High Throughput Experimental Materials Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakutayev, Andriy; Perkins, John; Schwarting, Marcus
The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).
Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment
Yan, Qimin; Yu, Jie; Suram, Santosh K.; ...
2017-03-06
The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Here, using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2-2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO 4 structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishesmore » ternary metal vanadates as a prolific class of photoanodematerials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory-experiment pipeline as a prolific approach to materials discovery.« less
Solar fuels photoanode materials discovery by integrating high-throughput theory and experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Qimin; Yu, Jie; Suram, Santosh K.
The limited number of known low-band-gap photoelectrocatalytic materials poses a significant challenge for the generation of chemical fuels from sunlight. Here, using high-throughput ab initio theory with experiments in an integrated workflow, we find eight ternary vanadate oxide photoanodes in the target band-gap range (1.2-2.8 eV). Detailed analysis of these vanadate compounds reveals the key role of VO 4 structural motifs and electronic band-edge character in efficient photoanodes, initiating a genome for such materials and paving the way for a broadly applicable high-throughput-discovery and materials-by-design feedback loop. Considerably expanding the number of known photoelectrocatalysts for water oxidation, our study establishesmore » ternary metal vanadates as a prolific class of photoanodematerials for generation of chemical fuels from sunlight and demonstrates our high-throughput theory-experiment pipeline as a prolific approach to materials discovery.« less
A quantitative literature-curated gold standard for kinase-substrate pairs
2011-01-01
We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future. PMID:21492431
Lessons from high-throughput protein crystallization screening: 10 years of practical experience
JR, Luft; EH, Snell; GT, DeTitta
2011-01-01
Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073
Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo
2013-01-01
The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737
MIPHENO: Data normalization for high throughput metabolic analysis.
High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...
Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won
2015-08-21
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid
2016-01-01
With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments. PMID:27529152
Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid
2016-08-16
With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments.
NASA Astrophysics Data System (ADS)
Lagus, Todd P.; Edd, Jon F.
2013-03-01
Most cell biology experiments are performed in bulk cell suspensions where cell secretions become diluted and mixed in a contiguous sample. Confinement of single cells to small, picoliter-sized droplets within a continuous phase of oil provides chemical isolation of each cell, creating individual microreactors where rare cell qualities are highlighted and otherwise undetectable signals can be concentrated to measurable levels. Recent work in microfluidics has yielded methods for the encapsulation of cells in aqueous droplets and hydrogels at kilohertz rates, creating the potential for millions of parallel single-cell experiments. However, commercial applications of high-throughput microdroplet generation and downstream sensing and actuation methods are still emerging for cells. Using fluorescence-activated cell sorting (FACS) as a benchmark for commercially available high-throughput screening, this focused review discusses the fluid physics of droplet formation, methods for cell encapsulation in liquids and hydrogels, sensors and actuators and notable biological applications of high-throughput single-cell droplet microfluidics.
NCBI GEO: archive for high-throughput functional genomic data.
Barrett, Tanya; Troup, Dennis B; Wilhite, Stephen E; Ledoux, Pierre; Rudnev, Dmitry; Evangelista, Carlos; Kim, Irene F; Soboleva, Alexandra; Tomashevsky, Maxim; Marshall, Kimberly A; Phillippy, Katherine H; Sherman, Patti M; Muertter, Rolf N; Edgar, Ron
2009-01-01
The Gene Expression Omnibus (GEO) at the National Center for Biotechnology Information (NCBI) is the largest public repository for high-throughput gene expression data. Additionally, GEO hosts other categories of high-throughput functional genomic data, including those that examine genome copy number variations, chromatin structure, methylation status and transcription factor binding. These data are generated by the research community using high-throughput technologies like microarrays and, more recently, next-generation sequencing. The database has a flexible infrastructure that can capture fully annotated raw and processed data, enabling compliance with major community-derived scientific reporting standards such as 'Minimum Information About a Microarray Experiment' (MIAME). In addition to serving as a centralized data storage hub, GEO offers many tools and features that allow users to effectively explore, analyze and download expression data from both gene-centric and experiment-centric perspectives. This article summarizes the GEO repository structure, content and operating procedures, as well as recently introduced data mining features. GEO is freely accessible at http://www.ncbi.nlm.nih.gov/geo/.
High-throughput syntheses of iron phosphite open frameworks in ionic liquids
NASA Astrophysics Data System (ADS)
Wang, Zhixiu; Mu, Ying; Wang, Yilin; Bing, Qiming; Su, Tan; Liu, Jingyao
2017-02-01
Three open-framework iron phosphites: Feп5(NH4)2(HPO3)6 (1), Feп2Fe♯(NH4)(HPO3)4 (2) and Fe♯2(HPO3)3 (3) have been synthesized under ionothermal conditions. How the different synthesis parameters, such as the gel concentrations, synthetic times, reaction temperatures and solvents affect the products have been monitored by using high-throughput approaches. Within each type of experiment, relevant products have been investigated. The optimal reaction conditions are obtained from a series of experiments by high-throughput approaches. All the structures are determined by single-crystal X-ray diffraction analysis and further characterized by PXRD, TGA and FTIR analyses. Magnetic study reveals that those three compounds show interesting magnetic behavior at low temperature.
Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C
2016-01-01
Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.
Ozer, Abdullah; Tome, Jacob M.; Friedman, Robin C.; Gheba, Dan; Schroth, Gary P.; Lis, John T.
2016-01-01
Because RNA-protein interactions play a central role in a wide-array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the High Throughput Sequencing-RNA Affinity Profiling (HiTS-RAP) assay, which couples sequencing on an Illumina GAIIx with the quantitative assessment of one or several proteins’ interactions with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of EGFP and NELF-E proteins with their corresponding canonical and mutant RNA aptamers. Here, we provide a detailed protocol for HiTS-RAP, which can be completed in about a month (8 days hands-on time) including the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, high-throughput sequencing and protein binding with GAIIx, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, RNA-MaP and RBNS. A successful HiTS-RAP experiment provides the sequence and binding curves for approximately 200 million RNAs in a single experiment. PMID:26182240
Devailly, Guillaume; Mantsoki, Anna; Joshi, Anagha
2016-11-01
Better protocols and decreasing costs have made high-throughput sequencing experiments now accessible even to small experimental laboratories. However, comparing one or few experiments generated by an individual lab to the vast amount of relevant data freely available in the public domain might be limited due to lack of bioinformatics expertise. Though several tools, including genome browsers, allow such comparison at a single gene level, they do not provide a genome-wide view. We developed Heat*seq, a web-tool that allows genome scale comparison of high throughput experiments chromatin immuno-precipitation followed by sequencing, RNA-sequencing and Cap Analysis of Gene Expression) provided by a user, to the data in the public domain. Heat*seq currently contains over 12 000 experiments across diverse tissues and cell types in human, mouse and drosophila. Heat*seq displays interactive correlation heatmaps, with an ability to dynamically subset datasets to contextualize user experiments. High quality figures and tables are produced and can be downloaded in multiple formats. Web application: http://www.heatstarseq.roslin.ed.ac.uk/ Source code: https://github.com/gdevailly CONTACT: Guillaume.Devailly@roslin.ed.ac.uk or Anagha.Joshi@roslin.ed.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
Multiplexed single-molecule force spectroscopy using a centrifuge.
Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P
2016-03-17
We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise.
Multiplexed single-molecule force spectroscopy using a centrifuge
Yang, Darren; Ward, Andrew; Halvorsen, Ken; Wong, Wesley P.
2016-01-01
We present a miniature centrifuge force microscope (CFM) that repurposes a benchtop centrifuge for high-throughput single-molecule experiments with high-resolution particle tracking, a large force range, temperature control and simple push-button operation. Incorporating DNA nanoswitches to enable repeated interrogation by force of single molecular pairs, we demonstrate increased throughput, reliability and the ability to characterize population heterogeneity. We perform spatiotemporally multiplexed experiments to collect 1,863 bond rupture statistics from 538 traceable molecular pairs in a single experiment, and show that 2 populations of DNA zippers can be distinguished using per-molecule statistics to reduce noise. PMID:26984516
High throughput system for magnetic manipulation of cells, polymers, and biomaterials
Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.
2008-01-01
In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357
High-throughput screening based on label-free detection of small molecule microarrays
NASA Astrophysics Data System (ADS)
Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong
2017-02-01
Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.
Annotare--a tool for annotating high-throughput biomedical investigations and resulting data.
Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J; Ball, Catherine A
2010-10-01
Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows.
Traceless Immobilization of Analytes for High-Throughput Experiments with SAMDI Mass Spectrometry.
Helal, Kazi Y; Alamgir, Azmain; Berns, Eric J; Mrksich, Milan
2018-06-21
Label-free assays, and particularly those based on the combination of mass spectroscopy with surface chemistries, enable high-throughput experiments of a broad range of reactions. However, these methods can still require the incorporation of functional groups that allow immobilization of reactants and products to surfaces prior to analysis. In this paper, we report a traceless method for attaching molecules to a self-assembled monolayer for matrix-assisted laser desorption and ionization (SAMDI) mass spectrometry. This method uses monolayers that are functionalized with a 3-trifluoromethyl-3-phenyl-diazirine group that liberates nitrogen when irradiated and gives a carbene that inserts into a wide range of bonds to covalently immobilize molecules. Analysis of the monolayer with SAMDI then reveals peaks for each of the adducts formed from molecules in the sample. This method is applied to characterize a P450 drug metabolizing enzyme and to monitor a Suzuki-Miyaura coupling chemical reaction and is important because modification of the substrates with a functional group would alter their activities. This method will be important for high-throughput experiments in many areas, including reaction discovery and optimization.
Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy
NASA Astrophysics Data System (ADS)
Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl
We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.
Annotare—a tool for annotating high-throughput biomedical investigations and resulting data
Shankar, Ravi; Parkinson, Helen; Burdett, Tony; Hastings, Emma; Liu, Junmin; Miller, Michael; Srinivasa, Rashmi; White, Joseph; Brazma, Alvis; Sherlock, Gavin; Stoeckert, Christian J.; Ball, Catherine A.
2010-01-01
Summary: Computational methods in molecular biology will increasingly depend on standards-based annotations that describe biological experiments in an unambiguous manner. Annotare is a software tool that enables biologists to easily annotate their high-throughput experiments, biomaterials and data in a standards-compliant way that facilitates meaningful search and analysis. Availability and Implementation: Annotare is available from http://code.google.com/p/annotare/ under the terms of the open-source MIT License (http://www.opensource.org/licenses/mit-license.php). It has been tested on both Mac and Windows. Contact: rshankar@stanford.edu PMID:20733062
Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad
2016-05-26
With their ability to rapidly elucidate composition-structure-property relationships, high-throughput experimental studies have revolutionized how materials are discovered, optimized, and commercialized. It is now possible to synthesize and characterize high-throughput libraries that systematically address thousands of individual cuts of fabrication parameter space. An unresolved issue remains transforming structural characterization data into phase mappings. This difficulty is related to the complex information present in diffraction and spectroscopic data and its variation with composition and processing. Here, we review the field of automated phase diagram attribution and discuss the impact that emerging computational approaches will have in the generation of phase diagrams andmore » beyond.« less
Optimizing multi-dimensional high throughput screening using zebrafish
Truong, Lisa; Bugel, Sean M.; Chlebowski, Anna; Usenko, Crystal Y.; Simonich, Michael T.; Massey Simonich, Staci L.; Tanguay, Robert L.
2016-01-01
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. PMID:27453428
Combinatorial and high-throughput approaches in polymer science
NASA Astrophysics Data System (ADS)
Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.
2005-01-01
Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.
Pipeline for illumination correction of images for high-throughput microscopy.
Singh, S; Bray, M-A; Jones, T R; Carpenter, A E
2014-12-01
The presence of systematic noise in images in high-throughput microscopy experiments can significantly impact the accuracy of downstream results. Among the most common sources of systematic noise is non-homogeneous illumination across the image field. This often adds an unacceptable level of noise, obscures true quantitative differences and precludes biological experiments that rely on accurate fluorescence intensity measurements. In this paper, we seek to quantify the improvement in the quality of high-content screen readouts due to software-based illumination correction. We present a straightforward illumination correction pipeline that has been used by our group across many experiments. We test the pipeline on real-world high-throughput image sets and evaluate the performance of the pipeline at two levels: (a) Z'-factor to evaluate the effect of the image correction on a univariate readout, representative of a typical high-content screen, and (b) classification accuracy on phenotypic signatures derived from the images, representative of an experiment involving more complex data mining. We find that applying the proposed post-hoc correction method improves performance in both experiments, even when illumination correction has already been applied using software associated with the instrument. To facilitate the ready application and future development of illumination correction methods, we have made our complete test data sets as well as open-source image analysis pipelines publicly available. This software-based solution has the potential to improve outcomes for a wide-variety of image-based HTS experiments. © 2014 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society.
Automated crystallographic system for high-throughput protein structure determination.
Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F
2003-07-01
High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.
Experimental Design for Combinatorial and High Throughput Materials Development
NASA Astrophysics Data System (ADS)
Cawse, James N.
2002-12-01
In the past decade, combinatorial and high throughput experimental methods have revolutionized the pharmaceutical industry, allowing researchers to conduct more experiments in a week than was previously possible in a year. Now high throughput experimentation is rapidly spreading from its origins in the pharmaceutical world to larger industrial research establishments such as GE and DuPont, and even to smaller companies and universities. Consequently, researchers need to know the kinds of problems, desired outcomes, and appropriate patterns for these new strategies. Editor James Cawse's far-reaching study identifies and applies, with specific examples, these important new principles and techniques. Experimental Design for Combinatorial and High Throughput Materials Development progresses from methods that are now standard, such as gradient arrays, to mathematical developments that are breaking new ground. The former will be particularly useful to researchers entering the field, while the latter should inspire and challenge advanced practitioners. The book's contents are contributed by leading researchers in their respective fields. Chapters include: -High Throughput Synthetic Approaches for the Investigation of Inorganic Phase Space -Combinatorial Mapping of Polymer Blends Phase Behavior -Split-Plot Designs -Artificial Neural Networks in Catalyst Development -The Monte Carlo Approach to Library Design and Redesign This book also contains over 200 useful charts and drawings. Industrial chemists, chemical engineers, materials scientists, and physicists working in combinatorial and high throughput chemistry will find James Cawse's study to be an invaluable resource.
A gas trapping method for high-throughput metabolic experiments.
Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E
2018-01-01
Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.
High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu
A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less
High-Throughput Cloning and Expression Library Creation for Functional Proteomics
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-01-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047
Khan, Arifa S; Vacante, Dominick A; Cassart, Jean-Pol; Ng, Siemon H S; Lambert, Christophe; Charlebois, Robert L; King, Kathryn E
Several nucleic-acid based technologies have recently emerged with capabilities for broad virus detection. One of these, high throughput sequencing, has the potential for novel virus detection because this method does not depend upon prior viral sequence knowledge. However, the use of high throughput sequencing for testing biologicals poses greater challenges as compared to other newly introduced tests due to its technical complexities and big data bioinformatics. Thus, the Advanced Virus Detection Technologies Users Group was formed as a joint effort by regulatory and industry scientists to facilitate discussions and provide a forum for sharing data and experiences using advanced new virus detection technologies, with a focus on high throughput sequencing technologies. The group was initiated as a task force that was coordinated by the Parenteral Drug Association and subsequently became the Advanced Virus Detection Technologies Interest Group to continue efforts for using new technologies for detection of adventitious viruses with broader participation, including international government agencies, academia, and technology service providers. © PDA, Inc. 2016.
High-throughput cloning and expression library creation for functional proteomics.
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-05-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klijn, Marieke E; Hubbuch, Jürgen
2018-04-27
Protein phase diagrams are a tool to investigate cause and consequence of solution conditions on protein phase behavior. The effects are scored according to aggregation morphologies such as crystals or amorphous precipitates. Solution conditions affect morphological features, such as crystal size, as well as kinetic features, such as crystal growth time. Common used data visualization techniques include individual line graphs or symbols-based phase diagrams. These techniques have limitations in terms of handling large datasets, comprehensiveness or completeness. To eliminate these limitations, morphological and kinetic features obtained from crystallization images generated with high throughput microbatch experiments have been visualized with radar charts in combination with the empirical phase diagram (EPD) method. Morphological features (crystal size, shape, and number, as well as precipitate size) and kinetic features (crystal and precipitate onset and growth time) are extracted for 768 solutions with varying chicken egg white lysozyme concentration, salt type, ionic strength and pH. Image-based aggregation morphology and kinetic features were compiled into a single and easily interpretable figure, thereby showing that the EPD method can support high throughput crystallization experiments in its data amount as well as its data complexity. Copyright © 2018. Published by Elsevier Inc.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).
Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.
Optimizing multi-dimensional high throughput screening using zebrafish.
Truong, Lisa; Bugel, Sean M; Chlebowski, Anna; Usenko, Crystal Y; Simonich, Michael T; Simonich, Staci L Massey; Tanguay, Robert L
2016-10-01
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories. Copyright © 2016 Elsevier Inc. All rights reserved.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio)
Usui, Takuji; Noble, Daniel W.A.; O’Dea, Rose E.; Fangmeier, Melissa L.; Lagisz, Malgorzata; Hesselson, Daniel
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34–0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes. PMID:29372124
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Boozer, Christina; Kim, Gibum; Cong, Shuxin; Guan, Hannwen; Londergan, Timothy
2006-08-01
Surface plasmon resonance (SPR) biosensors have enabled a wide range of applications in which researchers can monitor biomolecular interactions in real time. Owing to the fact that SPR can provide affinity and kinetic data, unique features in applications ranging from protein-peptide interaction analysis to cellular ligation experiments have been demonstrated. Although SPR has historically been limited by its throughput, new methods are emerging that allow for the simultaneous analysis of many thousands of interactions. When coupled with new protein array technologies, high-throughput SPR methods give users new and improved methods to analyze pathways, screen drug candidates and monitor protein-protein interactions.
Schieferstein, Jeremy M.; Pawate, Ashtamurthy S.; Wan, Frank; Sheraden, Paige N.; Broecker, Jana; Ernst, Oliver P.; Gennis, Robert B.
2017-01-01
Elucidating and clarifying the function of membrane proteins ultimately requires atomic resolution structures as determined most commonly by X-ray crystallography. Many high impact membrane protein structures have resulted from advanced techniques such as in meso crystallization that present technical difficulties for the set-up and scale-out of high-throughput crystallization experiments. In prior work, we designed a novel, low-throughput X-ray transparent microfluidic device that automated the mixing of protein and lipid by diffusion for in meso crystallization trials. Here, we report X-ray transparent microfluidic devices for high-throughput crystallization screening and optimization that overcome the limitations of scale and demonstrate their application to the crystallization of several membrane proteins. Two complementary chips are presented: (1) a high-throughput screening chip to test 192 crystallization conditions in parallel using as little as 8 nl of membrane protein per well and (2) a crystallization optimization chip to rapidly optimize preliminary crystallization hits through fine-gradient re-screening. We screened three membrane proteins for new in meso crystallization conditions, identifying several preliminary hits that we tested for X-ray diffraction quality. Further, we identified and optimized the crystallization condition for a photosynthetic reaction center mutant and solved its structure to a resolution of 3.5 Å. PMID:28469762
Carvalho, Rimenys J; Cruz, Thayana A
2018-01-01
High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.
Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V
2015-02-01
Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. Copyright © 2014 John Wiley & Sons, Ltd.
Shahini, Mehdi; Yeow, John T W
2011-08-12
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
Study of high resolution x-ray spectrometer concepts for NIF experiments
NASA Astrophysics Data System (ADS)
Hill, K. W.; Bitter, M.; Delgado-Aparicio, L.; Efthimion, P.; Gao, L.; Maddox, J.; Pablant, N. A.; Beiersdorfer, P.; Chen, H.; Coppari, F.; Ma, T.; Nora, R.; Scott, H.; Schneider, M.; Mancini, R.
2015-11-01
Options have been investigated for DIM-insertable (Diagnostic Instrument Manipulator) high resolution (E/ ΔE ~ 3000 - 5000) Bragg crystal x-ray spectrometers for experiments on the NIF. Of interest are time integrated Cu K- and Ta L-edge absorption spectra and time resolved Kr He- β emission from compressed symcaps for inference of electron temperature from dielectronic satellites and electron density from Stark broadening. Cylindrical and conical von Hamos, Johann, and advanced high throughput designs have been studied. Predicted x-ray intensities, spectrometer throughputs, spectral resolution, and spatial focusing properties, as well as lab evaluations of some spectrometer candidates will be presented. Performed under the auspices of the US DOE by PPPL under contract DE-AC02-09CH11466 and by LLNL under contract DE-AC52-07NA27344.
A high-throughput media design approach for high performance mammalian fed-batch cultures
Rouiller, Yolande; Périlleux, Arnaud; Collet, Natacha; Jordan, Martin; Stettler, Matthieu; Broly, Hervé
2013-01-01
An innovative high-throughput medium development method based on media blending was successfully used to improve the performance of a Chinese hamster ovary fed-batch medium in shaking 96-deepwell plates. Starting from a proprietary chemically-defined medium, 16 formulations testing 43 of 47 components at 3 different levels were designed. Media blending was performed following a custom-made mixture design of experiments considering binary blends, resulting in 376 different blends that were tested during both cell expansion and fed-batch production phases in one single experiment. Three approaches were chosen to provide the best output of the large amount of data obtained. A simple ranking of conditions was first used as a quick approach to select new formulations with promising features. Then, prediction of the best mixes was done to maximize both growth and titer using the Design Expert software. Finally, a multivariate analysis enabled identification of individual potential critical components for further optimization. Applying this high-throughput method on a fed-batch, rather than on a simple batch, process opens new perspectives for medium and feed development that enables identification of an optimized process in a short time frame. PMID:23563583
The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.A.; Cohen, A.E.
2009-05-26
The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less
High throughput integrated thermal characterization with non-contact optical calorimetry
NASA Astrophysics Data System (ADS)
Hou, Sichao; Huo, Ruiqing; Su, Ming
2017-10-01
Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.
Pre-amplification in the context of high-throughput qPCR gene expression experiment.
Korenková, Vlasta; Scott, Justin; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjöback, Robert
2015-03-11
With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-amplification reaction and propose the optimal, general setup for gene expression experiment using BioMark instrument (Fluidigm). For evaluating different pre-amplification factors following conditions were combined: four human blood samples from healthy donors and five transcripts having high to low expression levels; each cDNA sample was pre-amplified at four cycles (15, 18, 21, and 24) and five concentrations (equivalent to 0.078 ng, 0.32 ng, 1.25 ng, 5 ng, and 20 ng of total RNA). Factors identified as critical for a success of cDNA pre-amplification were cycle of pre-amplification, total RNA concentration, and type of gene. The selected pre-amplification reactions were further tested for optimal Cq distribution in a BioMark Array. The following concentrations combined with pre-amplification cycles were optimal for good quality samples: 20 ng of total RNA with 15 cycles of pre-amplification, 20x and 40x diluted; and 5 ng and 20 ng of total RNA with 18 cycles of pre-amplification, both 20x and 40x diluted. We set up upper limits for the bulk gene expression experiment using gene expression Dynamic Array and provided an easy-to-obtain tool for measuring of pre-amplification success. We also showed that variability of the pre-amplification, introduced into the experimental workflow of reverse transcription-qPCR, is lower than variability caused by the reverse transcription step.
Zhou, Bailing; Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu; Yang, Yuedong; Zhou, Yaoqi; Wang, Jihua
2018-01-04
Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Zhao, Huiying; Yu, Jiafeng; Guo, Chengang; Dou, Xianghua; Song, Feng; Hu, Guodong; Cao, Zanxia; Qu, Yuanxu
2018-01-01
Abstract Long non-coding RNAs (lncRNAs) play important functional roles in various biological processes. Early databases were utilized to deposit all lncRNA candidates produced by high-throughput experimental and/or computational techniques to facilitate classification, assessment and validation. As more lncRNAs are validated by low-throughput experiments, several databases were established for experimentally validated lncRNAs. However, these databases are small in scale (with a few hundreds of lncRNAs only) and specific in their focuses (plants, diseases or interactions). Thus, it is highly desirable to have a comprehensive dataset for experimentally validated lncRNAs as a central repository for all of their structures, functions and phenotypes. Here, we established EVLncRNAs by curating lncRNAs validated by low-throughput experiments (up to 1 May 2016) and integrating specific databases (lncRNAdb, LncRANDisease, Lnc2Cancer and PLNIncRBase) with additional functional and disease-specific information not covered previously. The current version of EVLncRNAs contains 1543 lncRNAs from 77 species that is 2.9 times larger than the current largest database for experimentally validated lncRNAs. Seventy-four percent lncRNA entries are partially or completely new, comparing to all existing experimentally validated databases. The established database allows users to browse, search and download as well as to submit experimentally validated lncRNAs. The database is available at http://biophy.dzu.edu.cn/EVLncRNAs. PMID:28985416
Integrative Systems Biology for Data Driven Knowledge Discovery
Greene, Casey S.; Troyanskaya, Olga G.
2015-01-01
Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756
web cellHTS2: a web-application for the analysis of high-throughput screening data.
Pelz, Oliver; Gilsdorf, Moritz; Boutros, Michael
2010-04-12
The analysis of high-throughput screening data sets is an expanding field in bioinformatics. High-throughput screens by RNAi generate large primary data sets which need to be analyzed and annotated to identify relevant phenotypic hits. Large-scale RNAi screens are frequently used to identify novel factors that influence a broad range of cellular processes, including signaling pathway activity, cell proliferation, and host cell infection. Here, we present a web-based application utility for the end-to-end analysis of large cell-based screening experiments by cellHTS2. The software guides the user through the configuration steps that are required for the analysis of single or multi-channel experiments. The web-application provides options for various standardization and normalization methods, annotation of data sets and a comprehensive HTML report of the screening data analysis, including a ranked hit list. Sessions can be saved and restored for later re-analysis. The web frontend for the cellHTS2 R/Bioconductor package interacts with it through an R-server implementation that enables highly parallel analysis of screening data sets. web cellHTS2 further provides a file import and configuration module for common file formats. The implemented web-application facilitates the analysis of high-throughput data sets and provides a user-friendly interface. web cellHTS2 is accessible online at http://web-cellHTS2.dkfz.de. A standalone version as a virtual appliance and source code for platforms supporting Java 1.5.0 can be downloaded from the web cellHTS2 page. web cellHTS2 is freely distributed under GPL.
Improving bed turnover time with a bed management system.
Tortorella, Frank; Ukanowicz, Donna; Douglas-Ntagha, Pamela; Ray, Robert; Triller, Maureen
2013-01-01
Efficient patient throughput requires a high degree of coordination and communication. Opportunities abound to improve the patient experience by eliminating waste from the process and improving communication among the multiple disciplines involved in facilitating patient flow. In this article, we demonstrate how an interdisciplinary team at a large tertiary cancer center implemented an electronic bed management system to improve the bed turnover component of the patient throughput process.
SMARTIV: combined sequence and structure de-novo motif discovery for in-vivo RNA binding data.
Polishchuk, Maya; Paz, Inbal; Yakhini, Zohar; Mandel-Gutfreund, Yael
2018-05-25
Gene expression regulation is highly dependent on binding of RNA-binding proteins (RBPs) to their RNA targets. Growing evidence supports the notion that both RNA primary sequence and its local secondary structure play a role in specific Protein-RNA recognition and binding. Despite the great advance in high-throughput experimental methods for identifying sequence targets of RBPs, predicting the specific sequence and structure binding preferences of RBPs remains a major challenge. We present a novel webserver, SMARTIV, designed for discovering and visualizing combined RNA sequence and structure motifs from high-throughput RNA-binding data, generated from in-vivo experiments. The uniqueness of SMARTIV is that it predicts motifs from enriched k-mers that combine information from ranked RNA sequences and their predicted secondary structure, obtained using various folding methods. Consequently, SMARTIV generates Position Weight Matrices (PWMs) in a combined sequence and structure alphabet with assigned P-values. SMARTIV concisely represents the sequence and structure motif content as a single graphical logo, which is informative and easy for visual perception. SMARTIV was examined extensively on a variety of high-throughput binding experiments for RBPs from different families, generated from different technologies, showing consistent and accurate results. Finally, SMARTIV is a user-friendly webserver, highly efficient in run-time and freely accessible via http://smartiv.technion.ac.il/.
Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander
2015-01-01
Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.
Progress on the Fabric for Frontier Experiments Project at Fermilab
NASA Astrophysics Data System (ADS)
Box, Dennis; Boyd, Joseph; Dykstra, Dave; Garzoglio, Gabriele; Herner, Kenneth; Kirby, Michael; Kreymer, Arthur; Levshina, Tanya; Mhashilkar, Parag; Sharma, Neha
2015-12-01
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.
Quality control methodology for high-throughput protein-protein interaction screening.
Vazquez, Alexei; Rual, Jean-François; Venkatesan, Kavitha
2011-01-01
Protein-protein interactions are key to many aspects of the cell, including its cytoskeletal structure, the signaling processes in which it is involved, or its metabolism. Failure to form protein complexes or signaling cascades may sometimes translate into pathologic conditions such as cancer or neurodegenerative diseases. The set of all protein interactions between the proteins encoded by an organism constitutes its protein interaction network, representing a scaffold for biological function. Knowing the protein interaction network of an organism, combined with other sources of biological information, can unravel fundamental biological circuits and may help better understand the molecular basics of human diseases. The protein interaction network of an organism can be mapped by combining data obtained from both low-throughput screens, i.e., "one gene at a time" experiments and high-throughput screens, i.e., screens designed to interrogate large sets of proteins at once. In either case, quality controls are required to deal with the inherent imperfect nature of experimental assays. In this chapter, we discuss experimental and statistical methodologies to quantify error rates in high-throughput protein-protein interactions screens.
McDermott, W R; Tri, J L; Mitchell, M P; Levens, S P; Wondrow, M A; Huie, L M; Khandheria, B K; Gilbert, B K
1999-01-01
A high data rate terrestrial and satellite network was implemented to transfer medical images and data. This article describes the a optimization of the workstations and switching equipment incorporated into the network. Topics discussed in this article include tuning of the network software, the configuration of the Sun Microsystems workstations, the FORE Systems asynchronous transfer mode switches, as well as the throughput results of two telemedicine experiments undertaken by Mayo's physician staff. The technical staff was successful in achieving the data throughput needed by the telemedicine software; particularly important was the proper determination of peak throughput and TCP window sizes to ensure optimum use of the resources available on the Sun Microsystems and Hewlett Packard workstations.
Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz
2018-01-01
High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).
Bałut, Magdalena; Buckley, Patrick G.; Ochocka, J. Renata; Bartoszewski, Rafał; Crossman, David K.; Messiaen, Ludwine M.; Piotrowski, Arkadiusz
2018-01-01
High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp). PMID:29432475
High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.
Bedenbaugh, John E; Kim, Sungtak; Sasmaz, Erdem; Lauterbach, Jochen
2013-09-09
Portable power technologies for military applications necessitate the production of fuels similar to LPG from existing feedstocks. Catalytic cracking of military jet fuel to form a mixture of C₂-C₄ hydrocarbons was investigated using high-throughput experimentation. Cracking experiments were performed in a gas-phase, 16-sample high-throughput reactor. Zeolite ZSM-5 catalysts with low Si/Al ratios (≤25) demonstrated the highest production of C₂-C₄ hydrocarbons at moderate reaction temperatures (623-823 K). ZSM-5 catalysts were optimized for JP-8 cracking activity to LPG through varying reaction temperature and framework Si/Al ratio. The reducing atmosphere required during catalytic cracking resulted in coking of the catalyst and a commensurate decrease in conversion rate. Rare earth metal promoters for ZSM-5 catalysts were screened to reduce coking deactivation rates, while noble metal promoters reduced onset temperatures for coke burnoff regeneration.
Pagès, Hervé
2018-01-01
Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set. PMID:29723188
Lun, Aaron T L; Pagès, Hervé; Smith, Mike L
2018-05-01
Biological experiments involving genomics or other high-throughput assays typically yield a data matrix that can be explored and analyzed using the R programming language with packages from the Bioconductor project. Improvements in the throughput of these assays have resulted in an explosion of data even from routine experiments, which poses a challenge to the existing computational infrastructure for statistical data analysis. For example, single-cell RNA sequencing (scRNA-seq) experiments frequently generate large matrices containing expression values for each gene in each cell, requiring sparse or file-backed representations for memory-efficient manipulation in R. These alternative representations are not easily compatible with high-performance C++ code used for computationally intensive tasks in existing R/Bioconductor packages. Here, we describe a C++ interface named beachmat, which enables agnostic data access from various matrix representations. This allows package developers to write efficient C++ code that is interoperable with dense, sparse and file-backed matrices, amongst others. We evaluated the performance of beachmat for accessing data from each matrix representation using both simulated and real scRNA-seq data, and defined a clear memory/speed trade-off to motivate the choice of an appropriate representation. We also demonstrate how beachmat can be incorporated into the code of other packages to drive analyses of a very large scRNA-seq data set.
Methods for processing high-throughput RNA sequencing data.
Ares, Manuel
2014-11-03
High-throughput sequencing (HTS) methods for analyzing RNA populations (RNA-Seq) are gaining rapid application to many experimental situations. The steps in an RNA-Seq experiment require thought and planning, especially because the expense in time and materials is currently higher and the protocols are far less routine than those used for other high-throughput methods, such as microarrays. As always, good experimental design will make analysis and interpretation easier. Having a clear biological question, an idea about the best way to do the experiment, and an understanding of the number of replicates needed will make the entire process more satisfying. Whether the goal is capturing transcriptome complexity from a tissue or identifying small fragments of RNA cross-linked to a protein of interest, conversion of the RNA to cDNA followed by direct sequencing using the latest methods is a developing practice, with new technical modifications and applications appearing every day. Even more rapid are the development and improvement of methods for analysis of the very large amounts of data that arrive at the end of an RNA-Seq experiment, making considerations regarding reproducibility, validation, visualization, and interpretation increasingly important. This introduction is designed to review and emphasize a pathway of analysis from experimental design through data presentation that is likely to be successful, with the recognition that better methods are right around the corner. © 2014 Cold Spring Harbor Laboratory Press.
Bioconductor | Informatics Technology for Cancer Research (ITCR)
Bioconductor provides tools for the analysis and comprehension of high-throughput genomic data. R/Bioconductor will be enhanced to meet the increasing complexity of multiassay cancer genomics experiments.
Lyons, Eli; Sheridan, Paul; Tremmel, Georg; Miyano, Satoru; Sugano, Sumio
2017-10-24
High-throughput screens allow for the identification of specific biomolecules with characteristics of interest. In barcoded screens, DNA barcodes are linked to target biomolecules in a manner allowing for the target molecules making up a library to be identified by sequencing the DNA barcodes using Next Generation Sequencing. To be useful in experimental settings, the DNA barcodes in a library must satisfy certain constraints related to GC content, homopolymer length, Hamming distance, and blacklisted subsequences. Here we report a novel framework to quickly generate large-scale libraries of DNA barcodes for use in high-throughput screens. We show that our framework dramatically reduces the computation time required to generate large-scale DNA barcode libraries, compared with a naїve approach to DNA barcode library generation. As a proof of concept, we demonstrate that our framework is able to generate a library consisting of one million DNA barcodes for use in a fragment antibody phage display screening experiment. We also report generating a general purpose one billion DNA barcode library, the largest such library yet reported in literature. Our results demonstrate the value of our novel large-scale DNA barcode library generation framework for use in high-throughput screening applications.
Lens-free shadow image based high-throughput continuous cell monitoring technique.
Jin, Geonsoo; Yoo, In-Hwa; Pack, Seung Pil; Yang, Ji-Woon; Ha, Un-Hwan; Paek, Se-Hwan; Seo, Sungkyu
2012-01-01
A high-throughput continuous cell monitoring technique which does not require any labeling reagents or destruction of the specimen is demonstrated. More than 6000 human alveolar epithelial A549 cells are monitored for up to 72 h simultaneously and continuously with a single digital image within a cost and space effective lens-free shadow imaging platform. In an experiment performed within a custom built incubator integrated with the lens-free shadow imaging platform, the cell nucleus division process could be successfully characterized by calculating the signal-to-noise ratios (SNRs) and the shadow diameters (SDs) of the cell shadow patterns. The versatile nature of this platform also enabled a single cell viability test followed by live cell counting. This study firstly shows that the lens-free shadow imaging technique can provide a continuous cell monitoring without any staining/labeling reagent and destruction of the specimen. This high-throughput continuous cell monitoring technique based on lens-free shadow imaging may be widely utilized as a compact, low-cost, and high-throughput cell monitoring tool in the fields of drug and food screening or cell proliferation and viability testing. Copyright © 2012 Elsevier B.V. All rights reserved.
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy
Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian
2016-01-01
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925
2011-01-01
Background Although many biological databases are applying semantic web technologies, meaningful biological hypothesis testing cannot be easily achieved. Database-driven high throughput genomic hypothesis testing requires both of the capabilities of obtaining semantically relevant experimental data and of performing relevant statistical testing for the retrieved data. Tissue Microarray (TMA) data are semantically rich and contains many biologically important hypotheses waiting for high throughput conclusions. Methods An application-specific ontology was developed for managing TMA and DNA microarray databases by semantic web technologies. Data were represented as Resource Description Framework (RDF) according to the framework of the ontology. Applications for hypothesis testing (Xperanto-RDF) for TMA data were designed and implemented by (1) formulating the syntactic and semantic structures of the hypotheses derived from TMA experiments, (2) formulating SPARQLs to reflect the semantic structures of the hypotheses, and (3) performing statistical test with the result sets returned by the SPARQLs. Results When a user designs a hypothesis in Xperanto-RDF and submits it, the hypothesis can be tested against TMA experimental data stored in Xperanto-RDF. When we evaluated four previously validated hypotheses as an illustration, all the hypotheses were supported by Xperanto-RDF. Conclusions We demonstrated the utility of high throughput biological hypothesis testing. We believe that preliminary investigation before performing highly controlled experiment can be benefited. PMID:21342584
Assaying gene function by growth competition experiment.
Merritt, Joshua; Edwards, Jeremy S
2004-07-01
High-throughput screening and analysis is one of the emerging paradigms in biotechnology. In particular, high-throughput methods are essential in the field of functional genomics because of the vast amount of data generated in recent and ongoing genome sequencing efforts. In this report we discuss integrated functional analysis methodologies which incorporate both a growth competition component and a highly parallel assay used to quantify results of the growth competition. Several applications of the two most widely used technologies in the field, i.e., transposon mutagenesis and deletion strain library growth competition, and individual applications of several developing or less widely reported technologies are presented.
Adaptation to high throughput batch chromatography enhances multivariate screening.
Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried
2015-09-01
High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam
2015-01-01
The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.
NASA Astrophysics Data System (ADS)
Moreland, Blythe; Oman, Kenji; Curfman, John; Yan, Pearlly; Bundschuh, Ralf
Methyl-binding domain (MBD) protein pulldown experiments have been a valuable tool in measuring the levels of methylated CpG dinucleotides. Due to the frequent use of this technique, high-throughput sequencing data sets are available that allow a detailed quantitative characterization of the underlying interaction between methylated DNA and MBD proteins. Analyzing such data sets, we first found that two such proteins cannot bind closer to each other than 2 bp, consistent with structural models of the DNA-protein interaction. Second, the large amount of sequencing data allowed us to find rather weak but nevertheless clearly statistically significant sequence preferences for several bases around the required CpG. These results demonstrate that pulldown sequencing is a high-precision tool in characterizing DNA-protein interactions. This material is based upon work supported by the National Science Foundation under Grant No. DMR-1410172.
Creation of a small high-throughput screening facility.
Flak, Tod
2009-01-01
The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.
HiTC: exploration of high-throughput ‘C’ experiments
Servant, Nicolas; Lajoie, Bryan R.; Nora, Elphège P.; Giorgetti, Luca; Chen, Chong-Jian; Heard, Edith; Dekker, Job; Barillot, Emmanuel
2012-01-01
Summary: The R/Bioconductor package HiTC facilitates the exploration of high-throughput 3C-based data. It allows users to import and export ‘C’ data, to transform, normalize, annotate and visualize interaction maps. The package operates within the Bioconductor framework and thus offers new opportunities for future development in this field. Availability and implementation: The R package HiTC is available from the Bioconductor website. A detailed vignette provides additional documentation and help for using the package. Contact: nicolas.servant@curie.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22923296
NASA Astrophysics Data System (ADS)
Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.
2013-06-01
High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome Initiative. Thus, the challenge for combinatorial methodology will be the effective coupling of synthesis, characterization and theory, and the ability to rapidly manage large amounts of data in a variety of formats.
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
Progress on the FabrIc for Frontier Experiments project at Fermilab
Box, Dennis; Boyd, Joseph; Dykstra, Dave; ...
2015-12-23
The FabrIc for Frontier Experiments (FIFE) project is an ambitious, major-impact initiative within the Fermilab Scientific Computing Division designed to lead the computing model for Fermilab experiments. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying needs and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of Open Science Grid solutions for high throughput computing, data management, database access and collaboration within experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid sites along with dedicated and commercialmore » cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including new job submission services, software and reference data distribution through CVMFS repositories, flexible data transfer client, and access to opportunistic resources on the Open Science Grid. Hence, the progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken a leading role in the definition of the computing model for Fermilab experiments, aided in the design of computing for experiments beyond Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Box, D.; Boyd, J.; Di Benedetto, V.
2016-01-01
The FabrIc for Frontier Experiments (FIFE) project is an initiative within the Fermilab Scientific Computing Division designed to steer the computing model for non-LHC Fermilab experiments across multiple physics areas. FIFE is a collaborative effort between experimenters and computing professionals to design and develop integrated computing models for experiments of varying size, needs, and infrastructure. The major focus of the FIFE project is the development, deployment, and integration of solutions for high throughput computing, data management, database access and collaboration management within an experiment. To accomplish this goal, FIFE has developed workflows that utilize Open Science Grid compute sites alongmore » with dedicated and commercial cloud resources. The FIFE project has made significant progress integrating into experiment computing operations several services including a common job submission service, software and reference data distribution through CVMFS repositories, flexible and robust data transfer clients, and access to opportunistic resources on the Open Science Grid. The progress with current experiments and plans for expansion with additional projects will be discussed. FIFE has taken the leading role in defining the computing model for Fermilab experiments, aided in the design of experiments beyond those hosted at Fermilab, and will continue to define the future direction of high throughput computing for future physics experiments worldwide.« less
High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules.
Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E
2017-07-10
The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.
[Methods of high-throughput plant phenotyping for large-scale breeding and genetic experiments].
Afonnikov, D A; Genaev, M A; Doroshkov, A V; Komyshev, E G; Pshenichnikova, T A
2016-07-01
Phenomics is a field of science at the junction of biology and informatics which solves the problems of rapid, accurate estimation of the plant phenotype; it was rapidly developed because of the need to analyze phenotypic characteristics in large scale genetic and breeding experiments in plants. It is based on using the methods of computer image analysis and integration of biological data. Owing to automation, new approaches make it possible to considerably accelerate the process of estimating the characteristics of a phenotype, to increase its accuracy, and to remove a subjectivism (inherent to humans). The main technologies of high-throughput plant phenotyping in both controlled and field conditions, their advantages and disadvantages, and also the prospects of their use for the efficient solution of problems of plant genetics and breeding are presented in the review.
Strategies for high-throughput focused-beam ptychography
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
2017-08-08
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Nanosurveyor: a framework for real-time data processing
Daurer, Benedikt J.; Krishnan, Hari; Perciano, Talita; ...
2017-01-31
Background: The ever improving brightness of accelerator based sources is enabling novel observations and discoveries with faster frame rates, larger fields of view, higher resolution, and higher dimensionality. Results: Here we present an integrated software/algorithmic framework designed to capitalize on high-throughput experiments through efficient kernels, load-balanced workflows, which are scalable in design. We describe the streamlined processing pipeline of ptychography data analysis. Conclusions: The pipeline provides throughput, compression, and resolution as well as rapid feedback to the microscope operators.
Strategies for high-throughput focused-beam ptychography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobsen, Chris; Deng, Junjing; Nashed, Youssef
X-ray ptychography is being utilized for a wide range of imaging experiments with a resolution beyond the limit of the X-ray optics used. Introducing a parameter for the ptychographic resolution gainG p(the ratio of the beam size over the achieved pixel size in the reconstructed image), strategies for data sampling and for increasing imaging throughput when the specimen is at the focus of an X-ray beam are considered. As a result, the tradeoffs between large and small illumination spots are examined.
Model-Based Design of Long-Distance Tracer Transport Experiments in Plants.
Bühler, Jonas; von Lieres, Eric; Huber, Gregor J
2018-01-01
Studies of long-distance transport of tracer isotopes in plants offer a high potential for functional phenotyping, but so far measurement time is a bottleneck because continuous time series of at least 1 h are required to obtain reliable estimates of transport properties. Hence, usual throughput values are between 0.5 and 1 samples h -1 . Here, we propose to increase sample throughput by introducing temporal gaps in the data acquisition of each plant sample and measuring multiple plants one after each other in a rotating scheme. In contrast to common time series analysis methods, mechanistic tracer transport models allow the analysis of interrupted time series. The uncertainties of the model parameter estimates are used as a measure of how much information was lost compared to complete time series. A case study was set up to systematically investigate different experimental schedules for different throughput scenarios ranging from 1 to 12 samples h -1 . Selected designs with only a small amount of data points were found to be sufficient for an adequate parameter estimation, implying that the presented approach enables a substantial increase of sample throughput. The presented general framework for automated generation and evaluation of experimental schedules allows the determination of a maximal sample throughput and the respective optimal measurement schedule depending on the required statistical reliability of data acquired by future experiments.
A high-throughput approach to profile RNA structure.
Delli Ponti, Riccardo; Marti, Stefanie; Armaos, Alexandros; Tartaglia, Gian Gaetano
2017-03-17
Here we introduce the Computational Recognition of Secondary Structure (CROSS) method to calculate the structural profile of an RNA sequence (single- or double-stranded state) at single-nucleotide resolution and without sequence length restrictions. We trained CROSS using data from high-throughput experiments such as Selective 2΄-Hydroxyl Acylation analyzed by Primer Extension (SHAPE; Mouse and HIV transcriptomes) and Parallel Analysis of RNA Structure (PARS; Human and Yeast transcriptomes) as well as high-quality NMR/X-ray structures (PDB database). The algorithm uses primary structure information alone to predict experimental structural profiles with >80% accuracy, showing high performances on large RNAs such as Xist (17 900 nucleotides; Area Under the ROC Curve AUC of 0.75 on dimethyl sulfate (DMS) experiments). We integrated CROSS in thermodynamics-based methods to predict secondary structure and observed an increase in their predictive power by up to 30%. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel
2014-01-01
A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.
NASA Astrophysics Data System (ADS)
Ahmad, Afandi; Roslan, Muhammad Faris; Amira, Abbes
2017-09-01
In high jump sports, approach take-off speed and force during the take-off are two (2) main important parts to gain maximum jump. To measure both parameters, wireless sensor network (WSN) that contains microcontroller and sensor are needed to describe the results of speed and force for jumpers. Most of the microcontroller exhibit transmission issues in terms of throughput, latency and cost. Thus, this study presents the comparison of wireless microcontrollers in terms of throughput, latency and cost, and the microcontroller that have best performances and cost will be implemented in high jump wearable device. In the experiments, three (3) parts have been integrated - input, process and output. Force (for ankle) and global positioning system (GPS) sensor (for body waist) acts as an input for data transmission. These data were then being processed by both microcontrollers, ESP8266 and Arduino Yun Mini to transmit the data from sensors to the server (host-PC) via message queuing telemetry transport (MQTT) protocol. The server acts as receiver and the results was calculated from the MQTT log files. At the end, results obtained have shown ESP8266 microcontroller had been chosen since it achieved high throughput, low latency and 11 times cheaper in term of prices compared to Arduino Yun Mini microcontroller.
Automation in biological crystallization.
Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen
2014-06-01
Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.
Automation in biological crystallization
Shaw Stewart, Patrick; Mueller-Dieckmann, Jochen
2014-01-01
Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given. PMID:24915074
High pressure inertial focusing for separating and concentrating bacteria at high throughput
NASA Astrophysics Data System (ADS)
Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.
2017-08-01
Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.
Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules
Panzeri, Francesco
2017-01-01
We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics consistent with those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions. PMID:28419142
Burdick, David B; Cavnor, Chris C; Handcock, Jeremy; Killcoyne, Sarah; Lin, Jake; Marzolf, Bruz; Ramsey, Stephen A; Rovira, Hector; Bressler, Ryan; Shmulevich, Ilya; Boyle, John
2010-07-14
High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.
2010-01-01
Background High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Results Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. Conclusion The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services. PMID:20630057
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2018-01-01
We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.
Bahia, Daljit; Cheung, Robert; Buchs, Mirjam; Geisse, Sabine; Hunt, Ian
2005-01-01
This report describes a method to culture insects cells in 24 deep-well blocks for the routine small-scale optimisation of baculovirus-mediated protein expression experiments. Miniaturisation of this process provides the necessary reduction in terms of resource allocation, reagents, and labour to allow extensive and rapid optimisation of expression conditions, with the concomitant reduction in lead-time before commencement of large-scale bioreactor experiments. This therefore greatly simplifies the optimisation process and allows the use of liquid handling robotics in much of the initial optimisation stages of the process, thereby greatly increasing the throughput of the laboratory. We present several examples of the use of deep-well block expression studies in the optimisation of therapeutically relevant protein targets. We also discuss how the enhanced throughput offered by this approach can be adapted to robotic handling systems and the implications this has on the capacity to conduct multi-parallel protein expression studies.
High Throughput System for Plant Height and Hyperspectral Measurement
NASA Astrophysics Data System (ADS)
Zhao, H.; Xu, L.; Jiang, H.; Shi, S.; Chen, D.
2018-04-01
Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV) extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.
Subnuclear foci quantification using high-throughput 3D image cytometry
NASA Astrophysics Data System (ADS)
Wadduwage, Dushan N.; Parrish, Marcus; Choi, Heejin; Engelward, Bevin P.; Matsudaira, Paul; So, Peter T. C.
2015-07-01
Ionising radiation causes various types of DNA damages including double strand breaks (DSBs). DSBs are often recognized by DNA repair protein ATM which forms gamma-H2AX foci at the site of the DSBs that can be visualized using immunohistochemistry. However most of such experiments are of low throughput in terms of imaging and image analysis techniques. Most of the studies still use manual counting or classification. Hence they are limited to counting a low number of foci per cell (5 foci per nucleus) as the quantification process is extremely labour intensive. Therefore we have developed a high throughput instrumentation and computational pipeline specialized for gamma-H2AX foci quantification. A population of cells with highly clustered foci inside nuclei were imaged, in 3D with submicron resolution, using an in-house developed high throughput image cytometer. Imaging speeds as high as 800 cells/second in 3D were achieved by using HiLo wide-field depth resolved imaging and a remote z-scanning technique. Then the number of foci per cell nucleus were quantified using a 3D extended maxima transform based algorithm. Our results suggests that while most of the other 2D imaging and manual quantification studies can count only up to about 5 foci per nucleus our method is capable of counting more than 100. Moreover we show that 3D analysis is significantly superior compared to the 2D techniques.
Model-based high-throughput design of ion exchange protein chromatography.
Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo
2016-08-12
This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.
Selecting the most appropriate time points to profile in high-throughput studies
Kleyman, Michael; Sefer, Emre; Nicola, Teodora; Espinoza, Celia; Chhabra, Divya; Hagood, James S; Kaminski, Naftali; Ambalavanan, Namasivayam; Bar-Joseph, Ziv
2017-01-01
Biological systems are increasingly being studied by high throughput profiling of molecular data over time. Determining the set of time points to sample in studies that profile several different types of molecular data is still challenging. Here we present the Time Point Selection (TPS) method that solves this combinatorial problem in a principled and practical way. TPS utilizes expression data from a small set of genes sampled at a high rate. As we show by applying TPS to study mouse lung development, the points selected by TPS can be used to reconstruct an accurate representation for the expression values of the non selected points. Further, even though the selection is only based on gene expression, these points are also appropriate for representing a much larger set of protein, miRNA and DNA methylation changes over time. TPS can thus serve as a key design strategy for high throughput time series experiments. Supporting Website: www.sb.cs.cmu.edu/TPS DOI: http://dx.doi.org/10.7554/eLife.18541.001 PMID:28124972
The objective of these experiments is to develop high-throughput screens for proliferation and apoptosis in order to compare rodent and human neuroprogenitor cell responses to potential developmental neurotoxicants. Effects of 4 chemicals on proliferation and apoptosis in mouse c...
Integrated, multi-scale, spatial-temporal cell biology--A next step in the post genomic era.
Horwitz, Rick
2016-03-01
New microscopic approaches, high-throughput imaging, and gene editing promise major new insights into cellular behaviors. When coupled with genomic and other 'omic information and "mined" for correlations and associations, a new breed of powerful and useful cellular models should emerge. These top down, coarse-grained, and statistical models, in turn, can be used to form hypotheses merging with fine-grained, bottom up mechanistic studies and models that are the back bone of cell biology. The goal of the Allen Institute for Cell Science is to develop the top down approach by developing a high throughput microscopy pipeline that is integrated with modeling, using gene edited hiPS cell lines in various physiological and pathological contexts. The output of these experiments and models will be an "animated" cell, capable of integrating and analyzing image data generated from experiments and models. Copyright © 2015 Elsevier Inc. All rights reserved.
Ontology based heterogeneous materials database integration and semantic query
NASA Astrophysics Data System (ADS)
Zhao, Shuai; Qian, Quan
2017-10-01
Materials digital data, high throughput experiments and high throughput computations are regarded as three key pillars of materials genome initiatives. With the fast growth of materials data, the integration and sharing of data is very urgent, that has gradually become a hot topic of materials informatics. Due to the lack of semantic description, it is difficult to integrate data deeply in semantic level when adopting the conventional heterogeneous database integration approaches such as federal database or data warehouse. In this paper, a semantic integration method is proposed to create the semantic ontology by extracting the database schema semi-automatically. Other heterogeneous databases are integrated to the ontology by means of relational algebra and the rooted graph. Based on integrated ontology, semantic query can be done using SPARQL. During the experiments, two world famous First Principle Computational databases, OQMD and Materials Project are used as the integration targets, which show the availability and effectiveness of our method.
Hadoop and friends - first experience at CERN with a new platform for high throughput analysis steps
NASA Astrophysics Data System (ADS)
Duellmann, D.; Surdy, K.; Menichetti, L.; Toebbicke, R.
2017-10-01
The statistical analysis of infrastructure metrics comes with several specific challenges, including the fairly large volume of unstructured metrics from a large set of independent data sources. Hadoop and Spark provide an ideal environment in particular for the first steps of skimming rapidly through hundreds of TB of low relevance data to find and extract the much smaller data volume that is relevant for statistical analysis and modelling. This presentation will describe the new Hadoop service at CERN and the use of several of its components for high throughput data aggregation and ad-hoc pattern searches. We will describe the hardware setup used, the service structure with a small set of decoupled clusters and the first experience with co-hosting different applications and performing software upgrades. We will further detail the common infrastructure used for data extraction and preparation from continuous monitoring and database input sources.
Experiments and Analyses of Data Transfers Over Wide-Area Dedicated Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata
Dedicated wide-area network connections are increasingly employed in high-performance computing and big data scenarios. One might expect the performance and dynamics of data transfers over such connections to be easy to analyze due to the lack of competing traffic. However, non-linear transport dynamics and end-system complexities (e.g., multi-core hosts and distributed filesystems) can in fact make analysis surprisingly challenging. We present extensive measurements of memory-to-memory and disk-to-disk file transfers over 10 Gbps physical and emulated connections with 0–366 ms round trip times (RTTs). For memory-to-memory transfers, profiles of both TCP and UDT throughput as a function of RTT show concavemore » and convex regions; large buffer sizes and more parallel flows lead to wider concave regions, which are highly desirable. TCP and UDT both also display complex throughput dynamics, as indicated by their Poincare maps and Lyapunov exponents. For disk-to-disk transfers, we determine that high throughput can be achieved via a combination of parallel I/O threads, parallel network threads, and direct I/O mode. Our measurements also show that Lustre filesystems can be mounted over long-haul connections using LNet routers, although challenges remain in jointly optimizing file I/O and transport method parameters to achieve peak throughput.« less
PTMScout, a Web Resource for Analysis of High Throughput Post-translational Proteomics Studies*
Naegle, Kristen M.; Gymrek, Melissa; Joughin, Brian A.; Wagner, Joel P.; Welsch, Roy E.; Yaffe, Michael B.; Lauffenburger, Douglas A.; White, Forest M.
2010-01-01
The rate of discovery of post-translational modification (PTM) sites is increasing rapidly and is significantly outpacing our biological understanding of the function and regulation of those modifications. To help meet this challenge, we have created PTMScout, a web-based interface for viewing, manipulating, and analyzing high throughput experimental measurements of PTMs in an effort to facilitate biological understanding of protein modifications in signaling networks. PTMScout is constructed around a custom database of PTM experiments and contains information from external protein and post-translational resources, including gene ontology annotations, Pfam domains, and Scansite predictions of kinase and phosphopeptide binding domain interactions. PTMScout functionality comprises data set comparison tools, data set summary views, and tools for protein assignments of peptides identified by mass spectrometry. Analysis tools in PTMScout focus on informed subset selection via common criteria and on automated hypothesis generation through subset labeling derived from identification of statistically significant enrichment of other annotations in the experiment. Subset selection can be applied through the PTMScout flexible query interface available for quantitative data measurements and data annotations as well as an interface for importing data set groupings by external means, such as unsupervised learning. We exemplify the various functions of PTMScout in application to data sets that contain relative quantitative measurements as well as data sets lacking quantitative measurements, producing a set of interesting biological hypotheses. PTMScout is designed to be a widely accessible tool, enabling generation of multiple types of biological hypotheses from high throughput PTM experiments and advancing functional assignment of novel PTM sites. PTMScout is available at http://ptmscout.mit.edu. PMID:20631208
Opportunistic data locality for end user data analysis
NASA Astrophysics Data System (ADS)
Fischer, M.; Heidecker, C.; Kuehn, E.; Quast, G.; Giffels, M.; Schnepf, M.; Heiss, A.; Petzold, A.
2017-10-01
With the increasing data volume of LHC Run2, user analyses are evolving towards increasing data throughput. This evolution translates to higher requirements for efficiency and scalability of the underlying analysis infrastructure. We approach this issue with a new middleware to optimise data access: a layer of coordinated caches transparently provides data locality for high-throughput analyses. We demonstrated the feasibility of this approach with a prototype used for analyses of the CMS working groups at KIT. In this paper, we present our experience both with the approach in general, and our prototype in specific.
Toward high throughput optical metamaterial assemblies.
Fontana, Jake; Ratna, Banahalli R
2015-11-01
Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis
Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal
2016-01-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917
Broadband ion mobility deconvolution for rapid analysis of complex mixtures.
Pettit, Michael E; Brantley, Matthew R; Donnarumma, Fabrizio; Murray, Kermit K; Solouki, Touradj
2018-05-04
High resolving power ion mobility (IM) allows for accurate characterization of complex mixtures in high-throughput IM mass spectrometry (IM-MS) experiments. We previously demonstrated that pure component IM-MS data can be extracted from IM unresolved post-IM/collision-induced dissociation (CID) MS data using automated ion mobility deconvolution (AIMD) software [Matthew Brantley, Behrooz Zekavat, Brett Harper, Rachel Mason, and Touradj Solouki, J. Am. Soc. Mass Spectrom., 2014, 25, 1810-1819]. In our previous reports, we utilized a quadrupole ion filter for m/z-isolation of IM unresolved monoisotopic species prior to post-IM/CID MS. Here, we utilize a broadband IM-MS deconvolution strategy to remove the m/z-isolation requirement for successful deconvolution of IM unresolved peaks. Broadband data collection has throughput and multiplexing advantages; hence, elimination of the ion isolation step reduces experimental run times and thus expands the applicability of AIMD to high-throughput bottom-up proteomics. We demonstrate broadband IM-MS deconvolution of two separate and unrelated pairs of IM unresolved isomers (viz., a pair of isomeric hexapeptides and a pair of isomeric trisaccharides) in a simulated complex mixture. Moreover, we show that broadband IM-MS deconvolution improves high-throughput bottom-up characterization of a proteolytic digest of rat brain tissue. To our knowledge, this manuscript is the first to report successful deconvolution of pure component IM and MS data from an IM-assisted data-independent analysis (DIA) or HDMSE dataset.
Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart
2017-05-01
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel
2017-06-01
Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
2011-01-01
The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments. PMID:22136293
Salvo-Chirnside, Eliane; Kane, Steven; Kerr, Lorraine E
2011-12-02
The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments.
Enrichment analysis in high-throughput genomics - accounting for dependency in the NULL.
Gold, David L; Coombes, Kevin R; Wang, Jing; Mallick, Bani
2007-03-01
Translating the overwhelming amount of data generated in high-throughput genomics experiments into biologically meaningful evidence, which may for example point to a series of biomarkers or hint at a relevant pathway, is a matter of great interest in bioinformatics these days. Genes showing similar experimental profiles, it is hypothesized, share biological mechanisms that if understood could provide clues to the molecular processes leading to pathological events. It is the topic of further study to learn if or how a priori information about the known genes may serve to explain coexpression. One popular method of knowledge discovery in high-throughput genomics experiments, enrichment analysis (EA), seeks to infer if an interesting collection of genes is 'enriched' for a Consortium particular set of a priori Gene Ontology Consortium (GO) classes. For the purposes of statistical testing, the conventional methods offered in EA software implicitly assume independence between the GO classes. Genes may be annotated for more than one biological classification, and therefore the resulting test statistics of enrichment between GO classes can be highly dependent if the overlapping gene sets are relatively large. There is a need to formally determine if conventional EA results are robust to the independence assumption. We derive the exact null distribution for testing enrichment of GO classes by relaxing the independence assumption using well-known statistical theory. In applications with publicly available data sets, our test results are similar to the conventional approach which assumes independence. We argue that the independence assumption is not detrimental.
Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen
2015-04-15
High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.
Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen
2015-10-01
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.
Metabolomic technologies are increasingly being applied to study biological questions in a range of different settings from clinical through to environmental. As with other high-throughput technologies, such as those used in transcriptomics and proteomics, metabolomics continues...
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung
2016-01-01
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10−3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc– or V–porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials. PMID:26902156
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide.
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I; Lee, Hoonkyung
2016-02-23
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10(-3) bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.
High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide
NASA Astrophysics Data System (ADS)
Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, Chihye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung
2016-02-01
Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures (~10-3 bar) at 300 K and release it at ~450 K. CO2 binding to elements involves hybridization of the metal d orbitals with the CO2 π orbitals and CO2-transition metal complexes were observed in experiments. This result allows us to perform high-throughput screening to discover novel promising CO2 capture materials with empty d orbitals (e.g., Sc- or V-porphyrin-like graphene) and predict their capture performance under various conditions. Moreover, these findings provide physical insights into selective CO2 capture and open a new path to explore CO2 capture materials.
Yun, Kyungwon; Lee, Hyunjae; Bang, Hyunwoo; Jeon, Noo Li
2016-02-21
This study proposes a novel way to achieve high-throughput image acquisition based on a computer-recognizable micro-pattern implemented on a microfluidic device. We integrated the QR code, a two-dimensional barcode system, onto the microfluidic device to simplify imaging of multiple ROIs (regions of interest). A standard QR code pattern was modified to arrays of cylindrical structures of polydimethylsiloxane (PDMS). Utilizing the recognition of the micro-pattern, the proposed system enables: (1) device identification, which allows referencing additional information of the device, such as device imaging sequences or the ROIs and (2) composing a coordinate system for an arbitrarily located microfluidic device with respect to the stage. Based on these functionalities, the proposed method performs one-step high-throughput imaging for data acquisition in microfluidic devices without further manual exploration and locating of the desired ROIs. In our experience, the proposed method significantly reduced the time for the preparation of an acquisition. We expect that the method will innovatively improve the prototype device data acquisition and analysis.
A multilayer microdevice for cell-based high-throughput drug screening
NASA Astrophysics Data System (ADS)
Liu, Chong; Wang, Lei; Xu, Zheng; Li, Jingmin; Ding, Xiping; Wang, Qi; Chunyu, Li
2012-06-01
A multilayer polydimethylsiloxane microdevice for cell-based high-throughput drug screening is described in this paper. This established microdevice was based on a modularization method and it integrated a drug/medium concentration gradient generator (CGG), pneumatic microvalves and a cell culture microchamber array. The CGG was able to generate five steps of linear concentrations with the same outlet flow rate. The medium/drug flowed through CGG and then into the pear-shaped cell culture microchambers vertically. This vertical perfusion mode was used to reduce the impact of the shear stress on the physiology of cells induced by the fluid flow in the microchambers. Pear-shaped microchambers with two arrays of miropillars at each outlet were adopted in this microdevice, which were beneficial to cell distribution. The chemotherapeutics Cisplatin (DDP)-induced Cisplatin-resistant cell line A549/DDP apoptotic experiments were performed well on this platform. The results showed that this novel microdevice could not only provide well-defined and stable conditions for cell culture, but was also useful for cell-based high-throughput drug screening with less reagents and time consumption.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
Crick, Alex J; Cammarota, Eugenia; Moulang, Katie; Kotar, Jurij; Cicuta, Pietro
2015-01-01
Live optical microscopy has become an essential tool for studying the dynamical behaviors and variability of single cells, and cell-cell interactions. However, experiments and data analysis in this area are often extremely labor intensive, and it has often not been achievable or practical to perform properly standardized experiments on a statistically viable scale. We have addressed this challenge by developing automated live imaging platforms, to help standardize experiments, increasing throughput, and unlocking previously impossible ones. Our real-time cell tracking programs communicate in feedback with microscope and camera control software, and they are highly customizable, flexible, and efficient. As examples of our current research which utilize these automated platforms, we describe two quite different applications: egress-invasion interactions of malaria parasites and red blood cells, and imaging of immune cells which possess high motility and internal dynamics. The automated imaging platforms are able to track a large number of motile cells simultaneously, over hours or even days at a time, greatly increasing data throughput and opening up new experimental possibilities. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl
2008-03-01
We present an image analysis approach as part of a high-throughput microscopy siRNA-based screening system using cell arrays for the identification of cellular genes involved in hepatitis C and dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in the neighborhood of segmented cell nuclei, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment and single images. In particular, we propose a novel approach for the localization of regions of transfected cells within cell array images, which combines model-based circle fitting and grid fitting. By this scheme we integrate information from single cell array images and knowledge from the complete cell arrays. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behaviour of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.
Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes
2012-01-01
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
Strategic and Operational Plan for Integrating Transcriptomics ...
Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016
High-Throughput Experimental Approach Capabilities | Materials Science |
NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non
Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi
NASA Astrophysics Data System (ADS)
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad
2015-05-01
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).
Nebula: reconstruction and visualization of scattering data in reciprocal space.
Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H
2015-04-01
Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute time-scales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula , is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware.
Nebula: reconstruction and visualization of scattering data in reciprocal space
Reiten, Andreas; Chernyshov, Dmitry; Mathiesen, Ragnvald H.
2015-01-01
Two-dimensional solid-state X-ray detectors can now operate at considerable data throughput rates that allow full three-dimensional sampling of scattering data from extended volumes of reciprocal space within second to minute timescales. For such experiments, simultaneous analysis and visualization allows for remeasurements and a more dynamic measurement strategy. A new software, Nebula, is presented. It efficiently reconstructs X-ray scattering data, generates three-dimensional reciprocal space data sets that can be visualized interactively, and aims to enable real-time processing in high-throughput measurements by employing parallel computing on commodity hardware. PMID:25844083
NASA Technical Reports Server (NTRS)
Pang, Jackson; Liddicoat, Albert; Ralston, Jesse; Pingree, Paula
2006-01-01
The current implementation of the Telecommunications Protocol Processing Subsystem Using Reconfigurable Interoperable Gate Arrays (TRIGA) is equipped with CFDP protocol and CCSDS Telemetry and Telecommand framing schemes to replace the CPU intensive software counterpart implementation for reliable deep space communication. We present the hardware/software co-design methodology used to accomplish high data rate throughput. The hardware CFDP protocol stack implementation is then compared against the two recent flight implementations. The results from our experiments show that TRIGA offers more than 3 orders of magnitude throughput improvement with less than one-tenth of the power consumption.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik
2017-11-03
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.
Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz
2017-01-01
High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791
Ye, Xiaoduan; O'Neil, Patrick K; Foster, Adrienne N; Gajda, Michal J; Kosinski, Jan; Kurowski, Michal A; Bujnicki, Janusz M; Friedman, Alan M; Bailey-Kellogg, Chris
2004-12-01
Emerging high-throughput techniques for the characterization of protein and protein-complex structures yield noisy data with sparse information content, placing a significant burden on computation to properly interpret the experimental data. One such technique uses cross-linking (chemical or by cysteine oxidation) to confirm or select among proposed structural models (e.g., from fold recognition, ab initio prediction, or docking) by testing the consistency between cross-linking data and model geometry. This paper develops a probabilistic framework for analyzing the information content in cross-linking experiments, accounting for anticipated experimental error. This framework supports a mechanism for planning experiments to optimize the information gained. We evaluate potential experiment plans using explicit trade-offs among key properties of practical importance: discriminability, coverage, balance, ambiguity, and cost. We devise a greedy algorithm that considers those properties and, from a large number of combinatorial possibilities, rapidly selects sets of experiments expected to discriminate pairs of models efficiently. In an application to residue-specific chemical cross-linking, we demonstrate the ability of our approach to plan experiments effectively involving combinations of cross-linkers and introduced mutations. We also describe an experiment plan for the bacteriophage lambda Tfa chaperone protein in which we plan dicysteine mutants for discriminating threading models by disulfide formation. Preliminary results from a subset of the planned experiments are consistent and demonstrate the practicality of planning. Our methods provide the experimenter with a valuable tool (available from the authors) for understanding and optimizing cross-linking experiments.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal
2016-05-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Awan, Muaaz Gul; Saeed, Fahad
2016-05-15
Modern proteomics studies utilize high-throughput mass spectrometers which can produce data at an astonishing rate. These big mass spectrometry (MS) datasets can easily reach peta-scale level creating storage and analytic problems for large-scale systems biology studies. Each spectrum consists of thousands of peaks which have to be processed to deduce the peptide. However, only a small percentage of peaks in a spectrum are useful for peptide deduction as most of the peaks are either noise or not useful for a given spectrum. This redundant processing of non-useful peaks is a bottleneck for streaming high-throughput processing of big MS data. One way to reduce the amount of computation required in a high-throughput environment is to eliminate non-useful peaks. Existing noise removing algorithms are limited in their data-reduction capability and are compute intensive making them unsuitable for big data and high-throughput environments. In this paper we introduce a novel low-complexity technique based on classification, quantization and sampling of MS peaks. We present a novel data-reductive strategy for analysis of Big MS data. Our algorithm, called MS-REDUCE, is capable of eliminating noisy peaks as well as peaks that do not contribute to peptide deduction before any peptide deduction is attempted. Our experiments have shown up to 100× speed up over existing state of the art noise elimination algorithms while maintaining comparable high quality matches. Using our approach we were able to process a million spectra in just under an hour on a moderate server. The developed tool and strategy has been made available to wider proteomics and parallel computing community and the code can be found at https://github.com/pcdslab/MSREDUCE CONTACT: : fahad.saeed@wmich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pathway analyses and understanding disease associations
Liu, Yu; Chance, Mark R
2013-01-01
High throughput technologies have been applied to investigate the underlying mechanisms of complex diseases, identify disease-associations and help to improve treatment. However it is challenging to derive biological insight from conventional single gene based analysis of “omics” data from high throughput experiments due to sample and patient heterogeneity. To address these challenges, many novel pathway and network based approaches were developed to integrate various “omics” data, such as gene expression, copy number alteration, Genome Wide Association Studies, and interaction data. This review will cover recent methodological developments in pathway analysis for the detection of dysregulated interactions and disease-associated subnetworks, prioritization of candidate disease genes, and disease classifications. For each application, we will also discuss the associated challenges and potential future directions. PMID:24319650
A fungal mock community control for amplicon sequencing experiments
USDA-ARS?s Scientific Manuscript database
The field of microbial ecology has been profoundly advanced by the ability to profile the composition of complex microbial communities by means of high throughput amplicon sequencing of marker genes amplified directly from environmental genomic DNA extracts. However, it has become increasingly clear...
Hayden, Eric J
2016-08-15
RNA molecules provide a realistic but tractable model of a genotype to phenotype relationship. This relationship has been extensively investigated computationally using secondary structure prediction algorithms. Enzymatic RNA molecules, or ribozymes, offer access to genotypic and phenotypic information in the laboratory. Advancements in high-throughput sequencing technologies have enabled the analysis of sequences in the lab that now rivals what can be accomplished computationally. This has motivated a resurgence of in vitro selection experiments and opened new doors for the analysis of the distribution of RNA functions in genotype space. A body of computational experiments has investigated the persistence of specific RNA structures despite changes in the primary sequence, and how this mutational robustness can promote adaptations. This article summarizes recent approaches that were designed to investigate the role of mutational robustness during the evolution of RNA molecules in the laboratory, and presents theoretical motivations, experimental methods and approaches to data analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.
Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars
2015-07-15
Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Foston, Marcus; Samuel, Reichel; Ragauskas, Arthur J
2012-09-07
The ability to accurately and rapidly measure plant cell wall composition, relative monolignol content and lignin-hemicellulose inter-unit linkage distributions has become essential to efforts centered on reducing the recalcitrance of biomass by genetic engineering. Growing (13)C enriched transgenic plants is a viable route to achieve the high-throughput, detailed chemical analysis of whole plant cell wall before and after pretreatment and microbial or enzymatic utilization by (13)C nuclear magnetic resonance (NMR) in a perdeuterated ionic liquid solvent system not requiring component isolation. 1D (13)C whole cell wall ionic liquid NMR of natural abundant and (13)C enriched corn stover stem samples suggest that a high level of uniform labeling (>97%) can significantly reduce the total NMR experiment times up to ~220 times. Similarly, significant reduction in total NMR experiment time (~39 times) of the (13)C enriched corn stover stem samples for 2D (13)C-(1)H heteronuclear single quantum coherence NMR was found.
CellProfiler Tracer: exploring and validating high-throughput, time-lapse microscopy image data.
Bray, Mark-Anthony; Carpenter, Anne E
2015-11-04
Time-lapse analysis of cellular images is an important and growing need in biology. Algorithms for cell tracking are widely available; what researchers have been missing is a single open-source software package to visualize standard tracking output (from software like CellProfiler) in a way that allows convenient assessment of track quality, especially for researchers tuning tracking parameters for high-content time-lapse experiments. This makes quality assessment and algorithm adjustment a substantial challenge, particularly when dealing with hundreds of time-lapse movies collected in a high-throughput manner. We present CellProfiler Tracer, a free and open-source tool that complements the object tracking functionality of the CellProfiler biological image analysis package. Tracer allows multi-parametric morphological data to be visualized on object tracks, providing visualizations that have already been validated within the scientific community for time-lapse experiments, and combining them with simple graph-based measures for highlighting possible tracking artifacts. CellProfiler Tracer is a useful, free tool for inspection and quality control of object tracking data, available from http://www.cellprofiler.org/tracer/.
High-Throughput Computing on High-Performance Platforms: A Case Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oleynik, D; Panitkin, S; Matteo, Turilli
The computing systems used by LHC experiments has historically consisted of the federation of hundreds to thousands of distributed resources, ranging from small to mid-size resource. In spite of the impressive scale of the existing distributed computing solutions, the federation of small to mid-size resources will be insufficient to meet projected future demands. This paper is a case study of how the ATLAS experiment has embraced Titan -- a DOE leadership facility in conjunction with traditional distributed high- throughput computing to reach sustained production scales of approximately 52M core-hours a years. The three main contributions of this paper are: (i)more » a critical evaluation of design and operational considerations to support the sustained, scalable and production usage of Titan; (ii) a preliminary characterization of a next generation executor for PanDA to support new workloads and advanced execution modes; and (iii) early lessons for how current and future experimental and observational systems can be integrated with production supercomputers and other platforms in a general and extensible manner.« less
Buenconsejo, Pio John S; Siegel, Alexander; Savan, Alan; Thienhaus, Sigurd; Ludwig, Alfred
2012-01-09
For different areas of combinatorial materials science, it is desirable to have multiple materials libraries: especially for irreversible high-throughput studies, like, for example, corrosion resistance testing in different media or annealing of complete materials libraries at different temperatures. Therefore a new combinatorial sputter-deposition process was developed which yields 24 materials libraries in one experiment on a single substrate. It is discussed with the example of 24 Ti-Ni-Ag materials libraries. They are divided based on the composition coverage and orientation of composition gradient into two sets of 12 nearly identical materials libraries. Each materials library covers at least 30-40% of the complete ternary composition range. An acid etch test in buffered-HF solution was performed, illustrating the feasibility of our approach for destructive materials characterization. The results revealed that within the composition range of Ni < 30 at.%, the films were severely etched. The composition range which shows reversible martensitic transformations was confirmed to be outside this region. The high output of the present method makes it attractive for combinatorial studies requiring multiple materials libraries.
Diffraction efficiency of radially-profiled off-plane reflection gratings
NASA Astrophysics Data System (ADS)
Miles, Drew M.; Tutt, James H.; DeRoo, Casey T.; Marlowe, Hannah; Peterson, Thomas J.; McEntaffer, Randall L.; Menz, Benedikt; Burwitz, Vadim; Hartner, Gisela; Laubis, Christian; Scholze, Frank
2015-09-01
Future X-ray missions will require gratings with high throughput and high spectral resolution. Blazed off-plane reflection gratings are capable of meeting these demands. A blazed grating profile optimizes grating efficiency, providing higher throughput to one side of zero-order on the arc of diffraction. This paper presents efficiency measurements made in the 0.3 - 1.5 keV energy band at the Physikalisch-Technische Bundesanstalt (PTB) BESSY II facility for three holographically-ruled gratings, two of which are blazed. Each blazed grating was tested in both the Littrow configuration and anti-Littrow configuration in order to test the alignment sensitivity of these gratings with regard to throughput. This paper outlines the procedure of the grating experiment performed at BESSY II and discuss the resulting efficiency measurements across various energies. Experimental results are generally consistent with theory and demonstrate that the blaze does increase throughput to one side of zero-order. However, the total efficiency of the non-blazed, sinusoidal grating is greater than that of the blazed gratings, which suggests that the method of manufacturing these blazed profiles fails to produce facets with the desired level of precision. Finally, evidence of a successful blaze implementation from first diffraction results of prototype blazed gratings produce via a new fabrication technique at the University of Iowa are presented.
Klukas, Christian; Chen, Dijun; Pape, Jean-Michel
2014-01-01
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818
You, Zhu-Hong; Li, Shuai; Gao, Xin; Luo, Xin; Ji, Zhen
2014-01-01
Protein-protein interactions are the basis of biological functions, and studying these interactions on a molecular level is of crucial importance for understanding the functionality of a living cell. During the past decade, biosensors have emerged as an important tool for the high-throughput identification of proteins and their interactions. However, the high-throughput experimental methods for identifying PPIs are both time-consuming and expensive. On the other hand, high-throughput PPI data are often associated with high false-positive and high false-negative rates. Targeting at these problems, we propose a method for PPI detection by integrating biosensor-based PPI data with a novel computational model. This method was developed based on the algorithm of extreme learning machine combined with a novel representation of protein sequence descriptor. When performed on the large-scale human protein interaction dataset, the proposed method achieved 84.8% prediction accuracy with 84.08% sensitivity at the specificity of 85.53%. We conducted more extensive experiments to compare the proposed method with the state-of-the-art techniques, support vector machine. The achieved results demonstrate that our approach is very promising for detecting new PPIs, and it can be a helpful supplement for biosensor-based PPI data detection.
Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...
2015-05-22
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less
Heo, Young Jin; Lee, Donghyeon; Kang, Junsu; Lee, Keondo; Chung, Wan Kyun
2017-09-14
Imaging flow cytometry (IFC) is an emerging technology that acquires single-cell images at high-throughput for analysis of a cell population. Rich information that comes from high sensitivity and spatial resolution of a single-cell microscopic image is beneficial for single-cell analysis in various biological applications. In this paper, we present a fast image-processing pipeline (R-MOD: Real-time Moving Object Detector) based on deep learning for high-throughput microscopy-based label-free IFC in a microfluidic chip. The R-MOD pipeline acquires all single-cell images of cells in flow, and identifies the acquired images as a real-time process with minimum hardware that consists of a microscope and a high-speed camera. Experiments show that R-MOD has the fast and reliable accuracy (500 fps and 93.3% mAP), and is expected to be used as a powerful tool for biomedical and clinical applications.
Latest performance of ArF immersion scanner NSR-S630D for high-volume manufacturing for 7nm node
NASA Astrophysics Data System (ADS)
Funatsu, Takayuki; Uehara, Yusaku; Hikida, Yujiro; Hayakawa, Akira; Ishiyama, Satoshi; Hirayama, Toru; Kono, Hirotaka; Shirata, Yosuke; Shibazaki, Yuichi
2015-03-01
In order to achieve stable operation in cutting-edge semiconductor manufacturing, Nikon has developed NSR-S630D with extremely accurate overlay while maintaining throughput in various conditions resembling a real production environment. In addition, NSR-S630D has been equipped with enhanced capabilities to maintain long-term overlay stability and user interface improvement all due to our newly developed application software platform. In this paper, we describe the most recent S630D performance in various conditions similar to real productions. In a production environment, superior overlay accuracy with high dose conditions and high throughput are often required; therefore, we have performed several experiments with high dose conditions to demonstrate NSR's thermal aberration capabilities in order to achieve world class overlay performance. Furthermore, we will introduce our new software that enables long term overlay performance.
Segregation analysis of microsatellite (SSR) markers in sugarcane polyploids
USDA-ARS?s Scientific Manuscript database
Although the microsatellite (SSR) DNA markers have been extensively used in sugarcane breeding research, little is known about its inheritance mechanism. To address this problem, a high throughput molecular genotyping experiment was conducted on 964 single pollen grains and a 288-self progeny S1 map...
A computational method for estimating the PCR duplication rate in DNA and RNA-seq experiments.
Bansal, Vikas
2017-03-14
PCR amplification is an important step in the preparation of DNA sequencing libraries prior to high-throughput sequencing. PCR amplification introduces redundant reads in the sequence data and estimating the PCR duplication rate is important to assess the frequency of such reads. Existing computational methods do not distinguish PCR duplicates from "natural" read duplicates that represent independent DNA fragments and therefore, over-estimate the PCR duplication rate for DNA-seq and RNA-seq experiments. In this paper, we present a computational method to estimate the average PCR duplication rate of high-throughput sequence datasets that accounts for natural read duplicates by leveraging heterozygous variants in an individual genome. Analysis of simulated data and exome sequence data from the 1000 Genomes project demonstrated that our method can accurately estimate the PCR duplication rate on paired-end as well as single-end read datasets which contain a high proportion of natural read duplicates. Further, analysis of exome datasets prepared using the Nextera library preparation method indicated that 45-50% of read duplicates correspond to natural read duplicates likely due to fragmentation bias. Finally, analysis of RNA-seq datasets from individuals in the 1000 Genomes project demonstrated that 70-95% of read duplicates observed in such datasets correspond to natural duplicates sampled from genes with high expression and identified outlier samples with a 2-fold greater PCR duplication rate than other samples. The method described here is a useful tool for estimating the PCR duplication rate of high-throughput sequence datasets and for assessing the fraction of read duplicates that correspond to natural read duplicates. An implementation of the method is available at https://github.com/vibansal/PCRduplicates .
Anderson, Lissa C; DeHart, Caroline J; Kaiser, Nathan K; Fellers, Ryan T; Smith, Donald F; Greer, Joseph B; LeDuc, Richard D; Blakney, Greg T; Thomas, Paul M; Kelleher, Neil L; Hendrickson, Christopher L
2017-02-03
Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusinkveld, Harm J.; Westerink, Remco H.S., E-mail: R.Westerink@uu.nl
Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca{sup 2+}]{sub i}, e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca{sup 2+}]{sub i} are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca{sup 2+}]{sub i} in plate reader systems, though the results of such plate reader-based measurements have beenmore » questioned. In view of the increasing use of plate reader systems for measurements of [Ca{sup 2+}]{sub i} a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca{sup 2+}]{sub i}. Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with caveats and limitations that require further investigation. - Research Highlights: > The use of plate readers for high-throughput screening of intracellular Ca{sup 2+} is associated with many pitfalls and limitations. > Single cell fluorescent microscopy is recommended for measurements of intracellular Ca{sup 2+}. > Dual-wavelength dyes (Fura-2) are preferred over single-wavelength dyes (Fluo-4) for measurements of intracellular Ca{sup 2+}. > Probenecid prevents dye leakage but abolishes depolarization-evoked Ca{sup 2+} influx, severely hampering measurements of Ca{sup 2+}. > In general, care should be taken when interpreting data from high-throughput kinetic measurements.« less
A thioacidolysis method tailored for higher‐throughput quantitative analysis of lignin monomers
Foster, Cliff; Happs, Renee M.; Doeppke, Crissa; Meunier, Kristoffer; Gehan, Jackson; Yue, Fengxia; Lu, Fachuang; Davis, Mark F.
2016-01-01
Abstract Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β‐O‐4 linkages. Current thioacidolysis methods are low‐throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non‐chlorinated organic solvent and is tailored for higher‐throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1–2 mg of biomass per assay and has been quantified using fast‐GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, including standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day‐to‐day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. The method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses. PMID:27534715
A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.
Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less
A thioacidolysis method tailored for higher-throughput quantitative analysis of lignin monomers
Harman-Ware, Anne E.; Foster, Cliff; Happs, Renee M.; ...
2016-09-14
Thioacidolysis is a method used to measure the relative content of lignin monomers bound by β-O-4 linkages. Current thioacidolysis methods are low-throughput as they require tedious steps for reaction product concentration prior to analysis using standard GC methods. A quantitative thioacidolysis method that is accessible with general laboratory equipment and uses a non-chlorinated organic solvent and is tailored for higher-throughput analysis is reported. The method utilizes lignin arylglycerol monomer standards for calibration, requires 1-2 mg of biomass per assay and has been quantified using fast-GC techniques including a Low Thermal Mass Modular Accelerated Column Heater (LTM MACH). Cumbersome steps, includingmore » standard purification, sample concentrating and drying have been eliminated to help aid in consecutive day-to-day analyses needed to sustain a high sample throughput for large screening experiments without the loss of quantitation accuracy. As a result, the method reported in this manuscript has been quantitatively validated against a commonly used thioacidolysis method and across two different research sites with three common biomass varieties to represent hardwoods, softwoods, and grasses.« less
1001 Ways to run AutoDock Vina for virtual screening
NASA Astrophysics Data System (ADS)
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D.
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
1001 Ways to run AutoDock Vina for virtual screening.
Jaghoori, Mohammad Mahdi; Bleijlevens, Boris; Olabarriaga, Silvia D
2016-03-01
Large-scale computing technologies have enabled high-throughput virtual screening involving thousands to millions of drug candidates. It is not trivial, however, for biochemical scientists to evaluate the technical alternatives and their implications for running such large experiments. Besides experience with the molecular docking tool itself, the scientist needs to learn how to run it on high-performance computing (HPC) infrastructures, and understand the impact of the choices made. Here, we review such considerations for a specific tool, AutoDock Vina, and use experimental data to illustrate the following points: (1) an additional level of parallelization increases virtual screening throughput on a multi-core machine; (2) capturing of the random seed is not enough (though necessary) for reproducibility on heterogeneous distributed computing systems; (3) the overall time spent on the screening of a ligand library can be improved by analysis of factors affecting execution time per ligand, including number of active torsions, heavy atoms and exhaustiveness. We also illustrate differences among four common HPC infrastructures: grid, Hadoop, small cluster and multi-core (virtual machine on the cloud). Our analysis shows that these platforms are suitable for screening experiments of different sizes. These considerations can guide scientists when choosing the best computing platform and set-up for their future large virtual screening experiments.
Bayat, Pouriya; Rezai, Pouya
2018-05-21
One of the common operations in sample preparation is to separate specific particles (e.g. target cells, embryos or microparticles) from non-target substances (e.g. bacteria) in a fluid and to wash them into clean buffers for further processing like detection (called solution exchange in this paper). For instance, solution exchange is widely needed in preparing fluidic samples for biosensing at the point-of-care and point-of-use, but still conducted via the use of cumbersome and time-consuming off-chip analyte washing and purification techniques. Existing small-scale and handheld active and passive devices for washing particles are often limited to very low throughputs or require external sources of energy. Here, we integrated Dean flow recirculation of two fluids in curved microchannels with selective inertial focusing of target particles to develop a microfluidic centrifuge device that can isolate specific particles (as surrogates for target analytes) from bacteria and wash them into a clean buffer at high throughput and efficiency. We could process micron-size particles at a flow rate of 1 mL min-1 and achieve throughputs higher than 104 particles per second. Our results reveal that the device is capable of singleplex solution exchange of 11 μm and 19 μm particles with efficiencies of 86 ± 2% and 93 ± 0.7%, respectively. A purity of 96 ± 2% was achieved in the duplex experiments where 11 μm particles were isolated from 4 μm particles. Application of our device in biological assays was shown by performing duplex experiments where 11 μm or 19 μm particles were isolated from an Escherichia coli bacterial suspension with purities of 91-98%. We envision that our technique will have applications in point-of-care devices for simultaneous purification and solution exchange of cells and embryos from smaller substances in high-volume suspensions at high throughput and efficiency.
NASA Astrophysics Data System (ADS)
Lawton, Zachary E.; Traub, Angelica; Fatigante, William L.; Mancias, Jose; O'Leary, Adam E.; Hall, Seth E.; Wieland, Jamie R.; Oberacher, Herbert; Gizzi, Michael C.; Mulligan, Christopher C.
2017-06-01
Forensic evidentiary backlogs are indicative of the growing need for cost-effective, high-throughput instrumental methods. One such emerging technology that shows high promise in meeting this demand while also allowing on-site forensic investigation is portable mass spectrometric (MS) instrumentation, particularly that which enables the coupling to ambient ionization techniques. While the benefits of rapid, on-site screening of contraband can be anticipated, the inherent legal implications of field-collected data necessitates that the analytical performance of technology employed be commensurate with accepted techniques. To this end, comprehensive analytical validation studies are required before broad incorporation by forensic practitioners can be considered, and are the focus of this work. Pertinent performance characteristics such as throughput, selectivity, accuracy/precision, method robustness, and ruggedness have been investigated. Reliability in the form of false positive/negative response rates is also assessed, examining the effect of variables such as user training and experience level. To provide flexibility toward broad chemical evidence analysis, a suite of rapidly-interchangeable ion sources has been developed and characterized through the analysis of common illicit chemicals and emerging threats like substituted phenethylamines. [Figure not available: see fulltext.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks
Song, W.-Z.; Huang, R.; Shirazi, B.; Husent, R.L.
2009-01-01
Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and frame into slots. Parent determines children's frame assigmnent based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. Firstly, given any node, at any time slot, there is at most one active sender in its neighborhood (includ ing itself). Secondly, the packet scheduling with TreelMAC is bufferless, which therefore minimizes the probability of network congestion. Thirdly, the data throughput to gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24 node test bed demonstrate that TreeMAC protocol significantly improves network throughput and energy efficiency, by comparing to the TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC[8]. ?? 2009 IEEE.
Christodoulou, Eleni G.; Yang, Hai; Lademann, Franziska; Pilarsky, Christian; Beyer, Andreas; Schroeder, Michael
2017-01-01
Mutated KRAS plays an important role in many cancers. Although targeting KRAS directly is difficult, indirect inactivation via synthetic lethal partners (SLPs) is promising. Yet to date, there are no SLPs from high-throughput RNAi screening, which are supported by multiple screens. Here, we address this problem by aggregating and ranking data over three independent high-throughput screens. We integrate rankings by minimizing the displacement and by considering established methods such as RIGER and RSA. Our meta analysis reveals COPB2 as a potential SLP of KRAS with good support from all three screens. COPB2 is a coatomer subunit and its knock down has already been linked to disabled autophagy and reduced tumor growth. We confirm COPB2 as SLP in knock down experiments on pancreas and colorectal cancer cell lines. Overall, consistent integration of high throughput data can generate candidate synthetic lethal partners, which individual screens do not uncover. Concretely, we reveal and confirm that COPB2 is a synthetic lethal partner of KRAS and hence a promising cancer target. Ligands inhibiting COPB2 may, therefore, be promising new cancer drugs. PMID:28415695
High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish
NASA Astrophysics Data System (ADS)
Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer
The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.
Shinde, Aniketa; Guevarra, Dan; Haber, Joel A.; ...
2014-10-21
For many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce,more » La, and Fe were prepared by a high throughput inkjet printing technique. Moreover, the catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. Our measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.« less
High Throughput PBTK: Open-Source Data and Tools for ...
Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy
ACTS 118x Final Report High-Speed TCP Interoperability Testing
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Zernic, Mike; Hoder, Douglas J.; Brooks, David E.; Beering, Dave R.; Welch, Arun
1999-01-01
With the recent explosion of the Internet and the enormous business opportunities available to communication system providers, great interest has developed in improving the efficiency of data transfer using the Transmission Control Protocol (TCP) of the Internet Protocol (IP) suite. The satellite system providers are interested in solving TCP efficiency problems associated with long delays and error-prone links. Similarly, the terrestrial community is interested in solving TCP problems over high-bandwidth links. Whereas the wireless community is interested in improving TCP performance over bandwidth constrained, error-prone links. NASA realized that solutions had already been proposed for most of the problems associated with efficient data transfer over large bandwidth-delay links (which include satellite links). The solutions are detailed in various Internet Engineering Task Force (IETF) Request for Comments (RFCs). Unfortunately, most of these solutions had not been tested at high-speed (155+ Mbps). Therefore, the NASA's ACTS experiments program initiated a series of TCP experiments to demonstrate scalability of TCP/IP and determine how far the protocol can be optimized over a 622 Mbps satellite link. These experiments were known as the 118i and 118j experiments. During the 118i and 118j experiments, NASA worked closely with SUN Microsystems and FORE Systems to improve the operating system, TCP stacks. and network interface cards and drivers. We were able to obtain instantaneous data throughput rates of greater than 520 Mbps and average throughput rates of 470 Mbps using TCP over Asynchronous Transfer Mode (ATM) over a 622 Mbps Synchronous Optical Network (SONET) OC12 link. Following the success of these experiments and the successful government/industry collaboration, a new series of experiments. the 118x experiments. were developed.
Intuitive web-based experimental design for high-throughput biomedical data.
Friedrich, Andreas; Kenar, Erhan; Kohlbacher, Oliver; Nahnsen, Sven
2015-01-01
Big data bioinformatics aims at drawing biological conclusions from huge and complex biological datasets. Added value from the analysis of big data, however, is only possible if the data is accompanied by accurate metadata annotation. Particularly in high-throughput experiments intelligent approaches are needed to keep track of the experimental design, including the conditions that are studied as well as information that might be interesting for failure analysis or further experiments in the future. In addition to the management of this information, means for an integrated design and interfaces for structured data annotation are urgently needed by researchers. Here, we propose a factor-based experimental design approach that enables scientists to easily create large-scale experiments with the help of a web-based system. We present a novel implementation of a web-based interface allowing the collection of arbitrary metadata. To exchange and edit information we provide a spreadsheet-based, humanly readable format. Subsequently, sample sheets with identifiers and metainformation for data generation facilities can be created. Data files created after measurement of the samples can be uploaded to a datastore, where they are automatically linked to the previously created experimental design model.
Possibilities for serial femtosecond crystallography sample delivery at future light sourcesa)
Chavas, L. M. G.; Gumprecht, L.; Chapman, H. N.
2015-01-01
Serial femtosecond crystallography (SFX) uses X-ray pulses from free-electron laser (FEL) sources that can outrun radiation damage and thereby overcome long-standing limits in the structure determination of macromolecular crystals. Intense X-ray FEL pulses of sufficiently short duration allow the collection of damage-free data at room temperature and give the opportunity to study irreversible time-resolved events. SFX may open the way to determine the structure of biological molecules that fail to crystallize readily into large well-diffracting crystals. Taking advantage of FELs with high pulse repetition rates could lead to short measurement times of just minutes. Automated delivery of sample suspensions for SFX experiments could potentially give rise to a much higher rate of obtaining complete measurements than at today's third generation synchrotron radiation facilities, as no crystal alignment or complex robotic motions are required. This capability will also open up extensive time-resolved structural studies. New challenges arise from the resulting high rate of data collection, and in providing reliable sample delivery. Various developments for fully automated high-throughput SFX experiments are being considered for evaluation, including new implementations for a reliable yet flexible sample environment setup. Here, we review the different methods developed so far that best achieve sample delivery for X-ray FEL experiments and present some considerations towards the goal of high-throughput structure determination with X-ray FELs. PMID:26798808
USDA-ARS?s Scientific Manuscript database
The amount of microarray gene expression data in public repositories has been increasing exponentially for the last couple of decades. High-throughput microarray data integration and analysis has become a critical step in exploring the large amount of expression data for biological discovery. Howeve...
'Enzyme Test Bench': A biochemical application of the multi-rate modeling
NASA Astrophysics Data System (ADS)
Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.
2008-11-01
In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature. The presented article gives a successful example for the application of multi-rate modeling, experimental design and parameter estimation within biochemical engineering. At the same time, it shows the limitations of the methods at the state of the art and addresses the current problems to the applied mathematics community.
Engelmann, Brett W
2017-01-01
The Src Homology 2 (SH2) domain family primarily recognizes phosphorylated tyrosine (pY) containing peptide motifs. The relative affinity preferences among competing SH2 domains for phosphopeptide ligands define "specificity space," and underpins many functional pY mediated interactions within signaling networks. The degree of promiscuity exhibited and the dynamic range of affinities supported by individual domains or phosphopeptides is best resolved by a carefully executed and controlled quantitative high-throughput experiment. Here, I describe the fabrication and application of a cellulose-peptide conjugate microarray (CPCMA) platform to the quantitative analysis of SH2 domain specificity space. Included herein are instructions for optimal experimental design with special attention paid to common sources of systematic error, phosphopeptide SPOT synthesis, microarray fabrication, analyte titrations, data capture, and analysis.
NASA Astrophysics Data System (ADS)
Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan
2007-07-01
An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.
Bladergroen, Marco R.; van der Burgt, Yuri E. M.
2015-01-01
For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071
A Microfluidic Platform for High-Throughput Multiplexed Protein Quantitation
Volpetti, Francesca; Garcia-Cordero, Jose; Maerkl, Sebastian J.
2015-01-01
We present a high-throughput microfluidic platform capable of quantitating up to 384 biomarkers in 4 distinct samples by immunoassay. The microfluidic device contains 384 unit cells, which can be individually programmed with pairs of capture and detection antibody. Samples are quantitated in each unit cell by four independent MITOMI detection areas, allowing four samples to be analyzed in parallel for a total of 1,536 assays per device. We show that the device can be pre-assembled and stored for weeks at elevated temperature and we performed proof-of-concept experiments simultaneously quantitating IL-6, IL-1β, TNF-α, PSA, and GFP. Finally, we show that the platform can be used to identify functional antibody combinations by screening 64 antibody combinations requiring up to 384 unique assays per device. PMID:25680117
Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.
Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi
2008-09-19
Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.
Application of ToxCast High-Throughput Screening and ...
Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors
Optimizing transformations for automated, high throughput analysis of flow cytometry data
2010-01-01
Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce variability in the location of discovered cell populations across samples, and decrease the misclassification (mis-gating) of individual events when compared to default-parameter counterparts. Conclusions Our results indicate that the preferred transformation for fluorescence channels is a parameter- optimized biexponential or generalized Box-Cox, in accordance with current best practices. Interestingly, for populations in the scatter channels, we find that the optimized hyperbolic arcsine may be a better choice in a high-throughput setting than current standard practice of no transformation. However, generally speaking, the choice of transformation remains data-dependent. We have implemented our algorithm in the BioConductor package, flowTrans, which is publicly available. PMID:21050468
Optimizing transformations for automated, high throughput analysis of flow cytometry data.
Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael
2010-11-04
In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce variability in the location of discovered cell populations across samples, and decrease the misclassification (mis-gating) of individual events when compared to default-parameter counterparts. Our results indicate that the preferred transformation for fluorescence channels is a parameter- optimized biexponential or generalized Box-Cox, in accordance with current best practices. Interestingly, for populations in the scatter channels, we find that the optimized hyperbolic arcsine may be a better choice in a high-throughput setting than current standard practice of no transformation. However, generally speaking, the choice of transformation remains data-dependent. We have implemented our algorithm in the BioConductor package, flowTrans, which is publicly available.
Sinclair, Thomas R; Manandhar, Anju; Shekoofa, Avat; Rosas-Anderson, Pablo; Bagherzadi, Laleh; Schoppach, Remy; Sadok, Walid; Rufty, Thomas W
2017-04-01
Theoretical derivation predicted growth retardation due to pot water limitations, i.e., pot binding. Experimental observations were consistent with these limitations. Combined, these results indicate a need for caution in high-throughput screening and phenotyping. Pot experiments are a mainstay in many plant studies, including the current emphasis on developing high-throughput, phenotyping systems. Pot studies can be vulnerable to decreased physiological activity of the plants particularly when pot volume is small, i.e., "pot binding". It is necessary to understand the conditions under which pot binding may exist to avoid the confounding influence of pot binding in interpreting experimental results. In this paper, a derivation is offered that gives well-defined conditions for the occurrence of pot binding based on restricted water availability. These results showed that not only are pot volume and plant size important variables, but the potting media is critical. Artificial potting mixtures used in many studies, including many high-throughput phenotyping systems, are particularly susceptible to the confounding influences of pot binding. Experimental studies for several crop species are presented that clearly show the existence of thresholds of plant leaf area at which various pot sizes and potting media result in the induction of pot binding even though there may be no immediate, visual plant symptoms. The derivation and experimental results showed that pot binding can readily occur in plant experiments if care is not given to have sufficiently large pots, suitable potting media, and maintenance of pot water status. Clear guidelines are provided for avoiding the confounding effects of water-limited pot binding in studying plant phenotype.
Asha, Srinivasan; Sreekumar, Sweda; Soniya, E V
2016-01-01
Analysis of high-throughput small RNA deep sequencing data, in combination with black pepper transcriptome sequences revealed microRNA-mediated gene regulation in black pepper ( Piper nigrum L.). Black pepper is an important spice crop and its berries are used worldwide as a natural food additive that contributes unique flavour to foods. In the present study to characterize microRNAs from black pepper, we generated a small RNA library from black pepper leaf and sequenced it by Illumina high-throughput sequencing technology. MicroRNAs belonging to a total of 303 conserved miRNA families were identified from the sRNAome data. Subsequent analysis from recently sequenced black pepper transcriptome confirmed precursor sequences of 50 conserved miRNAs and four potential novel miRNA candidates. Stem-loop qRT-PCR experiments demonstrated differential expression of eight conserved miRNAs in black pepper. Computational analysis of targets of the miRNAs showed 223 potential black pepper unigene targets that encode diverse transcription factors and enzymes involved in plant development, disease resistance, metabolic and signalling pathways. RLM-RACE experiments further mapped miRNA-mediated cleavage at five of the mRNA targets. In addition, miRNA isoforms corresponding to 18 miRNA families were also identified from black pepper. This study presents the first large-scale identification of microRNAs from black pepper and provides the foundation for the future studies of miRNA-mediated gene regulation of stress responses and diverse metabolic processes in black pepper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Jian-Bo; Ji, Nan; Pan, Wen
2014-01-01
Drugs may induce adverse drug reactions (ADRs) when they unexpectedly bind to proteins other than their therapeutic targets. Identification of these undesired protein binding partners, called off-targets, can facilitate toxicity assessment in the early stages of drug development. In this study, a computational framework was introduced for the exploration of idiosyncratic mechanisms underlying analgesic-induced severe adverse drug reactions (SADRs). The putative analgesic-target interactions were predicted by performing reverse docking of analgesics or their active metabolites against human/mammal protein structures in a high-throughput manner. Subsequently, bioinformatics analyses were undertaken to identify ADR-associated proteins (ADRAPs) and pathways. Using the pathways and ADRAPsmore » that this analysis identified, the mechanisms of SADRs such as cardiac disorders were explored. For instance, 53 putative ADRAPs and 24 pathways were linked with cardiac disorders, of which 10 ADRAPs were confirmed by previous experiments. Moreover, it was inferred that pathways such as base excision repair, glycolysis/glyconeogenesis, ErbB signaling, calcium signaling, and phosphatidyl inositol signaling likely play pivotal roles in drug-induced cardiac disorders. In conclusion, our framework offers an opportunity to globally understand SADRs at the molecular level, which has been difficult to realize through experiments. It also provides some valuable clues for drug repurposing. - Highlights: • A novel computational framework was developed for mechanistic study of SADRs. • Off-targets of drugs were identified in large scale and in a high-throughput manner. • SADRs like cardiac disorders were systematically explored in molecular networks. • A number of ADR-associated proteins were identified.« less
Ganna, Andrea; Lee, Donghwan; Ingelsson, Erik; Pawitan, Yudi
2015-07-01
It is common and advised practice in biomedical research to validate experimental or observational findings in a population different from the one where the findings were initially assessed. This practice increases the generalizability of the results and decreases the likelihood of reporting false-positive findings. Validation becomes critical when dealing with high-throughput experiments, where the large number of tests increases the chance to observe false-positive results. In this article, we review common approaches to determine statistical thresholds for validation and describe the factors influencing the proportion of significant findings from a 'training' sample that are replicated in a 'validation' sample. We refer to this proportion as rediscovery rate (RDR). In high-throughput studies, the RDR is a function of false-positive rate and power in both the training and validation samples. We illustrate the application of the RDR using simulated data and real data examples from metabolomics experiments. We further describe an online tool to calculate the RDR using t-statistics. We foresee two main applications. First, if the validation study has not yet been collected, the RDR can be used to decide the optimal combination between the proportion of findings taken to validation and the size of the validation study. Secondly, if a validation study has already been done, the RDR estimated using the training data can be compared with the observed RDR from the validation data; hence, the success of the validation study can be assessed. © The Author 2014. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister
2014-05-01
The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.
High Throughput Screening For Hazard and Risk of Environmental Contaminants
High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...
Duan, Yongbo; Zhai, Chenguang; Li, Hao; Li, Juan; Mei, Wenqian; Gui, Huaping; Ni, Dahu; Song, Fengshun; Li, Li; Zhang, Wanggen; Yang, Jianbo
2012-09-01
A number of Agrobacterium-mediated rice transformation systems have been developed and widely used in numerous laboratories and research institutes. However, those systems generally employ antibiotics like kanamycin and hygromycin, or herbicide as selectable agents, and are used for the small-scale experiments. To address high-throughput production of transgenic rice plants via Agrobacterium-mediated transformation, and to eliminate public concern on antibiotic markers, we developed a comprehensive efficient protocol, covering from explant preparation to the acquisition of low copy events by real-time PCR analysis before transplant to field, for high-throughput production of transgenic plants of Japonica rice varieties Wanjing97 and Nipponbare using Escherichia coli phosphomannose isomerase gene (pmi) as a selectable marker. The transformation frequencies (TF) of Wanjing97 and Nipponbare were achieved as high as 54.8 and 47.5%, respectively, in one round of selection of 7.5 or 12.5 g/L mannose appended with 5 g/L sucrose. High-throughput transformation from inoculation to transplant of low copy events was accomplished within 55-60 days. Moreover, the Taqman assay data from a large number of transformants showed 45.2% in Wanjing97 and 31.5% in Nipponbare as a low copy rate, and the transformants are fertile and follow the Mendelian segregation ratio. This protocol facilitates us to perform genome-wide functional annotation of the open reading frames and utilization of the agronomically important genes in rice under a reduced public concern on selectable markers. We describe a comprehensive protocol for large scale production of transgenic Japonica rice plants using non-antibiotic selectable agent, at simplified, cost- and labor-saving manners.
High Throughput Transcriptomics: From screening to pathways
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
NASA Astrophysics Data System (ADS)
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-12-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun
2012-01-01
With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607
20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-08-01
In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.
Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data.
Althammer, Sonja; González-Vallinas, Juan; Ballaré, Cecilia; Beato, Miguel; Eyras, Eduardo
2011-12-15
High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein-DNA and protein-RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxy eduardo.eyras@upf.edu Supplementary data are available at Bioinformatics online.
Improvement of an automated protein crystal exchange system PAM for high-throughput data collection
Hiraki, Masahiko; Yamada, Yusuke; Chavas, Leonard M. G.; Wakatsuki, Soichi; Matsugaki, Naohiro
2013-01-01
Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable. PMID:24121334
High Throughput Determination of Critical Human Dosing Parameters (SOT)
High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...
High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)
High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...
Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos
Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...
Patel, Rajesh; Tsan, Alison; Sumiyoshi, Teiko; Fu, Ling; Desai, Rupal; Schoenbrunner, Nancy; Myers, Thomas W.; Bauer, Keith; Smith, Edward; Raja, Rajiv
2014-01-01
Molecular profiling of tumor tissue to detect alterations, such as oncogenic mutations, plays a vital role in determining treatment options in oncology. Hence, there is an increasing need for a robust and high-throughput technology to detect oncogenic hotspot mutations. Although commercial assays are available to detect genetic alterations in single genes, only a limited amount of tissue is often available from patients, requiring multiplexing to allow for simultaneous detection of mutations in many genes using low DNA input. Even though next-generation sequencing (NGS) platforms provide powerful tools for this purpose, they face challenges such as high cost, large DNA input requirement, complex data analysis, and long turnaround times, limiting their use in clinical settings. We report the development of the next generation mutation multi-analyte panel (MUT-MAP), a high-throughput microfluidic, panel for detecting 120 somatic mutations across eleven genes of therapeutic interest (AKT1, BRAF, EGFR, FGFR3, FLT3, HRAS, KIT, KRAS, MET, NRAS, and PIK3CA) using allele-specific PCR (AS-PCR) and Taqman technology. This mutation panel requires as little as 2 ng of high quality DNA from fresh frozen or 100 ng of DNA from formalin-fixed paraffin-embedded (FFPE) tissues. Mutation calls, including an automated data analysis process, have been implemented to run 88 samples per day. Validation of this platform using plasmids showed robust signal and low cross-reactivity in all of the newly added assays and mutation calls in cell line samples were found to be consistent with the Catalogue of Somatic Mutations in Cancer (COSMIC) database allowing for direct comparison of our platform to Sanger sequencing. High correlation with NGS when compared to the SuraSeq500 panel run on the Ion Torrent platform in a FFPE dilution experiment showed assay sensitivity down to 0.45%. This multiplexed mutation panel is a valuable tool for high-throughput biomarker discovery in personalized medicine and cancer drug development. PMID:24658394
Cabrera-Bosquet, Llorenç; Fournier, Christian; Brichet, Nicolas; Welcker, Claude; Suard, Benoît; Tardieu, François
2016-10-01
Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light. The spatial variation of direct and diffuse incident light in the glasshouse (up to 24%) was correctly predicted at the single-plant scale. Light interception largely varied between maize lines that differed in leaf angles (nearly stable between experiments) and area (highly variable between experiments). Estimated RUEs varied between maize lines, but were similar in two experiments with contrasting incident light. They closely correlated with measured gas exchanges. The methods proposed here identified reproducible traits that might be used in further field studies, thereby opening up the way for large-scale genetic analyses of the components of plant performance. © 2016 INRA New Phytologist © 2016 New Phytologist Trust.
OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid.
Poehlman, William L; Rynge, Mats; Branton, Chris; Balamurugan, D; Feltus, Frank A
2016-01-01
High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments.
OSG-GEM: Gene Expression Matrix Construction Using the Open Science Grid
Poehlman, William L.; Rynge, Mats; Branton, Chris; Balamurugan, D.; Feltus, Frank A.
2016-01-01
High-throughput DNA sequencing technology has revolutionized the study of gene expression while introducing significant computational challenges for biologists. These computational challenges include access to sufficient computer hardware and functional data processing workflows. Both these challenges are addressed with our scalable, open-source Pegasus workflow for processing high-throughput DNA sequence datasets into a gene expression matrix (GEM) using computational resources available to U.S.-based researchers on the Open Science Grid (OSG). We describe the usage of the workflow (OSG-GEM), discuss workflow design, inspect performance data, and assess accuracy in mapping paired-end sequencing reads to a reference genome. A target OSG-GEM user is proficient with the Linux command line and possesses basic bioinformatics experience. The user may run this workflow directly on the OSG or adapt it to novel computing environments. PMID:27499617
Calvo, Sarah E; Tucker, Elena J; Compton, Alison G; Kirby, Denise M; Crawford, Gabriel; Burtt, Noel P; Rivas, Manuel A; Guiducci, Candace; Bruno, Damien L; Goldberger, Olga A; Redman, Michelle C; Wiltshire, Esko; Wilson, Callum J; Altshuler, David; Gabriel, Stacey B; Daly, Mark J; Thorburn, David R; Mootha, Vamsi K
2010-01-01
Discovering the molecular basis of mitochondrial respiratory chain disease is challenging given the large number of both mitochondrial and nuclear genes involved. We report a strategy of focused candidate gene prediction, high-throughput sequencing, and experimental validation to uncover the molecular basis of mitochondrial complex I (CI) disorders. We created five pools of DNA from a cohort of 103 patients and then performed deep sequencing of 103 candidate genes to spotlight 151 rare variants predicted to impact protein function. We used confirmatory experiments to establish genetic diagnoses in 22% of previously unsolved cases, and discovered that defects in NUBPL and FOXRED1 can cause CI deficiency. Our study illustrates how large-scale sequencing, coupled with functional prediction and experimental validation, can reveal novel disease-causing mutations in individual patients. PMID:20818383
Automated solar cell assembly team process research
NASA Astrophysics Data System (ADS)
Nowlan, M. J.; Hogan, S. J.; Darkazalli, G.; Breen, W. F.; Murach, J. M.; Sutherland, S. F.; Patterson, J. S.
1994-06-01
This report describes work done under the Photovoltaic Manufacturing Technology (PVMaT) project, Phase 3A, which addresses problems that are generic to the photovoltaic (PV) industry. Spire's objective during Phase 3A was to use its light soldering technology and experience to design and fabricate solar cell tabbing and interconnecting equipment to develop new, high-yield, high-throughput, fully automated processes for tabbing and interconnecting thin cells. Areas that were addressed include processing rates, process control, yield, throughput, material utilization efficiency, and increased use of automation. Spire teamed with Solec International, a PV module manufacturer, and the University of Massachusetts at Lowell's Center for Productivity Enhancement (CPE), automation specialists, who are lower-tier subcontractors. A number of other PV manufacturers, including Siemens Solar, Mobil Solar, Solar Web, and Texas instruments, agreed to evaluate the processes developed under this program.
Computational methods for evaluation of cell-based data assessment--Bioconductor.
Le Meur, Nolwenn
2013-02-01
Recent advances in miniaturization and automation of technologies have enabled cell-based assay high-throughput screening, bringing along new challenges in data analysis. Automation, standardization, reproducibility have become requirements for qualitative research. The Bioconductor community has worked in that direction proposing several R packages to handle high-throughput data including flow cytometry (FCM) experiment. Altogether, these packages cover the main steps of a FCM analysis workflow, that is, data management, quality assessment, normalization, outlier detection, automated gating, cluster labeling, and feature extraction. Additionally, the open-source philosophy of R and Bioconductor, which offers room for new development, continuously drives research and improvement of theses analysis methods, especially in the field of clustering and data mining. This review presents the principal FCM packages currently available in R and Bioconductor, their advantages and their limits. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mapping specificity landscapes of RNA-protein interactions by high throughput sequencing.
Jankowsky, Eckhard; Harris, Michael E
2017-04-15
To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reaction, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which combine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively assess substrate discrimination for large numbers of substrate variants at ground and transition states of RNA-protein binding reactions. We discuss experimental design, practical considerations and data analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity landscapes. Copyright © 2017 Elsevier Inc. All rights reserved.
Froman, D P; Rhoads, D D
2012-10-01
The objectives of the present work were 3-fold. First, a new method for estimating daily sperm production was validated. This method, in turn, was used to evaluate testis output as well as deferent duct throughput. Next, this analytical approach was evaluated in 2 experiments. The first experiment compared left and right reproductive tracts within roosters. The second experiment compared reproductive tract throughput in roosters from low and high sperm mobility lines. Standard curves were constructed from which unknown concentrations of sperm cells and sperm nuclei could be predicted from observed absorbance. In each case, the independent variable was based upon hemacytometer counts, and absorbance was a linear function of concentration. Reproductive tracts were excised, semen recovered from each duct, and the extragonadal sperm reserve determined by multiplying volume by sperm cell concentration. Testicular sperm nuclei were procured by homogenization of a whole testis, overlaying a 20-mL volume of homogenate upon 15% (wt/vol) Accudenz (Accurate Chemical and Scientific Corporation, Westbury, NY), and then washing nuclei by centrifugation through the Accudenz layer. Daily sperm production was determined by dividing the predicted number of sperm nuclei within the homogenate by 4.5 d (i.e., the time sperm with elongated nuclei spend within the testis). Sperm transit through the deferent duct was estimated by dividing the extragonadal reserve by daily sperm production. Neither the efficiency of sperm production (sperm per gram of testicular parenchyma per day) nor deferent duct transit differed between left and right reproductive tracts (P > 0.05). Whereas efficiency of sperm production did not differ (P > 0.05) between low and high sperm mobility lines, deferent duct transit differed between lines (P < 0.001). On average, this process required 2.2 and 1.0 d for low and high lines, respectively. In summary, we developed and then tested a method for quantifying male reproductive tract throughput. This method makes the study of semen production amenable to systems biology.
MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments
Georgakopoulos-Soares, Ilias; Jain, Naman; Gray, Jesse M; Hemberg, Martin
2017-01-01
Motivation: With the rapid advances in DNA synthesis and sequencing technologies and the continuing decline in the associated costs, high-throughput experiments can be performed to investigate the regulatory role of thousands of oligonucleotide sequences simultaneously. Nevertheless, designing high-throughput reporter assay experiments such as massively parallel reporter assays (MPRAs) and similar methods remains challenging. Results: We introduce MPRAnator, a set of tools that facilitate rapid design of MPRA experiments. With MPRA Motif design, a set of variables provides fine control of how motifs are placed into sequences, thereby allowing the investigation of the rules that govern transcription factor (TF) occupancy. MPRA single-nucleotide polymorphism design can be used to systematically examine the functional effects of single or combinations of single-nucleotide polymorphisms at regulatory sequences. Finally, the Transmutation tool allows for the design of negative controls by permitting scrambling, reversing, complementing or introducing multiple random mutations in the input sequences or motifs. Availability and implementation: MPRAnator tool set is implemented in Python, Perl and Javascript and is freely available at www.genomegeek.com and www.sanger.ac.uk/science/tools/mpranator. The source code is available on www.github.com/hemberg-lab/MPRAnator/ under the MIT license. The REST API allows programmatic access to MPRAnator using simple URLs. Contact: igs@sanger.ac.uk or mh26@sanger.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27605100
MPRAnator: a web-based tool for the design of massively parallel reporter assay experiments.
Georgakopoulos-Soares, Ilias; Jain, Naman; Gray, Jesse M; Hemberg, Martin
2017-01-01
With the rapid advances in DNA synthesis and sequencing technologies and the continuing decline in the associated costs, high-throughput experiments can be performed to investigate the regulatory role of thousands of oligonucleotide sequences simultaneously. Nevertheless, designing high-throughput reporter assay experiments such as massively parallel reporter assays (MPRAs) and similar methods remains challenging. We introduce MPRAnator, a set of tools that facilitate rapid design of MPRA experiments. With MPRA Motif design, a set of variables provides fine control of how motifs are placed into sequences, thereby allowing the investigation of the rules that govern transcription factor (TF) occupancy. MPRA single-nucleotide polymorphism design can be used to systematically examine the functional effects of single or combinations of single-nucleotide polymorphisms at regulatory sequences. Finally, the Transmutation tool allows for the design of negative controls by permitting scrambling, reversing, complementing or introducing multiple random mutations in the input sequences or motifs. MPRAnator tool set is implemented in Python, Perl and Javascript and is freely available at www.genomegeek.com and www.sanger.ac.uk/science/tools/mpranator The source code is available on www.github.com/hemberg-lab/MPRAnator/ under the MIT license. The REST API allows programmatic access to MPRAnator using simple URLs. igs@sanger.ac.uk or mh26@sanger.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
High-throughput cultivation and screening platform for unicellular phototrophs.
Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus
2014-09-16
High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.
Life in the fast lane for protein crystallization and X-ray crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2005-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Life in the Fast Lane for Protein Crystallization and X-Ray Crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.
2004-01-01
The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui
2014-11-21
Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.
TreeMAC: Localized TDMA MAC protocol for real-time high-data-rate sensor networks
Song, W.-Z.; Huang, R.; Shirazi, B.; LaHusen, R.
2009-01-01
Earlier sensor network MAC protocols focus on energy conservation in low-duty cycle applications, while some recent applications involve real-time high-data-rate signals. This motivates us to design an innovative localized TDMA MAC protocol to achieve high throughput and low congestion in data collection sensor networks, besides energy conservation. TreeMAC divides a time cycle into frames and each frame into slots. A parent node determines the children's frame assignment based on their relative bandwidth demand, and each node calculates its own slot assignment based on its hop-count to the sink. This innovative 2-dimensional frame-slot assignment algorithm has the following nice theory properties. First, given any node, at any time slot, there is at most one active sender in its neighborhood (including itself). Second, the packet scheduling with TreeMAC is bufferless, which therefore minimizes the probability of network congestion. Third, the data throughput to the gateway is at least 1/3 of the optimum assuming reliable links. Our experiments on a 24-node testbed show that TreeMAC protocol significantly improves network throughput, fairness, and energy efficiency compared to TinyOS's default CSMA MAC protocol and a recent TDMA MAC protocol Funneling-MAC. Partial results of this paper were published in Song, Huang, Shirazi and Lahusen [W.-Z. Song, R. Huang, B. Shirazi, and R. Lahusen, TreeMAC: Localized TDMA MAC protocol for high-throughput and fairness in sensor networks, in: The 7th Annual IEEE International Conference on Pervasive Computing and Communications, PerCom, March 2009]. Our new contributions include analyses of the performance of TreeMAC from various aspects. We also present more implementation detail and evaluate TreeMAC from other aspects. ?? 2009 Elsevier B.V.
Richter, Ingrid; Fidler, Andrew E.
2014-01-01
Developing high-throughput assays to screen marine extracts for bioactive compounds presents both conceptual and technical challenges. One major challenge is to develop assays that have well-grounded ecological and evolutionary rationales. In this review we propose that a specific group of ligand-activated transcription factors are particularly well-suited to act as sensors in such bioassays. More specifically, xenobiotic-activated nuclear receptors (XANRs) regulate transcription of genes involved in xenobiotic detoxification. XANR ligand-binding domains (LBDs) may adaptively evolve to bind those bioactive, and potentially toxic, compounds to which organisms are normally exposed to through their specific diets. A brief overview of the function and taxonomic distribution of both vertebrate and invertebrate XANRs is first provided. Proof-of-concept experiments are then described which confirm that a filter-feeding marine invertebrate XANR LBD is activated by marine bioactive compounds. We speculate that increasing access to marine invertebrate genome sequence data, in combination with the expression of functional recombinant marine invertebrate XANR LBDs, will facilitate the generation of high-throughput bioassays/biosensors of widely differing specificities, but all based on activation of XANR LBDs. Such assays may find application in screening marine extracts for bioactive compounds that could act as drug lead compounds. PMID:25421319
Li, Ben; Li, Yunxiao; Qin, Zhaohui S
2017-06-01
Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p , small n ' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Li, Ben; Li, Yunxiao; Qin, Zhaohui S.
2016-01-01
Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical ‘large p, small n’ problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package “adaptiveHM”, which is freely available from https://github.com/benliemory/adaptiveHM. PMID:28919931
Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...
2015-01-07
Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.
Canver, Matthew C; Lessard, Samuel; Pinello, Luca; Wu, Yuxuan; Ilboudo, Yann; Stern, Emily N; Needleman, Austen J; Galactéros, Frédéric; Brugnara, Carlo; Kutlar, Abdullah; McKenzie, Colin; Reid, Marvin; Chen, Diane D; Das, Partha Pratim; A Cole, Mitchel; Zeng, Jing; Kurita, Ryo; Nakamura, Yukio; Yuan, Guo-Cheng; Lettre, Guillaume; Bauer, Daniel E; Orkin, Stuart H
2017-04-01
Cas9-mediated, high-throughput, saturating in situ mutagenesis permits fine-mapping of function across genomic segments. Disease- and trait-associated variants identified in genome-wide association studies largely cluster at regulatory loci. Here we demonstrate the use of multiple designer nucleases and variant-aware library design to interrogate trait-associated regulatory DNA at high resolution. We developed a computational tool for the creation of saturating-mutagenesis libraries with single or multiple nucleases with incorporation of variants. We applied this methodology to the HBS1L-MYB intergenic region, which is associated with red-blood-cell traits, including fetal hemoglobin levels. This approach identified putative regulatory elements that control MYB expression. Analysis of genomic copy number highlighted potential false-positive regions, thus emphasizing the importance of off-target analysis in the design of saturating-mutagenesis experiments. Together, these data establish a widely applicable high-throughput and high-resolution methodology to identify minimal functional sequences within large disease- and trait-associated regions.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737
A high throughput mechanical screening device for cartilage tissue engineering.
Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L
2014-06-27
Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.
High-throughput screening (HTS) and modeling of the retinoid ...
Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system
Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)
High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...
High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes
USDA-ARS?s Scientific Manuscript database
High-throughput SNP genotyping provides a rapid way of developing resourceful set of markers for delineating the genetic architecture and for effective species discrimination. In the presented research, we demonstrate a set of 192 SNPs for effective genotyping in sugar beet using high-throughput mar...
Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)
Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...
High-Throughput Industrial Coatings Research at The Dow Chemical Company.
Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T
2016-09-12
At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.
Tiersch, Terrence R.; Yang, Huiping; Hu, E.
2011-01-01
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach. PMID:21440666
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.
2004-05-12
An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view,more » create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments.« less
NASA Astrophysics Data System (ADS)
Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.
2013-03-01
Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.
SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments.
Youngblut, Nicholas D; Barnett, Samuel E; Buckley, Daniel H
2018-01-01
DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments.
msBiodat analysis tool, big data analysis for high-throughput experiments.
Muñoz-Torres, Pau M; Rokć, Filip; Belužic, Robert; Grbeša, Ivana; Vugrek, Oliver
2016-01-01
Mass spectrometry (MS) are a group of a high-throughput techniques used to increase knowledge about biomolecules. They produce a large amount of data which is presented as a list of hundreds or thousands of proteins. Filtering those data efficiently is the first step for extracting biologically relevant information. The filtering may increase interest by merging previous data with the data obtained from public databases, resulting in an accurate list of proteins which meet the predetermined conditions. In this article we present msBiodat Analysis Tool, a web-based application thought to approach proteomics to the big data analysis. With this tool, researchers can easily select the most relevant information from their MS experiments using an easy-to-use web interface. An interesting feature of msBiodat analysis tool is the possibility of selecting proteins by its annotation on Gene Ontology using its Gene Id, ensembl or UniProt codes. The msBiodat analysis tool is a web-based application that allows researchers with any programming experience to deal with efficient database querying advantages. Its versatility and user-friendly interface makes easy to perform fast and accurate data screening by using complex queries. Once the analysis is finished, the result is delivered by e-mail. msBiodat analysis tool is freely available at http://msbiodata.irb.hr.
SIPSim: A Modeling Toolkit to Predict Accuracy and Aid Design of DNA-SIP Experiments
Youngblut, Nicholas D.; Barnett, Samuel E.; Buckley, Daniel H.
2018-01-01
DNA Stable isotope probing (DNA-SIP) is a powerful method that links identity to function within microbial communities. The combination of DNA-SIP with multiplexed high throughput DNA sequencing enables simultaneous mapping of in situ assimilation dynamics for thousands of microbial taxonomic units. Hence, high throughput sequencing enabled SIP has enormous potential to reveal patterns of carbon and nitrogen exchange within microbial food webs. There are several different methods for analyzing DNA-SIP data and despite the power of SIP experiments, it remains difficult to comprehensively evaluate method accuracy across a wide range of experimental parameters. We have developed a toolset (SIPSim) that simulates DNA-SIP data, and we use this toolset to systematically evaluate different methods for analyzing DNA-SIP data. Specifically, we employ SIPSim to evaluate the effects that key experimental parameters (e.g., level of isotopic enrichment, number of labeled taxa, relative abundance of labeled taxa, community richness, community evenness, and beta-diversity) have on the specificity, sensitivity, and balanced accuracy (defined as the product of specificity and sensitivity) of DNA-SIP analyses. Furthermore, SIPSim can predict analytical accuracy and power as a function of experimental design and community characteristics, and thus should be of great use in the design and interpretation of DNA-SIP experiments. PMID:29643843
Luft, Joseph R.; Wolfley, Jennifer R.; Snell, Edward H.
2011-01-01
Observations of crystallization experiments are classified as specific outcomes and integrated through a phase diagram to visualize solubility and thereby direct subsequent experiments. Specific examples are taken from our high-throughput crystallization laboratory which provided a broad scope of data from 20 million crystallization experiments on 12,500 different biological macromolecules. The methods and rationale are broadly and generally applicable in any crystallization laboratory. Through a combination of incomplete factorial sampling of crystallization cocktails, standard outcome classifications, visualization of outcomes as they relate chemically and application of a simple phase diagram approach we demonstrate how to logically design subsequent crystallization experiments. PMID:21643490
Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich
2006-01-01
The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.
Real-time traffic sign detection and recognition
NASA Astrophysics Data System (ADS)
Herbschleb, Ernst; de With, Peter H. N.
2009-01-01
The continuous growth of imaging databases increasingly requires analysis tools for extraction of features. In this paper, a new architecture for the detection of traffic signs is proposed. The architecture is designed to process a large database with tens of millions of images with a resolution up to 4,800x2,400 pixels. Because of the size of the database, a high reliability as well as a high throughput is required. The novel architecture consists of a three-stage algorithm with multiple steps per stage, combining both color and specific spatial information. The first stage contains an area-limitation step which is performance critical in both the detection rate as the overall processing time. The second stage locates suggestions for traffic signs using recently published feature processing. The third stage contains a validation step to enhance reliability of the algorithm. During this stage, the traffic signs are recognized. Experiments show a convincing detection rate of 99%. With respect to computational speed, the throughput for line-of-sight images of 800×600 pixels is 35 Hz and for panorama images it is 4 Hz. Our novel architecture outperforms existing algorithms, with respect to both detection rate and throughput
Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J
2016-06-01
Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
TCP Throughput Profiles Using Measurements over Dedicated Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata
Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, inmore » stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.« less
High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...
The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...
The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD
NASA Astrophysics Data System (ADS)
Cox, M. A.; Reed, R.; Mellado, B.
2015-01-01
After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.
[Current applications of high-throughput DNA sequencing technology in antibody drug research].
Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong
2012-03-01
Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.
Jeudy, Christian; Adrian, Marielle; Baussard, Christophe; Bernard, Céline; Bernaud, Eric; Bourion, Virginie; Busset, Hughes; Cabrera-Bosquet, Llorenç; Cointault, Frédéric; Han, Simeng; Lamboeuf, Mickael; Moreau, Delphine; Pivato, Barbara; Prudent, Marion; Trouvelot, Sophie; Truong, Hoai Nam; Vernoud, Vanessa; Voisin, Anne-Sophie; Wipf, Daniel; Salon, Christophe
2016-01-01
In order to maintain high yields while saving water and preserving non-renewable resources and thus limiting the use of chemical fertilizer, it is crucial to select plants with more efficient root systems. This could be achieved through an optimization of both root architecture and root uptake ability and/or through the improvement of positive plant interactions with microorganisms in the rhizosphere. The development of devices suitable for high-throughput phenotyping of root structures remains a major bottleneck. Rhizotrons suitable for plant growth in controlled conditions and non-invasive image acquisition of plant shoot and root systems (RhizoTubes) are described. These RhizoTubes allow growing one to six plants simultaneously, having a maximum height of 1.1 m, up to 8 weeks, depending on plant species. Both shoot and root compartment can be imaged automatically and non-destructively throughout the experiment thanks to an imaging cabin (RhizoCab). RhizoCab contains robots and imaging equipment for obtaining high-resolution pictures of plant roots. Using this versatile experimental setup, we illustrate how some morphometric root traits can be determined for various species including model (Medicago truncatula), crops (Pisum sativum, Brassica napus, Vitis vinifera, Triticum aestivum) and weed (Vulpia myuros) species grown under non-limiting conditions or submitted to various abiotic and biotic constraints. The measurement of the root phenotypic traits using this system was compared to that obtained using "classic" growth conditions in pots. This integrated system, to include 1200 Rhizotubes, will allow high-throughput phenotyping of plant shoots and roots under various abiotic and biotic environmental conditions. Our system allows an easy visualization or extraction of roots and measurement of root traits for high-throughput or kinetic analyses. The utility of this system for studying root system architecture will greatly facilitate the identification of genetic and environmental determinants of key root traits involved in crop responses to stresses, including interactions with soil microorganisms.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
High-throughput analysis of yeast replicative aging using a microfluidic system
Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong
2015-01-01
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317
Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology
Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.
2008-01-01
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021
Fazly, Ahmed; Jain, Charu; Dehner, Amie C; Issi, Luca; Lilly, Elizabeth A; Ali, Akbar; Cao, Hong; Fidel, Paul L; Rao, Reeta P; Kaufman, Paul D
2013-08-13
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis.
Fazly, Ahmed; Jain, Charu; Dehner, Amie C.; Issi, Luca; Lilly, Elizabeth A.; Ali, Akbar; Cao, Hong; Fidel, Paul L.; P. Rao, Reeta; Kaufman, Paul D.
2013-01-01
Infection by pathogenic fungi, such as Candida albicans, begins with adhesion to host cells or implanted medical devices followed by biofilm formation. By high-throughput phenotypic screening of small molecules, we identified compounds that inhibit adhesion of C. albicans to polystyrene. Our lead candidate compound also inhibits binding of C. albicans to cultured human epithelial cells, the yeast-to-hyphal morphological transition, induction of the hyphal-specific HWP1 promoter, biofilm formation on silicone elastomers, and pathogenesis in a nematode infection model as well as alters fungal morphology in a mouse mucosal infection assay. We term this compound filastatin based on its strong inhibition of filamentation, and we use chemical genetic experiments to show that it acts downstream of multiple signaling pathways. These studies show that high-throughput functional assays targeting fungal adhesion can provide chemical probes for study of multiple aspects of fungal pathogenesis. PMID:23904484
Concepción-Acevedo, Jeniffer; Weiss, Howard N; Chaudhry, Waqas Nasir; Levin, Bruce R
2015-01-01
The maximum exponential growth rate, the Malthusian parameter (MP), is commonly used as a measure of fitness in experimental studies of adaptive evolution and of the effects of antibiotic resistance and other genes on the fitness of planktonic microbes. Thanks to automated, multi-well optical density plate readers and computers, with little hands-on effort investigators can readily obtain hundreds of estimates of MPs in less than a day. Here we compare estimates of the relative fitness of antibiotic susceptible and resistant strains of E. coli, Pseudomonas aeruginosa and Staphylococcus aureus based on MP data obtained with automated multi-well plate readers with the results from pairwise competition experiments. This leads us to question the reliability of estimates of MP obtained with these high throughput devices and the utility of these estimates of the maximum growth rates to detect fitness differences.
Cellular resolution functional imaging in behaving rats using voluntary head restraint
Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.
2013-01-01
SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015
Louzao, Iria; Koch, Britta; Taresco, Vincenzo; Ruiz-Cantu, Laura; Irvine, Derek J; Roberts, Clive J; Tuck, Christopher; Alexander, Cameron; Hague, Richard; Wildman, Ricky; Alexander, Morgan R
2018-02-28
A robust methodology is presented to identify novel biomaterials suitable for three-dimensional (3D) printing. Currently, the application of additive manufacturing is limited by the availability of functional inks, especially in the area of biomaterials; this is the first time when this method is used to tackle this problem, allowing hundreds of formulations to be readily assessed. Several functional properties, including the release of an antidepressive drug (paroxetine), cytotoxicity, and printability, are screened for 253 new ink formulations in a high-throughput format as well as mechanical properties. The selected candidates with the desirable properties are successfully scaled up using 3D printing into a range of object architectures. A full drug release study and degradability and tensile modulus experiments are presented on a simple architecture to validating the suitability of this methodology to identify printable inks for 3D printing devices with bespoke properties.
Accessible high-throughput virtual screening molecular docking software for students and educators.
Jacob, Reed B; Andersen, Tim; McDougal, Owen M
2012-05-01
We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms.
High throughput dual-wavelength temperature distribution imaging via compressive imaging
NASA Astrophysics Data System (ADS)
Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie
2018-03-01
Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.
Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging
Stoltzfus, Caleb R.; Rebane, Aleksander
2016-01-01
We study the optimal conditions for high throughput two-photon excited fluorescence (2PEF) and three-photon excited fluorescence (3PEF) imaging using femtosecond lasers. We derive relations that allow maximization of the rate of imaging depending on the average power, pulse repetition rate, and noise characteristics of the laser, as well as on the size and structure of the sample. We perform our analysis using ~100 MHz, ~1 MHz and 1 kHz pulse rates and using both a tightly-focused illumination beam with diffraction-limited image resolution, as well loosely focused illumination with a relatively low image resolution, where the latter utilizes separate illumination and fluorescence detection beam paths. Our theoretical estimates agree with the experiments, which makes our approach especially useful for optimizing high throughput imaging of large samples with a field-of-view up to 10x10 cm2. PMID:27231620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, T.; Schadt, C.; Zhou, J.
Microarray technology has the unparalleled potential tosimultaneously determine the dynamics and/or activities of most, if notall, of the microbial populations in complex environments such as soilsand sediments. Researchers have developed several types of arrays thatcharacterize the microbial populations in these samples based on theirphylogenetic relatedness or functional genomic content. Several recentstudies have used these microarrays to investigate ecological issues;however, most have only analyzed a limited number of samples withrelatively few experiments utilizing the full high-throughput potentialof microarray analysis. This is due in part to the unique analyticalchallenges that these samples present with regard to sensitivity,specificity, quantitation, and data analysis. Thismore » review discussesspecific applications of microarrays to microbial ecology research alongwith some of the latest studies addressing the difficulties encounteredduring analysis of complex microbial communities within environmentalsamples. With continued development, microarray technology may ultimatelyachieve its potential for comprehensive, high-throughput characterizationof microbial populations in near real-time.« less
Identification and correction of systematic error in high-throughput sequence data
2011-01-01
Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972
Erickson, Heidi S
2012-09-28
The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-01-01
Background In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. Results To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only ± 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274
Röst, Hannes L; Liu, Yansheng; D'Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi
2016-09-01
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis, but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we developed TRIC (http://proteomics.ethz.ch/tric/), a software tool that utilizes fragment-ion data to perform cross-run alignment, consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus, TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.
R classes and methods for SNP array data.
Scharpf, Robert B; Ruczinski, Ingo
2010-01-01
The Bioconductor project is an "open source and open development software project for the analysis and comprehension of genomic data" (1), primarily based on the R programming language. Infrastructure packages, such as Biobase, are maintained by Bioconductor core developers and serve several key roles to the broader community of Bioconductor software developers and users. In particular, Biobase introduces an S4 class, the eSet, for high-dimensional assay data. Encapsulating the assay data as well as meta-data on the samples, features, and experiment in the eSet class definition ensures propagation of the relevant sample and feature meta-data throughout an analysis. Extending the eSet class promotes code reuse through inheritance as well as interoperability with other R packages and is less error-prone. Recently proposed class definitions for high-throughput SNP arrays extend the eSet class. This chapter highlights the advantages of adopting and extending Biobase class definitions through a working example of one implementation of classes for the analysis of high-throughput SNP arrays.
Nakazato, Takeru; Bono, Hidemasa
2017-01-01
Abstract It is important for public data repositories to promote the reuse of archived data. In the growing field of omics science, however, the increasing number of submissions of high-throughput sequencing (HTSeq) data to public repositories prevents users from choosing a suitable data set from among the large number of search results. Repository users need to be able to set a threshold to reduce the number of results to obtain a suitable subset of high-quality data for reanalysis. We calculated the quality of sequencing data archived in a public data repository, the Sequence Read Archive (SRA), by using the quality control software FastQC. We obtained quality values for 1 171 313 experiments, which can be used to evaluate the suitability of data for reuse. We also visualized the data distribution in SRA by integrating the quality information and metadata of experiments and samples. We provide quality information of all of the archived sequencing data, which enable users to obtain sufficient quality sequencing data for reanalyses. The calculated quality data are available to the public in various formats. Our data also provide an example of enhancing the reuse of public data by adding metadata to published research data by a third party. PMID:28449062
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Grosse-Kunstleve, Ralf W.
The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for both synchrotron sources and X-ray free-electron lasers. Plans for data-processing and visualization applications are discussed, and the benefits and limitations of using graphics-processing units are evaluated. Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h{sup −1}) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in realmore » time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.« less
Mpindi, John-Patrick; Swapnil, Potdar; Dmitrii, Bychkov; Jani, Saarela; Saeed, Khalid; Wennerberg, Krister; Aittokallio, Tero; Östling, Päivi; Kallioniemi, Olli
2015-12-01
Most data analysis tools for high-throughput screening (HTS) seek to uncover interesting hits for further analysis. They typically assume a low hit rate per plate. Hit rates can be dramatically higher in secondary screening, RNAi screening and in drug sensitivity testing using biologically active drugs. In particular, drug sensitivity testing on primary cells is often based on dose-response experiments, which pose a more stringent requirement for data quality and for intra- and inter-plate variation. Here, we compared common plate normalization and noise-reduction methods, including the B-score and the Loess a local polynomial fit method under high hit-rate scenarios of drug sensitivity testing. We generated simulated 384-well plate HTS datasets, each with 71 plates having a range of 20 (5%) to 160 (42%) hits per plate, with controls placed either at the edge of the plates or in a scattered configuration. We identified 20% (77/384) as the critical hit-rate after which the normalizations started to perform poorly. Results from real drug testing experiments supported this estimation. In particular, the B-score resulted in incorrect normalization of high hit-rate plates, leading to poor data quality, which could be attributed to its dependency on the median polish algorithm. We conclude that a combination of a scattered layout of controls per plate and normalization using a polynomial least squares fit method, such as Loess helps to reduce column, row and edge effects in HTS experiments with high hit-rates and is optimal for generating accurate dose-response curves. john.mpindi@helsinki.fi. Supplementary information: R code and Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits-High Throughput Transfer Racks 9 Table 9 to Subpart EEEE of Part 63 Protection of Environment...—Continuous Compliance With Operating Limits—High Throughput Transfer Racks As stated in §§ 63.2378(a) and (b...
USDA-ARS?s Scientific Manuscript database
High-throughput sequencing is often used for studies of the transcriptome, particularly for comparisons between experimental conditions. Due to sequencing costs, a limited number of biological replicates are typically considered in such experiments, leading to low detection power for differential ex...
Long-lasting, experience-dependent alcohol preference in Drosophila
Peru y Colón de Portugal, Raniero L.; Ojelade, Shamsideen A.; Penninti, Pranav S.; Dove, Rachel J.; Nye, Matthew J.; Acevedo, Summer F.; Lopez, Antonio; Rodan, Aylin R.; Rothenfluh, Adrian
2013-01-01
To understand the molecular and neural mechanisms underlying alcohol addiction, many models ranging from vertebrates to invertebrates have been developed. In Drosophila melanogaster, behavioral paradigms from assaying acute responses to alcohol, to behaviors more closely modeling addiction, have emerged in recent years. However, both the CAFÉ assay, similar to a 2-bottle choice consumption assay, as well as conditioned odor preference, where ethanol is used as the reinforcer, are labor intensive and have low throughput. To address this limitation, we have established a novel ethanol consumption preference assay, called FRAPPÉ, which allows for fast, high throughput measurement of consumption in individual flies, using a fluorescence plate reader. We show that naïve flies do not prefer to consume ethanol, but various pre-exposures, such as ethanol vapor or voluntary ethanol consumption, induce ethanol preference. This ethanol-primed preference is long lasting and is not driven by calories contained in ethanol during the consumption choice. Our novel experience-dependent model of ethanol preference in Drosophila – a highly genetically tractable organism – therefore recapitulates salient features of human alcohol abuse and will facilitate the molecular understanding of the development of alcohol preference. PMID:24164972
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
Pyicos: a versatile toolkit for the analysis of high-throughput sequencing data
Althammer, Sonja; González-Vallinas, Juan; Ballaré, Cecilia; Beato, Miguel; Eyras, Eduardo
2011-01-01
Motivation: High-throughput sequencing (HTS) has revolutionized gene regulation studies and is now fundamental for the detection of protein–DNA and protein–RNA binding, as well as for measuring RNA expression. With increasing variety and sequencing depth of HTS datasets, the need for more flexible and memory-efficient tools to analyse them is growing. Results: We describe Pyicos, a powerful toolkit for the analysis of mapped reads from diverse HTS experiments: ChIP-Seq, either punctuated or broad signals, CLIP-Seq and RNA-Seq. We prove the effectiveness of Pyicos to select for significant signals and show that its accuracy is comparable and sometimes superior to that of methods specifically designed for each particular type of experiment. Pyicos facilitates the analysis of a variety of HTS datatypes through its flexibility and memory efficiency, providing a useful framework for data integration into models of regulatory genomics. Availability: Open-source software, with tutorials and protocol files, is available at http://regulatorygenomics.upf.edu/pyicos or as a Galaxy server at http://regulatorygenomics.upf.edu/galaxy Contact: eduardo.eyras@upf.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21994224
Kacsoh, Balint Z; Greene, Casey S; Bosco, Giovanni
2017-11-06
High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin ( Gug/Atro ), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Copyright © 2017 Kacsoh et al.
Accelerating the design of solar thermal fuel materials through high throughput simulations.
Liu, Yun; Grossman, Jeffrey C
2014-12-10
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.
Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K
2017-01-01
Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.
Asati, Atul; Kachurina, Olga; Kachurin, Anatoly
2012-01-01
Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders. PMID:22952605
High-throughput sample adaptive offset hardware architecture for high-efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin
2018-03-01
A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.
NASA Astrophysics Data System (ADS)
Aoun, Bachir; Yu, Cun; Fan, Longlong; Chen, Zonghai; Amine, Khalil; Ren, Yang
2015-04-01
A generalized method is introduced to extract critical information from series of ranked correlated data. The method is generally applicable to all types of spectra evolving as a function of any arbitrary parameter. This approach is based on correlation functions and statistical scedasticity formalism. Numerous challenges in analyzing high throughput experimental data can be tackled using the herein proposed method. We applied this method to understand the reactivity pathway and formation mechanism of a Li-ion battery cathode material during high temperature synthesis using in-situ high-energy X-ray diffraction. We demonstrate that Pearson's correlation function can easily unravel all major phase transition and, more importantly, the minor structural changes which cannot be revealed by conventionally inspecting the series of diffraction patterns. Furthermore, a two-dimensional (2D) reactivity pattern calculated as the scedasticity along all measured reciprocal space of all successive diffraction pattern pairs unveils clearly the structural evolution path and the active areas of interest during the synthesis. The methods described here can be readily used for on-the-fly data analysis during various in-situ operando experiments in order to quickly evaluate and optimize experimental conditions, as well as for post data analysis and large data mining where considerable amount of data hinders the feasibility of the investigation through point-by-point inspection.
Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics
Breckels, Lisa M.; Holden, Sean B.; Wojnar, David; Mulvey, Claire M.; Christoforou, Andy; Groen, Arnoud; Trotter, Matthew W. B.; Kohlbacher, Oliver; Lilley, Kathryn S.; Gatto, Laurent
2016-01-01
Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS). These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis. PMID:27175778
High-Throughput Characterization of Vapor-Deposited Organic Glasses
NASA Astrophysics Data System (ADS)
Dalal, Shakeel S.
Glasses are non-equilibrium materials which on short timescales behave like solids, and on long timescales betray their liquid-like structure. The most common way of preparing a glass is to cool the liquid faster than it can structurally rearrange. Until recently, most preparation schemes for a glass were considered to result in materials with undifferentiable structure and properties. This thesis utilizes a particular preparation method, physical vapor deposition, in order to prepare glasses of organic molecules with properties otherwise considered to be unobtainable. The glasses are characterized using spectroscopic ellipsometry, both as a dilatometric technique and as a reporter of molecular packing. The results reported here develop ellipsometry as a dilatometric technique on a pair of model glass formers, alpha,alpha,beta-trisnaphthylbenzene and indomethacin. It is found that the molecular orientation, as measured by birefringence, can be tuned by changing the substrate temperature during the deposition. In order to efficiently characterize the properties of vapor-deposited indomethacin as a function of substrate temperature, a high-throughput method is developed to capture the entire interesting range of substrate temperatures in just a few experiments. This high-throughput method is then leveraged to describe molecular mobility in vapor-deposited indomethacin. It is also used to demonstrate that the behavior of organic semiconducting molecules agrees with indomethacin quantitatively, and this agreement has implications for emerging technologies such as light-emitting diodes, photovoltaics and thin-film transistors made from organic molecules.
Ozer, Abdullah; Tome, Jacob M; Friedman, Robin C; Gheba, Dan; Schroth, Gary P; Lis, John T
2015-08-01
Because RNA-protein interactions have a central role in a wide array of biological processes, methods that enable a quantitative assessment of these interactions in a high-throughput manner are in great demand. Recently, we developed the high-throughput sequencing-RNA affinity profiling (HiTS-RAP) assay that couples sequencing on an Illumina GAIIx genome analyzer with the quantitative assessment of protein-RNA interactions. This assay is able to analyze interactions between one or possibly several proteins with millions of different RNAs in a single experiment. We have successfully used HiTS-RAP to analyze interactions of the EGFP and negative elongation factor subunit E (NELF-E) proteins with their corresponding canonical and mutant RNA aptamers. Here we provide a detailed protocol for HiTS-RAP that can be completed in about a month (8 d hands-on time). This includes the preparation and testing of recombinant proteins and DNA templates, clustering DNA templates on a flowcell, HiTS and protein binding with a GAIIx instrument, and finally data analysis. We also highlight aspects of HiTS-RAP that can be further improved and points of comparison between HiTS-RAP and two other recently developed methods, quantitative analysis of RNA on a massively parallel array (RNA-MaP) and RNA Bind-n-Seq (RBNS), for quantitative analysis of RNA-protein interactions.
Microarray-Based Gene Expression Analysis for Veterinary Pathologists: A Review.
Raddatz, Barbara B; Spitzbarth, Ingo; Matheis, Katja A; Kalkuhl, Arno; Deschl, Ulrich; Baumgärtner, Wolfgang; Ulrich, Reiner
2017-09-01
High-throughput, genome-wide transcriptome analysis is now commonly used in all fields of life science research and is on the cusp of medical and veterinary diagnostic application. Transcriptomic methods such as microarrays and next-generation sequencing generate enormous amounts of data. The pathogenetic expertise acquired from understanding of general pathology provides veterinary pathologists with a profound background, which is essential in translating transcriptomic data into meaningful biological knowledge, thereby leading to a better understanding of underlying disease mechanisms. The scientific literature concerning high-throughput data-mining techniques usually addresses mathematicians or computer scientists as the target audience. In contrast, the present review provides the reader with a clear and systematic basis from a veterinary pathologist's perspective. Therefore, the aims are (1) to introduce the reader to the necessary methodological background; (2) to introduce the sequential steps commonly performed in a microarray analysis including quality control, annotation, normalization, selection of differentially expressed genes, clustering, gene ontology and pathway analysis, analysis of manually selected genes, and biomarker discovery; and (3) to provide references to publically available and user-friendly software suites. In summary, the data analysis methods presented within this review will enable veterinary pathologists to analyze high-throughput transcriptome data obtained from their own experiments, supplemental data that accompany scientific publications, or public repositories in order to obtain a more in-depth insight into underlying disease mechanisms.
Bhagat, Ali Asgar S; Hou, Han Wei; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon
2011-06-07
Blood is a highly complex bio-fluid with cellular components making up >40% of the total volume, thus making its analysis challenging and time-consuming. In this work, we introduce a high-throughput size-based separation method for processing diluted blood using inertial microfluidics. The technique takes advantage of the preferential cell focusing in high aspect-ratio microchannels coupled with pinched flow dynamics for isolating low abundance cells from blood. As an application of the developed technique, we demonstrate the isolation of cancer cells (circulating tumor cells (CTCs)) spiked in blood by exploiting the difference in size between CTCs and hematologic cells. The microchannel dimensions and processing parameters were optimized to enable high throughput and high resolution separation, comparable to existing CTC isolation technologies. Results from experiments conducted with MCF-7 cells spiked into whole blood indicate >80% cell recovery with an impressive 3.25 × 10(5) fold enrichment over red blood cells (RBCs) and 1.2 × 10(4) fold enrichment over peripheral blood leukocytes (PBL). In spite of a 20× sample dilution, the fast operating flow rate allows the processing of ∼10(8) cells min(-1) through a single microfluidic device. The device design can be easily customized for isolating other rare cells from blood including peripheral blood leukocytes and fetal nucleated red blood cells by simply varying the 'pinching' width. The advantage of simple label-free separation, combined with the ability to retrieve viable cells post enrichment and minimal sample pre-processing presents numerous applications for use in clinical diagnosis and conducting fundamental studies.
High-throughput microfluidic single-cell digital polymerase chain reaction.
White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L
2013-08-06
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
FSPP: A Tool for Genome-Wide Prediction of smORF-Encoded Peptides and Their Functions
Li, Hui; Xiao, Li; Zhang, Lili; Wu, Jiarui; Wei, Bin; Sun, Ninghui; Zhao, Yi
2018-01-01
smORFs are small open reading frames of less than 100 codons. Recent low throughput experiments showed a lot of smORF-encoded peptides (SEPs) played crucial rule in processes such as regulation of transcription or translation, transportation through membranes and the antimicrobial activity. In order to gather more functional SEPs, it is necessary to have access to genome-wide prediction tools to give profound directions for low throughput experiments. In this study, we put forward a functional smORF-encoded peptides predictor (FSPP) which tended to predict authentic SEPs and their functions in a high throughput method. FSPP used the overlap of detected SEPs from Ribo-seq and mass spectrometry as target objects. With the expression data on transcription and translation levels, FSPP built two co-expression networks. Combing co-location relations, FSPP constructed a compound network and then annotated SEPs with functions of adjacent nodes. Tested on 38 sequenced samples of 5 human cell lines, FSPP successfully predicted 856 out of 960 annotated proteins. Interestingly, FSPP also highlighted 568 functional SEPs from these samples. After comparison, the roles predicted by FSPP were consistent with known functions. These results suggest that FSPP is a reliable tool for the identification of functional small peptides. FSPP source code can be acquired at https://www.bioinfo.org/FSPP. PMID:29675032
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies. PMID:29870560
Kebschull, Moritz; Fittler, Melanie Julia; Demmer, Ryan T; Papapanou, Panos N
2017-01-01
Today, -omics analyses, including the systematic cataloging of messenger RNA and microRNA sequences or DNA methylation patterns in a cell population, organ, or tissue sample, allow for an unbiased, comprehensive genome-level analysis of complex diseases, offering a large advantage over earlier "candidate" gene or pathway analyses. A primary goal in the analysis of these high-throughput assays is the detection of those features among several thousand that differ between different groups of samples. In the context of oral biology, our group has successfully utilized -omics technology to identify key molecules and pathways in different diagnostic entities of periodontal disease.A major issue when inferring biological information from high-throughput -omics studies is the fact that the sheer volume of high-dimensional data generated by contemporary technology is not appropriately analyzed using common statistical methods employed in the biomedical sciences.In this chapter, we outline a robust and well-accepted bioinformatics workflow for the initial analysis of -omics data generated using microarrays or next-generation sequencing technology using open-source tools. Starting with quality control measures and necessary preprocessing steps for data originating from different -omics technologies, we next outline a differential expression analysis pipeline that can be used for data from both microarray and sequencing experiments, and offers the possibility to account for random or fixed effects. Finally, we present an overview of the possibilities for a functional analysis of the obtained data.
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit
Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R.; Smith, Jeremy C.; Kasson, Peter M.; van der Spoel, David; Hess, Berk; Lindahl, Erik
2013-01-01
Motivation: Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Results: Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. Availability: GROMACS is an open source and free software available from http://www.gromacs.org. Contact: erik.lindahl@scilifelab.se Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23407358
Ortiz, Diego; Litvin, Alexander G; Salas Fernandez, Maria G
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies.
Benchmarking Procedures for High-Throughput Context Specific Reconstruction Algorithms
Pacheco, Maria P.; Pfau, Thomas; Sauter, Thomas
2016-01-01
Recent progress in high-throughput data acquisition has shifted the focus from data generation to processing and understanding of how to integrate collected information. Context specific reconstruction based on generic genome scale models like ReconX or HMR has the potential to become a diagnostic and treatment tool tailored to the analysis of specific individuals. The respective computational algorithms require a high level of predictive power, robustness and sensitivity. Although multiple context specific reconstruction algorithms were published in the last 10 years, only a fraction of them is suitable for model building based on human high-throughput data. Beside other reasons, this might be due to problems arising from the limitation to only one metabolic target function or arbitrary thresholding. This review describes and analyses common validation methods used for testing model building algorithms. Two major methods can be distinguished: consistency testing and comparison based testing. The first is concerned with robustness against noise, e.g., missing data due to the impossibility to distinguish between the signal and the background of non-specific binding of probes in a microarray experiment, and whether distinct sets of input expressed genes corresponding to i.e., different tissues yield distinct models. The latter covers methods comparing sets of functionalities, comparison with existing networks or additional databases. We test those methods on several available algorithms and deduce properties of these algorithms that can be compared with future developments. The set of tests performed, can therefore serve as a benchmarking procedure for future algorithms. PMID:26834640
High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis
Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.
2016-09-23
High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less
2015-01-01
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296
Trapnell, Cole; Roberts, Adam; Goff, Loyal; Pertea, Geo; Kim, Daehwan; Kelley, David R; Pimentel, Harold; Salzberg, Steven L; Rinn, John L; Pachter, Lior
2012-01-01
Recent advances in high-throughput cDNA sequencing (RNA-seq) can reveal new genes and splice variants and quantify expression genome-wide in a single assay. The volume and complexity of data from RNA-seq experiments necessitate scalable, fast and mathematically principled analysis software. TopHat and Cufflinks are free, open-source software tools for gene discovery and comprehensive expression analysis of high-throughput mRNA sequencing (RNA-seq) data. Together, they allow biologists to identify new genes and new splice variants of known ones, as well as compare gene and transcript expression under two or more conditions. This protocol describes in detail how to use TopHat and Cufflinks to perform such analyses. It also covers several accessory tools and utilities that aid in managing data, including CummeRbund, a tool for visualizing RNA-seq analysis results. Although the procedure assumes basic informatics skills, these tools assume little to no background with RNA-seq analysis and are meant for novices and experts alike. The protocol begins with raw sequencing reads and produces a transcriptome assembly, lists of differentially expressed and regulated genes and transcripts, and publication-quality visualizations of analysis results. The protocol's execution time depends on the volume of transcriptome sequencing data and available computing resources but takes less than 1 d of computer time for typical experiments and ~1 h of hands-on time. PMID:22383036
Facile fabrication of nanofluidic diode membranes using anodic aluminium oxide
NASA Astrophysics Data System (ADS)
Wu, Songmei; Wildhaber, Fabien; Vazquez-Mena, Oscar; Bertsch, Arnaud; Brugger, Juergen; Renaud, Philippe
2012-08-01
Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al2O3/SiO2 (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al2O3 (positive) and SiO2 (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion. Electronic supplementary information (ESI) available: Pattern transfer of local AAO mask into Si layers of different thickness; characterization of the Ag/AgCl electrodes and the cell constant; control experiments of mono-charged nanopore membranes; and simulation of ionic transport in nanofluidic diodes. See DOI: 10.1039/c2nr31243c
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; Aguilera-Iparraguirre, Jorge; Hirzel, Timothy D.; Ha, Dong-Gwang; Einzinger, Markus; Wu, Tony; Baldo, Marc A.; Aspuru-Guzik, Alán.
2016-09-01
Discovering new OLED emitters requires many experiments to synthesize candidates and test performance in devices. Large scale computer simulation can greatly speed this search process but the problem remains challenging enough that brute force application of massive computing power is not enough to successfully identify novel structures. We report a successful High Throughput Virtual Screening study that leveraged a range of methods to optimize the search process. The generation of candidate structures was constrained to contain combinatorial explosion. Simulations were tuned to the specific problem and calibrated with experimental results. Experimentalists and theorists actively collaborated such that experimental feedback was regularly utilized to update and shape the computational search. Supervised machine learning methods prioritized candidate structures prior to quantum chemistry simulation to prevent wasting compute on likely poor performers. With this combination of techniques, each multiplying the strength of the search, this effort managed to navigate an area of molecular space and identify hundreds of promising OLED candidate structures. An experimentally validated selection of this set shows emitters with external quantum efficiencies as high as 22%.
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system
NASA Astrophysics Data System (ADS)
Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.
2015-11-01
Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.
Development of a Platform to Enable Fully Automated Cross-Titration Experiments.
Cassaday, Jason; Finley, Michael; Squadroni, Brian; Jezequel-Sur, Sylvie; Rauch, Albert; Gajera, Bharti; Uebele, Victor; Hermes, Jeffrey; Zuck, Paul
2017-04-01
In the triage of hits from a high-throughput screening campaign or during the optimization of a lead compound, it is relatively routine to test compounds at multiple concentrations to determine potency and maximal effect. Additional follow-up experiments, such as agonist shift, can be quite valuable in ascertaining compound mechanism of action (MOA). However, these experiments require cross-titration of a test compound with the activating ligand of the receptor requiring 100-200 data points, severely limiting the number tested in MOA assays in a screening triage. We describe a process to enhance the throughput of such cross-titration experiments through the integration of Hewlett Packard's D300 digital dispenser onto one of our robotics platforms to enable on-the-fly cross-titration of compounds in a 1536-well plate format. The process handles all the compound management and data tracking, as well as the biological assay. The process relies heavily on in-house-built software and hardware, and uses our proprietary control software for the platform. Using this system, we were able to automate the cross-titration of compounds for both positive and negative allosteric modulators of two different G protein-coupled receptors (GPCRs) using two distinct assay detection formats, IP1 and Ca 2+ detection, on nearly 100 compounds for each target.
Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho
2017-01-01
Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.
Identification of functional modules using network topology and high-throughput data.
Ulitsky, Igor; Shamir, Ron
2007-01-26
With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.
Prussin, Aaron J; Zigler, David F; Jain, Avijita; Brown, Jared R; Winkel, Brenda S J; Brewer, Karen J
2008-04-01
Methods for the study of DNA photocleavage are illustrated using a mixed-metal supramolecular complex [{(bpy)(2)Ru(dpp)}(2)RhCl(2)]Cl(5). The methods use supercoiled pUC18 plasmid as a DNA probe and either filtered light from a xenon arc lamp source or monochromatic light from a newly designed, high-intensity light-emitting diode (LED) array. Detailed methods for performing the photochemical experiments and analysis of the DNA photoproduct are delineated. Detailed methods are also given for building an LED array to be used for DNA photolysis experiments. The Xe arc source has a broad spectral range and high light flux. The LEDs have a high-intensity, nearly monochromatic output. Arrays of LEDs have the advantage of allowing tunable, accurate output to multiple samples for high-throughput photochemistry experiments at relatively low cost.
Ultra high molecular weight polyethylene: Optical features at millimeter wavelengths
NASA Astrophysics Data System (ADS)
D'Alessandro, G.; Paiella, A.; Coppolecchia, A.; Castellano, M. G.; Colantoni, I.; de Bernardis, P.; Lamagna, L.; Masi, S.
2018-05-01
The next generation of experiments for the measurement of the Cosmic Microwave Background (CMB) requires more and more the use of advanced materials, with specific physical and structural properties. An example is the material used for receiver's cryostat windows and internal lenses. The large throughput of current CMB experiments requires a large diameter (of the order of 0.5 m) of these parts, resulting in heavy structural and optical requirements on the material to be used. Ultra High Molecular Weight (UHMW) polyethylene (PE) features high resistance to traction and good transmissivity in the frequency range of interest. In this paper, we discuss the possibility of using UHMW PE for windows and lenses in experiments working at millimeter wavelengths, by measuring its optical properties: emissivity, transmission and refraction index. Our measurements show that the material is well suited to this purpose.
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan
2016-04-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.
Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
An Optimization-Driven Analysis Pipeline to Uncover Biomarkers and Signaling Paths: Cervix Cancer.
Lorenzo, Enery; Camacho-Caceres, Katia; Ropelewski, Alexander J; Rosas, Juan; Ortiz-Mojer, Michael; Perez-Marty, Lynn; Irizarry, Juan; Gonzalez, Valerie; Rodríguez, Jesús A; Cabrera-Rios, Mauricio; Isaza, Clara
2015-06-01
Establishing how a series of potentially important genes might relate to each other is relevant to understand the origin and evolution of illnesses, such as cancer. High-throughput biological experiments have played a critical role in providing information in this regard. A special challenge, however, is that of trying to conciliate information from separate microarray experiments to build a potential genetic signaling path. This work proposes a two-step analysis pipeline, based on optimization, to approach meta-analysis aiming to build a proxy for a genetic signaling path.
Purushothama, Shobha; Dysinger, Mark; Chen, Yao; Österlund, Karolina; Mora, Johanna; Chunyk, Allison Given; Peloquin, Russ
2018-02-01
This manuscript aims to provide insights and updates on emerging technologies from a throughput and multiplexing perspective and to update readers on changes in previously reported technologies. The technologies discussed range from nascent (ultrasensitive Cira, Intellicyt ® , Dynaxi and Captsure™) to the more established (Ella and SQIDlite™). For the nascent technologies, there was an emphasis on user interviews and reviews, where available, to help provide an unbiased view to our readers. For the Ella, a review of published user data as well as author and other user experiences are summarized. Due to their emergent nature, all the technologies described are applicable in the early drug development stage, may require an upfront investment of capital and may not perform as expected.
Kastner, Elisabeth; Kaur, Randip; Lowry, Deborah; Moghaddam, Behfar; Wilkinson, Alexander; Perrie, Yvonne
2014-12-30
Microfluidics has recently emerged as a new method of manufacturing liposomes, which allows for reproducible mixing in miliseconds on the nanoliter scale. Here we investigate microfluidics-based manufacturing of liposomes. The aim of these studies was to assess the parameters in a microfluidic process by varying the total flow rate (TFR) and the flow rate ratio (FRR) of the solvent and aqueous phases. Design of experiment and multivariate data analysis were used for increased process understanding and development of predictive and correlative models. High FRR lead to the bottom-up synthesis of liposomes, with a strong correlation with vesicle size, demonstrating the ability to in-process control liposomes size; the resulting liposome size correlated with the FRR in the microfluidics process, with liposomes of 50 nm being reproducibly manufactured. Furthermore, we demonstrate the potential of a high throughput manufacturing of liposomes using microfluidics with a four-fold increase in the volumetric flow rate, maintaining liposome characteristics. The efficacy of these liposomes was demonstrated in transfection studies and was modelled using predictive modeling. Mathematical modelling identified FRR as the key variable in the microfluidic process, with the highest impact on liposome size, polydispersity and transfection efficiency. This study demonstrates microfluidics as a robust and high-throughput method for the scalable and highly reproducible manufacture of size-controlled liposomes. Furthermore, the application of statistically based process control increases understanding and allows for the generation of a design-space for controlled particle characteristics. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Grossman, JC
2014-12-01
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less
2010-09-15
viruses , including West Nile virus (WNV) 7 (PubChem AID: 1635), respiratory syncytial virus (PubChem AID: 2440...such as West Nile virus assay with a threshold value of 3.42%. D. Single Dose experiment with Arbo virus ...compounds. RESULT 1. Hit compounds nomination A. Arbo virus hits (1) SMR000372439 and SMR000058373 : Informatics analysis discovered
Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples
NASA Technical Reports Server (NTRS)
Kurk, Michael A. (Andy)
2015-01-01
Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.
Discovering collectively informative descriptors from high-throughput experiments
2009-01-01
Background Improvements in high-throughput technology and its increasing use have led to the generation of many highly complex datasets that often address similar biological questions. Combining information from these studies can increase the reliability and generalizability of results and also yield new insights that guide future research. Results This paper describes a novel algorithm called BLANKET for symmetric analysis of two experiments that assess informativeness of descriptors. The experiments are required to be related only in that their descriptor sets intersect substantially and their definitions of case and control are consistent. From resulting lists of n descriptors ranked by informativeness, BLANKET determines shortlists of descriptors from each experiment, generally of different lengths p and q. For any pair of shortlists, four numbers are evident: the number of descriptors appearing in both shortlists, in exactly one shortlist, or in neither shortlist. From the associated contingency table, BLANKET computes Right Fisher Exact Test (RFET) values used as scores over a plane of possible pairs of shortlist lengths [1,2]. BLANKET then chooses a pair or pairs with RFET score less than a threshold; the threshold depends upon n and shortlist length limits and represents a quality of intersection achieved by less than 5% of random lists. Conclusions Researchers seek within a universe of descriptors some minimal subset that collectively and efficiently predicts experimental outcomes. Ideally, any smaller subset should be insufficient for reliable prediction and any larger subset should have little additional accuracy. As a method, BLANKET is easy to conceptualize and presents only moderate computational complexity. Many existing databases could be mined using BLANKET to suggest optimal sets of predictive descriptors. PMID:20021653
Guo, Yabin; Levin, Henry L
2010-02-01
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Guo, Yabin; Levin, Henry L.
2010-01-01
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress. PMID:20040583
Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco
2016-02-09
Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established protocols, namely biomass adjustment and limited throughput. Automation was shown to improve data reliability, as well as experimental throughput simultaneously minimizing the needed hands-on-time to a third. Thereby, the presented protocol meets the demands for the analysis of samples generated by the upcoming generation of devices for higher throughput phototrophic cultivation and thereby contributes to boosting the time efficiency for setting up algae lipid production processes.
40 CFR Table 3 to Subpart Eeee of... - Operating Limits-High Throughput Transfer Racks
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits-High Throughput Transfer Racks 3 Table 3 to Subpart EEEE of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Throughput Transfer Racks As stated in § 63.2346(e), you must comply with the operating limits for existing...
Brusati, M.; Camplani, A.; Cannon, M.; ...
2017-02-20
SRAM-ba8ed Field Programmable Gate Array (FPGA) logic devices arc very attractive in applications where high data throughput is needed, such as the latest generation of High Energy Physics (HEP) experiments. FPGAs have been rarely used in such experiments because of their sensitivity to radiation. The present paper proposes a mitigation approach applied to commercial FPGA devices to meet the reliability requirements for the front-end electronics of the Liquid Argon (LAr) electromagnetic calorimeter of the ATLAS experiment, located at CERN. Particular attention will be devoted to define a proper mitigation scheme of the multi-gigabit transceivers embedded in the FPGA, which ismore » a critical part of the LAr data acquisition chain. A demonstrator board is being developed to validate the proposed methodology. :!\\litigation techniques such as Triple Modular Redundancy (T:t\\IR) and scrubbing will be used to increase the robustness of the design and to maximize the fault tolerance from Single-Event Upsets (SEUs).« less
Alignment of time-resolved data from high throughput experiments.
Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank
2016-12-01
To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach provides a nonlinear alignment of two sequences that neither need to have equi-distant time points nor measurements at identical time points. The proposed method is evaluated with artificial as well as real data. The software is available as an R package tra (Time-Resolved data Alignment) which is freely available at: http://public.ostfalia.de/klawonn/tra.zip .
High-Throughput Incubation and Quantification of Agglutination Assays in a Microfluidic System.
Castro, David; Conchouso, David; Kodzius, Rimantas; Arevalo, Arpys; Foulds, Ian G
2018-06-04
In this paper, we present a two-phase microfluidic system capable of incubating and quantifying microbead-based agglutination assays. The microfluidic system is based on a simple fabrication solution, which requires only laboratory tubing filled with carrier oil, driven by negative pressure using a syringe pump. We provide a user-friendly interface, in which a pipette is used to insert single droplets of a 1.25-µL volume into a system that is continuously running and therefore works entirely on demand without the need for stopping, resetting or washing the system. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5⁻10-fold improvement over traditional agglutination assays. We study system parameters such as channel length, incubation time and flow speed to select optimal assay conditions, using the streptavidin-biotin interaction as a model analyte quantified using optical image processing. We then investigate the effect of changing the concentration of both analyte and microbead concentrations, with a minimum detection limit of 100 ng/mL. The system can be both low- and high-throughput, depending on the rate at which assays are inserted. In our experiments, we were able to easily produce throughputs of 360 assays per hour by simple manual pipetting, which could be increased even further by automation and parallelization. Agglutination assays are a versatile tool, capable of detecting an ever-growing catalog of infectious diseases, proteins and metabolites. A system such as this one is a step towards being able to produce high-throughput microfluidic diagnostic solutions with widespread adoption. The development of analytical techniques in the microfluidic format, such as the one presented in this work, is an important step in being able to continuously monitor the performance and microfluidic outputs of organ-on-chip devices.
Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H
2016-02-01
Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.
An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery
Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing
2010-01-01
The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
Cui, Yang; Hanley, Luke
2015-01-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science. PMID:26133872
NASA Astrophysics Data System (ADS)
Cui, Yang; Hanley, Luke
2015-06-01
ChiMS is an open-source data acquisition and control software program written within LabVIEW for high speed imaging and depth profiling mass spectrometers. ChiMS can also transfer large datasets from a digitizer to computer memory at high repetition rate, save data to hard disk at high throughput, and perform high speed data processing. The data acquisition mode generally simulates a digital oscilloscope, but with peripheral devices integrated for control as well as advanced data sorting and processing capabilities. Customized user-designed experiments can be easily written based on several included templates. ChiMS is additionally well suited to non-laser based mass spectrometers imaging and various other experiments in laser physics, physical chemistry, and surface science.
NASA Astrophysics Data System (ADS)
Tanabe, Hiroshi; Koike, Hideya; Hatano, Hironori; Hayashi, Takumi; Cao, Qinghong; Himeno, Shunichi; Kaneda, Taishi; Akimitsu, Moe; Sawada, Asuka; Ono, Yasushi
2017-10-01
A new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics has been developed using ``multi-slit'' spectroscopy technique for detailed investigation of fine structure formation during high guide field magnetic reconnection. In the last three years, high field merging experiment in MAST pioneered new frontiers of reconnection heating: formation of highly peaked structure around X-point in high guide field condition (Bt > 0.3 T), outflow dissipation under the influence of better plasma confinement to form high temperature ring structure which aligns with closed flux surface of toroidal plasma, and interaction between ion and electron temperature profile during transport/confinement phase to form triple peak structure (τeiE 4 ms). To investigate more detailed mechanism with in-situ magnetic measurement, the university of Tokyo starts the upgrade of plasma parameters and spatial resolution of optical diagnostics as in MAST. Now, a new type of high-throughput/high-resolution 96CH ion Doppler tomography diagnostics system construction has been completed and it successfully resolved fine structure of ion heating downstream, aligned with closed flux surface formed by reconnected field. This work was supported by JSPS KAKENHI Grant Numbers 15H05750, 15K14279 and 17H04863.
High-throughput measurements of the optical redox ratio using a commercial microplate reader.
Cannon, Taylor M; Shah, Amy T; Walsh, Alex J; Skala, Melissa C
2015-01-01
There is a need for accurate, high-throughput, functional measures to gauge the efficacy of potential drugs in living cells. As an early marker of drug response in cells, cellular metabolism provides an attractive platform for high-throughput drug testing. Optical techniques can noninvasively monitor NADH and FAD, two autofluorescent metabolic coenzymes. The autofluorescent redox ratio, defined as the autofluorescence intensity of NADH divided by that of FAD, quantifies relative rates of cellular glycolysis and oxidative phosphorylation. However, current microscopy methods for redox ratio quantification are time-intensive and low-throughput, limiting their practicality in drug screening. Alternatively, high-throughput commercial microplate readers quickly measure fluorescence intensities for hundreds of wells. This study found that a commercial microplate reader can differentiate the receptor status of breast cancer cell lines (p < 0.05) based on redox ratio measurements without extrinsic contrast agents. Furthermore, microplate reader redox ratio measurements resolve response (p < 0.05) and lack of response (p > 0.05) in cell lines that are responsive and nonresponsive, respectively, to the breast cancer drug trastuzumab. These studies indicate that the microplate readers can be used to measure the redox ratio in a high-throughput manner and are sensitive enough to detect differences in cellular metabolism that are consistent with microscopy results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoun, Bachir; Yu, Cun; Fan, Longlong
A generalized method is introduced to extract critical information from series of ranked correlated data. The method is generally applicable to all types of spectra evolving as a function of any arbitrary parameter. This approach is based on correlation functions and statistical scedasticity formalism. Numerous challenges in analyzing high throughput experimental data can be tackled using the herein proposed method. We applied this method to understand the reactivity pathway and formation mechanism of a Li-ion battery cathode material during high temperature synthesis using in-situ highenergy X-ray diffraction. We demonstrate that Pearson's correlation function can easily unravel all major phase transitionmore » and, more importantly, the minor structural changes which cannot be revealed by conventionally inspecting the series of diffraction patterns. Furthermore, a two-dimensional (2D) reactivity pattern calculated as the scedasticity along all measured reciprocal space of all successive diffraction pattern pairs unveils clearly the structural evolution path and the active areas of interest during the synthesis. The methods described here can be readily used for on-the-fly data analysis during various in-situ operando experiments in order to quickly evaluate and optimize experimental conditions, as well as for post data analysis and large data mining where considerable amount of data hinders the feasibility of the investigation through point-by-point inspection.« less
Ohta, Tazro; Nakazato, Takeru; Bono, Hidemasa
2017-06-01
It is important for public data repositories to promote the reuse of archived data. In the growing field of omics science, however, the increasing number of submissions of high-throughput sequencing (HTSeq) data to public repositories prevents users from choosing a suitable data set from among the large number of search results. Repository users need to be able to set a threshold to reduce the number of results to obtain a suitable subset of high-quality data for reanalysis. We calculated the quality of sequencing data archived in a public data repository, the Sequence Read Archive (SRA), by using the quality control software FastQC. We obtained quality values for 1 171 313 experiments, which can be used to evaluate the suitability of data for reuse. We also visualized the data distribution in SRA by integrating the quality information and metadata of experiments and samples. We provide quality information of all of the archived sequencing data, which enable users to obtain sufficient quality sequencing data for reanalyses. The calculated quality data are available to the public in various formats. Our data also provide an example of enhancing the reuse of public data by adding metadata to published research data by a third party. © The Authors 2017. Published by Oxford University Press.
Tempest: GPU-CPU computing for high-throughput database spectral matching.
Milloy, Jeffrey A; Faherty, Brendan K; Gerber, Scott A
2012-07-06
Modern mass spectrometers are now capable of producing hundreds of thousands of tandem (MS/MS) spectra per experiment, making the translation of these fragmentation spectra into peptide matches a common bottleneck in proteomics research. When coupled with experimental designs that enrich for post-translational modifications such as phosphorylation and/or include isotopically labeled amino acids for quantification, additional burdens are placed on this computational infrastructure by shotgun sequencing. To address this issue, we have developed a new database searching program that utilizes the massively parallel compute capabilities of a graphical processing unit (GPU) to produce peptide spectral matches in a very high throughput fashion. Our program, named Tempest, combines efficient database digestion and MS/MS spectral indexing on a CPU with fast similarity scoring on a GPU. In our implementation, the entire similarity score, including the generation of full theoretical peptide candidate fragmentation spectra and its comparison to experimental spectra, is conducted on the GPU. Although Tempest uses the classical SEQUEST XCorr score as a primary metric for evaluating similarity for spectra collected at unit resolution, we have developed a new "Accelerated Score" for MS/MS spectra collected at high resolution that is based on a computationally inexpensive dot product but exhibits scoring accuracy similar to that of the classical XCorr. In our experience, Tempest provides compute-cluster level performance in an affordable desktop computer.
Winter, York; Schaefers, Andrea T U
2011-03-30
Behavioral experiments based on operant procedures can be time-consuming for small amounts of data. While individual testing and handling of animals can influence attention, emotion, and behavior, and interfere with experimental outcome, many operant protocols require individual testing. We developed an RFID-technology- and transponder-based sorting system that allows removing the human factor for longer-term experiments. Identity detectors and automated gates route mice individually from their social home cage to an adjacent operant compartment with 24/7 operation. CD1-mice learnt quickly to individually pass through the sorting system. At no time did more than a single mouse enter the operant compartment. After 3 days of adjusting to the sorting system, groups of 4 mice completed about 50 experimental trials per day in the operant compartment without experimenter intervention. The automated sorting system eliminates handling, isolation, and disturbance of the animals, eliminates experimenter-induced variability, saves experimenter time, and is financially economical. It makes possible a new approach for high-throughput experimentation, and is a viable tool for increasing quality and efficiency of many behavioral and neurobiological investigations. It can connect a social home cage, through individual sorting automation, to diverse setups including classical operant chambers, mazes, or arenas with video-based behavior classification. Such highly automated systems will permit efficient high-throughput screening even for transgenic animals with only subtle neurological or psychiatric symptoms where elaborate or longer-term protocols are required for behavioral diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Development and Performance of the ACTS High Speed VSAT
NASA Technical Reports Server (NTRS)
Quintana, J.; Tran, Q.; Dendy, R.
1999-01-01
The Advanced Communication Technology Satellite (ACTS), developed by the U.S. National Aeronautics and Space Administration (NASA) has demonstrated the breakthrough technologies of Ka-band, spot beam antennas, and on-board processing. These technologies have enabled the development of very small aperture terminals (VSAT) and ultra-small aperture terminals (USAT) which have capabilities greater than were previously possible with conventional satellite technologies. However, the ACTS baseband processor (BBP) is designed using a time division multiple access (TDMA) scheme, which requires each earth station using the BBP to transmit data at a burst rate which is much higher than the user throughput data rate. This tends to mitigate the advantage of the new technologies by requiring a larger earth station antenna and/or a higher-powered uplink amplifier than would be necessary for a continuous transmission at the user data rate. Conversely, the user data rate is much less than the rate that can be supported by the antenna size and amplifier. For example, the ACTS TI VSAT operates at a burst rate of 27.5 Mbps, but the maximum user data rate is 1.792 Mbps. The throughput efficiency is slightly more than 6.5%. For an operational network, this level of overhead will greatly increase the cost of the user earth stations, and that increased cost must be repeated thousands of times, which may ultimately reduce the market for such a system. The ACTS High Speed VSAT (HS VSAT) is an effort to experimentally demonstrate the maximum user throughput data rate which can be achieved using the technologies developed and implemented on ACTS. Specifically, this was done by operating the system uplinks as frequency division multiple access (FDMA), essentially assigning all available TDMA time slots to a single user on each of two uplink frequencies. Preliminary results show that using a 1.2-m antenna in this mode, the HS VSAT can achieve between 22 and 24 Mbps out of the 27.5 Mbps burst rate, for a throughput efficiency of 80-88%. This paper describes the modifications made to the TI VSAT to enable it to operate at high speed, including hardware considerations, interface modifications, and software modifications. In addition, it describes the results of NASA HS VSAT experiments, continuing work on an improved user interface, and plans for future experiments.
Novich, Scott D; Eagleman, David M
2015-10-01
Touch receptors in the skin can relay various forms of abstract information, such as words (Braille), haptic feedback (cell phones, game controllers, feedback for prosthetic control), and basic visual information such as edges and shape (sensory substitution devices). The skin can support such applications with ease: They are all low bandwidth and do not require a fine temporal acuity. But what of high-throughput applications? We use sound-to-touch conversion as a motivating example, though others abound (e.g., vision, stock market data). In the past, vibrotactile hearing aids have demonstrated improvement in speech perceptions in the deaf. However, a sound-to-touch sensory substitution device that works with high efficacy and without the aid of lipreading has yet to be developed. Is this because skin simply does not have the capacity to effectively relay high-throughput streams such as sound? Or is this because the spatial and temporal properties of skin have not been leveraged to full advantage? Here, we begin to address these questions with two experiments. First, we seek to determine the best method of relaying information through the skin using an identification task on the lower back. We find that vibrotactile patterns encoding information in both space and time yield the best overall information transfer estimate. Patterns encoded in space and time or "intensity" (the coupled coding of vibration frequency and force) both far exceed performance of only spatially encoded patterns. Next, we determine the vibrotactile two-tacton resolution on the lower back-the distance necessary for resolving two vibrotactile patterns. We find that our vibratory motors conservatively require at least 6 cm of separation to resolve two independent tactile patterns (>80 % correct), regardless of stimulus type (e.g., spatiotemporal "sweeps" versus single vibratory pulses). Six centimeter is a greater distance than the inter-motor distances used in Experiment 1 (2.5 cm), which explains the poor identification performance of spatially encoded patterns. Hence, when using an array of vibrational motors, spatiotemporal sweeps can overcome the limitations of vibrotactile two-tacton resolution. The results provide the first steps toward obtaining a realistic estimate of the skin's achievable throughput, illustrating the best ways to encode data to the skin (using as many dimensions as possible) and how far such interfaces would need to be separated if using multiple arrays in parallel.
A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting
Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.
2016-01-01
Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945
An image analysis toolbox for high-throughput C. elegans assays
Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.
2012-01-01
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656
High-throughput, image-based screening of pooled genetic variant libraries
Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei
2018-01-01
Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401
Microfluidic biolector-microfluidic bioprocess control in microtiter plates.
Funke, Matthias; Buchenauer, Andreas; Schnakenberg, Uwe; Mokwa, Wilfried; Diederichs, Sylvia; Mertens, Alan; Müller, Carsten; Kensy, Frank; Büchs, Jochen
2010-10-15
In industrial-scale biotechnological processes, the active control of the pH-value combined with the controlled feeding of substrate solutions (fed-batch) is the standard strategy to cultivate both prokaryotic and eukaryotic cells. On the contrary, for small-scale cultivations, much simpler batch experiments with no process control are performed. This lack of process control often hinders researchers to scale-up and scale-down fermentation experiments, because the microbial metabolism and thereby the growth and production kinetics drastically changes depending on the cultivation strategy applied. While small-scale batches are typically performed highly parallel and in high throughput, large-scale cultivations demand sophisticated equipment for process control which is in most cases costly and difficult to handle. Currently, there is no technical system on the market that realizes simple process control in high throughput. The novel concept of a microfermentation system described in this work combines a fiber-optic online-monitoring device for microtiter plates (MTPs)--the BioLector technology--together with microfluidic control of cultivation processes in volumes below 1 mL. In the microfluidic chip, a micropump is integrated to realize distinct substrate flow rates during fed-batch cultivation in microscale. Hence, a cultivation system with several distinct advantages could be established: (1) high information output on a microscale; (2) many experiments can be performed in parallel and be automated using MTPs; (3) this system is user-friendly and can easily be transferred to a disposable single-use system. This article elucidates this new concept and illustrates applications in fermentations of Escherichia coli under pH-controlled and fed-batch conditions in shaken MTPs. Copyright 2010 Wiley Periodicals, Inc.
Secure UNIX socket-based controlling system for high-throughput protein crystallography experiments.
Gaponov, Yurii; Igarashi, Noriyuki; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Suzuki, Mamoru; Kosuge, Takashi; Wakatsuki, Soichi
2004-01-01
A control system for high-throughput protein crystallography experiments has been developed based on a multilevel secure (SSL v2/v3) UNIX socket under the Linux operating system. Main features of protein crystallography experiments (purification, crystallization, loop preparation, data collecting, data processing) are dealt with by the software. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data, that are stored in Network File Server) in a relational database (MySQL). The system consists of several servers and clients. TCP/IP secure UNIX sockets with four predefined behaviors [(a) listening to a request followed by a reply, (b) sending a request and waiting for a reply, (c) listening to a broadcast message, and (d) sending a broadcast message] support communications between all servers and clients allowing one to control experiments, view data, edit experimental conditions and perform data processing remotely. The usage of the interface software is well suited for developing well organized control software with a hierarchical structure of different software units (Gaponov et al., 1998), which will pass and receive different types of information. All communication is divided into two parts: low and top levels. Large and complicated control tasks are split into several smaller ones, which can be processed by control clients independently. For communicating with experimental equipment (beamline optical elements, robots, and specialized experimental equipment etc.), the STARS server, developed at the Photon Factory, is used (Kosuge et al., 2002). The STARS server allows any application with an open socket to be connected with any other clients that control experimental equipment. Majority of the source code is written in C/C++. GUI modules of the system were built mainly using Glade user interface builder for GTK+ and Gnome under Red Hat Linux 7.1 operating system.
Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing
Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi
2016-01-01
Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039
Development of rapid and sensitive high throughput pharmacologic assays for marine phycotoxins.
Van Dolah, F M; Finley, E L; Haynes, B L; Doucette, G J; Moeller, P D; Ramsdell, J S
1994-01-01
The lack of rapid, high throughput assays is a major obstacle to many aspects of research on marine phycotoxins. Here we describe the application of microplate scintillation technology to develop high throughput assays for several classes of marine phycotoxin based on their differential pharmacologic actions. High throughput "drug discovery" format microplate receptor binding assays developed for brevetoxins/ciguatoxins and for domoic acid are described. Analysis for brevetoxins/ciguatoxins is carried out by binding competition with [3H] PbTx-3 for site 5 on the voltage dependent sodium channel in rat brain synaptosomes. Analysis of domoic acid is based on binding competition with [3H] kainic acid for the kainate/quisqualate glutamate receptor using frog brain synaptosomes. In addition, a high throughput microplate 45Ca flux assay for determination of maitotoxins is described. These microplate assays can be completed within 3 hours, have sensitivities of less than 1 ng, and can analyze dozens of samples simultaneously. The assays have been demonstrated to be useful for assessing algal toxicity and for assay-guided purification of toxins, and are applicable to the detection of biotoxins in seafood.
Fluorescent Approaches to High Throughput Crystallography
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha
2006-01-01
We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider range of proteins. The trace fluorescently labeled crystals will also emit with sufficient intensity to aid in the automation of crystal alignment using relatively low cost optics, further increasing throughput at synchrotrons.
Zhang, Guang Lan; Keskin, Derin B.; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S.; Leppanen, Scott; Milford, Edgar L.; Reinherz, Ellis L.; Brusic, Vladimir
2014-01-01
Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care. PMID:25505899
Physico-chemical foundations underpinning microarray and next-generation sequencing experiments
Harrison, Andrew; Binder, Hans; Buhot, Arnaud; Burden, Conrad J.; Carlon, Enrico; Gibas, Cynthia; Gamble, Lara J.; Halperin, Avraham; Hooyberghs, Jef; Kreil, David P.; Levicky, Rastislav; Noble, Peter A.; Ott, Albrecht; Pettitt, B. Montgomery; Tautz, Diethard; Pozhitkov, Alexander E.
2013-01-01
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized. PMID:23307556
Duarte, José M; Barbier, Içvara; Schaerli, Yolanda
2017-11-17
Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information.
Wang, Jiguang; Sun, Yidan; Zheng, Si; Zhang, Xiang-Sun; Zhou, Huarong; Chen, Luonan
2013-01-01
Synergistic interactions among transcription factors (TFs) and their cofactors collectively determine gene expression in complex biological systems. In this work, we develop a novel graphical model, called Active Protein-Gene (APG) network model, to quantify regulatory signals of transcription in complex biomolecular networks through integrating both TF upstream-regulation and downstream-regulation high-throughput data. Firstly, we theoretically and computationally demonstrate the effectiveness of APG by comparing with the traditional strategy based only on TF downstream-regulation information. We then apply this model to study spontaneous type 2 diabetic Goto-Kakizaki (GK) and Wistar control rats. Our biological experiments validate the theoretical results. In particular, SP1 is found to be a hidden TF with changed regulatory activity, and the loss of SP1 activity contributes to the increased glucose production during diabetes development. APG model provides theoretical basis to quantitatively elucidate transcriptional regulation by modelling TF combinatorial interactions and exploiting multilevel high-throughput information. PMID:23346354
Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva; Ke, Liqin; Nguyen, Manh Cuong; Ho, Kai-Ming; Antropov, Vladimir; Wang, Cai-Zhuang; Kramer, Matthew J.; Long, Christian; Takeuchi, Ichiro
2014-01-01
Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet. PMID:25220062
Application of multivariate statistical techniques in microbial ecology
Paliy, O.; Shankar, V.
2016-01-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large scale ecological datasets. Especially noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions, and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amounts of data, powerful statistical techniques of multivariate analysis are well suited to analyze and interpret these datasets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular dataset. In this review we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive, and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and dataset structure. PMID:26786791
Gene Ontology annotations at SGD: new data sources and annotation methods
Hong, Eurie L.; Balakrishnan, Rama; Dong, Qing; Christie, Karen R.; Park, Julie; Binkley, Gail; Costanzo, Maria C.; Dwight, Selina S.; Engel, Stacia R.; Fisk, Dianna G.; Hirschman, Jodi E.; Hitz, Benjamin C.; Krieger, Cynthia J.; Livstone, Michael S.; Miyasato, Stuart R.; Nash, Robert S.; Oughtred, Rose; Skrzypek, Marek S.; Weng, Shuai; Wong, Edith D.; Zhu, Kathy K.; Dolinski, Kara; Botstein, David; Cherry, J. Michael
2008-01-01
The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) collects and organizes biological information about the chromosomal features and gene products of the budding yeast Saccharomyces cerevisiae. Although published data from traditional experimental methods are the primary sources of evidence supporting Gene Ontology (GO) annotations for a gene product, high-throughput experiments and computational predictions can also provide valuable insights in the absence of an extensive body of literature. Therefore, GO annotations available at SGD now include high-throughput data as well as computational predictions provided by the GO Annotation Project (GOA UniProt; http://www.ebi.ac.uk/GOA/). Because the annotation method used to assign GO annotations varies by data source, GO resources at SGD have been modified to distinguish data sources and annotation methods. In addition to providing information for genes that have not been experimentally characterized, GO annotations from independent sources can be compared to those made by SGD to help keep the literature-based GO annotations current. PMID:17982175
Fractal-like Distributions over the Rational Numbers in High-throughput Biological and Clinical Data
NASA Astrophysics Data System (ADS)
Trifonov, Vladimir; Pasqualucci, Laura; Dalla-Favera, Riccardo; Rabadan, Raul
2011-12-01
Recent developments in extracting and processing biological and clinical data are allowing quantitative approaches to studying living systems. High-throughput sequencing (HTS), expression profiles, proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting meaningful information from those technologies requires careful analysis of the large volumes of data they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of viral populations.
FLIC: High-Throughput, Continuous Analysis of Feeding Behaviors in Drosophila
Pletcher, Scott D.
2014-01-01
We present a complete hardware and software system for collecting and quantifying continuous measures of feeding behaviors in the fruit fly, Drosophila melanogaster. The FLIC (Fly Liquid-Food Interaction Counter) detects analog electronic signals as brief as 50 µs that occur when a fly makes physical contact with liquid food. Signal characteristics effectively distinguish between different types of behaviors, such as feeding and tasting events. The FLIC system performs as well or better than popular methods for simple assays, and it provides an unprecedented opportunity to study novel components of feeding behavior, such as time-dependent changes in food preference and individual levels of motivation and hunger. Furthermore, FLIC experiments can persist indefinitely without disturbance, and we highlight this ability by establishing a detailed picture of circadian feeding behaviors in the fly. We believe that the FLIC system will work hand-in-hand with modern molecular techniques to facilitate mechanistic studies of feeding behaviors in Drosophila using modern, high-throughput technologies. PMID:24978054
Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.
Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten
2011-01-01
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis.
Yu, Guangchuang; Wang, Li-Gen; Yan, Guang-Rong; He, Qing-Yu
2015-02-15
Disease ontology (DO) annotates human genes in the context of disease. DO is important annotation in translating molecular findings from high-throughput data to clinical relevance. DOSE is an R package providing semantic similarity computations among DO terms and genes which allows biologists to explore the similarities of diseases and of gene functions in disease perspective. Enrichment analyses including hypergeometric model and gene set enrichment analysis are also implemented to support discovering disease associations of high-throughput biological data. This allows biologists to verify disease relevance in a biological experiment and identify unexpected disease associations. Comparison among gene clusters is also supported. DOSE is released under Artistic-2.0 License. The source code and documents are freely available through Bioconductor (http://www.bioconductor.org/packages/release/bioc/html/DOSE.html). Supplementary data are available at Bioinformatics online. gcyu@connect.hku.hk or tqyhe@jnu.edu.cn. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Shen, Shaofei; Ma, Chao; Zhao, Lei; Wang, Yaolei; Wang, Jian-Chun; Xu, Juan; Li, Tianbao; Pang, Long; Wang, Jinyi
2014-07-21
The presence and quantity of rare cells in the bloodstream of cancer patients provide a potentially accessible source for the early detection of invasive cancer and for monitoring the treatment of advanced diseases. The separation of rare cells from peripheral blood, as a "virtual and real-time liquid biopsy", is expected to replace conventional tissue biopsies of metastatic tumors for therapy guidance. However, technical obstacles, similar to looking for a needle in a haystack, have hindered the broad clinical utility of this method. In this study, we developed a multistage microfluidic device for continuous label-free separation and enrichment of rare cells from blood samples based on cell size and deformability. We successfully separated tumor cells (MCF-7 and HeLa cells) and leukemic (K562) cells spiked in diluted whole blood using a unique complementary combination of inertial microfluidics and steric hindrance in a microfluidic system. The processing parameters of the inertial focusing and steric hindrance regions were optimized to achieve high-throughput and high-efficiency separation, significant advantages compared with existing rare cell isolation technologies. The results from experiments with rare cells spiked in 1% hematocrit blood indicated >90% cell recovery at a throughput of 2.24 × 10(7) cells min(-1). The enrichment of rare cells was >2.02 × 10(5)-fold. Thus, this microfluidic system driven by purely hydrodynamic forces has practical potential to be applied either alone or as a sample preparation platform for fundamental studies and clinical applications.
Influence relevance voting: an accurate and interpretable virtual high throughput screening method.
Swamidass, S Joshua; Azencott, Chloé-Agathe; Lin, Ting-Wan; Gramajo, Hugo; Tsai, Shiou-Chuan; Baldi, Pierre
2009-04-01
Given activity training data from high-throughput screening (HTS) experiments, virtual high-throughput screening (vHTS) methods aim to predict in silico the activity of untested chemicals. We present a novel method, the Influence Relevance Voter (IRV), specifically tailored for the vHTS task. The IRV is a low-parameter neural network which refines a k-nearest neighbor classifier by nonlinearly combining the influences of a chemical's neighbors in the training set. Influences are decomposed, also nonlinearly, into a relevance component and a vote component. The IRV is benchmarked using the data and rules of two large, open, competitions, and its performance compared to the performance of other participating methods, as well as of an in-house support vector machine (SVM) method. On these benchmark data sets, IRV achieves state-of-the-art results, comparable to the SVM in one case, and significantly better than the SVM in the other, retrieving three times as many actives in the top 1% of its prediction-sorted list. The IRV presents several other important advantages over SVMs and other methods: (1) the output predictions have a probabilistic semantic; (2) the underlying inferences are interpretable; (3) the training time is very short, on the order of minutes even for very large data sets; (4) the risk of overfitting is minimal, due to the small number of free parameters; and (5) additional information can easily be incorporated into the IRV architecture. Combined with its performance, these qualities make the IRV particularly well suited for vHTS.
Purdue ionomics information management system. An integrated functional genomics platform.
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S; Salt, David E
2007-02-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics.
High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.
Wade, Mark
2015-09-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects. © 2015 Society for Laboratory Automation and Screening.
High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast
High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul
2012-04-01
A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
iCanPlot: Visual Exploration of High-Throughput Omics Data Using Interactive Canvas Plotting
Sinha, Amit U.; Armstrong, Scott A.
2012-01-01
Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression. PMID:22393367
Feng, Qiang; Zhang, Lu; Liu, Chao; Li, Xuanyu; Hu, Guoqing; Sun, Jiashu; Jiang, Xingyu
2015-01-01
Core-shell hybrid nanoparticles (NPs) for drug delivery have attracted numerous attentions due to their enhanced therapeutic efficacy and good biocompatibility. In this work, we fabricate a two-stage microfluidic chip to implement a high-throughput, one-step, and size-tunable synthesis of mono-disperse lipid-poly (lactic-co-glycolic acid) NPs. The size of hybrid NPs is tunable by varying the flow rates inside the two-stage microfluidic chip. To elucidate the mechanism of size-controllable generation of hybrid NPs, we observe the flow field in the microchannel with confocal microscope and perform the simulation by a numerical model. Both the experimental and numerical results indicate an enhanced mixing effect at high flow rate, thus resulting in the assembly of small and mono-disperse hybrid NPs. In vitro experiments show that the large hybrid NPs are more likely to be aggregated in serum and exhibit a lower cellular uptake efficacy than the small ones. This microfluidic chip shows great promise as a robust platform for optimization of nano drug delivery system. PMID:26180574
Nanowire-nanopore transistor sensor for DNA detection during translocation
NASA Astrophysics Data System (ADS)
Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles
2011-03-01
Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.
Moore, Priscilla A; Kery, Vladimir
2009-01-01
High-throughput protein purification is a complex, multi-step process. There are several technical challenges in the course of this process that are not experienced when purifying a single protein. Among the most challenging are the high-throughput protein concentration and buffer exchange, which are not only labor-intensive but can also result in significant losses of purified proteins. We describe two methods of high-throughput protein concentration and buffer exchange: one using ammonium sulfate precipitation and one using micro-concentrating devices based on membrane ultrafiltration. We evaluated the efficiency of both methods on a set of 18 randomly selected purified proteins from Shewanella oneidensis. While both methods provide similar yield and efficiency, the ammonium sulfate precipitation is much less labor intensive and time consuming than the ultrafiltration.
Ionomics: The functional genomics of elements.
Baxter, Ivan
2010-03-01
Ionomics is the study of elemental accumulation in living systems using high-throughput elemental profiling. This approach has been applied extensively in plants for forward and reverse genetics, screening diversity panels, and modeling of physiological states. In this review, I will discuss some of the advantages and limitations of the ionomics approach as well as the important parameters to consider when designing ionomics experiments, and how to evaluate ionomics data.
Candidate Cancer Allele cDNA Collection | Office of Cancer Genomics
CTD2 researchers at the Broad Institute/DFCI have developed a collection of plasmids including mutant alleles found in sequencing studies of cancer. It includes somatic variants found in lung adenocarcinoma and across other cancer types. The clones enable researchers to characterize the function of the cancer variants in a high throughput experiments. These plasmids are collectively called the “Broad Target Accelerator Plasmid Collections”.
Evaluating between-pathway models with expression data.
Hescott, B J; Leiserson, M D M; Cowen, L J; Slonim, D K
2010-03-01
Between-pathway models (BPMs) are network motifs consisting of pairs of putative redundant pathways. In this article, we show how adding another source of high-throughput data--microarray gene expression data from knockout experiments--allows us to identify a compensatory functional relationship between genes from the two BPM pathways. We evaluate the quality of the BPMs from four different studies, and we describe how our methods might be extended to refine pathways.
Using Weighted Entropy to Rank Chemicals in Quantitative High Throughput Screening Experiments
Shockley, Keith R.
2014-01-01
Quantitative high throughput screening (qHTS) experiments can simultaneously produce concentration-response profiles for thousands of chemicals. In a typical qHTS study, a large chemical library is subjected to a primary screen in order to identify candidate hits for secondary screening, validation studies or prediction modeling. Different algorithms, usually based on the Hill equation logistic model, have been used to classify compounds as active or inactive (or inconclusive). However, observed concentration-response activity relationships may not adequately fit a sigmoidal curve. Furthermore, it is unclear how to prioritize chemicals for follow-up studies given the large uncertainties that often accompany parameter estimates from nonlinear models. Weighted Shannon entropy can address these concerns by ranking compounds according to profile-specific statistics derived from estimates of the probability mass distribution of response at the tested concentration levels. This strategy can be used to rank all tested chemicals in the absence of a pre-specified model structure or the approach can complement existing activity call algorithms by ranking the returned candidate hits. The weighted entropy approach was evaluated here using data simulated from the Hill equation model. The procedure was then applied to a chemical genomics profiling data set interrogating compounds for androgen receptor agonist activity. PMID:24056003
Hackenberg, Michael; Rodríguez-Ezpeleta, Naiara; Aransay, Ana M.
2011-01-01
We present a new version of miRanalyzer, a web server and stand-alone tool for the detection of known and prediction of new microRNAs in high-throughput sequencing experiments. The new version has been notably improved regarding speed, scope and available features. Alignments are now based on the ultrafast short-read aligner Bowtie (granting also colour space support, allowing mismatches and improving speed) and 31 genomes, including 6 plant genomes, can now be analysed (previous version contained only 7). Differences between plant and animal microRNAs have been taken into account for the prediction models and differential expression of both, known and predicted microRNAs, between two conditions can be calculated. Additionally, consensus sequences of predicted mature and precursor microRNAs can be obtained from multiple samples, which increases the reliability of the predicted microRNAs. Finally, a stand-alone version of the miRanalyzer that is based on a local and easily customized database is also available; this allows the user to have more control on certain parameters as well as to use specific data such as unpublished assemblies or other libraries that are not available in the web server. miRanalyzer is available at http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php. PMID:21515631
Lu, Alex Xijie; Moses, Alan M
2016-01-01
Despite the importance of characterizing genes that exhibit subcellular localization changes between conditions in proteome-wide imaging experiments, many recent studies still rely upon manual evaluation to assess the results of high-throughput imaging experiments. We describe and demonstrate an unsupervised k-nearest neighbours method for the detection of localization changes. Compared to previous classification-based supervised change detection methods, our method is much simpler and faster, and operates directly on the feature space to overcome limitations in needing to manually curate training sets that may not generalize well between screens. In addition, the output of our method is flexible in its utility, generating both a quantitatively ranked list of localization changes that permit user-defined cut-offs, and a vector for each gene describing feature-wise direction and magnitude of localization changes. We demonstrate that our method is effective at the detection of localization changes using the Δrpd3 perturbation in Saccharomyces cerevisiae, where we capture 71.4% of previously known changes within the top 10% of ranked genes, and find at least four new localization changes within the top 1% of ranked genes. The results of our analysis indicate that simple unsupervised methods may be able to identify localization changes in images without laborious manual image labelling steps.
Arraycount, an algorithm for automatic cell counting in microwell arrays.
Kachouie, Nezamoddin; Kang, Lifeng; Khademhosseini, Ali
2009-09-01
Microscale technologies have emerged as a powerful tool for studying and manipulating biological systems and miniaturizing experiments. However, the lack of software complementing these techniques has made it difficult to apply them for many high-throughput experiments. This work establishes Arraycount, an approach to automatically count cells in microwell arrays. The procedure consists of fluorescent microscope imaging of cells that are seeded in microwells of a microarray system and then analyzing images via computer to recognize the array and count cells inside each microwell. To start counting, green and red fluorescent images (representing live and dead cells, respectively) are extracted from the original image and processed separately. A template-matching algorithm is proposed in which pre-defined well and cell templates are matched against the red and green images to locate microwells and cells. Subsequently, local maxima in the correlation maps are determined and local maxima maps are thresholded. At the end, the software records the cell counts for each detected microwell on the original image in high-throughput. The automated counting was shown to be accurate compared with manual counting, with a difference of approximately 1-2 cells per microwell: based on cell concentration, the absolute difference between manual and automatic counting measurements was 2.5-13%.
Application of Titration-Based Screening for the Rapid Pilot Testing of High-Throughput Assays.
Zhang, Ji-Hu; Kang, Zhao B; Ardayfio, Ophelia; Ho, Pei-i; Smith, Thomas; Wallace, Iain; Bowes, Scott; Hill, W Adam; Auld, Douglas S
2014-06-01
Pilot testing of an assay intended for high-throughput screening (HTS) with small compound sets is a necessary but often time-consuming step in the validation of an assay protocol. When the initial testing concentration is less than optimal, this can involve iterative testing at different concentrations to further evaluate the pilot outcome, which can be even more time-consuming. Quantitative HTS (qHTS) enables flexible and rapid collection of assay performance statistics, hits at different concentrations, and concentration-response curves in a single experiment. Here we describe the qHTS process for pilot testing in which eight-point concentration-response curves are produced using an interplate asymmetric dilution protocol in which the first four concentrations are used to represent the range of typical HTS screening concentrations and the last four concentrations are added for robust curve fitting to determine potency/efficacy values. We also describe how these data can be analyzed to predict the frequency of false-positives, false-negatives, hit rates, and confirmation rates for the HTS process as a function of screening concentration. By taking into account the compound pharmacology, this pilot-testing paradigm enables rapid assessment of the assay performance and choosing the optimal concentration for the large-scale HTS in one experiment. © 2013 Society for Laboratory Automation and Screening.
Martin, Daniel B; Holzman, Ted; May, Damon; Peterson, Amelia; Eastham, Ashley; Eng, Jimmy; McIntosh, Martin
2008-11-01
Multiple reaction monitoring (MRM) mass spectrometry identifies and quantifies specific peptides in a complex mixture with very high sensitivity and speed and thus has promise for the high throughput screening of clinical samples for candidate biomarkers. We have developed an interactive software platform, called MRMer, for managing highly complex MRM-MS experiments, including quantitative analyses using heavy/light isotopic peptide pairs. MRMer parses and extracts information from MS files encoded in the platform-independent mzXML data format. It extracts and infers precursor-product ion transition pairings, computes integrated ion intensities, and permits rapid visual curation for analyses exceeding 1000 precursor-product pairs. Results can be easily output for quantitative comparison of consecutive runs. Additionally MRMer incorporates features that permit the quantitative analysis experiments including heavy and light isotopic peptide pairs. MRMer is open source and provided under the Apache 2.0 license.
Li, Ben; Sun, Zhaonan; He, Qing; Zhu, Yu; Qin, Zhaohui S.
2016-01-01
Motivation: Modern high-throughput biotechnologies such as microarray are capable of producing a massive amount of information for each sample. However, in a typical high-throughput experiment, only limited number of samples were assayed, thus the classical ‘large p, small n’ problem. On the other hand, rapid propagation of these high-throughput technologies has resulted in a substantial collection of data, often carried out on the same platform and using the same protocol. It is highly desirable to utilize the existing data when performing analysis and inference on a new dataset. Results: Utilizing existing data can be carried out in a straightforward fashion under the Bayesian framework in which the repository of historical data can be exploited to build informative priors and used in new data analysis. In this work, using microarray data, we investigate the feasibility and effectiveness of deriving informative priors from historical data and using them in the problem of detecting differentially expressed genes. Through simulation and real data analysis, we show that the proposed strategy significantly outperforms existing methods including the popular and state-of-the-art Bayesian hierarchical model-based approaches. Our work illustrates the feasibility and benefits of exploiting the increasingly available genomics big data in statistical inference and presents a promising practical strategy for dealing with the ‘large p, small n’ problem. Availability and implementation: Our method is implemented in R package IPBT, which is freely available from https://github.com/benliemory/IPBT. Contact: yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26519502
Experiences with http/WebDAV protocols for data access in high throughput computing
NASA Astrophysics Data System (ADS)
Bernabeu, Gerard; Martinez, Francisco; Acción, Esther; Bria, Arnau; Caubet, Marc; Delfino, Manuel; Espinal, Xavier
2011-12-01
In the past, access to remote storage was considered to be at least one order of magnitude slower than local disk access. Improvement on network technologies provide the alternative of using remote disk. For those accesses one can today reach levels of throughput similar or exceeding those of local disks. Common choices as access protocols in the WLCG collaboration are RFIO, [GSI]DCAP, GRIDFTP, XROOTD and NFS. HTTP protocol shows a promising alternative as it is a simple, lightweight protocol. It also enables the use of standard technologies such as http caching or load balancing which can be used to improve service resilience and scalability or to boost performance for some use cases seen in HEP such as the "hot files". WebDAV extensions allow writing data, giving it enough functionality to work as a remote access protocol. This paper will show our experiences with the WebDAV door for dCache, in terms of functionality and performance, applied to some of the HEP work flows in the LHC Tier1 at PIC.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.
Yang, Darren; Wong, Wesley P
2018-01-01
We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.
High throughput single cell counting in droplet-based microfluidics.
Lu, Heng; Caen, Ouriel; Vrignon, Jeremy; Zonta, Eleonora; El Harrak, Zakaria; Nizard, Philippe; Baret, Jean-Christophe; Taly, Valérie
2017-05-02
Droplet-based microfluidics is extensively and increasingly used for high-throughput single-cell studies. However, the accuracy of the cell counting method directly impacts the robustness of such studies. We describe here a simple and precise method to accurately count a large number of adherent and non-adherent human cells as well as bacteria. Our microfluidic hemocytometer provides statistically relevant data on large populations of cells at a high-throughput, used to characterize cell encapsulation and cell viability during incubation in droplets.
2016-12-01
AWARD NUMBER: W81XWH-13-1-0371 TITLE: High-Throughput Sequencing of Germline and Tumor From Men with Early- Onset Metastatic Prostate Cancer...DATES COVERED 30 Sep 2013 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER High-Throughput Sequencing of Germline and Tumor From Men with...presenting with metastatic prostate cancer at a young age (before age 60 years). Whole exome sequencing identified a panel of germline variants that have
Developing High-Throughput HIV Incidence Assay with Pyrosequencing Platform
Park, Sung Yong; Goeken, Nolan; Lee, Hyo Jin; Bolan, Robert; Dubé, Michael P.
2014-01-01
ABSTRACT Human immunodeficiency virus (HIV) incidence is an important measure for monitoring the epidemic and evaluating the efficacy of intervention and prevention trials. This study developed a high-throughput, single-measure incidence assay by implementing a pyrosequencing platform. We devised a signal-masking bioinformatics pipeline, which yielded a process error rate of 5.8 × 10−4 per base. The pipeline was then applied to analyze 18,434 envelope gene segments (HXB2 7212 to 7601) obtained from 12 incident and 24 chronic patients who had documented HIV-negative and/or -positive tests. The pyrosequencing data were cross-checked by using the single-genome-amplification (SGA) method to independently obtain 302 sequences from 13 patients. Using two genomic biomarkers that probe for the presence of similar sequences, the pyrosequencing platform correctly classified all 12 incident subjects (100% sensitivity) and 23 of 24 chronic subjects (96% specificity). One misclassified subject's chronic infection was correctly classified by conducting the same analysis with SGA data. The biomarkers were statistically associated across the two platforms, suggesting the assay's reproducibility and robustness. Sampling simulations showed that the biomarkers were tolerant of sequencing errors and template resampling, two factors most likely to affect the accuracy of pyrosequencing results. We observed comparable biomarker scores between AIDS and non-AIDS chronic patients (multivariate analysis of variance [MANOVA], P = 0.12), indicating that the stage of HIV disease itself does not affect the classification scheme. The high-throughput genomic HIV incidence marks a significant step toward determining incidence from a single measure in cross-sectional surveys. IMPORTANCE Annual HIV incidence, the number of newly infected individuals within a year, is the key measure of monitoring the epidemic's rise and decline. Developing reliable assays differentiating recent from chronic infections has been a long-standing quest in the HIV community. Over the past 15 years, these assays have traditionally measured various HIV-specific antibodies, but recent technological advancements have expanded the diversity of proposed accurate, user-friendly, and financially viable tools. Here we designed a high-throughput genomic HIV incidence assay based on the signature imprinted in the HIV gene sequence population. By combining next-generation sequencing techniques with bioinformatics analysis, we demonstrated that genomic fingerprints are capable of distinguishing recently infected patients from chronically infected patients with high precision. Our high-throughput platform is expected to allow us to process many patients' samples from a single experiment, permitting the assay to be cost-effective for routine surveillance. PMID:24371062
GSDC: A Unique Data Center in Korea for HEP research
NASA Astrophysics Data System (ADS)
Ahn, Sang-Un
2017-04-01
Global Science experimental Data hub Center (GSDC) at Korea Institute of Science and Technology Information (KISTI) is a unique data center in South Korea established for promoting the fundamental research fields by supporting them with the expertise on Information and Communication Technology (ICT) and the infrastructure for High Performance Computing (HPC), High Throughput Computing (HTC) and Networking. GSDC has supported various research fields in South Korea dealing with the large scale of data, e.g. RENO experiment for neutrino research, LIGO experiment for gravitational wave detection, Genome sequencing project for bio-medical, and HEP experiments such as CDF at FNAL, Belle at KEK, and STAR at BNL. In particular, GSDC has run a Tier-1 center for ALICE experiment using the LHC at CERN since 2013. In this talk, we present the overview on computing infrastructure that GSDC runs for the research fields and we discuss on the data center infrastructure management system deployed at GSDC.
DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L
2013-08-26
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.
A statistical approach to selecting and confirming validation targets in -omics experiments
2012-01-01
Background Genomic technologies are, by their very nature, designed for hypothesis generation. In some cases, the hypotheses that are generated require that genome scientists confirm findings about specific genes or proteins. But one major advantage of high-throughput technology is that global genetic, genomic, transcriptomic, and proteomic behaviors can be observed. Manual confirmation of every statistically significant genomic result is prohibitively expensive. This has led researchers in genomics to adopt the strategy of confirming only a handful of the most statistically significant results, a small subset chosen for biological interest, or a small random subset. But there is no standard approach for selecting and quantitatively evaluating validation targets. Results Here we present a new statistical method and approach for statistically validating lists of significant results based on confirming only a small random sample. We apply our statistical method to show that the usual practice of confirming only the most statistically significant results does not statistically validate result lists. We analyze an extensively validated RNA-sequencing experiment to show that confirming a random subset can statistically validate entire lists of significant results. Finally, we analyze multiple publicly available microarray experiments to show that statistically validating random samples can both (i) provide evidence to confirm long gene lists and (ii) save thousands of dollars and hundreds of hours of labor over manual validation of each significant result. Conclusions For high-throughput -omics studies, statistical validation is a cost-effective and statistically valid approach to confirming lists of significant results. PMID:22738145
Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System.
Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi
2015-01-01
The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system.
Computer Simulation and Field Experiment for Downlink Multiuser MIMO in Mobile WiMAX System
Yamaguchi, Kazuhiro; Nagahashi, Takaharu; Akiyama, Takuya; Matsue, Hideaki; Uekado, Kunio; Namera, Takakazu; Fukui, Hiroshi; Nanamatsu, Satoshi
2015-01-01
The transmission performance for a downlink mobile WiMAX system with multiuser multiple-input multiple-output (MU-MIMO) systems in a computer simulation and field experiment is described. In computer simulation, a MU-MIMO transmission system can be realized by using the block diagonalization (BD) algorithm, and each user can receive signals without any signal interference from other users. The bit error rate (BER) performance and channel capacity in accordance with modulation schemes and the number of streams were simulated in a spatially correlated multipath fading environment. Furthermore, we propose a method for evaluating the transmission performance for this downlink mobile WiMAX system in this environment by using the computer simulation. In the field experiment, the received power and downlink throughput in the UDP layer were measured on an experimental mobile WiMAX system developed in Azumino City in Japan. In comparison with the simulated and experimented results, the measured maximum throughput performance in the downlink had almost the same performance as the simulated throughput. It was confirmed that the experimental mobile WiMAX system for MU-MIMO transmission successfully increased the total channel capacity of the system. PMID:26421311
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, E. C.; Ao, T.; Bailey, J. E.
2015-04-15
The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-raysmore » with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.« less
Harding, E C; Ao, T; Bailey, J E; Loisel, G; Sinars, D B; Geissel, M; Rochau, G A; Smith, I C
2015-04-01
The application of a space-resolving spectrometer to X-ray Thomson Scattering (XRTS) experiments has the potential to advance the study of warm dense matter. This has motivated the design of a spherical crystal spectrometer, which is a doubly focusing geometry with an overall high sensitivity and the capability of providing high-resolution, space-resolved spectra. A detailed analysis of the image fluence and crystal throughput in this geometry is carried out and analytical estimates of these quantities are presented. This analysis informed the design of a new spectrometer intended for future XRTS experiments on the Z-machine. The new spectrometer collects 6 keV x-rays with a spherically bent Ge (422) crystal and focuses the collected x-rays onto the Rowland circle. The spectrometer was built and then tested with a foam target. The resulting high-quality spectra prove that a spherical spectrometer is a viable diagnostic for XRTS experiments.
iScreen: Image-Based High-Content RNAi Screening Analysis Tools.
Zhong, Rui; Dong, Xiaonan; Levine, Beth; Xie, Yang; Xiao, Guanghua
2015-09-01
High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well. This image-based high-content screening technology has led to genome-wide functional annotation in a wider spectrum of biological research studies, as well as in drug and target discovery, so that complex cellular phenotypes can be measured in a multiparametric format. Despite these advances, data analysis and visualization tools are still largely lacking for these types of experiments. Therefore, we developed iScreen (image-Based High-content RNAi Screening Analysis Tool), an R package for the statistical modeling and visualization of image-based high-content RNAi screening. Two case studies were used to demonstrate the capability and efficiency of the iScreen package. iScreen is available for download on CRAN (http://cran.cnr.berkeley.edu/web/packages/iScreen/index.html). The user manual is also available as a supplementary document. © 2014 Society for Laboratory Automation and Screening.
High-throughput sequencing methods to study neuronal RNA-protein interactions.
Ule, Jernej
2009-12-01
UV-cross-linking and RNase protection, combined with high-throughput sequencing, have provided global maps of RNA sites bound by individual proteins or ribosomes. Using a stringent purification protocol, UV-CLIP (UV-cross-linking and immunoprecipitation) was able to identify intronic and exonic sites bound by splicing regulators in mouse brain tissue. Ribosome profiling has been used to quantify ribosome density on budding yeast mRNAs under different environmental conditions. Post-transcriptional regulation in neurons requires high spatial and temporal precision, as is evident from the role of localized translational control in synaptic plasticity. It remains to be seen if the high-throughput methods can be applied quantitatively to study the dynamics of RNP (ribonucleoprotein) remodelling in specific neuronal populations during the neurodegenerative process. It is certain, however, that applications of new biochemical techniques followed by high-throughput sequencing will continue to provide important insights into the mechanisms of neuronal post-transcriptional regulation.
NASA Astrophysics Data System (ADS)
Ohene-Kwofie, Daniel; Otoo, Ekow
2015-10-01
The ATLAS detector, operated at the Large Hadron Collider (LHC) records proton-proton collisions at CERN every 50ns resulting in a sustained data flow up to PB/s. The upgraded Tile Calorimeter of the ATLAS experiment will sustain about 5PB/s of digital throughput. These massive data rates require extremely fast data capture and processing. Although there has been a steady increase in the processing speed of CPU/GPGPU assembled for high performance computing, the rate of data input and output, even under parallel I/O, has not kept up with the general increase in computing speeds. The problem then is whether one can implement an I/O subsystem infrastructure capable of meeting the computational speeds of the advanced computing systems at the petascale and exascale level. We propose a system architecture that leverages the Partitioned Global Address Space (PGAS) model of computing to maintain an in-memory data-store for the Processing Unit (PU) of the upgraded electronics of the Tile Calorimeter which is proposed to be used as a high throughput general purpose co-processor to the sROD of the upgraded Tile Calorimeter. The physical memory of the PUs are aggregated into a large global logical address space using RDMA- capable interconnects such as PCI- Express to enhance data processing throughput.
High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...
Draveling, C; Ren, L; Haney, P; Zeisse, D; Qoronfleh, M W
2001-07-01
The revolution in genomics and proteomics is having a profound impact on drug discovery. Today's protein scientist demands a faster, easier, more reliable way to purify proteins. A high capacity, high-throughput new technology has been developed in Perbio Sciences for affinity protein purification. This technology utilizes selected chromatography media that are dehydrated to form uniform aggregates. The SwellGel aggregates will instantly rehydrate upon addition of the protein sample, allowing purification and direct performance of multiple assays in a variety of formats. SwellGel technology has greater stability and is easier to handle than standard wet chromatography resins. The microplate format of this technology provides high-capacity, high-throughput features, recovering milligram quantities of protein suitable for high-throughput screening or biophysical/structural studies. Data will be presented applying SwellGel technology to recombinant 6x His-tagged protein and glutathione-S-transferase (GST) fusion protein purification. Copyright 2001 Academic Press.
NASA Astrophysics Data System (ADS)
Mondal, Sudip; Hegarty, Evan; Martin, Chris; Gökçe, Sertan Kutal; Ghorashian, Navid; Ben-Yakar, Adela
2016-10-01
Next generation drug screening could benefit greatly from in vivo studies, using small animal models such as Caenorhabditis elegans for hit identification and lead optimization. Current in vivo assays can operate either at low throughput with high resolution or with low resolution at high throughput. To enable both high-throughput and high-resolution imaging of C. elegans, we developed an automated microfluidic platform. This platform can image 15 z-stacks of ~4,000 C. elegans from 96 different populations using a large-scale chip with a micron resolution in 16 min. Using this platform, we screened ~100,000 animals of the poly-glutamine aggregation model on 25 chips. We tested the efficacy of ~1,000 FDA-approved drugs in improving the aggregation phenotype of the model and identified four confirmed hits. This robust platform now enables high-content screening of various C. elegans disease models at the speed and cost of in vitro cell-based assays.
NASA Astrophysics Data System (ADS)
dos Santos, J. M. F.; Veloso, J. F. C. A.; Monteiro, C. M. B.
2004-01-01
We describe a simple experiment intended for didactic laboratory vacuum classes of undergraduate courses, using a helium leak detector. The helium throughput flowing into the vacuum volume due to the permeability of materials can be taken as a real leak, which can be measured with the helium leak detector. The experiment allows students to perform actual measurements of helium permeability constants of different materials, and access the dependence of the helium permeability throughput on the material thickness, area and helium pressure differential. As an example, a set of measurements are presented for Kapton foils, exhibiting results that are in good agreement with those presented in the literature.
The ToxCast Dashboard helps users examine high-throughput assay data to inform chemical safety decisions. To date, it has data on over 9,000 chemicals and information from more than 1,000 high-throughput assay endpoint components.
The ToxCast Dashboard helps users examine high-throughput assay data to inform chemical safety decisions. To date, it has data on over 9,000 chemicals and information from more than 1,000 high-throughput assay endpoint components.
Yang, Wanneng; Guo, Zilong; Huang, Chenglong; Duan, Lingfeng; Chen, Guoxing; Jiang, Ni; Fang, Wei; Feng, Hui; Xie, Weibo; Lian, Xingming; Wang, Gongwei; Luo, Qingming; Zhang, Qifa; Liu, Qian; Xiong, Lizhong
2014-01-01
Even as the study of plant genomics rapidly develops through the use of high-throughput sequencing techniques, traditional plant phenotyping lags far behind. Here we develop a high-throughput rice phenotyping facility (HRPF) to monitor 13 traditional agronomic traits and 2 newly defined traits during the rice growth period. Using genome-wide association studies (GWAS) of the 15 traits, we identify 141 associated loci, 25 of which contain known genes such as the Green Revolution semi-dwarf gene, SD1. Based on a performance evaluation of the HRPF and GWAS results, we demonstrate that high-throughput phenotyping has the potential to replace traditional phenotyping techniques and can provide valuable gene identification information. The combination of the multifunctional phenotyping tools HRPF and GWAS provides deep insights into the genetic architecture of important traits. PMID:25295980
A high-quality annotated transcriptome of swine peripheral blood
USDA-ARS?s Scientific Manuscript database
Background: High throughput gene expression profiling assays of peripheral blood are widely used in biomedicine, as well as in animal genetics and physiology research. Accurate, comprehensive, and precise interpretation of such high throughput assays relies on well-characterized reference genomes an...
Continuous flow electrophoresis system experiments on shuttle flights STS-6 and STS-7
NASA Technical Reports Server (NTRS)
Snyder, Robert S.; Rhodes, Percy H.; Miller, Teresa Y.
1988-01-01
The development of a space continuous flow electrophoresis system (CFES) is discussed. The objectives of the experiment were: (1) to use a model sample material at a high concentration to evaluate the continuous flow electrophoresis process in the McDonnell Douglass CFES instrument and compare its separation resolution and sample throughput with related devices on Earth, and (2) to expand the basic knowledge of the limitations imposed by fluid flows and particle concentration effects on the electrophoresis process by careful design and evaluation of the space experiment. Hemoglobin and polysaccharide were selected as samples of concentration effects. The results from space show a large band spread of the high concentration of the single species of hemoglobin that was principally due to the mismatch of electrical conductivity between the sample and buffer.
Polonchuk, Liudmila
2014-01-01
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
HIGH THROUGHPUT ASSESSMENTS OF CONVENTIONAL AND ALTERNATIVE COMPOUNDS
High throughput approaches for quantifying chemical hazard, exposure, and sustainability have the potential to dramatically impact the pace and nature of risk assessments. Integrated evaluation strategies developed at the US EPA incorporate inherency,bioactivity,bioavailability, ...
GiNA, an efficient and high-throughput software for horticultural phenotyping
USDA-ARS?s Scientific Manuscript database
Traditional methods for trait phenotyping have been a bottleneck for research in many crop species due to their intensive labor, high cost, complex implementation, lack of reproducibility and propensity to subjective bias. Recently, multiple high-throughput phenotyping platforms have been developed,...
High-throughput quantification of hydroxyproline for determination of collagen.
Hofman, Kathleen; Hall, Bronwyn; Cleaver, Helen; Marshall, Susan
2011-10-15
An accurate and high-throughput assay for collagen is essential for collagen research and development of collagen products. Hydroxyproline is routinely assayed to provide a measurement for collagen quantification. The time required for sample preparation using acid hydrolysis and neutralization prior to assay is what limits the current method for determining hydroxyproline. This work describes the conditions of alkali hydrolysis that, when combined with the colorimetric assay defined by Woessner, provide a high-throughput, accurate method for the measurement of hydroxyproline. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Andrew J.; Capo, Rosemary C.; Stewart, Brian W.
2016-09-22
This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakala, Jacqueline Alexandra
2016-11-22
This technical report presents the details of the Sr column configuration and the high-throughput Sr separation protocol. Data showing the performance of the method as well as the best practices for optimizing Sr isotope analysis by MC-ICP-MS is presented. Lastly, this report offers tools for data handling and data reduction of Sr isotope results from the Thermo Scientific Neptune software to assist in data quality assurance, which help avoid issues of data glut associated with high sample throughput rapid analysis.
A Memory Efficient Network Encryption Scheme
NASA Astrophysics Data System (ADS)
El-Fotouh, Mohamed Abo; Diepold, Klaus
In this paper, we studied the two widely used encryption schemes in network applications. Shortcomings have been found in both schemes, as these schemes consume either more memory to gain high throughput or low memory with low throughput. The need has aroused for a scheme that has low memory requirements and in the same time possesses high speed, as the number of the internet users increases each day. We used the SSM model [1], to construct an encryption scheme based on the AES. The proposed scheme possesses high throughput together with low memory requirements.
HTP-NLP: A New NLP System for High Throughput Phenotyping.
Schlegel, Daniel R; Crowner, Chris; Lehoullier, Frank; Elkin, Peter L
2017-01-01
Secondary use of clinical data for research requires a method to quickly process the data so that researchers can quickly extract cohorts. We present two advances in the High Throughput Phenotyping NLP system which support the aim of truly high throughput processing of clinical data, inspired by a characterization of the linguistic properties of such data. Semantic indexing to store and generalize partially-processed results and the use of compositional expressions for ungrammatical text are discussed, along with a set of initial timing results for the system.
Micropatterned comet assay enables high throughput and sensitive DNA damage quantification
Ge, Jing; Chow, Danielle N.; Fessler, Jessica L.; Weingeist, David M.; Wood, David K.; Engelward, Bevin P.
2015-01-01
The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. PMID:25527723
Micropatterned comet assay enables high throughput and sensitive DNA damage quantification.
Ge, Jing; Chow, Danielle N; Fessler, Jessica L; Weingeist, David M; Wood, David K; Engelward, Bevin P
2015-01-01
The single cell gel electrophoresis assay, also known as the comet assay, is a versatile method for measuring many classes of DNA damage, including base damage, abasic sites, single strand breaks and double strand breaks. However, limited throughput and difficulties with reproducibility have limited its utility, particularly for clinical and epidemiological studies. To address these limitations, we created a microarray comet assay. The use of a micrometer scale array of cells increases the number of analysable comets per square centimetre and enables automated imaging and analysis. In addition, the platform is compatible with standard 24- and 96-well plate formats. Here, we have assessed the consistency and sensitivity of the microarray comet assay. We showed that the linear detection range for H2O2-induced DNA damage in human lymphoblastoid cells is between 30 and 100 μM, and that within this range, inter-sample coefficient of variance was between 5 and 10%. Importantly, only 20 comets were required to detect a statistically significant induction of DNA damage for doses within the linear range. We also evaluated sample-to-sample and experiment-to-experiment variation and found that for both conditions, the coefficient of variation was lower than what has been reported for the traditional comet assay. Finally, we also show that the assay can be performed using a 4× objective (rather than the standard 10× objective for the traditional assay). This adjustment combined with the microarray format makes it possible to capture more than 50 analysable comets in a single image, which can then be automatically analysed using in-house software. Overall, throughput is increased more than 100-fold compared to the traditional assay. Together, the results presented here demonstrate key advances in comet assay technology that improve the throughput, sensitivity, and robustness, thus enabling larger scale clinical and epidemiological studies. © The Author 2014. Published by Oxford University Press on behalf of the Mutagenesis Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
Evaluating Rapid Models for High-Throughput Exposure Forecasting (SOT)
High throughput exposure screening models can provide quantitative predictions for thousands of chemicals; however these predictions must be systematically evaluated for predictive ability. Without the capability to make quantitative, albeit uncertain, forecasts of exposure, the ...
Microfluidics for cell-based high throughput screening platforms - A review.
Du, Guansheng; Fang, Qun; den Toonder, Jaap M J
2016-01-15
In the last decades, the basic techniques of microfluidics for the study of cells such as cell culture, cell separation, and cell lysis, have been well developed. Based on cell handling techniques, microfluidics has been widely applied in the field of PCR (Polymerase Chain Reaction), immunoassays, organ-on-chip, stem cell research, and analysis and identification of circulating tumor cells. As a major step in drug discovery, high-throughput screening allows rapid analysis of thousands of chemical, biochemical, genetic or pharmacological tests in parallel. In this review, we summarize the application of microfluidics in cell-based high throughput screening. The screening methods mentioned in this paper include approaches using the perfusion flow mode, the droplet mode, and the microarray mode. We also discuss the future development of microfluidic based high throughput screening platform for drug discovery. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles
2012-01-01
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792
BiQ Analyzer HT: locus-specific analysis of DNA methylation by high-throughput bisulfite sequencing
Lutsik, Pavlo; Feuerbach, Lars; Arand, Julia; Lengauer, Thomas; Walter, Jörn; Bock, Christoph
2011-01-01
Bisulfite sequencing is a widely used method for measuring DNA methylation in eukaryotic genomes. The assay provides single-base pair resolution and, given sufficient sequencing depth, its quantitative accuracy is excellent. High-throughput sequencing of bisulfite-converted DNA can be applied either genome wide or targeted to a defined set of genomic loci (e.g. using locus-specific PCR primers or DNA capture probes). Here, we describe BiQ Analyzer HT (http://biq-analyzer-ht.bioinf.mpi-inf.mpg.de/), a user-friendly software tool that supports locus-specific analysis and visualization of high-throughput bisulfite sequencing data. The software facilitates the shift from time-consuming clonal bisulfite sequencing to the more quantitative and cost-efficient use of high-throughput sequencing for studying locus-specific DNA methylation patterns. In addition, it is useful for locus-specific visualization of genome-wide bisulfite sequencing data. PMID:21565797
Yeow, Jonathan; Joshi, Sanket; Chapman, Robert; Boyer, Cyrille Andre Jean Marie
2018-04-25
Translating controlled/living radical polymerization (CLRP) from batch to the high throughput production of polymer libraries presents several challenges in terms of both polymer synthesis and characterization. Although recently there have been significant advances in the field of low volume, high throughput CLRP, techniques able to simultaneously monitor multiple polymerizations in an "online" manner have not yet been developed. Here, we report our discovery that 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) is a self-reporting photocatalyst that can mediate PET-RAFT polymerization as well as report on monomer conversion via changes in its fluorescence properties. This enables the use of a microplate reader to conduct high throughput "online" monitoring of PET-RAFT polymerizations performed directly in 384-well, low volume microtiter plates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Green, Martin L.; Choi, C. L.; Hattrick-Simpers, J. R.; ...
2017-03-28
The Materials Genome Initiative, a national effort to introduce new materials into the market faster and at lower cost, has made significant progress in computational simulation and modeling of materials. To build on this progress, a large amount of experimental data for validating these models, and informing more sophisticated ones, will be required. High-throughput experimentation generates large volumes of experimental data using combinatorial materials synthesis and rapid measurement techniques, making it an ideal experimental complement to bring the Materials Genome Initiative vision to fruition. This paper reviews the state-of-the-art results, opportunities, and challenges in high-throughput experimentation for materials design. Asmore » a result, a major conclusion is that an effort to deploy a federated network of high-throughput experimental (synthesis and characterization) tools, which are integrated with a modern materials data infrastructure, is needed.« less
High Throughput Genotoxicity Profiling of the US EPA ToxCast Chemical Library
A key aim of the ToxCast project is to investigate modern molecular and genetic high content and high throughput screening (HTS) assays, along with various computational tools to supplement and perhaps replace traditional assays for evaluating chemical toxicity. Genotoxicity is a...
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆
Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan
2016-01-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
NASA Astrophysics Data System (ADS)
Garzoglio, Gabriele; Levshina, Tanya; Rynge, Mats; Sehgal, Chander; Slyz, Marko
2012-12-01
The Open Science Grid (OSG) supports a diverse community of new and existing users in adopting and making effective use of the Distributed High Throughput Computing (DHTC) model. The LHC user community has deep local support within the experiments. For other smaller communities and individual users the OSG provides consulting and technical services through the User Support area. We describe these sometimes successful and sometimes not so successful experiences and analyze lessons learned that are helping us improve our services. The services offered include forums to enable shared learning and mutual support, tutorials and documentation for new technology, and troubleshooting of problematic or systemic failure modes. For new communities and users, we bootstrap their use of the distributed high throughput computing technologies and resources available on the OSG by following a phased approach. We first adapt the application and run a small production campaign on a subset of “friendly” sites. Only then do we move the user to run full production campaigns across the many remote sites on the OSG, adding to the community resources up to hundreds of thousands of CPU hours per day. This scaling up generates new challenges - like no determinism in the time to job completion, and diverse errors due to the heterogeneity of the configurations and environments - so some attention is needed to get good results. We cover recent experiences with image simulation for the Large Synoptic Survey Telescope (LSST), small-file large volume data movement for the Dark Energy Survey (DES), civil engineering simulation with the Network for Earthquake Engineering Simulation (NEES), and accelerator modeling with the Electron Ion Collider group at BNL. We will categorize and analyze the use cases and describe how our processes are evolving based on lessons learned.
Diagnosis of breast cancer biopsies using quantitative phase imaging
NASA Astrophysics Data System (ADS)
Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel
2015-03-01
The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.
Purdue Ionomics Information Management System. An Integrated Functional Genomics Platform1[C][W][OA
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S.; Salt, David E.
2007-01-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics. PMID:17189337
Li, Ben; Sun, Zhaonan; He, Qing; Zhu, Yu; Qin, Zhaohui S
2016-03-01
Modern high-throughput biotechnologies such as microarray are capable of producing a massive amount of information for each sample. However, in a typical high-throughput experiment, only limited number of samples were assayed, thus the classical 'large p, small n' problem. On the other hand, rapid propagation of these high-throughput technologies has resulted in a substantial collection of data, often carried out on the same platform and using the same protocol. It is highly desirable to utilize the existing data when performing analysis and inference on a new dataset. Utilizing existing data can be carried out in a straightforward fashion under the Bayesian framework in which the repository of historical data can be exploited to build informative priors and used in new data analysis. In this work, using microarray data, we investigate the feasibility and effectiveness of deriving informative priors from historical data and using them in the problem of detecting differentially expressed genes. Through simulation and real data analysis, we show that the proposed strategy significantly outperforms existing methods including the popular and state-of-the-art Bayesian hierarchical model-based approaches. Our work illustrates the feasibility and benefits of exploiting the increasingly available genomics big data in statistical inference and presents a promising practical strategy for dealing with the 'large p, small n' problem. Our method is implemented in R package IPBT, which is freely available from https://github.com/benliemory/IPBT CONTACT: yuzhu@purdue.edu; zhaohui.qin@emory.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
I describe research on high throughput exposure and toxicokinetics. These tools provide context for data generated by high throughput toxicity screening to allow risk-based prioritization of thousands of chemicals.
High-Throughput Pharmacokinetics for Environmental Chemicals (SOT)
High throughput screening (HTS) promises to allow prioritization of thousands of environmental chemicals with little or no in vivo information. For bioactivity identified by HTS, toxicokinetic (TK) models are essential to predict exposure thresholds below which no significant bio...
Gore, Brooklin
2018-02-01
This presentation includes a brief background on High Throughput Computing, correlating gene transcription factors, optical mapping, genotype to phenotype mapping via QTL analysis, and current work on next gen sequencing.
USDA-ARS?s Scientific Manuscript database
Field-based high-throughput phenotyping is an emerging approach to characterize difficult, time-sensitive plant traits in relevant growing conditions. Proximal sensing carts have been developed as an alternative platform to more costly high-clearance tractors for phenotyping dynamic traits in the fi...
High-throughput profiling and analysis of plant responses over time to abiotic stress
USDA-ARS?s Scientific Manuscript database
Energy sorghum (Sorghum bicolor (L.) Moench) is a rapidly growing, high-biomass, annual crop prized for abiotic stress tolerance. Measuring genotype-by-environment (G x E) interactions remains a progress bottleneck. High throughput phenotyping within controlled environments has been proposed as a po...
ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)
US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...
A high-throughput multiplex method adapted for GMO detection.
Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique
2008-12-24
A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.
NASA Astrophysics Data System (ADS)
Mishchik, Konstantin; Gaudfrin, Kevin; Audouard, Eric F.; Mottay, Eric P.; Lopez, John
2017-03-01
Nowadays processing of transparent materials, such as glass, quartz, sapphire and others, is a subject of high interest for worldwide industry since these materials are widely used for mass markets such as consumer electronics, flat display panels manufacturing, optoelectronics or watchmaking industry. The key issue is to combine high throughput, low residual stress and good processing quality in order to avoid chipping and any post-processing step such as grinding or polishing. Complimentary to non-ablative techniques used for zero-kerf glass cutting, surface ablation of such materials is interesting for engraving, grooving as well as full ablation cutting. Indeed this technique enables to process complex parts including via or blind, open or closed, straight or small radius of curvature patterns. We report on surface ablation experiments on transparent materials using a high average power (70W) and high repetition rate (1 MHz) femtosecond laser. These experiments have been done at 1030nm and 515nm on different inorganic transparent materials, such as regular and strengthened glass, borosilicate glass or sapphire, in order to underline their different ablation behavior. Despite the heat accumulation that occurs above 100 kHz we have reached a good compromise between throughput and processing quality. The effects of fluence, pulse-to-pulse overlap and number of passes are discussed in terms of etch rate, ablation efficiency, optimum fluence, maximum achievable depth, micro cracks formation and residual stresses. These experimental results will be also compared with numerical calculations obtained owing to a simple engineering model based on the two-temperature description of the ultrafast ablation.
TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics
Röst, Hannes L.; Liu, Yansheng; D’Agostino, Giuseppe; Zanella, Matteo; Navarro, Pedro; Rosenberger, George; Collins, Ben C.; Gillet, Ludovic; Testa, Giuseppe; Malmström, Lars; Aebersold, Ruedi
2016-01-01
Large scale, quantitative proteomic studies have become essential for the analysis of clinical cohorts, large perturbation experiments and systems biology studies. While next-generation mass spectrometric techniques such as SWATH-MS have substantially increased throughput and reproducibility, ensuring consistent quantification of thousands of peptide analytes across multiple LC-MS/MS runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion, we have developed the TRIC software which utilizes fragment ion data to perform cross-run alignment, consistent peak-picking and quantification for high throughput targeted proteomics. TRIC uses a graph-based alignment strategy based on non-linear retention time correction to integrate peak elution information from all LC-MS/MS runs acquired in a study. When compared to state-of-the-art SWATH-MS data analysis, the algorithm was able to reduce the identification error by more than 3-fold at constant recall, while correcting for highly non-linear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem (iPS) cells, TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups and substantially increased the quantitative completeness and biological information in the data, providing insights into protein dynamics of iPS cells. Overall, this study demonstrates the importance of consistent quantification in highly challenging experimental setups, and proposes an algorithm to automate this task, constituting the last missing piece in a pipeline for automated analysis of massively parallel targeted proteomics datasets. PMID:27479329
RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes
Singh, Guramrit; Ricci, Emiliano P.; Moore, Melissa J.
2013-01-01
Development of high-throughput approaches to map the RNA interaction sites of individual RNA binding proteins (RBPs) transcriptome-wide is rapidly transforming our understanding of post-transcriptional gene regulatory mechanisms. Here we describe a ribonucleoprotein (RNP) footprinting approach we recently developed for identifying occupancy sites of both individual RBPs and multi-subunit RNP complexes. RNA:protein immunoprecipitation in tandem (RIPiT) yields highly specific RNA footprints of cellular RNPs isolated via two sequential purifications; the resulting RNA footprints can then be identified by high-throughput sequencing (Seq). RIPiT-Seq is broadly applicable to all RBPs regardless of their RNA binding mode and thus provides a means to map the RNA binding sites of RBPs with poor inherent ultraviolet (UV) crosslinkability. Further, among current high-throughput approaches, RIPiT has the unique capacity to differentiate binding sites of RNPs with overlapping protein composition. It is therefore particularly suited for studying dynamic RNP assemblages whose composition evolves as gene expression proceeds. PMID:24096052
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-05
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-01
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930
Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi
2018-01-01
Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individual Drosophila . Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances.
Filošević, Ana; Al-samarai, Sabina; Andretić Waldowski, Rozi
2018-01-01
Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to cocaine in individual Drosophila. Because of its high-throughput nature, FlyBong can be used in genetic screens or in selection experiments aimed at the unbiased identification of functional genes involved in acute or chronic effects of volatilized psychoactive substances. PMID:29459820
Abdiche, Yasmina Noubia; Miles, Adam; Eckman, Josh; Foletti, Davide; Van Blarcom, Thomas J.; Yeung, Yik Andy; Pons, Jaume; Rajpal, Arvind
2014-01-01
Here, we demonstrate how array-based label-free biosensors can be applied to the multiplexed interaction analysis of large panels of analyte/ligand pairs, such as the epitope binning of monoclonal antibodies (mAbs). In this application, the larger the number of mAbs that are analyzed for cross-blocking in a pairwise and combinatorial manner against their specific antigen, the higher the probability of discriminating their epitopes. Since cross-blocking of two mAbs is necessary but not sufficient for them to bind an identical epitope, high-resolution epitope binning analysis determined by high-throughput experiments can enable the identification of mAbs with similar but unique epitopes. We demonstrate that a mAb's epitope and functional activity are correlated, thereby strengthening the relevance of epitope binning data to the discovery of therapeutic mAbs. We evaluated two state-of-the-art label-free biosensors that enable the parallel analysis of 96 unique analyte/ligand interactions and nearly ten thousand total interactions per unattended run. The IBIS-MX96 is a microarray-based surface plasmon resonance imager (SPRi) integrated with continuous flow microspotting technology whereas the Octet-HTX is equipped with disposable fiber optic sensors that use biolayer interferometry (BLI) detection. We compared their throughput, versatility, ease of sample preparation, and sample consumption in the context of epitope binning assays. We conclude that the main advantages of the SPRi technology are its exceptionally low sample consumption, facile sample preparation, and unparalleled unattended throughput. In contrast, the BLI technology is highly flexible because it allows for the simultaneous interaction analysis of 96 independent analyte/ligand pairs, ad hoc sensor replacement and on-line reloading of an analyte- or ligand-array. Thus, the complementary use of these two platforms can expedite applications that are relevant to the discovery of therapeutic mAbs, depending upon the sample availability, and the number and diversity of the interactions being studied. PMID:24651868
High-throughput methods for characterizing the mechanical properties of coatings
NASA Astrophysics Data System (ADS)
Siripirom, Chavanin
The characterization of mechanical properties in a combinatorial and high-throughput workflow has been a bottleneck that reduced the speed of the materials development process. High-throughput characterization of the mechanical properties was applied in this research in order to reduce the amount of sample handling and to accelerate the output. A puncture tester was designed and built to evaluate the toughness of materials using an innovative template design coupled with automation. The test is in the form of a circular free-film indentation. A single template contains 12 samples which are tested in a rapid serial approach. Next, the operational principles of a novel parallel dynamic mechanical-thermal analysis instrument were analyzed in detail for potential sources of errors. The test uses a model of a circular bilayer fixed-edge plate deformation. A total of 96 samples can be analyzed simultaneously which provides a tremendous increase in efficiency compared with a conventional dynamic test. The modulus values determined by the system had considerable variation. The errors were observed and improvements to the system were made. A finite element analysis was used to analyze the accuracy given by the closed-form solution with respect to testing geometries, such as thicknesses of the samples. A good control of the thickness of the sample was proven to be crucial to the accuracy and precision of the output. Then, the attempt to correlate the high-throughput experiments and conventional coating testing methods was made. Automated nanoindentation in dynamic mode was found to provide information on the near-surface modulus and could potentially correlate with the pendulum hardness test using the loss tangent component. Lastly, surface characterization of stratified siloxane-polyurethane coatings was carried out with X-ray photoelectron spectroscopy, Rutherford backscattering spectroscopy, transmission electron microscopy, and nanoindentation. The siloxane component segregates to the surface during curing. The distribution of siloxane as a function of thickness into the sample showed differences depending on the formulation parameters. The coatings which had higher siloxane content near the surface were those coatings found to perform well in field tests.
Usadel, Björn; Nagel, Axel; Steinhauser, Dirk; Gibon, Yves; Bläsing, Oliver E; Redestig, Henning; Sreenivasulu, Nese; Krall, Leonard; Hannah, Matthew A; Poree, Fabien; Fernie, Alisdair R; Stitt, Mark
2006-12-18
Microarray technology has become a widely accepted and standardized tool in biology. The first microarray data analysis programs were developed to support pair-wise comparison. However, as microarray experiments have become more routine, large scale experiments have become more common, which investigate multiple time points or sets of mutants or transgenics. To extract biological information from such high-throughput expression data, it is necessary to develop efficient analytical platforms, which combine manually curated gene ontologies with efficient visualization and navigation tools. Currently, most tools focus on a few limited biological aspects, rather than offering a holistic, integrated analysis. Here we introduce PageMan, a multiplatform, user-friendly, and stand-alone software tool that annotates, investigates, and condenses high-throughput microarray data in the context of functional ontologies. It includes a GUI tool to transform different ontologies into a suitable format, enabling the user to compare and choose between different ontologies. It is equipped with several statistical modules for data analysis, including over-representation analysis and Wilcoxon statistical testing. Results are exported in a graphical format for direct use, or for further editing in graphics programs.PageMan provides a fast overview of single treatments, allows genome-level responses to be compared across several microarray experiments covering, for example, stress responses at multiple time points. This aids in searching for trait-specific changes in pathways using mutants or transgenics, analyzing development time-courses, and comparison between species. In a case study, we analyze the results of publicly available microarrays of multiple cold stress experiments using PageMan, and compare the results to a previously published meta-analysis.PageMan offers a complete user's guide, a web-based over-representation analysis as well as a tutorial, and is freely available at http://mapman.mpimp-golm.mpg.de/pageman/. PageMan allows multiple microarray experiments to be efficiently condensed into a single page graphical display. The flexible interface allows data to be quickly and easily visualized, facilitating comparisons within experiments and to published experiments, thus enabling researchers to gain a rapid overview of the biological responses in the experiments.
A high-throughput label-free nanoparticle analyser.
Fraikin, Jean-Luc; Teesalu, Tambet; McKenney, Christopher M; Ruoslahti, Erkki; Cleland, Andrew N
2011-05-01
Synthetic nanoparticles and genetically modified viruses are used in a range of applications, but high-throughput analytical tools for the physical characterization of these objects are needed. Here we present a microfluidic analyser that detects individual nanoparticles and characterizes complex, unlabelled nanoparticle suspensions. We demonstrate the detection, concentration analysis and sizing of individual synthetic nanoparticles in a multicomponent mixture with sufficient throughput to analyse 500,000 particles per second. We also report the rapid size and titre analysis of unlabelled bacteriophage T7 in both salt solution and mouse blood plasma, using just ~1 × 10⁻⁶ l of analyte. Unexpectedly, in the native blood plasma we discover a large background of naturally occurring nanoparticles with a power-law size distribution. The high-throughput detection capability, scalable fabrication and simple electronics of this instrument make it well suited for diverse applications.
High Performance Computing Modernization Program Kerberos Throughput Test Report
2017-10-26
functionality as Kerberos plugins. The pre -release production kit was used in these tests to compare against the current release kit. YubiKey support...HPCMP Kerberos Throughput Test Report 3 2. THROUGHPUT TESTING 2.1 Testing Components Throughput testing was done to determine the benefits of the pre ...both the current release kit and the pre -release production kit for a total of 378 individual tests in order to note any improvements. Based on work
Metabolomics Approach for Toxicity Screening of Volatile Substances
In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However, the ch...
AOPs & Biomarkers: Bridging High Throughput Screening and Regulatory Decision Making.
As high throughput screening (HTS) approaches play a larger role in toxicity testing, computational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models for this purpose are becoming increasingly more sophisticated...
New High Throughput Methods to Estimate Chemical Exposure
EPA has made many recent advances in high throughput bioactivity testing. However, concurrent advances in rapid, quantitative prediction of human and ecological exposures have been lacking, despite the clear importance of both measures for a risk-based approach to prioritizing an...
Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays
High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...
Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman
2005-06-01
Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.
Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime
NASA Astrophysics Data System (ADS)
Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie
2017-09-01
Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.
High Throughput Determination of Critical Human Dosing ...
High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data into predicted human equivalent doses that can be linked with biologically relevant exposure scenarios. Thus, HTTK provides essential data for risk prioritization for thousands of chemicals that lack TK data. One critical HTTK parameter that can be measured in vitro is the unbound fraction of a chemical in plasma (Fub). However, for chemicals that bind strongly to plasma, Fub is below the limits of detection (LOD) for high throughput analytical chemistry, and therefore cannot be quantified. A novel method for quantifying Fub was implemented for 85 strategically selected chemicals: measurement of Fub was attempted at 10%, 30%, and 100% of physiological plasma concentrations using rapid equilibrium dialysis assays. Varying plasma concentrations instead of chemical concentrations makes high throughput analytical methodology more likely to be successful. Assays at 100% plasma concentration were unsuccessful for 34 chemicals. For 12 of these 34 chemicals, Fub could be quantified at 10% and/or 30% plasma concentrations; these results imply that the assay failure at 100% plasma concentration was caused by plasma protein binding for these chemicals. Assay failure for the remaining 22 chemicals may
Genome-wide RNAi Screening to Identify Host Factors That Modulate Oncolytic Virus Therapy.
Allan, Kristina J; Mahoney, Douglas J; Baird, Stephen D; Lefebvre, Charles A; Stojdl, David F
2018-04-03
High-throughput genome-wide RNAi (RNA interference) screening technology has been widely used for discovering host factors that impact virus replication. Here we present the application of this technology to uncovering host targets that specifically modulate the replication of Maraba virus, an oncolytic rhabdovirus, and vaccinia virus with the goal of enhancing therapy. While the protocol has been tested for use with oncolytic Maraba virus and oncolytic vaccinia virus, this approach is applicable to other oncolytic viruses and can also be utilized for identifying host targets that modulate virus replication in mammalian cells in general. This protocol describes the development and validation of an assay for high-throughput RNAi screening in mammalian cells, the key considerations and preparation steps important for conducting a primary high-throughput RNAi screen, and a step-by-step guide for conducting a primary high-throughput RNAi screen; in addition, it broadly outlines the methods for conducting secondary screen validation and tertiary validation studies. The benefit of high-throughput RNAi screening is that it allows one to catalogue, in an extensive and unbiased fashion, host factors that modulate any aspect of virus replication for which one can develop an in vitro assay such as infectivity, burst size, and cytotoxicity. It has the power to uncover biotherapeutic targets unforeseen based on current knowledge.
High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.
Liu, Guangbo; Lanham, Clayton; Buchan, J Ross; Kaplan, Matthew E
2017-01-01
Saccharomyces cerevisiae (budding yeast) is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc) transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids) or genome mutation (e.g., gene mutation, deletion, epitope tagging) is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.
High-Throughput Toxicity Testing: New Strategies for ...
In recent years, the food industry has made progress in improving safety testing methods focused on microbial contaminants in order to promote food safety. However, food industry toxicologists must also assess the safety of food-relevant chemicals including pesticides, direct additives, and food contact substances. With the rapidly growing use of new food additives, as well as innovation in food contact substance development, an interest in exploring the use of high-throughput chemical safety testing approaches has emerged. Currently, the field of toxicology is undergoing a paradigm shift in how chemical hazards can be evaluated. Since there are tens of thousands of chemicals in use, many of which have little to no hazard information and there are limited resources (namely time and money) for testing these chemicals, it is necessary to prioritize which chemicals require further safety testing to better protect human health. Advances in biochemistry and computational toxicology have paved the way for animal-free (in vitro) high-throughput screening which can characterize chemical interactions with highly specific biological processes. Screening approaches are not novel; in fact, quantitative high-throughput screening (qHTS) methods that incorporate dose-response evaluation have been widely used in the pharmaceutical industry. For toxicological evaluation and prioritization, it is the throughput as well as the cost- and time-efficient nature of qHTS that makes it
A Microfluidic, High Throughput Protein Crystal Growth Method for Microgravity
Carruthers Jr, Carl W.; Gerdts, Cory; Johnson, Michael D.; Webb, Paul
2013-01-01
The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG) capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS). The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions’ microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD), as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 103 cm.). After 70 days on the ISS, our samples were returned with 16 of 25 (64%) microgravity cards having crystals, compared to 12 of 25 (48%) of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories. PMID:24278480
PChopper: high throughput peptide prediction for MRM/SRM transition design.
Afzal, Vackar; Huang, Jeffrey T-J; Atrih, Abdel; Crowther, Daniel J
2011-08-15
The use of selective reaction monitoring (SRM) based LC-MS/MS analysis for the quantification of phosphorylation stoichiometry has been rapidly increasing. At the same time, the number of sites that can be monitored in a single LC-MS/MS experiment is also increasing. The manual processes associated with running these experiments have highlighted the need for computational assistance to quickly design MRM/SRM candidates. PChopper has been developed to predict peptides that can be produced via enzymatic protein digest; this includes single enzyme digests, and combinations of enzymes. It also allows digests to be simulated in 'batch' mode and can combine information from these simulated digests to suggest the most appropriate enzyme(s) to use. PChopper also allows users to define the characteristic of their target peptides, and can automatically identify phosphorylation sites that may be of interest. Two application end points are available for interacting with the system; the first is a web based graphical tool, and the second is an API endpoint based on HTTP REST. Service oriented architecture was used to rapidly develop a system that can consume and expose several services. A graphical tool was built to provide an easy to follow workflow that allows scientists to quickly and easily identify the enzymes required to produce multiple peptides in parallel via enzymatic digests in a high throughput manner.
Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas
2012-10-15
In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.
Neural network control of focal position during time-lapse microscopy of cells.
Wei, Ling; Roberts, Elijah
2018-05-09
Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
Saunders, Rebecca E; Instrell, Rachael; Rispoli, Rossella; Jiang, Ming; Howell, Michael
2013-01-01
High-throughput screening (HTS) uses technologies such as RNA interference to generate loss-of-function phenotypes on a genomic scale. As these technologies become more popular, many research institutes have established core facilities of expertise to deal with the challenges of large-scale HTS experiments. As the efforts of core facility screening projects come to fruition, focus has shifted towards managing the results of these experiments and making them available in a useful format that can be further mined for phenotypic discovery. The HTS-DB database provides a public view of data from screening projects undertaken by the HTS core facility at the CRUK London Research Institute. All projects and screens are described with comprehensive assay protocols, and datasets are provided with complete descriptions of analysis techniques. This format allows users to browse and search data from large-scale studies in an informative and intuitive way. It also provides a repository for additional measurements obtained from screens that were not the focus of the project, such as cell viability, and groups these data so that it can provide a gene-centric summary across several different cell lines and conditions. All datasets from our screens that can be made available can be viewed interactively and mined for further hit lists. We believe that in this format, the database provides researchers with rapid access to results of large-scale experiments that might facilitate their understanding of genes/compounds identified in their own research. DATABASE URL: http://hts.cancerresearchuk.org/db/public.
Wolverton, Christopher; Hattrick-Simpers, Jason; Mehta, Apurva
2018-01-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, but there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict. PMID:29662953
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Fang; Ward, Logan; Williams, Travis
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
The Open Science Grid - Support for Multi-Disciplinary Team Science - the Adolescent Years
NASA Astrophysics Data System (ADS)
Bauerdick, Lothar; Ernst, Michael; Fraser, Dan; Livny, Miron; Pordes, Ruth; Sehgal, Chander; Würthwein, Frank; Open Science Grid
2012-12-01
As it enters adolescence the Open Science Grid (OSG) is bringing a maturing fabric of Distributed High Throughput Computing (DHTC) services that supports an expanding HEP community to an increasingly diverse spectrum of domain scientists. Working closely with researchers on campuses throughout the US and in collaboration with national cyberinfrastructure initiatives, we transform their computing environment through new concepts, advanced tools and deep experience. We discuss examples of these including: the pilot-job overlay concepts and technologies now in use throughout OSG and delivering 1.4 Million CPU hours/day; the role of campus infrastructures- built out from concepts of sharing across multiple local faculty clusters (made good use of already by many of the HEP Tier-2 sites in the US); the work towards the use of clouds and access to high throughput parallel (multi-core and GPU) compute resources; and the progress we are making towards meeting the data management and access needs of non-HEP communities with general tools derived from the experience of the parochial tools in HEP (integration of Globus Online, prototyping with IRODS, investigations into Wide Area Lustre). We will also review our activities and experiences as HTC Service Provider to the recently awarded NSF XD XSEDE project, the evolution of the US NSF TeraGrid project, and how we are extending the reach of HTC through this activity to the increasingly broad national cyberinfrastructure. We believe that a coordinated view of the HPC and HTC resources in the US will further expand their impact on scientific discovery.
DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.
2013-01-01
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933
Ren, Fang; Ward, Logan; Williams, Travis; ...
2018-04-01
With more than a hundred elements in the periodic table, a large number of potential new materials exist to address the technological and societal challenges we face today; however, without some guidance, searching through this vast combinatorial space is frustratingly slow and expensive, especially for materials strongly influenced by processing. We train a machine learning (ML) model on previously reported observations, parameters from physiochemical theories, and make it synthesis method–dependent to guide high-throughput (HiTp) experiments to find a new system of metallic glasses in the Co-V-Zr ternary. Experimental observations are in good agreement with the predictions of the model, butmore » there are quantitative discrepancies in the precise compositions predicted. We use these discrepancies to retrain the ML model. The refined model has significantly improved accuracy not only for the Co-V-Zr system but also across all other available validation data. We then use the refined model to guide the discovery of metallic glasses in two additional previously unreported ternaries. Although our approach of iterative use of ML and HiTp experiments has guided us to rapid discovery of three new glass-forming systems, it has also provided us with a quantitatively accurate, synthesis method–sensitive predictor for metallic glasses that improves performance with use and thus promises to greatly accelerate discovery of many new metallic glasses. We believe that this discovery paradigm is applicable to a wider range of materials and should prove equally powerful for other materials and properties that are synthesis path–dependent and that current physiochemical theories find challenging to predict.« less
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim
2013-10-04
Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.
Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart
2010-07-01
High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.
Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart
2010-01-01
High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users. PMID:20501601
Farhoud, Murtada H; Wessels, Hans J C T; Wevers, Ron A; van Engelen, Baziel G; van den Heuvel, Lambert P; Smeitink, Jan A
2005-01-01
In 2D-based comparative proteomics of scarce samples, such as limited patient material, established methods for prefractionation and subsequent use of different narrow range IPG strips to increase overall resolution are difficult to apply. Also, a high number of samples, a prerequisite for drawing meaningful conclusions when pathological and control samples are considered, will increase the associated amount of work almost exponentially. Here, we introduce a novel, effective, and economic method designed to obtain maximum 2D resolution while maintaining the high throughput necessary to perform large-scale comparative proteomics studies. The method is based on connecting different IPG strips serially head-to-tail so that a complete line of different IPG strips with sequential pH regions can be focused in the same experiment. We show that when 3 IPG strips (covering together the pH range of 3-11) are connected head-to-tail an optimal resolution is achieved along the whole pH range. Sample consumption, time required, and associated costs are reduced by almost 70%, and the workload is reduced significantly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brusati, M.; Camplani, A.; Cannon, M.
SRAM-ba8ed Field Programmable Gate Array (FPGA) logic devices arc very attractive in applications where high data throughput is needed, such as the latest generation of High Energy Physics (HEP) experiments. FPGAs have been rarely used in such experiments because of their sensitivity to radiation. The present paper proposes a mitigation approach applied to commercial FPGA devices to meet the reliability requirements for the front-end electronics of the Liquid Argon (LAr) electromagnetic calorimeter of the ATLAS experiment, located at CERN. Particular attention will be devoted to define a proper mitigation scheme of the multi-gigabit transceivers embedded in the FPGA, which ismore » a critical part of the LAr data acquisition chain. A demonstrator board is being developed to validate the proposed methodology. :!\\litigation techniques such as Triple Modular Redundancy (T:t\\IR) and scrubbing will be used to increase the robustness of the design and to maximize the fault tolerance from Single-Event Upsets (SEUs).« less
Parallel processing of genomics data
NASA Astrophysics Data System (ADS)
Agapito, Giuseppe; Guzzi, Pietro Hiram; Cannataro, Mario
2016-10-01
The availability of high-throughput experimental platforms for the analysis of biological samples, such as mass spectrometry, microarrays and Next Generation Sequencing, have made possible to analyze a whole genome in a single experiment. Such platforms produce an enormous volume of data per single experiment, thus the analysis of this enormous flow of data poses several challenges in term of data storage, preprocessing, and analysis. To face those issues, efficient, possibly parallel, bioinformatics software needs to be used to preprocess and analyze data, for instance to highlight genetic variation associated with complex diseases. In this paper we present a parallel algorithm for the parallel preprocessing and statistical analysis of genomics data, able to face high dimension of data and resulting in good response time. The proposed system is able to find statistically significant biological markers able to discriminate classes of patients that respond to drugs in different ways. Experiments performed on real and synthetic genomic datasets show good speed-up and scalability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamiya, Mari; Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama; Sakurai, Masaaki
A high-throughput RapidFire mass spectrometry assay is described for elongation of very long-chain fatty acids family 6 (Elovl6). Elovl6 is a microsomal enzyme that regulates the elongation of C12-16 saturated and monounsaturated fatty acids. Elovl6 may be a new therapeutic target for fat metabolism disorders such as obesity, type 2 diabetes, and nonalcoholic steatohepatitis. To identify new Elovl6 inhibitors, we developed a high-throughput fluorescence screening assay in 1536-well format. However, a number of false positives caused by fluorescent interference have been identified. To pick up the real active compounds among the primary hits from the fluorescence assay, we developed amore » RapidFire mass spectrometry assay and a conventional radioisotope assay. These assays have the advantage of detecting the main products directly without using fluorescent-labeled substrates. As a result, 276 compounds (30%) of the primary hits (921 compounds) in a fluorescence ultra-high-throughput screening method were identified as common active compounds in these two assays. It is concluded that both methods are very effective to eliminate false positives. Compared with the radioisotope method using an expensive {sup 14}C-labeled substrate, the RapidFire mass spectrometry method using unlabeled substrates is a high-accuracy, high-throughput method. In addition, some of the hit compounds selected from the screening inhibited cellular fatty acid elongation in HEK293 cells expressing Elovl6 transiently. This result suggests that these compounds may be promising lead candidates for therapeutic drugs. Ultra-high-throughput fluorescence screening followed by a RapidFire mass spectrometry assay was a suitable strategy for lead discovery against Elovl6. - Highlights: • A novel assay for elongation of very-long-chain fatty acids 6 (Elovl6) is proposed. • RapidFire mass spectrometry (RF-MS) assay is useful to select real screening hits. • RF-MS assay is proved to be beneficial because of its high-throughput and accuracy. • A combination of fluorescent and RF-MS assays is effective for Elovl6 inhibitors.« less
NASA Astrophysics Data System (ADS)
Music, Denis; Geyer, Richard W.; Hans, Marcus
2016-07-01
To increase the thermoelectric efficiency and reduce the thermal fatigue upon cyclic heat loading, alloying of amorphous NbO2 with all 3d and 5d transition metals has systematically been investigated using density functional theory. It was found that Ta fulfills the key design criteria, namely, enhancement of the Seebeck coefficient and positive Cauchy pressure (ductility gauge). These quantum mechanical predictions were validated by assessing the thermoelectric and elastic properties on combinatorial thin films, which is a high-throughput approach. The maximum power factor is 2813 μW m-1 K-2 for the Ta/Nb ratio of 0.25, which is a hundredfold increment compared to pure NbO2 and exceeds many oxide thermoelectrics. Based on the elasticity measurements, the consistency between theory and experiment for the Cauchy pressure was attained within 2%. On the basis of the electronic structure analysis, these configurations can be perceived as metallic, which is consistent with low electrical resistivity and ductile behavior. Furthermore, a pronounced quantum confinement effect occurs, which is identified as the physical origin for the Seebeck coefficient enhancement.
High performance computing environment for multidimensional image analysis
Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo
2007-01-01
Background The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. Results We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478× speedup. Conclusion Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets. PMID:17634099
High performance computing environment for multidimensional image analysis.
Rao, A Ravishankar; Cecchi, Guillermo A; Magnasco, Marcelo
2007-07-10
The processing of images acquired through microscopy is a challenging task due to the large size of datasets (several gigabytes) and the fast turnaround time required. If the throughput of the image processing stage is significantly increased, it can have a major impact in microscopy applications. We present a high performance computing (HPC) solution to this problem. This involves decomposing the spatial 3D image into segments that are assigned to unique processors, and matched to the 3D torus architecture of the IBM Blue Gene/L machine. Communication between segments is restricted to the nearest neighbors. When running on a 2 Ghz Intel CPU, the task of 3D median filtering on a typical 256 megabyte dataset takes two and a half hours, whereas by using 1024 nodes of Blue Gene, this task can be performed in 18.8 seconds, a 478x speedup. Our parallel solution dramatically improves the performance of image processing, feature extraction and 3D reconstruction tasks. This increased throughput permits biologists to conduct unprecedented large scale experiments with massive datasets.
Mutation detection using automated fluorescence-based sequencing.
Montgomery, Kate T; Iartchouck, Oleg; Li, Li; Perera, Anoja; Yassin, Yosuf; Tamburino, Alex; Loomis, Stephanie; Kucherlapati, Raju
2008-04-01
The development of high-throughput DNA sequencing techniques has made direct DNA sequencing of PCR-amplified genomic DNA a rapid and economical approach to the identification of polymorphisms that may play a role in disease. Point mutations as well as small insertions or deletions are readily identified by DNA sequencing. The mutations may be heterozygous (occurring in one allele while the other allele retains the normal sequence) or homozygous (occurring in both alleles). Sequencing alone cannot discriminate between true homozygosity and apparent homozygosity due to the loss of one allele due to a large deletion. In this unit, strategies are presented for using PCR amplification and automated fluorescence-based sequencing to identify sequence variation. The size of the project and laboratory preference and experience will dictate how the data is managed and which software tools are used for analysis. A high-throughput protocol is given that has been used to search for mutations in over 200 different genes at the Harvard Medical School - Partners Center for Genetics and Genomics (HPCGG, http://www.hpcgg.org/). Copyright 2008 by John Wiley & Sons, Inc.
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Dummitt, Benjamin; Chang, Yie-Hwa
2006-06-01
Quantitation of the level or activity of specific proteins is one of the most commonly performed experiments in biomedical research. Protein detection has historically been difficult to adapt to high throughput platforms because of heavy reliance upon antibodies for protein detection. Molecular beacons for DNA binding proteins is a recently developed technology that attempts to overcome such limitations. Protein detection is accomplished using inexpensive, easy-to-synthesize oligonucleotides, accompanied by a fluorescence readout. Importantly, detection of the protein and reporting of the signal occur simultaneously, allowing for one-step protocols and increased potential for use in high throughput analysis. While the initial iteration of the technology allowed only for the detection of sequence-specific DNA binding proteins, more recent adaptations allow for the possibility of development of beacons for any protein, independent of native DNA binding activity. Here, we discuss the development of the technology, the mechanism of the reaction, and recent improvements and modifications made to improve the assay in terms of sensitivity, potential for multiplexing, and broad applicability.
Lee, Joung-Hyun; Gu, Yexin; Wang, Hongjun; Lee, Woo Y
2012-02-01
We report the use of a microfluidic 3D bone tissue model, as a high-throughput means of evaluating the efficacy of biomaterials aimed at accelerating orthopaedic implant-related wound-healing while preventing bacterial infection. As an example of such biomaterials, inkjet-printed micropatterns were prepared to contain antibiotic and biphasic calcium phosphate (BCP) nanoparticles dispersed in a poly(D,L-lactic-co-glycolic) acid matrix. The micropatterns were integrated with a microfluidic device consisting of eight culture chambers. The micropatterns immediately and completely killed Staphylococcus epidermidis upon inoculation, and enhanced the calcified extracellular matrix production of osteoblasts. Without antibiotic elution, bacteria rapidly proliferated to result in an acidic microenvironment which was detrimental to osteoblasts. These results were used to demonstrate the tissue model's potential in: (i) significantly reducing the number of biomaterial samples and culture experiments required to assess in vitro efficacy for wound-healing and infection prevention and (ii) in situ monitoring of dynamic interactions of biomaterials with bacteria as wells as with tissue cells simultaneously. Copyright © 2011 Elsevier Ltd. All rights reserved.
Sexton, Jonathan Z; Danshina, Polina V; Lamson, David R; Hughes, Mark; House, Alan J; Yeh, Li-An; O’Brien, Deborah A; Williams, Kevin P
2011-01-01
Glycolytic isozymes that are restricted to the male germline are potential targets for the development of reversible, non-hormonal male contraceptives. GAPDHS, the sperm-specific isoform of glyceraldehyde-3-phosphate dehydrogenase, is an essential enzyme for glycolysis making it an attractive target for rational drug design. Toward this goal, we have optimized and validated a high-throughput spectrophotometric assay for GAPDHS in 384-well format. The assay was stable over time and tolerant to DMSO. Whole plate validation experiments yielded Z’ values >0.8 indicating a robust assay for HTS. Two compounds were identified and confirmed from a test screen of the Prestwick collection. This assay was used to screen a diverse chemical library and identified fourteen small molecules that modulated the activity of recombinant purified GAPDHS with confirmed IC50 values ranging from 1.8 to 42 µM. These compounds may provide useful scaffolds as molecular tools to probe the role of GAPDHS in sperm motility and long term to develop potent and selective GAPDHS inhibitors leading to novel contraceptive agents. PMID:21760877
On-chip Magnetic Separation and Cell Encapsulation in Droplets
NASA Astrophysics Data System (ADS)
Chen, A.; Byvank, T.; Bharde, A.; Miller, B. L.; Chalmers, J. J.; Sooryakumar, R.; Chang, W.-J.; Bashir, R.
2012-02-01
The demand for high-throughput single cell assays is gaining importance because of the heterogeneity of many cell suspensions, even after significant initial sorting. These suspensions may display cell-to-cell variability at the gene expression level that could impact single cell functional genomics, cancer, stem-cell research and drug screening. The on-chip monitoring of individual cells in an isolated environment could prevent cross-contamination, provide high recovery yield and ability to study biological traits at a single cell level These advantages of on-chip biological experiments contrast to conventional methods, which require bulk samples that provide only averaged information on cell metabolism. We report on a device that integrates microfluidic technology with a magnetic tweezers array to combine the functionality of separation and encapsulation of objects such as immunomagnetically labeled cells or magnetic beads into pico-liter droplets on the same chip. The ability to control the separation throughput that is independent of the hydrodynamic droplet generation rate allows the encapsulation efficiency to be optimized. The device can potentially be integrated with on-chip labeling and/or bio-detection to become a powerful single-cell analysis device.
NASA Astrophysics Data System (ADS)
Beckmann, Felix
2016-10-01
The Helmholtz-Zentrum Geesthacht, Germany, is operating the user experiments for microtomography at the beamlines P05 and P07 using synchrotron radiation produced in the storage ring PETRA III at DESY, Hamburg, Germany. In recent years the software pipeline, sample changing hardware for performing high throughput experiments were developed. In this talk the current status of the beamlines will be given. Furthermore, optimisation and automatisation of scanning techniques, will be presented. These are required to scan samples which are larger than the field of view defined by the X-ray beam. The integration into an optimized reconstruction pipeline will be shown.
Taylor, Ann T S
2005-01-01
Library screening methods are commonly used in industry and research. This article describes an experiment that screens a library of household substances for properties that would make a good "drug," including enzyme inhibition, neutral pH, and nondenaturing to proteins, using wheat germ acid phosphatase as the target protein. An adaptation of the experiment appropriate for lower level biochemistry or outreach is also described. This work was supported by Wabash College through the Haines Fund for the Study of Biochemistry and the National Science Foundation through Grant DUE 0126242. Copyright © 2005 International Union of Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koshelev, Irina; Huang, Rong; Graber, Timothy
2009-09-02
The IMCA-CAT bending-magnet beamline was upgraded with a collimating mirror in order to achieve the energy resolution required to conduct high-quality multi- and single-wavelength anomalous diffraction (MAD/SAD) experiments without sacrificing beamline flux throughput. Following the upgrade, the bending-magnet beamline achieves a flux of 8 x 10{sup 11} photons s{sup -1} at 1 {angstrom} wavelength, at a beamline aperture of 1.5 mrad (horizontal) x 86 {mu}rad (vertical), with energy resolution (limited mostly by the intrinsic resolution of the monochromator optics) {delta}E/E = 1.5 x 10{sup -4} (at 10 kV). The beamline operates in a dynamic range of 7.5-17.5 keV and deliversmore » to the sample focused beam of size (FWHM) 240 {micro}m (horizontally) x 160 {micro}m (vertically). The performance of the 17-BM beamline optics and its deviation from ideally shaped optics is evaluated in the context of the requirements imposed by the needs of protein crystallography experiments. An assessment of flux losses is given in relation to the (geometric) properties of major beamline components.« less
Little is known about the developmental toxicity of the expansive chemical landscape in existence today. Significant efforts are being made to apply novel methods to predict developmental activity of chemicals utilizing high-throughput screening (HTS) and high-content screening (...
High-throughput assays that can quantify chemical-induced changes at the cellular and molecular level have been recommended for use in chemical safety assessment. High-throughput, high content imaging assays for the key cellular events of neurodevelopment have been proposed to ra...
Evaluation of sequencing approaches for high-throughput toxicogenomics (SOT)
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. We present the evaluation of three toxicogenomics platfo...
High Throughput Assays and Exposure Science (ISES annual meeting)
High throughput screening (HTS) data characterizing chemical-induced biological activity has been generated for thousands of environmentally-relevant chemicals by the US inter-agency Tox21 and the US EPA ToxCast programs. For a limited set of chemicals, bioactive concentrations r...
High Throughput Exposure Estimation Using NHANES Data (SOT)
In the ExpoCast project, high throughput (HT) exposure models enable rapid screening of large numbers of chemicals for exposure potential. Evaluation of these models requires empirical exposure data and due to the paucity of human metabolism/exposure data such evaluations includ...
Atlanta I-85 HOV-to-HOT conversion : analysis of vehicle and person throughput.
DOT National Transportation Integrated Search
2013-10-01
This report summarizes the vehicle and person throughput analysis for the High Occupancy Vehicle to High Occupancy Toll Lane : conversion in Atlanta, GA, undertaken by the Georgia Institute of Technology research team. The team tracked changes in : o...
Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...
Accounting For Uncertainty in The Application Of High Throughput Datasets
The use of high throughput screening (HTS) datasets will need to adequately account for uncertainties in the data generation process and propagate these uncertainties through to ultimate use. Uncertainty arises at multiple levels in the construction of predictors using in vitro ...
Jordan, Scott
2018-01-24
Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Inter-Individual Variability in High-Throughput Risk Prioritization of Environmental Chemicals (Sot)
We incorporate realistic human variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which have...
We incorporate inter-individual variability into an open-source high-throughput (HT) toxicokinetics (TK) modeling framework for use in a next-generation risk prioritization approach. Risk prioritization involves rapid triage of thousands of environmental chemicals, most which hav...
HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES
Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...
Development of a thyroperoxidase inhibition assay for high-throughput screening
High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...