunctionality. PMID:27793828
Continuity of character neurosis from childhood to adulthood. A prospective longitudinal study.
Parnas, J; Teasdale, T W; Schulsinger, H
1982-12-01
In a prospective longitudinal study, stability of personality traits was examined between the age of 15 and the age of 25. Scales, derived from an Adjective Check List, intending to predict obsessive-compulsive character neurosis, anti-aggressive character neurosis and non-neurotic personality have been utilized. Temporal stability of the examined personality traits was demonstrated.
USDA-ARS?s Scientific Manuscript database
Streambank retreat is a complex cyclical process involving subaerial processes, fluvial erosion, seepage erosion, and geotechnical failures and is driven by several soil properties that themselves are temporally and spatially variable. Therefore, it can be extremely challenging to predict and model ...
USDA-ARS?s Scientific Manuscript database
Premise of the study: Reference genes are selected based on the assumption of temporal and spatial expression stability and on their widespread use in model species. They are often used in new target species without validation, presumed as stable. For barley, reference gene validation is lacking, bu...
NASA Astrophysics Data System (ADS)
Bast, A.; Wilcke, W.; Graf, F.; Lüscher, P.; Gärtner, H.
2016-08-01
Steep vegetation-free talus slopes in high mountain environments are prone to superficial slope failures and surface erosion. Eco-engineering measures can reduce slope instabilities and thus contribute to risk mitigation. In a field experiment, we established mycorrhizal and nonmycorrhizal research plots and determined their biophysical contribution to small-scale soil fixation. Mycorrhizal inoculation impact on plant survival, aggregate stability, and fine root development was analyzed. Here we present plant survival (ntotal = 1248) and soil core (ntotal = 108) analyses of three consecutive years in the Swiss Alps. Soil cores were assayed for their aggregate stability coefficient (ASC), root length density (RLD), and mean root diameter (MRD). Inoculation improved plant survival significantly, but it delayed aggregate stabilization relative to the noninoculated site. Higher aggregate stability occurred only after three growing seasons. Then also RLD tended to be higher and MRD increased significantly at the mycorrhizal treated site. There was a positive correlation between RLD, ASC, and roots <0.5 mm, which had the strongest impact on soil aggregation. Our results revealed a temporal offset between inoculation effects tested in laboratory and field experiments. Consequently, we recommend to establish an intermediate to long-term field experimental monitoring before transferring laboratory results to the field.
Self-recovery of stressed nanomembranes
NASA Astrophysics Data System (ADS)
Jiang, Chaoyang; Rybak, Beth M.; Markutsya, Sergiy; Kladitis, Paul E.; Tsukruk, Vladimir V.
2005-03-01
Long-term stability and self-recovery properties were studied for the compliant nanomembranes with a thickness of 55nm free suspended over openings of several hundred microns across. These nanomembranes were assembled with spin-assisted layer-by-layer routines and were composed of polymer multilayers and gold nanoparticles. In a wide pressure range, the membranes behave like completely elastic freely suspended plates. Temporal stability was tested under extreme deformational conditions close to ultimate strain and very modest creep behavior was observed. A unique "self-recovery" ability of these nanomembranes was revealed in these tests. We observed a complete restoration of the initial nanomembrane shape and properties after significant inelastic deformation. These unique micromechanical properties are suggested to be the result of strong Coulombic interaction between the polyelectrolyte layers combined with a high level of biaxial orientation of polymer chains and in-plane prestretching stresses.
Ramseyer, Fabian; Kupper, Zeno; Caspar, Franz; Znoj, Hansjörg; Tschacher, Wolfgang
2014-10-01
Processes occurring in the course of psychotherapy are characterized by the simple fact that they unfold in time and that the multiple factors engaged in change processes vary highly between individuals (idiographic phenomena). Previous research, however, has neglected the temporal perspective by its traditional focus on static phenomena, which were mainly assessed at the group level (nomothetic phenomena). To support a temporal approach, the authors introduce time-series panel analysis (TSPA), a statistical methodology explicitly focusing on the quantification of temporal, session-to-session aspects of change in psychotherapy. TSPA-models are initially built at the level of individuals and are subsequently aggregated at the group level, thus allowing the exploration of prototypical models. TSPA is based on vector auto-regression (VAR), an extension of univariate auto-regression models to multivariate time-series data. The application of TSPA is demonstrated in a sample of 87 outpatient psychotherapy patients who were monitored by postsession questionnaires. Prototypical mechanisms of change were derived from the aggregation of individual multivariate models of psychotherapy process. In a 2nd step, the associations between mechanisms of change (TSPA) and pre- to postsymptom change were explored. TSPA allowed a prototypical process pattern to be identified, where patient's alliance and self-efficacy were linked by a temporal feedback-loop. Furthermore, therapist's stability over time in both mastery and clarification interventions was positively associated with better outcomes. TSPA is a statistical tool that sheds new light on temporal mechanisms of change. Through this approach, clinicians may gain insight into prototypical patterns of change in psychotherapy. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Power law analysis of the human microbiome.
Ma, Zhanshan Sam
2015-11-01
Taylor's (1961, Nature, 189:732) power law, a power function (V = am(b) ) describing the scaling relationship between the mean and variance of population abundances of organisms, has been found to govern the population abundance distributions of single species in both space and time in macroecology. It is regarded as one of few generalities in ecology, and its parameter b has been widely applied to characterize spatial aggregation (i.e. heterogeneity) and temporal stability of single-species populations. Here, we test its applicability to bacterial populations in the human microbiome using extensive data sets generated by the US-NIH Human Microbiome Project (HMP). We further propose extending Taylor's power law from the population to the community level, and accordingly introduce four types of power-law extensions (PLEs): type I PLE for community spatial aggregation (heterogeneity), type II PLE for community temporal aggregation (stability), type III PLE for mixed-species population spatial aggregation (heterogeneity) and type IV PLE for mixed-species population temporal aggregation (stability). Our results show that fittings to the four PLEs with HMP data were statistically extremely significant and their parameters are ecologically sound, hence confirming the validity of the power law at both the population and community levels. These findings not only provide a powerful tool to characterize the aggregations of population and community in both time and space, offering important insights into community heterogeneity in space and/or stability in time, but also underscore the three general properties of power laws (scale invariance, no average and universality) and their specific manifestations in our four PLEs. © 2015 John Wiley & Sons Ltd.
Eggers, Sander M; Taylor, Myra; Sathiparsad, Reshma; Bos, Arjan Er; de Vries, Hein
2015-11-01
Despite its popularity, few studies have assessed the temporal stability and cross-lagged effects of the Theory of Planned Behavior factors: Attitude, subjective norms and self-efficacy. For this study, 298 adolescent learners from KwaZulu-Natal, South Africa, filled out a Theory of Planned Behavior questionnaire on teenage pregnancy at baseline and after 6 months. Structural equation modeling showed that there were considerable cross-lagged effects between attitude and subjective norms. Temporal stability was moderate with test-retest correlations ranging from 0.37 to 0.51 and the model was able to predict intentions to have safe sex (R2 = 0.69) Implications for practice and future research are discussed. © The Author(s) 2013.
Hahn, Seungyong; Kim, Seok Beom; Ahn, Min Cheol; Voccio, John; Bascuñán, Juan; Iwasa, Yukikazu
2010-01-01
This paper presents experimental and analytical results of trapped field characteristics of a stack of square YBCO thin film plates for compact NMR magnets. Each YBCO plate, 40 mm × 40 mm × 0.08 mm, has a 25-mm diameter hole at its center. A total of 500 stacked plates were used to build a 40-mm long magnet. Its trapped field, in a bath of liquid nitrogen, was measured for spatial field distribution and temporal stability. Comparison of measured and analytical results is presented: the effects on trapped field characteristics of the unsaturated nickel substrate and the non-uniform current distribution in the YBCO plate are discussed. PMID:20585463
Hawes, Samuel W.; Mulvey, Edward P.; Schubert, Carol A.; Pardini, Dustin A.
2015-01-01
Psychopathy is a complex personality disorder characterized by affective, interpersonal, and behavioral dimensions. Although features of psychopathy have been extended downwardly to earlier developmental periods, there is a discerning lack of studies that have focused on critically important issues such as longitudinal invariance and stability/change in these features across time. The current study examines these issues using a large sample of male adolescent offenders (N = 1,170) assessed across 7 annual time points during the transition into emerging adulthood (ages ~ 17 to 24 years). Findings demonstrated that features of psychopathy remained longitudinally invariant across this developmental period, and showed temporally consistent and theoretically coherent associations with other measures of personality, psychopathology, and criminal behaviors. Results also demonstrated that mean levels of psychopathic personality features tended to decrease into emerging adulthood and showed relatively modest rank-order stability across assessments with 7-year lags. These findings suggest that reductions in maladaptive personality features seem to parallel the well-documented decreases in offending that occur during the early 20s. PMID:24978692
NASA Astrophysics Data System (ADS)
Matía-Hernando, P.; Witting, T.; Walke, D. J.; Marangos, J. P.; Tisch, J. W. G.
2018-03-01
High-harmonic radiation in the extreme ultraviolet and soft X-ray spectral regions can be used to generate attosecond pulses and to obtain structural and dynamic information in atoms and molecules. However, these sources typically suffer from a limited photon flux. An additional issue at lower photon energies is the appearance of satellites in the time domain, stemming from insufficient temporal gating and the spectral filtering required for the isolation of attosecond pulses. Such satellites limit the temporal resolution. The use of multi-colour driving fields has been proven to enhance the harmonic yield and provide additional control, using the relative delays between the different spectral components for waveform shaping. We describe here a two-colour high-harmonic source that combines a few-cycle near-infrared pulse with a multi-cycle second harmonic pulse, with both relative phase and carrier-envelope phase stabilization. We observe strong modulations in the harmonic flux, and present simulations and experimental results supporting the suppression of satellites in sub-femtosecond pulses at 20 eV compared to the single colour field case, an important requirement for attosecond pump-probe measurements.
NASA Astrophysics Data System (ADS)
Liu, Changying; Iserles, Arieh; Wu, Xinyuan
2018-03-01
The Klein-Gordon equation with nonlinear potential occurs in a wide range of application areas in science and engineering. Its computation represents a major challenge. The main theme of this paper is the construction of symmetric and arbitrarily high-order time integrators for the nonlinear Klein-Gordon equation by integrating Birkhoff-Hermite interpolation polynomials. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Klein-Gordon equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula. We then derive a symmetric and arbitrarily high-order Birkhoff-Hermite time integration formula for the nonlinear abstract ODE. Accordingly, the stability, convergence and long-time behaviour are rigorously analysed once the spatial differential operator is approximated by an appropriate positive semi-definite matrix, subject to suitable temporal and spatial smoothness. A remarkable characteristic of this new approach is that the requirement of temporal smoothness is reduced compared with the traditional numerical methods for PDEs in the literature. Numerical results demonstrate the advantage and efficiency of our time integrators in comparison with the existing numerical approaches.
ERIC Educational Resources Information Center
Santos, António J.; Vaughn, Brian E.; Peceguina, Inês; Daniel, João R.
2014-01-01
This study examines the temporal stability (over 3 years) of individual differences in 3 domains relevant to preschool children's social competence: social engagement/motivation, profiles of behavior and personality attributes characteristic of socially competent young children, and peer acceptance. Each domain was measured with multiple…
Phenotypic selection in natural populations: what limits directional selection?
Kingsolver, Joel G; Diamond, Sarah E
2011-03-01
Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.
The HEPD particle detector and the EFD electric field detector for the CSES satellite
NASA Astrophysics Data System (ADS)
Alfonsi, L.; Ambroglini, F.; Ambrosi, G.; Ammendola, R.; Assante, D.; Badoni, D.; Belyaev, V. A.; Burger, W. J.; Cafagna, A.; Cipollone, P.; Consolini, G.; Conti, L.; Contin, A.; Angelis, E. De; Donato, C. De; Franceschi, G. De; Santis, A. De; Santis, C. De; Diego, P.; Durante, M.; Fornaro, C.; Guandalini, C.; Laurenti, G.; Laurenza, M.; Lazzizzera, I.; Lolli, M.; Manea, C.; Marcelli, L.; Marcucci, F.; Masciantonio, G.; Osteria, G.; Palma, F.; Palmonari, F.; Panico, B.; Patrizii, L.; Picozza, P.; Pozzato, M.; Rashevskaya, I.; Ricci, M.; Rovituso, M.; Scotti, V.; Sotgiu, A.; Sparvoli, R.; Spataro, B.; Spogli, L.; Tommasino, F.; Ubertini, P.; Vannaroni, G.; Xuhui, S.; Zoffoli, S.
2017-08-01
The CSES satellite, developed by Chinese (CNSA) and Italian (ASI) space Agencies, will investigate iono-magnetospheric disturbances (induced by seismicity and electromagnetic emissions of tropospheric and anthropogenic origin); will monitor the temporal stability of the inner Van Allen radiation belts and will study the solar-terrestrial coupling by measuring fluxes of cosmic rays and solar energetic particles. In particular the mission aims at confirming the existences (claimed from several analyses) of a temporal correlations between the occurrence of earthquakes and the observation in space of electromagnetic disturbances, plasma fluctiations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt. CSES will be launched in the summer of 2017 with a multi-instruments payload able to measure: e.m. fields, charged particles, plasma, TEC, etc. The Italian LIMADOU collaboration will provide the High-Energy Particle Detector (HEPD), designed for detecting electrons (3-200 MeV) and proton (30-300 MeV)), and participates to develop the Electric Field Detector (EFD) conceived for measuring electric field from ∼DC up to 5 MHz.
Computation of Steady and Unsteady Laminar Flames: Theory
NASA Technical Reports Server (NTRS)
Hagstrom, Thomas; Radhakrishnan, Krishnan; Zhou, Ruhai
1999-01-01
In this paper we describe the numerical analysis underlying our efforts to develop an accurate and reliable code for simulating flame propagation using complex physical and chemical models. We discuss our spatial and temporal discretization schemes, which in our current implementations range in order from two to six. In space we use staggered meshes to define discrete divergence and gradient operators, allowing us to approximate complex diffusion operators while maintaining ellipticity. Our temporal discretization is based on the use of preconditioning to produce a highly efficient linearly implicit method with good stability properties. High order for time accurate simulations is obtained through the use of extrapolation or deferred correction procedures. We also discuss our techniques for computing stationary flames. The primary issue here is the automatic generation of initial approximations for the application of Newton's method. We use a novel time-stepping procedure, which allows the dynamic updating of the flame speed and forces the flame front towards a specified location. Numerical experiments are presented, primarily for the stationary flame problem. These illustrate the reliability of our techniques, and the dependence of the results on various code parameters.
Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing
2017-08-01
Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig
2008-08-01
SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network.
Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig
2008-01-01
This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil moisture, since t-test's among adjacent plots with different LULCs showed significant differences. These results confirm that a remote sensing approach that considers homogeneous LULC landscape fragments can be used to identify landscape units of similar soil moisture behavior under heterogeneous landscapes. In addition, the in situ USDA-ARS network will serve better in remote sensing studies in which sensors with fine spatial resolution are evaluated. This study is a first step towards identifying landscape units that can be monitored using the single point reading of the USDA-ARS stations network. ?? 2008 Elsevier B.V.
Context effects and the temporal stability of stated preferences.
Liebe, Ulf; Hundeshagen, Cordula; Beyer, Heiko; Cramon-Taubadel, Stephan von
2016-11-01
In stated preference studies it is assumed that individuals' answers reflect true preferences and are stable over time. We test these two assumptions of validity and reliability using as an example a choice experiment study on ethical consumption that measures preferences for a Peace Product jointly produced by Israeli and Palestinian producers as well as for organic products. In a web survey conducted in Germany, we investigate the validity assumption by manipulating the question context and presenting one group of respondents with questions on anti-Semitic and anti-Arabic attitudes before the choice tasks, and presenting another group with these questions after the choice tasks. In order to test the assumption of temporal stability, the same experimental set-up was repeated in a second survey based on a new sample ten months after the first. However, prior to the second survey an external event, a major violent dispute between Israelis and the Palestinians occurred. Overall, we find evidence for a context effect but not for temporal instability. In both surveys, the placement of the attitudinal questions before the choice tasks has a positive effect on the valuation of products from Israel, Palestinian products and the Peace Product (i.e. a directional context effect). The respondents seem to act according to an anti-discrimination norm. In line with this reasoning, we find an attention shift caused by the attitudinal questions. Organic products are valued much less positively if discriminatory attitudes are surveyed before the choice tasks. Furthermore, despite the violent dispute, stated preferences are very stable over time. This indicates high reliability of stated preference studies and encourages the use of study results by private and public decision makers. Copyright © 2016 Elsevier Inc. All rights reserved.
Iron Redox Dynamics in Humid Tropical Forest Soils: Carbon Stabilization vs. Degradation?
NASA Astrophysics Data System (ADS)
Hall, S. J.; Silver, W. L.; Hammel, K.
2015-12-01
Most terrestrial soils exhibit a patchwork of oxygen (O2) availability that varies over spatial scales of microsites to catenas to landscapes, and over temporal scales of minutes to seasons. Oxygen fluctuations often drive microbial iron (Fe) reduction and abiotic/biotic Fe oxidation at the microsite scale, contributing to anaerobic carbon (C) mineralization and changes in soil physical and chemical characteristics, especially the dissolution and precipitation of short-range ordered Fe phases thought to stabilize C. Thus, O2 fluctuations and Fe redox cycling may have multiple nuanced and opposing impacts on different soil C pools, illustrated by recent findings from Fe-rich Oxisols and Ultisols in the Luquillo Experimental Forest, Puerto Rico. Spatial patterns in surface soil C stocks at the landscape scale correlated strongly (R2 = 0.98) with concentrations of reduced Fe (Fe(II)), reflecting constitutive differences in reducing conditions within and among sites that promote C accumulation in mineral soil horizons. Similarly, turnover times of a decadal-cycling pool of mineral-associated organic matter increased with Fe(II) across a catena, possibly reflecting the role of anaerobic microsites in long-term C stabilization. However, two different indices of short-range order Fe showed highly significant opposing relationships (positive and negative) with spatial variation in soil C concentrations, possibly reflecting a dual role of Fe in driving C stabilization via co-precipitation, and C solubilization and loss following dissimilatory Fe reduction. Consistent with the field data, laboratory incubations demonstrated that redox fluctuations can increase the contribution of biochemically recalcitrant C (lignin) to soil respiration, whereas addition of short-range order Fe dramatically suppressed lignin mineralization but had no impact on bulk soil respiration. Thus, understanding spatial and temporal patterns of Fe redox cycling may provide insight into explaining the relatively rapid turnover of biochemically recalcitrant and mineral-associated C in soils.
von Stockert, Sophia H H; Fried, Eiko I; Armour, Cherie; Pietrzak, Robert H
2018-03-15
Previous studies have used network models to investigate how PTSD symptoms associate with each other. However, analyses examining the degree to which these networks are stable over time, which are critical to identifying symptoms that may contribute to the chronicity of this disorder, are scarce. In the current study, we evaluated the temporal stability of DSM-5 PTSD symptom networks over a three-year period in a nationally representative sample of trauma-exposed U.S. military veterans. Data were analyzed from 611 trauma-exposed U.S. military veterans who participated in the National Health and Resilience in Veterans Study (NHRVS). We estimated regularized partial correlation networks of DSM-5 PTSD symptoms at baseline (Time 1) and at three-year follow-up (Time 2), and examined their temporal stability. Evaluation of the network structure of PTSD symptoms at Time 1 and Time 2 using a formal network comparison indicated that the Time 1 network did not differ significantly from the Time 2 network with regard to network structure (p = 0.12) or global strength (sum of all absolute associations, i.e. connectivity; p = 0.25). Centrality estimates of both networks (r = 0.86) and adjacency matrices (r = 0.69) were highly correlated. In both networks, avoidance, intrusive, and negative cognition and mood symptoms were among the more central nodes. This study is limited by the use of a self-report instrument to assess PTSD symptoms and recruitment of a relatively homogeneous sample of predominantly older, Caucasian veterans. Results of this study demonstrate the three-year stability of DSM-5 PTSD symptom network structure in a nationally representative sample of trauma-exposed U.S. military veterans. They further suggest that trauma-related avoidance, intrusive, and dysphoric symptoms may contribute to the chronicity of PTSD symptoms in this population. Published by Elsevier B.V.
Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors
NASA Astrophysics Data System (ADS)
Emerson, Benjamin; Lieuwen, Tim
2016-11-01
Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.
Bruce, Jared; Echemendia, Ruben; Tangeman, Lindy; Meeuwisse, Willem; Comper, Paul; Hutchison, Michael; Aubry, Mark
2016-01-01
Computerized neuropsychological tests are frequently used to assist in return-to-play decisions following sports concussion. However, due to concerns about test reliability, the Centers for Disease Control and Prevention recommends yearly baseline testing. The standard practice that has developed in baseline/postinjury comparisons is to examine the difference between the most recent baseline test and postconcussion performance. Drawing from classical test theory, the present study investigated whether temporal stability could be improved by taking an alternate approach that uses the aggregate of 2 baselines to more accurately estimate baseline cognitive ability. One hundred fifteen English-speaking professional hockey players with 3 consecutive Immediate Postconcussion Assessment and Testing (ImPACT) baseline tests were extracted from a clinical program evaluation database overseen by the National Hockey League and National Hockey League Players' Association. The temporal stability of ImPACT composite scores was significantly increased by aggregating test performance during Sessions 1 and 2 to predict performance during Session 3. Using this approach, the 2-factor Memory (r = .72) and Speed (r = .79) composites of ImPACT showed acceptable long-term reliability. Using the aggregate of 2 baseline scores significantly improves temporal stability and allows for more accurate predictions of cognitive change following concussion. Clinicians are encouraged to estimate baseline abilities by taking into account all of an athlete's previous baseline scores.
NASA Astrophysics Data System (ADS)
Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng
2018-02-01
During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.
Highly sensitive label-free dual sensor array for rapid detection of wound bacteria.
Sheybani, Roya; Shukla, Anita
2017-06-15
Wound infections are a critical healthcare concern worldwide. Rapid and effective antibiotic treatments that can mitigate infection severity and prevent the spread of antibiotic resistance are contingent upon timely infection detection. In this work, dual electrochemical pH and cell-attachment sensor arrays were developed for the real-time spatial and temporal monitoring of potential wound infections. Biocompatible polymeric device coatings were integrated to stabilize the sensors and promote bacteria attachment while preventing non-specific cell and protein fouling. High sensitivity (bacteria concentration of 10 2 colony forming units (CFU)/mL and -88.1±6.3mV/pH over a pH range of 1-13) and stability over 14 days were achieved without the addition of biological recognition elements. The dual sensor array was demonstrated to successfully monitor the growth of both gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli) over time through lag and log growth phases and following antibiotic administration and in simulated shallow wounds conditions. The versatile fabrication methods utilized in sensor development, superior sensitivity, prolonged stability, and lack of non-specific sensor fouling may enable long-term in situ sensor array operation in low resource settings. Copyright © 2016 Elsevier B.V. All rights reserved.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C
2015-11-17
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D.; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J.; Mancuso, Christopher A.; Hogle, Craig W.; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L.; Dorney, Kevin M.; Chen, Cong; Shpyrko, Oleg G.; Fullerton, Eric E.; Cohen, Oren; Oppeneer, Peter M.; Milošević, Dejan B.; Becker, Andreas; Jaroń-Becker, Agnieszka A.; Popmintchev, Tenio; Murnane, Margaret M.; Kapteyn, Henry C.
2015-01-01
We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform. PMID:26534992
Coherence properties of the radiation from FLASH
NASA Astrophysics Data System (ADS)
Schneidmiller, E. A.; Yurkov, M. V.
2016-02-01
Free electron LASer in Hamburg is the first free electron laser user facility operating in the vacuum ultraviolet and soft X-ray wavelength range. Many user experiments require knowledge of the spatial and temporal coherence properties of the radiation. In this paper, we present a theoretical analysis of the coherence properties of the radiation for the fundamental and for the higher odd frequency harmonics. We show that temporal and spatial coherence reach their maxima close to the free electron laser (FEL) saturation but may degrade significantly in the post-saturation regime. We also find that the pointing stability of short FEL pulses is limited due to the fact that nonazimuthal FEL eigenmodes are not sufficiently suppressed. We discuss possible ways for improving the degree of transverse coherence and the pointing stability.
Stability and sensitivity of ABR flow control protocols
NASA Astrophysics Data System (ADS)
Tsai, Wie K.; Kim, Yuseok; Chiussi, Fabio; Toh, Chai-Keong
1998-10-01
This tutorial paper surveys the important issues in stability and sensitivity analysis of ABR flow control of ATM networks. THe stability and sensitivity issues are formulated in a systematic framework. Four main cause of instability in ABR flow control are identified: unstable control laws, temporal variations of available bandwidth with delayed feedback control, misbehaving components, and interactions between higher layer protocols and ABR flow control. Popular rate-based ABR flow control protocols are evaluated. Stability and sensitivity is shown to be the fundamental issues when the network has dynamically-varying bandwidth. Simulation result confirming the theoretical studies are provided. Open research problems are discussed.
Investigating plasma viscosity with fast framing photography in the ZaP-HD Flow Z-Pinch experiment
NASA Astrophysics Data System (ADS)
Weed, Jonathan Robert
The ZaP-HD Flow Z-Pinch experiment investigates the stabilizing effect of sheared axial flows while scaling toward a high-energy-density laboratory plasma (HEDLP > 100 GPa). Stabilizing flows may persist until viscous forces dissipate a sheared flow profile. Plasma viscosity is investigated by measuring scale lengths in turbulence intentionally introduced in the plasma flow. A boron nitride turbulence-tripping probe excites small scale length turbulence in the plasma, and fast framing optical cameras are used to study time-evolved turbulent structures and viscous dissipation. A Hadland Imacon 790 fast framing camera is modified for digital image capture, but features insufficient resolution to study turbulent structures. A Shimadzu HPV-X camera captures the evolution of turbulent structures with great spatial and temporal resolution, but is unable to resolve the anticipated Kolmogorov scale in ZaP-HD as predicted by a simplified pinch model.
Glacigenic sedimentation pulses triggered post-glacial gas hydrate dissociation.
Karstens, Jens; Haflidason, Haflidi; Becker, Lukas W M; Berndt, Christian; Rüpke, Lars; Planke, Sverre; Liebetrau, Volker; Schmidt, Mark; Mienert, Jürgen
2018-02-12
Large amounts of methane are stored in continental margins as gas hydrates. They are stable under high pressure and low, but react sensitively to environmental changes. Bottom water temperature and sea level changes were considered as main contributors to gas hydrate dynamics after the last glaciation. However, here we show with numerical simulations that pulses of increased sedimentation dominantly controlled hydrate stability during the end of the last glaciation offshore mid-Norway. Sedimentation pulses triggered widespread gas hydrate dissociation and explains the formation of ubiquitous blowout pipes in water depths of 600 to 800 m. Maximum gas hydrate dissociation correlates spatially and temporally with the formation or reactivation of pockmarks, which is constrained by radiocarbon dating of Isorropodon nyeggaensis bivalve shells. Our results highlight that rapid changes of sedimentation can have a strong impact on gas hydrate systems affecting fluid flow and gas seepage activity, slope stability and the carbon cycle.
Tihanyi, Benedek T; Ferentzi, Eszter; Köteles, Ferenc
2017-09-01
This study investigated the temporal stability and correlates of attention-related body sensations that emerge without external stimulation during rest and due to focused attention on a body part. To assess attention-related body sensations, participants were asked to focus on a freely chosen body area with closed eyes, and had to report whether the sensation of that area had changed. Self-report questionnaires were used to assess various aspects of body focus (body awareness, body responsiveness, somatosensory amplification, subjective somatic symptoms), and positive and negative affectivity. Previous experiences in body-mind therapies were also measured. PEBL Continuous Performance Test was used to assess sustained attention. Heart rate variability scores were based on a 3-minute long resting heart rate measurement. Fifty-eight university students (22.3 ± 3.95 years; 34 females) participated in the study. The stability of attention-related body sensations was measured 8 weeks later on a randomly chosen sub-group (n = 28). Attention-related body sensations showed a mediocre temporal stability (r ρ = 0.47, p = 0.012). People reporting attention-related body sensations showed significantly higher body awareness, somatosensory amplification, and resting heart rate; and marginally higher somatic symptoms. No relation was found with body-mind practice, body responsiveness, positive and negative affect, the vagal component of heart rate variability, and performance in the sustained attention task. Attention-related sensations are relatively stable over time. They are connected to some, but not to all of the aspects of body focus. Further studies are needed to elaborate the influencing stable and situational factors.
NASA Astrophysics Data System (ADS)
Valanko, Sebastian; Norkko, Joanna; Norkko, Alf
2015-04-01
In ecology understanding variation in connectivity is central for how biodiversity is maintained. Field studies on dispersal and temporal dynamics in community regulating processes are, however, rare. We test the short-term temporal stability in community composition in a soft-sediment benthic community by determining among-sampling interval similarity in community composition. We relate stability to in situ measures of connectivity (wind, wave, current energy) and rates of dispersal (quantified in different trap types). Waves were an important predictor of when local community taxa are most likely to disperse in different trap-types, suggesting that wave energy is important for connectivity in a region. Community composition at the site was variable and changed stochastically over time. We found changes in community composition (occurrence, abundance, dominance) to be greater at times when connectivity and rates of dispersal were low. In response to periods of lower connectedness dominant taxa in the local community only exhibited change in their relative abundance. In contrast, locally less abundant taxa varied in both their presence, as well as in relative abundance. Constancy in connectivity and rates of dispersal promotes community stability and persistence, suggesting that local community composition will be impacted by changes in the spatial extent over which immigration and emigration operates in the region. Few empirical studies have actually measured dispersal directly in a multi-species context to demonstrate the role it plays in maintaining local community structure. Even though our study does not evaluate coexistence over demographic time scales, it importantly demonstrates that dispersal is not only important in initial recruitment or following a disturbance, but also key in maintaining local community composition.
NASA Astrophysics Data System (ADS)
Zhang, Ya-feng; Wang, Xin-ping; Hu, Rui; Pan, Yan-xia
2016-08-01
Throughfall is known to be a critical component of the hydrological and biogeochemical cycles of forested ecosystems with inherently temporal and spatial variability. Yet little is understood concerning the throughfall variability of shrubs and the associated controlling factors in arid desert ecosystems. Here we systematically investigated the variability of throughfall of two morphological distinct xerophytic shrubs (Caragana korshinskii and Artemisia ordosica) within a re-vegetated arid desert ecosystem, and evaluated the effects of shrub structure and rainfall characteristics on throughfall based on heavily gauged throughfall measurements at the event scale. We found that morphological differences were not sufficient to generate significant difference (P < 0.05) in throughfall between two studied shrub species under the same rainfall and meteorological conditions in our study area, with a throughfall percentage of 69.7% for C. korshinskii and 64.3% for A. ordosica. We also observed a highly variable patchy pattern of throughfall beneath individual shrub canopies, but the spatial patterns appeared to be stable among rainfall events based on time stability analysis. Throughfall linearly increased with the increasing distance from the shrub base for both shrubs, and radial direction beneath shrub canopies had a pronounced impact on throughfall. Throughfall variability, expressed as the coefficient of variation (CV) of throughfall, tended to decline with the increase in rainfall amount, intensity and duration, and stabilized passing a certain threshold. Our findings highlight the great variability of throughfall beneath the canopies of xerophytic shrubs and the time stability of throughfall pattern among rainfall events. The spatially heterogeneous and temporally stable throughfall is expected to generate a dynamic patchy distribution of soil moisture beneath shrub canopies within arid desert ecosystems.
Optimal exploitation of spatially distributed trophic resources and population stability
Basset, A.; Fedele, M.; DeAngelis, D.L.
2002-01-01
The relationships between optimal foraging of individuals and population stability are addressed by testing, with a spatially explicit model, the effect of patch departure behaviour on individual energetics and population stability. A factorial experimental design was used to analyse the relevance of the behavioural factor in relation to three factors that are known to affect individual energetics; i.e. resource growth rate (RGR), assimilation efficiency (AE), and body size of individuals. The factorial combination of these factors produced 432 cases, and 1000 replicate simulations were run for each case. Net energy intake rates of the modelled consumers increased with increasing RGR, consumer AE, and consumer body size, as expected. Moreover, through their patch departure behaviour, by selecting the resource level at which they departed from the patch, individuals managed to substantially increase their net energy intake rates. Population stability was also affected by the behavioural factors and by the other factors, but with highly non-linear responses. Whenever resources were limiting for the consumers because of low RGR, large individual body size or low AE, population density at the equilibrium was directly related to the patch departure behaviour; on the other hand, optimal patch departure behaviour, which maximised the net energy intake at the individual level, had a negative influence on population stability whenever resource availability was high for the consumers. The consumer growth rate (r) and numerical dynamics, as well as the spatial and temporal fluctuations of resource density, which were the proximate causes of population stability or instability, were affected by the behavioural factor as strongly or even more strongly than by the others factors considered here. Therefore, patch departure behaviour can act as a feedback control of individual energetics, allowing consumers to optimise a potential trade-off between short-term individual fitness and long-term population stability. ?? 2002 Elsevier Science B.V. All rights reserved.
Temporal acceleration of spatially distributed kinetic Monte Carlo simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhijit; Vlachos, Dionisios G.
The computational intensity of kinetic Monte Carlo (KMC) simulation is a major impediment in simulating large length and time scales. In recent work, an approximate method for KMC simulation of spatially uniform systems, termed the binomial {tau}-leap method, was introduced [A. Chatterjee, D.G. Vlachos, M.A. Katsoulakis, Binomial distribution based {tau}-leap accelerated stochastic simulation, J. Chem. Phys. 122 (2005) 024112], where molecular bundles instead of individual processes are executed over coarse-grained time increments. This temporal coarse-graining can lead to significant computational savings but its generalization to spatially lattice KMC simulation has not been realized yet. Here we extend the binomial {tau}-leapmore » method to lattice KMC simulations by combining it with spatially adaptive coarse-graining. Absolute stability and computational speed-up analyses for spatial systems along with simulations provide insights into the conditions where accuracy and substantial acceleration of the new spatio-temporal coarse-graining method are ensured. Model systems demonstrate that the r-time increment criterion of Chatterjee et al. obeys the absolute stability limit for values of r up to near 1.« less
Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A
2012-12-01
It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.
López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor
2014-01-01
Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790
Vaidya, Jatin G; Gray, Elizabeth K; Haig, Jeffrey; Watson, David
2002-12-01
The authors investigated the stability of personality and trait affect in young adults. In Studies 1 and 2, young adults were retested on a Big Five personality measure and a trait affect inventory over a 2.5-year and a 2-month period, respectively. Results from Study 1 point to positive mean-level changes; participants scored higher on Extraversion, Openness, Agreeableness, and Conscientiousness at Time 2. Affectively, participants experienced less negative affect and more positive affect at Time 2. Results from both retests provide clear evidence of differential stability. Affective traits were consistently less stable than the Big Five. Other analyses suggest that life events influence the stability of affective traits more than the Big Five.
Effects of Sheared Flow on Microinstabilities and Transport in Plasmas
NASA Astrophysics Data System (ADS)
H, Sanuki; K, Itoh; A, Fujisawa; J, Q. Dong
2005-02-01
Theoretical and experimental studies associated with electric field effects on the stability and transport are briefly surveyed. The effects of radial electric field on the suppression and/or enhancement of various microinstabilities such as drift waves, flute mode and temperature gradient modes are discussed. The suppression of flow shear on the electron temperature gradient mode in plasmas with slightly hollow density profiles is investigated by solving the gyrokinetic integral eigenvalue equation. Comparison between theoretical predictions and experimental observations based on the HIBP measurements with high temporal and spatial resolutions is made in bumpy tori and heliotron (CHS) devices.
Controlling laser driven protons acceleration using a deformable mirror at a high repetition rate
NASA Astrophysics Data System (ADS)
Noaman-ul-Haq, M.; Sokollik, T.; Ahmed, H.; Braenzel, J.; Ehrentraut, L.; Mirzaie, M.; Yu, L.-L.; Sheng, Z. M.; Chen, L. M.; Schnürer, M.; Zhang, J.
2018-03-01
We present results from a proof-of-principle experiment to optimize laser driven protons acceleration by directly feeding back its spectral information to a deformable mirror (DM) controlled by evolutionary algorithms (EAs). By irradiating a stable high-repetition rate tape driven target with ultra-intense pulses of intensities ∼1020 W/ cm2, we optimize the maximum energy of the accelerated protons with a stability of less than ∼5% fluctuations near optimum value. Moreover, due to spatio-temporal development of the sheath field, modulations in the spectrum are also observed. Particularly, a prominent narrow peak is observed with a spread of ∼15% (FWHM) at low energy part of the spectrum. These results are helpful to develop high repetition rate optimization techniques required for laser-driven ion accelerators.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
Menstrual cycle and the temporal discrimination threshold.
Mc Govern, Eavan M; O'Connor, Emer; Beiser, Ines; Williams, Laura; Butler, John S; Quinlivan, Brendan; Narasimham, Shruti; Beck, Rebecca; Reilly, Richard B; O'Riordan, Sean; Hutchinson, Michael
2017-02-01
The temporal discrimination threshold (TDT) is a proposed pre-clinical biomarker (endophenotype) for adult onset isolated focal dystonia (AOIFD). Age- and sex-related effects on temporal discrimination demonstrate that women, before the age of 40 years, have faster temporal discrimination than men but their TDTs worsen with age at almost three times the rate of men. Thus after 40 years the TDT in women is progressively worse than in men. AOIFD is an increasingly female-predominant disorder after the age of 40; it is not clear whether this age-related sexually-dimorphic difference observed for both the TDT and sex ratio at disease onset in AOIFD is a hormonal or chromosomal effect. The aim of this study was to examine temporal discrimination at weekly intervals during two consecutive menstrual cycles in 14 healthy female volunteers to determine whether physiological hormonal changes affected temporal discrimination. We observed no significant differences in weekly temporal discrimination threshold values during the menstrual cycles and no significant correlation with the menstrual cycle stage. This observed stability of temporal discrimination during cyclical hormonal change raises interesting questions concerning the age-related sexually-dimorphic decline observed in temporal discrimination. Our findings pave the way for future studies exploring potential pathomechanisms for this age-related deterioration.
Yu, Qiang; Wilcox, Kevin; La Pierre, Kimberly; Knapp, Alan K; Han, Xingguo; Smith, Melinda D
2015-09-01
Why some species are consistently more abundant than others, and predicting how species will respond to global change, are fundamental questions in ecology. Long-term observations indicate that plant species with high stoichiometric homeostasis for nitrogen (HN), i.e., the ability to decouple foliar N levels from variation in soil N availability, were more common and stable through time than low-HN species in a central U.S. grassland. However, with nine years of nitrogen addition, species with high H(N) decreased in abundance, while those with low H(N) increased in abundance. In contrast, in climate change experiments simulating a range of forecast hydrologic changes, e.g., extreme drought (two years), increased rainfall variability (14 years), and chronic increases in rainfall (21 years), plant species with the highest H(N) were least responsive to changes in soil water availability. These results suggest that H(N) may be predictive of plant species success and stability, and how plant species and ecosystems will respond to global-change-driven alterations in resource availability.
HDR video synthesis for vision systems in dynamic scenes
NASA Astrophysics Data System (ADS)
Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried
2016-09-01
High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.
Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn
2015-12-01
The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.
Characterization and control of EUV scanner dose uniformity and stability
NASA Astrophysics Data System (ADS)
Robinson, Chris; Corliss, Dan; Meli, Luciana; Johnson, Rick
2018-03-01
The EUV source is an impressive feat of engineering that provides 13.5 nm radiation by vaporizing tin droplets with a high power CO2 laser and focusing the photons produced in the resultant plasma into the scanner illumination system. Great strides have been made in addressing the many potential stability challenges, but there are still residual spatial and temporal dose non-uniformity signatures. Since even small dose errors can impact the yieldable process window for the advanced lithography products that are exposed on EUV scanners it is crucial to monitor and control the dose variability. Using on-board metrology, the EUV scanner outputs valuable metrics that provide real time insight into the dose performance. We have supplemented scanner data collection with a wafer based methodology that provides high throughput, high sensitivity, quantitative characterization of the EUV scanner dose delivery. The technique uses open frame EUV exposures, so it is exclusive of lithographic pattern imaging, exclusive of lithographic mask pattern and not limited by placement of metrology features. Processed wafers are inspected rapidly, providing 20,000 pixels of detail per exposure field in approximately one minute. Exposing the wafer on the scanner with a bit less than the resist E0 (open frame clearing dose) results in good sensitivity to small variations in the EUV dose delivered. The nominal exposure dose can be modulated by field to calibrate the inspection results and provide quantitative assessment of variations with < 1% sensitivity. This technique has been used for dose uniformity assessments. It is also being used for long term dose stability monitoring and has proven valuable for short term dose stability follow up investigations.
Pitch and time, tonality and meter: how do musical dimensions combine?
Prince, Jon B; Thompson, William F; Schmuckler, Mark A
2009-10-01
The authors examined how the structural attributes of tonality and meter influence musical pitch-time relations. Listeners heard a musical context followed by probe events that varied in pitch class and temporal position. Tonal and metric hierarchies contributed additively to the goodness-of-fit of probes, with pitch class exerting a stronger influence than temporal position (Experiment 1), even when listeners attempted to ignore pitch (Experiment 2). Speeded classification tasks confirmed this asymmetry. Temporal classification was biased by tonal stability (Experiment 3), but pitch classification was unaffected by temporal position (Experiment 4). Experiments 5 and 6 ruled out explanations based on the presence of pitch classes and temporal positions in the context, unequal stimulus quantity, and discriminability. The authors discuss how typical Western music biases attention toward pitch and distinguish between dimensional discriminability and salience. PsycINFO Database Record (c) 2009 APA, all rights reserved.
CLAAS: the CM SAF cloud property dataset using SEVIRI
NASA Astrophysics Data System (ADS)
Stengel, M.; Kniffka, A.; Meirink, J. F.; Lockhoff, M.; Tan, J.; Hollmann, R.
2013-10-01
An 8 yr record of satellite based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The dataset is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Including latest development components of the two applied state-of-the-art retrieval schemes ensure high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular the collected histogram information enhance the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disk and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS dataset facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.
CLAAS: the CM SAF cloud property data set using SEVIRI
NASA Astrophysics Data System (ADS)
Stengel, M. S.; Kniffka, A. K.; Meirink, J. F. M.; Lockhoff, M. L.; Tan, J. T.; Hollmann, R. H.
2014-04-01
An 8-year record of satellite-based cloud properties named CLAAS (CLoud property dAtAset using SEVIRI) is presented, which was derived within the EUMETSAT Satellite Application Facility on Climate Monitoring. The data set is based on SEVIRI measurements of the Meteosat Second Generation satellites, of which the visible and near-infrared channels were intercalibrated with MODIS. Applying two state-of-the-art retrieval schemes ensures high accuracy in cloud detection, cloud vertical placement and microphysical cloud properties. These properties were further processed to provide daily to monthly averaged quantities, mean diurnal cycles and monthly histograms. In particular, the per-month histogram information enhances the insight in spatio-temporal variability of clouds and their properties. Due to the underlying intercalibrated measurement record, the stability of the derived cloud properties is ensured, which is exemplarily demonstrated for three selected cloud variables for the entire SEVIRI disc and a European subregion. All data products and processing levels are introduced and validation results indicated. The sampling uncertainty of the averaged products in CLAAS is minimized due to the high temporal resolution of SEVIRI. This is emphasized by studying the impact of reduced temporal sampling rates taken at typical overpass times of polar-orbiting instruments. In particular, cloud optical thickness and cloud water path are very sensitive to the sampling rate, which in our study amounted to systematic deviations of over 10% if only sampled once a day. The CLAAS data set facilitates many cloud related applications at small spatial scales of a few kilometres and short temporal scales of a~few hours. Beyond this, the spatiotemporal characteristics of clouds on diurnal to seasonal, but also on multi-annual scales, can be studied.
NASA Technical Reports Server (NTRS)
Bhatt, Rajendra; Doelling, David R.; Wu, Aisheng; Xiong, Xiaoxiong (Jack); Scarino, Benjamin R.; Haney, Conor O.; Gopalan, Arun
2014-01-01
The latest CERES FM-5 instrument launched onboard the S-NPP spacecraft will use the VIIRS visible radiances from the NASA Land Product Evaluation and Analysis Tool Elements (PEATE) product for retrieving the cloud properties associated with its TOA flux measurement. In order for CERES to provide climate quality TOA flux datasets, the retrieved cloud properties must be consistent throughout the record, which is dependent on the calibration stability of the VIIRS imager. This paper assesses the NASA calibration stability of the VIIRS reflective solar bands using the Libya-4 desert and deep convective clouds (DCC). The invariant targets are first evaluated for temporal natural variability. It is found for visible (VIS) bands that DCC targets have half of the variability of Libya-4. For the shortwave infrared (SWIR) bands, the desert has less variability. The brief VIIRS record and target variability inhibits high confidence in identifying any trends that are less than 0.6yr for most VIS bands, and 2.5yr for SWIR bands. None of the observed invariant target reflective solar band trends exceeded these trend thresholds. Initial assessment results show that the VIIRS data have been consistently calibrated and that the VIIRS instrument stability is similar to or better than the MODIS instrument.
Effect of fjord geometry on tidewater glacier stability
NASA Astrophysics Data System (ADS)
Åkesson, Henning; Nisancioglu, Kerim H.; Nick, Faezeh M.
2016-04-01
Many marine-terminating glaciers have thinned, accelerated and retreated during the last two decades, broadly consistent with warmer atmospheric and oceanic conditions. However, these patterns involve considerable spatial and temporal variability, with diverse glacier behavior within the same regions. Similarly, reconstructions of marine-terminating glaciers indicate highly asynchronous retreat histories. While it is well known that retrograde slopes can cause marine ice sheet instabilities, the effect of lateral drag and fjord width has received less attention. Here, we test the hypothesis that marine outlet glacier stability is largely controlled by fjord width, and to a less extent by regional climate forcing. We employ a dynamic flowline model on idealized glacier geometries (representative of different outlet glaciers) to investigate geometric controls on decadal and longer times scales. The model accounts for driving and resistive stresses of glacier flow as well as along-flow stress transfer. It has a physical treatment of iceberg calving and a time-adaptive grid allowing for continuous tracking of grounding-line migration. We apply changes in atmospheric and oceanic forcing and show how wide and narrow fjord sections foster glacier (in)stabilities. We also evaluate the effect of including a surface mass balance - elevation feedback in such a setting. Finally, the relevance of these results to past and future marine-terminating glacier stability is discussed.
Tear thinning time and topical anesthesia as assessed using the HIRCAL grid and the NCCA.
Blades, K J; Murphy, P J; Patel, S
1999-03-01
The literature contains conflicting reports of the effects of topical anesthetics on tear film stability, with some consensus that unpreserved topical anesthetics are less likely to reduce tear film stability than preserved preparations. This experiment investigated the effect of unpreserved 0.4% benoxinate hydrochloride on tear thinning time (TTT), in parallel with "real time" corneal sensitivity assessment. Tear film stability was assessed (HIRCAL grid) in parallel with real time assessment of the pharmacological activity (NCCA) of unpreserved 0.4% benoxinate hydrochloride in normal eyes. The anesthetic used did not significantly affect tear film stability. This finding is in agreement with previous investigators. Unpreserved 0.4% benoxinate hydrochloride could be used to facilitate tear film stability assessment. The experimental protocol used could also be applied to investigate the temporal relationship between anesthesia and tear film stability with preserved topical anesthetics that have been found to decrease tear film stability.
Synchronisation and stability in river metapopulation networks.
Yeakel, J D; Moore, J W; Guimarães, P R; de Aguiar, M A M
2014-03-01
Spatial structure in landscapes impacts population stability. Two linked components of stability have large consequences for persistence: first, statistical stability as the lack of temporal fluctuations; second, synchronisation as an aspect of dynamic stability, which erodes metapopulation rescue effects. Here, we determine the influence of river network structure on the stability of riverine metapopulations. We introduce an approach that converts river networks to metapopulation networks, and analytically show how fluctuation magnitude is influenced by interaction structure. We show that river metapopulation complexity (in terms of branching prevalence) has nonlinear dampening effects on population fluctuations, and can also buffer against synchronisation. We conclude by showing that river transects generally increase synchronisation, while the spatial scale of interaction has nonlinear effects on synchronised dynamics. Our results indicate that this dual stability - conferred by fluctuation and synchronisation dampening - emerges from interaction structure in rivers, and this may strongly influence the persistence of river metapopulations. © 2013 John Wiley & Sons Ltd/CNRS.
Schantz, Michele M; Pugh, Rebecca S; Pol, Stacy S Vander; Wise, Stephen A
2015-04-01
The stability of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and chlorinated pesticides in frozen mussel tissue Standard Reference Materials (SRMs) stored at -80 °C was assessed by analyzing samples of SRM 1974, SRM 1974a, and SRM 1974b Organics in Mussel Tissue (Mytilus edulis) periodically over 25 y, 20 y, and 12 y, respectively. The most recent analyses were performed during the certification of the fourth release of this material, SRM 1974c. Results indicate the concentrations of these persistent organic pollutants have not changed during storage at -80 °C. In addition, brominated diphenyl ethers (BDEs) were quantified in each of the materials during this study. The stability information is important for on-going monitoring studies collecting large quantities of samples for future analyses (i.e., formally established specimen banking programs). Since all four mussel tissue SRMs were prepared from mussels collected at the same site in Dorchester Bay, MA, USA, the results provide a temporal trend study for these contaminants over a 17 year period (1987 to 2004).
Blais, Mélody; Martin, Elodie; Albaret, Jean-Michel; Tallet, Jessica
2014-12-15
Despite the apparent age-related decline in perceptual-motor performance, recent studies suggest that the elderly people can improve their reaction time when relevant sensory information are available. However, little is known about which sensory information may improve motor behaviour itself. Using a synchronization task, the present study investigates how visual and/or auditory stimulations could increase accuracy and stability of three bimanual coordination modes produced by elderly and young adults. Neurophysiological activations are recorded with ElectroEncephaloGraphy (EEG) to explore neural mechanisms underlying behavioural effects. Results reveal that the elderly stabilize all coordination modes when auditory or audio-visual stimulations are available, compared to visual stimulation alone. This suggests that auditory stimulations are sufficient to improve temporal stability of rhythmic coordination, even more in the elderly. This behavioural effect is primarily associated with increased attentional and sensorimotor-related neural activations in the elderly but similar perceptual-related activations in elderly and young adults. This suggests that, despite a degradation of attentional and sensorimotor neural processes, perceptual integration of auditory stimulations is preserved in the elderly. These results suggest that perceptual-related brain plasticity is, at least partially, conserved in normal aging. Copyright © 2014 Elsevier B.V. All rights reserved.
Does Repeated Testing Impact Concordance Between Genital and Self-Reported Sexual Arousal in Women?
Velten, Julia; Chivers, Meredith L; Brotto, Lori A
2018-04-01
Women show a substantial variability in their genital and subjective responses to sexual stimuli. The level of agreement between these two aspects of response is termed sexual concordance and has been increasingly investigated because of its implications for understanding models of sexual response and as a potential endpoint in clinical trials of treatments to improve women's sexual dysfunction. However, interpreting changes in sexual concordance may be problematic because, to date, it still is unclear how repeated testing itself influences sexual concordance in women. We are aware of only one study that evaluated temporal stability of concordance in women, and it found no evidence of stability. However, time stability would be necessary for arguing that concordance is a stable individual difference. The main goal of this study was to investigate the test-retest reliability of sexual concordance in a sample of 30 women with sexual difficulties. Using hierarchical linear modeling, we found that sexual concordance was not influenced by repeated testing 12 weeks later, but showed test-retest reliability suggesting temporal stability. Our findings support the hypothesis that sexual concordance is a relatively stable individual difference and that changes in sexual concordance after treatment or experimental conditions could, therefore, be attributed to effects of those conditions.
Rosselló, J M; Dellavale, D; Bonetto, F J
2016-07-01
The use of bi-frequency driving in sonoluminescence has proved to be an effective way to avoid the spatial instability (pseudo-orbits) developed by bubbles in systems with high viscous liquids like sulfuric or phosphoric acids. In this work, we present extensive experimental and numerical evidence in order to assess the effect of the high frequency component (PAc(HF)) of a bi-harmonic acoustic pressure field on the dynamic of sonoluminescent bubbles in an aqueous solution of sulfuric acid. The present study is mainly focused on the role of the harmonic frequency (Nf0) and the relative phase between the two frequency components (φb) of the acoustic field on the spatial, positional and diffusive stability of the bubbles. The results presented in this work were analyzed by means of three different approaches. First, we discussed some qualitative considerations about the changes observed in the radial dynamics, and the stability of similar bubbles under distinct bi-harmonic drivings. Later, we have investigated, through a series of numerical simulations, how the use of high frequency harmonic components of different order N, affects the positional stability of the SL bubbles. Furthermore, the influence of φb in their radius temporal evolution is systematically explored for harmonics ranging from the second to the fifteenth harmonic (N=2-15). Finally, a multivariate analysis based on the covariance method is performed to study the dependences among the parameters characterizing the SL bubble. Both experimental and numerical results indicate that the impact of PAc(HF) on the positional instability and the radial dynamics turns to be progressively negligible as the order of the high frequency harmonic component grows (i.e. N ≫ 1), however its effectiveness on the reduction of the spatial instability remains unaltered or even improved. Copyright © 2016 Elsevier B.V. All rights reserved.
Soil internal drainage: temporal stability and spatial variability in succession bean-black oat
NASA Astrophysics Data System (ADS)
Salvador, M. M. S.; Libardi, P. L.; Moreira, N. B.; Sousa, H. H. F.; Neiverth, C. A.
2012-04-01
There are a variety of studies considering the soil water content, but those who consider the flow of water, which are translated by deep drainage and capillary rise are scarce, especially those who assess their spatio-temporal variability, due to its laborious obtaining. Large areas have been considered homogeneous, but show considerable spatial variability inherent in the soil, causing the appearance of zones of distinct physical properties. In deep, sandy soils where the groundwater level is far below the root zone of interference, internal drainage is one of the factors limiting the supply of water to the soil surface, and possibly one of the biggest factors that determines what kinds satisfactory development of plants present in a given landscape. The forms of relief may also be indicators of changes in soil properties, because this variability is caused by small changes that affect the slope of the pedogenetic processes and the transport and storage of water in the soil profile, i.e., the different trajectories of water flow in different forms of the landscape, is the cause of variability. The objectives of this research were: i) evaluate the spatial and temporal stability of internal soil water drainage in a place near and another distant from the root system in a bean-black-oat succession and ii) verify their spatial variability in relation to relief. With the hydraulic conductivity obtained by the instantaneous profile method and the total potential gradient obtained from the difference in readings of tensiometers installed at depths of 0.35 and 0.45 and 0.75 and 0.85 m in 60 sampling points totaling 1680 and 1200 observations during the cultivation of beans and oats, respectively, was obtained so the internal drainage / capillary rise through the Darcy-Buckingham equation. To evaluate the temporal stability the method used was the relative difference and Spearman correlation test and the spatial variability was analyzed as geostatistical methodology. During the period when the water flow in soil is higher, there is strong temporal stability in the depth of 0.40 m, which is the opposite for the periods of drying. The lowest relative difference and standard deviation for the internal drainage obtained during the cultivation of beans and depth of 0.40 m confirm the hypothesis that the research carried out during periods of soil water recharge have less variability than those in the drying period. Temporal stability was due to the topographic position of selected points, since the points chosen for the depth of 0.40 m in both growing seasons, are located on the lower portion of the relief, and the nominees for the depth of 0,80 m, the highest portion. There were differences in the spatial pattern of water flow in the soil along the crop succession, i.e. the seasonal demand for water by plants and evaporation from the soil at the time of drying, changed their distribution model with internal drainage phases and stages capillary rise.
The CRISPR/Cas9 system is a powerful tool for studying gene function. Here, we describe a method that allows temporal control of CRISPR/Cas9 activity based on conditional Cas9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 (DD-Cas9) enables conditional Cas9 expression and temporal control of gene editing in the presence of an FKBP12 synthetic ligand. This system can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest without co-modulation of the latter.
Thermal stabilization of static single-mirror Fourier transform spectrometers
NASA Astrophysics Data System (ADS)
Schardt, Michael; Schwaller, Christian; Tremmel, Anton J.; Koch, Alexander W.
2017-05-01
Fourier transform spectroscopy has become a standard method for spectral analysis of infrared light. With this method, an interferogram is created by two beam interference which is subsequently Fourier-transformed. Most Fourier transform spectrometers used today provide the interferogram in the temporal domain. In contrast, static Fourier transform spectrometers generate interferograms in the spatial domain. One example of this type of spectrometer is the static single-mirror Fourier transform spectrometer which offers a high etendue in combination with a simple, miniaturized optics design. As no moving parts are required, it also features a high vibration resistance and high measurement rates. However, it is susceptible to temperature variations. In this paper, we therefore discuss the main sources for temperature-induced errors in static single-mirror Fourier transform spectrometers: changes in the refractive index of the optical components used, variations of the detector sensitivity, and thermal expansion of the housing. As these errors manifest themselves in temperature-dependent wavenumber shifts and intensity shifts, they prevent static single-mirror Fourier transform spectrometers from delivering long-term stable spectra. To eliminate these shifts, we additionally present a work concept for the thermal stabilization of the spectrometer. With this stabilization, static single-mirror Fourier transform spectrometers are made suitable for infrared process spectroscopy under harsh thermal environmental conditions. As the static single-mirror Fourier transform spectrometer uses the so-called source-doubling principle, many of the mentioned findings are transferable to other designs of static Fourier transform spectrometers based on the same principle.
Hindered erosion: The biological mediation of noncohesive sediment behavior
NASA Astrophysics Data System (ADS)
Chen, X. D.; Zhang, C. K.; Paterson, D. M.; Thompson, C. E. L.; Townend, I. H.; Gong, Z.; Zhou, Z.; Feng, Q.
2017-06-01
Extracellular polymeric substances (EPS) are ubiquitous on tidal flats but their impact on sediment erosion has not been fully understood. Laboratory-controlled sediment beds were incubated with Bacillus subtilis for 5, 10, 16, and 22 days before the erosion experiments, to study the temporal and spatial variations in sediment stability caused by the bacterial secreted EPS. We found the biosedimentary systems showed different erosional behavior related to biofilm maturity and EPS distribution. In the first stage (5 days), the biosedimentary bed was more easily eroded than the clean sediment. With increasing growth period, bound EPS became more widely distributed over the vertical profile resulting in bed stabilization. After 22 days, the bound EPS was highly concentrated within a surface biofilm, but a relatively high content also extended to a depth of 5 mm and then decayed sharply with depth. The biofilm increased the critical shear stress of the bed and furthermore, it enabled the bed to withstand threshold conditions for an increased period of time as the biofilm degraded before eroding. After the loss of biofilm protection, the high EPS content in the sublayers continued to stabilize the sediment (hindered erosion) by binding individual grains, as visualized by electron microscopy. Consequently, the bed strength did not immediately revert to the abiotic condition but progressively adjusted, reflecting the depth profile of the EPS. Our experiments highlight the need to treat the EPS-sediment conditioning as a bed-age associated and depth-dependent variable that should be included in the next generation of sediment transport models.
NASA Astrophysics Data System (ADS)
Fehn, Niklas; Wall, Wolfgang A.; Kronbichler, Martin
2017-12-01
The present paper deals with the numerical solution of the incompressible Navier-Stokes equations using high-order discontinuous Galerkin (DG) methods for discretization in space. For DG methods applied to the dual splitting projection method, instabilities have recently been reported that occur for small time step sizes. Since the critical time step size depends on the viscosity and the spatial resolution, these instabilities limit the robustness of the Navier-Stokes solver in case of complex engineering applications characterized by coarse spatial resolutions and small viscosities. By means of numerical investigation we give evidence that these instabilities are related to the discontinuous Galerkin formulation of the velocity divergence term and the pressure gradient term that couple velocity and pressure. Integration by parts of these terms with a suitable definition of boundary conditions is required in order to obtain a stable and robust method. Since the intermediate velocity field does not fulfill the boundary conditions prescribed for the velocity, a consistent boundary condition is derived from the convective step of the dual splitting scheme to ensure high-order accuracy with respect to the temporal discretization. This new formulation is stable in the limit of small time steps for both equal-order and mixed-order polynomial approximations. Although the dual splitting scheme itself includes inf-sup stabilizing contributions, we demonstrate that spurious pressure oscillations appear for equal-order polynomials and small time steps highlighting the necessity to consider inf-sup stability explicitly.
Hosford, Charles C; Siders, William A
2010-10-01
Strategies to facilitate learning include using knowledge of students' learning style preferences to inform students and their teachers. Aims of this study were to evaluate the factor structure, internal consistency, and temporal stability of medical student responses to the Index of Learning Styles (ILS) and determine its appropriateness as an instrument for medical education. The ILS assesses preferences on four dimensions: sensing/intuitive information perceiving, visual/verbal information receiving, active/reflective information processing, and sequential/global information understanding. Students entering the 2002-2007 classes completed the ILS; some completed the ILS again after 2 and 4 years. Analyses of responses supported the ILS's intended structure and moderate reliability. Students had moderate preferences for sensing and visual learning. This study provides evidence supporting the appropriateness of the ILS for assessing learning style preferences in medical students.
Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection
NASA Astrophysics Data System (ADS)
Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng
2018-02-01
Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.
Representations of temporal information in short-term memory: Are they modality-specific?
Bratzke, Daniel; Quinn, Katrina R; Ulrich, Rolf; Bausenhart, Karin M
2016-10-01
Rattat and Picard (2012) reported that the coding of temporal information in short-term memory is modality-specific, that is, temporal information received via the visual (auditory) modality is stored as a visual (auditory) code. This conclusion was supported by modality-specific interference effects on visual and auditory duration discrimination, which were induced by secondary tasks (visual tracking or articulatory suppression), presented during a retention interval. The present study assessed the stability of these modality-specific interference effects. Our study did not replicate the selective interference pattern but rather indicated that articulatory suppression not only impairs short-term memory for auditory but also for visual durations. This result pattern supports a crossmodal or an abstract view of temporal encoding. Copyright © 2016 Elsevier B.V. All rights reserved.
An Oil-Bath-Based 293 K to 473 K Blackbody Source
Fowler, Joel B.
1996-01-01
A high temperature oil-bath-based-black-body source has been designed and constructed in the Radiometric Physics Division at the National Institute of Standards and Technology, Gaithersburg, MD. The goal of this work was to design a large aperture blackbody source with highly uniform radiance across the aperture, good temporal stability, and good reproducibility. This blackbody source operates in the 293 K to 473 K range with blackbody temperature combined standard uncertainties of 7.2 mK to 30.9 mK. The calculated emissivity of this source is 0.9997 with a standard uncertainty of 0.0003. With a 50 mm limiting aperture at the cavity entrance, the emissivity increases to 0.99996. PMID:27805082
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes.
Temporal stability of an endemic Mexican treefrog
Cruz-Ruiz, Griselda; Venegas-Barrera, Crystian S.; Sanchez-Sanchez, Hermilo
2015-01-01
The demographic characteristics of an amphibian population fluctuate independently over time, mainly in response to the temporal variation of environmental factors, especially precipitation and temperature. These temporal fluctuations may contribute to the size of an amphibian population and could be used to determine the current conservation status of a species. During a five year (2004–2008) period, we studied the relative abundance, sex ratio, and age-sex structure of a population of metamorphosed individuals of the endemic treefrog Hyla eximia in Central Mexico. We also studied the species’ relationship with climatic variables such as temperature and precipitation. We found an interannual constant abundance during the study period. However, interannual differences were observed in the population structure by age-sex category (males, females, or juveniles), with decreased abundance of males and juveniles during the rainy months (August–November). The annual abundance of H. eximia was positively correlated with rainfall, but negatively with monthly temperature. We found the sex ratio was male-biased (2:1), except for year 2008. Also, differences in snout-vent length (SVL) were found between years, suggesting changes in recruitment of new individuals. We conclude that variations in abundance, and frequencies by age-sex category, of H. eximia are related to seasonal variations in temperature and precipitation characteristics of temperate zones. However, this temporal stability may suggest that anurans have an unusual capacity to persist even in the face of human-induced habitat change. PMID:26421242
Chamaillé-Jammes, Simon; Charbonnel, Anaïs; Dray, Stéphane; Madzikanda, Hillary; Fritz, Hervé
2016-01-01
The spatial structuring of populations or communities is an important driver of their functioning and their influence on ecosystems. Identifying the (in)stability of the spatial structure of populations is a first step towards understanding the underlying causes of these structures. Here we studied the relative importance of spatial vs. interannual variability in explaining the patterns of abundance of a large herbivore community (8 species) at waterholes in Hwange National Park (Zimbabwe). We analyzed census data collected over 13 years using multivariate methods. Our results showed that variability in the census data was mostly explained by the spatial structure of the community, as some waterholes had consistently greater herbivore abundance than others. Some temporal variability probably linked to Park-scale migration dependent on annual rainfall was noticeable, however. Once this was accounted for, little temporal variability remained to be explained, suggesting that other factors affecting herbivore abundance over time had a negligible effect at the scale of the study. The extent of spatial and temporal variability in census data was also measured for each species. This study could help in projecting the consequences of surface water management, and more generally presents a methodological framework to simultaneously address the relative importance of spatial vs. temporal effects in driving the distribution of organisms across landscapes. PMID:27074044
Ring laser having an output at a single frequency
Hackell, Lloyd A.
1991-01-01
A ring laser is disclosed that produces a single frequency of laser radiation in either the pulsed mode of operation or the continuous waveform (cw) mode of operation. The laser comprises a ring laser in a bowtie configuration, a birefringent gain material such as Nd:YLF, an improved optical diode that supports laser oscillation having a desired direction of travel and linear polarization, and a Q-switch. An output coupler (mirror) having a high reflectivity, such as 94%, is disclosed. Also disclosed is a self-seeded method of operation in which the laser can provide a pulse or a series of pulses of high power laser radiation at a consistent single frequency with a high degree of amplitude stability and temporal stability. In operation, the laser is operated in continuous waveform (cw) at a low power output with the Q-switch introducing a loss into the resonating cavity. Pumping is continued at a high level, causing the gain material to store energy. When a pulse is desired, the Q-switch is actuated to substantially reduce the losses so that a pulse can build up based on the low level cw oscillation. The pulse quickly builds, using the stored energy in the gain medium to provide a high power output pulse. The process may be repeated to provide a series of high power pulses of a consistent single frequency.
Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Pasumarthi, Kasyap Sriramachandra
2004-01-01
A low-density gas jet injected into a high-density ambient gas is known to exhibit self-excited global oscillations accompanied by large vortical structures interacting with the flow field. The primary objective of the proposed research is to study buoyancy effects on the origin and nature of the flow instability and structure in the near-field of low-density gas jets. Quantitative rainbow schlieren deflectometry, Computational fluid dynamics (CFD) and Linear stability analysis were the techniques employed to scale the buoyancy effects. The formation and evolution of vortices and scalar structure of the flow field are investigated in buoyant helium jets discharged from a vertical tube into quiescent air. Oscillations at identical frequency were observed throughout the flow field. The evolving flow structure is described by helium mole percentage contours during an oscillation cycle. Instantaneous, mean, and RMS concentration profiles are presented to describe interactions of the vortex with the jet flow. Oscillations in a narrow wake region near the jet exit are shown to spread through the jet core near the downstream location of the vortex formation. The effects of jet Richardson number on characteristics of vortex and flow field are investigated and discussed. The laminar, axisymmetric, unsteady jet flow of helium injected into air was simulated using CFD. Global oscillations were observed in the flow field. The computed oscillation frequency agreed qualitatively with the experimentally measured frequency. Contours of helium concentration, vorticity and velocity provided information about the evolution and propagation of vortices in the oscillating flow field. Buoyancy effects on the instability mode were evaluated by rainbow schlieren flow visualization and concentration measurements in the near-field of self-excited helium jets undergoing gravitational change in the microgravity environment of 2.2s drop tower at NASA John H. Glenn Research Center. The jet Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations establhing buoyancy as the primary instability mechanism in self-excited low-density jets.
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
Tarvainen, O; Toivanen, V; Komppula, J; Kalvas, T; Koivisto, H
2014-02-01
The temporal stability of oxygen ion beams has been studied with the 14 GHz A-ECR at JYFL (University of Jyvaskyla, Department of Physics). A sector Faraday cup was employed to measure the distribution of the beam current oscillations across the beam profile. The spatial and temporal characteristics of two different oscillation "modes" often observed with the JYFL 14 GHz ECRIS are discussed. It was observed that the low frequency oscillations below 200 Hz are distributed almost uniformly. In the high frequency oscillation "mode," with frequencies >300 Hz at the core of the beam, carrying most of the current, oscillates with smaller amplitude than the peripheral parts of the beam. The results help to explain differences observed between the two oscillation modes in terms of the transport efficiency through the JYFL K-130 cyclotron. The dependence of the oscillation pattern on ion source parameters is a strong indication that the mechanisms driving the fluctuations are plasma effects.
Interannual stability of organic to inorganic carbon production on a coral atoll
NASA Astrophysics Data System (ADS)
Kwiatkowski, Lester; Albright, Rebecca; Hosfelt, Jessica; Nebuchina, Yana; Ninokawa, Aaron; Rivlin, Tanya; Sesboüé, Marine; Wolfe, Kennedy; Caldeira, Ken
2016-04-01
Ocean acidification has the potential to adversely affect marine calcifying organisms, with substantial ocean ecosystem impacts projected over the 21st century. Characterizing the in situ sensitivity of calcifying ecosystems to natural variability in carbonate chemistry may improve our understanding of the long-term impacts of ocean acidification. We explore the potential for intensive temporal sampling to isolate the influence of carbonate chemistry on community calcification rates of a coral reef and compare the ratio of organic to inorganic carbon production to previous studies at the same location. Even with intensive temporal sampling, community calcification displays only a weak dependence on carbonate chemistry variability. However, across three years of sampling, the ratio of organic to inorganic carbon production is highly consistent. Although further work is required to quantify the spatial variability associated with such ratios, this suggests that these measurements have the potential to indicate the response of coral reefs to ongoing disturbance, ocean acidification, and climate change.
Viscous instabilities in the q-vortex at large swirl numbers
NASA Astrophysics Data System (ADS)
Fabre, David; Jacquin, Laurent
2002-11-01
This comunication deals with the temporal stability of the q-vortex trailing line vortex model. We describe a family of viscous instabilities existing in a range of parameters which is usually assumed to be stable, namely large swirl parameters (q>1.5) and large Reynolds numbers. These instabilities affect negative azimuthal wavenumbers (m < 0) and take the form of centre-modes (i.e. with a structure concentrated along the vortex centerline). They are related to a family of viscous modes described by Stewartson, Ng & Brown (1988) in swirling Poiseuille flow, and are the temporal counterparts of weakly amplified spatial modes recently computed by Olendraru & Sellier (2002). These instabilities are studied numerically using an original and highly accurate Chebyshev collocation method, which allows a mapping of the unstable regions up to Rey 10^6 and q 7. Our results indicate that in the limit of very large Reynolds numbers, trailing vortices are affected by this kind of instabilities whatever the value of the swirl number.
Cloaking data in optical networks
NASA Astrophysics Data System (ADS)
Klein, Avi; Shahal, Shir; Masri, Gilad; Duadi, Hamootal; Fridman, Moti
2018-01-01
Modern networks implement multi-layer encryption architecture to increase network security, stability, and robustness. We developed a new paradigm for optical encryption based on the strengths of optics over electronics and according to temporal optics principles. We developed a highly efficient all-optical encryption scheme for modern networks. Our temporal encryption scheme exploits the strength of optics over electronics. Specifically, we utilize dispersion together with nonlinear interaction for mixing neighboring bits with a private key. Our system encrypts the entire network traffic without any latency, encrypt the signal itself, exploit only one non- linear interaction, it is energetically efficient with low ecologic footprint, and can be added to current networks without replacing the hardware such as the lasers, the transmitters, the routers, the amplifiers or the receivers. Our method can replace current slow encryption methods or can be added to increase the security of existing systems. In this paper, we elaborate on the theoretical models of the system and how we evaluate the encryption strength with this numerical tools.
Storlazzi, Curt D.; Barnard, Patrick L.; Collins, Brian D.; Finlayson, David P.; Golden, Nadine E.; Hatcher, Gerry A.; Kayen, Robert E.; Ruggiero, Peter
2007-01-01
The County of Santa Cruz Department of Public Works and the County of Santa Cruz Redevelopment Agency requested the U.S. Geological Survey (USGS) Western Coastal and Marine Geology Team (WCMG) to provide baseline geologic and oceanographic information on the coast and inner shelf at Pleasure Point, Santa Cruz County, California. The rationale for this proposed work is a need to better understand the environmental consequences of a proposed bluff stabilization project on the beach, the nearshore and the surf at Pleasure Point, Santa Cruz County, California. To meet these information needs, the USGS-WCMG Team collected baseline scientific information on the morphology and waves at Pleasure Point. This study provided high-resolution topography of the coastal bluffs and bathymetry of the inner shelf off East Cliff Drive between 32nd Avenue and 41st Avenue. The spatial and temporal variation in waves and their breaking patterns at the study site were documented. Although this project did not actively investigate the impacts of the proposed bluff stabilization project, these data provide the baseline information required for future studies directed toward predicting the impacts of stabilization on the sea cliffs, beach and nearshore sediment profiles, natural rock reef structures, and offshore habitats and resources. They also provide a basis for calculating potential changes to wave transformations into the shore at Pleasure Point.
Douterelo, I; Fish, K E; Boxall, J B
2018-09-15
Understanding the temporal dynamics of multi-species biofilms in Drinking Water Distribution Systems (DWDS) is essential to ensure safe, high quality water reaches consumers after it passes through these high surface area reactors. This research studied the succession characteristics of fungal and bacterial communities under controlled environmental conditions fully representative of operational DWDS. Microbial communities were observed to increase in complexity after one month of biofilm development but they did not reach stability after three months. Changes in cell numbers were faster at the start of biofilm formation and tended to decrease over time, despite the continuing changes in bacterial community composition. Fungal diversity was markedly less than bacterial diversity and had a lag in responding to temporal dynamics. A core-mixed community of bacteria including Pseudomonas, Massillia and Sphingomonas and the fungi Acremonium and Neocosmopora were present constantly and consistently in the biofilms over time and conditions studied. Monitoring and managing biofilms and such ubiquitous core microbial communities are key control strategies to ensuring the delivery of safe drinking water via the current ageing DWDS infrastructure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hypothesis tests for the detection of constant speed radiation moving sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumazert, Jonathan; Coulon, Romain; Kondrasovs, Vladimir
2015-07-01
Radiation Portal Monitors are deployed in linear network to detect radiological material in motion. As a complement to single and multichannel detection algorithms, inefficient under too low signal to noise ratios, temporal correlation algorithms have been introduced. Test hypothesis methods based on empirically estimated mean and variance of the signals delivered by the different channels have shown significant gain in terms of a tradeoff between detection sensitivity and false alarm probability. This paper discloses the concept of a new hypothesis test for temporal correlation detection methods, taking advantage of the Poisson nature of the registered counting signals, and establishes amore » benchmark between this test and its empirical counterpart. The simulation study validates that in the four relevant configurations of a pedestrian source carrier under respectively high and low count rate radioactive background, and a vehicle source carrier under the same respectively high and low count rate radioactive background, the newly introduced hypothesis test ensures a significantly improved compromise between sensitivity and false alarm, while guaranteeing the stability of its optimization parameter regardless of signal to noise ratio variations between 2 to 0.8. (authors)« less
NASA Astrophysics Data System (ADS)
Karkarey, R.; Kelkar, N.; Lobo, A. Savio; Alcoverro, T.; Arthur, R.
2014-06-01
Benthic recovery from climate-related disturbances does not always warrant a commensurate functional recovery for reef-associated fish communities. Here, we examine the distribution of benthic groupers (family Serranidae) in coral reef communities from the Lakshadweep archipelago (Arabian Sea) in response to structural complexity and long-term habitat stability. These coral reefs that have been subject to two major El Niño Southern Oscillation-related coral bleaching events in the last decades (1998 and 2010). First, we employ a long-term (12-yr) benthic-monitoring dataset to track habitat structural stability at twelve reef sites in the archipelago. Structural stability of reefs was strongly driven by exposure to monsoon storms and depth, which made deeper and more sheltered reefs on the eastern aspect more stable than the more exposed (western) and shallower reefs. We surveyed groupers (species richness, abundance, biomass) in 60 sites across the entire archipelago, representing both exposures and depths. Sites were selected along a gradient of structural complexity from very low to high. Grouper biomass appeared to vary with habitat stability with significant differences between depth and exposure; sheltered deep reefs had a higher grouper biomass than either sheltered shallow or exposed (deep and shallow) reefs. Species richness and abundance showed similar (though not significant) trends. More interestingly, average grouper biomass increased exponentially with structural complexity, but only at the sheltered deep (high stability) sites, despite the availability of recovered structure at exposed deep and shallow sites (lower-stability sites). This trend was especially pronounced for long-lived groupers (life span >10 yrs). These results suggest that long-lived groupers may prefer temporally stable reefs, independent of the local availability of habitat structure. In reefs subject to repeated disturbances, the presence of structurally stable reefs may be critical as refuges for functionally important, long-lived species like groupers.
NASA Astrophysics Data System (ADS)
Molina, Antonio J.; Latron, Jérôme; Rubio, Carles M.; Gallart, Francesc; Llorens, Pilar
2014-08-01
As a result of complex human-land interactions and topographic variability, many Mediterranean mountain catchments are covered by agricultural terraces that have locally modified the soil water content dynamic. Understanding these local-scale dynamics helps us grasp better how hydrology behaves on the catchment scale. Thus, this study examined soil water content variability in the upper 30 cm of the soil on a Mediterranean abandoned terrace in north-east Spain. Using a dataset of high spatial (regular grid of 128 automatic TDR probes at 2.5 m intervals) and temporal (20-min time step) resolution, gathered throughout a 84-day period, the spatio-temporal variability of soil water content at the local scale and the way that different spatio-temporal scales reflect the mean soil water content were investigated. Soil water content spatial variability and its relation to wetness conditions were examined, along with the spatial structuring of the soil water content within the terrace. Then, the ability of single probes and of different combinations of spatial measurements (transects and grids) to provide a good estimate of mean soil water content on the terrace scale was explored by means of temporal stability analyses. Finally, the effect of monitoring frequency on the magnitude of detectable daily soil water content variations was studied. Results showed that soil water content spatial variability followed a bimodal pattern of increasing absolute variability with increasing soil water content. In addition, a linear trend of decreasing soil water content as the distance from the inner part of the terrace increased was identified. Once this trend was subtracted, resulting semi-variograms suggested that the spatial resolution examined was too high to appreciate spatial structuring in the data. Thus, the spatial pattern should be considered as random. Of all the spatial designs tested, the 10 × 10 m mesh grid (9 probes) was considered the most suitable option for a good, time-stable estimate of mean soil water content, as no improvement was obtained with the 5 × 5 m mesh grid (30 probes). Finally, the results of temporal aggregation showed that decreasing the monitoring frequency down to 8 h during wetting-up periods and to 1 day during drying-down ones did not result in a loss of information on daily soil water content variations.
Relative stability of core groups in pollination networks in a biodiversity hotspot over four years.
Fang, Qiang; Huang, Shuang-Quan
2012-01-01
Plants and their pollinators form pollination networks integral to the evolution and persistence of species in communities. Previous studies suggest that pollination network structure remains nested while network composition is highly dynamic. However, little is known about temporal variation in the structure and function of plant-pollinator networks, especially in species-rich communities where the strength of pollinator competition is predicted to be high. Here we quantify temporal variation of pollination networks over four consecutive years in an alpine meadow in the Hengduan Mountains biodiversity hotspot in China. We found that ranked positions and idiosyncratic temperatures of both plants and pollinators were more conservative between consecutive years than in non-consecutive years. Although network compositions exhibited high turnover, generalized core groups--decomposed by a k-core algorithm--were much more stable than peripheral groups. Given the high rate of turnover observed, we suggest that identical plants and pollinators that persist for at least two successive years sustain pollination services at the community level. Our data do not support theoretical predictions of a high proportion of specialized links within species-rich communities. Plants were relatively specialized, exhibiting less variability in pollinator composition at pollinator functional group level than at the species level. Both specialized and generalized plants experienced narrow variation in functional pollinator groups. The dynamic nature of pollination networks in the alpine meadow demonstrates the potential for networks to mitigate the effects of fluctuations in species composition in a high biodiversity area.
NASA Technical Reports Server (NTRS)
Hovis, Jeffrey S.; Brundidge, Kenneth C.
1987-01-01
A method of interpolating atmospheric soundings while reducing the errors associated with simple time interpolation was developed. The purpose of this was to provide a means to determine atmospheric stability at times between standard soundings and to relate changes in stability to intensity changes in an MCC. Four MCC cases were chosen for study with this method with four stability indices being included. The discussion centers on three aspects for each stability parameter examined: the stability field in the vicinity of the storm and its changes in structure and magnitude during the lifetime of the storm, the average stability within the storm boundary as a function of time and its relation to storm intensity, and the apparent flux of stability parameter into the storm as a consequence of low-level storm relative flow. It was found that the results differed among the four stability parameters, sometimes in a conflicting fashion. Thus, an interpolation of how the storm intensity is related to the changing environmental stability depends upon the particular index utilized. Some explanation for this problem is offered.
Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism
Fan, Tingting; Grychtol, Patrik; Knut, Ronny; ...
2015-11-03
Here, we demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantummore » trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N 4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.« less
Characterization of nano-porosity in molecular layer deposited films.
Perrotta, Alberto; Poodt, Paul; van den Bruele, F J Fieke; Kessels, W M M Erwin; Creatore, Mariadriana
2018-06-12
Molecular layer deposition (MLD) delivers (ultra-) thin organic and hybrid materials, with atomic-level thickness control. However, such layers are often reported to be unstable under ambient conditions, due to the interaction of water and oxygen with the hybrid structure, consequently limiting their applications. In this contribution, we investigate the impact of porosity in MLD layers on their degradation. Alucone layers were deposited by means of trimethylaluminium and ethylene glycol, adopting both temporal and spatial MLD and characterized by means of FT-IR spectroscopy, spectroscopic ellipsometry, and ellipsometric porosimetry. The highest growth per cycle (GPC) achieved by spatial MLD resulted in alucone layers with very low stability in ambient air, leading to their conversion to AlOx. Alucones deposited by means of temporal MLD, instead, showed a lower GPC and a higher ambient stability. Ellipsometric porosimetry showed the presence of open nano-porosity in pristine alucone layers. Pores with a diameter in the range of 0.42-2 nm were probed, with a relative content between 1.5% and 5%, respectively, which are attributed to the temporal and spatial MLD layers. We concluded that a correlation exists between the process GPC, the open-porosity relative content, and the degradation of alucone layers.
Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.
Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon
2017-06-01
The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.
Temporal pattern of soil matric suction in the unsaturated soil slope under different forest cover
NASA Astrophysics Data System (ADS)
Hayati, Elyas; Abdi, Ehsan; Mohseni Saravi, Mohsen; Nieber, John; Majnounian, Baris; Chirico, Giovanni
2017-04-01
In the vadose zone, usually, soils experience high matric suction during dry periods which results in a significant additional soil strength component (i.e., apparent cohesion) and thus plays a crucial role in the stability of unsaturated soil slopes. But, in the wet periods, when rain-water infiltrates into the soil, the matric suction of the soil dissipates partially or completely. It is a well-understood concept that vegetation can modify the hillslope hydrology and subsequent stability conditions by increasing soil matric suction through both interception of rainfall and depletion of soil water content via transpiration. Anthropogenic pressures, particularly clear-cutting and deforestation, affect many hydro-geomorphological processes including catchment and hillslope hydrology and stability. However, quantifying the changes in soil hydrologic conditions and the resulted stability of slopes due to these degrading activities remained an unresolved problem. To address this gap, a continuous measurement of soil water dynamics has been conducted at two adjacent hillslopes (one forested hillslope and one degraded hillslope) using PR2/6 profile probe for a 9-month period of time to demonstrate the forest cover-specific influence on the hillslope hydrology and stability during different seasons. The results have been then presented in terms of estimated soil matric suction to facilitate analyzing the resulted stability states due to the changes in soil water balance with time in the two studied hillslopes. The data were tested to check whether there are any differences between the forested and degraded hillslopes in terms of soil matric suction and augmented soil cohesion during different seasons. Finally, the response of soil hydrologic condition and the resulted slope stability for the 9-month period were analyzed and discussed for the different hillslopes.
NASA Astrophysics Data System (ADS)
Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru
2018-01-01
This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the perturbed nonlinear Schrödinger-Hirota equation (SHE) with spatio-temporal dispersion (STD) and Kerr law nonlinearity in optical fibers. The integration algorithm is the Sine-Gordon equation method (SGEM). Furthermore, the modulation instability analysis (MI) of the equation is studied based on the standard linear-stability analysis and the MI gain spectrum is got.
NASA Technical Reports Server (NTRS)
Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.
2013-01-01
The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.
Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte
2016-07-01
Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ. Copyright © 2016 Elsevier B.V. All rights reserved.
Semi-implicit integration factor methods on sparse grids for high-dimensional systems
NASA Astrophysics Data System (ADS)
Wang, Dongyong; Chen, Weitao; Nie, Qing
2015-07-01
Numerical methods for partial differential equations in high-dimensional spaces are often limited by the curse of dimensionality. Though the sparse grid technique, based on a one-dimensional hierarchical basis through tensor products, is popular for handling challenges such as those associated with spatial discretization, the stability conditions on time step size due to temporal discretization, such as those associated with high-order derivatives in space and stiff reactions, remain. Here, we incorporate the sparse grids with the implicit integration factor method (IIF) that is advantageous in terms of stability conditions for systems containing stiff reactions and diffusions. We combine IIF, in which the reaction is treated implicitly and the diffusion is treated explicitly and exactly, with various sparse grid techniques based on the finite element and finite difference methods and a multi-level combination approach. The overall method is found to be efficient in terms of both storage and computational time for solving a wide range of PDEs in high dimensions. In particular, the IIF with the sparse grid combination technique is flexible and effective in solving systems that may include cross-derivatives and non-constant diffusion coefficients. Extensive numerical simulations in both linear and nonlinear systems in high dimensions, along with applications of diffusive logistic equations and Fokker-Planck equations, demonstrate the accuracy, efficiency, and robustness of the new methods, indicating potential broad applications of the sparse grid-based integration factor method.
Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun
2016-01-01
The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882
NASA Astrophysics Data System (ADS)
Athaudage, Chandranath R. N.; Bradley, Alan B.; Lech, Margaret
2003-12-01
A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing (SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results revealed that the proposed speech coding scheme achieves 50%-60% compression of speech spectral information with negligible degradation in the decoded speech quality.
QCL seeded, ns-pulse, multi-line, CO2 laser oscillator for laser-produced-plasma extreme-UV source
NASA Astrophysics Data System (ADS)
Nowak, Krzysztof Michał; Suganuma, Takashi; Kurosawa, Yoshiaki; Ohta, Takeshi; Kawasuji, Yasufumi; Nakarai, Hiroaki; Saitou, Takashi; Fujimoto, Junichi; Mizoguchi, Hakaru; Sumitani, Akira; Endo, Akira
2017-01-01
Successful merger of state-of-the-art, semiconductor quantum-cascade lasers (QCL), with the mature CO2 laser technology, resulted in a delivery of highly-desired qualities of CO2 laser output that were not available previously without much effort. These qualities, such as multi-line operation, excellent spectro-temporal stability and pulse waveform control, became available from a single device of moderate complexity. This paper describes the operation principle and the unique properties of the solid{state seeded CO2 laser, invented for an application in laser-produced-plasma (LPP), extreme-UV (EUV) light source.
Raman dissipative soliton fiber laser pumped by an ASE source.
Pan, Weiwei; Zhang, Lei; Zhou, Jiaqi; Yang, Xuezong; Feng, Yan
2017-12-15
The mode locking of a Raman fiber laser with an amplified spontaneous emission (ASE) pump source is investigated for performance improvement. Raman dissipative solitons with a compressed pulse duration of 1.05 ps at a repetition rate of 2.47 MHz are generated by utilizing nonlinear polarization rotation and all-fiber Lyot filter. A signal-to-noise ratio as high as 85 dB is measured in a radio-frequency spectrum, which suggests excellent temporal stability. Multiple-pulse operation with unique random static distribution is observed for the first time, to the best of our knowledge, at higher pump power in mode-locked Raman fiber lasers.
3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics
NASA Astrophysics Data System (ADS)
Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo
2017-02-01
We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.
The Psychometric Parameters of the Farsi Form of the Arabic Scale of Death Anxiety
Abdel-Khalek, Ahmed M.; Lester, David
2017-01-01
The aim of this study was to describe the psychometric properties of the Farsi Form of the Arabic Scale of Death Anxiety (ASDA). The original scale was first translated into Farsi by language experts using the back translation procedure and then administered to a total of 252 Iranian college students and 52 psychiatric outpatients from psychiatric and psychological clinics. The one-week test-retest reliability of the Farsi version in a sample of college students was 0.78, indicating good temporal stability and corroborating the trait-like nature of scores. Cronbach's α was 0.90 for the college students and 0.92 for the psychiatric outpatients, indicating high internal consistency. Scale scores correlated 0.46 with Death Obsession Scale scores, 0.56 with Death Depression Scale scores, 0.41 with Death Anxiety Scale scores, and 0.40 with Wish to be Dead Scale scores, indicating good construct and criterion-related validity. A principal component analysis with a Varimax rotation yielded four factors in the sample of Iranian college students, indicating a lack of homogeneity in the content of the scale. Male students obtained a significant higher mean score than did females. It was concluded that the Farsi ASDA had good internal consistency, temporal stability, criterion-related validity, and a factor structure reflecting important features of death anxiety. In general, the Farsi ASDA could be recommended for use in research on death anxiety among Iranian college students and psychiatric outpatients. PMID:28698887
The Psychometric Parameters of the Farsi Form of the Arabic Scale of Death Anxiety.
Dadfar, Mahboubeh; Abdel-Khalek, Ahmed M; Lester, David; Atef Vahid, Mohammad Kazem
2017-01-01
The aim of this study was to describe the psychometric properties of the Farsi Form of the Arabic Scale of Death Anxiety (ASDA). The original scale was first translated into Farsi by language experts using the back translation procedure and then administered to a total of 252 Iranian college students and 52 psychiatric outpatients from psychiatric and psychological clinics. The one-week test-retest reliability of the Farsi version in a sample of college students was 0.78, indicating good temporal stability and corroborating the trait-like nature of scores. Cronbach's α was 0.90 for the college students and 0.92 for the psychiatric outpatients, indicating high internal consistency. Scale scores correlated 0.46 with Death Obsession Scale scores, 0.56 with Death Depression Scale scores, 0.41 with Death Anxiety Scale scores, and 0.40 with Wish to be Dead Scale scores, indicating good construct and criterion-related validity. A principal component analysis with a Varimax rotation yielded four factors in the sample of Iranian college students, indicating a lack of homogeneity in the content of the scale. Male students obtained a significant higher mean score than did females. It was concluded that the Farsi ASDA had good internal consistency, temporal stability, criterion-related validity, and a factor structure reflecting important features of death anxiety. In general, the Farsi ASDA could be recommended for use in research on death anxiety among Iranian college students and psychiatric outpatients.
Fraker, Christopher A; Mendez, Armando J; Inverardi, Luca; Ricordi, Camillo; Stabler, Cherie L
2012-10-01
Nano-scale emulsification has long been utilized by the food and cosmetics industry to maximize material delivery through increased surface area to volume ratios. More recently, these methods have been employed in the area of biomedical research to enhance and control the delivery of desired agents, as in perfluorocarbon emulsions for oxygen delivery. In this work, we evaluate critical factors for the optimization of PFC emulsions for use in cell-based applications. Cytotoxicity screening revealed minimal cytotoxicity of components, with the exception of one perfluorocarbon utilized for emulsion manufacture, perfluorooctylbromide (PFOB), and specific w% limitations of PEG-based surfactants utilized. We optimized the manufacture of stable nano-scale emulsions via evaluation of: component materials, emulsification time and pressure, and resulting particle size and temporal stability. The initial emulsion size was greatly dependent upon the emulsion surfactant tested, with pluronics providing the smallest size. Temporal stability of the nano-scale emulsions was directly related to the perfluorocarbon utilized, with perfluorotributylamine, FC-43, providing a highly stable emulsion, while perfluorodecalin, PFD, coalesced over time. The oxygen mass transfer, or diffusive permeability, of the resulting emulsions was also characterized. Our studies found particle size to be the critical factor affecting oxygen mass transfer, as increased micelle size resulted in reduced oxygen diffusion. Overall, this work demonstrates the importance of accurate characterization of emulsification parameters in order to generate stable, reproducible emulsions with the desired bio-delivery properties. Copyright © 2012 Elsevier B.V. All rights reserved.
The pace of Holocene vegetation change - testing for synchronous developments
NASA Astrophysics Data System (ADS)
Giesecke, Thomas; Bennett, K. D.; Birks, H. John B.; Bjune, Anne E.; Bozilova, Elisaveta; Feurdean, Angelica; Finsinger, Walter; Froyd, Cynthia; Pokorný, Petr; Rösch, Manfred; Seppä, Heikki; Tonkov, Spasimir; Valsecchi, Verushka; Wolters, Steffen
2011-09-01
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around 8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka. Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.
Tack, Ayco J. M.; Mononen, Tommi; Hanski, Ilkka
2015-01-01
Climate change is known to shift species' geographical ranges, phenologies and abundances, but less is known about other population dynamic consequences. Here, we analyse spatio-temporal dynamics of the Glanville fritillary butterfly (Melitaea cinxia) in a network of 4000 dry meadows during 21 years. The results demonstrate two strong, related patterns: the amplitude of year-to-year fluctuations in the size of the metapopulation as a whole has increased, though there is no long-term trend in average abundance; and there is a highly significant increase in the level of spatial synchrony in population dynamics. The increased synchrony cannot be explained by increasing within-year spatial correlation in precipitation, the key environmental driver of population change, or in per capita growth rate. On the other hand, the frequency of drought during a critical life-history stage (early larval instars) has increased over the years, which is sufficient to explain the increasing amplitude and the expanding spatial synchrony in metapopulation dynamics. Increased spatial synchrony has the general effect of reducing long-term metapopulation viability even if there is no change in average metapopulation size. This study demonstrates how temporal changes in weather conditions can lead to striking changes in spatio-temporal population dynamics. PMID:25854888
Jiang, Weixiong; Wang, Wei
2014-01-01
Antisocial Personality Disorder (APD) is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF) was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD. PMID:24598769
Kilby, Melissa C; Slobounov, Semyon M; Newell, Karl M
2016-06-01
The experiment manipulated real-time kinematic feedback of the motion of the whole body center of mass (COM) and center of pressure (COP) in anterior-posterior (AP) and medial-lateral (ML) directions to investigate the variables actively controlled in quiet standing of young adults. The feedback reflected the current 2D postural positions within the 2D functional stability boundary that was scaled to 75%, 30% and 12% of its original size. The findings showed that the distance of both COP and COM to the respective stability boundary was greater during the feedback trials compared to a no feedback condition. However, the temporal safety margin of the COP, that is, the virtual time-to-contact (VTC), was higher without feedback. The coupling relation of COP-COM showed stable in-phase synchronization over all of the feedback conditions for frequencies below 1Hz. For higher frequencies (up to 5Hz), there was progressive reduction of COP-COM synchronization and local adaptation under the presence of augmented feedback. The findings show that the augmented feedback of COM and COP motion differentially and adaptively influences spatial and temporal properties of postural motion relative to the stability boundary while preserving the organization of the COM-COP coupling in postural control. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Yuelu; Huang, Shengzhi; Chang, Jianxia
It is of importance to comprehensively investigate the spatial-temporal changes in potential evaporation patterns, which helps guide the long-term water resource allocation and irrigation managements. In this study, the Cloud model was adopted to quantify the average, uniformity, and stability of annual potential evaporation in the Wei River Basin (WRB), a typical arid and semi-arid region in China.. The cross wavelet analysis was then applied to explore the correlations between potential evaporation and Arctic Oscillation (AO)/El Niño Southern Oscillation (ENSO) with an aim to determine the possible causes of potential evaporation variations. Results indicated that: (1) the average of annualmore » potential evaporation in the WRB first declined and then increased, which was similar with its stability, whilst its dispersion degree exhibited a decreasing trend, implying that potential evaporation has a small inter-annual variation; (2) the average of potential evaporation in the western basin was obviously smaller than that in the other areas, while its uniformity and stability in the Guanzhong plain and the Loess Plateau areas are larger than those in other areas, particularly in the western basin where the uniformity and stability are the smallest; (3) both AO and ENSO exhibited strong correlations with potential evaporation variations, indicating that both AO and ENSO have played an important role in the annual potential evaporation variations in the WRB.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Jonathan H.; Pickett, Lyle M.; Bisson, Scott E.
In this LDRD project, we developed a capability for quantitative high - speed imaging measurements of high - pressure fuel injection dynamics to advance understanding of turbulent mixing in transcritical flows, ignition, and flame stabilization mechanisms, and to provide e ssential validation data for developing predictive tools for engine combustion simulations. Advanced, fuel - efficient engine technologies rely on fuel injection into a high - pressure, high - temperature environment for mixture preparation and com bustion. Howe ver, the dynamics of fuel injection are not well understood and pose significant experimental and modeling challenges. To address the need for quantitativemore » high - speed measurements, we developed a Nd:YAG laser that provides a 5ms burst of pulses at 100 kHz o n a robust mobile platform . Using this laser, we demonstrated s patially and temporally resolved Rayleigh scattering imaging and particle image velocimetry measurements of turbulent mixing in high - pressure gas - phase flows and vaporizing sprays . Quantitativ e interpretation of high - pressure measurements was advanced by reducing and correcting interferences and imaging artifacts.« less
Cross-cultural Adaptation of the Self-care of Hypertension Inventory Into Brazilian Portuguese.
Silveira, Luana Claudia Jacoby; Rabelo-Silva, Eneida Rejane; Ávila, Christiane Whast; Beltrami Moreira, Leila; Dickson, Victoria Vaughan; Riegel, Barbara
Lifestyle changes and treatment adherence still constitute a challenge to healthcare providers involved in the care of persons with hypertension. The lack of validated instruments measuring the ability of hypertensive patients to manage their disease has slowed research progress in this area. The Self-care of Hypertension Inventory, originally developed in the United States, consists of 23 items divided across 3 scales: Self-care Maintenance, Self-care Management, and Self-care Confidence. These scales measure how well patients with hypertension adhere to treatment and manage elevated blood pressure, as well as their confidence in their ability to perform self-care. A rigorous cross-cultural adaptation and validation process is required before this instrument can be used in other countries. The aims of this study were to translate the Self-care of Hypertension Inventory into Brazilian Portuguese with cross-cultural adaptation and to evaluate interobserver reliability and temporal stability. This methodological study involved forward translation, synthesis of forward translations, back-translation, synthesis of back-translations, expert committee review, and pretesting. Interobserver agreement and the temporal stability of the scales were assessed. The expert committee proposed semantic and cultural modifications to some items and the addition of guidance statements to facilitate administration of the scale. Interobserver analysis demonstrated substantial agreement. Analysis of temporal stability showed near-perfect agreement. Cross-cultural adaptation of the Self-care of Hypertension Inventory successfully produced a Portuguese-language version of the instrument for further evaluation of psychometric properties. Once that step is completed, the scale can be used in Brazil.
Continental drift and climate change drive instability in insect assemblages
NASA Astrophysics Data System (ADS)
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Continental drift and climate change drive instability in insect assemblages
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-01-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036
Continental drift and climate change drive instability in insect assemblages.
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-17
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; Yang, Xiao-Qing
2018-02-20
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers' demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today's market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safety issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. In many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution. For example, hard X-ray spectroscopy can yield the bulk information and soft X-ray spectroscopy can give the surface information; X-ray based imaging techniques can obtain spatial resolution of tens of nanometers, and electron-based microcopy can go to angstroms. In addition to challenges associated with different spatial resolution, the dynamic nature of structural changes during high rate cycling and heating requires characterization tools to have the capability of collecting high quality data in a time-resolved fashion. Thanks to the advancement in synchrotron based techniques and high-resolution electron microscopy, high temporal and spatial resolutions can now be achieved. In this Account, we focus on the recent works studying kinetic and thermal properties of layer-structured cathode materials, especially the structural changes during high rate cycling and the thermal stability during heating. Advanced characterization techniques relating to the rate capability and thermal stability will be introduced. The different structure evolution behavior of cathode materials cycled at high rate will be compared with that cycled at low rate. Different response of individual transition metals and the inhomogeneity in chemical distribution will be discussed. For the thermal stability, the relationship between structural changes and oxygen release will be emphatically pointed out. In all these studies being reviewed, advanced characterization techniques are critically applied to reveal complexities at multiscale in layer-structured cathode materials.
Zhu, Xuehua; Wang, Yulei; Lu, Zhiwei; Zhang, Hengkang
2015-09-07
A new technique for generating high energy sub-400 picosecond laser pulses is presented in this paper. The temporally super-Gaussian-shaped laser pulses are used as light source. When the forward pump is reflected by the rear window of SBS cell, the frequency component that fulfills Brillouin frequency shift in its sideband spectrum works as a seed and excites SBS, which results in efficient compression of the incident pump pulse. First the pulse compression characteristics of 20th-order super-Gaussian temporally shaped pulses with 5 ns duration are analyzed theoretically. Then experiment is carried out with a narrow-band high power Nd:glass laser system at the double-frequency and wavelength of 527 nm which delivers 5 ns super-Gaussian temporally shaped pulses with single pulse energy over 10 J. FC-40 is used as the active SBS medium for its brief phonon lifetime and high power capacity. In the experiment, the results agree well with the numerical calculations. With pump energy of 5.36J, the compression of pulse duration from 5 ns to 360 ps is obtained. The output energy is 3.02 J and the peak-power is magnified 8.3 times. Moreover, the compressed pulse shows a high stability because it is initiated by the feedback of rear window rather than the thermal noise distributing inside the medium. This technique of generating high energy hundred picosecond laser pulses has simple structure and is easy to operate, and it also can be scaled to higher energy pulse compression in the future. Meanwhile, it should also be taken into consideration that in such a nonfocusing scheme, the noise-initiated SBS would increase the distortion on the wavefront of Stokes beam to some extent, and the pump energy should be controlled below the threshold of noise-initiated SBS.
Tracking Human Mobility Using WiFi Signals.
Sapiezynski, Piotr; Stopczynski, Arkadiusz; Gatej, Radu; Lehmann, Sune
2015-01-01
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of human mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking.
Sexual compulsivity scale: adaptation and validation in the spanish population.
Ballester-Arnal, Rafael; Gómez-Martínez, Sandra; Llario, M Dolores-Gil; Salmerón-Sánchez, Pedro
2013-01-01
Sexual compulsivity has been studied in relation to high-risk behavior for sexually transmitted infections. The aim of this study was the adaptation and validation of the Sexual Compulsivity Scale to a sample of Spanish young people. This scale was applied to 1,196 (891 female, 305 male) Spanish college students. The results of principal components factor analysis using a varimax rotation indicated a two-factor solution. The reliability of the Sexual Compulsivity Scale was found to be high. Moreover, the scale showed good temporal stability. External correlates were examined through Pearson correlations between the Sexual Compulsivity Scale and other constructs related with HIV prevention. The authors' results suggest that the Sexual Compulsivity Scale is an appropriate measure for assessing sexual compulsivity, showing adequate psychometric properties in the Spanish population.
High-Resolution Infrared Filter System for Solar Spectroscopy and Polarimetry
NASA Astrophysics Data System (ADS)
Cao, W.; Ma, J.; Wang, J.; Goode, P. R.; Wang, H.; Denker, C.
2003-05-01
We report on the design of an imaging filter system working at the near infrared (NIR) of 1.56 μ m to obtain monochromatic images and to probe weak magnetic fields in different layers of the deep photosphere with high temporal resolution and spatial resolution at Big Bear Solar Observatory (BBSO). This filter system consists of an interference filter, a birefringent filter, and a Fabry-Pérot etalon. As the narrowest filter system, the infrared Fabry-Pérot plays an important role in achieving narrow band transmission and high throughput, maintaining wavelength tuning ability, and assuring stability and reliability. In this poster, we outline a set of methods for the evaluation and calibration of the near infrared Fabry-Pérot etalon. Two-dimensional characteristic maps of the near infrared Fabry-Pérot etalon, including full-width-at-half-maximum (FWHM), effective finesse, peak transmission, along with free spectral range, flatness, roughness, stability and repeatability were obtained with lab equipments. Finally, by utilizing these results, a detailed analysis of the filter performance for the Fe I 1.5648 μ m and Fe I 1.5652 μ m Zeeman sensitive lines is presented. These results will benefit the design of NIR spectro-polarimeter of Advanced Technology Solar Telescope (ATST).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chi, E-mail: chizheung@gmail.com; Xu, Yiqing; Wei, Xiaoming
2014-07-28
Time-stretch microscopy has emerged as an ultrafast optical imaging concept offering the unprecedented combination of the imaging speed and sensitivity. However, dedicated wideband and coherence optical pulse source with high shot-to-shot stability has been mandated for time-wavelength mapping—the enabling process for ultrahigh speed wavelength-encoded image retrieval. From the practical point of view, exploiting methods to relax the stringent requirements (e.g., temporal stability and coherence) for the source of time-stretch microscopy is thus of great value. In this paper, we demonstrated time-stretch microscopy by reconstructing the time-wavelength mapping sequence from a wideband incoherent source. Utilizing the time-lens focusing mechanism mediated bymore » a narrow-band pulse source, this approach allows generation of a wideband incoherent source, with the spectral efficiency enhanced by a factor of 18. As a proof-of-principle demonstration, time-stretch imaging with the scan rate as high as MHz and diffraction-limited resolution is achieved based on the wideband incoherent source. We note that the concept of time-wavelength sequence reconstruction from wideband incoherent source can also be generalized to any high-speed optical real-time measurements, where wavelength is acted as the information carrier.« less
Sliwinski, Martin J.; Almeida, David M.; Smyth, Joshua; Stawski, Robert S.
2010-01-01
There is little longitudinal information on aging-related changes in emotional responses to negative events. The present manuscript examined intraindividual change and variability in the within-person coupling of daily stress and negative affect (NA) using data from two-measurement burst daily diary studies. Three main findings emerged. First, average reactivity to daily stress increased longitudinally, and this increase was evident across most the adult lifespan. Second, individual differences in emotional reactivity to daily stress exhibited long-term temporal stability, but this stability was greatest in midlife and decreased in old age. And third, reactivity to daily stress varied reliably within-persons (across-time), with individual exhibiting higher levels of reactivity during times when reporting high levels of global subject stress in previous month. Taken together, the present results emphasize the importance of modeling dynamic psychosocial and aging processes that operate across different time scales for understanding age-related changes in daily stress processes. PMID:20025399
Engineering growth factors for regenerative medicine applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less
Bilyeu, Kristin D; Wiebold, William J
2016-02-10
Soybean [Glycine max (L.) Merr.] is important for the high protein meal used for livestock feed formulations. Carbohydrates contribute positively or negatively to the potential metabolizable energy in soybean meal. The positive carbohydrate present in soybean meal consists primarily of sucrose, whereas the negative carbohydrate components are the raffinose family of oligosaccharides (RFOs), raffinose and stachyose. Increasing sucrose and decreasing raffinose and stachyose are critical targets to improve soybean. In three recently characterized lines, variant alleles of the soybean raffinose synthase 2 (RS2) gene were associated with increased sucrose and decreased RFOs. The objective of this research was to compare the environmental stability of seed carbohydrates in soybean lines containing wild-type or variant alleles of RS2 utilizing a field location study and a date of planting study. The results define the carbohydrate variation in distinct regional and temporal environments using soybean lines with different alleles of the RS2 gene.
Chapter 15: Potential Surprises: Compound Extremes and Tipping Elements
NASA Technical Reports Server (NTRS)
Kopp, R. E.; Hayhoe, K.; Easterling, D. R.; Hall, T.; Horton, R.; Kunkel, K. E.; LeGrande, A. N.
2017-01-01
The Earth system is made up of many components that interact in complex ways across a broad range of temporal and spatial scales. As a result of these interactions the behavior of the system cannot be predicted by looking at individual components in isolation. Negative feedbacks, or self-stabilizing cycles, within and between components of the Earth system can dampen changes (Ch. 2: Physical Drivers of Climate Change). However, their stabilizing effects render such feedbacks of less concern from a risk perspective than positive feedbacks, or self-reinforcing cycles. Positive feedbacks magnify both natural and anthropogenic changes. Some Earth system components, such as arctic sea ice and the polar ice sheets, may exhibit thresholds beyond which these self-reinforcing cycles can drive the component, or the entire system, into a radically different state. Although the probabilities of these state shifts may be difficult to assess, their consequences could be high, potentially exceeding anything anticipated by climate model projections for the coming century.
NASA Astrophysics Data System (ADS)
Couhert, Alexandre
The reference Ocean Surface Topography Mission/Jason-2 satellite (CNES/NASA) has been in orbit for six years (since June 2008). It extends the continuous record of highly accurate sea surface height measurements begun in 1992 by the Topex/Poseidon mission and continued in 2001 by the Jason-1 mission. The complementary missions CryoSat-2 (ESA), HY-2A (CNSA) and SARAL/AltiKa (CNES/ISRO), with lower altitudes and higher inclinations, were launched in April 2010, August 2011 and February 2013, respectively. Although the three last satellites fly in different orbits, they contribute to the altimeter constellation while enhancing the global coverage. The CNES Precision Orbit Determination (POD) Group delivers precise and homogeneous orbit solutions for these independent altimeter missions. The focus of this talk will be on the long-term stability of the orbit time series for mean sea level applications on a regional scale. We discuss various issues related to the assessment of radial orbit error trends; in particular orbit errors dependant on the tracking technique, the reference frame accuracy and stability, the modeling of the temporal variations of the geopotential. Strategies are then explored to meet a 1 mm/y radial orbit stability over decadal periods at regional scales, and the challenge of evaluating such an improvement is discussed.
The inviscid stability of supersonic flow past axisymmetric bodies
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).
Visualizing the engram: learning stabilizes odor representations in the olfactory network.
Shakhawat, Amin M D; Gheidi, Ali; Hou, Qinlong; Dhillon, Sandeep K; Marrone, Diano F; Harley, Carolyn W; Yuan, Qi
2014-11-12
The nature of memory is a central issue in neuroscience. How does our representation of the world change with learning and experience? Here we use the transcription of Arc mRNA, which permits probing the neural representations of temporally separated events, to address this in a well characterized odor learning model. Rat pups readily associate odor with maternal care. In pups, the lateralized olfactory networks are independent, permitting separate training and within-subject control. We use multiday training to create an enduring memory of peppermint odor. Training stabilized rewarded, but not nonrewarded, odor representations in both mitral cells and associated granule cells of the olfactory bulb and in the pyramidal cells of the anterior piriform cortex. An enlarged core of stable, likely highly active neurons represent rewarded odor at both stages of the olfactory network. Odor representations in anterior piriform cortex were sparser than typical in adult rat and did not enlarge with learning. This sparser representation of odor is congruent with the maturation of lateral olfactory tract input in rat pups. Cortical representations elsewhere have been shown to be highly variable in electrophysiological experiments, suggesting brains operate normally using dynamic and network-modulated representations. The olfactory cortical representations here are consistent with the generalized associative model of sparse variable cortical representation, as normal responses to repeated odors were highly variable (∼70% of the cells change as indexed by Arc). Learning and memory modified rewarded odor ensembles to increase stability in a core representational component. Copyright © 2014 the authors 0270-6474/14/3415394-08$15.00/0.
How social learning adds up to a culture: from birdsong to human public opinion
Feher, Olga; Fimiarz, Daniel; Conley, Dalton
2017-01-01
ABSTRACT Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered – either during learning or while traveling through the social network – can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. PMID:28057835
Learning and disrupting invariance in visual recognition with a temporal association rule
Isik, Leyla; Leibo, Joel Z.; Poggio, Tomaso
2012-01-01
Learning by temporal association rules such as Foldiak's trace rule is an attractive hypothesis that explains the development of invariance in visual recognition. Consistent with these rules, several recent experiments have shown that invariance can be broken at both the psychophysical and single cell levels. We show (1) that temporal association learning provides appropriate invariance in models of object recognition inspired by the visual cortex, (2) that we can replicate the “invariance disruption” experiments using these models with a temporal association learning rule to develop and maintain invariance, and (3) that despite dramatic single cell effects, a population of cells is very robust to these disruptions. We argue that these models account for the stability of perceptual invariance despite the underlying plasticity of the system, the variability of the visual world and expected noise in the biological mechanisms. PMID:22754523
2012-01-01
and c, we were able to obtain Figure 21: Intensity and Pressure Temporal Profiles Calculated from Pressure Model 0 20 40 60 80 100 0 2 4 6 8...August 2008 – 31 January 2012 4 . TITLE AND SUBTITLE STRUCTURAL TECHNOLOGY EVALUATION ANALYSIS PROGRAM (STEAP) Task Order 0029: Thermal...Stability of Fatigue Life-Enhanced Structures 5a. CONTRACT NUMBER FA8650-04-D-3446-0029 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 62201F 6
Full-frame video stabilization with motion inpainting.
Matsushita, Yasuyuki; Ofek, Eyal; Ge, Weina; Tang, Xiaoou; Shum, Heung-Yeung
2006-07-01
Video stabilization is an important video enhancement technology which aims at removing annoying shaky motion from videos. We propose a practical and robust approach of video stabilization that produces full-frame stabilized videos with good visual quality. While most previous methods end up with producing smaller size stabilized videos, our completion method can produce full-frame videos by naturally filling in missing image parts by locally aligning image data of neighboring frames. To achieve this, motion inpainting is proposed to enforce spatial and temporal consistency of the completion in both static and dynamic image areas. In addition, image quality in the stabilized video is enhanced with a new practical deblurring algorithm. Instead of estimating point spread functions, our method transfers and interpolates sharper image pixels of neighboring frames to increase the sharpness of the frame. The proposed video completion and deblurring methods enabled us to develop a complete video stabilizer which can naturally keep the original image quality in the stabilized videos. The effectiveness of our method is confirmed by extensive experiments over a wide variety of videos.
Home ranges of lions in the Kalahari, Botswana exhibit vast sizes and high temporal variability.
Zehnder, André; Henley, Stephen; Weibel, Robert
2018-06-01
The central Kalahari region in Botswana is one of the few remaining ecosystems with a stable lion population. Yet, relatively little is known about the ecology of the lions there. As an entry point, home range estimations provide information about the space utilization of the studied animals. The home ranges of eight lions in this region were determined to investigate their spatial overlaps and spatiotemporal variations. We found that, except for MCP, all home range estimators yielded comparable results regarding size and shape. The home ranges of all individuals were located predominantly inside the protected reserves. Their areas were among the largest known for lions with 1131 - 4314km 2 (95%), with no significant differences between males and females. Numerous overlaps between lions of different sexes were detected, although these originate from different groups. A distance chart confirmed that most of these lions directly encountered each other once or several times. Strong temporal variations of the home ranges were observed that did not match a seasonal pattern. The exceptionally large home ranges are likely to be caused by the sparse and dynamic prey populations. Since the ungulates in the study area move in an opportunistic way, too, strong spatiotemporal home range variations emerge. This can lead to misleading home ranges. We therefore recommend clarifying the stability of the home ranges by applying several levels of temporal aggregation. The lack of strict territoriality is likely an adaptation to the variable prey base and the high energetic costs associated with defending a large area. Copyright © 2018 Elsevier GmbH. All rights reserved.
Linking slope stability and climate change: the Nordfjord region, western Norway, case study
NASA Astrophysics Data System (ADS)
Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.
2009-12-01
Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.
Linear stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1992-01-01
A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.
IMART software for correction of motion artifacts in images collected in intravital microscopy
Dunn, Kenneth W; Lorenz, Kevin S; Salama, Paul; Delp, Edward J
2014-01-01
Intravital microscopy is a uniquely powerful tool, providing the ability to characterize cell and organ physiology in the natural context of the intact, living animal. With the recent development of high-resolution microscopy techniques such as confocal and multiphoton microscopy, intravital microscopy can now characterize structures at subcellular resolution and capture events at sub-second temporal resolution. However, realizing the potential for high resolution requires remarkable stability in the tissue. Whereas the rigid structure of the skull facilitates high-resolution imaging of the brain, organs of the viscera are free to move with respiration and heartbeat, requiring additional apparatus for immobilization. In our experience, these methods are variably effective, so that many studies are compromised by residual motion artifacts. Here we demonstrate the use of IMART, a software tool for removing motion artifacts from intravital microscopy images collected in time series or in three dimensions. PMID:26090271
Robust Video Stabilization Using Particle Keypoint Update and l1-Optimized Camera Path
Jeon, Semi; Yoon, Inhye; Jang, Jinbeum; Yang, Seungji; Kim, Jisung; Paik, Joonki
2017-01-01
Acquisition of stabilized video is an important issue for various type of digital cameras. This paper presents an adaptive camera path estimation method using robust feature detection to remove shaky artifacts in a video. The proposed algorithm consists of three steps: (i) robust feature detection using particle keypoints between adjacent frames; (ii) camera path estimation and smoothing; and (iii) rendering to reconstruct a stabilized video. As a result, the proposed algorithm can estimate the optimal homography by redefining important feature points in the flat region using particle keypoints. In addition, stabilized frames with less holes can be generated from the optimal, adaptive camera path that minimizes a temporal total variation (TV). The proposed video stabilization method is suitable for enhancing the visual quality for various portable cameras and can be applied to robot vision, driving assistant systems, and visual surveillance systems. PMID:28208622
Temporal Stability of the Human Skin Microbiome.
Oh, Julia; Byrd, Allyson L; Park, Morgan; Kong, Heidi H; Segre, Julia A
2016-05-05
Biogeography and individuality shape the structural and functional composition of the human skin microbiome. To explore these factors' contribution to skin microbial community stability, we generated metagenomic sequence data from longitudinal samples collected over months and years. Analyzing these samples using a multi-kingdom, reference-based approach, we found that despite the skin's exposure to the external environment, its bacterial, fungal, and viral communities were largely stable over time. Site, individuality, and phylogeny were all determinants of stability. Foot sites exhibited the most variability; individuals differed in stability; and transience was a particular characteristic of eukaryotic viruses, which showed little site-specificity in colonization. Strain and single-nucleotide variant-level analysis showed that individuals maintain, rather than reacquire, prevalent microbes from the environment. Longitudinal stability of skin microbial communities generates hypotheses about colonization resistance and empowers clinical studies exploring alterations observed in disease states. Copyright © 2016 Elsevier Inc. All rights reserved.
Wong, Wang I; Hines, Melissa
2016-02-01
The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Moore, T. S.; Sanderman, J.; Baldock, J.; Plante, A. F.
2016-12-01
National-scale inventories typically include soil organic carbon (SOC) content, but not chemical composition or biogeochemical stability. Australia's Soil Carbon Research Programme (SCaRP) represents a national inventory of SOC content and composition in agricultural systems. The program used physical fractionation followed by 13C nuclear magnetic resonance (NMR) spectroscopy. While these techniques are highly effective, they are typically too expensive and time consuming for use in large-scale SOC monitoring. We seek to understand if analytical thermal analysis is a viable alternative. Coupled differential scanning calorimetry (DSC) and evolved gas analysis (CO2- and H2O-EGA) yields valuable data on SOC composition and stability via ramped combustion. The technique requires little training to use, and does not require fractionation or other sample pre-treatment. We analyzed 300 agricultural samples collected by SCaRP, divided into four fractions: whole soil, coarse particulates (POM), untreated mineral associated (HUM), and hydrofluoric acid (HF)-treated HUM. All samples were analyzed by DSC-EGA, but only the POM and HF-HUM fractions were analyzed by NMR. Multivariate statistical analyses were used to explore natural clustering in SOC composition and stability based on DSC-EGA data. A partial least-squares regression (PLSR) model was used to explore correlations among the NMR and DSC-EGA data. Correlations demonstrated regions of combustion attributable to specific functional groups, which may relate to SOC stability. We are increasingly challenged with developing an efficient technique to assess SOC composition and stability at large spatial and temporal scales. Correlations between NMR and DSC-EGA may demonstrate the viability of using thermal analysis in lieu of more demanding methods in future large-scale surveys, and may provide data that goes beyond chemical composition to better approach quantification of biogeochemical stability.
High static stability in the mixing layer above the extratropical tropopause
NASA Astrophysics Data System (ADS)
Kunz, A.; Konopka, P.; Müller, R.; Pan, L. L.; Schiller, C.; Rohrer, F.
2009-08-01
The relationship between the static stability N2 and the mixing in the tropopause inversion layer (TIL) is investigated using in situ aircraft observations during SPURT (trace gas transport in the tropopause region). With a new simple measure of mixing degree based on O3-CO tracer correlations, high N2 related to an enhanced mixing in the extratropical mixing layer is found. This relation becomes even more pronounced if fresh mixing events are excluded, indicating that mixing within the TIL occurs on a larger than synoptic timescale. A temporal variance analysis of N2 suggests that processes responsible for the composition of the TIL take place on seasonal timescales. Using radiative transfer calculations, we simulate the influence of a change in O3 and H2O vertical gradients on the temperature gradient and thus on the static stability above the tropopause, which are contrasted in an idealized nonmixed atmosphere and in a reference mixed atmosphere. The results show that N2 increases with enhanced mixing degree near the tropopause. At the same time, the temperature above the tropopause decreases together with the development of an inversion and the TIL. In the idealized case of nonmixed profiles the TIL vanishes. Furthermore, the results suggest that H2O plays a major role in maintaining the temperature inversion and the TIL structure compared to O3. The results substantiate the link between the extratropical mixing layer and the TIL.
Spatial and temporal analysis of postural control in dyslexic children.
Gouleme, Nathalie; Gerard, Christophe Loic; Bui-Quoc, Emmanuel; Bucci, Maria Pia
2015-07-01
The aim of this study is to examine postural control of dyslexic children using both spatial and temporal analysis. Thirty dyslexic (mean age 9.7±0.3years) and thirty non-dyslexic age-matched children participated in the study. Postural stability was evaluated using Multitest Equilibre from Framiral®. Posture was recorded in the following conditions: eyes open fixating a target (EO) and eyes closed (EC) on stable (-S-) and unstable (-U-) platforms. The findings of this study showed poor postural stability in dyslexic children with respect to the non-dyslexic children group, as demonstrated by both spatial and temporal analysis. In both groups of children postural control depends on the condition, and improves when the eyes are open on a stable platform. Dyslexic children have spectral power indices that are higher than in non-dyslexic children and they showed a shorter cancelling time. Poor postural control in dyslexic children could be due to a deficit in using sensory information most likely caused by impairment in cerebellar activity. The reliability of brain activation patterns, namely in using sensory input and cerebellar activity may explain the deficit in postural control in dyslexic children. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Organomineral Complexation at the Nanoscale: Iron Speciation and Soil Carbon Stabilization
NASA Astrophysics Data System (ADS)
Coward, E.; Thompson, A.; Plante, A. F.
2016-12-01
Much of the uncertainty in the biogeochemical behavior of soil carbon (C) in tropical ecosystems derives from an incomplete understanding of soil C stabilization processes. The 2:1 phyllosilicate clays often associated with temperate organomineral complexation are largely absent in tropical soils due to extensive weathering. In contrast, these soils contain an abundance of Fe- and Al-containing short-range-order (SRO) mineral phases capable of C stabilization through sorption or co-precipitation, largely enabled by high specific surface area (SSA). SRO-mediated organomineral associations may thus prove a critical, yet matrix-selective, driver of the long-term C stabilization capacity observed in tropical soils. Characterizing the interactions between inherently heterogeneous organic matter and amorphous mineralogy presses the limits of current analytical techniques. This work pairs inorganic selective dissolution with high-resolution assessment of Fe speciation to determine the contribution of extracted mineral phases to the mineral matrix, and to C stabilization capacity. Surface (0-20 cm) samples were taken from 20 quantitative soil pits within the Luquillo Critical Zone Observatory in northeast Puerto Rico stratified across granodioritic and volcaniclastic parent materials. 57Fe-Mössbauer spectroscopy (MBS) and x-ray diffraction (XRD) before and after Fe-SOM extraction were used to assess changes in the mineralogical matrix associated with SOM dissolution, while N2-BET sorption was used to determine the contributions of the extractable phases to SSA. Results indicate (1) selective extraction of soil C produces significant shifts in Fe phase distribution, (2) SRO minerals contribute substantially to SSA, and (3) SRO minerals appear protected by more crystalline phases via physical mechanisms, rather than dissolution-dependent chemical bonds. This nanoscale characterization of Fe-C complexes thus provides evidence for both anticipated mineral-organic and unexpected mineral-mineral associations, which may dynamically impact the temporal fate of tropical soil C.
Su, Xiaomei; Steinman, Alan D; Xue, Qingju; Zhao, Yanyan; Tang, Xiangming; Xie, Liqiang
2017-10-01
Phytoplankton and bacterioplankton are integral components of aquatic food webs and play essential roles in the structure and function of freshwater ecosystems. However, little is known about how phyto- and bacterioplankton may respond synchronously to changing environmental conditions. Thus, we analyzed simultaneously the composition and structure of phyto- and bacterioplankton on a monthly basis over 12 months in cyanobacteria-dominated areas of Lake Taihu and compared their responses to changes in environmental factors. Metric multi-dimensional scaling (mMDS) revealed that the temporal variations of phyto- and bacterioplankton were significant. Time lag analysis (TLA) indicated that the temporal pattern of phytoplankton tended to exhibit convergent dynamics while bacterioplankton showed highly stable or stochastic variation. A significant directional change was found for bacterioplankton at the genus level and the slopes (rate of change) and regression R 2 (low stochasticity or stability) were greater if Cyanobacteria were included, suggesting a higher level of instability in the bacterial community at lower taxonomy level. Consequently, phytoplankton responded more rapidly to the change in environmental conditions than bacterioplankton when analyzed at the phylum level, while bacterioplankton were more sensitive at the finer taxonomic resolution in Lake Taihu. Redundancy analysis (RDA) results showed that environmental variables collectively explained 51.0% variance of phytoplankton and 46.7% variance of bacterioplankton, suggesting that environmental conditions have a significant influence on the temporal variations of phyto- and bacterioplankton. Furthermore, variance partitioning indicated that the bacterial community structure was largely explained by water temperature and nitrogen, suggesting that these factors were the primary drivers shaping bacterioplankton. Copyright © 2017. Published by Elsevier Ltd.
Synthesis of Multifunctional Nanoparticles for Cancer Diagnostics and Therapeutics
NASA Astrophysics Data System (ADS)
Fang, Chen
2011-12-01
Magnetic nanoparticles (MNPs) have attracted enormous research attention due to their unique magnetic properties that enable the detection by the non-invasive medical imaging modality---magnetic resonance imaging (MRI). By incorporating advanced features, such as specific targeting, multimodality, therapeutic delivery, the detectability and applicability of MNPs have been dramatically expanded. Smart and rational design on structure, composition and surface chemistry is essential to achieving desired properties in MNP systems, such as high sensitivity and colloidal stability, target specificity and/or multimodality. The goal of this research is to develop MNP-based platforms for the detection, diagnosis and treatment of cancer. MNPs with high contrast enhancement were coated with poly(ethylene glycol) (PEG)-based polymers to render aqueous stability and confer therapeutic-loading capability. Tumor-specific MNPs were developed by functionalization of nanoparticles with chlorotoxin (CTX) or arginine-glycine-aspartic acid (RGD) that targets, respectively, MMP-2 receptor or alphavbeta3 integrin overexpressed on a variety of cancer cells. The effects of ligands' molecular targets on the temporal and spatial distribution of MNPs within tumors were also investigated both in vitro and in vivo. All MNPs exhibited excellent long-term stability in cell culture media. CTX-labeled MNP exhibited sustained accumulation, penetration and distribution in the tumor mass. These findings revealed the influence of the targeting ligands on the intratumoral distribution of the ligand-enabled nanoprobes. To demonstrate the ability of nanoparticles as drug carrier, anthracyline chemotherapeutic drugs doxorubicin and mitoxantrone were attached to iron oxide nanoparticles. The theragnostic nanoparticles showed sufficient contrast enhancement and comparable anti-neoplastic efficacy in vitro. With flexible surface chemistry, our nanoparticle platform can be used in a modular fashion to conjugate biomolecules for intended applications, and the functionalized nanoparticle systems retain a prolonged stability and exhibit high tumor specificity. The study would establish the foundation for future development of integrated theragnostic systems for the treatment of cancer and other complex diseases.
Tanofsky-Kraff, Marian; Ranzenhofer, Lisa M; Yanovski, Susan Z; Schvey, Natasha A; Faith, Myles; Gustafson, Jennifer; Yanovski, Jack A
2008-07-01
Eating in the absence of hunger (EAH), studied in the context of laboratory paradigms, has been associated with obesity and is predictive of excess weight gain in children. However, no easily administered questionnaire exists to assess for EAH in children. We developed an Eating in the Absence of Hunger Questionnaire to be administered to children and adolescents (EAH-C) and examined psychometric properties of the measure. Two-hundred and twenty-six obese (BMI > or = 95th percentile for age and sex, n=73) and non-obese (BMI<95th percentile, n=153) youth (mean age+/-S.D., 14.4+/-2.5 y) completed the EAH-C and measures of loss of control and emotional eating, and general psychopathology. Temporal stability was assessed in a subset of participants. Factor analysis generated three subscales for the EAH-C: Negative Affect, External Eating, and Fatigue/Boredom. Internal consistency for all subscales was established (Cronbach's alphas: 0.80-0.88). The EAH-C subscales had good convergent validity with emotional eating and loss of control episodes (p's<0.01). Obese children reported higher Negative Affect subscale scores than non-obese children (p=0.05). All three subscales were positively correlated with measures of general psychopathology. Intra-class correlation coefficients revealed temporal stability for all subscales (ranging from 0.65 to 0.70, p's<0.01). We conclude that the EAH-C had internally consistent subscales with good convergent validity and temporal stability, but may have limited discriminant validity. Further investigations examining the EAH-C in relation to laboratory feeding studies are required to determine whether reported EAH is related to actual energy intake or to the development of excess weight gain.
Tanofsky-Kraff, Marian; Ranzenhofer, Lisa M.; Yanovski, Susan Z.; Schvey, Natasha A.; Faith, Myles; Gustafson, Jennifer; Yanovski, Jack A.
2008-01-01
Background Eating in the absence of hunger (EAH), studied in the context of laboratory paradigms, has been associated with obesity and is predictive of excess weight gain in children. However, no easily administered questionnaire exists to assess for EAH in children. Objective We developed an Eating in the Absence of Hunger questionnaire to be administered to children and adolescents (EAH-C) and examined psychometric properties of the measure. Design Two-hundred-twenty-six obese (BMI ≥ 95th percentile for age and sex, n = 73) and non-obese (BMI <95th percentile, n = 153) youth (mean age ± SD, 14.4 ± 2.5y) completed the EAH-C and measures of loss of control and emotional eating, and general psychopathology. Temporal stability was assessed in a subset of participants. Results Factor analysis generated three subscales for the EAH-C: Negative Affect, External Eating, and Fatigue/Boredom. Internal consistency for all subscales was established (Cronbach's alphas: 0.80 to 0.88). The EAH-C subscales had good convergent validity with emotional eating and loss of control episodes (p's < 0.01). Obese children reported higher Negative Affect subscale scores than non-obese children (p ≤ 0.05). All three subscales were positively correlated with measures of general psychopathology. Intra-class correlation coefficients revealed temporal stability for all subscales (ranging from 0.65 to 0.70, p's < 0.01). We conclude that the EAH-C had internally consistent subscales with good convergent validity and temporal stability, but may have limited discriminant validity. Further investigations examining the EAH-C in relation to laboratory feeding studies are required to determine whether reported EAH is related to actual energy intake or to the development of excess weight gain. PMID:18342988
Remer, Itay; Bilenca, Alberto
2015-11-01
Photoplethysmography is a well-established technique for the noninvasive measurement of blood pulsation. However, photoplethysmographic devices typically need to be in contact with the surface of the tissue and provide data from a single contact point. Extensions of conventional photoplethysmography to measurements over a wide field-of-view exist, but require advanced signal processing due to the low signal-to-noise-ratio of the photoplethysmograms. Here, we present a noncontact method based on temporal sampling of time-integrated speckle using a camera-phone for noninvasive, widefield measurements of physiological parameters across the human fingertip including blood pulsation and resting heart-rate frequency. The results show that precise estimation of these parameters with high spatial resolution is enabled by measuring the local temporal variation of speckle patterns of backscattered light from subcutaneous skin, thereby opening up the possibility for accurate high resolution blood pulsation imaging on a camera-phone. Camera-phone laser speckle imager along with measured relative blood perfusion maps of a fingertip showing skin perfusion response to a pulse pressure applied to the upper arm. The figure is for illustration only; the imager was stabilized on a stand throughout the experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sage, Luke D; Kavussanu, Maria
2008-05-01
In this study, we examined the temporal stability and reciprocal relationships among task and ego orientation, task- and ego-involving climates, and prosocial and antisocial behaviour in youth football. Male (n = 156) and female (n = 24) footballers (mean age 14.1 years, s = 1.8) completed questionnaires towards the beginning and end of a regular season. Questionnaires measured goal orientation, perceived motivational climate, and frequency of prosocial and antisocial behaviours. Structural equation modelling indicated moderate covariance stability between the beginning and end of the season. Subsequent analyses revealed a significant decrease only in perceptions of task-involving climate. In the cross-lagged analyses, prosocial behaviour at the beginning of the season positively predicted task-involving climate at the end of the season. Antisocial behaviour at the beginning of the season positively predicted both ego orientation and ego-involving climate at the end of the season and a reciprocal relationship was revealed whereby ego orientation at the beginning of the season positively predicted antisocial behaviour at the end of the season. Task orientation at the beginning of the season negatively predicted ego-involving climate at the end of the season. All cross-lagged relationships were weak. This exploratory study offers limited support for bi-directional relationships between personal, environmental, and behavioural variables but provides useful insight into the covariance stability, change, and interrelationships between motivational and moral constructs over a competitive season.
Shifting Patterns of Aedes aegypti Fine Scale Spatial Clustering in Iquitos, Peru
LaCon, Genevieve; Morrison, Amy C.; Astete, Helvio; Stoddard, Steven T.; Paz-Soldan, Valerie A.; Elder, John P.; Halsey, Eric S.; Scott, Thomas W.; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M.
2014-01-01
Background Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Methodologies/Principal Findings Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Conclusions/Significance Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots. PMID:25102062
Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru.
LaCon, Genevieve; Morrison, Amy C; Astete, Helvio; Stoddard, Steven T; Paz-Soldan, Valerie A; Elder, John P; Halsey, Eric S; Scott, Thomas W; Kitron, Uriel; Vazquez-Prokopec, Gonzalo M
2014-08-01
Empiric evidence shows that Aedes aegypti abundance is spatially heterogeneous and that some areas and larval habitats produce more mosquitoes than others. There is a knowledge gap, however, with regards to the temporal persistence of such Ae. aegypti abundance hotspots. In this study, we used a longitudinal entomologic dataset from the city of Iquitos, Peru, to (1) quantify the spatial clustering patterns of adult Ae. aegypti and pupae counts per house, (2) determine overlap between clusters, (3) quantify the temporal stability of clusters over nine entomologic surveys spaced four months apart, and (4) quantify the extent of clustering at the household and neighborhood levels. Data from 13,662 household entomological visits performed in two Iquitos neighborhoods differing in Ae. aegypti abundance and dengue virus transmission was analyzed using global and local spatial statistics. The location and extent of Ae. aegypti pupae and adult hotspots (i.e., small groups of houses with significantly [p<0.05] high mosquito abundance) were calculated for each of the 9 entomologic surveys. The extent of clustering was used to quantify the probability of finding spatially correlated populations. Our analyses indicate that Ae. aegypti distribution was highly focal (most clusters do not extend beyond 30 meters) and that hotspots of high vector abundance were common on every survey date, but they were temporally unstable over the period of study. Our findings have implications for understanding Ae. aegypti distribution and for the design of surveillance and control activities relying on household-level data. In settings like Iquitos, where there is a relatively low percentage of Ae. aegypti in permanent water-holding containers, identifying and targeting key premises will be significantly challenged by shifting hotspots of Ae. aegypti infestation. Focusing efforts in large geographic areas with historically high levels of transmission may be more effective than targeting Ae. aegypti hotspots.
NASA Astrophysics Data System (ADS)
Barrera Verdejo, M.; Crewell, S.; Loehnert, U.; Di Girolamo, P.
2016-12-01
Continuous monitoring of thermodynamic atmospheric profiles is important for many applications, e.g. assessment of atmospheric stability and cloud formation. Nowadays there is a wide variety of ground-based sensors for atmospheric profiling. However, no single instrument is able to simultaneously provide measurements with complete vertical coverage, high vertical and temporal resolution, and good performance under all weather conditions. For this reason, instrument synergies of a wide range of complementary measurements are more and more considered for improving the quality of atmospheric observations. The current work presents synergetic use of a microwave radiometer (MWR) and Raman lidar (RL) within a physically consistent optimal estimation approach. On the one hand, lidar measurements provide humidity and temperature measurements with a high vertical resolution albeit with limited vertical coverage, due to overlapping function problems, sunlight contamination and the presence of clouds. On the other hand, MWRs obtain humidity, temperature and cloud information throughout the troposphere, with however only a very limited vertical resolution. The benefits of MWR+RL synergy have been previously demonstrated for clear sky cases. This work expands this approach to cloudy scenarios. Consistent retrievals of temperature, absolute and relative humidity as well as liquid water path are analyzed. In addition, different measures are presented to demonstrate the improvements achieved via the synergy compared to individual retrievals, e.g. degrees of freedom or theoretical error. We also demonstrate that, compared to the lidar, the higher temporal resolution of the MWR presents a strong advantage for capturing the high temporal variability of the liquid water cloud.. Finally, the results are compared with independent information sources, e.g. GPS or radiosondes, showing good consistency. The study demonstrates the benefits of the sensor combination, being especially strong in regions where lidar data is not available, whereas if both instruments are available, the lidar measurements dominate the retrieval.
15 ps quasi-continuously pumped passively mode-locked highly doped Nd:YAG laser in bounce geometry
NASA Astrophysics Data System (ADS)
Jelínek, M., Jr.; Kubeček, V.
2011-09-01
A semiconductor saturable absorber mirror mode-locking of a quasi-continuously pumped laser based on 2.4 at.% Nd:YAG slab in a bounce geometry was demonstrated and investigated. Output mode-locked and Q-switched train containing 15 pulses with total energy of 500 μJ was generated directly from the oscillator. The measured 15 ps pulse duration and excellent temporal stability ±2 ps are the best values for pure passively mode-locked and Q-switched Nd:YAG laser with the pulse pumping. Furthermore, using the cavity dumping technique, single 19 ps pulse with energy of 25 μJ was extracted directly from the oscillator.
Intravital imaging of cardiac function at the single-cell level.
Aguirre, Aaron D; Vinegoni, Claudio; Sebas, Matt; Weissleder, Ralph
2014-08-05
Knowledge of cardiomyocyte biology is limited by the lack of methods to interrogate single-cell physiology in vivo. Here we show that contracting myocytes can indeed be imaged with optical microscopy at high temporal and spatial resolution in the beating murine heart, allowing visualization of individual sarcomeres and measurement of the single cardiomyocyte contractile cycle. Collectively, this has been enabled by efficient tissue stabilization, a prospective real-time cardiac gating approach, an image processing algorithm for motion-artifact-free imaging throughout the cardiac cycle, and a fluorescent membrane staining protocol. Quantification of cardiomyocyte contractile function in vivo opens many possibilities for investigating myocardial disease and therapeutic intervention at the cellular level.
The Rosenberg Self-Esteem Scale: translation and validation in university students.
Martín-Albo, José; Núñiez, Juan L; Navarro, José G; Grijalvo, Fernando
2007-11-01
The aim of this study was to translate into Spanish and to validate the Rosenberg Self-Esteem Scale (RSES), completed by 420 university students. Confirmatory factor analysis revealed that the model that best fit the data, both in the total sample and in the male and female subsamples, was the one-factor structure with method effects associated with positively worded items. The results indicated high, positive correlations between self-esteem and the five dimensions of self-concept. The scale showed satisfactory levels of internal consistency and temporal stability over a four-week period. Lastly, gender differences were obtained. These findings support the use of the RSES for the assessment of self-esteem in higher education.
Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San
2017-08-07
The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human activity and natural factors.
Andrews, Ross N; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-06-01
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS-SAXS-WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS-SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low- q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian-MaxEnt analysis methods to data exhibiting structure factor effects and low- q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni-Al-Si alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
Sulfolobus islandicus meta-populations in Yellowstone National Park hot springs
Campbell, Kate M.; Kouris, Angela; England, Whitney; Anderson, Rika E.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Whitaker, Rachel J.
2017-01-01
Abiotic and biotic forces shape the structure and evolution of microbial populations. We investigated forces that shape the spatial and temporal population structure of Sulfolobus islandicus by comparing geochemical and molecular analysis from seven hot springs in five regions sampled over 3 years in Yellowstone National Park. Through deep amplicon sequencing, we uncovered 148 unique alleles at two loci whose relative frequency provides clear evidence for independent populations in different hot springs. Although geography controls regional geochemical composition and population differentiation, temporal changes in population were not explained by corresponding variation in geochemistry. The data suggest that the influence of extinction, bottleneck events and/or selective sweeps within a spring and low migration between springs shape these populations. We suggest that hydrologic events such as storm events and surface snowmelt runoff destabilize smaller hot spring environments with smaller populations and result in high variation in the S. islandicus population over time. Therefore, physical abiotic features such as hot spring size and position in the landscape are important factors shaping the stability and diversity of the S. islandicus meta-population within Yellowstone National Park.
NASA Astrophysics Data System (ADS)
Kumari, Komal; Donzis, Diego
2017-11-01
Highly resolved computational simulations on massively parallel machines are critical in understanding the physics of a vast number of complex phenomena in nature governed by partial differential equations. Simulations at extreme levels of parallelism present many challenges with communication between processing elements (PEs) being a major bottleneck. In order to fully exploit the computational power of exascale machines one needs to devise numerical schemes that relax global synchronizations across PEs. This asynchronous computations, however, have a degrading effect on the accuracy of standard numerical schemes.We have developed asynchrony-tolerant (AT) schemes that maintain order of accuracy despite relaxed communications. We show, analytically and numerically, that these schemes retain their numerical properties with multi-step higher order temporal Runge-Kutta schemes. We also show that for a range of optimized parameters,the computation time and error for AT schemes is less than their synchronous counterpart. Stability of the AT schemes which depends upon history and random nature of delays, are also discussed. Support from NSF is gratefully acknowledged.
Andrews, Ross N.; Serio, Joseph; Muralidharan, Govindarajan; Ilavsky, Jan
2017-01-01
Intermetallic γ′ precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy’s precipitate size distribution (PSD) and phase structure during in situ heat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoiding a priori definition of a functional form of the PSD. However, strong low-q scattering from grain boundaries and/or structure factor effects inhibit MaxEnt analysis of typical alloys. This work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-q power law slopes and demonstrates their use in an in situ study of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy. PMID:28656039
Andrews, Ross N.; Serio, Joseph A.; Muralidharan, Govindarajan; ...
2017-05-30
Intermetallic γ' precipitates typically strengthen nickel-based superalloys. The shape, size and spatial distribution of strengthening precipitates critically influence alloy strength, while their temporal evolution characteristics determine the high-temperature alloy stability. Combined ultra-small-, small- and wide-angle X-ray scattering (USAXS–SAXS–WAXS) analysis can be used to evaluate the temporal evolution of an alloy's precipitate size distribution (PSD) and phase structure duringin situheat treatment. Analysis of PSDs from USAXS–SAXS data employs either least-squares fitting of a preordained PSD model or a maximum entropy (MaxEnt) approach, the latter avoidinga prioridefinition of a functional form of the PSD. However, strong low-qscattering from grain boundaries and/or structuremore » factor effects inhibit MaxEnt analysis of typical alloys. Lastly, this work describes the extension of Bayesian–MaxEnt analysis methods to data exhibiting structure factor effects and low-qpower law slopes and demonstrates their use in anin situstudy of precipitate size evolution during heat treatment of a model Ni–Al–Si alloy.« less
On confidence and consequence: the certainty and importance of self-knowledge.
Pelham, B W
1991-04-01
Belief certainty and belief importance represent 2 relatively independent forms of investment in the self-concept. Three studies suggested that whereas certainty is associated with epistemic (i.e., rational or informational) factors, importance is more closely associated with emotive (i.e., emotional and motivational) factors. A 4th study explored the implications of certainty and importance for the temporal stability of people's self-views and revealed that whereas belief certainty was associated with the stability of both positive and negative beliefs, belief importance was associated with the stability of positive beliefs only. The implications of belief investment for the verification-enhancement debate and for the structure and measurement of the self-concept are discussed.
NASA Astrophysics Data System (ADS)
Hu, Jun; Hadid, Hamda Ben; Henry, Daniel; Mojtabi, Abdelkader
Temporal and spatio-temporal instabilities of binary liquid films flowing down an inclined uniformly heated plate with Soret effect are investigated by using the Chebyshev collocation method to solve the full system of linear stability equations. Seven dimensionless parameters, i.e. the Kapitza, Galileo, Prandtl, Lewis, Soret, Marangoni, and Biot numbers (Ka, G, Pr, L, ) are used to control the flow system. In the case of pure spanwise perturbations, thermocapillary S- and P-modes are obtained. It is found that the most dangerous modes are stationary for positive Soret numbers (0), and oscillatory for =0 remains so for >0 and even merges with the long-wave S-mode. In the case of streamwise perturbations, a long-wave surface mode (H-mode) is also obtained. From the neutral curves, it is found that larger Soret numbers make the film flow more unstable as do larger Marangoni numbers. The increase of these parameters leads to the merging of the long-wave H- and S-modes, making the situation long-wave unstable for any Galileo number. It also strongly influences the short-wave P-mode which becomes the most critical for large enough Galileo numbers. Furthermore, from the boundary curves between absolute and convective instabilities (AI/CI) calculated for both the long-wave instability (S- and H-modes) and the short-wave instability (P-mode), it is shown that for small Galileo numbers the AI/CI boundary curves are determined by the long-wave instability, while for large Galileo numbers they are determined by the short-wave instability.
Neijts, Melanie; van Lien, Rene; Kupper, Nina; Boomsma, Dorret; Willemsen, Gonneke; de Geus, Eco J C
2015-10-01
Measurements of ambulatory autonomic reactivity can help with our understanding of the long-term health consequences of exposure to psychosocial stress in real-life settings. In this study, unstructured 24-hour ambulatory recordings of cardiac parasympathetic and sympathetic control were obtained in 1288 twins and siblings, spanning both work time and leisure time. These data were used to define two ambulatory baseline (sleep, leisure) and four stress conditions (wake, work, work_sitting, work_peak) from which six ambulatory stress reactivity measures were derived. The use of twin families allowed for estimation of heritability and testing for the amplification of existing or emergence of new genetic variance during stress compared with baseline conditions. Temporal stability of ambulatory reactivity was assessed in 62 participants and was moderate to high over a 3-year period (0.36 < r < 0.91). Depending on the definition of ambulatory reactivity used, significant heritability was found, ranging from 29% to 40% for heart rate, 34% to 47% for cardiac parasympathetic control (indexed as respiratory sinus arrhythmia), and 10% to 19% for cardiac sympathetic control (indexed as the preejection period). Heritability of ambulatory reactivity was largely due to newly emerging genetic variance during stress compared with periods of rest. Interestingly, reactivity to short standardized stressors was poorly correlated with the ambulatory reactivity measures implying poor laboratory-real-life correspondence. Ambulatory autonomic reactivity extracted from an unstructured real-life setting shows reliable, stable, and heritable individual differences. Real-life situations uncover a new and different genetic variation compared with that seen in resting baseline conditions, including sleep.
NASA Astrophysics Data System (ADS)
Ghate, V. P.; Albrecht, B. A.; Fairall, C. W.; Miller, M. A.; Brewer, A.
2010-12-01
Turbulence in the stratocumulus topped marine boundary layer (BL) is an important factor that is closely connected to both the cloud macro- and micro-physical characteristics, which can substantially affect their radiaitve properties. Data collected by ship borne instruments on the R/V Ronald H. Brown on November 27, 2008 as a part of the VAMOS Ocean-Cloud-Atmosphere-Land-Study Regional Experiment (VOCALS-Rex) are analyzed to study the turbulence structure of a stratocumulus topped marine BL. The first half of the analyzed 24 hour period was characterized by a coupled BL topped by a precipitating stratocumulus cloud; the second half had clear sky conditions with a decoupled BL. The motion stabilized vertically pointing W-band Doppler cloud radar reported the full Doppler spectrum at a temporal and spatial resolution of 3 Hz and 25 m respectively. The collocated motion stabilized Doppler lidar was operating at 2 micron wavelength and reported the Signal to Noise Ratio (SNR) and Doppler velocity at temporal and spatial resolution of 2 Hz and 30 m respectively. Data from the cloud Doppler radar and Doppler lidar were combined to yield the turbulence structure of entire BL in both cloudy and clear sky conditions. Retrievals were performed to remove the contribution of precipitating drizzle drops to the mean Doppler velocity measured by the radar. Hourly profiles of vertical velocity variance suggested high BL variance during coupled BL conditions and low variance during decoupled BL conditions. Some of the terms in second and third moment budget of vertical velocity are calculated and their diurnal evolution is explored.
Psychometric Evaluation of the Chinese Virtues Questionnaire
ERIC Educational Resources Information Center
Duan, Wenjie; Ho, Samuel M. Y.; Bai, Yu; Tang, Xiaoqing
2013-01-01
Objectives: The present study examined the psychometric properties of the Chinese Virtues Questionnaire (CVQ). The reliability, factor structure, construct validity, and temporal stability of the inventory were examined. Method: A university student sample ("n" = 878) and a working adult sample ("n" = 153) were recruited.…
Tracking Human Mobility Using WiFi Signals
Sapiezynski, Piotr; Stopczynski, Arkadiusz; Gatej, Radu; Lehmann, Sune
2015-01-01
We study six months of human mobility data, including WiFi and GPS traces recorded with high temporal resolution, and find that time series of WiFi scans contain a strong latent location signal. In fact, due to inherent stability and low entropy of human mobility, it is possible to assign location to WiFi access points based on a very small number of GPS samples and then use these access points as location beacons. Using just one GPS observation per day per person allows us to estimate the location of, and subsequently use, WiFi access points to account for 80% of mobility across a population. These results reveal a great opportunity for using ubiquitous WiFi routers for high-resolution outdoor positioning, but also significant privacy implications of such side-channel location tracking. PMID:26132115
Dynamic strain aging and plastic instabilities
NASA Astrophysics Data System (ADS)
Mesarovic, Sinisa Dj.
1995-05-01
A constitutive model proposed by McCormick [(1988) Theory of flow localization due to dynamic strain ageing. Acta. Metall.36, 3061-3067] based on dislocation-solute interaction and describing dynamic strain aging behavior, is analyzed for the simple loading case of uniaxial tension. The model is rate dependent and includes a time-varying state variable, representing the local concentration of the impurity atoms at dislocations. Stability of the system and its post-instability behavior are considered. The methods used include analytical and numerical stability and bifurcation analysis with a numerical continuation technique. Yield point behavior and serrated yielding are found to result for well defined intervals of temperature and strain rate. Serrated yielding emerges as a branch of periodic solutions of the relaxation oscillation type, similar to frictional stick-slip. The distinction between the temporal and spatial (loss of homogeneity of strain) instability is emphasized. It is found that a critical machine stiffness exists above which a purely temporal instability cannot occur. The results are compared to the available experimental data.
Quiroz, Viviana; Reinero, Daniela; Hernández, Patricia; Contreras, Johanna; Vernal, Rolando; Carvajal, Paola
2017-01-01
This study aimed to develop and assess the content validity and reliability of a cognitively adapted self-report questionnaire designed for surveillance of gingivitis in adolescents. Ten predetermined self-report questions evaluating early signs and symptoms of gingivitis were preliminary assessed by a panel of clinical experts. Eight questions were selected and cognitively tested in 20 adolescents aged 12 to 18 years from Santiago de Chile. The questionnaire was then conducted and answered by 178 Chilean adolescents. Internal consistency was measured using the Cronbach's alpha and temporal stability was calculated using the Kappa-index. A reliable final self-report questionnaire consisting of 5 questions was obtained, with a total Cronbach's alpha of 0.73 and a Kappa-index ranging from 0.41 to 0.77 between the different questions. The proposed questionnaire is reliable, with an acceptable internal consistency and a temporal stability from moderate to substantial, and it is promising for estimating the prevalence of gingivitis in adolescents.
[Validity and reliability of a scale to assess self-efficacy for physical activity in elderly].
Borges, Rossana Arruda; Rech, Cassiano Ricardo; Meurer, Simone Teresinha; Benedetti, Tânia Rosane Bertoldo
2015-04-01
This study aimed to analyze the confirmatory factor validity and reliability of a self-efficacy scale for physical activity in a sample of 118 elderly (78% women) from 60 to 90 years of age. Mplus 6.1 was used to evaluate the confirmatory factor analysis. Reliability was tested by internal consistency and temporal stability. The original scale consisted of five items with dichotomous answers (yes/no), independently for walking and moderate and vigorous physical activity. The analysis excluded the item related to confidence in performing physical activities when on vacation. Two constructs were identified, called "self-efficacy for walking" and "self-efficacy for moderate and vigorous physical activity", with a factor load ≥ 0.50. Internal consistency was adequate both for walking (> 0.70) and moderate and vigorous physical activity (> 0.80), and temporal stability was adequate for all the items. In conclusion, the self-efficacy scale for physical activity showed adequate validity, reliability, and internal consistency for evaluating this construct in elderly Brazilians.
James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A
2014-08-01
Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.
Wang, Guangxing; Murphy, Dana; Oller, Adam; Howard, Heidi R; Anderson, Alan B; Rijal, Santosh; Myers, Natalie R; Woodford, Philip
2014-07-01
The effects of military training activities on the land condition of Army installations vary spatially and temporally. Training activities observably degrade land condition while also increasing biodiversity and stabilizing ecosystems. Moreover, other anthropogenic activities regularly occur on military lands such as prescribed burns and agricultural haying-adding to the dynamics of land condition. Thus, spatially and temporally assessing the impacts of military training, prescribed burning, agricultural haying, and their interactions is critical to the management of military lands. In this study, the spatial distributions and patterns of military training-induced disturbance frequency were derived using plot observation and point observation-based method, at Fort Riley, Kansas from 1989 to 2001. Moreover, spatial and variance analysis of cumulative impacts due to military training, burning, haying, and their interactions on the land condition of Fort Riley were conducted. The results showed that: (1) low disturbance intensity dominated the majority of the study area with exception of concentrated training within centralized areas; (2) high and low values of disturbance frequency were spatially clustered and had spatial patterns that differed significantly from a random distribution; and (3) interactions between prescribed burning and agricultural haying were not significant in terms of either soil erosion or disturbance intensity although their means and variances differed significantly between the burned and non-burned areas and between the hayed and non-hayed areas.
Learning State Space Dynamics in Recurrent Networks
NASA Astrophysics Data System (ADS)
Simard, Patrice Yvon
Fully recurrent (asymmetrical) networks can be used to learn temporal trajectories. The network is unfolded in time, and backpropagation is used to train the weights. The presence of recurrent connections creates internal states in the system which vary as a function of time. The resulting dynamics can provide interesting additional computing power but learning is made more difficult by the existence of internal memories. This study first exhibits the properties of recurrent networks in terms of convergence when the internal states of the system are unknown. A new energy functional is provided to change the weights of the units in order to the control the stability of the fixed points of the network's dynamics. The power of the resultant algorithm is illustrated with the simulation of a content addressable memory. Next, the more general case of time trajectories on a recurrent network is studied. An application is proposed in which trajectories are generated to draw letters as a function of an input. In another application of recurrent systems, a neural network certain temporal properties observed in human callosally sectioned brains. Finally the proposed algorithm for stabilizing dynamics around fixed points is extended to one for stabilizing dynamics around time trajectories. Its effects are illustrated on a network which generates Lisajous curves.
The role of oxygen in the photostimulation luminescence process of europium doped potassium chloride
Xiao, Zhiyan; Mazur, Thomas R.; Driewer, Joseph P.; Li, H. Harold
2015-01-01
A recent suggestion that europium doped potassium chloride (KCl:Eu2+) has the potential to significantly advance the state-of-the-art in radiation therapy dosimetry has generated a renewed interest in a classic storage phosphor material. The purposes of this work are to investigate the role of oxygen in the photostimulation luminescence (PSL) process and to determine if both increased PSL yield and improved temporal stability could be realized in KCl:Eu2+ by incorporating oxygen in the material fabrication process. Regardless of synthesis atmosphere, air or pure nitrogen, PSL amplitude shows a maximum at 1.0 mol % Eu. Depending on europium concentration, dosimeters fabricated in air exhibit stronger PSL by a factor of 2 to 4 compared to those made in N2. There is no change in PSL stimulation spectrum while noticeable shifts in both photoluminescence and PSL emission spectra are observed for air versus nitrogen. Almost all charge-storage centers are spatially correlated, suggesting oxygen’s stabilization role in the PSL process. However, oxygen alone does not improve material’s temporal stability in the first few hours post irradiation at room temperature, probably because a significant portion of radiation-induced holes are stored in the Vk centers which are mobile. PMID:25897274
Temporal Stability of Stated Preferences: The Case of Junior Nursing Jobs.
Doiron, Denise; Yoo, Hong Il
2017-06-01
With the growing use of discrete choice experiments (DCEs) in health workforce research, the reliability of elicited job preferences is a growing concern. We provide the first empirical evidence on the temporal stability of such preferences using a unique longitudinal survey of Australian nursing students and graduate nurses. The respondents completed DCEs on nursing positions in two survey waves. Each position is described by salary and 11 non-salary attributes, and the two waves are spaced 15months apart on average. Between the waves, most final-year students finished their degrees and started out as graduate nurses. Thus, the survey covers a long timespan that includes an important period of career transition. The relative importance of different job attributes appears stable enough to support the use of DCEs to identify key areas of policy intervention. There is virtually no change in the groupings of influential job characteristics. Conclusions regarding the stability of willingness-to-pay, however, are different because of unstable preferences for salary. The instability of preferences for salary was also found previously in the context of comparing alternative elicitation methods. This prompts us to push for further work on the reliability of stated preferences over monetary attributes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Stabilization of beta-catenin impacts pancreas growth.
Heiser, Patrick W; Lau, Janet; Taketo, Makoto M; Herrera, Pedro L; Hebrok, Matthias
2006-05-01
A recent study has shown that deletion of beta-catenin within the pancreatic epithelium results in a loss of pancreas mass. Here, we show that ectopic stabilization of beta-catenin within mouse pancreatic epithelium can have divergent effects on both organ formation and growth. Robust stabilization of beta-catenin during early organogenesis drives changes in hedgehog and Fgf10 signaling and induces a loss of Pdx1 expression in early pancreatic progenitor cells. Together, these perturbations in early pancreatic specification culminate in a severe reduction of pancreas mass and postnatal lethality. By contrast, inducing the stabilized form of beta-catenin at a later time point in pancreas development causes enhanced proliferation that results in a dramatic increase in pancreas organ size. Taken together, these data suggest a previously unappreciated temporal/spatial role for beta-catenin signaling in the regulation of pancreas organ growth.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1992-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
The inviscid stability of supersonic flow past heated or cooled axisymmetric bodies
NASA Technical Reports Server (NTRS)
Shaw, Stephen J.; Duck, Peter W.
1990-01-01
The inviscid, linear, nonaxisymmetric, temporal stability of the boundary layer associated with the supersonic flow past axisymmetric bodies (with particular emphasis on long thin, straight circular cylinders), subject to heated or cooled wall conditions is investigated. The eigenvalue problem is computed in some detail for a particular Mach number or 3.8, revealing that the effect of curvature and the choice of wall conditions both have a significant effect on the stability of the flow. Both the asymptotic, large azimuthal wavenumber solution and the asymptotic, far downstream solution are obtained for the stability analysis and compared with numerical results. Additionally, asymptotic analyses valid for large radii of curvature with cooled/heated wall conditions, are presented. In general, important differences were found to exist between the wall temperature conditions imposed and the adiabatic wall conditions considered previously.
QCL- and CO_2 Laser-Based Mid-Ir Spectrometers for High Accuracy Molecular Spectroscopy
NASA Astrophysics Data System (ADS)
Sow, P. L. T.; Chanteau, B.; Auguste, F.; Mejri, S.; Tokunaga, S. K.; Argence, B.; Lopez, O.; Chardonnet, C.; Amy-Klein, A.; Daussy, C.; Darquie, B.; Nicolodi, D.; Abgrall, M.; Le Coq, Y.; Santarelli, G.
2013-06-01
With their rich internal structure, molecules can play a decisive role in precision tests of fundamental physics. They are now being used, for example in our group, to test fundamental symmetries such as parity and time reversal, and to measure either absolute values of fundamental constants or their temporal variation. Most of those experiments can be cast as the measurement of molecular frequencies. Ultra-stable and accurate sources in the mid-IR spectral region, the so-called molecular fingerprint region that hosts many intense rovibrational signatures, are thus highly desirable. We report on the development of a widely tunable quantum cascade laser (QCL) based spectrometer. Our first characterization of a free-running cw near-room-temperature DFB 10.3 μm QCL led to a ˜200 kHz linewidth beat-note with our frequency-stabilized CO_2 laser. Narrowing of the QCL linewidth was achieved by straightforwardly phase-locking the QCL to the CO_2 laser. The great stability of the CO_2 laser was transferred to the QCL resulting in a record linewidth of a few tens of hertz. The use of QCLs will allow the study of any species showing absorption between 3 and 25 μm which will broaden the scope of our experimental setups dedicated to molecular spectroscopy-based precision measurements. Eventually we want to lock the QCL to a frequency comb itself stabilized to an ultra-stable near-IR reference provided via a 43-km long fibre by the French metrological institute and monitored against atomic fountain clocks. We report on the demonstration of this locking-scheme with a ˜10 μm CO_2 laser resulting in record 10^{-14}-10^{-15} fractional accuracy and stability. Stabilizing a QCL this way will free us from having to lock it to a molecular transition or a CO_2 laser. It will make it possible for any laboratory to have a stabilized QCL at any desired wavelength with spectral performances currently only achievable in the visible and near-IR, in metrological institutes.
Andresen, Ellen; Díaz-Castelazo, Cecilia
2016-01-01
Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852
NASA Astrophysics Data System (ADS)
Gao, Lei; Lv, Yujuan; Wang, Dongdong; Tahir, Muhammad; Peng, Xinhua
2015-12-01
Knowing the amount of soil water storage (SWS) in agricultural soil profiles is important for understanding physical, chemical, and biological soil processes. However, measuring the SWS in deep soil layers is more expensive and time consuming than in shallower layers. Whether deep SWS can be predicted from shallow-layer measurements through temporal stability analysis (TSA) remains unclear. To address this issue, the soil water content was measured at depths of 0-1.6 m (0.2-m depth intervals) at 79 locations along an agricultural slope on 28 occasions between July 2013 and October 2014. SWSs values were then calculated for the 0-0.4, 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers. The SWS exhibited strong temporal stability, with mean Spearman's ranking coefficients (rs) of 0.83, 0.92, 0.83, and 0.79 in the 0-0.4, 0.4-0.8, 0.8-1.2, and 1.2-1.6 m soil layers, respectively. As expected, the most temporally stable location (MTSL1) accurately predicted the average SWS of the corresponding soil layer, and the values of absolute bias relative to mean (ARB) were lower than 3% for all of the investigated soil layers. Using TSA, deep-layer SWS information could be predicted using a single-location measurement in the 0-0.4 m soil layer. The mean ARB values between the observed and predicted mean SWS values were 2.9%, 4.3%, 3.9%, and 2.7% in the 0.4-0.8, 0.8-1.2, 1.2-1.6, and 0-1.6 m soil layers, respectively. The prediction accuracy of the spatial distribution generally decreased with increasing depth, with linear determination coefficients (R2) of 0.93, 0.79, 0.72, and 0.84 for the four soil layers, respectively. The proposed method could further expand the application of the temporal stability technique in the estimation of SWS.
NASA Astrophysics Data System (ADS)
Calvo, Marta; Hinderer, Jacques; Rosat, Severine; Legros, Hilaire; Boy, Jean-Paul; Ducarme, Bernard; Zürn, Walter
2014-10-01
Long gravity records are of great interest when performing tidal analyses. Indeed, long series enable to separate contributions of near-frequency waves and also to detect low frequency signals (e.g. long period tides and polar motion). In addition to the length of the series, the quality of the data and the temporal stability of the noise are also very important. We study in detail some of the longest gravity records available in Europe: 3 data sets recorded with spring gravimeters in Black Forest Observatory (Germany, 1980-2012), Walferdange (Luxemburg, 1980-1995) and Potsdam (Germany, 1974-1998) and several superconducting gravimeters (SGs) data sets, with at least 9 years of continuous records, at different European GGP (Global Geodynamics Project) sites (Bad Homburg, Brussels, Medicina, Membach, Moxa, Vienna, Wettzell and Strasbourg). The stability of each instrument is investigated using the temporal variations of tidal parameters (amplitude factor and phase difference) for the main tidal waves (O1, K1, M2 and S2) as well as the M2/O1 factor ratio, the later being insensitive to the instrumental calibration. The long term stability of the tidal observations is also dependent on the stability of the scale factor of the relative gravimeters. Therefore we also check the time stability of the scale factor for the superconducting gravimeter C026 installed at the J9 Gravimetric Observatory of Strasbourg (France), using numerous calibration experiments carried out by co-located absolute gravimeter (AG) measurements during the last 15 years. The reproducibility of the scale factor and the achievable precision are investigated by comparing the results of different calibration campaigns. Finally we present a spectrum of the 25 years of SG records at J9 Observatory, with special attention to small amplitude tides in the semi-diurnal and diurnal bands, as well as to the low frequency part.
Climate variability decreases species richness and community stability in a temperate grassland.
Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Wang, Junbang; Pan, Qingmin; Bai, Yongfei; Han, Xingguo
2018-06-26
Climate change involves modifications in both the mean and the variability of temperature and precipitation. According to global warming projections, both the magnitude and the frequency of extreme weather events are increasing, thereby increasing climate variability. The previous studies have reported that climate warming tends to decrease biodiversity and the temporal stability of community primary productivity (i.e., community stability), but the effects of the variability of temperature and precipitation on biodiversity, community stability, and their relationship have not been clearly explored. We used a long-term (from 1982 to 2014) field data set from a temperate grassland in northern China to explore the effects of the variability of mean temperature and total precipitation on species richness, community stability, and their relationship. Results showed that species richness promoted community stability through increases in asynchronous dynamics across species (i.e., species asynchrony). Both species richness and species asynchrony were positively associated with the residuals of community stability after controlling for its dependence on the variability of mean temperature and total precipitation. Furthermore, the variability of mean temperature reduced species richness, while the variability of total precipitation decreased species asynchrony and community stability. Overall, the present study revealed that species richness and species asynchrony promoted community stability, but increased climate variability may erode these positive effects and thereby threaten community stability.
This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...
Specificity and Modifiability of Cognitive Biases in Hypochondriasis
ERIC Educational Resources Information Center
Gropalis, Maria; Bleichhardt, Gaby; Hiller, Wolfgang; Witthoft, Michael
2013-01-01
Objective: According to cognitive-behavioral models of hypochondriasis (HYP), biased attentional and memory processes related to health threat stimuli are crucial for the development and maintenance of severe health anxiety. Little is known about the specificity, temporal stability, and modifiability of these biases via psychotherapy. Method: In…
Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; Pijnappels, Mirjam; van Dieën, Jaap H.
2017-01-01
Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability. PMID:28900400
Coastal fog and low cloud spatial patterns: do they indicate potential biodiversity refugia?
NASA Astrophysics Data System (ADS)
Torregrosa, A.
2016-12-01
Marine fog and low clouds transfer water and nutrients to coastal ecosystems through advection from the ocean and reduce heat effects by reflecting incoming shortwave radiation. These effects are known to benefit many species, vegetation communities, and habitats such as coastal redwood trees and their understory, maritime chaparral, and coastal streams harboring endangered salmon species. The California floristic region is the highest ranked hotspot in the U.S. and ranked 7th of 35 biodiversity hotspots worldwide in terms of the percent of its plant species that are found nowhere else (endemic). Many environmental drivers have been identified as contributing to California's remarkably high endemism and biodiversity, however, coastal low clouds have not typically been included. This could be due to the lack of data such as high resolution maps of coastal low cloud occurrence or the lack of long term records. Using a recent analysis of hourly National Weather Service satellite data, a stability index (SI) for coastal fog and low cloud cover was derived using two measures of variation and average summertime cloud cover to quantify long term spatial stability trends. Several discrete spatial clumps were identified that had both high temporal stability and high coastal low cloud cover. These areas show a strong correlation with a specific topographic landscape configuration with respect to wind direction. Point occurrence distribution maps of endemic coastal species were overlain with the SI to explore spatial correlation. The federally endangered species that showed very high spatial correlation included Yadon's Rein-orchid (Piperia yadonii), Monterey Spineflower (Chorizanthe pungens var. pungens), and Seaside Bird's-beak (Cordylanthus rigidus ssp. littoralis). Current estimated range maps are not consistent with the SI results suggesting a need to update estimated ranges. Biodiversity measures are being investigated in these areas to explore the hypothesis that they can be considered paleorefugia for species that have persisted over millennia in spite of a general increase in the aridity and temperature of the California climate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Martinez, E; Malin, M; DeWerd, L
2014-06-01
Purpose: To identify the variables limiting the resolution of a Michelson interferometer used to measure phase shifts (PS) in water as part of a radiometric calorimeter. Methods: We investigated the output stability of a He-Ne laser and a laser diode. The short and long term stability of the fringe pattern in a Michelson interferometer was tested with different types of lasers, thermal insulation arrangements, damping systems and optical mounts to optimize system performance. PS were induced by electrically heating water in a 1 cm quartz cuvette located in one of the interferometer arms. The PS was calculated from fringe intensitymore » changes and compared to a calculated PS using thermocouple-measured temperature changes in the water. Results: The intensity of the laser diode is more stable, but the gas laser’s profile is more suitable for fringe analysis and has better temporal coherence. The laser requires a warm-up time of 4 hours before its output is stabilized (SNR>95). The fringe’s stability strongly depends on the thermal insulation. When the interferometer is exposed to ambient temperature swings of 0.7 K, it is not possible to stabilize the fringe pattern. Enclosing the system in a 2.5 cm-thick Styrofoam box improves the SNR, but further insulation will be needed to increase the SNR above 50. High frequency noise is significantly reduced by damping the system.Inducing a temperature rise in water, starting at 299 K, the average temperature increase for a 2π PS is 0.29 ± 0.02 K and the proportionality constant is -21.1 ± 0.8 radians/K. This is 5.8% lower than the calculated value using the thermocouple. Conclusion: Interferometric PS measurements of temperature may provide an alternative to thermistors for water calorimetry. The resolution of the current prototype is limited by ambient temperature stability. Calculated and measured thermally-induced PS in water agreed to within 5.8%.« less
Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.
Danieli, E; Perlo, J; Blümich, B; Casanova, F
2013-05-03
Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.
The development and validation of measures to assess cooking skills and food skills.
Lavelle, Fiona; McGowan, Laura; Hollywood, Lynsey; Surgenor, Dawn; McCloat, Amanda; Mooney, Elaine; Caraher, Martin; Raats, Monique; Dean, Moira
2017-09-02
With the increase use of convenience food and eating outside the home environment being linked to the obesity epidemic, the need to assess and monitor individuals cooking and food skills is key to help intervene where necessary to promote the usage of these skills. Therefore, this research aimed to develop and validate a measure for cooking skills and one for food skills, that are clearly described, relatable, user-friendly, suitable for different types of studies, and applicable across all sociodemographic levels. Two measures were developed in light of the literature and expert opinion and piloted for clarity and ease of use. Following this, four studies were undertaken across different cohorts (including a sample of students, both 'Food preparation novices' and 'Experienced food preparers', and a nationally representative sample) to assess temporal stability, psychometrics, internal consistency reliability and construct validity of both measures. Analysis included T-tests, Pearson's correlations, factor analysis, and Cronbach's alphas, with a significance level of 0.05. Both measures were found to have a significant level of temporal stability (P < 0.001). Factor analysis revealed three factors with eigenvalues over 1, with two items in a third factor outside the two suggested measures. The internal consistency reliability for the cooking skills confidence measure ranged from 0.78 to 0.93 across all cohorts. The food skills confidence measure's Cronbach's alpha's ranged from 0.85 to 0.94. The two measures also showed a high discriminate validity as there were significant differences (P < 0.05 for cooking skills confidence and P < 0.01 for food skills confidence) between Food preparation novices' and 'Experienced food preparers.' The cooking skills confidence measure and the food skills confidence measure have been shown to have a very satisfactory reliability, validity and are consistent over time. Their user-friendly applicability make both measures highly suitable for large scale cross-sectional, longitudinal and intervention studies to assess or monitor cooking and food skills levels and confidence.
Nixon, Mark S.; Komogortsev, Oleg V.
2017-01-01
We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before. PMID:28575030
Friedman, Lee; Nixon, Mark S; Komogortsev, Oleg V
2017-01-01
We introduce the intraclass correlation coefficient (ICC) to the biometric community as an index of the temporal persistence, or stability, of a single biometric feature. It requires, as input, a feature on an interval or ratio scale, and which is reasonably normally distributed, and it can only be calculated if each subject is tested on 2 or more occasions. For a biometric system, with multiple features available for selection, the ICC can be used to measure the relative stability of each feature. We show, for 14 distinct data sets (1 synthetic, 8 eye-movement-related, 2 gait-related, and 2 face-recognition-related, and one brain-structure-related), that selecting the most stable features, based on the ICC, resulted in the best biometric performance generally. Analyses based on using only the most stable features produced superior Rank-1-Identification Rate (Rank-1-IR) performance in 12 of 14 databases (p = 0.0065, one-tailed), when compared to other sets of features, including the set of all features. For Equal Error Rate (EER), using a subset of only high-ICC features also produced superior performance in 12 of 14 databases (p = 0. 0065, one-tailed). In general, then, for our databases, prescreening potential biometric features, and choosing only highly reliable features yields better performance than choosing lower ICC features or than choosing all features combined. We also determined that, as the ICC of a group of features increases, the median of the genuine similarity score distribution increases and the spread of this distribution decreases. There was no statistically significant similar relationships for the impostor distributions. We believe that the ICC will find many uses in biometric research. In case of the eye movement-driven biometrics, the use of reliable features, as measured by ICC, allowed to us achieve the authentication performance with EER = 2.01%, which was not possible before.
NASA Astrophysics Data System (ADS)
Zhong, Xiaolin
1998-08-01
Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium.
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Emergent dynamics of spatio-temporal chaos in a heterogeneous excitable medium
NASA Astrophysics Data System (ADS)
Bittihn, Philip; Berg, Sebastian; Parlitz, Ulrich; Luther, Stefan
2017-09-01
Self-organized activation patterns in excitable media such as spiral waves and spatio-temporal chaos underlie dangerous cardiac arrhythmias. While the interaction of single spiral waves with different types of heterogeneity has been studied extensively, the effect of heterogeneity on fully developed spatio-temporal chaos remains poorly understood. We investigate how the complexity and stability properties of spatio-temporal chaos in the Bär-Eiswirth model of excitable media depend on the heterogeneity of the underlying medium. We employ different measures characterizing the chaoticity of the system and find that the spatial arrangement of multiple discrete lower excitability regions has a strong impact on the complexity of the dynamics. Varying the number, shape, and spatial arrangement of the heterogeneities, we observe strong emergent effects ranging from increases in chaoticity to the complete cessation of chaos, contrasting the expectation from the homogeneous behavior. The implications of our findings for the development and treatment of arrhythmias in the heterogeneous cardiac muscle are discussed.
Yang, Xian-Ming; Lou, Heng; Sun, Jing-Tao; Zhu, Yi-Ming; Xue, Xiao-Feng; Hong, Xiao-Yue
2015-07-03
Many species can successfully colonize new areas despite their propagules having low genetic variation. We assessed whether the decreased genetic diversity could result in temporal fluctuations of genetic parameters of the new populations of an invasive species, western flower thrips, Frankliniella occidentalis, using mitochondrial and microsatellite markers. This study was conducted in eight localities from four climate regions in China, where F. occidentalis was introduced in the year 2000 and had lower genetic diversity than its native populations. We also tested the level of genetic differentiation in these introduced populations. The genetic diversity of the samples at different years in the same locality was not significantly different from each other in most localities. FST and STRUCTURE analysis also showed that most temporal population comparisons from the same sites were not significantly differentiated. Our results showed that the invasive populations of F. occidentalis in China can maintain temporal stability in genetic composition at an early phase of establishment despite having lower genetic diversity than in their native range.
NASA Astrophysics Data System (ADS)
Reaney, S. M.; Snell, M. A.; Barker, P. A.; Aftab, A.; Barber, N. J.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Quinn, P. F.; Surridge, B.
2016-12-01
Low order streams are spatially extensive, temporally dynamic, systems within the agricultural landscape. This dynamism extends to the aquatic communities within these streams, including the phytobentos, which demonstrates considerable resilience to diffuse anthropogenic nutrient pressures and changing climate dynamics. The phytobenthos community can substantially contribute to the food web, in particular diatoms, which dominate photo-autotrophic assemblages in low order streams. Diatoms are widely used in ecological monitoring because of their high sensitivity to environmental condition, but knowledge is limited on the ecological effects of winter disturbances and variance introduced by multiple and interacting pressures (N, P, sediment), introducing bias in understanding temporal dynamics in benthic diatom communities. Using the environmental time series data from long term monitoring within the River Eden Demonstration Test Catchment programme, we assess the impact of multiple hydro-chemical stressors on phytobenthic community resilience, and synthesize the impact of an extreme winter event. Monthly data from diatom communities collected in the Eden DTC from March 2011 to present show that river flow, strongly coupled to precipitation, is a key driver of these communities. Discharge has a direct effect on communities through scouring, but is also tightly correlated to nutrient delivery, such that 80% of the annual TP load arrives in 10% of the time. Trophic Diatom Index (TDI) values demonstrated considerable resilience by the stability of inter-monthly TDI scores over 5 seasonal cycles against the characterised highly variable hydrological regime. This research demonstrates that well characterised winter disturbances are critical to understanding drivers of aquatic dynamics. This has implications for catchment diffuse pollution policy, farm management and economics, given the climate projections of increases in frequency and intensity of extreme winter events, which may alter instream nutrient fluxes.
NASA Astrophysics Data System (ADS)
Calzolari, C.; Ungaro, F.; Salvador, P.; Torri, D.
2009-04-01
Results of a long term trial (2002-2007) on the effect of different organic amendments on topsoil structural properties at the end of the 6th year are presented. Two soils located in two experimental farms of the Emilia-Romagna region (Northern Italy), namely a silty clay loam Haplic Calcisol under sorghum (Sorghum bicolor, L.) continuous cropping, and a silty Calcaric Cambisols under peach (Persica vulgaris, Mill.), have been treated with a different amount of organic amendments. Four different treatments were tested plus control: manure (10 Mg ha-1 y-1), low input compost (5 and 10 Mg ha-1 y-1), high input compost (10 and 40 Mg ha-1 y-1), and no-tillage. In all the plots soil samples were collected three times every year: at the beginning of the growing season, at full crop coverage and after harvest. At each time, samples were collected in three replicates and soil bulk density and aggregate stability were measured. At the end of the 6 years trial 930 bulk density and 405 aggregate stability measurements were made available. The influence of organic amendments on soil physical properties is different according to the considered soil property and to the different soils. Soil bulk density (BD) shows clear and statistically significant differences among the tested theses, all with a marked seasonality and distinct temporal trends. The overall trends observed in the two soils are coherent with the amount of organic matter distributed in the different theses and with the field operations (tillage mainly), but with a short term effect. More important, over the period of observation and within each year, the treatments exhibit cyclical variations due to climate seasonality. Among the treatments, that with distribution of manure exhibits the weakest seasonal variations and a substantially stable general trend, with BD values slightly lower than those observed for the control. Different effects are also observed on soil aggregates stability, but also in this case a temporal trend is not clearly detectable, suggesting that the amendments have no cumulative effect at least during the 6 years of observations, and the responses are different in the two trials: slightly positive for the low compost supply in the silty clay loam Haplic Calcisol and negative for both low and high compost supply in the silty Calcaric Cambisols. The dominant issue is the seasonal variability of aggregate resistance which is well shown at the site where more data are available. Data also hints an ambiguous behavior of the compost: increasing the amount of applied compost leads to a slight increase in aggregate stability which is then followed by a decrease, as if the aggregation capability of the compost is counteracted by a dispersion effect.
Test-Retest Reliability of the Salutogenic Wellness Promotion Scale (SWPS)
ERIC Educational Resources Information Center
Anderson, L. M.; Moore, J. B.; Hayden, B. M.; Becker, C. M.
2014-01-01
Objective: This study examined the temporal stability (i.e. test-retest reliability) of the Salutogenic Wellness Promotion Scale (SWPS) using intraclass correlation coefficients (ICC). Current intraclass results were also compared to previously published interclass correlations to support the use of the intraclass method for test-retest…
USDA-ARS?s Scientific Manuscript database
As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote sensing methods have the spatial and temporal resolution required to...
Benzotriazoles (BZTs) are used in a wide range of commercial and industrial applications as well as consumer products. There are several categories of usage of these compounds, the major two being as an additive to provide ultraviolet (UV) stabilization for plastics and films an...
Variability in oak forest herb layer communities
J. R. McClenahen; R. P. Long
1995-01-01
This study evaluates forest herb-layer sensitivity to annual-scale environmental fluctuation. Specific objectives were to determine the between-year variation in herb-layer community biomass, and to contrast and evaluate the temporal stability of spatial relationships in herb-layer community structure and composition between successive years. Aboveground dry weights of...
Short-Term Temporal Stability in Observed Retail Food Characteristics
ERIC Educational Resources Information Center
Zenk, Shannon N.; Grigsby-Toussaint, Diana S.; Curry, Susan J.; Berbaum, Michael; Schneider, Linda
2010-01-01
Objective: Use of direct observation to characterize neighborhood retail food environments is increasing, but to date most studies have relied on a single observation. If food availability, prices, and quality vary over short time periods, repeated measures may be needed to portray these food characteristics. This study evaluated short-term…
The Vane Kindergarten Test: Temporal Stability And Ability to Predict Behavioral Criteria
ERIC Educational Resources Information Center
Powers, Sandra M.
1977-01-01
The Vane Kindergarten Test (VKT) is judged to have limited usefulness in early detection of learning handicaps for two reasons: (a) Its reliability is too low to allow discrimination between individuals, and (b) The ability of the VKT to predict problem behaviors is quite limited. (Author)
USDA-ARS?s Scientific Manuscript database
Synthetically generated Landsat time-series based on the STARFM algorithm are increasingly used for applications in forestry or agriculture. Although successes in classification and derivation of phenological orbiomass parameters are evident, a thorough evaluation of the limits of the method is stil...
MOLECULAR TRACKING FECAL CONTAMINATION IN SURFACE WATERS: 16S RDNA VERSUS METAGENOMICS APPROACHES
Microbial source tracking methods need to be sensitive and exhibit temporal and geographic stability in order to provide meaningful data in field studies. The objective of this study was to use a combination of PCR-based methods to track cow fecal contamination in two watersheds....
Leclair, Tatsiana; Carret, Anne-Sophie; Samson, Yvan; Sultan, Serge
2016-01-01
Parents report psychological distress in association with their child's cancer. Reliable tools are needed to screen parental distress over the cancer trajectory. This study aimed to estimate the stability and repeatability of the Distress Thermometer (DT) and the Depression and Anxiety items of the Edmonton Symptom Assessment System-revised (ESAS-r-D; -A) in parents of children diagnosed with cancer. Fifty parents (28 mothers, median age = 44) of clinically stable survivors of childhood solid and brain tumours completed questionnaires about their own distress (DT, ESAS-r-D; -A, Brief Symptom Inventory-18: BSI-18, Patient Health Questionnaire-9: PHQ-9, Generalized Anxiety Disorder-7: GAD-7) and their children's quality of life (QoL; Peds Quality of Life: PedsQL) twice, with a month interval between the two assessments. At retest, parents also evaluated life events that occurred between the two time points. Hierarchical regressions explored moderators for the temporal stability of test measures. Stability estimates were ICC = .78 for the DT, .55 for the ESAS-r-D, and .47 for the ESAS-r-A. Caseness agreement between test and retest was substantial for the DT, fair for the ESAS-r-D, and slight for the ESAS-r-A. Repeatability analyses indicated that the error range for the DT was more than 2 pts below/above actual measurement, whereas it was more than 3 pts for the ESAS-r-A, and 2.5 for the ESAS-r-D. Instability of the DT could be explained by changes in children's physical QoL, but not by other components of QoL or life events. No moderators of stability could be identified for the ESAS-r items. The DT appears to be a fairly stable measure when the respondent's condition is stable yet with a relatively wide error range. Fluctuations in distress-related constructs may affect the temporal stability of the DT. The lower stability of ESAS-r items may result from shorter time-lapse instructions resulting in a greater sensitivity to change. Findings support future research on the DT as a reliable instrument in caregivers.
Carret, Anne-Sophie; Samson, Yvan; Sultan, Serge
2016-01-01
Objective Parents report psychological distress in association with their child's cancer. Reliable tools are needed to screen parental distress over the cancer trajectory. This study aimed to estimate the stability and repeatability of the Distress Thermometer (DT) and the Depression and Anxiety items of the Edmonton Symptom Assessment System-revised (ESAS-r-D; -A) in parents of children diagnosed with cancer. Methods Fifty parents (28 mothers, median age = 44) of clinically stable survivors of childhood solid and brain tumours completed questionnaires about their own distress (DT, ESAS-r-D; -A, Brief Symptom Inventory-18: BSI-18, Patient Health Questionnaire-9: PHQ-9, Generalized Anxiety Disorder-7: GAD-7) and their children’s quality of life (QoL; Peds Quality of Life: PedsQL) twice, with a month interval between the two assessments. At retest, parents also evaluated life events that occurred between the two time points. Hierarchical regressions explored moderators for the temporal stability of test measures. Results Stability estimates were ICC = .78 for the DT, .55 for the ESAS-r-D, and .47 for the ESAS-r-A. Caseness agreement between test and retest was substantial for the DT, fair for the ESAS-r-D, and slight for the ESAS-r-A. Repeatability analyses indicated that the error range for the DT was more than 2 pts below/above actual measurement, whereas it was more than 3 pts for the ESAS-r-A, and 2.5 for the ESAS-r-D. Instability of the DT could be explained by changes in children’s physical QoL, but not by other components of QoL or life events. No moderators of stability could be identified for the ESAS-r items. Conclusions The DT appears to be a fairly stable measure when the respondent's condition is stable yet with a relatively wide error range. Fluctuations in distress-related constructs may affect the temporal stability of the DT. The lower stability of ESAS-r items may result from shorter time-lapse instructions resulting in a greater sensitivity to change. Findings support future research on the DT as a reliable instrument in caregivers. PMID:27454432
Intelligent agents: adaptation of autonomous bimodal microsystems
NASA Astrophysics Data System (ADS)
Smith, Patrice; Terry, Theodore B.
2014-03-01
Autonomous bimodal microsystems exhibiting survivability behaviors and characteristics are able to adapt dynamically in any given environment. Equipped with a background blending exoskeleton it will have the capability to stealthily detect and observe a self-chosen viewing area while exercising some measurable form of selfpreservation by either flying or crawling away from a potential adversary. The robotic agent in this capacity activates a walk-fly algorithm, which uses a built in multi-sensor processing and navigation subsystem or algorithm for visual guidance and best walk-fly path trajectory to evade capture or annihilation. The research detailed in this paper describes the theoretical walk-fly algorithm, which broadens the scope of spatial and temporal learning, locomotion, and navigational performances based on optical flow signals necessary for flight dynamics and walking stabilities. By observing a fly's travel and avoidance behaviors; and, understanding the reverse bioengineering research efforts of others, we were able to conceptualize an algorithm, which works in conjunction with decisionmaking functions, sensory processing, and sensorimotor integration. Our findings suggest that this highly complex decentralized algorithm promotes inflight or terrain travel mobile stability which is highly suitable for nonaggressive micro platforms supporting search and rescue (SAR), and chemical and explosive detection (CED) purposes; a necessity in turbulent, non-violent structured or unstructured environments.
How social learning adds up to a culture: from birdsong to human public opinion.
Tchernichovski, Ofer; Feher, Olga; Fimiarz, Daniel; Conley, Dalton
2017-01-01
Distributed social learning may occur at many temporal and spatial scales, but it rarely adds up to a stable culture. Cultures vary in stability and diversity (polymorphism), ranging from chaotic or drifting cultures, through cumulative polymorphic cultures, to stable monolithic cultures with high conformity levels. What features can sustain polymorphism, preventing cultures from collapsing into either chaotic or highly conforming states? We investigate this question by integrating studies across two quite separate disciplines: the emergence of song cultures in birds, and the spread of public opinion and social conventions in humans. In songbirds, the learning process has been studied in great detail, while in human studies the structure of social networks has been experimentally manipulated on large scales. In both cases, the manner in which communication signals are compressed and filtered - either during learning or while traveling through the social network - can affect culture polymorphism and stability. We suggest a simple mechanism of a shifting balance between converging and diverging social forces to explain these effects. Understanding social forces that shape cultural evolution might be useful for designing agile communication systems, which are stable and polymorphic enough to promote gradual changes in institutional behavior. © 2017. Published by The Company of Biologists Ltd.
Kirkwood, Renata Noce; Trede, Renato Guilherme; Moreira, Bruno de Souza; Kirkwood, Scott Alexander; Pereira, Leani Souza Máximo
2011-05-01
Gait dysfunction is a strong issue in elderly women with a history of falls. The purpose of this study was to compare the temporal activity of the ankle muscles during gait in elderly women with and without a history of recurrent falls. Eighty-nine (89) elderly women - one group with a history of falls (45) and another group without (44) - participated in the study. The mean range of temporal activation of the gastrocnemius, tibialis anterior and soleus muscles during gait was obtained using electromyography. The muscles were considered active when the signal magnitude surpassed two standard deviations of the minimal magnitude of the average signal per individual. The results showed that the mean range of gastrocnemius muscle activation of the group of recurrent fallers was significantly shorter, 2.9% (16.9±5.7%) compared to the group without recurrent falls (19.8±6.6%) (p=0.004). The shorter duration in the gastrocnemius muscle activation during stance could possibly affect stability in the support phase, since the gastrocnemius is the main decelerator of the trunk. Clinically, this finding shows the importance of rehabilitation programs for elderly women that focus on strengthening the plantar flexor musculature aiming to reestablish the function and stability of gait and possibly avoiding falls. Copyright © 2011 Elsevier B.V. All rights reserved.
Transient hazard model using radar data for predicting debris flows in Madison County, Virginia
Morrissey, M.M.; Wieczorek, G.F.; Morgan, B.A.
2004-01-01
During the rainstorm of June 27, 1995, roughly 330-750 mm of rain fell within a 16-hour period, initiating floods and over 600 debris flows in a small area (130 km2) of Madison County, VA. We developed a distributed version of Iverson's transient response model for regional slope stability analysis for the Madison County debris flows. This version of the model evaluates pore-pressure head response and factor of safety on a regional scale in areas prone to rainfall-induced shallow (<2-3 m) landslides. These calculations used soil properties of shear strength and hydraulic conductivity from laboratory measurements of soil samples collected from field sites where debris flows initiated. Rainfall data collected by radar every 6 minutes provided a basis for calculating the temporal variation of slope stability during the storm. The results demonstrate that the spatial and temporal variation of the factor of safety correlates with the movement of the storm cell. When the rainstorm was treated as two separate rainfall events and a larger hydraulic conductivity and friction angle than the laboratory values were used, the timing and location of landslides predicted by the model were in closer agreement with eyewitness observations of debris flows. Application of spatially variable initial pre-storm water table depth and soil properties may improve both the spatial and temporal prediction of instability.
Saccadic performance in questionnaire-identified schizotypes over time.
Gooding, Diane C; Shea, Heather B; Matts, Christie W
2005-02-28
In the present study, 121 young adults (mean age=19 years), hypothesized to be at varying levels of risk for psychosis on the basis of their psychometric profiles, were administered saccadic (antisaccade and refixation) tasks at two separate assessments. At Time 1, individuals posited to be at heightened risk for the later development of schizophrenia-spectrum disorders (i.e., those individuals with elevated Social Anhedonia Scale [SAS] scores) produced significantly more antisaccade task errors than the controls. Despite apparent improvement in antisaccade task performance from initial testing to the follow-up (mean test-retest interval=59 months) across all groups, the Social Anhedonia (SocAnh) group continued to produce significantly more errors than the control group. The antisaccade task performance of the control group showed good temporal stability (Pearson's r=0.70, ICC=0.52), and the SocAnh group's performance showed excellent temporal stability (Pearson's r=0.85, ICC=0.83). The results of this investigation are twofold: First, antisaccade task performance is temporally stable, even in psychometrically identified schizotypes over long test-retest intervals; and secondly, Social Anhedonia Scale scores as well as Time 1 antisaccade task accuracy accounted for much of the variability in Time 2 antisaccade task performance. These findings add to the growing body of literature suggesting that antisaccade task deficits may serve as an endophenotypic marker of a schizophrenia diathesis.
Guppy, Brent J; McManus, Kirk J
2015-02-01
The loss of genome stability is an early event that drives the development and progression of virtually all tumor types. Recent studies have revealed that certain histone post-translational modifications exhibit dynamic and global increases in abundance that coincide with mitosis and exhibit essential roles in maintaining genomic stability. Histone H2B ubiquitination at lysine 120 (H2Bub1) is regulated by RNF20, an E3 ubiquitin ligase that is altered in many tumor types. Through an evolutionarily conserved trans-histone pathway, H2Bub1 is an essential prerequisite for subsequent downstream dimethylation events at lysines 4 (H3K4me2) and 79 (H3K79me2) of histone H3. Although the role that RNF20 plays in tumorigenesis has garnered much attention, the downstream components of the trans-histone pathway, H3K4me2 and H3K79me2, and their potential contributions to genome stability remain largely overlooked. In this study, we employ single-cell imaging and biochemical approaches to investigate the spatial and temporal patterning of RNF20, H2Bub1, H3K4me2, and H3K79me2 throughout the cell cycle, with a particular focus on mitosis. We show that H2Bub1, H3K4me2, and H3K79me2 exhibit distinct temporal progression patterns throughout the cell cycle. Most notably, we demonstrate that H3K79me2 is a highly dynamic histone post-translational modification that reaches maximal abundance during mitosis in an H2Bub1-independent manner. Using RNAi and chemical genetic approaches, we identify DOT1L as a histone methyltransferase required for the mitotic-associated increases in H3K79me2. We also demonstrate that the loss of mitotic H3K79me2 levels correlates with increases in chromosome numbers and increases in mitotic defects. Collectively, these data suggest that H3K79me2 dynamics during mitosis are normally required to maintain genome stability and further implicate the loss of H3K79me2 during mitosis as a pathogenic event that contributes to the development and progression of tumors. Copyright © 2015 by the Genetics Society of America.
Community stability within the St. Marys River fish community: Evidence from trawl surveys
Schaeffer, Jeffrey S.; Bowen, Anjanette K.; Fielder, David G.
2017-01-01
A trawl survey was conducted in the Saint Marys River during 2010–2011 and we compared our results to a prior trawl survey conducted during 1979–1983 to look for long-term changes in the fish community, especially in terms of changes induced by invasive species. We found no substantive temporal differences in fish density, fish biomass, or fish diversity; lower trawl biomass during 2010–2011 was likely a result of day versus night trawling. The Saint Marys River remains a center of high fish diversity, invasive species remain rare, and the system continues to exhibit overall long-term stability. Trawling captured a wide range of fish species, but was likely not an effective stock assessment tool for managed game fish because catch rates were low or variable for all game species except yellow perch. Trawling appeared to be an effective tool for sampling connecting channel diversity, especially when large numbers of individuals are needed for directed studies, but annual sampling would be needed to use data to assess recruitment.
Poteser, Michael; Leitinger, Gerd; Pritz, Elisabeth; Platzer, Dieter; Frischauf, Irene; Romanin, Christoph; Groschner, Klaus
2016-10-19
Nanometer-spaced appositions between endoplasmic reticulum and plasma membrane (ER-PM junctions) stabilized by membrane-joining protein complexes are critically involved in cellular Ca 2+ -handling and lipid trafficking. ER-PM junctional architecture and plasticity associated with inter-membrane communication are as yet barely understood. Here, we introduce a method to precisely characterize ER-PM junction morphology and dynamics with high temporal resolution and minimal disturbance of junctional intermembrane communication. We show that expression of soluble cytosolic fluorophores in combination with TIRFM enables to delineate ER and PM distance in the range of 10-150 nm. Live-cell imaging of sub-plasmalemmal structures in RBL-2H3 mast cells by this method, designated as fluorescence density mapping (FDM), revealed profound dynamics of ER-PM contact sites in response to store-depletion. We report the existence of a Ca 2+ -dependent process that expands the junctional ER to enlarge its contact surface with the PM, thereby promoting and stabilizing STIM1-Orai1 competent ER-PM junctions.
NASA Astrophysics Data System (ADS)
Świrniak, Grzegorz; Głomb, Grzegorz
2017-06-01
This study reports an application of a fiber-optic LED-based illumination system to solve an inverse problem in optical measurements of characteristics of a single-mode fiber. The illumination system has the advantages of low temporal coherence, high intensity, collimation, and thermal stability of the emission spectrum. The inverse analysis is investigated to predict the values of the diameter and refractive index of a single-mode fiber and applies to the far field scattering pattern in the vicinity of a polychromatic rainbow. As the inversion possibility depends considerably on the properties of the incident radiation, a detailed discussion is provided on both the specification of the illumination system as well as preliminary characteristics of the produced radiation. The illumination system uses a direct coupling between a thermally-stabilized LED junction and a plastic optical fiber, which transmits light to an optical collimator. A numerical study of fiber-to-LED coupling efficiency helps to understand the influence of lateral and longitudinal misalignments on the output power.
Local heterogeneities in cardiac systems suppress turbulence by generating multi-armed rotors
NASA Astrophysics Data System (ADS)
Zhang, Zhihui; Steinbock, Oliver
2016-05-01
Ventricular fibrillation is an extremely dangerous cardiac arrhythmia that is linked to rotating waves of electric activity and chaotically moving vortex lines. These filaments can pin to insulating, cylindrical heterogeneities which swiftly become the new rotation backbone of the local wave field. For thin cylinders, the stabilized rotation is sufficiently fast to repel the free segments of the turbulent filament tangle and annihilate them at the system boundaries. The resulting global wave pattern is periodic and highly ordered. Our cardiac simulations show that also thicker cylinders can establish analogous forms of tachycardia. This process occurs through the spontaneous formation of pinned multi-armed vortices. The observed number of wave arms N depends on the cylinder radius and is associated to stability windows that for N = 2, 3 partially overlap. For N = 1, 2, we find a small gap in which the turbulence is removed but the pinned rotor shows complex temporal dynamics. The relevance of our findings to human cardiology are discussed in the context of vortex pinning to more complex-shaped anatomical features and remodeled myocardium.
Phytoplankton Biogeography and Community Stability in the Ocean
Cermeño, Pedro; de Vargas, Colomban; Abrantes, Fátima; Falkowski, Paul G.
2010-01-01
Background Despite enormous environmental variability linked to glacial/interglacial climates of the Pleistocene, we have recently shown that marine diatom communities evolved slowly through gradual changes over the past 1.5 million years. Identifying the causes of this ecological stability is key for understanding the mechanisms that control the tempo and mode of community evolution. Methodology/Principal Findings If community assembly were controlled by local environmental selection rather than dispersal, environmental perturbations would change community composition, yet, this could revert once environmental conditions returned to previous-like states. We analyzed phytoplankton community composition across >104 km latitudinal transects in the Atlantic Ocean and show that local environmental selection of broadly dispersed species primarily controls community structure. Consistent with these results, three independent fossil records of marine diatoms over the past 250,000 years show cycles of community departure and recovery tightly synchronized with the temporal variations in Earth's climate. Conclusions/Significance Changes in habitat conditions dramatically alter community structure, yet, we conclude that the high dispersal of marine planktonic microbes erases the legacy of past environmental conditions, thereby decreasing the tempo of community evolution. PMID:20368810
Surface enhanced Raman scattering by a new derivative of acridine in solutions of colloidal silver
NASA Astrophysics Data System (ADS)
Solovyeva, E. V.; Khaziyeva, D. A.; Myund, L. A.; Denisova, A. S.
2017-03-01
A new derivative of acridine, 4,5-bis(N,N-di(2-hydroxyethyl)iminomethyl)acridine (BHIA), which is a selective fluorophore relative to cadmium cations, is studied by the method of surface-enhanced Raman scattering (SERS). The SERS spectra of BHIA adsorbed on colloidal silver particles exhibit a high intensity and temporal stability of the signal. An assignment of the bands present in the studied spectral range is given. The dependence of the SERS spectra of BHIA on the solution's pH reveals that the ligand can exist on the surface in protonated and deprotonated forms. The stability of the deprotonated form on the surface suggests that the ligand interacts with the surface by means of a conjugated π-system of aromatic rings. The addition of the salt of halide ions to the solution has a significant influence on the SERS spectrum. This effect is due to the displacement of the adsorbate molecules from the first monolayer, which is accompanied by the transition of BHIA from the chemi- to the physisorbed form.
Attention Problems and Stability of WISC-IV Scores Among Clinically Referred Children.
Green Bartoi, Marla; Issner, Jaclyn Beth; Hetterscheidt, Lesley; January, Alicia M; Kuentzel, Jeffrey Garth; Barnett, Douglas
2015-01-01
We examined the stability of Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) scores among 51 diverse, clinically referred 8- to 16-year-olds (M(age) = 11.24 years, SD = 2.36). Children were referred to and tested at an urban, university-based training clinic; 70% of eligible children completed follow-up testing 12 months to 40 months later (M = 22.05, SD = 5.94). Stability for index scores ranged from .58 (Processing Speed) to .81 (Verbal Comprehension), with a stability of .86 for Full-Scale IQ. Subtest score stability ranged from .35 (Letter-Number Sequencing) to .81 (Vocabulary). Indexes believed to be more susceptible to concentration (Processing Speed and Working Memory) had lower stability. We also examined attention problems as a potential moderating factor of WISC-IV index and subtest score stability. Children with attention problems had significantly lower stability for Digit Span and Matrix Reasoning subtests compared with children without attention problems. These results provide support for the temporal stability of the WISC-IV and also provide some support for the idea that attention problems contribute to children producing less stable IQ estimates when completing the WISC-IV. We hope our report encourages further examination of this hypothesis and its implications.
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-01-01
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-11-19
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.
Analysis of High Order Difference Methods for Multiscale Complex Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.; Tang, Harry (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes with incremental studies was initiated. Here we further refine the analysis on, and improve the understanding of the adaptive numerical dissipation control strategy. Basically, the development of these schemes focuses on high order nondissipative schemes and takes advantage of the progress that has been made for the last 30 years in numerical methods for conservation laws, such as techniques for imposing boundary conditions, techniques for stability at shock waves, and techniques for stable and accurate long-time integration. We concentrate on high order centered spatial discretizations and a fourth-order Runge-Kutta temporal discretizations as the base scheme. Near the bound-aries, the base scheme has stable boundary difference operators. To further enhance stability, the split form of the inviscid flux derivatives is frequently used for smooth flow problems. To enhance nonlinear stability, linear high order numerical dissipations are employed away from discontinuities, and nonlinear filters are employed after each time step in order to suppress spurious oscillations near discontinuities to minimize the smearing of turbulent fluctuations. Although these schemes are built from many components, each of which is well-known, it is not entirely obvious how the different components be best connected. For example, the nonlinear filter could instead have been built into the spatial discretization, so that it would have been activated at each stage in the Runge-Kutta time stepping. We could think of a mechanism that activates the split form of the equations only at some parts of the domain. Another issue is how to define good sensors for determining in which parts of the computational domain a certain feature should be filtered by the appropriate numerical dissipation. For the present study we employ a wavelet technique introduced in as sensors. Here, the method is briefly described with selected numerical experiments.
The stability of H/V spectral ratios from noise measurements in Armutlu Peninsula (Turkey)
NASA Astrophysics Data System (ADS)
Livaoǧlu, Hamdullah; Irmak, T. Serkan; Caka, Deniz; Yavuz, Evrim; Lühr, B. G.; Woith, H.; Tunç, B.; Baris, S.
2016-04-01
The horizontal to vertical spectral ratio (H/V) method has been successfully using in order to estimate the fundamental resonance frequency of the sedimentary cover, its thickness and amplification factor since at least 3 decades. There are numerous studies have been carried out on the stability of the H/V spectral ratios. Almost all studies showed that fundamental frequency is stable even measurements are repeated at different times. From this point of view, the results will show us an approach whether the stations are suitable for accurate estimate of earthquake studies and engineering purposes or not. Also we want to see if any effects of the amplification factor changing on the seismograms for Armutlu Seismic Network (ARNET) even though seismic stations are established far away from cultural noise and located on hard rock sites. It has been selected one hour recorded data of all stations during the most stationary times. The amplification and resonant frequency variations of H/V ratio were calculated to investigate temporal stability in time. There is a total harmony in fundamental frequencies values and H/V spectral ratio values in time-lagged periods. Some stations shows secondary minor peaks in high frequency band due to a shallow formation effect or cultural noises around. In the east side of the area ILYS station shows amplitude peak in lower fundamental frequency band from expected. This could compose a high amplification in lower frequencies and so that yield less reliable results in local earthquakes studies. By the experimental results from ambient noise analysis, it could be worked up for relocation of one station.
A space-time lower-upper symmetric Gauss-Seidel scheme for the time-spectral method
NASA Astrophysics Data System (ADS)
Zhan, Lei; Xiong, Juntao; Liu, Feng
2016-05-01
The time-spectral method (TSM) offers the advantage of increased order of accuracy compared to methods using finite-difference in time for periodic unsteady flow problems. Explicit Runge-Kutta pseudo-time marching and implicit schemes have been developed to solve iteratively the space-time coupled nonlinear equations resulting from TSM. Convergence of the explicit schemes is slow because of the stringent time-step limit. Many implicit methods have been developed for TSM. Their computational efficiency is, however, still limited in practice because of delayed implicit temporal coupling, multiple iterative loops, costly matrix operations, or lack of strong diagonal dominance of the implicit operator matrix. To overcome these shortcomings, an efficient space-time lower-upper symmetric Gauss-Seidel (ST-LU-SGS) implicit scheme with multigrid acceleration is presented. In this scheme, the implicit temporal coupling term is split as one additional dimension of space in the LU-SGS sweeps. To improve numerical stability for periodic flows with high frequency, a modification to the ST-LU-SGS scheme is proposed. Numerical results show that fast convergence is achieved using large or even infinite Courant-Friedrichs-Lewy (CFL) numbers for unsteady flow problems with moderately high frequency and with the use of moderately high numbers of time intervals. The ST-LU-SGS implicit scheme is also found to work well in calculating periodic flow problems where the frequency is not known a priori and needed to be determined by using a combined Fourier analysis and gradient-based search algorithm.
Hubley-Kozey, Cheryl L; Butler, Heather L; Kozey, John W
2012-08-01
Muscle synergies are important for spinal stability, but few studies examine temporal responses of spinal muscles to dynamic perturbations. This study examined activation amplitudes and temporal synergies among compartments of the back extensor and among abdominal wall muscles in response to dynamic bidirectional moments of force. We further examined whether responses were different between men and women. 19 women and 18 men performed a controlled transfer task. Surface electromyograms from bilateral sites over 6 back extensor compartments and 6 abdominal wall muscle sites were analyzed using principal component analysis. Key features were extracted from the measured electromyographic waveforms capturing amplitude and temporal variations among muscle sites. Three features explained 97% of the variance. Scores for each feature were computed for each measured waveform and analysis of variance found significant (p<.05) muscle main effects and a sex by muscle interaction. For the back extensors, post hoc analysis revealed that upper and more medial sites were recruited to higher amplitudes, medial sites responded to flexion moments, and the more lateral sites responded to lateral flexion moments. Women had more differences among muscle sites than men for the lateral flexion moment feature. For the abdominal wall muscles the oblique muscles responded with synergies related to fiber orientation, with women having higher amplitudes and more responsiveness to the lateral flexion moment than men. Synergies between the abdominal and back extensor sites as the moment demands change are discussed. These findings illustrate differential activation among erector spinae compartments and abdominal wall muscle sites supporting a highly organized pattern of response to bidirectional external moments with asynchronies more apparent in women. Copyright © 2012 Elsevier B.V. All rights reserved.
Kinziger, Andrew P; Hellmair, Michael; McCraney, W Tyler; Jacobs, David K; Goldsmith, Greg
2015-11-01
Extinction and colonization dynamics are critical to understanding the evolution and conservation of metapopulations. However, traditional field studies of extinction-colonization are potentially fraught with detection bias and have rarely been validated. Here, we provide a comparison of molecular and field-based approaches for assessment of the extinction-colonization dynamics of tidewater goby (Eucyclogobius newberryi) in northern California. Our analysis of temporal genetic variation across 14 northern California tidewater goby populations failed to recover genetic change expected with extinction-colonization cycles. Similarly, analysis of site occupancy data from field studies (94 sites) indicated that extinction and colonization are very infrequent for our study populations. Comparison of the approaches indicated field data were subject to imperfect detection, and falsely implied extinction-colonization cycles in several instances. For northern California populations of tidewater goby, we interpret the strong genetic differentiation between populations and high degree of within-site temporal stability as consistent with a model of drift in the absence of migration, at least over the past 20-30 years. Our findings show that tidewater goby exhibit different population structures across their geographic range (extinction-colonization dynamics in the south vs. drift in isolation in the north). For northern populations, natural dispersal is too infrequent to be considered a viable approach for recolonizing extirpated populations, suggesting that species recovery will likely depend on artificial translocation in this region. More broadly, this work illustrates that temporal genetic analysis can be used in combination with field data to strengthen inference of extinction-colonization dynamics or as a stand-alone tool when field data are lacking. © 2015 John Wiley & Sons Ltd.
Longden, Kit D.; Krapp, Holger G.
2010-01-01
Flying generates predictably different patterns of optic flow compared with other locomotor states. A sensorimotor system tuned to rapid responses and a high bandwidth of optic flow would help the animal to avoid wasting energy through imprecise motor action. However, neural processing that covers a higher input bandwidth itself comes at higher energetic costs which would be a poor investment when the animal was not flying. How does the blowfly adjust the dynamic range of its optic flow-processing neurons to the locomotor state? Octopamine (OA) is a biogenic amine central to the initiation and maintenance of flight in insects. We used an OA agonist chlordimeform (CDM) to simulate the widespread OA release during flight and recorded the effects on the temporal frequency coding of the H2 cell. This cell is a visual interneuron known to be involved in flight stabilization reflexes. The application of CDM resulted in (i) an increase in the cell's spontaneous activity, expanding the inhibitory signaling range (ii) an initial response gain to moving gratings (20–60 ms post-stimulus) that depended on the temporal frequency of the grating and (iii) a reduction in the rate and magnitude of motion adaptation that was also temporal frequency-dependent. To our knowledge, this is the first demonstration that the application of a neuromodulator can induce velocity-dependent alterations in the gain of a wide-field optic flow-processing neuron. The observed changes in the cell's response properties resulted in a 33% increase of the cell's information rate when encoding random changes in temporal frequency of the stimulus. The increased signaling range and more rapid, longer lasting responses employed more spikes to encode each bit, and so consumed a greater amount of energy. It appears that for the fly investing more energy in sensory processing during flight is more efficient than wasting energy on under-performing motor control. PMID:21152339
Link, Heike; Piepenburg, Dieter; Archambault, Philippe
2013-01-01
The diversity-ecosystem function relationship is an important topic in ecology but has not received much attention in Arctic environments, and has rarely been tested for its stability in time. We studied the temporal variability of benthic ecosystem functioning at hotspots (sites with high benthic boundary fluxes) and coldspots (sites with lower fluxes) across two years in the Canadian Arctic. Benthic remineralisation function was measured as fluxes of oxygen, silicic acid, phosphate, nitrate and nitrite at the sediment-water interface. In addition we determined sediment pigment concentration and taxonomic and functional macrobenthic diversity. To separate temporal from spatial variability, we sampled the same nine sites from the Mackenzie Shelf to Baffin Bay during the same season (summer or fall) in 2008 and 2009. We observed that temporal variability of benthic remineralisation function at hotspots is higher than at coldspots and that taxonomic and functional macrobenthic diversity did not change significantly between years. Temporal variability of food availability (i.e., sediment surface pigment concentration) seemed higher at coldspot than at hotspot areas. Sediment chlorophyll a (Chl a) concentration, taxonomic richness, total abundance, water depth and abundance of the largest gallery-burrowing polychaete Lumbrineristetraura together explained 42% of the total variation in fluxes. Food supply proxies (i.e., sediment Chl a and depth) split hot- from coldspot stations and explained variation on the axis of temporal variability, and macrofaunal community parameters explained variation mostly along the axis separating eastern from western sites with hot- or coldspot regimes. We conclude that variability in benthic remineralisation function, food supply and diversity will react to climate change on different time scales, and that their interactive effects may hide the detection of progressive change, particularly at hotspots. Time-series of benthic functions and its related parameters should be conducted at both hot- and coldspots to produce reliable predictive models.
Inverse source problems in elastodynamics
NASA Astrophysics Data System (ADS)
Bao, Gang; Hu, Guanghui; Kian, Yavar; Yin, Tao
2018-04-01
We are concerned with time-dependent inverse source problems in elastodynamics. The source term is supposed to be the product of a spatial function and a temporal function with compact support. We present frequency-domain and time-domain approaches to show uniqueness in determining the spatial function from wave fields on a large sphere over a finite time interval. The stability estimate of the temporal function from the data of one receiver and the uniqueness result using partial boundary data are proved. Our arguments rely heavily on the use of the Fourier transform, which motivates inversion schemes that can be easily implemented. A Landweber iterative algorithm for recovering the spatial function and a non-iterative inversion scheme based on the uniqueness proof for recovering the temporal function are proposed. Numerical examples are demonstrated in both two and three dimensions.
What is the effect of local controls on the temporal stability of soil water contents?
NASA Astrophysics Data System (ADS)
Martinez, G.; Pachepsky, Y. A.; Vereecken, H.; Vanderlinden, K.; Hardelauf, H.; Herbst, M.
2012-04-01
Temporal stability of soil water content (TS SWC) reflects the spatio-temporal organization of SWC. Factors and their interactions that control this organization, are not completely understood and have not been quantified yet. It is understood that these factors should be classified into groups of local and non-local controls. This work is a first attempt to evaluate the effects of soil properties at a certain location as local controls Time series of SWC were generated by running water flow simulations with the HYDRUS6 code. Bare and grassed sandy loam, loam and clay soils were represented by sets of 100 independent soil columns. Within each set, values of saturated hydraulic conductivity (Ks) were generated randomly assuming for the standard deviation of the scaling factor of ln Ks a value ranging from 0.1 to 1.0. Weather conditions were the same for all of the soil columns. SWC at depths of 0.05 and 0.60 m, and the average water content of the top 1 m were analyzed. The temporal stability was characterized by calculating the mean relative differences (MRD) of soil water content. MRD distributions from simulations, developed from the log-normal distribution of Ks, agreed well with the experimental studies found in the literature. Generally, Ks was the leading variable to define the MRD rank for a specific location. Higher MRD corresponded to the lowest values of Ks when a single textural class was considered. Higher MRD were found in the finer texture when mixtures of textural classes were considered and similar values of Ks were compared. The relationships between the spread of the MRD distributions and the scaling factor of ln Ks were nonlinear. Variation in MRD was higher in coarser textures than in finer ones and more variability was seen in the topsoil than in the subsoil. Established vegetation decreased variability of MRD in the root zone and increased variability below. The dependence of MRD on Ks opens the possibility of using SWC sensor networks to relate variations of MRD of measured SWC time series to spatial variations of Ks. TS of SWC can provide information on Ks variability at ungauged watersheds if the effect of non-local controls of SWC on TS is not significant. Using the spatiotemporal statistics to convert the information about the temporal variability of soil moisture into information about the spatial variability of soil hydraulic properties presents an interesting avenue for further exploration.
Precision Continuum Receivers for Astrophysical Applications
NASA Technical Reports Server (NTRS)
Wollack, Edward J.
2011-01-01
Cryogenically cooled HEMT (High Electron Mobility Transistor) amplifiers find widespread use in radioastronomy receivers. In recent years, these devices have also been commonly employed in broadband receivers for precision measurements of the Cosmic Microwave Background (CMB) radiation. In this setting, the combination of ultra-low-noise and low-spectral-resolution observations reinforce the importance achieving suitable control over the device environment to achieve fundamentally limited receiver performance. The influence of the intrinsic amplifier stability at low frequencies on data quality (e.g., achievable noise and residual temporal correlations), observational and calibration strategies, as well as architectural mitigation approaches in this setting will be discussed. The implications of device level 1/f fluctuations reported in the literature on system performance will be reviewed.
Full-Spectrum-Analysis Isotope ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G.
2017-06-28
FSAIsotopeID analyzes gamma ray spectra to identify radioactive isotopes (radionuclides). The algorithm fits the entire spectrum with combinations of pre-computed templates for a comprehensive set of radionuclides with varying thicknesses and compositions of shielding materials. The isotope identification algorithm is suitable for the analysis of spectra collected by gamma-ray sensors ranging from medium-resolution detectors, such a NaI, to high-resolution detectors, such as HPGe. In addition to analyzing static measurements, the isotope identification algorithm is applied for the radiation search applications. The search subroutine maintains a running background spectrum that is passed to the isotope identification algorithm, and it also selectsmore » temporal integration periods that optimize the responsiveness and sensitivity. Gain stabilization is supported for both types of applications.« less
Urban aerosols harbor diverse and dynamic bacterial populations
Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.
2007-01-01
Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744
Equation-based model for the stock market
NASA Astrophysics Data System (ADS)
Xavier, Paloma O. C.; Atman, A. P. F.; de Magalhães, A. R. Bosco
2017-09-01
We propose a stock market model which is investigated in the forms of difference and differential equations whose variables correspond to the demand or supply of each agent and to the price. In the model, agents are driven by the behavior of their trust contact network as well by fundamental analysis. By means of the deterministic version of the model, the connection between such drive mechanisms and the price is analyzed: imitation behavior promotes market instability, finitude of resources is associated to stock index stability, and high sensitivity to the fair price provokes price oscillations. Long-range correlations in the price temporal series and heavy-tailed distribution of returns are observed for the version of the model which considers different proposals for stochasticity of microeconomic and macroeconomic origins.
NASA Astrophysics Data System (ADS)
Huang, Su
Organic electro-optic (E-O) materials have attracted considerable research attention in the past 20 years due to their rising potentials in a lot of novel photonic applications, such as high-speed telecommunication, terahertz generation and ultra-fast optical interconnections. Chapter 2 of this dissertation focuses on a barrier layer approach to improve the poling efficiency of electro-optic polymers. First of all, high conduction current from excessive charge injection is identified as a fundamental challenge of effective poling. After analyzing the conduction mechanism, we introduce a sol-gel derived thin titanium dioxide (TiO2) layer that can significantly block excessive charge injection and reduce the leakage current during high field poling. Ultralarge E-O coefficients, up to 160-350 pm/V at 1310 nm have been achieved by poling with such a barrier, which are 26%-40% higher than the results poled without such a TiO2 layer. This enhancement is explained by the suppressed charge injection and space charge accumulation by the insertion of the high injection barrier from the TiO2 barrier layer. In Chapter 3, the impact of the inserted barrier layer on the temporal alignment stability of E-O polymers is discussed. Considerable stability enhancement is confirmed using both standard 500-hour temporal alignment stability test at 85 °C and thermally stimulated discharge method. We suggest that the enhancement comes from improved stability of the screening charge. During poling the additional barrier layer helps to lower the injection and thus the space charge accumulation. And this reduced space charge accumulation further helps to replace the space charge part in the total formulation of screening charge with more stable interface trapped charge. We thus expand this knowledge to a group of other materials that can also block excessive charge injection and suppressed space charge accumulation, including dielectric polymers polyvinyl alcohol (PVA), poly(4-vinylphenol) (PVP) and TOPAS as well as ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE), 65/35 copolymer), which differ largely from the others in dielectric constant, conductivity and surface properties. The only common feature of them is that they all lowered the charge injection and leakage current for 1-2 orders during poling. On every buffer layer we tried, similar trend of stability enhancement is found. These results suggest that the observed temporal stability enhancement is indeed an effect from the abovementioned mechanism. Chapter 4 focuses on the development of an innovative new poling method, which utilizes pyroelectric effect instead of external power sources to overcome the limitations of conventional contact poling and corona poling. With careful theory assisted design, we developed a reliable protocol to efficiently introduce dipole orientation in organic E-O materials by heating and cooling them with detachable pyroelectric crystals. This new method can potentially improve the process adaptability of organic E-O materials in a variety of photonic devices. Large Pockels coefficients (up to 81 pm/V at 1.3 micron) have been successfully achieved in thin films poled using this method. The effective fields in these experiments are estimated to be around 0.5 to 0.9 MV/cm, which agree well with the electrostatics analysis using an idealized model. The same method is directly applied to surface modified hybrid polymer silicon slot waveguide ring-resonator modulators devices. A 25 pm/V tunability of resonance peak wavelength shift has been realized, which was higher than any reported results in similar devices. Chapter 5 discusses about the possible application of the pyroelectric poling in a multi-stack waveguide device architecture. A long-existing challenge to pole E-O polymer based photonic devices is how to effectively drop the poling voltage to the core layer, which is usually sandwiched between two dielectric claddings. In the past, this was done by using relatively conductive claddings, which on the other hand can bring larger optical loss and dielectric loss to the waveguide. Thus careful engineering compromise must be made between better poling efficiency and lower loss. Pyroelectric poling as discussed in Chapter 4 opens up new possibilities. In this chapter, it is demonstrated that E-O polymer films can be poled even with 3 orders thicker dielectric layer in circuit using pyroelectric poling. The theoretical analysis matches well with the experimental results. (Abstract shortened by UMI.).
Neethling, Nikki E; Hoffman, Louwrens C; Britz, Trevor J; O'Neill, Bernadette
2015-06-01
The use of carbon monoxide (CO) and various packaging types has been suggested to improve/stabilise the colour and oxidative processes of red meats, thereby improving the retail value and revenue. The main aim of this study was to investigate the influence of packaging type and CO treatment on the colour and oxidative stability of tuna. The addition of CO significantly increased the redness (a(*) ) of the tuna steaks but the redness was not equally stable for all treatments. The aerobically packaged steaks showed a temporal decrease in redness while the redness of anaerobically packaged steaks remained relatively stable. The addition of CO did not significantly affect (P >0.05) the brownness (b(*) ) (with one exception) and lightness (L(*) ) of the steaks. The anaerobically packaged steaks showed a significant difference (P <0.05) in the b(*) values. No significant differences (P >0.05) in lipid or protein oxidation were observed between treatments. The aerobically packaged steaks had a significant temporal increase (P <0.05) in lipid oxidation while no such trend was apparent in the anaerobically packaged steaks. Protein oxidation remained relatively stable over time for both aerobically and anaerobically packaged steaks. Storing CO treated tuna steaks in anaerobic packaging can improve the oxidative and colour stability of tuna. Such treatment can reduce spoilage and wastage thereby potentially increasing revenue. © 2014 Society of Chemical Industry.
Real-Gas Effects on Binary Mixing Layers
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2003-01-01
This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles
Bayard, Sophie; Lebrun, Cindy; Maudarbocus, Khaalid Hassan; Schellaert, Vanessa; Joffre, Alicia; Ferrante, Esther; Le Louedec, Marie; Cournoulat, Alice; Gely-Nargeot, Marie-Christine; Luik, Annemarie I
2017-12-01
Insomnia disorder is frequent in the population, yet there is no French screening instrument available that is based on the updated DSM-5 criteria. We evaluated the validity and reliability of the French version of an insomnia screening instrument based on DSM-5 criteria, the Sleep Condition Indicator, in a population-based sample of adults. A total of 366 community-dwelling participants completed a face-to-face clinical interview to determine insomnia disorder against DSM-5 criteria and several questionnaires including the French Sleep Condition Indicator version. Three-hundred and twenty-nine participants completed the Sleep Condition Indicator again after 1 month. Statistical analyses were performed to determine the reliability, construct validity, divergent validity and temporal stability of the French translation of the Sleep Condition Indicator. In addition, an explanatory factor analysis was performed to assess the underlying structure. The internal consistency (α = 0.87) and temporal stability (r = 0.86, P < 0.001) of the French Sleep Condition Indicator were high. When using the previously defined cut-off value of ≤ 16, the area under the receiver operating characteristic curve was 0.93 with a sensitivity of 95% and a specificity of 75%. Additionally, good construct and divergent validity were demonstrated. The factor analyses showed a two-factor structure with a focus on sleep and daytime effects. The French version of the Sleep Condition Indicator demonstrates satisfactory psychometric properties while being a useful instrument in detecting cases of insomnia disorder, consistent with features of DSM-5, in the general population. © 2017 European Sleep Research Society.
Grace, Randolph C; Kivell, Bronwyn M; Laugesen, Murray
2015-11-01
Cigarette purchase tasks (CPTs) are used increasingly to measure simulated demand curves for tobacco. However, there is currently limited information about the temporal stability of demand curves obtained from these tasks. We interviewed a sample (N = 210) of smokers in New Zealand both before and after a 10% increase in the tobacco excise tax that took effect on January 1, 2013. Participants were interviewed in November-December 2012 (wave 1) and February-March 2013 (wave 2). At each interview, participants completed a high-resolution CPT with 64 prices ranging from NZ $0.00 to NZ $5.00/cigarette, and questionnaires regarding their smoking habit. Roll-your-own smokers had higher levels of nicotine dependence and tobacco demand based on CPT responses than factory-made smokers. Although demand curves for waves 1 and 2 were similar, intentions to purchase cigarettes were significantly less at wave 2 for three prices (NZ $0.85, NZ $0.90, and NZ $0.95) that were just higher than the actual price after the tax increase, for both roll-your-own and factory-made smokers. Measures of elasticity (α) derived from Hursh and Silberberg's model were significantly greater at wave 2 than wave 1, and there was a significant reduction in smoking habit as measured by cigarettes/day and the Fagerström Test for Nicotine Dependence at wave 2. Purchase tasks can discriminate between smokers based on their tobacco preference, and although results are relatively stable over time, they depend on contextual factors such as the current real price for tobacco. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Yue, H.; Liu, Y.
2018-04-01
As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.
The Iterative Reweighted Mixed-Norm Estimate for Spatio-Temporal MEG/EEG Source Reconstruction.
Strohmeier, Daniel; Bekhti, Yousra; Haueisen, Jens; Gramfort, Alexandre
2016-10-01
Source imaging based on magnetoencephalography (MEG) and electroencephalography (EEG) allows for the non-invasive analysis of brain activity with high temporal and good spatial resolution. As the bioelectromagnetic inverse problem is ill-posed, constraints are required. For the analysis of evoked brain activity, spatial sparsity of the neuronal activation is a common assumption. It is often taken into account using convex constraints based on the l 1 -norm. The resulting source estimates are however biased in amplitude and often suboptimal in terms of source selection due to high correlations in the forward model. In this work, we demonstrate that an inverse solver based on a block-separable penalty with a Frobenius norm per block and a l 0.5 -quasinorm over blocks addresses both of these issues. For solving the resulting non-convex optimization problem, we propose the iterative reweighted Mixed Norm Estimate (irMxNE), an optimization scheme based on iterative reweighted convex surrogate optimization problems, which are solved efficiently using a block coordinate descent scheme and an active set strategy. We compare the proposed sparse imaging method to the dSPM and the RAP-MUSIC approach based on two MEG data sets. We provide empirical evidence based on simulations and analysis of MEG data that the proposed method improves on the standard Mixed Norm Estimate (MxNE) in terms of amplitude bias, support recovery, and stability.
Griffiths, Andrew M; Koizumi, Itsuro; Bright, Dylan; Stevens, Jamie R
2009-01-01
Salmonid fishes exhibit high levels of population differentiation. In particular, the brown trout (Salmo trutta L.) demonstrates complex within river drainage genetic structure. Increasingly, these patterns can be related to the underlying evolutionary models, of which three scenarios (member-vagrant hypothesis, metapopulation model and panmixia) facilitate testable predictions for investigations into population structure. We analysed 1225 trout collected from the River Dart, a 75 km long river located in southwest England. Specimens were collected from 22 sample sites across three consecutive summers (2001–2003) and genetic variation was examined at nine microsatellite loci. A hierarchical analysis of molecular variance revealed that negligible genetic variation was attributed among temporal samples. The highest levels of differentiation occurred among samples isolated above barriers to fish movement, and once these samples were removed, a significant effect of isolation-by-distance was observed. These results suggest that, at least in the short-term, ecological events are more important in shaping the population structure of Dart trout than stochastic extinction events, and certainly do not contradict the expectations of a member-vagrant hypothesis. Furthermore, individual-level spatial autocorrelation analyses support previous recommendations for the preservation of a number of spawning sites spaced throughout the tributary system to conserve the high levels of genetic variation identified in salmonid species. PMID:25567897
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Temporal model of an optically pumped co-doped solid state laser
NASA Technical Reports Server (NTRS)
Wangler, T. G.; Swetits, J. J.; Buoncristiani, A. M.
1993-01-01
Currently, research is being conducted on the optical properties of materials associated with the development of solid state lasers in the two micron region. In support of this effort, a mathematical model describing the energy transfer in a holmium laser sensitized with thulium is developed. In this paper, we establish some qualitative properties of the solution of the model, such as non-negativity, boundedness, and integrability. A local stability analysis is then performed from which conditions for asymptotic stability are attained. Finally, we report on our numerical analysis of the system and how it compares with experimental results.
Garaigordobil, Maite
2015-08-19
The purpose of the study was to analyze the psychometric properties of the Cyberbullying Test. The sample included 3,026 participants from the Basque Country (northern Spain), aged 12 to 18 years. Results confirmed high internal consistency and moderate temporal stability. Exploratory factor analysis yielded three moderately correlated factors (cyberobserver, cyberaggressor, and cybervictim). Confirmatory factor analysis ratified adequate model fit of the three factors. Convergent and discriminant validity were confirmed: (a) cybervictims use a variety of conflict resolution strategies, scoring high in neuroticism, openness, antisocial behavior, emotional attention, school-academic problems, shyness-withdrawal, psychopathological disorders, anxiety, and psychosomatic complaints, and low in agreeableness, responsibility, self-esteem, and social adjustment and (b) cyberaggressors use many aggressive conflict resolution strategies, scoring high in neuroticism, antisocial behavior, school-academic problems, psychopathological and psychosomatic disorders, and low in empathy, agreeableness, responsibility, emotion regulation, and social adjustment. The study confirms the test's reliability and validity. © The Author(s) 2015.
A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.
1989-01-01
A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.
High-speed single-photon signaling for daytime QKD
NASA Astrophysics Data System (ADS)
Bienfang, Joshua; Restelli, Alessandro; Clark, Charles
2011-03-01
The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).
Characteristics of a dynamic holographic sensor for shape control of a large reflector
NASA Technical Reports Server (NTRS)
Welch, Sharon S.; Cox, David E.
1991-01-01
Design of a distributed holographic interferometric sensor for measuring the surface displacement of a large segmented reflector is proposed. The reflector's surface is illuminated by laser light of two wavelengths and volume holographic gratings are formed in photorefractive crystals of the wavefront returned from the surface. The sensor is based on holographic contouring with a multiple frequency source. It is shown that the most stringent requirement of temporal stability affects both the temporal resolution and the dynamic range. Principal factor which limit the sensor performance include the response time of photorefractive crystal, laser power required to write a hologram, and the size of photorefractive crystal.