High throughput system for magnetic manipulation of cells, polymers, and biomaterials
Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.
2008-01-01
In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357
High-throughput screening (HTS) and modeling of the retinoid ...
Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system
Scafaro, Andrew P; Negrini, A Clarissa A; O'Leary, Brendan; Rashid, F Azzahra Ahmad; Hayes, Lucy; Fan, Yuzhen; Zhang, You; Chochois, Vincent; Badger, Murray R; Millar, A Harvey; Atkin, Owen K
2017-01-01
Mitochondrial respiration in the dark ( R dark ) is a critical plant physiological process, and hence a reliable, efficient and high-throughput method of measuring variation in rates of R dark is essential for agronomic and ecological studies. However, currently methods used to measure R dark in plant tissues are typically low throughput. We assessed a high-throughput automated fluorophore system of detecting multiple O 2 consumption rates. The fluorophore technique was compared with O 2 -electrodes, infrared gas analysers (IRGA), and membrane inlet mass spectrometry, to determine accuracy and speed of detecting respiratory fluxes. The high-throughput fluorophore system provided stable measurements of R dark in detached leaf and root tissues over many hours. High-throughput potential was evident in that the fluorophore system was 10 to 26-fold faster per sample measurement than other conventional methods. The versatility of the technique was evident in its enabling: (1) rapid screening of R dark in 138 genotypes of wheat; and, (2) quantification of rarely-assessed whole-plant R dark through dissection and simultaneous measurements of above- and below-ground organs. Variation in absolute R dark was observed between techniques, likely due to variation in sample conditions (i.e. liquid vs. gas-phase, open vs. closed systems), indicating that comparisons between studies using different measuring apparatus may not be feasible. However, the high-throughput protocol we present provided similar values of R dark to the most commonly used IRGA instrument currently employed by plant scientists. Together with the greater than tenfold increase in sample processing speed, we conclude that the high-throughput protocol enables reliable, stable and reproducible measurements of R dark on multiple samples simultaneously, irrespective of plant or tissue type.
Dawes, Timothy D; Turincio, Rebecca; Jones, Steven W; Rodriguez, Richard A; Gadiagellan, Dhireshan; Thana, Peter; Clark, Kevin R; Gustafson, Amy E; Orren, Linda; Liimatta, Marya; Gross, Daniel P; Maurer, Till; Beresini, Maureen H
2016-02-01
Acoustic droplet ejection (ADE) as a means of transferring library compounds has had a dramatic impact on the way in which high-throughput screening campaigns are conducted in many laboratories. Two Labcyte Echo ADE liquid handlers form the core of the compound transfer operation in our 1536-well based ultra-high-throughput screening (uHTS) system. Use of these instruments has promoted flexibility in compound formatting in addition to minimizing waste and eliminating compound carryover. We describe the use of ADE for the generation of assay-ready plates for primary screening as well as for follow-up dose-response evaluations. Custom software has enabled us to harness the information generated by the ADE instrumentation. Compound transfer via ADE also contributes to the screening process outside of the uHTS system. A second fully automated ADE-based system has been used to augment the capacity of the uHTS system as well as to permit efficient use of previously picked compound aliquots for secondary assay evaluations. Essential to the utility of ADE in the high-throughput screening process is the high quality of the resulting data. Examples of data generated at various stages of high-throughput screening campaigns are provided. Advantages and disadvantages of the use of ADE in high-throughput screening are discussed. © 2015 Society for Laboratory Automation and Screening.
HTP-NLP: A New NLP System for High Throughput Phenotyping.
Schlegel, Daniel R; Crowner, Chris; Lehoullier, Frank; Elkin, Peter L
2017-01-01
Secondary use of clinical data for research requires a method to quickly process the data so that researchers can quickly extract cohorts. We present two advances in the High Throughput Phenotyping NLP system which support the aim of truly high throughput processing of clinical data, inspired by a characterization of the linguistic properties of such data. Semantic indexing to store and generalize partially-processed results and the use of compositional expressions for ungrammatical text are discussed, along with a set of initial timing results for the system.
The development of a general purpose ARM-based processing unit for the ATLAS TileCal sROD
NASA Astrophysics Data System (ADS)
Cox, M. A.; Reed, R.; Mellado, B.
2015-01-01
After Phase-II upgrades in 2022, the data output from the LHC ATLAS Tile Calorimeter will increase significantly. ARM processors are common in mobile devices due to their low cost, low energy consumption and high performance. It is proposed that a cost-effective, high data throughput Processing Unit (PU) can be developed by using several consumer ARM processors in a cluster configuration to allow aggregated processing performance and data throughput while maintaining minimal software design difficulty for the end-user. This PU could be used for a variety of high-level functions on the high-throughput raw data such as spectral analysis and histograms to detect possible issues in the detector at a low level. High-throughput I/O interfaces are not typical in consumer ARM System on Chips but high data throughput capabilities are feasible via the novel use of PCI-Express as the I/O interface to the ARM processors. An overview of the PU is given and the results for performance and throughput testing of four different ARM Cortex System on Chips are presented.
NASA Astrophysics Data System (ADS)
Kudoh, Eisuke; Ito, Haruki; Wang, Zhisen; Adachi, Fumiyuki
In mobile communication systems, high speed packet data services are demanded. In the high speed data transmission, throughput degrades severely due to severe inter-path interference (IPI). Recently, we proposed a random transmit power control (TPC) to increase the uplink throughput of DS-CDMA packet mobile communications. In this paper, we apply IPI cancellation in addition to the random TPC. We derive the numerical expression of the received signal-to-interference plus noise power ratio (SINR) and introduce IPI cancellation factor. We also derive the numerical expression of system throughput when IPI is cancelled ideally to compare with the Monte Carlo numerically evaluated system throughput. Then we evaluate, by Monte-Carlo numerical computation method, the combined effect of random TPC and IPI cancellation on the uplink throughput of DS-CDMA packet mobile communications.
Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won
2015-08-21
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles
2012-01-01
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792
High-Throughput Cloning and Expression Library Creation for Functional Proteomics
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-01-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particular important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single gene experiments, creating the need for fast, flexible and reliable cloning systems. These collections of open reading frame (ORF) clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator™ DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP12). Details can be found at http://www.proteomicstutorials.org. PMID:23457047
High-throughput cloning and expression library creation for functional proteomics.
Festa, Fernanda; Steel, Jason; Bian, Xiaofang; Labaer, Joshua
2013-05-01
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single-gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high-throughput proteomics platforms, such as protein microarrays and cell-based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high-throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and Creator(TM) DNA Cloning System) and compare them side-by-side. We also report an example of high-throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High-throughput bioinformatics with the Cyrille2 pipeline system
Fiers, Mark WEJ; van der Burgt, Ate; Datema, Erwin; de Groot, Joost CW; van Ham, Roeland CHJ
2008-01-01
Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1) a web based, graphical user interface (GUI) that enables a pipeline operator to manage the system; 2) the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3) the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines. PMID:18269742
USDA-ARS?s Scientific Manuscript database
A high-throughput transformation system previously developed in our laboratory was used for the regeneration of transgenic plum plants without the use of antibiotic selection. The system was first tested with two experimental constructs, pGA482GGi and pCAMBIAgfp94(35S), that contain selective marke...
Huang, Kuo-Sen; Mark, David; Gandenberger, Frank Ulrich
2006-01-01
The plate::vision is a high-throughput multimode reader capable of reading absorbance, fluorescence, fluorescence polarization, time-resolved fluorescence, and luminescence. Its performance has been shown to be quite comparable with other readers. When the reader is integrated into the plate::explorer, an ultrahigh-throughput screening system with event-driven software and parallel plate-handling devices, it becomes possible to run complicated assays with kinetic readouts in high-density microtiter plate formats for high-throughput screening. For the past 5 years, we have used the plate::vision and the plate::explorer to run screens and have generated more than 30 million data points. Their throughput, performance, and robustness have speeded up our drug discovery process greatly.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio).
Usui, Takuji; Noble, Daniel W A; O'Dea, Rose E; Fangmeier, Melissa L; Lagisz, Malgorzata; Hesselson, Daniel; Nakagawa, Shinichi
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34-0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes.
The French press: a repeatable and high-throughput approach to exercising zebrafish (Danio rerio)
Usui, Takuji; Noble, Daniel W.A.; O’Dea, Rose E.; Fangmeier, Melissa L.; Lagisz, Malgorzata; Hesselson, Daniel
2018-01-01
Zebrafish are increasingly used as a vertebrate model organism for various traits including swimming performance, obesity and metabolism, necessitating high-throughput protocols to generate standardized phenotypic information. Here, we propose a novel and cost-effective method for exercising zebrafish, using a coffee plunger and magnetic stirrer. To demonstrate the use of this method, we conducted a pilot experiment to show that this simple system provides repeatable estimates of maximal swim performance (intra-class correlation [ICC] = 0.34–0.41) and observe that exercise training of zebrafish on this system significantly increases their maximum swimming speed. We propose this high-throughput and reproducible system as an alternative to traditional linear chamber systems for exercising zebrafish and similarly sized fishes. PMID:29372124
Automated crystallographic system for high-throughput protein structure determination.
Brunzelle, Joseph S; Shafaee, Padram; Yang, Xiaojing; Weigand, Steve; Ren, Zhong; Anderson, Wayne F
2003-07-01
High-throughput structural genomic efforts require software that is highly automated, distributive and requires minimal user intervention to determine protein structures. Preliminary experiments were set up to test whether automated scripts could utilize a minimum set of input parameters and produce a set of initial protein coordinates. From this starting point, a highly distributive system was developed that could determine macromolecular structures at a high throughput rate, warehouse and harvest the associated data. The system uses a web interface to obtain input data and display results. It utilizes a relational database to store the initial data needed to start the structure-determination process as well as generated data. A distributive program interface administers the crystallographic programs which determine protein structures. Using a test set of 19 protein targets, 79% were determined automatically.
Extended length microchannels for high density high throughput electrophoresis systems
Davidson, James C.; Balch, Joseph W.
2000-01-01
High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.
FPGA cluster for high-performance AO real-time control system
NASA Astrophysics Data System (ADS)
Geng, Deli; Goodsell, Stephen J.; Basden, Alastair G.; Dipper, Nigel A.; Myers, Richard M.; Saunter, Chris D.
2006-06-01
Whilst the high throughput and low latency requirements for the next generation AO real-time control systems have posed a significant challenge to von Neumann architecture processor systems, the Field Programmable Gate Array (FPGA) has emerged as a long term solution with high performance on throughput and excellent predictability on latency. Moreover, FPGA devices have highly capable programmable interfacing, which lead to more highly integrated system. Nevertheless, a single FPGA is still not enough: multiple FPGA devices need to be clustered to perform the required subaperture processing and the reconstruction computation. In an AO real-time control system, the memory bandwidth is often the bottleneck of the system, simply because a vast amount of supporting data, e.g. pixel calibration maps and the reconstruction matrix, need to be accessed within a short period. The cluster, as a general computing architecture, has excellent scalability in processing throughput, memory bandwidth, memory capacity, and communication bandwidth. Problems, such as task distribution, node communication, system verification, are discussed.
A high-throughput, multi-channel photon-counting detector with picosecond timing
NASA Astrophysics Data System (ADS)
Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.
2009-06-01
High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration which uses the multi-channel HPTDC timing ASIC.
NASA Astrophysics Data System (ADS)
Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong
2018-01-01
The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.
Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo
2015-05-01
Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu
A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic systemmore » has enhanced the usability of SAXS/USAXS capability for industrial application.« less
Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister
2014-05-01
The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.
Polonchuk, Liudmila
2014-01-01
Patch-clamping is a powerful technique for investigating the ion channel function and regulation. However, its low throughput hampered profiling of large compound series in early drug development. Fortunately, automation has revolutionized the area of experimental electrophysiology over the past decade. Whereas the first automated patch-clamp instruments using the planar patch-clamp technology demonstrated rather a moderate throughput, few second-generation automated platforms recently launched by various companies have significantly increased ability to form a high number of high-resistance seals. Among them is SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich, Germany), a fully automated giga-seal patch-clamp system with the highest throughput on the market. By recording from up to 96 cells simultaneously, the SyncroPatch(®) 96 allows to substantially increase throughput without compromising data quality. This chapter describes features of the innovative automated electrophysiology system and protocols used for a successful transfer of the established hERG assay to this high-throughput automated platform.
An image analysis toolbox for high-throughput C. elegans assays
Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.
2012-01-01
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656
Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit
2015-08-01
The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. © 2015 Wiley Periodicals, Inc.
Handheld Fluorescence Microscopy based Flow Analyzer.
Saxena, Manish; Jayakumar, Nitin; Gorthi, Sai Siva
2016-03-01
Fluorescence microscopy has the intrinsic advantages of favourable contrast characteristics and high degree of specificity. Consequently, it has been a mainstay in modern biological inquiry and clinical diagnostics. Despite its reliable nature, fluorescence based clinical microscopy and diagnostics is a manual, labour intensive and time consuming procedure. The article outlines a cost-effective, high throughput alternative to conventional fluorescence imaging techniques. With system level integration of custom-designed microfluidics and optics, we demonstrate fluorescence microscopy based imaging flow analyzer. Using this system we have imaged more than 2900 FITC labeled fluorescent beads per minute. This demonstrates high-throughput characteristics of our flow analyzer in comparison to conventional fluorescence microscopy. The issue of motion blur at high flow rates limits the achievable throughput in image based flow analyzers. Here we address the issue by computationally deblurring the images and show that this restores the morphological features otherwise affected by motion blur. By further optimizing concentration of the sample solution and flow speeds, along with imaging multiple channels simultaneously, the system is capable of providing throughput of about 480 beads per second.
Detecting adulterants in milk powder using high-throughput Raman chemical imaging
USDA-ARS?s Scientific Manuscript database
This study used a line-scan high-throughput Raman imaging system to authenticate milk powder. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source. The system was used to acquire hyperspectral Raman images in a wavenumber range of 103–2881 cm-1 from the skim milk...
USDA-ARS?s Scientific Manuscript database
Milk is a vulnerable target for economically motivated adulteration. In this study, a line-scan high-throughput Raman imaging system was used to authenticate milk powder. A 5 W 785 nm line laser (240 mm long and 1 mm wide) was used as a Raman excitation source. The system was used to acquire hypersp...
Quesada-Cabrera, Raul; Weng, Xiaole; Hyett, Geoff; Clark, Robin J H; Wang, Xue Z; Darr, Jawwad A
2013-09-09
High-throughput continuous hydrothermal flow synthesis was used to manufacture 66 unique nanostructured oxide samples in the Ce-Zr-Y-O system. This synthesis approach resulted in a significant increase in throughput compared to that of conventional batch or continuous hydrothermal synthesis methods. The as-prepared library samples were placed into a wellplate for both automated high-throughput powder X-ray diffraction and Raman spectroscopy data collection, which allowed comprehensive structural characterization and phase mapping. The data suggested that a continuous cubic-like phase field connects all three Ce-Zr-O, Ce-Y-O, and Y-Zr-O binary systems together with a smooth and steady transition between the structures of neighboring compositions. The continuous hydrothermal process led to as-prepared crystallite sizes in the range of 2-7 nm (as determined by using the Scherrer equation).
Direct assembling methodologies for high-throughput bioscreening
Rodríguez-Dévora, Jorge I.; Shi, Zhi-dong; Xu, Tao
2012-01-01
Over the last few decades, high-throughput (HT) bioscreening, a technique that allows rapid screening of biochemical compound libraries against biological targets, has been widely used in drug discovery, stem cell research, development of new biomaterials, and genomics research. To achieve these ambitions, scaffold-free (or direct) assembly of biological entities of interest has become critical. Appropriate assembling methodologies are required to build an efficient HT bioscreening platform. The development of contact and non-contact assembling systems as a practical solution has been driven by a variety of essential attributes of the bioscreening system, such as miniaturization, high throughput, and high precision. The present article reviews recent progress on these assembling technologies utilized for the construction of HT bioscreening platforms. PMID:22021162
Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...
Tiersch, Terrence R.; Yang, Huiping; Hu, E.
2011-01-01
With the development of genomic research technologies, comparative genome studies among vertebrate species are becoming commonplace for human biomedical research. Fish offer unlimited versatility for biomedical research. Extensive studies are done using these fish models, yielding tens of thousands of specific strains and lines, and the number is increasing every day. Thus, high-throughput sperm cryopreservation is urgently needed to preserve these genetic resources. Although high-throughput processing has been widely applied for sperm cryopreservation in livestock for decades, application in biomedical model fishes is still in the concept-development stage because of the limited sample volumes and the biological characteristics of fish sperm. High-throughput processing in livestock was developed based on advances made in the laboratory and was scaled up for increased processing speed, capability for mass production, and uniformity and quality assurance. Cryopreserved germplasm combined with high-throughput processing constitutes an independent industry encompassing animal breeding, preservation of genetic diversity, and medical research. Currently, there is no specifically engineered system available for high-throughput of cryopreserved germplasm for aquatic species. This review is to discuss the concepts and needs for high-throughput technology for model fishes, propose approaches for technical development, and overview future directions of this approach. PMID:21440666
NASA Astrophysics Data System (ADS)
Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.
2002-02-01
Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.
High-Throughput Density Measurement Using Magnetic Levitation.
Ge, Shencheng; Wang, Yunzhe; Deshler, Nicolas J; Preston, Daniel J; Whitesides, George M
2018-06-20
This work describes the development of an integrated analytical system that enables high-throughput density measurements of diamagnetic particles (including cells) using magnetic levitation (MagLev), 96-well plates, and a flatbed scanner. MagLev is a simple and useful technique with which to carry out density-based analysis and separation of a broad range of diamagnetic materials with different physical forms (e.g., liquids, solids, gels, pastes, gums, etc.); one major limitation, however, is the capacity to perform high-throughput density measurements. This work addresses this limitation by (i) re-engineering the shape of the magnetic fields so that the MagLev system is compatible with 96-well plates, and (ii) integrating a flatbed scanner (and simple optical components) to carry out imaging of the samples that levitate in the system. The resulting system is compatible with both biological samples (human erythrocytes) and nonbiological samples (simple liquids and solids, such as 3-chlorotoluene, cholesterol crystals, glass beads, copper powder, and polymer beads). The high-throughput capacity of this integrated MagLev system will enable new applications in chemistry (e.g., analysis and separation of materials) and biochemistry (e.g., cellular responses under environmental stresses) in a simple and label-free format on the basis of a universal property of all matter, i.e., density.
Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo
2017-11-21
Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.
High throughput imaging cytometer with acoustic focussing.
Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter
2015-10-31
We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.
Mathematical and Computational Modeling in Complex Biological Systems
Li, Wenyang; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology. PMID:28386558
Mathematical and Computational Modeling in Complex Biological Systems.
Ji, Zhiwei; Yan, Ke; Li, Wenyang; Hu, Haigen; Zhu, Xiaoliang
2017-01-01
The biological process and molecular functions involved in the cancer progression remain difficult to understand for biologists and clinical doctors. Recent developments in high-throughput technologies urge the systems biology to achieve more precise models for complex diseases. Computational and mathematical models are gradually being used to help us understand the omics data produced by high-throughput experimental techniques. The use of computational models in systems biology allows us to explore the pathogenesis of complex diseases, improve our understanding of the latent molecular mechanisms, and promote treatment strategy optimization and new drug discovery. Currently, it is urgent to bridge the gap between the developments of high-throughput technologies and systemic modeling of the biological process in cancer research. In this review, we firstly studied several typical mathematical modeling approaches of biological systems in different scales and deeply analyzed their characteristics, advantages, applications, and limitations. Next, three potential research directions in systems modeling were summarized. To conclude, this review provides an update of important solutions using computational modeling approaches in systems biology.
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering.
Groen, Nathalie; Guvendiren, Murat; Rabitz, Herschel; Welsh, William J; Kohn, Joachim; de Boer, Jan
2016-04-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. In this opinion paper, we postulate that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. Copyright © 2016. Published by Elsevier Ltd.
Baculovirus expression system and method for high throughput expression of genetic material
Clark, Robin; Davies, Anthony
2001-01-01
The present invention provides novel recombinant baculovirus expression systems for expressing foreign genetic material in a host cell. Such expression systems are readily adapted to an automated method for expression foreign genetic material in a high throughput manner. In other aspects, the present invention features a novel automated method for determining the function of foreign genetic material by transfecting the same into a host by way of the recombinant baculovirus expression systems according to the present invention.
An Automated High-Throughput System to Fractionate Plant Natural Products for Drug Discovery
Tu, Ying; Jeffries, Cynthia; Ruan, Hong; Nelson, Cynthia; Smithson, David; Shelat, Anang A.; Brown, Kristin M.; Li, Xing-Cong; Hester, John P.; Smillie, Troy; Khan, Ikhlas A.; Walker, Larry; Guy, Kip; Yan, Bing
2010-01-01
The development of an automated, high-throughput fractionation procedure to prepare and analyze natural product libraries for drug discovery screening is described. Natural products obtained from plant materials worldwide were extracted and first prefractionated on polyamide solid-phase extraction cartridges to remove polyphenols, followed by high-throughput automated fractionation, drying, weighing, and reformatting for screening and storage. The analysis of fractions with UPLC coupled with MS, PDA and ELSD detectors provides information that facilitates characterization of compounds in active fractions. Screening of a portion of fractions yielded multiple assay-specific hits in several high-throughput cellular screening assays. This procedure modernizes the traditional natural product fractionation paradigm by seamlessly integrating automation, informatics, and multimodal analytical interrogation capabilities. PMID:20232897
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#
In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...
High-throughput sample adaptive offset hardware architecture for high-efficiency video coding
NASA Astrophysics Data System (ADS)
Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin
2018-03-01
A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.
High-throughput analysis of yeast replicative aging using a microfluidic system
Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong
2015-01-01
Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317
Neto, A I; Correia, C R; Oliveira, M B; Rial-Hermida, M I; Alvarez-Lorenzo, C; Reis, R L; Mano, J F
2015-04-01
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.
Advancements in zebrafish applications for 21st century toxicology.
Garcia, Gloria R; Noyes, Pamela D; Tanguay, Robert L
2016-05-01
The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. Copyright © 2016 Elsevier Inc. All rights reserved.
Advancements in zebrafish applications for 21st century toxicology
Garcia, Gloria R.; Noyes, Pamela D.; Tanguay, Robert L.
2016-01-01
The zebrafish model is the only available high-throughput vertebrate assessment system, and it is uniquely suited for studies of in vivo cell biology. A sequenced and annotated genome has revealed a large degree of evolutionary conservation in comparison to the human genome. Due to our shared evolutionary history, the anatomical and physiological features of fish are highly homologous to humans, which facilitates studies relevant to human health. In addition, zebrafish provide a very unique vertebrate data stream that allows researchers to anchor hypotheses at the biochemical, genetic, and cellular levels to observations at the structural, functional, and behavioral level in a high-throughput format. In this review, we will draw heavily from toxicological studies to highlight advances in zebrafish high-throughput systems. Breakthroughs in transgenic/reporter lines and methods for genetic manipulation, such as the CRISPR-Cas9 system, will be comprised of reports across diverse disciplines. PMID:27016469
Use of High-Throughput Testing and Approaches for Evaluating Chemical Risk-Relevance to Humans
ToxCast is profiling the bioactivity of thousands of chemicals based on high-throughput screening (HTS) and computational models that integrate knowledge of biological systems and in vivo toxicities. Many of these assays probe signaling pathways and cellular processes critical to...
Stepping into the omics era: Opportunities and challenges for biomaterials science and engineering☆
Rabitz, Herschel; Welsh, William J.; Kohn, Joachim; de Boer, Jan
2016-01-01
The research paradigm in biomaterials science and engineering is evolving from using low-throughput and iterative experimental designs towards high-throughput experimental designs for materials optimization and the evaluation of materials properties. Computational science plays an important role in this transition. With the emergence of the omics approach in the biomaterials field, referred to as materiomics, high-throughput approaches hold the promise of tackling the complexity of materials and understanding correlations between material properties and their effects on complex biological systems. The intrinsic complexity of biological systems is an important factor that is often oversimplified when characterizing biological responses to materials and establishing property-activity relationships. Indeed, in vitro tests designed to predict in vivo performance of a given biomaterial are largely lacking as we are not able to capture the biological complexity of whole tissues in an in vitro model. In this opinion paper, we explain how we reached our opinion that converging genomics and materiomics into a new field would enable a significant acceleration of the development of new and improved medical devices. The use of computational modeling to correlate high-throughput gene expression profiling with high throughput combinatorial material design strategies would add power to the analysis of biological effects induced by material properties. We believe that this extra layer of complexity on top of high-throughput material experimentation is necessary to tackle the biological complexity and further advance the biomaterials field. PMID:26876875
Zmijan, Robert; Jonnalagadda, Umesh S.; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn
2015-01-01
We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint. PMID:29456838
High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limi...
A high throughput array microscope for the mechanical characterization of biomaterials
NASA Astrophysics Data System (ADS)
Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard
2015-02-01
In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.
THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE
Garty, Guy; Chen, Youhua; Salerno, Alessio; Turner, Helen; Zhang, Jian; Lyulko, Oleksandra; Bertucci, Antonella; Xu, Yanping; Wang, Hongliang; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y. Lawrence; Amundson, Sally A.; Brenner, David J.
2010-01-01
In response to the recognized need for high throughput biodosimetry methods for use after large scale radiological events, a logical approach is complete automation of standard biodosimetric assays that are currently performed manually. We describe progress to date on the RABIT (Rapid Automated BIodosimetry Tool), designed to score micronuclei or γ-H2AX fluorescence in lymphocytes derived from a single drop of blood from a fingerstick. The RABIT system is designed to be completely automated, from the input of the capillary blood sample into the machine, to the output of a dose estimate. Improvements in throughput are achieved through use of a single drop of blood, optimization of the biological protocols for in-situ analysis in multi-well plates, implementation of robotic plate and liquid handling, and new developments in high-speed imaging. Automating well-established bioassays represents a promising approach to high-throughput radiation biodosimetry, both because high throughputs can be achieved, but also because the time to deployment is potentially much shorter than for a new biological assay. Here we describe the development of each of the individual modules of the RABIT system, and show preliminary data from key modules. Ongoing is system integration, followed by calibration and validation. PMID:20065685
A high throughput spectral image microscopy system
NASA Astrophysics Data System (ADS)
Gesley, M.; Puri, R.
2018-01-01
A high throughput spectral image microscopy system is configured for rapid detection of rare cells in large populations. To overcome flow cytometry rates and use of fluorophore tags, a system architecture integrates sample mechanical handling, signal processors, and optics in a non-confocal version of light absorption and scattering spectroscopic microscopy. Spectral images with native contrast do not require the use of exogeneous stain to render cells with submicron resolution. Structure may be characterized without restriction to cell clusters of differentiation.
Zhou, Haiying; Purdie, Jennifer; Wang, Tongtong; Ouyang, Anli
2010-01-01
The number of therapeutic proteins produced by cell culture in the pharmaceutical industry continues to increase. During the early stages of manufacturing process development, hundreds of clones and various cell culture conditions are evaluated to develop a robust process to identify and select cell lines with high productivity. It is highly desirable to establish a high throughput system to accelerate process development and reduce cost. Multiwell plates and shake flasks are widely used in the industry as the scale down model for large-scale bioreactors. However, one of the limitations of these two systems is the inability to measure and control pH in a high throughput manner. As pH is an important process parameter for cell culture, this could limit the applications of these scale down model vessels. An economical, rapid, and robust pH measurement method was developed at Eli Lilly and Company by employing SNARF-4F 5-(-and 6)-carboxylic acid. The method demonstrated the ability to measure the pH values of cell culture samples in a high throughput manner. Based upon the chemical equilibrium of CO(2), HCO(3)(-), and the buffer system, i.e., HEPES, we established a mathematical model to regulate pH in multiwell plates and shake flasks. The model calculates the required %CO(2) from the incubator and the amount of sodium bicarbonate to be added to adjust pH to a preset value. The model was validated by experimental data, and pH was accurately regulated by this method. The feasibility of studying the pH effect on cell culture in 96-well plates and shake flasks was also demonstrated in this study. This work shed light on mini-bioreactor scale down model construction and paved the way for cell culture process development to improve productivity or product quality using high throughput systems. Copyright 2009 American Institute of Chemical Engineers
A High-Throughput Processor for Flight Control Research Using Small UAVs
NASA Technical Reports Server (NTRS)
Klenke, Robert H.; Sleeman, W. C., IV; Motter, Mark A.
2006-01-01
There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.
High throughput integrated thermal characterization with non-contact optical calorimetry
NASA Astrophysics Data System (ADS)
Hou, Sichao; Huo, Ruiqing; Su, Ming
2017-10-01
Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.
Shahini, Mehdi; Yeow, John T W
2011-08-12
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Optimization and high-throughput screening of antimicrobial peptides.
Blondelle, Sylvie E; Lohner, Karl
2010-01-01
While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R; Bock, Davi D; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R Clay; Smith, Stephen J; Szalay, Alexander S; Vogelstein, Joshua T; Vogelstein, R Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes - neural connectivity maps of the brain-using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems-reads to parallel disk arrays and writes to solid-state storage-to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization.
Burdick, David B; Cavnor, Chris C; Handcock, Jeremy; Killcoyne, Sarah; Lin, Jake; Marzolf, Bruz; Ramsey, Stephen A; Rovira, Hector; Bressler, Ryan; Shmulevich, Ilya; Boyle, John
2010-07-14
High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services.
2010-01-01
Background High throughput sequencing has become an increasingly important tool for biological research. However, the existing software systems for managing and processing these data have not provided the flexible infrastructure that research requires. Results Existing software solutions provide static and well-established algorithms in a restrictive package. However as high throughput sequencing is a rapidly evolving field, such static approaches lack the ability to readily adopt the latest advances and techniques which are often required by researchers. We have used a loosely coupled, service-oriented infrastructure to develop SeqAdapt. This system streamlines data management and allows for rapid integration of novel algorithms. Our approach also allows computational biologists to focus on developing and applying new methods instead of writing boilerplate infrastructure code. Conclusion The system is based around the Addama service architecture and is available at our website as a demonstration web application, an installable single download and as a collection of individual customizable services. PMID:20630057
Wang, Heng; Qian, Xiangjie; Zhang, Lan; Xu, Sailong; Li, Haifeng; Xia, Xiaojian; Dai, Liankui; Xu, Liang; Yu, Jingquan; Liu, Xu
2018-01-01
We present a high throughput crop physiology condition monitoring system and corresponding monitoring method. The monitoring system can perform large-area chlorophyll fluorescence imaging and multispectral imaging. The monitoring method can determine the crop current condition continuously and non-destructively. We choose chlorophyll fluorescence parameters and relative reflectance of multispectral as the indicators of crop physiological status. Using tomato as experiment subject, the typical crop physiological stress, such as drought, nutrition deficiency and plant disease can be distinguished by the monitoring method. Furthermore, we have studied the correlation between the physiological indicators and the degree of stress. Besides realizing the continuous monitoring of crop physiology, the monitoring system and method provide the possibility of machine automatic diagnosis of the plant physiology. Highlights: A newly designed high throughput crop physiology monitoring system and the corresponding monitoring method are described in this study. Different types of stress can induce distinct fluorescence and spectral characteristics, which can be used to evaluate the physiological status of plants.
Chan, Leo Li-Ying; Smith, Tim; Kumph, Kendra A; Kuksin, Dmitry; Kessel, Sarah; Déry, Olivier; Cribbes, Scott; Lai, Ning; Qiu, Jean
2016-10-01
To ensure cell-based assays are performed properly, both cell concentration and viability have to be determined so that the data can be normalized to generate meaningful and comparable results. Cell-based assays performed in immuno-oncology, toxicology, or bioprocessing research often require measuring of multiple samples and conditions, thus the current automated cell counter that uses single disposable counting slides is not practical for high-throughput screening assays. In the recent years, a plate-based image cytometry system has been developed for high-throughput biomolecular screening assays. In this work, we demonstrate a high-throughput AO/PI-based cell concentration and viability method using the Celigo image cytometer. First, we validate the method by comparing directly to Cellometer automated cell counter. Next, cell concentration dynamic range, viability dynamic range, and consistency are determined. The high-throughput AO/PI method described here allows for 96-well to 384-well plate samples to be analyzed in less than 7 min, which greatly reduces the time required for the single sample-based automated cell counter. In addition, this method can improve the efficiency for high-throughput screening assays, where multiple cell counts and viability measurements are needed prior to performing assays such as flow cytometry, ELISA, or simply plating cells for cell culture.
Spectral efficiency in crosstalk-impaired multi-core fiber links
NASA Astrophysics Data System (ADS)
Luís, Ruben S.; Puttnam, Benjamin J.; Rademacher, Georg; Klaus, Werner; Agrell, Erik; Awaji, Yoshinari; Wada, Naoya
2018-02-01
We review the latest advances on ultra-high throughput transmission using crosstalk-limited single-mode multicore fibers and compare these with the theoretical spectral efficiency of such systems. We relate the crosstalkimposed spectral efficiency limits with fiber parameters, such as core diameter, core pitch, and trench design. Furthermore, we investigate the potential of techniques such as direction interleaving and high-order MIMO to improve the throughput or reach of these systems when using various modulation formats.
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1999-12-01
Projection reduction exposure with variable axis immersion lenses (PREVAIL) represents the high throughput e-beam projection approach to next generation lithography (NGL), which IBM is pursuing in cooperation with Nikon Corporation as an alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam, so that the beam effectively remains on axis. The resist images obtained with the proof-of-concept (POC) system demonstrate that PREVAIL effectively eliminates off-axis aberrations affecting both the resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield, and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulombinteraction.
Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott
2018-05-01
The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.
High throughput and miniaturised systems for biodegradability assessments.
Cregut, Mickael; Jouanneau, Sulivan; Brillet, François; Durand, Marie-José; Sweetlove, Cyril; Chenèble, Jean-Charles; L'Haridon, Jacques; Thouand, Gérald
2014-01-01
The society demands safer products with a better ecological profile. Regulatory criteria have been developed to prevent risks for human health and the environment, for example, within the framework of the European regulation REACH (Regulation (EC) No 1907, 2006). This has driven industry to consider the development of high throughput screening methodologies for assessing chemical biodegradability. These new screening methodologies must be scalable for miniaturisation, reproducible and as reliable as existing procedures for enhanced biodegradability assessment. Here, we evaluate two alternative systems that can be scaled for high throughput screening and conveniently miniaturised to limit costs in comparison with traditional testing. These systems are based on two dyes as follows: an invasive fluorescent dyes that serves as a cellular activity marker (a resazurin-like dye reagent) and a noninvasive fluorescent oxygen optosensor dye (an optical sensor). The advantages and limitations of these platforms for biodegradability assessment are presented. Our results confirm the feasibility of these systems for evaluating and screening chemicals for ready biodegradability. The optosensor is a miniaturised version of a component already used in traditional ready biodegradability testing, whereas the resazurin dye offers an interesting new screening mechanism for chemical concentrations greater than 10 mg/l that are not amenable to traditional closed bottle tests. The use of these approaches allows generalisation of high throughput screening methodologies to meet the need of developing new compounds with a favourable ecological profile and also assessment for regulatory purpose.
Identification of functional modules using network topology and high-throughput data.
Ulitsky, Igor; Shamir, Ron
2007-01-26
With the advent of systems biology, biological knowledge is often represented today by networks. These include regulatory and metabolic networks, protein-protein interaction networks, and many others. At the same time, high-throughput genomics and proteomics techniques generate very large data sets, which require sophisticated computational analysis. Usually, separate and different analysis methodologies are applied to each of the two data types. An integrated investigation of network and high-throughput information together can improve the quality of the analysis by accounting simultaneously for topological network properties alongside intrinsic features of the high-throughput data. We describe a novel algorithmic framework for this challenge. We first transform the high-throughput data into similarity values, (e.g., by computing pairwise similarity of gene expression patterns from microarray data). Then, given a network of genes or proteins and similarity values between some of them, we seek connected sub-networks (or modules) that manifest high similarity. We develop algorithms for this problem and evaluate their performance on the osmotic shock response network in S. cerevisiae and on the human cell cycle network. We demonstrate that focused, biologically meaningful and relevant functional modules are obtained. In comparison with extant algorithms, our approach has higher sensitivity and higher specificity. We have demonstrated that our method can accurately identify functional modules. Hence, it carries the promise to be highly useful in analysis of high throughput data.
High throughput chemical munitions treatment system
Haroldsen, Brent L [Manteca, CA; Stofleth, Jerome H [Albuquerque, NM; Didlake, Jr., John E.; Wu, Benjamin C-P [San Ramon, CA
2011-11-01
A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.
A compact imaging spectroscopic system for biomolecular detections on plasmonic chips.
Lo, Shu-Cheng; Lin, En-Hung; Wei, Pei-Kuen; Tsai, Wan-Shao
2016-10-17
In this study, we demonstrate a compact imaging spectroscopic system for high-throughput detection of biomolecular interactions on plasmonic chips, based on a curved grating as the key element of light diffraction and light focusing. Both the curved grating and the plasmonic chips are fabricated on flexible plastic substrates using a gas-assisted thermal-embossing method. A fiber-coupled broadband light source and a camera are included in the system. Spectral resolution within 1 nm is achieved in sensing environmental index solutions and protein bindings. The detected sensitivities of the plasmonic chip are comparable with a commercial spectrometer. An extra one-dimensional scanning stage enables high-throughput detection of protein binding on a designed plasmonic chip consisting of several nanoslit arrays with different periods. The detected resonance wavelengths match well with the grating equation under an air environment. Wavelength shifts between 1 and 9 nm are detected for antigens of various concentrations binding with antibodies. A simple, mass-productive and cost-effective method has been demonstrated on the imaging spectroscopic system for real-time, label-free, highly sensitive and high-throughput screening of biomolecular interactions.
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environ...
Gene expression with ontologic enrichment and connectivity mapping tools is widely used to infer modes of action (MOA) for therapeutic drugs. Despite progress in high-throughput (HT) genomic systems, strategies suitable to identify industrial chemical MOA are needed. The L1000 is...
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...
The growing impact of lyophilized cell-free protein expression systems
Hunt, J. Porter; Yang, Seung Ook; Wilding, Kristen M.; Bundy, Bradley C.
2017-01-01
ABSTRACT Recently reported shelf-stable, on-demand protein synthesis platforms are enabling new possibilities in biotherapeutics, biosensing, biocatalysis, and high throughput protein expression. Lyophilized cell-free protein expression systems not only overcome cold-storage limitations, but also enable stockpiling for on-demand synthesis and completely sterilize the protein synthesis platform. Recently reported high-yield synthesis of cytotoxic protein Onconase from lyophilized E. coli extract preparations demonstrates the utility of lyophilized cell-free protein expression and its potential for creating on-demand biotherapeutics, vaccines, biosensors, biocatalysts, and high throughput protein synthesis. PMID:27791452
Zebrafish Development: High-throughput Test Systems to Assess Developmental Toxicity
Abstract Because of its developmental concordance, ease of handling and rapid development, the small teleost, zebrafish (Danio rerio), is frequently promoted as a vertebrate model for medium-throughput developmental screens. This present chapter discusses zebrafish as an altern...
High throughput computing: a solution for scientific analysis
O'Donnell, M.
2011-01-01
handle job failures due to hardware, software, or network interruptions (obviating the need to manually resubmit the job after each stoppage); be affordable; and most importantly, allow us to complete very large, complex analyses that otherwise would not even be possible. In short, we envisioned a job-management system that would take advantage of unused FORT CPUs within a local area network (LAN) to effectively distribute and run highly complex analytical processes. What we found was a solution that uses High Throughput Computing (HTC) and High Performance Computing (HPC) systems to do exactly that (Figure 1).
Huang, Dejian; Ou, Boxin; Hampsch-Woodill, Maureen; Flanagan, Judith A; Prior, Ronald L
2002-07-31
The oxygen radical absorbance capacity (ORAC) assay has been widely accepted as a standard tool to measure the antioxidant activity in the nutraceutical, pharmaceutical, and food industries. However, the ORAC assay has been criticized for a lack of accessibility due to the unavailability of the COBAS FARA II analyzer, an instrument discontinued by the manufacturer. In addition, the manual sample preparation is time-consuming and labor-intensive. The objective of this study was to develop a high-throughput instrument platform that can fully automate the ORAC assay procedure. The new instrument platform consists of a robotic eight-channel liquid handling system and a microplate fluorescence reader. By using the high-throughput platform, the efficiency of the assay is improved with at least a 10-fold increase in sample throughput over the current procedure. The mean of intra- and interday CVs was
Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter
2015-01-01
Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438
Tschiersch, Henning; Junker, Astrid; Meyer, Rhonda C; Altmann, Thomas
2017-01-01
Automated plant phenotyping has been established as a powerful new tool in studying plant growth, development and response to various types of biotic or abiotic stressors. Respective facilities mainly apply non-invasive imaging based methods, which enable the continuous quantification of the dynamics of plant growth and physiology during developmental progression. However, especially for plants of larger size, integrative, automated and high throughput measurements of complex physiological parameters such as photosystem II efficiency determined through kinetic chlorophyll fluorescence analysis remain a challenge. We present the technical installations and the establishment of experimental procedures that allow the integrated high throughput imaging of all commonly determined PSII parameters for small and large plants using kinetic chlorophyll fluorescence imaging systems (FluorCam, PSI) integrated into automated phenotyping facilities (Scanalyzer, LemnaTec). Besides determination of the maximum PSII efficiency, we focused on implementation of high throughput amenable protocols recording PSII operating efficiency (Φ PSII ). Using the presented setup, this parameter is shown to be reproducibly measured in differently sized plants despite the corresponding variation in distance between plants and light source that caused small differences in incident light intensity. Values of Φ PSII obtained with the automated chlorophyll fluorescence imaging setup correlated very well with conventionally determined data using a spot-measuring chlorophyll fluorometer. The established high throughput operating protocols enable the screening of up to 1080 small and 184 large plants per hour, respectively. The application of the implemented high throughput protocols is demonstrated in screening experiments performed with large Arabidopsis and maize populations assessing natural variation in PSII efficiency. The incorporation of imaging systems suitable for kinetic chlorophyll fluorescence analysis leads to a substantial extension of the feature spectrum to be assessed in the presented high throughput automated plant phenotyping platforms, thus enabling the simultaneous assessment of plant architectural and biomass-related traits and their relations to physiological features such as PSII operating efficiency. The implemented high throughput protocols are applicable to a broad spectrum of model and crop plants of different sizes (up to 1.80 m height) and architectures. The deeper understanding of the relation of plant architecture, biomass formation and photosynthetic efficiency has a great potential with respect to crop and yield improvement strategies.
From drug to protein: using yeast genetics for high-throughput target discovery.
Armour, Christopher D; Lum, Pek Yee
2005-02-01
The budding yeast Saccharomyces cerevisiae has long been an effective eukaryotic model system for understanding basic cellular processes. The genetic tractability and ease of manipulation in the laboratory make yeast well suited for large-scale chemical and genetic screens. Several recent studies describing the use of yeast genetics for high-throughput drug target identification are discussed in this review.
Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.
Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin
2016-02-01
High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H.; Hatae, T.; Hamano, T.
2013-09-15
Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system ismore » also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ∼0.3 mm and ∼0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.« less
Tojo, H; Hatae, T; Hamano, T; Sakuma, T; Itami, K
2013-09-01
Collection optics for core measurements in a JT-60SA Thomson scattering system were designed. The collection optics will be installed in a limited space and have a wide field of view and wide wavelength range. Two types of the optics are therefore suggested: refraction and reflection types. The reflection system, with a large primary mirror, avoids large chromatic aberrations. Because the size limit of the primary mirror and vignetting due to the secondary mirror affect the total collection throughput, conditions that provide the high throughput are found through an optimization. A refraction system with four lenses forming an Ernostar system is also employed. The use of high-refractive-index glass materials enhances the freedom of the lens curvatures, resulting in suppression of the spherical and coma aberration. Moreover, sufficient throughput can be achieved, even with smaller lenses than that of a previous design given in [H. Tojo, T. Hatae, T. Sakuma, T. Hamano, K. Itami, Y. Aida, S. Suitoh, and D. Fujie, Rev. Sci. Instrum. 81, 10D539 (2010)]. The optical resolutions of the reflection and refraction systems are both sufficient for understanding the spatial structures in plasma. In particular, the spot sizes at the image of the optics are evaluated as ~0.3 mm and ~0.4 mm, respectively. The throughput for the two systems, including the pupil size and transmissivity, are also compared. The results show that good measurement accuracy (<10%) even at high electron temperatures (<30 keV) can be expected in the refraction system.
Burns, Randal; Roncal, William Gray; Kleissas, Dean; Lillaney, Kunal; Manavalan, Priya; Perlman, Eric; Berger, Daniel R.; Bock, Davi D.; Chung, Kwanghun; Grosenick, Logan; Kasthuri, Narayanan; Weiler, Nicholas C.; Deisseroth, Karl; Kazhdan, Michael; Lichtman, Jeff; Reid, R. Clay; Smith, Stephen J.; Szalay, Alexander S.; Vogelstein, Joshua T.; Vogelstein, R. Jacob
2013-01-01
We describe a scalable database cluster for the spatial analysis and annotation of high-throughput brain imaging data, initially for 3-d electron microscopy image stacks, but for time-series and multi-channel data as well. The system was designed primarily for workloads that build connectomes— neural connectivity maps of the brain—using the parallel execution of computer vision algorithms on high-performance compute clusters. These services and open-science data sets are publicly available at openconnecto.me. The system design inherits much from NoSQL scale-out and data-intensive computing architectures. We distribute data to cluster nodes by partitioning a spatial index. We direct I/O to different systems—reads to parallel disk arrays and writes to solid-state storage—to avoid I/O interference and maximize throughput. All programming interfaces are RESTful Web services, which are simple and stateless, improving scalability and usability. We include a performance evaluation of the production system, highlighting the effec-tiveness of spatial data organization. PMID:24401992
High-throughput countercurrent microextraction in passive mode.
Xie, Tingliang; Xu, Cong
2018-05-15
Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.
Lee, Ju Hee; Chen, Hongxiang; Kolev, Vihren; Aull, Katherine H.; Jung, Inhee; Wang, Jun; Miyamoto, Shoko; Hosoi, Junichi; Mandinova, Anna; Fisher, David E.
2014-01-01
Skin pigmentation is a complex process including melanogenesis within melanocytes and melanin transfer to the keratinocytes. To develop a comprehensive screening method for novel pigmentation regulators, we used immortalized melanocytes and keratinocytes in co-culture to screen large numbers of compounds. High-throughput screening plates were subjected to digital automated microscopy to quantify the pigmentation via brightfield microscopy. Compounds with pigment suppression were secondarily tested for their effects on expression of MITF and several pigment regulatory genes, and further validated in terms of non-toxicity to keratinocytes/melanocytes and dose dependent activity. The results demonstrate a high-throughput, high-content screening approach, which is applicable to the analysis of large chemical libraries using a co-culture system. We identified candidate pigmentation inhibitors from 4,000 screened compounds including zoxazolamine, 3-methoxycatechol, and alpha-mangostin, which were also shown to modulate expression of MITF and several key pigmentation factors, and are worthy of further evaluation for potential translation to clinical use. PMID:24438532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heusinkveld, Harm J.; Westerink, Remco H.S., E-mail: R.Westerink@uu.nl
Calcium plays a crucial role in virtually all cellular processes, including neurotransmission. The intracellular Ca{sup 2+} concentration ([Ca{sup 2+}]{sub i}) is therefore an important readout in neurotoxicological and neuropharmacological studies. Consequently, there is an increasing demand for high-throughput measurements of [Ca{sup 2+}]{sub i}, e.g. using multi-well microplate readers, in hazard characterization, human risk assessment and drug development. However, changes in [Ca{sup 2+}]{sub i} are highly dynamic, thereby creating challenges for high-throughput measurements. Nonetheless, several protocols are now available for real-time kinetic measurement of [Ca{sup 2+}]{sub i} in plate reader systems, though the results of such plate reader-based measurements have beenmore » questioned. In view of the increasing use of plate reader systems for measurements of [Ca{sup 2+}]{sub i} a careful evaluation of current technologies is warranted. We therefore performed an extensive set of experiments, using two cell lines (PC12 and B35) and two fluorescent calcium-sensitive dyes (Fluo-4 and Fura-2), for comparison of a linear plate reader system with single cell fluorescence microscopy. Our data demonstrate that the use of plate reader systems for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with many pitfalls and limitations, including erroneous sustained increases in fluorescence, limited sensitivity and lack of single cell resolution. Additionally, our data demonstrate that probenecid, which is often used to prevent dye leakage, effectively inhibits the depolarization-evoked increase in [Ca{sup 2+}]{sub i}. Overall, the data indicate that the use of current plate reader-based strategies for high-throughput real-time kinetic measurements of [Ca{sup 2+}]{sub i} is associated with caveats and limitations that require further investigation. - Research Highlights: > The use of plate readers for high-throughput screening of intracellular Ca{sup 2+} is associated with many pitfalls and limitations. > Single cell fluorescent microscopy is recommended for measurements of intracellular Ca{sup 2+}. > Dual-wavelength dyes (Fura-2) are preferred over single-wavelength dyes (Fluo-4) for measurements of intracellular Ca{sup 2+}. > Probenecid prevents dye leakage but abolishes depolarization-evoked Ca{sup 2+} influx, severely hampering measurements of Ca{sup 2+}. > In general, care should be taken when interpreting data from high-throughput kinetic measurements.« less
Development of Droplet Microfluidics Enabling High-Throughput Single-Cell Analysis.
Wen, Na; Zhao, Zhan; Fan, Beiyuan; Chen, Deyong; Men, Dong; Wang, Junbo; Chen, Jian
2016-07-05
This article reviews recent developments in droplet microfluidics enabling high-throughput single-cell analysis. Five key aspects in this field are included in this review: (1) prototype demonstration of single-cell encapsulation in microfluidic droplets; (2) technical improvements of single-cell encapsulation in microfluidic droplets; (3) microfluidic droplets enabling single-cell proteomic analysis; (4) microfluidic droplets enabling single-cell genomic analysis; and (5) integrated microfluidic droplet systems enabling single-cell screening. We examine the advantages and limitations of each technique and discuss future research opportunities by focusing on key performances of throughput, multifunctionality, and absolute quantification.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-05
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection.
Li, Xiaofei; Wu, Yuhua; Li, Jun; Li, Yunjing; Long, Likun; Li, Feiwu; Wu, Gang
2015-01-01
The rapid increase in the number of genetically modified (GM) varieties has led to a demand for high-throughput methods to detect genetically modified organisms (GMOs). We describe a new dynamic array-based high throughput method to simultaneously detect 48 targets in 48 samples on a Fludigm system. The test targets included species-specific genes, common screening elements, most of the Chinese-approved GM events, and several unapproved events. The 48 TaqMan assays successfully amplified products from both single-event samples and complex samples with a GMO DNA amount of 0.05 ng, and displayed high specificity. To improve the sensitivity of detection, a preamplification step for 48 pooled targets was added to enrich the amount of template before performing dynamic chip assays. This dynamic chip-based method allowed the synchronous high-throughput detection of multiple targets in multiple samples. Thus, it represents an efficient, qualitative method for GMO multi-detection. PMID:25556930
Ramakumar, Adarsh; Subramanian, Uma; Prasanna, Pataje G S
2015-11-01
High-throughput individual diagnostic dose assessment is essential for medical management of radiation-exposed subjects after a mass casualty. Cytogenetic assays such as the Dicentric Chromosome Assay (DCA) are recognized as the gold standard by international regulatory authorities. DCA is a multi-step and multi-day bioassay. DCA, as described in the IAEA manual, can be used to assess dose up to 4-6 weeks post-exposure quite accurately but throughput is still a major issue and automation is very essential. The throughput is limited, both in terms of sample preparation as well as analysis of chromosome aberrations. Thus, there is a need to design and develop novel solutions that could utilize extensive laboratory automation for sample preparation, and bioinformatics approaches for chromosome-aberration analysis to overcome throughput issues. We have transitioned the bench-based cytogenetic DCA to a coherent process performing high-throughput automated biodosimetry for individual dose assessment ensuring quality control (QC) and quality assurance (QA) aspects in accordance with international harmonized protocols. A Laboratory Information Management System (LIMS) is designed, implemented and adapted to manage increased sample processing capacity, develop and maintain standard operating procedures (SOP) for robotic instruments, avoid data transcription errors during processing, and automate analysis of chromosome-aberrations using an image analysis platform. Our efforts described in this paper intend to bridge the current technological gaps and enhance the potential application of DCA for a dose-based stratification of subjects following a mass casualty. This paper describes one such potential integrated automated laboratory system and functional evolution of the classical DCA towards increasing critically needed throughput. Published by Elsevier B.V.
Schulthess, Pascal; van Wijk, Rob C; Krekels, Elke H J; Yates, James W T; Spaink, Herman P; van der Graaf, Piet H
2018-04-25
To advance the systems approach in pharmacology, experimental models and computational methods need to be integrated from early drug discovery onward. Here, we propose outside-in model development, a model identification technique to understand and predict the dynamics of a system without requiring prior biological and/or pharmacological knowledge. The advanced data required could be obtained by whole vertebrate, high-throughput, low-resource dose-exposure-effect experimentation with the zebrafish larva. Combinations of these innovative techniques could improve early drug discovery. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.
Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V
2013-02-01
High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
Controlling high-throughput manufacturing at the nano-scale
NASA Astrophysics Data System (ADS)
Cooper, Khershed P.
2013-09-01
Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.
Towards High-Throughput, Simultaneous Characterization of Thermal and Thermoelectric Properties
NASA Astrophysics Data System (ADS)
Miers, Collier Stephen
The extension of thermoelectric generators to more general markets requires that the devices be affordable and practical (low $/Watt) to implement. A key challenge in this pursuit is the quick and accurate characterization of thermoelectric materials, which will allow researchers to tune and modify the material properties quickly. The goal of this thesis is to design and fabricate a high-throughput characterization system for the simultaneous characterization of thermal, electrical, and thermoelectric properties for device scale material samples. The measurement methodology presented in this thesis combines a custom designed measurement system created specifically for high-throughput testing with a novel device structure that permits simultaneous characterization of the material properties. The measurement system is based upon the 3o method for thermal conductivity measurements, with the addition of electrodes and voltage probes to measure the electrical conductivity and Seebeck coefficient. A device designed and optimized to permit the rapid characterization of thermoelectric materials is also presented. This structure is optimized to ensure 1D heat transfer within the sample, thus permitting rapid data analysis and fitting using a MATLAB script. Verification of the thermal portion of the system is presented using fused silica and sapphire materials for benchmarking. The fused silica samples yielded a thermal conductivity of 1.21 W/(m K), while a thermal conductivity of 31.2 W/(m K) was measured for the sapphire samples. The device and measurement system designed and developed in this thesis provide insight and serve as a foundation for the development of high throughput, simultaneous measurement platforms.
NASA Technical Reports Server (NTRS)
Balasubramanian, Kunjithapatham; Cady, Eric; Pueyo, Laurent; Ana, Xin; Shaklan, Stuart; Guyon, Olivier; Belikov, Ruslan
2011-01-01
Off-axis, high-sag PIAA optics for high contrast imaging present challenges in manufacturing and testing. With smaller form factors and consequently smaller surface deformations (< 80 microns), diamond turned fabrication of these mirrors becomes feasible. Though such a design reduces the system throughput, it still provides 2(lambda)D inner working angle. We report on the design, fabrication, measurements, and initial assessment of the novel PIAA optics in a coronagraph testbed. We also describe, for the first time, a four mirror PIAA coronagraph that relaxes apodizer requirements and significantly improves throughput while preserving the low-cost benefits.
Lambert, Nathaniel D.; Pankratz, V. Shane; Larrabee, Beth R.; Ogee-Nwankwo, Adaeze; Chen, Min-hsin; Icenogle, Joseph P.
2014-01-01
Rubella remains a social and economic burden due to the high incidence of congenital rubella syndrome (CRS) in some countries. For this reason, an accurate and efficient high-throughput measure of antibody response to vaccination is an important tool. In order to measure rubella-specific neutralizing antibodies in a large cohort of vaccinated individuals, a high-throughput immunocolorimetric system was developed. Statistical interpolation models were applied to the resulting titers to refine quantitative estimates of neutralizing antibody titers relative to the assayed neutralizing antibody dilutions. This assay, including the statistical methods developed, can be used to assess the neutralizing humoral immune response to rubella virus and may be adaptable for assessing the response to other viral vaccines and infectious agents. PMID:24391140
NASA Astrophysics Data System (ADS)
Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung
2010-12-01
This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Study of data I/O performance on distributed disk system in mask data preparation
NASA Astrophysics Data System (ADS)
Ohara, Shuichiro; Odaira, Hiroyuki; Chikanaga, Tomoyuki; Hamaji, Masakazu; Yoshioka, Yasuharu
2010-09-01
Data volume is getting larger every day in Mask Data Preparation (MDP). In the meantime, faster data handling is always required. MDP flow typically introduces Distributed Processing (DP) system to realize the demand because using hundreds of CPU is a reasonable solution. However, even if the number of CPU were increased, the throughput might be saturated because hard disk I/O and network speeds could be bottlenecks. So, MDP needs to invest a lot of money to not only hundreds of CPU but also storage and a network device which make the throughput faster. NCS would like to introduce new distributed processing system which is called "NDE". NDE could be a distributed disk system which makes the throughput faster without investing a lot of money because it is designed to use multiple conventional hard drives appropriately over network. NCS studies I/O performance with OASIS® data format on NDE which contributes to realize the high throughput in this paper.
Jeudy, Christian; Adrian, Marielle; Baussard, Christophe; Bernard, Céline; Bernaud, Eric; Bourion, Virginie; Busset, Hughes; Cabrera-Bosquet, Llorenç; Cointault, Frédéric; Han, Simeng; Lamboeuf, Mickael; Moreau, Delphine; Pivato, Barbara; Prudent, Marion; Trouvelot, Sophie; Truong, Hoai Nam; Vernoud, Vanessa; Voisin, Anne-Sophie; Wipf, Daniel; Salon, Christophe
2016-01-01
In order to maintain high yields while saving water and preserving non-renewable resources and thus limiting the use of chemical fertilizer, it is crucial to select plants with more efficient root systems. This could be achieved through an optimization of both root architecture and root uptake ability and/or through the improvement of positive plant interactions with microorganisms in the rhizosphere. The development of devices suitable for high-throughput phenotyping of root structures remains a major bottleneck. Rhizotrons suitable for plant growth in controlled conditions and non-invasive image acquisition of plant shoot and root systems (RhizoTubes) are described. These RhizoTubes allow growing one to six plants simultaneously, having a maximum height of 1.1 m, up to 8 weeks, depending on plant species. Both shoot and root compartment can be imaged automatically and non-destructively throughout the experiment thanks to an imaging cabin (RhizoCab). RhizoCab contains robots and imaging equipment for obtaining high-resolution pictures of plant roots. Using this versatile experimental setup, we illustrate how some morphometric root traits can be determined for various species including model (Medicago truncatula), crops (Pisum sativum, Brassica napus, Vitis vinifera, Triticum aestivum) and weed (Vulpia myuros) species grown under non-limiting conditions or submitted to various abiotic and biotic constraints. The measurement of the root phenotypic traits using this system was compared to that obtained using "classic" growth conditions in pots. This integrated system, to include 1200 Rhizotubes, will allow high-throughput phenotyping of plant shoots and roots under various abiotic and biotic environmental conditions. Our system allows an easy visualization or extraction of roots and measurement of root traits for high-throughput or kinetic analyses. The utility of this system for studying root system architecture will greatly facilitate the identification of genetic and environmental determinants of key root traits involved in crop responses to stresses, including interactions with soil microorganisms.
Fang, Hui; Xiao, Qing; Wu, Fanghui; Floreancig, Paul E.; Weber, Stephen G.
2010-01-01
A high-throughput screening system for homogeneous catalyst discovery has been developed by integrating a continuous-flow capillary-based microreactor with ultra-high pressure liquid chromatography (UHPLC) for fast online analysis. Reactions are conducted in distinct and stable zones in a flow stream that allows for time and temperature regulation. UHPLC detection at high temperature allows high throughput online determination of substrate, product, and byproduct concentrations. We evaluated the efficacies of a series of soluble acid catalysts for an intramolecular Friedel-Crafts addition into an acyliminium ion intermediate within one day and with minimal material investment. The effects of catalyst loading, reaction time, and reaction temperature were also screened. This system exhibited high reproducibility for high-throughput catalyst screening and allowed several acid catalysts for the reaction to be identified. Major side products from the reactions were determined through off-line mass spectrometric detection. Er(OTf)3, the catalyst that showed optimal efficiency in the screening, was shown to be effective at promoting the cyclization reaction on a preparative scale. PMID:20666502
High throughput screening of CO2-tolerating microalgae using GasPak bags
2013-01-01
Background Microalgae are diverse in terms of their speciation and function. More than 35,000 algal strains have been described, and thousands of algal cultures are maintained in different culture collection centers. The ability of CO2 uptake by microalgae varies dramatically among algal species. It becomes challenging to select suitable algal candidates that can proliferate under high CO2 concentration from a large collection of algal cultures. Results Here, we described a high throughput screening method to rapidly identify high CO2 affinity microalgae. The system integrates a CO2 mixer, GasPak bags and microplates. Microalgae on the microplates will be cultivated in GasPak bags charged with different CO2 concentrations. Using this method, we identified 17 algal strains whose growth rates were not influenced when the concentration of CO2 was increased from 2 to 20% (v/v). Most CO2 tolerant strains identified in this study were closely related to the species Scenedesmus and Chlorococcum. One of Scenedesmus strains (E7A) has been successfully tested in in the scale up photo bioreactors (500 L) bubbled with flue gas which contains 10-12% CO2. Conclusion Our high throughput CO2 testing system provides a rapid and reliable way for identifying microalgal candidate strains that can grow under high CO2 condition from a large pool of culture collection species. This high throughput system can also be modified for selecting algal strains that can tolerate other gases, such as NOx, SOx, or flue gas. PMID:24341988
Baumann, Pascal; Hahn, Tobias; Hubbuch, Jürgen
2015-10-01
Upstream processes are rather complex to design and the productivity of cells under suitable cultivation conditions is hard to predict. The method of choice for examining the design space is to execute high-throughput cultivation screenings in micro-scale format. Various predictive in silico models have been developed for many downstream processes, leading to a reduction of time and material costs. This paper presents a combined optimization approach based on high-throughput micro-scale cultivation experiments and chromatography modeling. The overall optimized system must not necessarily be the one with highest product titers, but the one resulting in an overall superior process performance in up- and downstream. The methodology is presented in a case study for the Cherry-tagged enzyme Glutathione-S-Transferase from Escherichia coli SE1. The Cherry-Tag™ (Delphi Genetics, Belgium) which can be fused to any target protein allows for direct product analytics by simple VIS absorption measurements. High-throughput cultivations were carried out in a 48-well format in a BioLector micro-scale cultivation system (m2p-Labs, Germany). The downstream process optimization for a set of randomly picked upstream conditions producing high yields was performed in silico using a chromatography modeling software developed in-house (ChromX). The suggested in silico-optimized operational modes for product capturing were validated subsequently. The overall best system was chosen based on a combination of excellent up- and downstream performance. © 2015 Wiley Periodicals, Inc.
Low-dose fixed-target serial synchrotron crystallography.
Owen, Robin L; Axford, Danny; Sherrell, Darren A; Kuo, Anling; Ernst, Oliver P; Schulz, Eike C; Miller, R J Dwayne; Mueller-Werkmeister, Henrike M
2017-04-01
The development of serial crystallography has been driven by the sample requirements imposed by X-ray free-electron lasers. Serial techniques are now being exploited at synchrotrons. Using a fixed-target approach to high-throughput serial sampling, it is demonstrated that high-quality data can be collected from myoglobin crystals, allowing room-temperature, low-dose structure determination. The combination of fixed-target arrays and a fast, accurate translation system allows high-throughput serial data collection at high hit rates and with low sample consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orton, Daniel J.; Tfaily, Malak M.; Moore, Ronald J.
To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, lowmore » pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.« less
d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan
2017-07-01
A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library Fe x Si y Ge 100-x-y (20
NASA Astrophysics Data System (ADS)
d'Acremont, Quentin; Pernot, Gilles; Rampnoux, Jean-Michel; Furlan, Andrej; Lacroix, David; Ludwig, Alfred; Dilhaire, Stefan
2017-07-01
A High-Throughput Time-Domain ThermoReflectance (HT-TDTR) technique was developed to perform fast thermal conductivity measurements with minimum user actions required. This new setup is based on a heterodyne picosecond thermoreflectance system. The use of two different laser oscillators has been proven to reduce the acquisition time by two orders of magnitude and avoid the experimental artefacts usually induced by moving the elements present in TDTR systems. An amplitude modulation associated to a lock-in detection scheme is included to maintain a high sensitivity to thermal properties. We demonstrate the capabilities of the HT-TDTR setup to perform high-throughput thermal analysis by mapping thermal conductivity and interface resistances of a ternary thin film silicide library FexSiyGe100-x-y (20
Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators
Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.
2013-01-01
The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532
OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia
2016-02-01
In the last two decades, <30% of drugs withdrawals from the market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.
Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy
Wadduwage, Dushan N.; Singh, Vijay Raj; Choi, Heejin; Yaqoob, Zahid; Heemskerk, Hans; Matsudaira, Paul; So, Peter T. C.
2017-01-01
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability. PMID:29392168
Graph-based signal integration for high-throughput phenotyping
2012-01-01
Background Electronic Health Records aggregated in Clinical Data Warehouses (CDWs) promise to revolutionize Comparative Effectiveness Research and suggest new avenues of research. However, the effectiveness of CDWs is diminished by the lack of properly labeled data. We present a novel approach that integrates knowledge from the CDW, the biomedical literature, and the Unified Medical Language System (UMLS) to perform high-throughput phenotyping. In this paper, we automatically construct a graphical knowledge model and then use it to phenotype breast cancer patients. We compare the performance of this approach to using MetaMap when labeling records. Results MetaMap's overall accuracy at identifying breast cancer patients was 51.1% (n=428); recall=85.4%, precision=26.2%, and F1=40.1%. Our unsupervised graph-based high-throughput phenotyping had accuracy of 84.1%; recall=46.3%, precision=61.2%, and F1=52.8%. Conclusions We conclude that our approach is a promising alternative for unsupervised high-throughput phenotyping. PMID:23320851
High-throughput screening of filamentous fungi using nanoliter-range droplet-based microfluidics
NASA Astrophysics Data System (ADS)
Beneyton, Thomas; Wijaya, I. Putu Mahendra; Postros, Prexilia; Najah, Majdi; Leblond, Pascal; Couvent, Angélique; Mayot, Estelle; Griffiths, Andrew D.; Drevelle, Antoine
2016-06-01
Filamentous fungi are an extremely important source of industrial enzymes because of their capacity to secrete large quantities of proteins. Currently, functional screening of fungi is associated with low throughput and high costs, which severely limits the discovery of novel enzymatic activities and better production strains. Here, we describe a nanoliter-range droplet-based microfluidic system specially adapted for the high-throughput sceening (HTS) of large filamentous fungi libraries for secreted enzyme activities. The platform allowed (i) compartmentalization of single spores in ~10 nl droplets, (ii) germination and mycelium growth and (iii) high-throughput sorting of fungi based on enzymatic activity. A 104 clone UV-mutated library of Aspergillus niger was screened based on α-amylase activity in just 90 minutes. Active clones were enriched 196-fold after a single round of microfluidic HTS. The platform is a powerful tool for the development of new production strains with low cost, space and time footprint and should bring enormous benefit for improving the viability of biotechnological processes.
Improving bed turnover time with a bed management system.
Tortorella, Frank; Ukanowicz, Donna; Douglas-Ntagha, Pamela; Ray, Robert; Triller, Maureen
2013-01-01
Efficient patient throughput requires a high degree of coordination and communication. Opportunities abound to improve the patient experience by eliminating waste from the process and improving communication among the multiple disciplines involved in facilitating patient flow. In this article, we demonstrate how an interdisciplinary team at a large tertiary cancer center implemented an electronic bed management system to improve the bed turnover component of the patient throughput process.
Hubble, Lee J; Cooper, James S; Sosa-Pintos, Andrea; Kiiveri, Harri; Chow, Edith; Webster, Melissa S; Wieczorek, Lech; Raguse, Burkhard
2015-02-09
Chemiresistor sensor arrays are a promising technology to replace current laboratory-based analysis instrumentation, with the advantage of facile integration into portable, low-cost devices for in-field use. To increase the performance of chemiresistor sensor arrays a high-throughput fabrication and screening methodology was developed to assess different organothiol-functionalized gold nanoparticle chemiresistors. This high-throughput fabrication and testing methodology was implemented to screen a library consisting of 132 different organothiol compounds as capping agents for functionalized gold nanoparticle chemiresistor sensors. The methodology utilized an automated liquid handling workstation for the in situ functionalization of gold nanoparticle films and subsequent automated analyte testing of sensor arrays using a flow-injection analysis system. To test the methodology we focused on the discrimination and quantitation of benzene, toluene, ethylbenzene, p-xylene, and naphthalene (BTEXN) mixtures in water at low microgram per liter concentration levels. The high-throughput methodology identified a sensor array configuration consisting of a subset of organothiol-functionalized chemiresistors which in combination with random forests analysis was able to predict individual analyte concentrations with overall root-mean-square errors ranging between 8-17 μg/L for mixtures of BTEXN in water at the 100 μg/L concentration. The ability to use a simple sensor array system to quantitate BTEXN mixtures in water at the low μg/L concentration range has direct and significant implications to future environmental monitoring and reporting strategies. In addition, these results demonstrate the advantages of high-throughput screening to improve the performance of gold nanoparticle based chemiresistors for both new and existing applications.
A rapid enzymatic assay for high-throughput screening of adenosine-producing strains
Dong, Huina; Zu, Xin; Zheng, Ping; Zhang, Dawei
2015-01-01
Adenosine is a major local regulator of tissue function and industrially useful as precursor for the production of medicinal nucleoside substances. High-throughput screening of adenosine overproducers is important for industrial microorganism breeding. An enzymatic assay of adenosine was developed by combined adenosine deaminase (ADA) with indophenol method. The ADA catalyzes the cleavage of adenosine to inosine and NH3, the latter can be accurately determined by indophenol method. The assay system was optimized to deliver a good performance and could tolerate the addition of inorganic salts and many nutrition components to the assay mixtures. Adenosine could be accurately determined by this assay using 96-well microplates. Spike and recovery tests showed that this assay can accurately and reproducibly determine increases in adenosine in fermentation broth without any pretreatment to remove proteins and potentially interfering low-molecular-weight molecules. This assay was also applied to high-throughput screening for high adenosine-producing strains. The high selectivity and accuracy of the ADA assay provides rapid and high-throughput analysis of adenosine in large numbers of samples. PMID:25580842
Buckner, Diana; Wilson, Suzanne; Kurk, Sandra; Hardy, Michele; Miessner, Nicole; Jutila, Mark A
2006-09-01
Innate immune system stimulants (innate adjuvants) offer complementary approaches to vaccines and antimicrobial compounds to increase host resistance to infection. The authors established fetal bovine intestinal epithelial cell (BIEC) cultures to screen natural product and synthetic compound libraries for novel mucosal adjuvants. They showed that BIECs from fetal intestine maintained an in vivo phenotype as reflected in cytokeratin expression, expression of antigens restricted to intestinal enterocytes, and induced interleukin-8 (IL-8) production. BIECs could be infected by and support replication of bovine rotavirus. A semi-high-throughput enzyme-linked immunosorbent assay-based assay that measured IL-8 production by BIECs was established and used to screen commercially available natural compounds for novel adjuvant activity. Five novel hits were identified, demonstrating the utility of the assay for selecting and screening new epithelial cell adjuvants. Although the identified compounds had not previously been shown to induce IL-8 production in epithelial cells, other known functions for 3 of the 5 were consistent with this activity. Statistical analysis of the throughput data demonstrated that the assay is adaptable to a high-throughput format for screening both synthetic and natural product derived compound libraries.
NASA Astrophysics Data System (ADS)
Regmi, Raju; Mohan, Kavya; Mondal, Partha Pratim
2014-09-01
Visualization of intracellular organelles is achieved using a newly developed high throughput imaging cytometry system. This system interrogates the microfluidic channel using a sheet of light rather than the existing point-based scanning techniques. The advantages of the developed system are many, including, single-shot scanning of specimens flowing through the microfluidic channel at flow rate ranging from micro- to nano- lit./min. Moreover, this opens-up in-vivo imaging of sub-cellular structures and simultaneous cell counting in an imaging cytometry system. We recorded a maximum count of 2400 cells/min at a flow-rate of 700 nl/min, and simultaneous visualization of fluorescently-labeled mitochondrial network in HeLa cells during flow. The developed imaging cytometry system may find immediate application in biotechnology, fluorescence microscopy and nano-medicine.
Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources
2014-11-01
genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate gene...and genomic DNA and then subjected to Illumina high-throughput sequencing . In this analysis, shRNAs lost in the GSC population represent candidate...PRISM 7900 Sequence Detection System ( Genomics Resource, FHCRC). Relative transcript abundance was analyzed using the 2−ΔΔCt method. TRIzol (Invitrogen
Re-engineering adenovirus vector systems to enable high-throughput analyses of gene function.
Stanton, Richard J; McSharry, Brian P; Armstrong, Melanie; Tomasec, Peter; Wilkinson, Gavin W G
2008-12-01
With the enhanced capacity of bioinformatics to interrogate extensive banks of sequence data, more efficient technologies are needed to test gene function predictions. Replication-deficient recombinant adenovirus (Ad) vectors are widely used in expression analysis since they provide for extremely efficient expression of transgenes in a wide range of cell types. To facilitate rapid, high-throughput generation of recombinant viruses, we have re-engineered an adenovirus vector (designated AdZ) to allow single-step, directional gene insertion using recombineering technology. Recombineering allows for direct insertion into the Ad vector of PCR products, synthesized sequences, or oligonucleotides encoding shRNAs without requirement for a transfer vector Vectors were optimized for high-throughput applications by making them "self-excising" through incorporating the I-SceI homing endonuclease into the vector removing the need to linearize vectors prior to transfection into packaging cells. AdZ vectors allow genes to be expressed in their native form or with strep, V5, or GFP tags. Insertion of tetracycline operators downstream of the human cytomegalovirus major immediate early (HCMV MIE) promoter permits silencing of transgenes in helper cells expressing the tet repressor thus making the vector compatible with the cloning of toxic gene products. The AdZ vector system is robust, straightforward, and suited to both sporadic and high-throughput applications.
Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel
2014-01-01
A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-08-01
In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.
2005-09-01
This research explores the need for a high throughput, high speed network for use in a network centric wartime environment and how commercial...Automated Digital Network System (ADNS). This research explores the need for a high-throughput, high-speed network for use in a network centric ...1 C. DEPARTMENT OF DEFENSE (DOD) DESIRED END STATE ..............2 1. DOD Transformation to Network Centric Warfare (NCW) Operations
High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography
NASA Astrophysics Data System (ADS)
Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian
2011-02-01
Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.
Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian
2011-02-01
Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.
NASA Astrophysics Data System (ADS)
Kobayashi, Hirokazu; Shimota, Akiro; Kondo, Kayoko; Okumura, Eisuke; Kameda, Yoshihiko; Shimoda, Haruhisa; Ogawa, Toshihiro
1999-11-01
The interferometric monitor for greenhouse gases (IMG) was the precursor of the high-resolution Fourier-transform infrared radiometer (FTIR) onboard a satellite for observation of the Earth. The IMG endured the stress of a rocket launch, demonstrating that the high-resolution, high-throughput spectrometer is indeed feasible for use onboard a satellite. The IMG adopted a newly developed lubricant-free magnetic suspension mechanism and a dynamic alignment system for the moving mirror with a maximum traveling distance of 10 cm. We present the instrumentation of the IMG, characteristics of the movable mirror drive system, and the evaluation results of sensor specifications during space operation.
Integrative Systems Biology for Data Driven Knowledge Discovery
Greene, Casey S.; Troyanskaya, Olga G.
2015-01-01
Integrative systems biology is an approach that brings together diverse high throughput experiments and databases to gain new insights into biological processes or systems at molecular through physiological levels. These approaches rely on diverse high-throughput experimental techniques that generate heterogeneous data by assaying varying aspects of complex biological processes. Computational approaches are necessary to provide an integrative view of these experimental results and enable data-driven knowledge discovery. Hypotheses generated from these approaches can direct definitive molecular experiments in a cost effective manner. Using integrative systems biology approaches, we can leverage existing biological knowledge and large-scale data to improve our understanding of yet unknown components of a system of interest and how its malfunction leads to disease. PMID:21044756
Yun, Kyungwon; Lee, Hyunjae; Bang, Hyunwoo; Jeon, Noo Li
2016-02-21
This study proposes a novel way to achieve high-throughput image acquisition based on a computer-recognizable micro-pattern implemented on a microfluidic device. We integrated the QR code, a two-dimensional barcode system, onto the microfluidic device to simplify imaging of multiple ROIs (regions of interest). A standard QR code pattern was modified to arrays of cylindrical structures of polydimethylsiloxane (PDMS). Utilizing the recognition of the micro-pattern, the proposed system enables: (1) device identification, which allows referencing additional information of the device, such as device imaging sequences or the ROIs and (2) composing a coordinate system for an arbitrarily located microfluidic device with respect to the stage. Based on these functionalities, the proposed method performs one-step high-throughput imaging for data acquisition in microfluidic devices without further manual exploration and locating of the desired ROIs. In our experience, the proposed method significantly reduced the time for the preparation of an acquisition. We expect that the method will innovatively improve the prototype device data acquisition and analysis.
Grandjean, Geoffrey; Graham, Ryan; Bartholomeusz, Geoffrey
2011-11-01
In recent years high throughput screening operations have become a critical application in functional and translational research. Although a seemingly unmanageable amount of data is generated by these high-throughput, large-scale techniques, through careful planning, an effective Laboratory Information Management System (LIMS) can be developed and implemented in order to streamline all phases of a workflow. Just as important as data mining and analysis procedures at the end of complex processes is the tracking of individual steps of applications that generate such data. Ultimately, the use of a customized LIMS will enable users to extract meaningful results from large datasets while trusting the robustness of their assays. To illustrate the design of a custom LIMS, this practical example is provided to highlight the important aspects of the design of a LIMS to effectively modulate all aspects of an siRNA screening service. This system incorporates inventory management, control of workflow, data handling and interaction with investigators, statisticians and administrators. All these modules are regulated in a synchronous manner within the LIMS. © 2011 Bentham Science Publishers
Networking Omic Data to Envisage Systems Biological Regulation.
Kalapanulak, Saowalak; Saithong, Treenut; Thammarongtham, Chinae
To understand how biological processes work, it is necessary to explore the systematic regulation governing the behaviour of the processes. Not only driving the normal behavior of organisms, the systematic regulation evidently underlies the temporal responses to surrounding environments (dynamics) and long-term phenotypic adaptation (evolution). The systematic regulation is, in effect, formulated from the regulatory components which collaboratively work together as a network. In the drive to decipher such a code of lives, a spectrum of technologies has continuously been developed in the post-genomic era. With current advances, high-throughput sequencing technologies are tremendously powerful for facilitating genomics and systems biology studies in the attempt to understand system regulation inside the cells. The ability to explore relevant regulatory components which infer transcriptional and signaling regulation, driving core cellular processes, is thus enhanced. This chapter reviews high-throughput sequencing technologies, including second and third generation sequencing technologies, which support the investigation of genomics and transcriptomics data. Utilization of this high-throughput data to form the virtual network of systems regulation is explained, particularly transcriptional regulatory networks. Analysis of the resulting regulatory networks could lead to an understanding of cellular systems regulation at the mechanistic and dynamics levels. The great contribution of the biological networking approach to envisage systems regulation is finally demonstrated by a broad range of examples.
Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C
2016-01-01
Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.
Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di
2015-01-01
A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration) over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478
Software Voting in Asynchronous NMR (N-Modular Redundancy) Computer Structures.
1983-05-06
added reliability is exchanged for increased system cost and decreased throughput. Some applications require extremely reliable systems, so the only...not the other way around. Although no systems proidc abstract voting yet. as more applications are written for NMR systems, the programmers are going...throughput goes down, the overhead goes up. Mathematically : Overhead= Non redundant Throughput- Actual Throughput (1) In this section, the actual throughput
Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells
NASA Astrophysics Data System (ADS)
Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan
2011-03-01
Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.
Klukas, Christian; Chen, Dijun; Pape, Jean-Michel
2014-01-01
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818
High-Throughput Incubation and Quantification of Agglutination Assays in a Microfluidic System.
Castro, David; Conchouso, David; Kodzius, Rimantas; Arevalo, Arpys; Foulds, Ian G
2018-06-04
In this paper, we present a two-phase microfluidic system capable of incubating and quantifying microbead-based agglutination assays. The microfluidic system is based on a simple fabrication solution, which requires only laboratory tubing filled with carrier oil, driven by negative pressure using a syringe pump. We provide a user-friendly interface, in which a pipette is used to insert single droplets of a 1.25-µL volume into a system that is continuously running and therefore works entirely on demand without the need for stopping, resetting or washing the system. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5⁻10-fold improvement over traditional agglutination assays. We study system parameters such as channel length, incubation time and flow speed to select optimal assay conditions, using the streptavidin-biotin interaction as a model analyte quantified using optical image processing. We then investigate the effect of changing the concentration of both analyte and microbead concentrations, with a minimum detection limit of 100 ng/mL. The system can be both low- and high-throughput, depending on the rate at which assays are inserted. In our experiments, we were able to easily produce throughputs of 360 assays per hour by simple manual pipetting, which could be increased even further by automation and parallelization. Agglutination assays are a versatile tool, capable of detecting an ever-growing catalog of infectious diseases, proteins and metabolites. A system such as this one is a step towards being able to produce high-throughput microfluidic diagnostic solutions with widespread adoption. The development of analytical techniques in the microfluidic format, such as the one presented in this work, is an important step in being able to continuously monitor the performance and microfluidic outputs of organ-on-chip devices.
NASA Astrophysics Data System (ADS)
Mughal, A.; Newman, H.
2017-10-01
We review and demonstrate the design of efficient data transfer nodes (DTNs), from the perspective of the highest throughput over both local and wide area networks, as well as the highest performance per unit cost. A careful system-level design is required for the hardware, firmware, OS and software components. Furthermore, additional tuning of these components, and the identification and elimination of any remaining bottlenecks is needed once the system is assembled and commissioned, in order to obtain optimal performance. For high throughput data transfers, specialized software is used to overcome the traditional limits in performance caused by the OS, file system, file structures used, etc. Concretely, we will discuss and present the latest results using Fast Data Transfer (FDT), developed by Caltech. We present and discuss the design choices for three generations of Caltech DTNs. Their transfer capabilities range from 40 Gbps to 400 Gbps. Disk throughput is still the biggest challenge in the current generation of available hardware. However, new NVME drives combined with RDMA and a new NVME network fabric are expected to improve the overall data-transfer throughput and simultaneously reduce the CPU load on the end nodes.
Davenport, Paul B; Carter, Kimberly F; Echternach, Jeffrey M; Tuck, Christopher R
2018-02-01
High-reliability organizations (HROs) demonstrate unique and consistent characteristics, including operational sensitivity and control, situational awareness, hyperacute use of technology and data, and actionable process transformation. System complexity and reliance on information-based processes challenge healthcare organizations to replicate HRO processes. This article describes a healthcare organization's 3-year journey to achieve key HRO features to deliver high-quality, patient-centric care via an operations center powered by the principles of high-reliability data and software to impact patient throughput and flow.
Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-09-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152
High-throughput NGL electron-beam direct-write lithography system
NASA Astrophysics Data System (ADS)
Parker, N. William; Brodie, Alan D.; McCoy, John H.
2000-07-01
Electron beam lithography systems have historically had low throughput. The only practical solution to this limitation is an approach using many beams writing simultaneously. For single-column multi-beam systems, including projection optics (SCALPELR and PREVAIL) and blanked aperture arrays, throughput and resolution are limited by space-charge effects. Multibeam micro-column (one beam per column) systems are limited by the need for low voltage operation, electrical connection density and fabrication complexities. In this paper, we discuss a new multi-beam concept employing multiple columns each with multiple beams to generate a very large total number of parallel writing beams. This overcomes the limitations of space-charge interactions and low voltage operation. We also discuss a rationale leading to the optimum number of columns and beams per column. Using this approach we show how production throughputs >= 60 wafers per hour can be achieved at CDs
Parkison, Steven A.; Carlson, Jay D.; Chaudoin, Tammy R.; Hoke, Traci A.; Schenk, A. Katrin; Goulding, Evan H.; Pérez, Lance C.; Bonasera, Stephen J.
2016-01-01
Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-of-a-kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience. PMID:23366406
NASA Astrophysics Data System (ADS)
Kim, Seunggyu; Lee, Seokhun; Jeon, Jessie S.
2017-11-01
To determine the most effective antimicrobial treatments of infectious pathogen, high-throughput antibiotic susceptibility test (AST) is critically required. However, the conventional AST requires at least 16 hours to reach the minimum observable population. Therefore, we developed a microfluidic system that allows maintenance of linear antibiotic concentration and measurement of local bacterial density. Based on the Stokes-Einstein equation, the flow rate in the microchannel was optimized so that linearization was achieved within 10 minutes, taking into account the diffusion coefficient of each antibiotic in the agar gel. As a result, the minimum inhibitory concentration (MIC) of each antibiotic against P. aeruginosa could be immediately determined 6 hours after treatment of the linear antibiotic concentration. In conclusion, our system proved the efficacy of a high-throughput AST platform through MIC comparison with Clinical and Laboratory Standards Institute (CLSI) range of antibiotics. This work was supported by the Climate Change Research Hub (Grant No. N11170060) of the KAIST and by the Brain Korea 21 Plus project.
Crystal Symmetry Algorithms in a High-Throughput Framework for Materials
NASA Astrophysics Data System (ADS)
Taylor, Richard
The high-throughput framework AFLOW that has been developed and used successfully over the last decade is improved to include fully-integrated software for crystallographic symmetry characterization. The standards used in the symmetry algorithms conform with the conventions and prescriptions given in the International Tables of Crystallography (ITC). A standard cell choice with standard origin is selected, and the space group, point group, Bravais lattice, crystal system, lattice system, and representative symmetry operations are determined. Following the conventions of the ITC, the Wyckoff sites are also determined and their labels and site symmetry are provided. The symmetry code makes no assumptions on the input cell orientation, origin, or reduction and has been integrated in the AFLOW high-throughput framework for materials discovery by adding to the existing code base and making use of existing classes and functions. The software is written in object-oriented C++ for flexibility and reuse. A performance analysis and examination of the algorithms scaling with cell size and symmetry is also reported.
Droplet-based microfluidic analysis and screening of single plant cells.
Yu, Ziyi; Boehm, Christian R; Hibberd, Julian M; Abell, Chris; Haseloff, Jim; Burgess, Steven J; Reyna-Llorens, Ivan
2018-01-01
Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.
Genome sequencing in microfabricated high-density picolitre reactors.
Margulies, Marcel; Egholm, Michael; Altman, William E; Attiya, Said; Bader, Joel S; Bemben, Lisa A; Berka, Jan; Braverman, Michael S; Chen, Yi-Ju; Chen, Zhoutao; Dewell, Scott B; Du, Lei; Fierro, Joseph M; Gomes, Xavier V; Godwin, Brian C; He, Wen; Helgesen, Scott; Ho, Chun Heen; Ho, Chun He; Irzyk, Gerard P; Jando, Szilveszter C; Alenquer, Maria L I; Jarvie, Thomas P; Jirage, Kshama B; Kim, Jong-Bum; Knight, James R; Lanza, Janna R; Leamon, John H; Lefkowitz, Steven M; Lei, Ming; Li, Jing; Lohman, Kenton L; Lu, Hong; Makhijani, Vinod B; McDade, Keith E; McKenna, Michael P; Myers, Eugene W; Nickerson, Elizabeth; Nobile, John R; Plant, Ramona; Puc, Bernard P; Ronan, Michael T; Roth, George T; Sarkis, Gary J; Simons, Jan Fredrik; Simpson, John W; Srinivasan, Maithreyan; Tartaro, Karrie R; Tomasz, Alexander; Vogt, Kari A; Volkmer, Greg A; Wang, Shally H; Wang, Yong; Weiner, Michael P; Yu, Pengguang; Begley, Richard F; Rothberg, Jonathan M
2005-09-15
The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.
History, applications, and challenges of immune repertoire research.
Liu, Xiao; Wu, Jinghua
2018-02-27
The diversity of T and B cells in terms of their receptor sequences is huge in the vertebrate's immune system and provides broad protection against the vast diversity of pathogens. Immune repertoire is defined as the sum of T cell receptors and B cell receptors (also named immunoglobulin) that makes the organism's adaptive immune system. Before the emergence of high-throughput sequencing, the studies on immune repertoire were limited by the underdeveloped methodologies, since it was impossible to capture the whole picture by the low-throughput tools. The massive paralleled sequencing technology suits perfectly the researches on immune repertoire. In this article, we review the history of immune repertoire studies, in terms of technologies and research applications. Particularly, we discuss several aspects of challenges in this field and highlight the efforts to develop potential solutions, in the era of high-throughput sequencing of the immune repertoire.
Shibata, Kazuhiro; Itoh, Masayoshi; Aizawa, Katsunori; Nagaoka, Sumiharu; Sasaki, Nobuya; Carninci, Piero; Konno, Hideaki; Akiyama, Junichi; Nishi, Katsuo; Kitsunai, Tokuji; Tashiro, Hideo; Itoh, Mari; Sumi, Noriko; Ishii, Yoshiyuki; Nakamura, Shin; Hazama, Makoto; Nishine, Tsutomu; Harada, Akira; Yamamoto, Rintaro; Matsumoto, Hiroyuki; Sakaguchi, Sumito; Ikegami, Takashi; Kashiwagi, Katsuya; Fujiwake, Syuji; Inoue, Kouji; Togawa, Yoshiyuki; Izawa, Masaki; Ohara, Eiji; Watahiki, Masanori; Yoneda, Yuko; Ishikawa, Tomokazu; Ozawa, Kaori; Tanaka, Takumi; Matsuura, Shuji; Kawai, Jun; Okazaki, Yasushi; Muramatsu, Masami; Inoue, Yorinao; Kira, Akira; Hayashizaki, Yoshihide
2000-01-01
The RIKEN high-throughput 384-format sequencing pipeline (RISA system) including a 384-multicapillary sequencer (the so-called RISA sequencer) was developed for the RIKEN mouse encyclopedia project. The RISA system consists of colony picking, template preparation, sequencing reaction, and the sequencing process. A novel high-throughput 384-format capillary sequencer system (RISA sequencer system) was developed for the sequencing process. This system consists of a 384-multicapillary auto sequencer (RISA sequencer), a 384-multicapillary array assembler (CAS), and a 384-multicapillary casting device. The RISA sequencer can simultaneously analyze 384 independent sequencing products. The optical system is a scanning system chosen after careful comparison with an image detection system for the simultaneous detection of the 384-capillary array. This scanning system can be used with any fluorescent-labeled sequencing reaction (chain termination reaction), including transcriptional sequencing based on RNA polymerase, which was originally developed by us, and cycle sequencing based on thermostable DNA polymerase. For long-read sequencing, 380 out of 384 sequences (99.2%) were successfully analyzed and the average read length, with more than 99% accuracy, was 654.4 bp. A single RISA sequencer can analyze 216 kb with >99% accuracy in 2.7 h (90 kb/h). For short-read sequencing to cluster the 3′ end and 5′ end sequencing by reading 350 bp, 384 samples can be analyzed in 1.5 h. We have also developed a RISA inoculator, RISA filtrator and densitometer, RISA plasmid preparator which can handle throughput of 40,000 samples in 17.5 h, and a high-throughput RISA thermal cycler which has four 384-well sites. The combination of these technologies allowed us to construct the RISA system consisting of 16 RISA sequencers, which can process 50,000 DNA samples per day. One haploid genome shotgun sequence of a higher organism, such as human, mouse, rat, domestic animals, and plants, can be revealed by seven RISA systems within one month. PMID:11076861
Break-up of droplets in a concentrated emulsion flowing through a narrow constriction
NASA Astrophysics Data System (ADS)
Kim, Minkyu; Rosenfeld, Liat; Tang, Sindy; Tang Lab Team
2014-11-01
Droplet microfluidics has enabled a wide range of high throughput screening applications. Compared with other technologies such as robotic screening technology, droplet microfluidics has 1000 times higher throughput, which makes the technology one of the most promising platforms for the ultrahigh throughput screening applications. Few studies have considered the throughput of the droplet interrogation process, however. In this research, we show that the probability of break-up increases with increasing flow rate, entrance angle to the constriction, and size of the drops. Since single drops do not break at the highest flow rate used in the system, break-ups occur primarily from the interactions between highly packed droplets close to each other. Moreover, the probabilistic nature of the break-up process arises from the stochastic variations in the packing configuration. Our results can be used to calculate the maximum throughput of the serial interrogation process. For 40 pL-drops, the highest throughput with less than 1% droplet break-up was measured to be approximately 7,000 drops per second. In addition, the results are useful for understanding the behavior of concentrated emulsions in applications such as mobility control in enhanced oil recovery.
A high-throughput microRNA expression profiling system.
Guo, Yanwen; Mastriano, Stephen; Lu, Jun
2014-01-01
As small noncoding RNAs, microRNAs (miRNAs) regulate diverse biological functions, including physiological and pathological processes. The expression and deregulation of miRNA levels contain rich information with diagnostic and prognostic relevance and can reflect pharmacological responses. The increasing interest in miRNA-related research demands global miRNA expression profiling on large numbers of samples. We describe here a robust protocol that supports high-throughput sample labeling and detection on hundreds of samples simultaneously. This method employs 96-well-based miRNA capturing from total RNA samples and on-site biochemical reactions, coupled with bead-based detection in 96-well format for hundreds of miRNAs per sample. With low-cost, high-throughput, high detection specificity, and flexibility to profile both small and large numbers of samples, this protocol can be adapted in a wide range of laboratory settings.
High-throughput optofluidic system for the laser microsurgery of oocytes
NASA Astrophysics Data System (ADS)
Chandsawangbhuwana, Charlie; Shi, Linda Z.; Zhu, Qingyuan; Alliegro, Mark C.; Berns, Michael W.
2012-01-01
This study combines microfluidics with optical microablation in a microscopy system that allows for high-throughput manipulation of oocytes, automated media exchange, and long-term oocyte observation. The microfluidic component of the system transports oocytes from an inlet port into multiple flow channels. Within each channel, oocytes are confined against a microfluidic barrier using a steady fluid flow provided by an external computer-controlled syringe pump. This allows for easy media replacement without disturbing the oocyte location. The microfluidic and optical-laser microbeam ablation capabilities of the system were validated using surf clam (Spisula solidissima) oocytes that were immobilized in order to permit ablation of the 5 μm diameter nucleolinus within the oocyte nucleolus. Oocytes were the followed and assayed for polar body ejection.
High-Reflectivity Coatings for a Vacuum Ultraviolet Spectropolarimeter
NASA Astrophysics Data System (ADS)
Narukage, Noriyuki; Kubo, Masahito; Ishikawa, Ryohko; Ishikawa, Shin-nosuke; Katsukawa, Yukio; Kobiki, Toshihiko; Giono, Gabriel; Kano, Ryouhei; Bando, Takamasa; Tsuneta, Saku; Auchère, Frédéric; Kobayashi, Ken; Winebarger, Amy; McCandless, Jim; Chen, Jianrong; Choi, Joanne
2017-03-01
Precise polarization measurements in the vacuum ultraviolet (VUV) region are expected to be a new tool for inferring the magnetic fields in the upper atmosphere of the Sun. High-reflectivity coatings are key elements to achieving high-throughput optics for precise polarization measurements. We fabricated three types of high-reflectivity coatings for a solar spectropolarimeter in the hydrogen Lyman-α (Lyα; 121.567 nm) region and evaluated their performance. The first high-reflectivity mirror coating offers a reflectivity of more than 80 % in Lyα optics. The second is a reflective narrow-band filter coating that has a peak reflectivity of 57 % in Lyα, whereas its reflectivity in the visible light range is lower than 1/10 of the peak reflectivity (˜ 5 % on average). This coating can be used to easily realize a visible light rejection system, which is indispensable for a solar telescope, while maintaining high throughput in the Lyα line. The third is a high-efficiency reflective polarizing coating that almost exclusively reflects an s-polarized beam at its Brewster angle of 68° with a reflectivity of 55 %. This coating achieves both high polarizing power and high throughput. These coatings contributed to the high-throughput solar VUV spectropolarimeter called the Chromospheric Lyman-Alpha SpectroPolarimeter (CLASP), which was launched on 3 September, 2015.
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-01-01
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks. PMID:26501283
Li, Dongfang; Lu, Zhaojun; Zou, Xuecheng; Liu, Zhenglin
2015-10-16
Random number generators (RNG) play an important role in many sensor network systems and applications, such as those requiring secure and robust communications. In this paper, we develop a high-security and high-throughput hardware true random number generator, called PUFKEY, which consists of two kinds of physical unclonable function (PUF) elements. Combined with a conditioning algorithm, true random seeds are extracted from the noise on the start-up pattern of SRAM memories. These true random seeds contain full entropy. Then, the true random seeds are used as the input for a non-deterministic hardware RNG to generate a stream of true random bits with a throughput as high as 803 Mbps. The experimental results show that the bitstream generated by the proposed PUFKEY can pass all standard national institute of standards and technology (NIST) randomness tests and is resilient to a wide range of security attacks.
Kokel, David; Rennekamp, Andrew J; Shah, Asmi H; Liebel, Urban; Peterson, Randall T
2012-08-01
For decades, studying the behavioral effects of individual drugs and genetic mutations has been at the heart of efforts to understand and treat nervous system disorders. High-throughput technologies adapted from other disciplines (e.g., high-throughput chemical screening, genomics) are changing the scale of data acquisition in behavioral neuroscience. Massive behavioral datasets are beginning to emerge, particularly from zebrafish labs, where behavioral assays can be performed rapidly and reproducibly in 96-well, high-throughput format. Mining these datasets and making comparisons across different assays are major challenges for the field. Here, we review behavioral barcoding, a process by which complex behavioral assays are reduced to a string of numeric features, facilitating analysis and comparison within and across datasets. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko; Matsugaki, Naohiro; Igarashi, Noriyuki; Amano, Yasushi; Warizaya, Masaichi; Sakashita, Hitoshi; Kikuchi, Takashi; Mori, Takeharu; Toyoshima, Akio; Kishimoto, Shunji; Wakatsuki, Soichi
2010-06-01
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable of handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.
NASA Astrophysics Data System (ADS)
Lopez, Carlos; Watanabe, Takaichi; Cabral, Joao; Graham, Peter; Porcar, Lionel; Martel, Anne
2014-03-01
The coupling of microfluidics and small angle neutron scattering (SANS) is successfully demonstrated for the first time. We have developed novel microdevices with suitably low SANS background and high pressure compatibility for the investigation of flow-induced phenomena and high throughput phase mapping of complex fluids. We successfully obtained scattering profiles from 50 micron channels, in 10s - 100s second acquisition times. The microfluidic geometry enables the variation of both flow type and magnitude, beyond traditional rheo-SANS setups, and is exceptionally well-suited for complex fluids due to the commensurability of relevant time and lengthscales. We demonstrate our approach by studying model flow responsive systems, including surfactant/co-surfactant/water mixtures, with well-known equilibrium phase behaviour,: sodium dodecyl sulfate (SDS)/octanol/brine, cetyltrimethyl ammonium chloride (C16TAC)/pentanol/water and a model microemulsion system (C10E4 /decane/ D20), as well as polyelectrolyte solutions. Finally, using an online micromixer we are able to implement a high throughput approach, scanning in excess of 10 scattering profiles/min for a continuous aqueous surfactant dilution over two decades in concentration.
Verdirame, Maria; Veneziano, Maria; Alfieri, Anna; Di Marco, Annalise; Monteagudo, Edith; Bonelli, Fabio
2010-03-11
Turbulent Flow Chromatography (TFC) is a powerful approach for on-line extraction in bioanalytical studies. It improves sensitivity and reduces sample preparation time, two factors that are of primary importance in drug discovery. In this paper the application of the ARIA system to the analytical support of in vivo pharmacokinetics (PK) and in vitro drug metabolism studies is described, with an emphasis in high throughput optimization. For PK studies, a comparison between acetonitrile plasma protein precipitation (APPP) and TFC was carried out. Our optimized TFC methodology gave better S/N ratios and lower limit of quantification (LOQ) than conventional procedures. A robust and high throughput analytical method to support hepatocyte metabolic stability screening of new chemical entities was developed by hyphenation of TFC with mass spectrometry. An in-loop dilution injection procedure was implemented to overcome one of the main issues when using TFC, that is the early elution of hydrophilic compounds that renders low recoveries. A comparison between off-line solid phase extraction (SPE) and TFC was also carried out, and recovery, sensitivity (LOQ), matrix effect and robustness were evaluated. The use of two parallel columns in the configuration of the system provided a further increase of the throughput. Copyright 2009 Elsevier B.V. All rights reserved.
Peroxisystem: harnessing systems cell biology to study peroxisomes.
Schuldiner, Maya; Zalckvar, Einat
2015-04-01
In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
2013-03-01
1989. Evaluation of the cotton fabric model for screening topical mosquito repellents . J Am Mosq Control Assoc 5:73–76. WHO [World Health Organization...institutions, research libraries, and research funders in the common goal of maximizing access to critical research. High-Throughput Mosquito and Fly Bioassay...A. Allan , Todd W. Walker , Christopher J. Geden , Jerome A. Hogsette , and Kenneth J. Linthicum Source: Journal of the American Mosquito Control
Condor-COPASI: high-throughput computing for biochemical networks
2012-01-01
Background Mathematical modelling has become a standard technique to improve our understanding of complex biological systems. As models become larger and more complex, simulations and analyses require increasing amounts of computational power. Clusters of computers in a high-throughput computing environment can help to provide the resources required for computationally expensive model analysis. However, exploiting such a system can be difficult for users without the necessary expertise. Results We present Condor-COPASI, a server-based software tool that integrates COPASI, a biological pathway simulation tool, with Condor, a high-throughput computing environment. Condor-COPASI provides a web-based interface, which makes it extremely easy for a user to run a number of model simulation and analysis tasks in parallel. Tasks are transparently split into smaller parts, and submitted for execution on a Condor pool. Result output is presented to the user in a number of formats, including tables and interactive graphical displays. Conclusions Condor-COPASI can effectively use a Condor high-throughput computing environment to provide significant gains in performance for a number of model simulation and analysis tasks. Condor-COPASI is free, open source software, released under the Artistic License 2.0, and is suitable for use by any institution with access to a Condor pool. Source code is freely available for download at http://code.google.com/p/condor-copasi/, along with full instructions on deployment and usage. PMID:22834945
Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz
2018-01-18
In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.
Multi-step high-throughput conjugation platform for the development of antibody-drug conjugates.
Andris, Sebastian; Wendeler, Michaela; Wang, Xiangyang; Hubbuch, Jürgen
2018-07-20
Antibody-drug conjugates (ADCs) form a rapidly growing class of biopharmaceuticals which attracts a lot of attention throughout the industry due to its high potential for cancer therapy. They combine the specificity of a monoclonal antibody (mAb) and the cell-killing capacity of highly cytotoxic small molecule drugs. Site-specific conjugation approaches involve a multi-step process for covalent linkage of antibody and drug via a linker. Despite the range of parameters that have to be investigated, high-throughput methods are scarcely used so far in ADC development. In this work an automated high-throughput platform for a site-specific multi-step conjugation process on a liquid-handling station is presented by use of a model conjugation system. A high-throughput solid-phase buffer exchange was successfully incorporated for reagent removal by utilization of a batch cation exchange step. To ensure accurate screening of conjugation parameters, an intermediate UV/Vis-based concentration determination was established including feedback to the process. For conjugate characterization, a high-throughput compatible reversed-phase chromatography method with a runtime of 7 min and no sample preparation was developed. Two case studies illustrate the efficient use for mapping the operating space of a conjugation process. Due to the degree of automation and parallelization, the platform is capable of significantly reducing process development efforts and material demands and shorten development timelines for antibody-drug conjugates. Copyright © 2018 Elsevier B.V. All rights reserved.
Alterman, Julia F; Coles, Andrew H; Hall, Lauren M; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile
2017-08-20
Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo . We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.
Yajuan, Xiao; Xin, Liang; Zhiyuan, Li
2012-01-01
The patch clamp technique is commonly used in electrophysiological experiments and offers direct insight into ion channel properties through the characterization of ion channel activity. This technique can be used to elucidate the interaction between a drug and a specific ion channel at different conformational states to understand the ion channel modulators’ mechanisms. The patch clamp technique is regarded as a gold standard for ion channel research; however, it suffers from low throughput and high personnel costs. In the last decade, the development of several automated electrophysiology platforms has greatly increased the screen throughput of whole cell electrophysiological recordings. New advancements in the automated patch clamp systems have aimed to provide high data quality, high content, and high throughput. However, due to the limitations noted above, automated patch clamp systems are not capable of replacing manual patch clamp systems in ion channel research. While automated patch clamp systems are useful for screening large amounts of compounds in cell lines that stably express high levels of ion channels, the manual patch clamp technique is still necessary for studying ion channel properties in some research areas and for specific cell types, including primary cells that have mixed cell types and differentiated cells that derive from induced pluripotent stem cells (iPSCs) or embryonic stem cells (ESCs). Therefore, further improvements in flexibility with regard to cell types and data quality will broaden the applications of the automated patch clamp systems in both academia and industry. PMID:23346269
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-01-01
Background In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. Results To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only ± 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. Conclusion The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization. PMID:19646274
Okagbare, Paul I.; Soper, Steven A.
2011-01-01
Microfluidics represents a viable platform for performing High Throughput Screening (HTS) due to its ability to automate fluid handling and generate fluidic networks with high number densities over small footprints appropriate for the simultaneous optical interrogation of many screening assays. While most HTS campaigns depend on fluorescence, readers typically use point detection and serially address the assay results significantly lowering throughput or detection sensitivity due to a low duty cycle. To address this challenge, we present here the fabrication of a high density microfluidic network packed into the imaging area of a large field-of-view (FoV) ultrasensitive fluorescence detection system. The fluidic channels were 1, 5 or 10 μm (width), 1 μm (depth) with a pitch of 1–10 μm and each fluidic processor was individually addressable. The fluidic chip was produced from a molding tool using hot embossing and thermal fusion bonding to enclose the fluidic channels. A 40X microscope objective (numerical aperture = 0.75) created a FoV of 200 μm, providing the ability to interrogate ~25 channels using the current fluidic configuration. An ultrasensitive fluorescence detection system with a large FoV was used to transduce fluorescence signals simultaneously from each fluidic processor onto the active area of an electron multiplying charge-coupled device (EMCCD). The utility of these multichannel networks for HTS was demonstrated by carrying out the high throughput monitoring of the activity of an enzyme, APE1, used as a model screening assay. PMID:20872611
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Velez‐Suberbie, M. Lourdes; Betts, John P. J.; Walker, Kelly L.; Robinson, Colin; Zoro, Barney
2017-01-01
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed‐batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled‐up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale‐up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58–68, 2018 PMID:28748655
Modulation and coding for throughput-efficient optical free-space links
NASA Technical Reports Server (NTRS)
Georghiades, Costas N.
1993-01-01
Optical direct-detection systems are currently being considered for some high-speed inter-satellite links, where data-rates of a few hundred megabits per second are evisioned under power and pulsewidth constraints. In this paper we investigate the capacity, cutoff-rate and error-probability performance of uncoded and trellis-coded systems for various modulation schemes and under various throughput and power constraints. Modulation schemes considered are on-off keying (OOK), pulse-position modulation (PPM), overlapping PPM (OPPM) and multi-pulse (combinatorial) PPM (MPPM).
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.
Blood group genotyping: from patient to high-throughput donor screening.
Veldhuisen, B; van der Schoot, C E; de Haas, M
2009-10-01
Blood group antigens, present on the cell membrane of red blood cells and platelets, can be defined either serologically or predicted based on the genotypes of genes encoding for blood group antigens. At present, the molecular basis of many antigens of the 30 blood group systems and 17 human platelet antigens is known. In many laboratories, blood group genotyping assays are routinely used for diagnostics in cases where patient red cells cannot be used for serological typing due to the presence of auto-antibodies or after recent transfusions. In addition, DNA genotyping is used to support (un)-expected serological findings. Fetal genotyping is routinely performed when there is a risk of alloimmune-mediated red cell or platelet destruction. In case of patient blood group antigen typing, it is important that a genotyping result is quickly available to support the selection of donor blood, and high-throughput of the genotyping method is not a prerequisite. In addition, genotyping of blood donors will be extremely useful to obtain donor blood with rare phenotypes, for example lacking a high-frequency antigen, and to obtain a fully typed donor database to be used for a better matching between recipient and donor to prevent adverse transfusion reactions. Serological typing of large cohorts of donors is a labour-intensive and expensive exercise and hampered by the lack of sufficient amounts of approved typing reagents for all blood group systems of interest. Currently, high-throughput genotyping based on DNA micro-arrays is a very feasible method to obtain a large pool of well-typed blood donors. Several systems for high-throughput blood group genotyping are developed and will be discussed in this review.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yonggang, E-mail: wangyg@ustc.edu.cn; Hui, Cong; Liu, Chong
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving,more » so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.« less
Wang, Yonggang; Hui, Cong; Liu, Chong; Xu, Chao
2016-04-01
The contribution of this paper is proposing a new entropy extraction mechanism based on sampling phase jitter in ring oscillators to make a high throughput true random number generator in a field programmable gate array (FPGA) practical. Starting from experimental observation and analysis of the entropy source in FPGA, a multi-phase sampling method is exploited to harvest the clock jitter with a maximum entropy and fast sampling speed. This parametrized design is implemented in a Xilinx Artix-7 FPGA, where the carry chains in the FPGA are explored to realize the precise phase shifting. The generator circuit is simple and resource-saving, so that multiple generation channels can run in parallel to scale the output throughput for specific applications. The prototype integrates 64 circuit units in the FPGA to provide a total output throughput of 7.68 Gbps, which meets the requirement of current high-speed quantum key distribution systems. The randomness evaluation, as well as its robustness to ambient temperature, confirms that the new method in a purely digital fashion can provide high-speed high-quality random bit sequences for a variety of embedded applications.
High Throughput System for Plant Height and Hyperspectral Measurement
NASA Astrophysics Data System (ADS)
Zhao, H.; Xu, L.; Jiang, H.; Shi, S.; Chen, D.
2018-04-01
Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV) extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.
A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.
Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham
2017-08-01
Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.
High-throughput flow alignment of barcoded hydrogel microparticles†
Chapin, Stephen C.; Pregibon, Daniel C.
2010-01-01
Suspension (particle-based) arrays offer several advantages over conventional planar arrays in the detection and quantification of biomolecules, including the use of smaller sample volumes, more favorable probe-target binding kinetics, and rapid probe-set modification. We present a microfluidic system for the rapid alignment of multifunctional hydrogel microparticles designed to bear one or several biomolecule probe regions, as well as a graphical code to identify the embedded probes. Using high-speed imaging, we have developed and optimized a flow-through system that (1) allows for a high particle throughput, (2) ensures proper particle alignment for decoding and target quantification, and (3) can be reliably operated continuously without clogging. A tapered channel flanked by side focusing streams is used to orient the flexible, tablet-shaped particles into a well-ordered flow in the center of the channel. The effects of channel geometry, particle geometry, particle composition, particle loading density, and barcode design are explored to determine the best combination for eventual use in biological assays. Particles in the optimized system move at velocities of ~50 cm s−1 and with throughputs of ~40 particles s−1. Simple physical models and CFD simulations have been used to investigate flow behavior in the device. PMID:19823726
Cai, Yingying; Xia, Miaomiao; Dong, Huina; Qian, Yuan; Zhang, Tongcun; Zhu, Beiwei; Wu, Jinchuan; Zhang, Dawei
2018-05-11
As a very important coenzyme in the cell metabolism, Vitamin B 12 (cobalamin, VB 12 ) has been widely used in food and medicine fields. The complete biosynthesis of VB 12 requires approximately 30 genes, but overexpression of these genes did not result in expected increase of VB 12 production. High-yield VB 12 -producing strains are usually obtained by mutagenesis treatments, thus developing an efficient screening approach is urgently needed. By the help of engineered strains with varied capacities of VB 12 production, a riboswitch library was constructed and screened, and the btuB element from Salmonella typhimurium was identified as the best regulatory device. A flow cytometry high-throughput screening system was developed based on the btuB riboswitch with high efficiency to identify positive mutants. Mutation of Sinorhizobium meliloti (S. meliloti) was optimized using the novel mutation technique of atmospheric and room temperature plasma (ARTP). Finally, the mutant S. meliloti MC5-2 was obtained and considered as a candidate for industrial applications. After 7 d's cultivation on a rotary shaker at 30 °C, the VB 12 titer of S. meliloti MC5-2 reached 156 ± 4.2 mg/L, which was 21.9% higher than that of the wild type strain S. meliloti 320 (128 ± 3.2 mg/L). The genome of S. meliloti MC5-2 was sequenced, and gene mutations were identified and analyzed. To our knowledge, it is the first time that a riboswitch element was used in S. meliloti. The flow cytometry high-throughput screening system was successfully developed and a high-yield VB 12 producing strain was obtained. The identified and analyzed gene mutations gave useful information for developing high-yield strains by metabolic engineering. Overall, this work provides a useful high-throughput screening method for developing high VB 12 -yield strains.
High-throughput GPU-based LDPC decoding
NASA Astrophysics Data System (ADS)
Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin
2010-08-01
Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.
[Weighted gene co-expression network analysis in biomedicine research].
Liu, Wei; Li, Li; Ye, Hua; Tu, Wei
2017-11-25
High-throughput biological technologies are now widely applied in biology and medicine, allowing scientists to monitor thousands of parameters simultaneously in a specific sample. However, it is still an enormous challenge to mine useful information from high-throughput data. The emergence of network biology provides deeper insights into complex bio-system and reveals the modularity in tissue/cellular networks. Correlation networks are increasingly used in bioinformatics applications. Weighted gene co-expression network analysis (WGCNA) tool can detect clusters of highly correlated genes. Therefore, we systematically reviewed the application of WGCNA in the study of disease diagnosis, pathogenesis and other related fields. First, we introduced principle, workflow, advantages and disadvantages of WGCNA. Second, we presented the application of WGCNA in disease, physiology, drug, evolution and genome annotation. Then, we indicated the application of WGCNA in newly developed high-throughput methods. We hope this review will help to promote the application of WGCNA in biomedicine research.
High-throughput method to predict extrusion pressure of ceramic pastes.
Cao, Kevin; Liu, Yang; Tucker, Christopher; Baumann, Michael; Grit, Grote; Lakso, Steven
2014-04-14
A new method was developed to measure the rheology of extrudable ceramic pastes using a Hamilton MicroLab Star liquid handler. The Hamilton instrument, normally used for high throughput liquid processing, was expanded to function as a low pressure capillary rheometer. Diluted ceramic pastes were forced through the modified pipettes, which produced pressure drop data that was converted to standard rheology data. A known ceramic paste containing cellulose ether was made and diluted to various concentrations in water. The most dilute paste samples were tested in the Hamilton instrument and the more typical, highly concentrated, ceramic paste were tested with a hydraulic ram extruder fitted with a capillary die and pressure measurement system. The rheology data from this study indicates that the dilute high throughput method using the Hamilton instrument correlates to, and can predict, the rheology of concentrated ceramic pastes normally used in ceramic extrusion production processes.
Optima MDxt: A high throughput 335 keV mid-dose implanter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eisner, Edward; David, Jonathan; Justesen, Perry
2012-11-06
The continuing demand for both energy purity and implant angle control along with high wafer throughput drove the development of the Axcelis Optima MDxt mid-dose ion implanter. The system utilizes electrostatic scanning, an electrostatic parallelizing lens and an electrostatic energy filter to produce energetically pure beams with high angular integrity. Based on field proven components, the Optima MDxt beamline architecture offers the high beam currents possible with singly charged species including arsenic at energies up to 335 keV as well as large currents from multiply charged species at energies extending over 1 MeV. Conversely, the excellent energy filtering capability allowsmore » high currents at low beam energies, since it is safe to utilize large deceleration ratios. This beamline is coupled with the >500 WPH capable endstation technology used on the Axcelis Optima XEx high energy ion implanter. The endstation includes in-situ angle measurements of the beam in order to maintain excellent beam-to-wafer implant angle control in both the horizontal and vertical directions. The Optima platform control system provides new generation dose control system that assures excellent dosimetry and charge control. This paper will describe the features and technologies that allow the Optima MDxt to provide superior process performance at the highest wafer throughput, and will provide examples of the process performance achievable.« less
2015-11-03
scale optical projection system powered by spatial light modulators, such as digital micro-mirror device ( DMD ). Figure 4 shows the parallel lithography ...1Scientific RepoRts | 5:16192 | DOi: 10.1038/srep16192 www.nature.com/scientificreports High throughput optical lithography by scanning a massive...array of bowtie aperture antennas at near-field X. Wen1,2,3,*, A. Datta1,*, L. M. Traverso1, L. Pan1, X. Xu1 & E. E. Moon4 Optical lithography , the
Bae, Seunghee; An, In-Sook; An, Sungkwan
2015-09-01
Ultraviolet (UV) radiation is a major inducer of skin aging and accumulated exposure to UV radiation increases DNA damage in skin cells, including dermal fibroblasts. In the present study, we developed a novel DNA repair regulating material discovery (DREAM) system for the high-throughput screening and identification of putative materials regulating DNA repair in skin cells. First, we established a modified lentivirus expressing the luciferase and hypoxanthine phosphoribosyl transferase (HPRT) genes. Then, human dermal fibroblast WS-1 cells were infected with the modified lentivirus and selected with puromycin to establish cells that stably expressed luciferase and HPRT (DREAM-F cells). The first step in the DREAM protocol was a 96-well-based screening procedure, involving the analysis of cell viability and luciferase activity after pretreatment of DREAM-F cells with reagents of interest and post-treatment with UVB radiation, and vice versa. In the second step, we validated certain effective reagents identified in the first step by analyzing the cell cycle, evaluating cell death, and performing HPRT-DNA sequencing in DREAM-F cells treated with these reagents and UVB. This DREAM system is scalable and forms a time-saving high-throughput screening system for identifying novel anti-photoaging reagents regulating DNA damage in dermal fibroblasts.
GPU Lossless Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kiely, Aaron B.; Klimesh, Matthew A.
2014-01-01
Hyperspectral imaging systems onboard aircraft or spacecraft can acquire large amounts of data, putting a strain on limited downlink and storage resources. Onboard data compression can mitigate this problem but may require a system capable of a high throughput. In order to achieve a high throughput with a software compressor, a graphics processing unit (GPU) implementation of a compressor was developed targeting the current state-of-the-art GPUs from NVIDIA(R). The implementation is based on the fast lossless (FL) compression algorithm reported in "Fast Lossless Compression of Multispectral-Image Data" (NPO- 42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which operates on hyperspectral data and achieves excellent compression performance while having low complexity. The FL compressor uses an adaptive filtering method and achieves state-of-the-art performance in both compression effectiveness and low complexity. The new Consultative Committee for Space Data Systems (CCSDS) Standard for Lossless Multispectral & Hyperspectral image compression (CCSDS 123) is based on the FL compressor. The software makes use of the highly-parallel processing capability of GPUs to achieve a throughput at least six times higher than that of a software implementation running on a single-core CPU. This implementation provides a practical real-time solution for compression of data from airborne hyperspectral instruments.
NASA Astrophysics Data System (ADS)
Yu, Hao Yun; Liu, Chun-Hung; Shen, Yu Tian; Lee, Hsuan-Ping; Tsai, Kuen Yu
2014-03-01
Line edge roughness (LER) influencing the electrical performance of circuit components is a key challenge for electronbeam lithography (EBL) due to the continuous scaling of technology feature sizes. Controlling LER within an acceptable tolerance that satisfies International Technology Roadmap for Semiconductors requirements while achieving high throughput become a challenging issue. Although lower dosage and more-sensitive resist can be used to improve throughput, they would result in serious LER-related problems because of increasing relative fluctuation in the incident positions of electrons. Directed self-assembly (DSA) is a promising technique to relax LER-related pattern fidelity (PF) requirements because of its self-healing ability, which may benefit throughput. To quantify the potential of throughput improvement in EBL by introducing DSA for post healing, rigorous numerical methods are proposed to simultaneously maximize throughput by adjusting writing parameters of EBL systems subject to relaxed LER-related PF requirements. A fast, continuous model for parameter sweeping and a hybrid model for more accurate patterning prediction are employed for the patterning simulation. The tradeoff between throughput and DSA self-healing ability is investigated. Preliminary results indicate that significant throughput improvements are achievable at certain process conditions.
Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo
2008-01-23
To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.
Osterman, Ilya A.; Komarova, Ekaterina S.; Shiryaev, Dmitry I.; Korniltsev, Ilya A.; Khven, Irina M.; Lukyanov, Dmitry A.; Tashlitsky, Vadim N.; Serebryakova, Marina V.; Efremenkova, Olga V.; Ivanenkov, Yan A.; Bogdanov, Alexey A.; Dontsova, Olga A.
2016-01-01
In order to accelerate drug discovery, a simple, reliable, and cost-effective system for high-throughput identification of a potential antibiotic mechanism of action is required. To facilitate such screening of new antibiotics, we created a double-reporter system for not only antimicrobial activity detection but also simultaneous sorting of potential antimicrobials into those that cause ribosome stalling and those that induce the SOS response due to DNA damage. In this reporter system, the red fluorescent protein gene rfp was placed under the control of the SOS-inducible sulA promoter. The gene of the far-red fluorescent protein, katushka2S, was inserted downstream of the tryptophan attenuator in which two tryptophan codons were replaced by alanine codons, with simultaneous replacement of the complementary part of the attenuator to preserve the ability to form secondary structures that influence transcription termination. This genetically modified attenuator makes possible Katushka2S expression only upon exposure to ribosome-stalling compounds. The application of red and far-red fluorescent proteins provides a high signal-to-background ratio without any need of enzymatic substrates for detection of the reporter activity. This reporter was shown to be efficient in high-throughput screening of both synthetic and natural chemicals. PMID:27736765
A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy
Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian
2016-01-01
Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925
PREVAIL: IBM's e-beam technology for next generation lithography
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans C.
2000-07-01
PREVAIL - Projection Reduction Exposure with Variable Axis Immersion Lenses represents the high throughput e-beam projection approach to NGL which IBM is pursuing in cooperation with Nikon Corporation as alliance partner. This paper discusses the challenges and accomplishments of the PREVAIL project. The supreme challenge facing all e-beam lithography approaches has been and still is throughput. Since the throughput of e-beam projection systems is severely limited by the available optical field size, the key to success is the ability to overcome this limitation. The PREVAIL technique overcomes field-limiting off-axis aberrations through the use of variable axis lenses, which electronically shift the optical axis simultaneously with the deflected beam so that the beam effectively remains on axis. The resist images obtained with the Proof-of-Concept (POC) system demonstrate that PREVAIL effectively eliminates off- axis aberrations affecting both resolution and placement accuracy of pixels. As part of the POC system a high emittance gun has been developed to provide uniform illumination of the patterned subfield and to fill the large numerical aperture projection optics designed to significantly reduce beam blur caused by Coulomb interaction.
Strategic and Operational Plan for Integrating Transcriptomics ...
Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016
High-Throughput Experimental Approach Capabilities | Materials Science |
NREL High-Throughput Experimental Approach Capabilities High-Throughput Experimental Approach by yellow and is for materials in the upper right sector. NREL's high-throughput experimental ,Te) and oxysulfide sputtering Combi-5: Nitrides and oxynitride sputtering We also have several non
Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2015-01-01
NASA's plan to launch several spacecrafts into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.
A bioinformatics roadmap for the human vaccines project.
Scheuermann, Richard H; Sinkovits, Robert S; Schenkelberg, Theodore; Koff, Wayne C
2017-06-01
Biomedical research has become a data intensive science in which high throughput experimentation is producing comprehensive data about biological systems at an ever-increasing pace. The Human Vaccines Project is a new public-private partnership, with the goal of accelerating development of improved vaccines and immunotherapies for global infectious diseases and cancers by decoding the human immune system. To achieve its mission, the Project is developing a Bioinformatics Hub as an open-source, multidisciplinary effort with the overarching goal of providing an enabling infrastructure to support the data processing, analysis and knowledge extraction procedures required to translate high throughput, high complexity human immunology research data into biomedical knowledge, to determine the core principles driving specific and durable protective immune responses.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L.; Bassaganya-Riera, Josep; Hafler, David A.; Sontag, Eduardo; Wang, Jin; Tsang, John S.; Day, Judy D.; Kleinstein, Steven; Butte, Atul J.; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C.
2016-01-01
Emergent responses of the immune system result from integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the NIAID workshop “Complex Systems Science, Modeling and Immunity” and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. PMID:27986392
Link Analysis of High Throughput Spacecraft Communication Systems for Future Science Missions
NASA Technical Reports Server (NTRS)
Simons, Rainee N.
2015-01-01
NASA's plan to launch several spacecraft into low Earth Orbit (LEO) to support science missions in the next ten years and beyond requires down link throughput on the order of several terabits per day. The ability to handle such a large volume of data far exceeds the capabilities of current systems. This paper proposes two solutions, first, a high data rate link between the LEO spacecraft and ground via relay satellites in geostationary orbit (GEO). Second, a high data rate direct to ground link from LEO. Next, the paper presents results from computer simulations carried out for both types of links taking into consideration spacecraft transmitter frequency, EIRP, and waveform; elevation angle dependent path loss through Earths atmosphere, and ground station receiver GT.
Rizvi, Imran; Moon, Sangjun; Hasan, Tayyaba; Demirci, Utkan
2013-01-01
In vitro 3D cancer models that provide a more accurate representation of disease in vivo are urgently needed to improve our understanding of cancer pathology and to develop better cancer therapies. However, development of 3D models that are based on manual ejection of cells from micropipettes suffer from inherent limitations such as poor control over cell density, limited repeatability, low throughput, and, in the case of coculture models, lack of reproducible control over spatial distance between cell types (e.g., cancer and stromal cells). In this study, we build on a recently introduced 3D model in which human ovarian cancer (OVCAR-5) cells overlaid on Matrigel™ spontaneously form multicellular acini. We introduce a high-throughput automated cell printing system to bioprint a 3D coculture model using cancer cells and normal fibroblasts micropatterned on Matrigel™. Two cell types were patterned within a spatially controlled microenvironment (e.g., cell density, cell-cell distance) in a high-throughput and reproducible manner; both cell types remained viable during printing and continued to proliferate following patterning. This approach enables the miniaturization of an established macro-scale 3D culture model and would allow systematic investigation into the multiple unknown regulatory feedback mechanisms between tumor and stromal cells and provide a tool for high-throughput drug screening. PMID:21298805
Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander
2015-01-01
Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots. It enables scientists to store, manage and share crop root images with metadata and compute RSA traits from thousands of images in parallel. It makes high-throughput RSA trait computation available to the community with just a few button clicks. As such it enables plant scientists to spend more time on science rather than on technology. All stored and computed data is easily accessible to the public and broader scientific community. We hope that easy data accessibility will attract new tool developers and spur creative data usage that may even be applied to other fields of science.
Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E
2006-01-01
Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.
Asif, Muhammad; Guo, Xiangzhou; Zhang, Jing; Miao, Jungang
2018-04-17
Digital cross-correlation is central to many applications including but not limited to Digital Image Processing, Satellite Navigation and Remote Sensing. With recent advancements in digital technology, the computational demands of such applications have increased enormously. In this paper we are presenting a high throughput digital cross correlator, capable of processing 1-bit digitized stream, at the rate of up to 2 GHz, simultaneously on 64 channels i.e., approximately 4 Trillion correlation and accumulation operations per second. In order to achieve higher throughput, we have focused on frequency based partitioning of our design and tried to minimize and localize high frequency operations. This correlator is designed for a Passive Millimeter Wave Imager intended for the detection of contraband items concealed on human body. The goals are to increase the system bandwidth, achieve video rate imaging, improve sensitivity and reduce the size. Design methodology is detailed in subsequent sections, elaborating the techniques enabling high throughput. The design is verified for Xilinx Kintex UltraScale device in simulation and the implementation results are given in terms of device utilization and power consumption estimates. Our results show considerable improvements in throughput as compared to our baseline design, while the correlator successfully meets the functional requirements.
Global Profiling of Reactive Oxygen and Nitrogen Species in Biological Systems
Zielonka, Jacek; Zielonka, Monika; Sikora, Adam; Adamus, Jan; Joseph, Joy; Hardy, Micael; Ouari, Olivier; Dranka, Brian P.; Kalyanaraman, Balaraman
2012-01-01
Herein we describe a high-throughput fluorescence and HPLC-based methodology for global profiling of reactive oxygen and nitrogen species (ROS/RNS) in biological systems. The combined use of HPLC and fluorescence detection is key to successful implementation and validation of this methodology. Included here are methods to specifically detect and quantitate the products formed from interaction between the ROS/RNS species and the fluorogenic probes, as follows: superoxide using hydroethidine, peroxynitrite using boronate-based probes, nitric oxide-derived nitrosating species with 4,5-diaminofluorescein, and hydrogen peroxide and other oxidants using 10-acetyl-3,7-dihydroxyphenoxazine (Amplex® Red) with and without horseradish peroxidase, respectively. In this study, we demonstrate real-time monitoring of ROS/RNS in activated macrophages using high-throughput fluorescence and HPLC methods. This global profiling approach, simultaneous detection of multiple ROS/RNS products of fluorescent probes, developed in this study will be useful in unraveling the complex role of ROS/RNS in redox regulation, cell signaling, and cellular oxidative processes and in high-throughput screening of anti-inflammatory antioxidants. PMID:22139901
NASA Astrophysics Data System (ADS)
Pfeiffer, Hans
1995-12-01
IBM's high-throughput e-beam stepper approach PRojection Exposure with Variable Axis Immersion Lenses (PREVAIL) is reviewed. The PREVAIL concept combines technology building blocks of our probe-forming EL-3 and EL-4 systems with the exposure efficiency of pattern projection. The technology represents an extension of the shaped-beam approach toward massively parallel pixel projection. As demonstrated, the use of variable-axis lenses can provide large field coverage through reduction of off-axis aberrations which limit the performance of conventional projection systems. Subfield pattern sections containing 107 or more pixels can be electronically selected (mask plane), projected and positioned (wafer plane) at high speed. To generate the entire chip pattern subfields must be stitched together sequentially in a combination of electronic and mechanical positioning of mask and wafer. The PREVAIL technology promises throughput levels competitive with those of optical steppers at superior resolution. The PREVAIL project is being pursued to demonstrate the viability of the technology and to develop an e-beam alternative to “suboptical” lithography.
Wu, Yang; Tapia, Phillip H.; Jarvik, Jonathan; Waggoner, Alan S.; Sklar, Larry A.
2014-01-01
We combined fluorogen activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform allows drug discovery for trafficking receptors, such as G-protein coupled receptors, receptor tyrosine kinases and ion channels, that were previously not suitable for high throughput screening by flow cytometry.. The system has been validated using the β2-adrenergic receptor (β2AR) system and extended to other GPCRs. When a chemical library containing ~1,200 off-patent drugs was screened against cells expressing FAP tagged β2AR, all known β2AR active ligands in the library were successfully identified, together with a few compounds that were later confirmed to regulate receptor internalization in a non-traditional manner. The unexpected discovery of new ligands by this approach indicates the potential of using this protocol for GPCR de-orphanization. In addition, screens of multiplexed targets promise improved efficiency with minor protocol modification. PMID:24510772
High-rate dead-time corrections in a general purpose digital pulse processing system
Abbene, Leonardo; Gerardi, Gaetano
2015-01-01
Dead-time losses are well recognized and studied drawbacks in counting and spectroscopic systems. In this work the abilities on dead-time correction of a real-time digital pulse processing (DPP) system for high-rate high-resolution radiation measurements are presented. The DPP system, through a fast and slow analysis of the output waveform from radiation detectors, is able to perform multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape, etc.) at high input counting rates (ICRs), allowing accurate counting loss corrections even for variable or transient radiations. The fast analysis is used to obtain both the ICR and energy spectra with high throughput, while the slow analysis is used to obtain high-resolution energy spectra. A complete characterization of the counting capabilities, through both theoretical and experimental approaches, was performed. The dead-time modeling, the throughput curves, the experimental time-interval distributions (TIDs) and the counting uncertainty of the recorded events of both the fast and the slow channels, measured with a planar CdTe (cadmium telluride) detector, will be presented. The throughput formula of a series of two types of dead-times is also derived. The results of dead-time corrections, performed through different methods, will be reported and discussed, pointing out the error on ICR estimation and the simplicity of the procedure. Accurate ICR estimations (nonlinearity < 0.5%) were performed by using the time widths and the TIDs (using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital system allows, after a simple parameter setting, different and sophisticated procedures for dead-time correction, traditionally implemented in complex/dedicated systems and time-consuming set-ups. PMID:26289270
Li, Gang; Chen, Qiang; Li, Junjun; Hu, Xiaojian; Zhao, Jianlong
2010-06-01
A centrifuge-based microfluidic system has been developed that enables automated high-throughput and low-volume protein crystallizations. In this system, protein solution was automatically and accurately metered and dispensed into nanoliter-sized multiple reaction chambers, and it was mixed with various types of precipitants using a combination of capillary effect and centrifugal force. It has the advantages of simple fabrication, easy operation, and extremely low waste. To demonstrate the feasibility of this system, we constructed a chip containing 24 units and used it to perform lysozyme and cyan fluorescent protein (CyPet) crystallization trials. The results demonstrate that high-quality crystals can be grown and harvested from such a nanoliter-volume microfluidic system. Compared to other microfluidic technologies for protein crystallization, this microfluidic system allows zero waste, simple structure and convenient operation, which suggests that our microfluidic disk can be applied not only to protein crystallization, but also to the miniaturization of various biochemical reactions requiring precise nanoscale control.
Information management systems for pharmacogenomics.
Thallinger, Gerhard G; Trajanoski, Slave; Stocker, Gernot; Trajanoski, Zlatko
2002-09-01
The value of high-throughput genomic research is dramatically enhanced by association with key patient data. These data are generally available but of disparate quality and not typically directly associated. A system that could bring these disparate data sources into a common resource connected with functional genomic data would be tremendously advantageous. However, the integration of clinical and accurate interpretation of the generated functional genomic data requires the development of information management systems capable of effectively capturing the data as well as tools to make that data accessible to the laboratory scientist or to the clinician. In this review these challenges and current information technology solutions associated with the management, storage and analysis of high-throughput data are highlighted. It is suggested that the development of a pharmacogenomic data management system which integrates public and proprietary databases, clinical datasets, and data mining tools embedded in a high-performance computing environment should include the following components: parallel processing systems, storage technologies, network technologies, databases and database management systems (DBMS), and application services.
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system.
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
High-speed cell recognition algorithm for ultrafast flow cytometer imaging system
NASA Astrophysics Data System (ADS)
Zhao, Wanyue; Wang, Chao; Chen, Hongwei; Chen, Minghua; Yang, Sigang
2018-04-01
An optical time-stretch flow imaging system enables high-throughput examination of cells/particles with unprecedented high speed and resolution. A significant amount of raw image data is produced. A high-speed cell recognition algorithm is, therefore, highly demanded to analyze large amounts of data efficiently. A high-speed cell recognition algorithm consisting of two-stage cascaded detection and Gaussian mixture model (GMM) classification is proposed. The first stage of detection extracts cell regions. The second stage integrates distance transform and the watershed algorithm to separate clustered cells. Finally, the cells detected are classified by GMM. We compared the performance of our algorithm with support vector machine. Results show that our algorithm increases the running speed by over 150% without sacrificing the recognition accuracy. This algorithm provides a promising solution for high-throughput and automated cell imaging and classification in the ultrafast flow cytometer imaging platform.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Yusuke; Hiraki, Masahiko; Sasajima, Kumiko
2010-06-23
Recent advances in high-throughput techniques for macromolecular crystallography have highlighted the importance of structure-based drug design (SBDD), and the demand for synchrotron use by pharmaceutical researchers has increased. Thus, in collaboration with Astellas Pharma Inc., we have constructed a new high-throughput macromolecular crystallography beamline, AR-NE3A, which is dedicated to SBDD. At AR-NE3A, a photon flux up to three times higher than those at existing high-throughput beams at the Photon Factory, AR-NW12A and BL-5A, can be realized at the same sample positions. Installed in the experimental hutch are a high-precision diffractometer, fast-readout, high-gain CCD detector, and sample exchange robot capable ofmore » handling more than two hundred cryo-cooled samples stored in a Dewar. To facilitate high-throughput data collection required for pharmaceutical research, fully automated data collection and processing systems have been developed. Thus, sample exchange, centering, data collection, and data processing are automatically carried out based on the user's pre-defined schedule. Although Astellas Pharma Inc. has a priority access to AR-NE3A, the remaining beam time is allocated to general academic and other industrial users.« less
Information-based management mode based on value network analysis for livestock enterprises
NASA Astrophysics Data System (ADS)
Liu, Haoqi; Lee, Changhoon; Han, Mingming; Su, Zhongbin; Padigala, Varshinee Anu; Shen, Weizheng
2018-01-01
With the development of computer and IT technologies, enterprise management has gradually become information-based management. Moreover, due to poor technical competence and non-uniform management, most breeding enterprises show a lack of organisation in data collection and management. In addition, low levels of efficiency result in increasing production costs. This paper adopts 'struts2' in order to construct an information-based management system for standardised and normalised management within the process of production in beef cattle breeding enterprises. We present a radio-frequency identification system by studying multiple-tag anti-collision via a dynamic grouping ALOHA algorithm. This algorithm is based on the existing ALOHA algorithm and uses an improved packet dynamic of this algorithm, which is characterised by a high-throughput rate. This new algorithm can reach a throughput 42% higher than that of the general ALOHA algorithm. With a change in the number of tags, the system throughput is relatively stable.
Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli
2018-01-01
High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
CA resist with high sensitivity and sub-100-nm resolution for advanced mask making
NASA Astrophysics Data System (ADS)
Huang, Wu-Song; Kwong, Ranee W.; Hartley, John G.; Moreau, Wayne M.; Angelopoulos, Marie; Magg, Christopher; Lawliss, Mark
2000-07-01
Recently, there is significant interest in using CA resist for electron beam (E-beam) applications including mask making, direct write, and projection printing. CA resists provide superior lithographic performance in comparison to traditional non-CA E-beam resist in particular high contrast, resolution, and sensitivity. However, most of the commercially available CA resist have the concern of airborne base contaminants and sensitivity to PAB and/or PEB temperatures. In this presentation, we will discuss a new improved ketal resists system referred to as KRS-XE which exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits excellent lithography, is robust toward airborne base, compatible with 0.263N TMAH aqueous developer and exhibits a large PAB/PEB latitude. With the combination of a high performance mask making E-beam exposure tool, high kV shaped beam system EL4+ and the KRS-XE resist, we have printed 75nm lines/space feature with excellent profile control at a dose of 13(mu) C/cm2 at 75kV. The shaped beam vector scan system used here provides a unique property in resolving small features in lithography and throughput. Overhead in EL4+$ limits the systems ability to fully exploit the sensitivity of the new resist for throughput. The EL5 system has sufficiently low overhead that it is projected to print a 4X, 16G DRAM mask with OPC in under 3 hours with the CA resist. We will discuss the throughput advantages of the next generation EL5 system over the existing EL4+.
Carvalho, Rimenys J; Cruz, Thayana A
2018-01-01
High-throughput screening (HTS) systems have emerged as important tools to provide fast and low cost evaluation of several conditions at once since it requires small quantities of material and sample volumes. These characteristics are extremely valuable for experiments with large number of variables enabling the application of design of experiments (DoE) strategies or simple experimental planning approaches. Once, the capacity of HTS systems to mimic chromatographic purification steps was established, several studies were performed successfully including scale down purification. Here, we propose a method for studying different purification conditions that can be used for any recombinant protein, including complex and glycosylated proteins, using low binding filter microplates.
Target Discovery for Precision Medicine Using High-Throughput Genome Engineering.
Guo, Xinyi; Chitale, Poonam; Sanjana, Neville E
2017-01-01
Over the past few years, programmable RNA-guided nucleases such as the CRISPR/Cas9 system have ushered in a new era of precision genome editing in diverse model systems and in human cells. Functional screens using large libraries of RNA guides can interrogate a large hypothesis space to pinpoint particular genes and genetic elements involved in fundamental biological processes and disease-relevant phenotypes. Here, we review recent high-throughput CRISPR screens (e.g. loss-of-function, gain-of-function, and targeting noncoding elements) and highlight their potential for uncovering novel therapeutic targets, such as those involved in cancer resistance to small molecular drugs and immunotherapies, tumor evolution, infectious disease, inborn genetic disorders, and other therapeutic challenges.
Three applications of backscatter x-ray imaging technology to homeland defense
NASA Astrophysics Data System (ADS)
Chalmers, Alex
2005-05-01
A brief review of backscatter x-ray imaging and a description of three systems currently applying it to homeland defense missions (BodySearch, ZBV and ZBP). These missions include detection of concealed weapons, explosives and contraband on personnel, in vehicles and large cargo containers. An overview of the x-ray imaging subsystems is provided as well as sample images from each system. Key features such as x-ray safety, throughput and detection are discussed. Recent trends in operational modes are described that facilitate 100% inspection at high throughput chokepoints.
McDermott, W R; Tri, J L; Mitchell, M P; Levens, S P; Wondrow, M A; Huie, L M; Khandheria, B K; Gilbert, B K
1999-01-01
A high data rate terrestrial and satellite network was implemented to transfer medical images and data. This article describes the a optimization of the workstations and switching equipment incorporated into the network. Topics discussed in this article include tuning of the network software, the configuration of the Sun Microsystems workstations, the FORE Systems asynchronous transfer mode switches, as well as the throughput results of two telemedicine experiments undertaken by Mayo's physician staff. The technical staff was successful in achieving the data throughput needed by the telemedicine software; particularly important was the proper determination of peak throughput and TCP window sizes to ensure optimum use of the resources available on the Sun Microsystems and Hewlett Packard workstations.
Istepanian, R S H; Philip, N
2005-01-01
In this paper we describe some of the optimisation issues relevant to the requirements of high throughput of medical data and video streaming traffic in 3G wireless environments. In particular we present a challenging 3G mobile health care application that requires a demanding 3G medical data throughput. We also describe the 3G QoS requirement of mObile Tele-Echography ultra-Light rObot system (OTELO that is designed to provide seamless 3G connectivity for real-time ultrasound medical video streams and diagnosis from a remote site (robotic and patient station) manipulated by an expert side (specialists) that is controlling the robotic scanning operation and presenting a real-time feedback diagnosis using 3G wireless communication links.
Improved Breast Cancer Detection Using a Novel In Situ Method to Visualize Clonality.
1998-07-01
photosensitivity and laser driven systems are encouraging, and suggest the possibility of high-throughput systems. Biolithography may thus provide new opportunities for molecular diagnostics of solid tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, J., E-mail: jkat@lle.rochester.edu; Boni, R.; Rivlis, R.
A high-throughput, broadband optical spectrometer coupled to the Rochester optical streak system equipped with a Photonis P820 streak tube was designed to record time-resolved spectra with 1-ps time resolution. Spectral resolution of 0.8 nm is achieved over a wavelength coverage range of 480 to 580 nm, using a 300-groove/mm diffraction grating in conjunction with a pair of 225-mm-focal-length doublets operating at an f/2.9 aperture. Overall pulse-front tilt across the beam diameter generated by the diffraction grating is reduced by preferentially delaying discrete segments of the collimated input beam using a 34-element reflective echelon optic. The introduced delay temporally aligns themore » beam segments and the net pulse-front tilt is limited to the accumulation across an individual sub-element. The resulting spectrometer design balances resolving power and pulse-front tilt while maintaining high throughput.« less
Wen, X.; Datta, A.; Traverso, L. M.; Pan, L.; Xu, X.; Moon, E. E.
2015-01-01
Optical lithography, the enabling process for defining features, has been widely used in semiconductor industry and many other nanotechnology applications. Advances of nanotechnology require developments of high-throughput optical lithography capabilities to overcome the optical diffraction limit and meet the ever-decreasing device dimensions. We report our recent experimental advancements to scale up diffraction unlimited optical lithography in a massive scale using the near field nanolithography capabilities of bowtie apertures. A record number of near-field optical elements, an array of 1,024 bowtie antenna apertures, are simultaneously employed to generate a large number of patterns by carefully controlling their working distances over the entire array using an optical gap metrology system. Our experimental results reiterated the ability of using massively-parallel near-field devices to achieve high-throughput optical nanolithography, which can be promising for many important nanotechnology applications such as computation, data storage, communication, and energy. PMID:26525906
High-Throughput Screening of a Luciferase Reporter of Gene Silencing on the Inactive X Chromosome.
Keegan, Alissa; Plath, Kathrin; Damoiseaux, Robert
2018-01-01
Assays of luciferase gene activity are a sensitive and quantitative reporter system suited to high-throughput screening. We adapted a luciferase assay to a screening strategy for identifying factors that reactivate epigenetically silenced genes. This epigenetic luciferase reporter is subject to endogenous gene silencing mechanisms on the inactive X chromosome (Xi) in primary mouse cells and thus captures the multilayered nature of chromatin silencing in development. Here, we describe the optimization of an Xi-linked luciferase reactivation assay in 384-well format and adaptation of the assay for high-throughput siRNA and chemical screening. Xi-luciferase reactivation screening has applications in stem cell biology and cancer therapy. We have used the approach described here to identify chromatin-modifying proteins and to identify drug combinations that enhance the gene reactivation activity of the DNA demethylating drug 5-aza-2'-deoxycytidine.
A high-throughput exploration of magnetic materials by using structure predicting methods
NASA Astrophysics Data System (ADS)
Arapan, S.; Nieves, P.; Cuesta-López, S.
2018-02-01
We study the capability of a structure predicting method based on genetic/evolutionary algorithm for a high-throughput exploration of magnetic materials. We use the USPEX and VASP codes to predict stable and generate low-energy meta-stable structures for a set of representative magnetic structures comprising intermetallic alloys, oxides, interstitial compounds, and systems containing rare-earths elements, and for both types of ferromagnetic and antiferromagnetic ordering. We have modified the interface between USPEX and VASP codes to improve the performance of structural optimization as well as to perform calculations in a high-throughput manner. We show that exploring the structure phase space with a structure predicting technique reveals large sets of low-energy metastable structures, which not only improve currently exiting databases, but also may provide understanding and solutions to stabilize and synthesize magnetic materials suitable for permanent magnet applications.
High-speed zero-copy data transfer for DAQ applications
NASA Astrophysics Data System (ADS)
Pisani, Flavio; Cámpora Pérez, Daniel Hugo; Neufeld, Niko
2015-05-01
The LHCb Data Acquisition (DAQ) will be upgraded in 2020 to a trigger-free readout. In order to achieve this goal we will need to connect around 500 nodes with a total network capacity of 32 Tb/s. To get such an high network capacity we are testing zero-copy technology in order to maximize the theoretical link throughput without adding excessive CPU and memory bandwidth overhead, leaving free resources for data processing resulting in less power, space and money used for the same result. We develop a modular test application which can be used with different transport layers. For the zero-copy implementation we choose the OFED IBVerbs API because it can provide low level access and high throughput. We present throughput and CPU usage measurements of 40 GbE solutions using Remote Direct Memory Access (RDMA), for several network configurations to test the scalability of the system.
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R.; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-01-01
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders. PMID:27739443
Lo Cicero, Alessandra; Jaskowiak, Anne-Laure; Egesipe, Anne-Laure; Tournois, Johana; Brinon, Benjamin; Pitrez, Patricia R; Ferreira, Lino; de Sandre-Giovannoli, Annachiara; Levy, Nicolas; Nissan, Xavier
2016-10-14
Hutchinson-Gilford progeria syndrome (HGPS) is a rare fatal genetic disorder that causes systemic accelerated aging in children. Thanks to the pluripotency and self-renewal properties of induced pluripotent stem cells (iPSC), HGPS iPSC-based modeling opens up the possibility of access to different relevant cell types for pharmacological approaches. In this study, 2800 small molecules were explored using high-throughput screening, looking for compounds that could potentially reduce the alkaline phosphatase activity of HGPS mesenchymal stem cells (MSCs) committed into osteogenic differentiation. Results revealed seven compounds that normalized the osteogenic differentiation process and, among these, all-trans retinoic acid and 13-cis-retinoic acid, that also decreased progerin expression. This study highlights the potential of high-throughput drug screening using HGPS iPS-derived cells, in order to find therapeutic compounds for HGPS and, potentially, for other aging-related disorders.
Li, Zhoufang; Liu, Guangjie; Tong, Yin; Zhang, Meng; Xu, Ying; Qin, Li; Wang, Zhanhui; Chen, Xiaoping; He, Jiankui
2015-01-01
Profiling immune repertoires by high throughput sequencing enhances our understanding of immune system complexity and immune-related diseases in humans. Previously, cloning and Sanger sequencing identified limited numbers of T cell receptor (TCR) nucleotide sequences in rhesus monkeys, thus their full immune repertoire is unknown. We applied multiplex PCR and Illumina high throughput sequencing to study the TCRβ of rhesus monkeys. We identified 1.26 million TCRβ sequences corresponding to 643,570 unique TCRβ sequences and 270,557 unique complementarity-determining region 3 (CDR3) gene sequences. Precise measurements of CDR3 length distribution, CDR3 amino acid distribution, length distribution of N nucleotide of junctional region, and TCRV and TCRJ gene usage preferences were performed. A comprehensive profile of rhesus monkey immune repertoire might aid human infectious disease studies using rhesus monkeys. PMID:25961410
ERIC Educational Resources Information Center
da Silveira, Pedro Rodrigo Castro
2014-01-01
This thesis describes the development and deployment of a cyberinfrastructure for distributed high-throughput computations of materials properties at high pressures and/or temperatures--the Virtual Laboratory for Earth and Planetary Materials--VLab. VLab was developed to leverage the aggregated computational power of grid systems to solve…
QoS support for end users of I/O-intensive applications using shared storage systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Marion Kei; Zhang, Xuechen; Jiang, Song
2011-01-19
I/O-intensive applications are becoming increasingly common on today's high-performance computing systems. While performance of compute-bound applications can be effectively guaranteed with techniques such as space sharing or QoS-aware process scheduling, it remains a challenge to meet QoS requirements for end users of I/O-intensive applications using shared storage systems because it is difficult to differentiate I/O services for different applications with individual quality requirements. Furthermore, it is difficult for end users to accurately specify performance goals to the storage system using I/O-related metrics such as request latency or throughput. As access patterns, request rates, and the system workload change in time,more » a fixed I/O performance goal, such as bounds on throughput or latency, can be expensive to achieve and may not lead to a meaningful performance guarantees such as bounded program execution time. We propose a scheme supporting end-users QoS goals, specified in terms of program execution time, in shared storage environments. We automatically translate the users performance goals into instantaneous I/O throughput bounds using a machine learning technique, and use dynamically determined service time windows to efficiently meet the throughput bounds. We have implemented this scheme in the PVFS2 parallel file system and have conducted an extensive evaluation. Our results show that this scheme can satisfy realistic end-user QoS requirements by making highly efficient use of the I/O resources. The scheme seeks to balance programs attainment of QoS requirements, and saves as much of the remaining I/O capacity as possible for best-effort programs.« less
Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges
Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun
2015-01-01
The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061
Gassner, Christoph; Meyer, Stefan; Frey, Beat M; Vollmert, Caren
2013-01-01
Although matrix-assisted laser desorption/ionisation, time-of-flight mass spectrometry (MALDI-TOF MS) has previously been reported for high throughput blood group genotyping, those reports are limited to only a few blood group systems. This review describes the development of a large cooperative Swiss-German project, aiming to employ MALDI-TOF MS for the molecular detection of the blood groups Rh, Kell, Kidd, Duffy, MNSs, a comprehensive collection of low incidence antigens, as well as the platelet and granulocyte antigens HPA and HNA, representing a total of 101 blood group antigens, encoded by 170 alleles, respectively. Recent reports describe MALDI-TOF MS as a technology with short time-to-resolution, ability for high throughput, and cost-efficiency when used in genetic analysis, including forensics, pharmacogenetics, oncology and hematology. Furthermore, Kell and RhD genotyping have been performed on fetal DNA from maternal plasma with excellent results. In summary, this article introduces a new technological approach for high throughput blood group genotyping by means of MALDI-TOF MS. Although all data presented are preliminary, the observed success rates, data quality and concordance with known blood group types are highly impressive, underlining the accuracy and reliability of this cost-efficient high throughput method. Copyright © 2013 Elsevier Inc. All rights reserved.
Hawkins, Liam J; Storey, Kenneth B
2017-01-01
Common Western-blot imaging systems have previously been adapted to measure signals from luminescent microplate assays. This can be a cost saving measure as Western-blot imaging systems are common laboratory equipment and could substitute a dedicated luminometer if one is not otherwise available. One previously unrecognized limitation is that the signals captured by the cameras in these systems are not equal for all wells. Signals are dependent on the angle of incidence to the camera, and thus the location of the well on the microplate. Here we show that: •The position of a well on a microplate significantly affects the signal captured by a common Western-blot imaging system from a luminescent assay.•The effect of well position can easily be corrected for.•This method can be applied to commercially available luminescent assays, allowing for high-throughput quantification of a wide range of biological processes and biochemical reactions.
Cellular resolution functional imaging in behaving rats using voluntary head restraint
Scott, Benjamin B.; Brody, Carlos D.; Tank, David W.
2013-01-01
SUMMARY High-throughput operant conditioning systems for rodents provide efficient training on sophisticated behavioral tasks. Combining these systems with technologies for cellular resolution functional imaging would provide a powerful approach to study neural dynamics during behavior. Here we describe an integrated two-photon microscope and behavioral apparatus that allows cellular resolution functional imaging of cortical regions during epochs of voluntary head restraint. Rats were trained to initiate periods of restraint up to 8 seconds in duration, which provided the mechanical stability necessary for in vivo imaging while allowing free movement between behavioral trials. A mechanical registration system repositioned the head to within a few microns, allowing the same neuronal populations to be imaged on each trial. In proof-of-principle experiments, calcium dependent fluorescence transients were recorded from GCaMP-labeled cortical neurons. In contrast to previous methods for head restraint, this system can also be incorporated into high-throughput operant conditioning systems. PMID:24055015
Identifying genes that extend life span using a high-throughput screening system.
Chen, Cuiying; Contreras, Roland
2007-01-01
We developed a high-throughput functional genomic screening system that allows identification of genes prolonging lifespan in the baker's yeast Saccharomyces cerevisiae. The method is based on isolating yeast mother cells with a higher than average number of cell divisions as indicated by the number of bud scars on their surface. Fluorescently labeled wheat germ agglutinin (WGA) was used for specific staining of chitin, a major component of bud scars. The critical new steps in our bud-scar-sorting system are the use of small microbeads, which allows successive rounds of purification and regrowth of the mother cells (M-cell), and utilization of flow cytometry to sort and isolate cells with a longer lifespan based on the number of bud scars specifically labeled with WGA.
Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho
2013-01-01
Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011
Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho
2013-12-01
Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnologybased materials and living cells in both in vitro and in vivo settings.
Heterogeneous High Throughput Scientific Computing with APM X-Gene and Intel Xeon Phi
NASA Astrophysics Data System (ADS)
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; Eulisse, Giulio; Knight, Robert; Muzaffar, Shahzad
2015-05-01
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. We report our experience on software porting, performance and energy efficiency and evaluate the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).
On Data Transfers Over Wide-Area Dedicated Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang
Dedicated wide-area network connections are employed in big data and high-performance computing scenarios, since the absence of cross-traffic promises to make it easier to analyze and optimize data transfers over them. However, nonlinear transport dynamics and end-system complexity due to multi-core hosts and distributed file systems make these tasks surprisingly challenging. We present an overview of methods to analyze memory and disk file transfers using extensive measurements over 10 Gbps physical and emulated connections with 0–366 ms round trip times (RTTs). For memory transfers, we derive performance profiles of TCP and UDT throughput as a function of RTT, which showmore » concave regions in contrast to entirely convex regions predicted by previous models. These highly desirable concave regions can be expanded by utilizing large buffers and more parallel flows. We also present Poincar´e maps and Lyapunov exponents of TCP and UDT throughputtraces that indicate complex throughput dynamics. For disk file transfers, we show that throughput can be optimized using a combination of parallel I/O and network threads under direct I/O mode. Our initial throughput measurements of Lustre filesystems mounted over long-haul connections using LNet routers show convex profiles indicative of I/O limits.« less
Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam
2015-01-01
The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.
An Automated, High-Throughput System for GISAXS and GIWAXS Measurements of Thin Films
NASA Astrophysics Data System (ADS)
Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander
Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis.
Predicting Novel Bulk Metallic Glasses via High- Throughput Calculations
NASA Astrophysics Data System (ADS)
Perim, E.; Lee, D.; Liu, Y.; Toher, C.; Gong, P.; Li, Y.; Simmons, W. N.; Levy, O.; Vlassak, J.; Schroers, J.; Curtarolo, S.
Bulk metallic glasses (BMGs) are materials which may combine key properties from crystalline metals, such as high hardness, with others typically presented by plastics, such as easy processability. However, the cost of the known BMGs poses a significant obstacle for the development of applications, which has lead to a long search for novel, economically viable, BMGs. The emergence of high-throughput DFT calculations, such as the library provided by the AFLOWLIB consortium, has provided new tools for materials discovery. We have used this data to develop a new glass forming descriptor combining structural factors with thermodynamics in order to quickly screen through a large number of alloy systems in the AFLOWLIB database, identifying the most promising systems and the optimal compositions for glass formation. National Science Foundation (DMR-1436151, DMR-1435820, DMR-1436268).
Microarray platform affords improved product analysis in mammalian cell growth studies
Li, Lingyun; Migliore, Nicole; Schaefer, Eugene; Sharfstein, Susan T.; Dordick, Jonathan S.; Linhardt, Robert J.
2014-01-01
High throughput (HT) platforms serve as cost-efficient and rapid screening method for evaluating the effect of cell culture conditions and screening of chemicals. The aim of the current study was to develop a high-throughput cell-based microarray platform to assess the effect of culture conditions on Chinese hamster ovary (CHO) cells. Specifically, growth, transgene expression and metabolism of a GS/MSX CHO cell line, which produces a therapeutic monoclonal antibody, was examined using microarray system in conjunction with conventional shake flask platform in a non-proprietary medium. The microarray system consists of 60 nl spots of cells encapsulated in alginate and separated in groups via an 8-well chamber system attached to the chip. Results show the non-proprietary medium developed allows cell growth, production and normal glycosylation of recombinant antibody and metabolism of the recombinant CHO cells in both the microarray and shake flask platforms. In addition, 10.3 mM glutamate addition to the defined base media results in lactate metabolism shift in the recombinant GS/MSX CHO cells in the shake flask platform. Ultimately, the results demonstrate that the high-throughput microarray platform has the potential to be utilized for evaluating the impact of media additives on cellular processes, such as, cell growth, metabolism and productivity. PMID:24227746
78 FR 42527 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Diabetes. Competitive Advantages: Beneficial metabolic effects of this mouse model include high basal insulin secretion, improved glucose tolerance, increased serum insulin, and resistance to high-fat diet... currently available systems. Potential Commercial Applications: High-throughput protein production...
Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie
2012-07-17
Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies. PMID:29870560
Ortiz, Diego; Litvin, Alexander G; Salas Fernandez, Maria G
2018-01-01
The development of high-yielding crops with drought tolerance is necessary to increase food, feed, fiber and fuel production. Methods that create similar environmental conditions for a large number of genotypes are essential to investigate plant responses to drought in gene discovery studies. Modern facilities that control water availability for each plant remain cost-prohibited to some sections of the research community. We present an alternative cost-effective automated irrigation system scalable for a high-throughput and controlled dry-down treatment of plants. This system was tested in sorghum using two experiments. First, four genotypes were subjected to ten days of dry-down to achieve three final Volumetric Water Content (VWC) levels: drought (0.10 and 0.20 m3 m-3) and control (0.30 m3 m-3). The final average VWC was 0.11, 0.22, and 0.31 m3 m-3, respectively, and significant differences in biomass accumulation were observed between control and drought treatments. Second, 42 diverse sorghum genotypes were subjected to a seven-day dry-down treatment for a final drought stress of 0.15 m3 m-3 VWC. The final average VWC was 0.17 m3 m-3, and plants presented significant differences in photosynthetic rate during the drought period. These results demonstrate that cost-effective automation systems can successfully control substrate water content for each plant, to accurately compare their phenotypic responses to drought, and be scaled up for high-throughput phenotyping studies.
Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S
2004-03-01
HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.
CA resist with high sensitivity and sub-100-nm resolution for advanced mask and device making
NASA Astrophysics Data System (ADS)
Kwong, Ranee W.; Huang, Wu-Song; Hartley, John G.; Moreau, Wayne M.; Robinson, Christopher F.; Angelopoulos, Marie; Magg, Christopher; Lawliss, Mark
2000-07-01
Recently, there is significant interest in using CA resists for electron beam (E-Beam) applications including mask making, direct write, and projection printing. CA resists provide superior lithographic performance in comparison to traditional non CA E-beam resists in particular high contrast, resolution, and sensitivity. However, most of the commercially available CA resists have the concern of airborne base contaminants and sensitivity to PAB and/or PEB temperatures. In this presentation, we will discuss a new improved ketal resist system referred to as KRS-XE which exhibits excellent lithography, is robust toward airborne base, compatible with 0.263 N TMAH aqueous developer and exhibits a large PAB/PEB latitude. With the combination of a high performance mask making E-beam exposure tool, high kV (75 kV) shaped beam system EL4+ and the KRS-XE resist, we have printed 75 nm lines/space features with excellent profile control at a dose of 13 (mu) C/cm2 at 75 kV. The shaped beam vector scan system used here provides an unique property in resolving small features in lithography and throughput. Overhead in EL4+ limits the systems ability to fully exploit the sensitivity of the new resist for throughput. The EL5 system, currently in the build phase, has sufficiently low overhead that it is projected to print a 4X, 16G, DRAM mask with OPC in under 3 hours with the CA resist. We will discuss the throughput advantages of the next generation EL5 system over the existing EL4+. In addition we will show the resolution of KRS-XE down to 70 nm using the PREVAIL projection printing system.
Air Ground Data Link VHF Airline Communications and Reporting System (ACARS) Preliminary Test Report
DOT National Transportation Integrated Search
1995-02-01
An effort was conducted to determine actual ground-to-air, and air-to-ground : performance of the Airline Communications and Reporting system (ACARS), Very : High Frequency (VHF) Data Link System. Parameters of system throughput, error : rates, and a...
NASA Astrophysics Data System (ADS)
Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph
2009-03-01
When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.
NASA Astrophysics Data System (ADS)
Alexander, Kristen; Lopez, Rene; Hampton, Meredith; Desimone, Joseph
2008-10-01
When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.
Zhou, Jizhong; He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G; Alvarez-Cohen, Lisa
2015-01-27
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied "open-format" and "closed-format" detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. Copyright © 2015 Zhou et al.
Xie, Chen; Tang, Xiaofeng; Berlinghof, Marvin; Langner, Stefan; Chen, Shi; Späth, Andreas; Li, Ning; Fink, Rainer H; Unruh, Tobias; Brabec, Christoph J
2018-06-27
Development of high-quality organic nanoparticle inks is a significant scientific challenge for the industrial production of solution-processed organic photovoltaics (OPVs) with eco-friendly processing methods. In this work, we demonstrate a novel, robot-based, high-throughput procedure performing automatic poly(3-hexylthio-phene-2,5-diyl) and indene-C 60 bisadduct nanoparticle ink synthesis in nontoxic alcohols. A novel methodology to prepare particle dispersions for fully functional OPVs by manipulating the particle size and solvent system was studied in detail. The ethanol dispersion with a particle diameter of around 80-100 nm exhibits reduced degradation, yielding a power conversion efficiency of 4.52%, which is the highest performance reported so far for water/alcohol-processed OPV devices. By successfully deploying the high-throughput robot-based approach for an organic nanoparticle ink preparation, we believe that the findings demonstrated in this work will trigger more research interest and effort on eco-friendly industrial production of OPVs.
He, Zhili; Yang, Yunfeng; Deng, Ye; Tringe, Susannah G.; Alvarez-Cohen, Lisa
2015-01-01
ABSTRACT Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications and focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions. PMID:25626903
Zhou, Jizhong; He, Zhili; Yang, Yunfeng; ...
2015-01-27
Understanding the structure, functions, activities and dynamics of microbial communities in natural environments is one of the grand challenges of 21st century science. To address this challenge, over the past decade, numerous technologies have been developed for interrogating microbial communities, of which some are amenable to exploratory work (e.g., high-throughput sequencing and phenotypic screening) and others depend on reference genes or genomes (e.g., phylogenetic and functional gene arrays). Here, we provide a critical review and synthesis of the most commonly applied “open-format” and “closed-format” detection technologies. We discuss their characteristics, advantages, and disadvantages within the context of environmental applications andmore » focus on analysis of complex microbial systems, such as those in soils, in which diversity is high and reference genomes are few. In addition, we discuss crucial issues and considerations associated with applying complementary high-throughput molecular technologies to address important ecological questions.« less
Short-read, high-throughput sequencing technology for STR genotyping
Bornman, Daniel M.; Hester, Mark E.; Schuetter, Jared M.; Kasoji, Manjula D.; Minard-Smith, Angela; Barden, Curt A.; Nelson, Scott C.; Godbold, Gene D.; Baker, Christine H.; Yang, Boyu; Walther, Jacquelyn E.; Tornes, Ivan E.; Yan, Pearlly S.; Rodriguez, Benjamin; Bundschuh, Ralf; Dickens, Michael L.; Young, Brian A.; Faith, Seth A.
2013-01-01
DNA-based methods for human identification principally rely upon genotyping of short tandem repeat (STR) loci. Electrophoretic-based techniques for variable-length classification of STRs are universally utilized, but are limited in that they have relatively low throughput and do not yield nucleotide sequence information. High-throughput sequencing technology may provide a more powerful instrument for human identification, but is not currently validated for forensic casework. Here, we present a systematic method to perform high-throughput genotyping analysis of the Combined DNA Index System (CODIS) STR loci using short-read (150 bp) massively parallel sequencing technology. Open source reference alignment tools were optimized to evaluate PCR-amplified STR loci using a custom designed STR genome reference. Evaluation of this approach demonstrated that the 13 CODIS STR loci and amelogenin (AMEL) locus could be accurately called from individual and mixture samples. Sensitivity analysis showed that as few as 18,500 reads, aligned to an in silico referenced genome, were required to genotype an individual (>99% confidence) for the CODIS loci. The power of this technology was further demonstrated by identification of variant alleles containing single nucleotide polymorphisms (SNPs) and the development of quantitative measurements (reads) for resolving mixed samples. PMID:25621315
High Throughput PBTK: Open-Source Data and Tools for ...
Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy
High-throughput STR analysis for DNA database using direct PCR.
Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan
2013-07-01
Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.
Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano
NASA Astrophysics Data System (ADS)
Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus
2017-01-01
Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).
Reverse Ecology: from systems to environments and back.
Levy, Roie; Borenstein, Elhanan
2012-01-01
The structure of complex biological systems reflects not only their function but also the environments in which they evolved and are adapted to. Reverse Ecology-an emerging new frontier in Evolutionary Systems Biology-aims to extract this information and to obtain novel insights into an organism's ecology. The Reverse Ecology framework facilitates the translation of high-throughput genomic data into large-scale ecological data, and has the potential to transform ecology into a high-throughput field. In this chapter, we describe some of the pioneering work in Reverse Ecology, demonstrating how system-level analysis of complex biological networks can be used to predict the natural habitats of poorly characterized microbial species, their interactions with other species, and universal patterns governing the adaptation of organisms to their environments. We further present several studies that applied Reverse Ecology to elucidate various aspects of microbial ecology, and lay out exciting future directions and potential future applications in biotechnology, biomedicine, and ecological engineering.
Choi, Hyungsuk; Choi, Woohyuk; Quan, Tran Minh; Hildebrand, David G C; Pfister, Hanspeter; Jeong, Won-Ki
2014-12-01
As the size of image data from microscopes and telescopes increases, the need for high-throughput processing and visualization of large volumetric data has become more pressing. At the same time, many-core processors and GPU accelerators are commonplace, making high-performance distributed heterogeneous computing systems affordable. However, effectively utilizing GPU clusters is difficult for novice programmers, and even experienced programmers often fail to fully leverage the computing power of new parallel architectures due to their steep learning curve and programming complexity. In this paper, we propose Vivaldi, a new domain-specific language for volume processing and visualization on distributed heterogeneous computing systems. Vivaldi's Python-like grammar and parallel processing abstractions provide flexible programming tools for non-experts to easily write high-performance parallel computing code. Vivaldi provides commonly used functions and numerical operators for customized visualization and high-throughput image processing applications. We demonstrate the performance and usability of Vivaldi on several examples ranging from volume rendering to image segmentation.
Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.
Sun, T; Chen, L; Zhang, W
2017-01-01
Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.
High-throughput measurement of polymer film thickness using optical dyes
NASA Astrophysics Data System (ADS)
Grunlan, Jaime C.; Mehrabi, Ali R.; Ly, Tien
2005-01-01
Optical dyes were added to polymer solutions in an effort to create a technique for high-throughput screening of dry polymer film thickness. Arrays of polystyrene films, cast from a toluene solution, containing methyl red or solvent green were used to demonstrate the feasibility of this technique. Measurements of the peak visible absorbance of each film were converted to thickness using the Beer-Lambert relationship. These absorbance-based thickness calculations agreed within 10% of thickness measured using a micrometer for polystyrene films that were 10-50 µm. At these thicknesses it is believed that the absorbance values are actually more accurate. At least for this solvent-based system, thickness was shown to be accurately measured in a high-throughput manner that could potentially be applied to other equivalent systems. Similar water-based films made with poly(sodium 4-styrenesulfonate) dyed with malachite green oxalate or congo red did not show the same level of agreement with the micrometer measurements. Extensive phase separation between polymer and dye resulted in inflated absorbance values and calculated thickness that was often more than 25% greater than that measured with the micrometer. Only at thicknesses below 15 µm could reasonable accuracy be achieved for the water-based films.
Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila
2016-10-20
The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.
Müllenbroich, M Caroline; Silvestri, Ludovico; Onofri, Leonardo; Costantini, Irene; Hoff, Marcel Van't; Sacconi, Leonardo; Iannello, Giulio; Pavone, Francesco S
2015-10-01
Comprehensive mapping and quantification of neuronal projections in the central nervous system requires high-throughput imaging of large volumes with microscopic resolution. To this end, we have developed a confocal light-sheet microscope that has been optimized for three-dimensional (3-D) imaging of structurally intact clarified whole-mount mouse brains. We describe the optical and electromechanical arrangement of the microscope and give details on the organization of the microscope management software. The software orchestrates all components of the microscope, coordinates critical timing and synchronization, and has been written in a versatile and modular structure using the LabVIEW language. It can easily be adapted and integrated to other microscope systems and has been made freely available to the light-sheet community. The tremendous amount of data routinely generated by light-sheet microscopy further requires novel strategies for data handling and storage. To complete the full imaging pipeline of our high-throughput microscope, we further elaborate on big data management from streaming of raw images up to stitching of 3-D datasets. The mesoscale neuroanatomy imaged at micron-scale resolution in those datasets allows characterization and quantification of neuronal projections in unsectioned mouse brains.
Bao, James J; Liu, Xiaojing; Zhang, Yong; Li, Youxin
2014-09-15
This paper describes the development of a novel high-throughput hollow fiber membrane solvent microextraction technique for the simultaneous measurement of the octanol/water distribution coefficient (logD) for organic compounds such as drugs. The method is based on a designed system, which consists of a 96-well plate modified with 96 hollow fiber membrane tubes and a matching lid with 96 center holes and 96 side holes distributing in 96 grids. Each center hole was glued with a sealed on one end hollow fiber membrane tube, which is used to separate the aqueous phase from the octanol phase. A needle, such as microsyringe or automatic sampler, can be directly inserted into the membrane tube to deposit octanol as the accepted phase or take out the mixture of the octanol and the drug. Each side hole is filled with aqueous phase and could freely take in/out solvent as the donor phase from the outside of the hollow fiber membranes. The logD can be calculated by measuring the drug concentration in each phase after extraction equilibrium. After a comprehensive comparison, the polytetrafluoroethylene hollow fiber with the thickness of 210 μm, an extraction time of 300 min, a temperature of 25 °C and atmospheric pressure without stirring are selected for the high throughput measurement. The correlation coefficient of the linear fit of the logD values of five drugs determined by our system to reference values is 0.9954, showed a nice accurate. The -8.9% intra-day and -4.4% inter-day precision of logD for metronidazole indicates a good precision. In addition, the logD values of eight drugs were simultaneously and successfully measured, which indicated that the 96 throughput measure method of logD value was accurate, precise, reliable and useful for high throughput screening. Copyright © 2014 Elsevier B.V. All rights reserved.
Shih, Tsung-Ting; Hsieh, Cheng-Chuan; Luo, Yu-Ting; Su, Yi-An; Chen, Ping-Hung; Chuang, Yu-Chen; Sun, Yuh-Chang
2016-04-15
Herein, a hyphenated system combining a high-throughput solid-phase extraction (htSPE) microchip with inductively coupled plasma-mass spectrometry (ICP-MS) for rapid determination of trace heavy metals was developed. Rather than performing multiple analyses in parallel for the enhancement of analytical throughput, we improved the processing speed for individual samples by increasing the operation flow rate during SPE procedures. To this end, an innovative device combining a micromixer and a multi-channeled extraction unit was designed. Furthermore, a programmable valve manifold was used to interface the developed microchip and ICP-MS instrumentation in order to fully automate the system, leading to a dramatic reduction in operation time and human error. Under the optimized operation conditions for the established system, detection limits of 1.64-42.54 ng L(-1) for the analyte ions were achieved. Validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Each analysis could be readily accomplished within just 186 s using the established system. This represents, to the best of our knowledge, an unprecedented speed for the analysis of trace heavy metal ions. Copyright © 2016 Elsevier B.V. All rights reserved.
McClure, Sean M; Ahl, Patrick L; Blue, Jeffrey T
2018-03-05
The purpose was to evaluate DSF for high throughput screening of protein thermal stability (unfolding/ aggregation) across a wide range of formulations. Particular focus was exploring PROTEOSTAT® - a commercially available fluorescent rotor dye - for detection of aggregation in surfactant containing formulations. Commonly used hydrophobic dyes (e.g. SYPRO™ Orange) interact with surfactants, complicating DSF measurements. CRM197 formulations were prepared and analyzed in standard 96-well plate rT-PCR system, using SYPRO™ Orange and PROTEOSTAT® dyes. Orthogonal techniques (DLS and IPF) are employed to confirm unfolding/aggregation in selected formulations. Selected formulations are subjected to non-thermal stresses (stirring and shaking) in plate based format to characterize aggregation with PROTEOSTAT®. Agreement is observed between SYPRO™ Orange (unfolding) and PROTEOSTAT® (aggregation) DSF melt temperatures across wide range of non-surfactant formulations. PROTEOSTAT® can clearly detect temperature induced aggregation in low concentration (0.2 mg/mL) CRM197 formulations containing surfactant. PROTEOSTAT® can be used to explore aggregation due to non-thermal stresses in plate based format amenable to high throughput screening. DSF measurements with complementary extrinsic dyes (PROTEOSTAT®, SYPRO™ Orange) are suitable for high throughput screening of antigen thermal stability, across a wide range of relevant formulation conditions - including surfactants -with standard, plate based rT-PCR instrumentation.
High Throughput, Polymeric Aqueous Two-Phase Printing of Tumor Spheroids
Atefi, Ehsan; Lemmo, Stephanie; Fyffe, Darcy; Luker, Gary D.; Tavana, Hossein
2014-01-01
This paper presents a new 3D culture microtechnology for high throughput production of tumor spheroids and validates its utility for screening anti-cancer drugs. We use two immiscible polymeric aqueous solutions and microprint a submicroliter drop of the “patterning” phase containing cells into a bath of the “immersion” phase. Selecting proper formulations of biphasic systems using a panel of biocompatible polymers results in the formation of a round drop that confines cells to facilitate spontaneous formation of a spheroid without any external stimuli. Adapting this approach to robotic tools enables straightforward generation and maintenance of spheroids of well-defined size in standard microwell plates and biochemical analysis of spheroids in situ, which is not possible with existing techniques for spheroid culture. To enable high throughput screening, we establish a phase diagram to identify minimum cell densities within specific volumes of the patterning drop to result in a single spheroid. Spheroids show normal growth over long-term incubation and dose-dependent decrease in cellular viability when treated with drug compounds, but present significant resistance compared to monolayer cultures. The unprecedented ease of implementing this microtechnology and its robust performance will benefit high throughput studies of drug screening against cancer cells with physiologically-relevant 3D tumor models. PMID:25411577
NASA Astrophysics Data System (ADS)
Ahmad, Afandi; Roslan, Muhammad Faris; Amira, Abbes
2017-09-01
In high jump sports, approach take-off speed and force during the take-off are two (2) main important parts to gain maximum jump. To measure both parameters, wireless sensor network (WSN) that contains microcontroller and sensor are needed to describe the results of speed and force for jumpers. Most of the microcontroller exhibit transmission issues in terms of throughput, latency and cost. Thus, this study presents the comparison of wireless microcontrollers in terms of throughput, latency and cost, and the microcontroller that have best performances and cost will be implemented in high jump wearable device. In the experiments, three (3) parts have been integrated - input, process and output. Force (for ankle) and global positioning system (GPS) sensor (for body waist) acts as an input for data transmission. These data were then being processed by both microcontrollers, ESP8266 and Arduino Yun Mini to transmit the data from sensors to the server (host-PC) via message queuing telemetry transport (MQTT) protocol. The server acts as receiver and the results was calculated from the MQTT log files. At the end, results obtained have shown ESP8266 microcontroller had been chosen since it achieved high throughput, low latency and 11 times cheaper in term of prices compared to Arduino Yun Mini microcontroller.
Depth-resolved incoherent and coherent wide-field high-content imaging (Conference Presentation)
NASA Astrophysics Data System (ADS)
So, Peter T.
2016-03-01
Recent advances in depth-resolved wide-field imaging technique has enabled many high throughput applications in biology and medicine. Depth resolved imaging of incoherent signals can be readily accomplished with structured light illumination or nonlinear temporal focusing. The integration of these high throughput systems with novel spectroscopic resolving elements further enable high-content information extraction. We will introduce a novel near common-path interferometer and demonstrate its uses in toxicology and cancer biology applications. The extension of incoherent depth-resolved wide-field imaging to coherent modality is non-trivial. Here, we will cover recent advances in wide-field 3D resolved mapping of refractive index, absorbance, and vibronic components in biological specimens.
A high throughput architecture for a low complexity soft-output demapping algorithm
NASA Astrophysics Data System (ADS)
Ali, I.; Wasenmüller, U.; Wehn, N.
2015-11-01
Iterative channel decoders such as Turbo-Code and LDPC decoders show exceptional performance and therefore they are a part of many wireless communication receivers nowadays. These decoders require a soft input, i.e., the logarithmic likelihood ratio (LLR) of the received bits with a typical quantization of 4 to 6 bits. For computing the LLR values from a received complex symbol, a soft demapper is employed in the receiver. The implementation cost of traditional soft-output demapping methods is relatively large in high order modulation systems, and therefore low complexity demapping algorithms are indispensable in low power receivers. In the presence of multiple wireless communication standards where each standard defines multiple modulation schemes, there is a need to have an efficient demapper architecture covering all the flexibility requirements of these standards. Another challenge associated with hardware implementation of the demapper is to achieve a very high throughput in double iterative systems, for instance, MIMO and Code-Aided Synchronization. In this paper, we present a comprehensive communication and hardware performance evaluation of low complexity soft-output demapping algorithms to select the best algorithm for implementation. The main goal of this work is to design a high throughput, flexible, and area efficient architecture. We describe architectures to execute the investigated algorithms. We implement these architectures on a FPGA device to evaluate their hardware performance. The work has resulted in a hardware architecture based on the figured out best low complexity algorithm delivering a high throughput of 166 Msymbols/second for Gray mapped 16-QAM modulation on Virtex-5. This efficient architecture occupies only 127 slice registers, 248 slice LUTs and 2 DSP48Es.
Duan, Yongbo; Zhai, Chenguang; Li, Hao; Li, Juan; Mei, Wenqian; Gui, Huaping; Ni, Dahu; Song, Fengshun; Li, Li; Zhang, Wanggen; Yang, Jianbo
2012-09-01
A number of Agrobacterium-mediated rice transformation systems have been developed and widely used in numerous laboratories and research institutes. However, those systems generally employ antibiotics like kanamycin and hygromycin, or herbicide as selectable agents, and are used for the small-scale experiments. To address high-throughput production of transgenic rice plants via Agrobacterium-mediated transformation, and to eliminate public concern on antibiotic markers, we developed a comprehensive efficient protocol, covering from explant preparation to the acquisition of low copy events by real-time PCR analysis before transplant to field, for high-throughput production of transgenic plants of Japonica rice varieties Wanjing97 and Nipponbare using Escherichia coli phosphomannose isomerase gene (pmi) as a selectable marker. The transformation frequencies (TF) of Wanjing97 and Nipponbare were achieved as high as 54.8 and 47.5%, respectively, in one round of selection of 7.5 or 12.5 g/L mannose appended with 5 g/L sucrose. High-throughput transformation from inoculation to transplant of low copy events was accomplished within 55-60 days. Moreover, the Taqman assay data from a large number of transformants showed 45.2% in Wanjing97 and 31.5% in Nipponbare as a low copy rate, and the transformants are fertile and follow the Mendelian segregation ratio. This protocol facilitates us to perform genome-wide functional annotation of the open reading frames and utilization of the agronomically important genes in rice under a reduced public concern on selectable markers. We describe a comprehensive protocol for large scale production of transgenic Japonica rice plants using non-antibiotic selectable agent, at simplified, cost- and labor-saving manners.
Improved Data Analysis Tools for the Thermal Emission Spectrometer
NASA Astrophysics Data System (ADS)
Rodriguez, K.; Laura, J.; Fergason, R.; Bogle, R.
2017-06-01
We plan to stand up three different database systems for testing of a new datastore for MGS TES data allowing for more accessible tools supporting high throughput data analysis on the high-dimensionality hyperspectral data set.
Toots, Mart; Ustav, Mart; Männik, Andres; Mumm, Karl; Tämm, Kaido; Tamm, Tarmo; Ustav, Mart
2017-01-01
Human papillomaviruses (HPVs) are oncogenic viruses that cause numerous different cancers as well as benign lesions in the epithelia. To date, there is no effective cure for an ongoing HPV infection. Here, we describe the generation process of a platform for the development of anti-HPV drugs. This system consists of engineered full-length HPV genomes that express reporter genes for evaluation of the viral copy number in all three HPV replication stages. We demonstrate the usefulness of this system by conducting high-throughput screens to identify novel high-risk HPV-specific inhibitors. At least five of the inhibitors block the function of Tdp1 and PARP1, which have been identified as essential cellular proteins for HPV replication and promising candidates for the development of antivirals against HPV and possibly against HPV-related cancers. PMID:28182794
Heterogeneous high throughput scientific computing with APM X-Gene and Intel Xeon Phi
Abdurachmanov, David; Bockelman, Brian; Elmer, Peter; ...
2015-05-22
Electrical power requirements will be a constraint on the future growth of Distributed High Throughput Computing (DHTC) as used by High Energy Physics. Performance-per-watt is a critical metric for the evaluation of computer architectures for cost- efficient computing. Additionally, future performance growth will come from heterogeneous, many-core, and high computing density platforms with specialized processors. In this paper, we examine the Intel Xeon Phi Many Integrated Cores (MIC) co-processor and Applied Micro X-Gene ARMv8 64-bit low-power server system-on-a-chip (SoC) solutions for scientific computing applications. As a result, we report our experience on software porting, performance and energy efficiency and evaluatemore » the potential for use of such technologies in the context of distributed computing systems such as the Worldwide LHC Computing Grid (WLCG).« less
Richens, Joanna L; Urbanowicz, Richard A; Lunt, Elizabeth AM; Metcalf, Rebecca; Corne, Jonathan; Fairclough, Lucy; O'Shea, Paul
2009-01-01
Chronic obstructive pulmonary disease (COPD) is a treatable and preventable disease state, characterised by progressive airflow limitation that is not fully reversible. Although COPD is primarily a disease of the lungs there is now an appreciation that many of the manifestations of disease are outside the lung, leading to the notion that COPD is a systemic disease. Currently, diagnosis of COPD relies on largely descriptive measures to enable classification, such as symptoms and lung function. Here the limitations of existing diagnostic strategies of COPD are discussed and systems biology approaches to diagnosis that build upon current molecular knowledge of the disease are described. These approaches rely on new 'label-free' sensing technologies, such as high-throughput surface plasmon resonance (SPR), that we also describe. PMID:19386108
Automated recycling of chemistry for virtual screening and library design.
Vainio, Mikko J; Kogej, Thierry; Raubacher, Florian
2012-07-23
An early stage drug discovery project needs to identify a number of chemically diverse and attractive compounds. These hit compounds are typically found through high-throughput screening campaigns. The diversity of the chemical libraries used in screening is therefore important. In this study, we describe a virtual high-throughput screening system called Virtual Library. The system automatically "recycles" validated synthetic protocols and available starting materials to generate a large number of virtual compound libraries, and allows for fast searches in the generated libraries using a 2D fingerprint based screening method. Virtual Library links the returned virtual hit compounds back to experimental protocols to quickly assess the synthetic accessibility of the hits. The system can be used as an idea generator for library design to enrich the screening collection and to explore the structure-activity landscape around a specific active compound.
Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté
2015-12-15
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
De La Vega, Francisco M; Dailey, David; Ziegle, Janet; Williams, Julie; Madden, Dawn; Gilbert, Dennis A
2002-06-01
Since public and private efforts announced the first draft of the human genome last year, researchers have reported great numbers of single nucleotide polymorphisms (SNPs). We believe that the availability of well-mapped, quality SNP markers constitutes the gateway to a revolution in genetics and personalized medicine that will lead to better diagnosis and treatment of common complex disorders. A new generation of tools and public SNP resources for pharmacogenomic and genetic studies--specifically for candidate-gene, candidate-region, and whole-genome association studies--will form part of the new scientific landscape. This will only be possible through the greater accessibility of SNP resources and superior high-throughput instrumentation-assay systems that enable affordable, highly productive large-scale genetic studies. We are contributing to this effort by developing a high-quality linkage disequilibrium SNP marker map and an accompanying set of ready-to-use, validated SNP assays across every gene in the human genome. This effort incorporates both the public sequence and SNP data sources, and Celera Genomics' human genome assembly and enormous resource ofphysically mapped SNPs (approximately 4,000,000 unique records). This article discusses our approach and methodology for designing the map, choosing quality SNPs, designing and validating these assays, and obtaining population frequency ofthe polymorphisms. We also discuss an advanced, high-performance SNP assay chemisty--a new generation of the TaqMan probe-based, 5' nuclease assay-and high-throughput instrumentation-software system for large-scale genotyping. We provide the new SNP map and validation information, validated SNP assays and reagents, and instrumentation systems as a novel resource for genetic discoveries.
Towards roll-to-roll manufacturing of polymer photonic devices
NASA Astrophysics Data System (ADS)
Subbaraman, Harish; Lin, Xiaohui; Ling, Tao; Guo, L. Jay; Chen, Ray T.
2014-03-01
Traditionally, polymer photonic devices are fabricated using clean-room processes such as photolithography, e-beam lithography, reactive ion etching (RIE) and lift-off methods etc, which leads to long fabrication time, low throughput and high cost. We have utilized a novel process for fabricating polymer photonic devices using a combination of imprinting and ink jet printing methods, which provides high throughput on a variety of rigid and flexible substrates with low cost. We discuss the manufacturing challenges that need to be overcome in order to realize true implementation of roll-to-roll manufacturing of flexible polymer photonic systems. Several metrology and instrumentation challenges involved such as availability of particulate-free high quality substrate, development and implementation of high-speed in-line and off-line inspection and diagnostic tools with adaptive control for patterned and unpatterned material films, development of reliable hardware, etc need to be addressed and overcome in order to realize a successful manufacturing process. Due to extreme resolution requirements compared to print media, the burden of software and hardware tools on the throughput also needs to be carefully determined. Moreover, the effect of web wander and variations in web speed need to accurately be determined in the design of the system hardware and software. In this paper, we show the realization of solutions for few challenges, and utilizing these solutions for developing a high-rate R2R dual stage ink-jet printer that can provide alignment accuracy of <10μm at a web speed of 5m/min. The development of a roll-to-roll manufacturing system for polymer photonic systems opens limitless possibilities for the deployment of high performance components in a variety of applications including communication, sensing, medicine, agriculture, energy, lighting etc.
Pelkowski, Sean D.; Kapoor, Mrinal; Richendrfer, Holly A.; Wang, Xingyue; Colwill, Ruth M.; Creton, Robbert
2011-01-01
Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image twelve multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red ‘bouncing ball’ stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. PMID:21549762
Pelkowski, Sean D; Kapoor, Mrinal; Richendrfer, Holly A; Wang, Xingyue; Colwill, Ruth M; Creton, Robbert
2011-09-30
Early brain development can be influenced by numerous genetic and environmental factors, with long-lasting effects on brain function and behavior. The identification of these factors is facilitated by recent innovations in high-throughput screening. However, large-scale screening in whole organisms remains challenging, in particular when studying changes in brain function or behavior in vertebrate model systems. In this study, we present a novel imaging system for high-throughput analyses of behavior in zebrafish larvae. The three-camera system can image 12 multiwell plates simultaneously and is unique in its ability to provide local visual stimuli in the wells of a multiwell plate. The acquired images are converted into a series of coordinates, which characterize the location and orientation of the larvae. The developed imaging techniques were tested by measuring avoidance behaviors in seven-day-old zebrafish larvae. The system effectively quantified larval avoidance and revealed an increased edge preference in response to a blue or red 'bouncing ball' stimulus. Larvae also avoid a bouncing ball stimulus when it is counter-balanced with a stationary ball, but do not avoid blinking balls counter-balanced with a stationary ball. These results indicate that the seven-day-old larvae respond specifically to movement, rather than color, size, or local changes in light intensity. The imaging system and assays for measuring avoidance behavior may be used to screen for genetic and environmental factors that cause developmental brain disorders and for novel drugs that could prevent or treat these disorders. Copyright © 2011 Elsevier B.V. All rights reserved.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L; Bassaganya-Riera, Josep; Hafler, David A; Sontag, Eduardo; Wang, Jin; Tsang, John S; Day, Judy D; Kleinstein, Steven H; Butte, Atul J; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C
2017-02-01
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.
Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T
2016-09-01
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of ToxCast High-Throughput Screening and ...
Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors
Precision production: enabling deterministic throughput for precision aspheres with MRF
NASA Astrophysics Data System (ADS)
Maloney, Chris; Entezarian, Navid; Dumas, Paul
2017-10-01
Aspherical lenses offer advantages over spherical optics by improving image quality or reducing the number of elements necessary in an optical system. Aspheres are no longer being used exclusively by high-end optical systems but are now replacing spherical optics in many applications. The need for a method of production-manufacturing of precision aspheres has emerged and is part of the reason that the optics industry is shifting away from artisan-based techniques towards more deterministic methods. Not only does Magnetorheological Finishing (MRF) empower deterministic figure correction for the most demanding aspheres but it also enables deterministic and efficient throughput for series production of aspheres. The Q-flex MRF platform is designed to support batch production in a simple and user friendly manner. Thorlabs routinely utilizes the advancements of this platform and has provided results from using MRF to finish a batch of aspheres as a case study. We have developed an analysis notebook to evaluate necessary specifications for implementing quality control metrics. MRF brings confidence to optical manufacturing by ensuring high throughput for batch processing of aspheres.
Creation of a small high-throughput screening facility.
Flak, Tod
2009-01-01
The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.
Janakiraman, Vijay; Kwiatkowski, Chris; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming
2015-01-01
High-throughput systems and processes have typically been targeted for process development and optimization in the bioprocessing industry. For process characterization, bench scale bioreactors have been the system of choice. Due to the need for performing different process conditions for multiple process parameters, the process characterization studies typically span several months and are considered time and resource intensive. In this study, we have shown the application of a high-throughput mini-bioreactor system viz. the Advanced Microscale Bioreactor (ambr15(TM) ), to perform process characterization in less than a month and develop an input control strategy. As a pre-requisite to process characterization, a scale-down model was first developed in the ambr system (15 mL) using statistical multivariate analysis techniques that showed comparability with both manufacturing scale (15,000 L) and bench scale (5 L). Volumetric sparge rates were matched between ambr and manufacturing scale, and the ambr process matched the pCO2 profiles as well as several other process and product quality parameters. The scale-down model was used to perform the process characterization DoE study and product quality results were generated. Upon comparison with DoE data from the bench scale bioreactors, similar effects of process parameters on process yield and product quality were identified between the two systems. We used the ambr data for setting action limits for the critical controlled parameters (CCPs), which were comparable to those from bench scale bioreactor data. In other words, the current work shows that the ambr15(TM) system is capable of replacing the bench scale bioreactor system for routine process development and process characterization. © 2015 American Institute of Chemical Engineers.
Sheng, Yanghao; Zhou, Boting
2017-05-26
Therapeutic drug monitoring (TDM) is one of the most important services of clinical laboratories. Two main techniques are commonly used: the immunoassay and chromatography method. We have developed a cost-effective system of two-dimensional liquid chromatography with ultraviolet detection (2D-LC-UV) for high-throughput determination of vancomycin in human plasma that combines the automation and low start-up costs of the immunoassay with the high selectivity and sensitivity of the liquid chromatography coupled with mass spectrometric detection without incurring their disadvantages, achieving high cost-effectiveness. This 2D-LC system offers a large volume injection to provide sufficient sensitivity and uses simulated gradient peak compression technology to control peak broadening and to improve peak shape. A middle column was added to reduce the analysis cycle time and make it suitable for high-throughput routine clinical assays. The analysis cycle time was 4min and the peak width was 0.8min. Compared with other chromatographic methods that have been developed, the analysis cycle time and peak width for vancomycin was reduced significantly. The lower limit of quantification was 0.20μg/mL for vancomycin, which is the same as certain LC-MS/MS methods that have been recently developed and validated. The method is rapid, automated, and low-cost and has high selectivity and sensitivity for the quantification of vancomycin in human plasma, thus making it well-suited for use in hospital clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
High Throughput Screening For Hazard and Risk of Environmental Contaminants
High throughput toxicity testing provides detailed mechanistic information on the concentration response of environmental contaminants in numerous potential toxicity pathways. High throughput screening (HTS) has several key advantages: (1) expense orders of magnitude less than an...
Measurements of file transfer rates over dedicated long-haul connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S; Settlemyer, Bradley W; Imam, Neena
2016-01-01
Wide-area file transfers are an integral part of several High-Performance Computing (HPC) scenarios. Dedicated network connections with high capacity, low loss rate and low competing traffic, are increasingly being provisioned over current HPC infrastructures to support such transfers. To gain insights into these file transfers, we collected transfer rate measurements for Lustre and xfs file systems between dedicated multi-core servers over emulated 10 Gbps connections with round trip times (rtt) in 0-366 ms range. Memory transfer throughput over these connections is measured using iperf, and file IO throughput on host systems is measured using xddprof. We consider two file systemmore » configurations: Lustre over IB network and xfs over SSD connected to PCI bus. Files are transferred using xdd across these connections, and the transfer rates are measured, which indicate the need to jointly optimize the connection and host file IO parameters to achieve peak transfer rates. In particular, these measurements indicate that (i) peak file transfer rate is lower than peak connection and host IO throughput, in some cases by as much as 50% or lower, (ii) xdd request sizes that achieve peak throughput for host file IO do not necessarily lead to peak file transfer rates, and (iii) parallelism in host IO and TCP transport does not always improve the file transfer rates.« less
US EPA’s ToxCast research program evaluates bioactivity for thousands of chemicals utilizing high-throughput screening assays to inform chemical testing decisions. Vala Sciences provides high content, multiplexed assays that utilize quantitative cell-based digital image analysis....
Erickson, Ariane E.; Edmondson, Dennis; Chang, Fei-Chien; Wood, Dave; Gong, Alex; Levengood, Sheeny Lan; Zhang, Miqin
2016-01-01
The inability to produce large quantities of nanofibers has been a primary obstacle in advancement and commercialization of electrospinning technologies, especially when aligned nanofibers are desired. Here, we present a high-throughput centrifugal electrospinning (HTP-CES) system capable of producing a large number of highly-aligned nanofiber samples with high-yield and tunable diameters. The versatility of the design was revealed when bead-less nanofibers were produced from copolymer chitosan/polycaprolactone (C-PCL) solutions despite variations in polymer blend composition or spinneret needle gauge. Compared to conventional electrospinning techniques, fibers spun with the HTP-CES not only exhibited superior alignment, but also better diameter uniformity. Nanofiber alignment was quantified using Fast Fourier Transform (FFT) analysis. In addition, a concave correlation between the needle diameter and resultant fiber diameter was identified. This system can be easily scaled up for industrial production of highly-aligned nanofibers with tunable diameters that can potentially meet the requirements for various engineering and biomedical applications. PMID:26428148
New high-throughput measurement systems for radioactive wastes segregation and free release.
Suran, J; Kovar, P; Smoldasova, J; Solc, J; Skala, L; Arnold, D; Jerome, S; de Felice, P; Pedersen, B; Bogucarska, T; Tzika, F; van Ammel, R
2017-12-01
This paper addresses the measurement facilities for pre-selection of waste materials prior to measurement for repository acceptance or possible free release (segregation measurement system); and free release (free release measurement system), based on a single standardized concept characterized by unique, patented lead-free shielding. The key objective is to improve the throughput, accuracy, reliability, modularity and mobility of segregation and free-release measurement. This will result in a more reliable decision-making with regard to the safe release and disposal of radioactive wastes into the environment and, resulting in positive economic outcomes. The research was carried out within "Metrology for Decommissioning Nuclear Facilities" (MetroDecom) project. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kavlock, Robert; Dix, David
2010-02-01
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the Toxicity of Chemicals (U.S. EPA, 2009a). Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast) and exposure (ExpoCast), and creating virtual liver (v-Liver) and virtual embryo (v-Embryo) systems models. U.S. EPA-funded STAR centers are also providing bioinformatics, computational toxicology data and models, and developmental toxicity data and models. The models and underlying data are being made publicly available through the Aggregated Computational Toxicology Resource (ACToR), the Distributed Structure-Searchable Toxicity (DSSTox) Database Network, and other U.S. EPA websites. While initially focused on improving the hazard identification process, the CTRP is placing increasing emphasis on using high-throughput bioactivity profiling data in systems modeling to support quantitative risk assessments, and in developing complementary higher throughput exposure models. This integrated approach will enable analysis of life-stage susceptibility, and understanding of the exposures, pathways, and key events by which chemicals exert their toxicity in developing systems (e.g., endocrine-related pathways). The CTRP will be a critical component in next-generation risk assessments utilizing quantitative high-throughput data and providing a much higher capacity for assessing chemical toxicity than is currently available.
Purdue ionomics information management system. An integrated functional genomics platform.
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S; Salt, David E
2007-02-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics.
High-throughput gene mapping in Caenorhabditis elegans.
Swan, Kathryn A; Curtis, Damian E; McKusick, Kathleen B; Voinov, Alexander V; Mapa, Felipa A; Cancilla, Michael R
2002-07-01
Positional cloning of mutations in model genetic systems is a powerful method for the identification of targets of medical and agricultural importance. To facilitate the high-throughput mapping of mutations in Caenorhabditis elegans, we have identified a further 9602 putative new single nucleotide polymorphisms (SNPs) between two C. elegans strains, Bristol N2 and the Hawaiian mapping strain CB4856, by sequencing inserts from a CB4856 genomic DNA library and using an informatics pipeline to compare sequences with the canonical N2 genomic sequence. When combined with data from other laboratories, our marker set of 17,189 SNPs provides even coverage of the complete worm genome. To date, we have confirmed >1099 evenly spaced SNPs (one every 91 +/- 56 kb) across the six chromosomes and validated the utility of our SNP marker set and new fluorescence polarization-based genotyping methods for systematic and high-throughput identification of genes in C. elegans by cloning several proprietary genes. We illustrate our approach by recombination mapping and confirmation of the mutation in the cloned gene, dpy-18.
Multiplex High-Throughput Targeted Proteomic Assay To Identify Induced Pluripotent Stem Cells.
Baud, Anna; Wessely, Frank; Mazzacuva, Francesca; McCormick, James; Camuzeaux, Stephane; Heywood, Wendy E; Little, Daniel; Vowles, Jane; Tuefferd, Marianne; Mosaku, Olukunbi; Lako, Majlinda; Armstrong, Lyle; Webber, Caleb; Cader, M Zameel; Peeters, Pieter; Gissen, Paul; Cowley, Sally A; Mills, Kevin
2017-02-21
Induced pluripotent stem cells have great potential as a human model system in regenerative medicine, disease modeling, and drug screening. However, their use in medical research is hampered by laborious reprogramming procedures that yield low numbers of induced pluripotent stem cells. For further applications in research, only the best, competent clones should be used. The standard assays for pluripotency are based on genomic approaches, which take up to 1 week to perform and incur significant cost. Therefore, there is a need for a rapid and cost-effective assay able to distinguish between pluripotent and nonpluripotent cells. Here, we describe a novel multiplexed, high-throughput, and sensitive peptide-based multiple reaction monitoring mass spectrometry assay, allowing for the identification and absolute quantitation of multiple core transcription factors and pluripotency markers. This assay provides simpler and high-throughput classification into either pluripotent or nonpluripotent cells in 7 min analysis while being more cost-effective than conventional genomic tests.
An Automated High-throughput Array Microscope for Cancer Cell Mechanics
NASA Astrophysics Data System (ADS)
Cribb, Jeremy A.; Osborne, Lukas D.; Beicker, Kellie; Psioda, Matthew; Chen, Jian; O'Brien, E. Timothy; Taylor, Russell M., II; Vicci, Leandra; Hsiao, Joe Ping-Lin; Shao, Chong; Falvo, Michael; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Superfine, Richard
2016-06-01
Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.
Ngo, Tony; Coleman, James L J; Smith, Nicola J
2015-01-01
Orphan G protein-coupled receptors represent an underexploited resource for drug discovery but pose a considerable challenge for assay development because their cognate G protein signaling pathways are often unknown. In this methodological chapter, we describe the use of constitutive activity, that is, the inherent ability of receptors to couple to their cognate G proteins in the absence of ligand, to inform the development of high-throughput screening assays for a particular orphan receptor. We specifically focus on a two-step process, whereby constitutive G protein coupling is first determined using yeast Gpa1/human G protein chimeras linked to growth and β-galactosidase generation. Coupling selectivity is then confirmed in mammalian cells expressing endogenous G proteins and driving accumulation of transcription factor-fused luciferase reporters specific to each of the classes of G protein. Based on these findings, high-throughput screening campaigns can be performed on the already miniaturized mammalian reporter system.
High Throughput Transcriptomics: From screening to pathways
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
NASA Astrophysics Data System (ADS)
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-12-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure-property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure-property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure-property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials.
Lee, Si Hoon; Lindquist, Nathan C.; Wittenberg, Nathan J.; Jordan, Luke R.; Oh, Sang-Hyun
2012-01-01
With recent advances in high-throughput proteomics and systems biology, there is a growing demand for new instruments that can precisely quantify a wide range of receptor-ligand binding kinetics in a high-throughput fashion. Here we demonstrate a surface plasmon resonance (SPR) imaging spectroscopy instrument capable of extracting binding kinetics and affinities from 50 parallel microfluidic channels simultaneously. The instrument utilizes large-area (~cm2) metallic nanohole arrays as SPR sensing substrates and combines a broadband light source, a high-resolution imaging spectrometer and a low-noise CCD camera to extract spectral information from every channel in real time with a refractive index resolution of 7.7 × 10−6. To demonstrate the utility of our instrument for quantifying a wide range of biomolecular interactions, each parallel microfluidic channel is coated with a biomimetic supported lipid membrane containing ganglioside (GM1) receptors. The binding kinetics of cholera toxin b (CTX-b) to GM1 are then measured in a single experiment from 50 channels. By combining the highly parallel microfluidic device with large-area periodic nanohole array chips, our SPR imaging spectrometer system enables high-throughput, label-free, real-time SPR biosensing, and its full-spectral imaging capability combined with nanohole arrays could enable integration of SPR imaging with concurrent surface-enhanced Raman spectroscopy. PMID:22895607
Fast and Adaptive Lossless Onboard Hyperspectral Data Compression System
NASA Technical Reports Server (NTRS)
Aranki, Nazeeh I.; Keymeulen, Didier; Kimesh, Matthew A.
2012-01-01
Modern hyperspectral imaging systems are able to acquire far more data than can be downlinked from a spacecraft. Onboard data compression helps to alleviate this problem, but requires a system capable of power efficiency and high throughput. Software solutions have limited throughput performance and are power-hungry. Dedicated hardware solutions can provide both high throughput and power efficiency, while taking the load off of the main processor. Thus a hardware compression system was developed. The implementation uses a field-programmable gate array (FPGA). The implementation is based on the fast lossless (FL) compression algorithm reported in Fast Lossless Compression of Multispectral-Image Data (NPO-42517), NASA Tech Briefs, Vol. 30, No. 8 (August 2006), page 26, which achieves excellent compression performance and has low complexity. This algorithm performs predictive compression using an adaptive filtering method, and uses adaptive Golomb coding. The implementation also packetizes the coded data. The FL algorithm is well suited for implementation in hardware. In the FPGA implementation, one sample is compressed every clock cycle, which makes for a fast and practical realtime solution for space applications. Benefits of this implementation are: 1) The underlying algorithm achieves a combination of low complexity and compression effectiveness that exceeds that of techniques currently in use. 2) The algorithm requires no training data or other specific information about the nature of the spectral bands for a fixed instrument dynamic range. 3) Hardware acceleration provides a throughput improvement of 10 to 100 times vs. the software implementation. A prototype of the compressor is available in software, but it runs at a speed that does not meet spacecraft requirements. The hardware implementation targets the Xilinx Virtex IV FPGAs, and makes the use of this compressor practical for Earth satellites as well as beyond-Earth missions with hyperspectral instruments.
High Throughput Experimental Materials Database
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakutayev, Andriy; Perkins, John; Schwarting, Marcus
The mission of the High Throughput Experimental Materials Database (HTEM DB) is to enable discovery of new materials with useful properties by releasing large amounts of high-quality experimental data to public. The HTEM DB contains information about materials obtained from high-throughput experiments at the National Renewable Energy Laboratory (NREL).
McBride, Sebastian D; Perentos, Nicholas; Morton, A Jennifer
2016-05-30
For reasons of cost and ethical concerns, models of neurodegenerative disorders such as Huntington disease (HD) are currently being developed in farm animals, as an alternative to non-human primates. Developing reliable methods of testing cognitive function is essential to determining the usefulness of such models. Nevertheless, cognitive testing of farm animal species presents a unique set of challenges. The primary aims of this study were to develop and validate a mobile operant system suitable for high throughput cognitive testing of sheep. We designed a semi-automated testing system with the capability of presenting stimuli (visual, auditory) and reward at six spatial locations. Fourteen normal sheep were used to validate the system using a two-choice visual discrimination task. Four stages of training devised to acclimatise animals to the system are also presented. All sheep progressed rapidly through the training stages, over eight sessions. All sheep learned the 2CVDT and performed at least one reversal stage. The mean number of trials the sheep took to reach criterion in the first acquisition learning was 13.9±1.5 and for the reversal learning was 19.1±1.8. This is the first mobile semi-automated operant system developed for testing cognitive function in sheep. We have designed and validated an automated operant behavioural testing system suitable for high throughput cognitive testing in sheep and other medium-sized quadrupeds, such as pigs and dogs. Sheep performance in the two-choice visual discrimination task was very similar to that reported for non-human primates and strongly supports the use of farm animals as pre-clinical models for the study of neurodegenerative diseases. Copyright © 2015 Elsevier B.V. All rights reserved.
Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E
2018-04-01
Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.
Thienhaus, S; Naujoks, D; Pfetzing-Micklich, J; König, D; Ludwig, A
2014-12-08
The efficient identification of compositional areas of interest in thin film materials systems fabricated by combinatorial deposition methods is essential in combinatorial materials science. We use a combination of compositional screening by EDX together with high-throughput measurements of electrical and optical properties of thin film libraries to determine efficiently the areas of interest in a materials system. Areas of interest are compositions which show distinctive properties. The crystallinity of the thus determined areas is identified by X-ray diffraction. Additionally, by using automated nanoindentation across the materials library, mechanical data of the thin films can be obtained which complements the identification of areas of interest. The feasibility of this approach is demonstrated by using a Ni-Al thin film library as a reference system. The obtained results promise that this approach can be used for the case of ternary and higher order systems.
20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)
The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...
Evaluation of Sequencing Approaches for High-Throughput Transcriptomics - (BOSC)
Whole-genome in vitro transcriptomics has shown the capability to identify mechanisms of action and estimates of potency for chemical-mediated effects in a toxicological framework, but with limited throughput and high cost. The generation of high-throughput global gene expression...
High-throughput cultivation and screening platform for unicellular phototrophs.
Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus
2014-09-16
High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The cultivation was performed in 2.2 ml deepwell microtiter plates within a cultivation chamber outfitted with programmable shaking conditions, variable illumination, variable temperature, and an adjustable CO2 atmosphere. Each microtiter-well within the chamber functions as a separate cultivation vessel with reproducible conditions. The automated measurement of various parameters such as growth, full absorption spectrum, chlorophyll concentration, MALDI-TOF-MS, as well as a novel vitality measurement protocol, have already been established and can be monitored during cultivation. Measurement of growth parameters can be used as inputs for the system to allow for periodic automatic dilutions and therefore a semi-continuous cultivation of hundreds of cultures in parallel. The system also allows the automatic generation of mid and long term backups of cultures to repeat experiments or to retrieve strains of interest. The presented platform allows for high-throughput cultivation and screening of Synechocystis sp. PCC6803. The platform should be usable for many phototrophic microorganisms as is, and be adaptable for even more. A variety of analyses are already established and the platform is easily expandable both in quality, i.e. with further parameters to screen for additional targets and in quantity, i.e. size or number of processed samples.
toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research
Rhee, David B.; Croken, Matthew McKnight; Shieh, Kevin R.; Sullivan, Julie; Micklem, Gos; Kim, Kami; Golden, Aaron
2015-01-01
Toxoplasma gondii (T. gondii) is an obligate intracellular parasite that must monitor for changes in the host environment and respond accordingly; however, it is still not fully known which genetic or epigenetic factors are involved in regulating virulence traits of T. gondii. There are on-going efforts to elucidate the mechanisms regulating the stage transition process via the application of high-throughput epigenomics, genomics and proteomics techniques. Given the range of experimental conditions and the typical yield from such high-throughput techniques, a new challenge arises: how to effectively collect, organize and disseminate the generated data for subsequent data analysis. Here, we describe toxoMine, which provides a powerful interface to support sophisticated integrative exploration of high-throughput experimental data and metadata, providing researchers with a more tractable means toward understanding how genetic and/or epigenetic factors play a coordinated role in determining pathogenicity of T. gondii. As a data warehouse, toxoMine allows integration of high-throughput data sets with public T. gondii data. toxoMine is also able to execute complex queries involving multiple data sets with straightforward user interaction. Furthermore, toxoMine allows users to define their own parameters during the search process that gives users near-limitless search and query capabilities. The interoperability feature also allows users to query and examine data available in other InterMine systems, which would effectively augment the search scope beyond what is available to toxoMine. toxoMine complements the major community database ToxoDB by providing a data warehouse that enables more extensive integrative studies for T. gondii. Given all these factors, we believe it will become an indispensable resource to the greater infectious disease research community. Database URL: http://toxomine.org PMID:26130662
Zhao, Siwei; Zhu, Kan; Zhang, Yan; Zhu, Zijie; Xu, Zhengping; Zhao, Min; Pan, Tingrui
2014-11-21
Both endogenous and externally applied electrical stimulation can affect a wide range of cellular functions, including growth, migration, differentiation and division. Among those effects, the electrical field (EF)-directed cell migration, also known as electrotaxis, has received broad attention because it holds great potential in facilitating clinical wound healing. Electrotaxis experiment is conventionally conducted in centimetre-sized flow chambers built in Petri dishes. Despite the recent efforts to adapt microfluidics for electrotaxis studies, the current electrotaxis experimental setup is still cumbersome due to the needs of an external power supply and EF controlling/monitoring systems. There is also a lack of parallel experimental systems for high-throughput electrotaxis studies. In this paper, we present a first independently operable microfluidic platform for high-throughput electrotaxis studies, integrating all functional components for cell migration under EF stimulation (except microscopy) on a compact footprint (the same as a credit card), referred to as ElectroTaxis-on-a-Chip (ETC). Inspired by the R-2R resistor ladder topology in digital signal processing, we develop a systematic approach to design an infinitely expandable microfluidic generator of EF gradients for high-throughput and quantitative studies of EF-directed cell migration. Furthermore, a vacuum-assisted assembly method is utilized to allow direct and reversible attachment of our device to existing cell culture media on biological surfaces, which separates the cell culture and device preparation/fabrication steps. We have demonstrated that our ETC platform is capable of screening human cornea epithelial cell migration under the stimulation of an EF gradient spanning over three orders of magnitude. The screening results lead to the identification of the EF-sensitive range of that cell type, which can provide valuable guidance to the clinical application of EF-facilitated wound healing.
NASA Astrophysics Data System (ADS)
Chisholm, Bret J.; Webster, Dean C.; Bennett, James C.; Berry, Missy; Christianson, David; Kim, Jongsoo; Mayo, Bret; Gubbins, Nathan
2007-07-01
An automated, high-throughput adhesion workflow that enables pseudobarnacle adhesion and coating/substrate adhesion to be measured on coating patches arranged in an array format on 4×8in.2 panels was developed. The adhesion workflow consists of the following process steps: (1) application of an adhesive to the coating array; (2) insertion of panels into a clamping device; (3) insertion of aluminum studs into the clamping device and onto coating surfaces, aligned with the adhesive; (4) curing of the adhesive; and (5) automated removal of the aluminum studs. Validation experiments comparing data generated using the automated, high-throughput workflow to data obtained using conventional, manual methods showed that the automated system allows for accurate ranking of relative coating adhesion performance.
Multiplexed high resolution soft x-ray RIXS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, Y.-D.; Voronov, D.; Warwick, T.
2016-07-27
High-resolution Resonance Inelastic X-ray Scattering (RIXS) is a technique that allows us to probe the electronic excitations of complex materials with unprecedented precision. However, the RIXS process has a low cross section, compounded by the fact that the optical spectrometers used to analyze the scattered photons can only collect a small solid angle and overall have a small efficiency. Here we present a method to significantly increase the throughput of RIXS systems, by energy multiplexing, so that a complete RIXS map of scattered intensity versus photon energy in and photon energy out can be recorded simultaneously{sup 1}. This parallel acquisitionmore » scheme should provide a gain in throughput of over 100.. A system based on this principle, QERLIN, is under construction at the Advanced Light Source (ALS).« less
From big data analysis to personalized medicine for all: challenges and opportunities.
Alyass, Akram; Turcotte, Michelle; Meyre, David
2015-06-27
Recent advances in high-throughput technologies have led to the emergence of systems biology as a holistic science to achieve more precise modeling of complex diseases. Many predict the emergence of personalized medicine in the near future. We are, however, moving from two-tiered health systems to a two-tiered personalized medicine. Omics facilities are restricted to affluent regions, and personalized medicine is likely to widen the growing gap in health systems between high and low-income countries. This is mirrored by an increasing lag between our ability to generate and analyze big data. Several bottlenecks slow-down the transition from conventional to personalized medicine: generation of cost-effective high-throughput data; hybrid education and multidisciplinary teams; data storage and processing; data integration and interpretation; and individual and global economic relevance. This review provides an update of important developments in the analysis of big data and forward strategies to accelerate the global transition to personalized medicine.
Emerging approaches in predictive toxicology.
Zhang, Luoping; McHale, Cliona M; Greene, Nigel; Snyder, Ronald D; Rich, Ivan N; Aardema, Marilyn J; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2014-12-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. © 2014 Wiley Periodicals, Inc.
Microfluidic strategies for understanding the mechanics of cells and cell-mimetic systems
Dahl, Joanna B.; Lin, Jung-Ming G.; Muller, Susan J.; Kumar, Sanjay
2016-01-01
Microfluidic systems are attracting increasing interest for the high-throughput measurement of cellular biophysical properties and for the creation of engineered cellular microenvironments. Here we review recent applications of microfluidic technologies to the mechanics of living cells and synthetic cell-mimetic systems. We begin by discussing the use of microfluidic devices to dissect the mechanics of cellular mimics such as capsules and vesicles. We then explore applications to circulating cells, including erythrocytes and other normal blood cells, and rare populations with potential disease diagnostic value, such as circulating tumor cells. We conclude by discussing how microfluidic devices have been used to investigate the mechanics, chemotaxis, and invasive migration of adherent cells. In these ways, microfluidic technologies represent an increasingly important toolbox for investigating cellular mechanics and motility at high throughput and in a format that lends itself to clinical translation. PMID:26134738
Emerging Approaches in Predictive Toxicology
Zhang, Luoping; McHale, Cliona M.; Greene, Nigel; Snyder, Ronald D.; Rich, Ivan N.; Aardema, Marilyn J.; Roy, Shambhu; Pfuhler, Stefan; Venkatactahalam, Sundaresan
2016-01-01
Predictive toxicology plays an important role in the assessment of toxicity of chemicals and the drug development process. While there are several well-established in vitro and in vivo assays that are suitable for predictive toxicology, recent advances in high-throughput analytical technologies and model systems are expected to have a major impact on the field of predictive toxicology. This commentary provides an overview of the state of the current science and a brief discussion on future perspectives for the field of predictive toxicology for human toxicity. Computational models for predictive toxicology, needs for further refinement and obstacles to expand computational models to include additional classes of chemical compounds are highlighted. Functional and comparative genomics approaches in predictive toxicology are discussed with an emphasis on successful utilization of recently developed model systems for high-throughput analysis. The advantages of three-dimensional model systems and stem cells and their use in predictive toxicology testing are also described. PMID:25044351
A high throughput mechanical screening device for cartilage tissue engineering.
Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L
2014-06-27
Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.
High Throughput Determination of Critical Human Dosing Parameters (SOT)
High throughput toxicokinetics (HTTK) is a rapid approach that uses in vitro data to estimate TK for hundreds of environmental chemicals. Reverse dosimetry (i.e., reverse toxicokinetics or RTK) based on HTTK data converts high throughput in vitro toxicity screening (HTS) data int...
High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)
High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...
Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos
Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...
The impact of the condenser on cytogenetic image quality in digital microscope system.
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%-70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice.
Selecting the most appropriate time points to profile in high-throughput studies
Kleyman, Michael; Sefer, Emre; Nicola, Teodora; Espinoza, Celia; Chhabra, Divya; Hagood, James S; Kaminski, Naftali; Ambalavanan, Namasivayam; Bar-Joseph, Ziv
2017-01-01
Biological systems are increasingly being studied by high throughput profiling of molecular data over time. Determining the set of time points to sample in studies that profile several different types of molecular data is still challenging. Here we present the Time Point Selection (TPS) method that solves this combinatorial problem in a principled and practical way. TPS utilizes expression data from a small set of genes sampled at a high rate. As we show by applying TPS to study mouse lung development, the points selected by TPS can be used to reconstruct an accurate representation for the expression values of the non selected points. Further, even though the selection is only based on gene expression, these points are also appropriate for representing a much larger set of protein, miRNA and DNA methylation changes over time. TPS can thus serve as a key design strategy for high throughput time series experiments. Supporting Website: www.sb.cs.cmu.edu/TPS DOI: http://dx.doi.org/10.7554/eLife.18541.001 PMID:28124972
Process in manufacturing high efficiency AlGaAs/GaAs solar cells by MO-CVD
NASA Technical Reports Server (NTRS)
Yeh, Y. C. M.; Chang, K. I.; Tandon, J.
1984-01-01
Manufacturing technology for mass producing high efficiency GaAs solar cells is discussed. A progress using a high throughput MO-CVD reactor to produce high efficiency GaAs solar cells is discussed. Thickness and doping concentration uniformity of metal oxide chemical vapor deposition (MO-CVD) GaAs and AlGaAs layer growth are discussed. In addition, new tooling designs are given which increase the throughput of solar cell processing. To date, 2cm x 2cm AlGaAs/GaAs solar cells with efficiency up to 16.5% were produced. In order to meet throughput goals for mass producing GaAs solar cells, a large MO-CVD system (Cambridge Instrument Model MR-200) with a susceptor which was initially capable of processing 20 wafers (up to 75 mm diameter) during a single growth run was installed. In the MR-200, the sequencing of the gases and the heating power are controlled by a microprocessor-based programmable control console. Hence, operator errors can be reduced, leading to a more reproducible production sequence.
Sugano, Shigeo S; Suzuki, Hiroko; Shimokita, Eisuke; Chiba, Hirofumi; Noji, Sumihare; Osakabe, Yuriko; Osakabe, Keishi
2017-04-28
Mushroom-forming basidiomycetes produce a wide range of metabolites and have great value not only as food but also as an important global natural resource. Here, we demonstrate CRISPR/Cas9-based genome editing in the model species Coprinopsis cinerea. Using a high-throughput reporter assay with cryopreserved protoplasts, we identified a novel promoter, CcDED1 pro , with seven times stronger activity in this assay than the conventional promoter GPD2. To develop highly efficient genome editing using CRISPR/Cas9 in C. cinerea, we used the CcDED1 pro to express Cas9 and a U6-snRNA promoter from C. cinerea to express gRNA. Finally, CRISPR/Cas9-mediated GFP mutagenesis was performed in a stable GFP expression line. Individual genome-edited lines were isolated, and loss of GFP function was detected in hyphae and fruiting body primordia. This novel method of high-throughput CRISPR/Cas9-based genome editing using cryopreserved protoplasts should be a powerful tool in the study of edible mushrooms.
Boosalis, Michael S; Sangerman, Jose I; White, Gary L; Wolf, Roman F; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H; Li, Biaoru; Pace, Betty S; Nouraie, Mehdi; Faller, Douglas V; Perrine, Susan P
2015-01-01
High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies.
Isaksen, Geir Villy; Andberg, Tor Arne Heim; Åqvist, Johan; Brandsdal, Bjørn Olav
2015-07-01
Structural information and activity data has increased rapidly for many protein targets during the last decades. In this paper, we present a high-throughput interface (Qgui) for automated free energy and empirical valence bond (EVB) calculations that use molecular dynamics (MD) simulations for conformational sampling. Applications to ligand binding using both the linear interaction energy (LIE) method and the free energy perturbation (FEP) technique are given using the estrogen receptor (ERα) as a model system. Examples of free energy profiles obtained using the EVB method for the rate-limiting step of the enzymatic reaction catalyzed by trypsin are also shown. In addition, we present calculation of high-precision Arrhenius plots to obtain the thermodynamic activation enthalpy and entropy with Qgui from running a large number of EVB simulations. Copyright © 2015 Elsevier Inc. All rights reserved.
Niche-based screening identifies small-molecule inhibitors of leukemia stem cells.
Hartwell, Kimberly A; Miller, Peter G; Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R
2013-12-01
Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those compounds that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on target, via inhibition of HMG-CoA reductase. These results illustrate the power of merging physiologically relevant models with high-throughput screening.
Niche-based screening identifies small-molecule inhibitors of leukemia stem cells
Mukherjee, Siddhartha; Kahn, Alissa R; Stewart, Alison L; Logan, David J; Negri, Joseph M; Duvet, Mildred; Järås, Marcus; Puram, Rishi; Dancik, Vlado; Al-Shahrour, Fatima; Kindler, Thomas; Tothova, Zuzana; Chattopadhyay, Shrikanta; Hasaka, Thomas; Narayan, Rajiv; Dai, Mingji; Huang, Christina; Shterental, Sebastian; Chu, Lisa P; Haydu, J Erika; Shieh, Jae Hung; Steensma, David P; Munoz, Benito; Bittker, Joshua A; Shamji, Alykhan F; Clemons, Paul A; Tolliday, Nicola J; Carpenter, Anne E; Gilliland, D Gary; Stern, Andrew M; Moore, Malcolm A S; Scadden, David T; Schreiber, Stuart L; Ebert, Benjamin L; Golub, Todd R
2014-01-01
Efforts to develop more effective therapies for acute leukemia may benefit from high-throughput screening systems that reflect the complex physiology of the disease, including leukemia stem cells (LSCs) and supportive interactions with the bone-marrow microenvironment. The therapeutic targeting of LSCs is challenging because LSCs are highly similar to normal hematopoietic stem and progenitor cells (HSPCs) and are protected by stromal cells in vivo. We screened 14,718 compounds in a leukemia-stroma co-culture system for inhibition of cobblestone formation, a cellular behavior associated with stem-cell function. Among those that inhibited malignant cells but spared HSPCs was the cholesterol-lowering drug lovastatin. Lovastatin showed anti-LSC activity in vitro and in an in vivo bone marrow transplantation model. Mechanistic studies demonstrated that the effect was on-target, via inhibition of HMGCoA reductase. These results illustrate the power of merging physiologically-relevant models with high-throughput screening. PMID:24161946
Experiments and Analyses of Data Transfers Over Wide-Area Dedicated Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata
Dedicated wide-area network connections are increasingly employed in high-performance computing and big data scenarios. One might expect the performance and dynamics of data transfers over such connections to be easy to analyze due to the lack of competing traffic. However, non-linear transport dynamics and end-system complexities (e.g., multi-core hosts and distributed filesystems) can in fact make analysis surprisingly challenging. We present extensive measurements of memory-to-memory and disk-to-disk file transfers over 10 Gbps physical and emulated connections with 0–366 ms round trip times (RTTs). For memory-to-memory transfers, profiles of both TCP and UDT throughput as a function of RTT show concavemore » and convex regions; large buffer sizes and more parallel flows lead to wider concave regions, which are highly desirable. TCP and UDT both also display complex throughput dynamics, as indicated by their Poincare maps and Lyapunov exponents. For disk-to-disk transfers, we determine that high throughput can be achieved via a combination of parallel I/O threads, parallel network threads, and direct I/O mode. Our measurements also show that Lustre filesystems can be mounted over long-haul connections using LNet routers, although challenges remain in jointly optimizing file I/O and transport method parameters to achieve peak throughput.« less
Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.
Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi
2017-12-21
High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.
Wen Lin; Asko Noormets; John S. King; Ge Sun; Steve McNulty; Jean-Christophe Domec; Lucas Cernusak
2017-01-01
Stable isotope ratios (δ13C and δ18O) of tree-ring α-cellulose are important tools in paleoclimatology, ecology, plant physiology and genetics. The Multiple Sample Isolation System for Solids (MSISS) was a major advance in the tree-ring α-cellulose extraction methods, offering greater throughput and reduced labor input compared to traditional alternatives. However, the...
NASA Astrophysics Data System (ADS)
Fang, Sheng-Po; Jao, PitFee; Senior, David E.; Kim, Kyoung-Tae; Yoon, Yong-Kyu
2017-12-01
High throughput nanomanufacturing of photopatternable nanofibers and subsequent photopatterning is reported. For the production of high density nanofibers, the tube nozzle electrospinning (TNE) process has been used, where an array of micronozzles on the sidewall of a plastic tube are used as spinnerets. By increasing the density of nozzles, the electric fields of adjacent nozzles confine the cone of electrospinning and give a higher density of nanofibers. With TNE, higher density nozzles are easily achievable compared to metallic nozzles, e.g. an inter-nozzle distance as small as 0.5 cm and an average semi-vertical repulsion angle of 12.28° for 8-nozzles were achieved. Nanofiber diameter distribution, mass throughput rate, and growth rate of nanofiber stacks in different operating conditions and with different numbers of nozzles, such as 2, 4 and 8 nozzles, and scalability with single and double tube configurations are discussed. Nanofibers made of SU-8, photopatternable epoxy, have been collected to a thickness of over 80 μm in 240 s of electrospinning and the production rate of 0.75 g/h is achieved using the 2 tube 8 nozzle systems, followed by photolithographic micropatterning. TNE is scalable to a large number of nozzles, and offers high throughput production, plug and play capability with standard electrospinning equipment, and little waste of polymer.
High throughput workflow for coacervate formation and characterization in shampoo systems.
Kalantar, T H; Tucker, C J; Zalusky, A S; Boomgaard, T A; Wilson, B E; Ladika, M; Jordan, S L; Li, W K; Zhang, X; Goh, C G
2007-01-01
Cationic cellulosic polymers find wide utility as benefit agents in shampoo. Deposition of these polymers onto hair has been shown to mend split-ends, improve appearance and wet combing, as well as provide controlled delivery of insoluble actives. The deposition is thought to be enhanced by the formation of a polymer/surfactant complex that phase-separates from the bulk solution upon dilution. A standard characterization method has been developed to characterize the coacervate formation upon dilution, but the test is time and material prohibitive. We have developed a semi-automated high throughput workflow to characterize the coacervate-forming behavior of different shampoo formulations. A procedure that allows testing of real use shampoo dilutions without first formulating a complete shampoo was identified. This procedure was adapted to a Tecan liquid handler by optimizing the parameters for liquid dispensing as well as for mixing. The high throughput workflow enabled preparation and testing of hundreds of formulations with different types and levels of cationic cellulosic polymers and surfactants, and for each formulation a haze diagram was constructed. Optimal formulations and their dilutions that give substantial coacervate formation (determined by haze measurements) were identified. Results from this high throughput workflow were shown to reproduce standard haze and bench-top turbidity measurements, and this workflow has the advantages of using less material and allowing more variables to be tested with significant time savings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hui
2001-01-01
Laser-induced fluorescence detection is one of the most sensitive detection techniques and it has found enormous applications in various areas. The purpose of this research was to develop detection approaches based on laser-induced fluorescence detection in two different areas, heterogeneous catalysts screening and single cell study. First, we introduced laser-induced imaging (LIFI) as a high-throughput screening technique for heterogeneous catalysts to explore the use of this high-throughput screening technique in discovery and study of various heterogeneous catalyst systems. This scheme is based on the fact that the creation or the destruction of chemical bonds alters the fluorescence properties of suitablymore » designed molecules. By irradiating the region immediately above the catalytic surface with a laser, the fluorescence intensity of a selected product or reactant can be imaged by a charge-coupled device (CCD) camera to follow the catalytic activity as a function of time and space. By screening the catalytic activity of vanadium pentoxide catalysts in oxidation of naphthalene, we demonstrated LIFI has good detection performance and the spatial and temporal resolution needed for high-throughput screening of heterogeneous catalysts. The sample packing density can reach up to 250 x 250 subunits/cm 2 for 40-μm wells. This experimental set-up also can screen solid catalysts via near infrared thermography detection.« less
48-spot single-molecule FRET setup with periodic acceptor excitation
NASA Astrophysics Data System (ADS)
Ingargiola, Antonino; Segal, Maya; Gulinatti, Angelo; Rech, Ivan; Labanca, Ivan; Maccagnani, Piera; Ghioni, Massimo; Weiss, Shimon; Michalet, Xavier
2018-03-01
Single-molecule Förster resonance energy transfer (smFRET) allows measuring distances between donor and acceptor fluorophores on the 3-10 nm range. Solution-based smFRET allows measurement of binding-unbinding events or conformational changes of dye-labeled biomolecules without ensemble averaging and free from surface perturbations. When employing dual (or multi) laser excitation, smFRET allows resolving the number of fluorescent labels on each molecule, greatly enhancing the ability to study heterogeneous samples. A major drawback to solution-based smFRET is the low throughput, which renders repetitive measurements expensive and hinders the ability to study kinetic phenomena in real-time. Here we demonstrate a high-throughput smFRET system that multiplexes acquisition by using 48 excitation spots and two 48-pixel single-photon avalanche diode array detectors. The system employs two excitation lasers allowing separation of species with one or two active fluorophores. The performance of the system is demonstrated on a set of doubly labeled double-stranded DNA oligonucleotides with different distances between donor and acceptor dyes along the DNA duplex. We show that the acquisition time for accurate subpopulation identification is reduced from several minutes to seconds, opening the way to high-throughput screening applications and real-time kinetics studies of enzymatic reactions such as DNA transcription by bacterial RNA polymerase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
Leitgeb, Markus; Nees, Dieter; Ruttloff, Stephan; Palfinger, Ursula; Götz, Johannes; Liska, Robert; Belegratis, Maria R; Stadlober, Barbara
2016-05-24
Top-down fabrication of nanostructures with high throughput is still a challenge. We demonstrate the fast (>10 m/min) and continuous fabrication of multilength scale structures by roll-to-roll UV-nanoimprint lithography on a 250 mm wide web. The large-area nanopatterning is enabled by a multicomponent UV-curable resist system (JRcure) with viscous, mechanical, and surface properties that are tunable over a wide range to either allow for usage as polymer stamp material or as imprint resist. The adjustable elasticity and surface chemistry of the resist system enable multistep self-replication of structured resist layers. Decisive for defect-free UV-nanoimprinting in roll-to-roll is the minimization of the surface energies of stamp and resist, and the stepwise reduction of the stiffness from one layer to the next is essential for optimizing the reproduction fidelity especially for nanoscale features. Accordingly, we demonstrate the continuous replication of 3D nanostructures and the high-throughput fabrication of multilength scale resist structures resulting in flexible polyethylenetherephtalate film rolls with superhydrophobic properties. Moreover, a water-soluble UV-imprint resist (JRlift) is introduced that enables residue-free nanoimprinting in roll-to-roll. Thereby we could demonstrate high-throughput fabrication of metallic patterns with only 200 nm line width.
Jung, Seung-Yong; Notton, Timothy; Fong, Erika; ...
2015-01-07
Particle sorting using acoustofluidics has enormous potential but widespread adoption has been limited by complex device designs and low throughput. Here, we report high-throughput separation of particles and T lymphocytes (600 μL min -1) by altering the net sonic velocity to reposition acoustic pressure nodes in a simple two-channel device. Finally, the approach is generalizable to other microfluidic platforms for rapid, high-throughput analysis.
Wang, Youwei; Zhang, Wenqing; Chen, Lidong; Shi, Siqi; Liu, Jianjun
2017-01-01
Abstract Li-ion batteries are a key technology for addressing the global challenge of clean renewable energy and environment pollution. Their contemporary applications, for portable electronic devices, electric vehicles, and large-scale power grids, stimulate the development of high-performance battery materials with high energy density, high power, good safety, and long lifetime. High-throughput calculations provide a practical strategy to discover new battery materials and optimize currently known material performances. Most cathode materials screened by the previous high-throughput calculations cannot meet the requirement of practical applications because only capacity, voltage and volume change of bulk were considered. It is important to include more structure–property relationships, such as point defects, surface and interface, doping and metal-mixture and nanosize effects, in high-throughput calculations. In this review, we established quantitative description of structure–property relationships in Li-ion battery materials by the intrinsic bulk parameters, which can be applied in future high-throughput calculations to screen Li-ion battery materials. Based on these parameterized structure–property relationships, a possible high-throughput computational screening flow path is proposed to obtain high-performance battery materials. PMID:28458737
NASA Astrophysics Data System (ADS)
Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul
2012-04-01
A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.
FBI Fingerprint Image Capture System High-Speed-Front-End throughput modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rathke, P.M.
1993-09-01
The Federal Bureau of Investigation (FBI) has undertaken a major modernization effort called the Integrated Automated Fingerprint Identification System (IAFISS). This system will provide centralized identification services using automated fingerprint, subject descriptor, mugshot, and document processing. A high-speed Fingerprint Image Capture System (FICS) is under development as part of the IAFIS program. The FICS will capture digital and microfilm images of FBI fingerprint cards for input into a central database. One FICS design supports two front-end scanning subsystems, known as the High-Speed-Front-End (HSFE) and Low-Speed-Front-End, to supply image data to a common data processing subsystem. The production rate of themore » HSFE is critical to meeting the FBI`s fingerprint card processing schedule. A model of the HSFE has been developed to help identify the issues driving the production rate, assist in the development of component specifications, and guide the evolution of an operations plan. A description of the model development is given, the assumptions are presented, and some HSFE throughput analysis is performed.« less
Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao
2016-01-01
One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427
Uplink Downlink Rate Balancing and Throughput Scaling in FDD Massive MIMO Systems
NASA Astrophysics Data System (ADS)
Bergel, Itsik; Perets, Yona; Shamai, Shlomo
2016-05-01
In this work we extend the concept of uplink-downlink rate balancing to frequency division duplex (FDD) massive MIMO systems. We consider a base station with large number antennas serving many single antenna users. We first show that any unused capacity in the uplink can be traded off for higher throughput in the downlink in a system that uses either dirty paper (DP) coding or linear zero-forcing (ZF) precoding. We then also study the scaling of the system throughput with the number of antennas in cases of linear Beamforming (BF) Precoding, ZF Precoding, and DP coding. We show that the downlink throughput is proportional to the logarithm of the number of antennas. While, this logarithmic scaling is lower than the linear scaling of the rate in the uplink, it can still bring significant throughput gains. For example, we demonstrate through analysis and simulation that increasing the number of antennas from 4 to 128 will increase the throughput by more than a factor of 5. We also show that a logarithmic scaling of downlink throughput as a function of the number of receive antennas can be achieved even when the number of transmit antennas only increases logarithmically with the number of receive antennas.
NASA Astrophysics Data System (ADS)
Malloy, Matt; Thiel, Brad; Bunday, Benjamin D.; Wurm, Stefan; Jindal, Vibhu; Mukhtar, Maseeh; Quoi, Kathy; Kemen, Thomas; Zeidler, Dirk; Eberle, Anna Lena; Garbowski, Tomasz; Dellemann, Gregor; Peters, Jan Hendrik
2015-09-01
The new device architectures and materials being introduced for sub-10nm manufacturing, combined with the complexity of multiple patterning and the need for improved hotspot detection strategies, have pushed current wafer inspection technologies to their limits. In parallel, gaps in mask inspection capability are growing as new generations of mask technologies are developed to support these sub-10nm wafer manufacturing requirements. In particular, the challenges associated with nanoimprint and extreme ultraviolet (EUV) mask inspection require new strategies that enable fast inspection at high sensitivity. The tradeoffs between sensitivity and throughput for optical and e-beam inspection are well understood. Optical inspection offers the highest throughput and is the current workhorse of the industry for both wafer and mask inspection. E-beam inspection offers the highest sensitivity but has historically lacked the throughput required for widespread adoption in the manufacturing environment. It is unlikely that continued incremental improvements to either technology will meet tomorrow's requirements, and therefore a new inspection technology approach is required; one that combines the high-throughput performance of optical with the high-sensitivity capabilities of e-beam inspection. To support the industry in meeting these challenges SUNY Poly SEMATECH has evaluated disruptive technologies that can meet the requirements for high volume manufacturing (HVM), for both the wafer fab [1] and the mask shop. Highspeed massively parallel e-beam defect inspection has been identified as the leading candidate for addressing the key gaps limiting today's patterned defect inspection techniques. As of late 2014 SUNY Poly SEMATECH completed a review, system analysis, and proof of concept evaluation of multiple e-beam technologies for defect inspection. A champion approach has been identified based on a multibeam technology from Carl Zeiss. This paper includes a discussion on the need for high-speed e-beam inspection and then provides initial imaging results from EUV masks and wafers from 61 and 91 beam demonstration systems. Progress towards high resolution and consistent intentional defect arrays (IDA) is also shown.
Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)
High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...
High-throughput RAD-SNP genotyping for characterization of sugar beet genotypes
USDA-ARS?s Scientific Manuscript database
High-throughput SNP genotyping provides a rapid way of developing resourceful set of markers for delineating the genetic architecture and for effective species discrimination. In the presented research, we demonstrate a set of 192 SNPs for effective genotyping in sugar beet using high-throughput mar...
Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)
Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...
A quantitative literature-curated gold standard for kinase-substrate pairs
2011-01-01
We describe the Yeast Kinase Interaction Database (KID, http://www.moseslab.csb.utoronto.ca/KID/), which contains high- and low-throughput data relevant to phosphorylation events. KID includes 6,225 low-throughput and 21,990 high-throughput interactions, from greater than 35,000 experiments. By quantitatively integrating these data, we identified 517 high-confidence kinase-substrate pairs that we consider a gold standard. We show that this gold standard can be used to assess published high-throughput datasets, suggesting that it will enable similar rigorous assessments in the future. PMID:21492431
NASA Astrophysics Data System (ADS)
Lim, Jiseok; Vrignon, Jérémy; Gruner, Philipp; Karamitros, Christos S.; Konrad, Manfred; Baret, Jean-Christophe
2013-11-01
We demonstrate the use of a hybrid microfluidic-micro-optical system for the screening of enzymatic activity at the single cell level. Escherichia coli β-galactosidase activity is revealed by a fluorogenic assay in 100 pl droplets. Individual droplets containing cells are screened by measuring their fluorescence signal using a high-speed camera. The measurement is parallelized over 100 channels equipped with microlenses and analyzed by image processing. A reinjection rate of 1 ml of emulsion per minute was reached corresponding to more than 105 droplets per second, an analytical throughput larger than those obtained using flow cytometry.
High-throughput ab-initio dilute solute diffusion database.
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-07-19
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.
High-throughput SRCD using multi-well plates and its applications
NASA Astrophysics Data System (ADS)
Hussain, Rohanah; Jávorfi, Tamás; Rudd, Timothy R.; Siligardi, Giuliano
2016-12-01
The sample compartment for high-throughput synchrotron radiation circular dichroism (HT-SRCD) has been developed to satisfy an increased demand of protein characterisation in terms of folding and binding interaction properties not only in the traditional field of structural biology but also in the growing research area of material science with the potential to save time by 80%. As the understanding of protein behaviour in different solvent environments has increased dramatically the development of novel functions such as recombinant proteins modified to have different functions from harvesting solar energy to metabolonics for cleaning heavy and metal and organic molecule pollutions, there is a need to characterise speedily these system.
Convenient, Sensitive and High-Throughput Method for Screening Botanic Origin
NASA Astrophysics Data System (ADS)
Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi
2014-06-01
In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.
High-Throughput Industrial Coatings Research at The Dow Chemical Company.
Kuo, Tzu-Chi; Malvadkar, Niranjan A; Drumright, Ray; Cesaretti, Richard; Bishop, Matthew T
2016-09-12
At The Dow Chemical Company, high-throughput research is an active area for developing new industrial coatings products. Using the principles of automation (i.e., using robotic instruments), parallel processing (i.e., prepare, process, and evaluate samples in parallel), and miniaturization (i.e., reduce sample size), high-throughput tools for synthesizing, formulating, and applying coating compositions have been developed at Dow. In addition, high-throughput workflows for measuring various coating properties, such as cure speed, hardness development, scratch resistance, impact toughness, resin compatibility, pot-life, surface defects, among others have also been developed in-house. These workflows correlate well with the traditional coatings tests, but they do not necessarily mimic those tests. The use of such high-throughput workflows in combination with smart experimental designs allows accelerated discovery and commercialization.
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten
2017-12-01
Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.
Taylor, Jessica; Woodcock, Simon
2015-09-01
For more than a decade, RNA interference (RNAi) has brought about an entirely new approach to functional genomics screening. Enabling high-throughput loss-of-function (LOF) screens against the human genome, identifying new drug targets, and significantly advancing experimental biology, RNAi is a fast, flexible technology that is compatible with existing high-throughput systems and processes; however, the recent advent of clustered regularly interspaced palindromic repeats (CRISPR)-Cas, a powerful new precise genome-editing (PGE) technology, has opened up vast possibilities for functional genomics. CRISPR-Cas is novel in its simplicity: one piece of easily engineered guide RNA (gRNA) is used to target a gene sequence, and Cas9 expression is required in the cells. The targeted double-strand break introduced by the gRNA-Cas9 complex is highly effective at removing gene expression compared to RNAi. Together with the reduced cost and complexity of CRISPR-Cas, there is the realistic opportunity to use PGE to screen for phenotypic effects in a total gene knockout background. This review summarizes the exciting development of CRISPR-Cas as a high-throughput screening tool, comparing its future potential to that of well-established RNAi screening techniques, and highlighting future challenges and opportunities within these disciplines. We conclude that the two technologies actually complement rather than compete with each other, enabling greater understanding of the genome in relation to drug discovery. © 2015 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Rohde, Christopher B.; Zeng, Fei; Gilleland, Cody; Samara, Chrysanthi; Yanik, Mehmet F.
2009-02-01
In recent years, the advantages of using small invertebrate animals as model systems for human disease have become increasingly apparent and have resulted in three Nobel Prizes in medicine or chemistry during the last six years for studies conducted on the nematode Caenorhabditis elegans (C. elegans). The availability of a wide array of species-specific genetic techniques, along with the transparency of the worm and its ability to grow in minute volumes make C. elegans an extremely powerful model organism. We present a suite of technologies for complex high-throughput whole-animal genetic and drug screens. We demonstrate a high-speed microfluidic sorter that can isolate and immobilize C. elegans in a well-defined geometry, an integrated chip containing individually addressable screening chambers for incubation and exposure of individual animals to biochemical compounds, and a device for delivery of compound libraries in standard multiwell plates to microfluidic devices. The immobilization stability obtained by these devices is comparable to that of chemical anesthesia and the immobilization process does not affect lifespan, progeny production, or other aspects of animal health. The high-stability enables the use of a variety of key optical techniques. We use this to demonstrate femtosecond-laser nanosurgery and three-dimensional multiphoton microscopy. Used alone or in various combinations these devices facilitate a variety of high-throughput assays using whole animals, including mutagenesis and RNAi and drug screens at subcellular resolution, as well as high-throughput high-precision manipulations such as femtosecond-laser nanosurgery for large-scale in vivo neural degeneration and regeneration studies.
Multiscale Systems Modeling of Male Reproductive Tract Defects: from Genes to Populations (SOT)
The reproductive tract is a complex, integrated organ system with diverse embryology and unique sensitivity to prenatal environmental exposures that disrupt morphoregulatory processes and endocrine signaling. U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB...
Associating putative molecular initiating events (MIE) with downstream cell signaling pathways and modeling fetal exposure kinetics is an important challenge for integration in developmental systems toxicology. Here, we describe an integrative systems toxicology model for develop...
Crombach, Anton; Cicin-Sain, Damjan; Wotton, Karl R; Jaeger, Johannes
2012-01-01
Understanding the function and evolution of developmental regulatory networks requires the characterisation and quantification of spatio-temporal gene expression patterns across a range of systems and species. However, most high-throughput methods to measure the dynamics of gene expression do not preserve the detailed spatial information needed in this context. For this reason, quantification methods based on image bioinformatics have become increasingly important over the past few years. Most available approaches in this field either focus on the detailed and accurate quantification of a small set of gene expression patterns, or attempt high-throughput analysis of spatial expression through binary pattern extraction and large-scale analysis of the resulting datasets. Here we present a robust, "medium-throughput" pipeline to process in situ hybridisation patterns from embryos of different species of flies. It bridges the gap between high-resolution, and high-throughput image processing methods, enabling us to quantify graded expression patterns along the antero-posterior axis of the embryo in an efficient and straightforward manner. Our method is based on a robust enzymatic (colorimetric) in situ hybridisation protocol and rapid data acquisition through wide-field microscopy. Data processing consists of image segmentation, profile extraction, and determination of expression domain boundary positions using a spline approximation. It results in sets of measured boundaries sorted by gene and developmental time point, which are analysed in terms of expression variability or spatio-temporal dynamics. Our method yields integrated time series of spatial gene expression, which can be used to reverse-engineer developmental gene regulatory networks across species. It is easily adaptable to other processes and species, enabling the in silico reconstitution of gene regulatory networks in a wide range of developmental contexts.
NASA Astrophysics Data System (ADS)
Lin, W.; Noormets, A.; domec, J.; King, J. S.; Sun, G.; McNulty, S.
2012-12-01
Wood stable isotope ratios (δ13C and δ18O) offer insight to water source and plant water use efficiency (WUE), which in turn provide a glimpse to potential plant responses to changing climate, particularly rainfall patterns. The synthetic pathways of cell wall deposition in wood rings differ in their discrimination ratios between the light and heavy isotopes, and α-cellulose is broadly seen as the best indicator of plant water status due to its local and temporal fixation and to its high abundance within the wood. To use the effects of recent severe droughts on the WUE of loblolly pine (Pinus taeda) throughout Southeastern USA as a harbinger of future changes, an effort has been undertaken to sample the entire range of the species and to sample the isotopic composition in a consistent manner. To be able to accommodate the large number of samples required by this analysis, we have developed a new high-throughput method for α-cellulose extraction, which is the rate-limiting step in such an endeavor. Although an entire family of methods has been developed and perform well, their throughput in a typical research lab setting is limited to 16-75 samples per week with intensive labor input. The resin exclusion step in conifersis is particularly time-consuming. We have combined the recent advances of α-cellulose extraction in plant ecology and wood science, including a high-throughput extraction device developed in the Potsdam Dendro Lab and a simple chemical-based resin exclusion method. By transferring the entire extraction process to a multiport-based system allows throughputs of up to several hundred samples in two weeks, while minimizing labor requirements to 2-3 days per batch of samples.
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L.; Page, Terry L.; Bhuva, Bharat; Broadie, Kendal
2016-01-01
Background Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. New Method The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. Results The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24 hours) are comparable to traditional manual experiments, while minimizing experimenter involvement. Comparison with Existing Methods The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ~$500US, making it affordable to a wide range of investigators. Conclusions This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. PMID:26703418
Jiang, Hui; Hanna, Eriny; Gatto, Cheryl L; Page, Terry L; Bhuva, Bharat; Broadie, Kendal
2016-03-01
Aversive olfactory classical conditioning has been the standard method to assess Drosophila learning and memory behavior for decades, yet training and testing are conducted manually under exceedingly labor-intensive conditions. To overcome this severe limitation, a fully automated, inexpensive system has been developed, which allows accurate and efficient Pavlovian associative learning/memory analyses for high-throughput pharmacological and genetic studies. The automated system employs a linear actuator coupled to an odorant T-maze with airflow-mediated transfer of animals between training and testing stages. Odorant, airflow and electrical shock delivery are automatically administered and monitored during training trials. Control software allows operator-input variables to define parameters of Drosophila learning, short-term memory and long-term memory assays. The approach allows accurate learning/memory determinations with operational fail-safes. Automated learning indices (immediately post-training) and memory indices (after 24h) are comparable to traditional manual experiments, while minimizing experimenter involvement. The automated system provides vast improvements over labor-intensive manual approaches with no experimenter involvement required during either training or testing phases. It provides quality control tracking of airflow rates, odorant delivery and electrical shock treatments, and an expanded platform for high-throughput studies of combinational drug tests and genetic screens. The design uses inexpensive hardware and software for a total cost of ∼$500US, making it affordable to a wide range of investigators. This study demonstrates the design, construction and testing of a fully automated Drosophila olfactory classical association apparatus to provide low-labor, high-fidelity, quality-monitored, high-throughput and inexpensive learning and memory behavioral assays. Copyright © 2015 Elsevier B.V. All rights reserved.
Using ALFA for high throughput, distributed data transmission in the ALICE O2 system
NASA Astrophysics Data System (ADS)
Wegrzynek, A.;
2017-10-01
ALICE (A Large Ion Collider Experiment) is a heavy-ion detector designed to study the physics of strongly interacting matter (the Quark-Gluon Plasma at the CERN LHC (Large Hadron Collider). ALICE has been successfully collecting physics data in Run 2 since spring 2015. In parallel, preparations for a major upgrade of the computing system, called O2 (Online-Offline), scheduled for the Long Shutdown 2 in 2019-2020, are being made. One of the major requirements of the system is the capacity to transport data between so-called FLPs (First Level Processors), equipped with readout cards, and the EPNs (Event Processing Node), performing data aggregation, frame building and partial reconstruction. It is foreseen to have 268 FLPs dispatching data to 1500 EPNs with an average output of 20 Gb/s each. In overall, the O2 processing system will operate at terabits per second of throughput while handling millions of concurrent connections. The ALFA framework will standardize and handle software related tasks such as readout, data transport, frame building, calibration, online reconstruction and more in the upgraded computing system. ALFA supports two data transport libraries: ZeroMQ and nanomsg. This paper discusses the efficiency of ALFA in terms of high throughput data transport. The tests were performed with multiple FLPs pushing data to multiple EPNs. The transfer was done using push-pull communication patterns and two socket configurations: bind, connect. The set of benchmarks was prepared to get the most performant results on each hardware setup. The paper presents the measurement process and final results - data throughput combined with computing resources usage as a function of block size. The high number of nodes and connections in the final set up may cause race conditions that can lead to uneven load balancing and poor scalability. The performed tests allow us to validate whether the traffic is distributed evenly over all receivers. It also measures the behaviour of the network in saturation and evaluates scalability from a 1-to-1 to a N-to-M solution.
TCP Throughput Profiles Using Measurements over Dedicated Connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Nageswara S.; Liu, Qiang; Sen, Satyabrata
Wide-area data transfers in high-performance computing infrastructures are increasingly being carried over dynamically provisioned dedicated network connections that provide high capacities with no competing traffic. We present extensive TCP throughput measurements and time traces over a suite of physical and emulated 10 Gbps connections with 0-366 ms round-trip times (RTTs). Contrary to the general expectation, they show significant statistical and temporal variations, in addition to the overall dependencies on the congestion control mechanism, buffer size, and the number of parallel streams. We analyze several throughput profiles that have highly desirable concave regions wherein the throughput decreases slowly with RTTs, inmore » stark contrast to the convex profiles predicted by various TCP analytical models. We present a generic throughput model that abstracts the ramp-up and sustainment phases of TCP flows, which provides insights into qualitative trends observed in measurements across TCP variants: (i) slow-start followed by well-sustained throughput leads to concave regions; (ii) large buffers and multiple parallel streams expand the concave regions in addition to improving the throughput; and (iii) stable throughput dynamics, indicated by a smoother Poincare map and smaller Lyapunov exponents, lead to wider concave regions. These measurements and analytical results together enable us to select a TCP variant and its parameters for a given connection to achieve high throughput with statistical guarantees.« less
Perera, Rushini S.; Ding, Xavier C.; Tully, Frank; Oliver, James; Bright, Nigel; Bell, David; Chiodini, Peter L.; Gonzalez, Iveth J.; Polley, Spencer D.
2017-01-01
Background Accurate and efficient detection of sub-microscopic malaria infections is crucial for enabling rapid treatment and interruption of transmission. Commercially available malaria LAMP kits have excellent diagnostic performance, though throughput is limited by the need to prepare samples individually. Here, we evaluate the clinical performance of a newly developed high throughput (HTP) sample processing system for use in conjunction with the Eiken malaria LAMP kit. Methods The HTP system utilised dried blood spots (DBS) and liquid whole blood (WB), with parallel sample processing of 94 samples per run. The system was evaluated using 699 samples of known infection status pre-determined by gold standard nested PCR. Results The sensitivity and specificity of WB-HTP-LAMP was 98.6% (95% CI, 95.7–100), and 99.7% (95% CI, 99.2–100); sensitivity of DBS-HTP-LAMP was 97.1% (95% CI, 93.1–100), and specificity 100% against PCR. At parasite densities greater or equal to 2 parasites/μL, WB and DBS HTP-LAMP showed 100% sensitivity and specificity against PCR. At densities less than 2 p/μL, WB-HTP-LAMP sensitivity was 88.9% (95% CI, 77.1–100) and specificity was 99.7% (95% CI, 99.2–100); sensitivity and specificity of DBS-HTP-LAMP was 77.8% (95% CI, 54.3–99.5) and 100% respectively. Conclusions The HTP-LAMP system is a highly sensitive diagnostic test, with the potential to allow large scale population screening in malaria elimination campaigns. PMID:28166235
Brito Palma, Bernardo; Fisher, Charles W; Rueff, José; Kranendonk, Michel
2016-05-16
The formation of reactive metabolites through biotransformation is the suspected cause of many adverse drug reactions. Testing for the propensity of a drug to form reactive metabolites has increasingly become an integral part of lead-optimization strategy in drug discovery. DNA reactivity is one undesirable facet of a drug or its metabolites and can lead to increased risk of cancer and reproductive toxicity. Many drugs are metabolized by cytochromes P450 in the liver and other tissues, and these reactions can generate hard electrophiles. These hard electrophilic reactive metabolites may react with DNA and may be detected in standard in vitro genotoxicity assays; however, the majority of these assays fall short due to the use of animal-derived organ extracts that inadequately represent human metabolism. The current study describes the development of bacterial systems that efficiently detect DNA-damaging electrophilic reactive metabolites generated by human P450 biotransformation. These assays use a GFP reporter system that detects DNA damage through induction of the SOS response and a GFP reporter to control for cytotoxicity. Two human CYP1A2-competent prototypes presented here have appropriate characteristics for the detection of DNA-damaging reactive metabolites in a high-throughput manner. The advantages of this approach include a short assay time (120-180 min) with real-time measurement, sensitivity to small amounts of compound, and adaptability to a microplate format. These systems are suitable for high-throughput assays and can serve as prototypes for the development of future enhanced versions.
Purdue Ionomics Information Management System. An Integrated Functional Genomics Platform1[C][W][OA
Baxter, Ivan; Ouzzani, Mourad; Orcun, Seza; Kennedy, Brad; Jandhyala, Shrinivas S.; Salt, David E.
2007-01-01
The advent of high-throughput phenotyping technologies has created a deluge of information that is difficult to deal with without the appropriate data management tools. These data management tools should integrate defined workflow controls for genomic-scale data acquisition and validation, data storage and retrieval, and data analysis, indexed around the genomic information of the organism of interest. To maximize the impact of these large datasets, it is critical that they are rapidly disseminated to the broader research community, allowing open access for data mining and discovery. We describe here a system that incorporates such functionalities developed around the Purdue University high-throughput ionomics phenotyping platform. The Purdue Ionomics Information Management System (PiiMS) provides integrated workflow control, data storage, and analysis to facilitate high-throughput data acquisition, along with integrated tools for data search, retrieval, and visualization for hypothesis development. PiiMS is deployed as a World Wide Web-enabled system, allowing for integration of distributed workflow processes and open access to raw data for analysis by numerous laboratories. PiiMS currently contains data on shoot concentrations of P, Ca, K, Mg, Cu, Fe, Zn, Mn, Co, Ni, B, Se, Mo, Na, As, and Cd in over 60,000 shoot tissue samples of Arabidopsis (Arabidopsis thaliana), including ethyl methanesulfonate, fast-neutron and defined T-DNA mutants, and natural accession and populations of recombinant inbred lines from over 800 separate experiments, representing over 1,000,000 fully quantitative elemental concentrations. PiiMS is accessible at www.purdue.edu/dp/ionomics. PMID:17189337
High throughput toxicology programs, such as ToxCast and Tox21, have provided biological effects data for thousands of chemicals at multiple concentrations. Compared to traditional, whole-organism approaches, high throughput assays are rapid and cost-effective, yet they generall...
The U.S. EPA, under its ExpoCast program, is developing high-throughput near-field modeling methods to estimate human chemical exposure and to provide real-world context to high-throughput screening (HTS) hazard data. These novel modeling methods include reverse methods to infer ...
Yang, Fang; Lei, Yingying; Zhou, Meiling; Yao, Qili; Han, Yichao; Wu, Xiang; Zhong, Wanshun; Zhu, Chenghang; Xu, Weize; Tao, Ran; Chen, Xi; Lin, Da; Rahman, Khaista; Tyagi, Rohit; Habib, Zeshan; Xiao, Shaobo; Wang, Dang; Yu, Yang; Chen, Huanchun; Fu, Zhenfang; Cao, Gang
2018-02-16
Protein-protein interaction (PPI) network maintains proper function of all organisms. Simple high-throughput technologies are desperately needed to delineate the landscape of PPI networks. While recent state-of-the-art yeast two-hybrid (Y2H) systems improved screening efficiency, either individual colony isolation, library preparation arrays, gene barcoding or massive sequencing are still required. Here, we developed a recombination-based 'library vs library' Y2H system (RLL-Y2H), by which multi-library screening can be accomplished in a single pool without any individual treatment. This system is based on the phiC31 integrase-mediated integration between bait and prey plasmids. The integrated fragments were digested by MmeI and subjected to deep sequencing to decode the interaction matrix. We applied this system to decipher the trans-kingdom interactome between Mycobacterium tuberculosis and host cells and further identified Rv2427c interfering with the phagosome-lysosome fusion. This concept can also be applied to other systems to screen protein-RNA and protein-DNA interactions and delineate signaling landscape in cells.
Protocols and programs for high-throughput growth and aging phenotyping in yeast.
Jung, Paul P; Christian, Nils; Kay, Daniel P; Skupin, Alexander; Linster, Carole L
2015-01-01
In microorganisms, and more particularly in yeasts, a standard phenotyping approach consists in the analysis of fitness by growth rate determination in different conditions. One growth assay that combines high throughput with high resolution involves the generation of growth curves from 96-well plate microcultivations in thermostated and shaking plate readers. To push the throughput of this method to the next level, we have adapted it in this study to the use of 384-well plates. The values of the extracted growth parameters (lag time, doubling time and yield of biomass) correlated well between experiments carried out in 384-well plates as compared to 96-well plates or batch cultures, validating the higher-throughput approach for phenotypic screens. The method is not restricted to the use of the budding yeast Saccharomyces cerevisiae, as shown by consistent results for other species selected from the Hemiascomycete class. Furthermore, we used the 384-well plate microcultivations to develop and validate a higher-throughput assay for yeast Chronological Life Span (CLS), a parameter that is still commonly determined by a cumbersome method based on counting "Colony Forming Units". To accelerate analysis of the large datasets generated by the described growth and aging assays, we developed the freely available software tools GATHODE and CATHODE. These tools allow for semi-automatic determination of growth parameters and CLS behavior from typical plate reader output files. The described protocols and programs will increase the time- and cost-efficiency of a number of yeast-based systems genetics experiments as well as various types of screens.
PHILIS (PORTABLE HIGH-THROUGHPUT INTEGRATED LABORATORY IDENTIFICATION SYSTEM)
These mobile laboratory assets, for the on-site analysis of chemical warfare agent (CWA) and toxic industrial compound (TIC) contaminated environmental samples, are part of the evolving Environmental Response Laboratory Network (ERLN).
[Current applications of high-throughput DNA sequencing technology in antibody drug research].
Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong
2012-03-01
Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.
High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.
Wade, Mark
2015-09-01
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects. © 2015 Society for Laboratory Automation and Screening.
High-throughput ultraviolet photoacoustic microscopy with multifocal excitation
NASA Astrophysics Data System (ADS)
Imai, Toru; Shi, Junhui; Wong, Terence T. W.; Li, Lei; Zhu, Liren; Wang, Lihong V.
2018-03-01
Ultraviolet photoacoustic microscopy (UV-PAM) is a promising intraoperative tool for surgical margin assessment (SMA), one that can provide label-free histology-like images with high resolution. In this study, using a microlens array and a one-dimensional (1-D) array ultrasonic transducer, we developed a high-throughput multifocal UV-PAM (MF-UV-PAM). Our new system achieved a 1.6 ± 0.2 μm lateral resolution and produced images 40 times faster than the previously developed point-by-point scanning UV-PAM. MF-UV-PAM provided a readily comprehensible photoacoustic image of a mouse brain slice with specific absorption contrast in ˜16 min, highlighting cell nuclei. Individual cell nuclei could be clearly resolved, showing its practical potential for intraoperative SMA.
Modeling and Simulation Reliable Spacecraft On-Board Computing
NASA Technical Reports Server (NTRS)
Park, Nohpill
1999-01-01
The proposed project will investigate modeling and simulation-driven testing and fault tolerance schemes for Spacecraft On-Board Computing, thereby achieving reliable spacecraft telecommunication. A spacecraft communication system has inherent capabilities of providing multipoint and broadcast transmission, connectivity between any two distant nodes within a wide-area coverage, quick network configuration /reconfiguration, rapid allocation of space segment capacity, and distance-insensitive cost. To realize the capabilities above mentioned, both the size and cost of the ground-station terminals have to be reduced by using reliable, high-throughput, fast and cost-effective on-board computing system which has been known to be a critical contributor to the overall performance of space mission deployment. Controlled vulnerability of mission data (measured in sensitivity), improved performance (measured in throughput and delay) and fault tolerance (measured in reliability) are some of the most important features of these systems. The system should be thoroughly tested and diagnosed before employing a fault tolerance into the system. Testing and fault tolerance strategies should be driven by accurate performance models (i.e. throughput, delay, reliability and sensitivity) to find an optimal solution in terms of reliability and cost. The modeling and simulation tools will be integrated with a system architecture module, a testing module and a module for fault tolerance all of which interacting through a centered graphical user interface.
77 FR 68773 - FIFRA Scientific Advisory Panel; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... for physical chemical properties that cannot be easily tested in in vitro systems or stable enough for.... Quantitative structural-activity relationship (QSAR) models and estrogen receptor (ER) expert systems development. High-throughput data generation and analysis (expertise focused on how this methodology can be...
Awan, Muaaz Gul; Saeed, Fahad
2016-05-15
Modern proteomics studies utilize high-throughput mass spectrometers which can produce data at an astonishing rate. These big mass spectrometry (MS) datasets can easily reach peta-scale level creating storage and analytic problems for large-scale systems biology studies. Each spectrum consists of thousands of peaks which have to be processed to deduce the peptide. However, only a small percentage of peaks in a spectrum are useful for peptide deduction as most of the peaks are either noise or not useful for a given spectrum. This redundant processing of non-useful peaks is a bottleneck for streaming high-throughput processing of big MS data. One way to reduce the amount of computation required in a high-throughput environment is to eliminate non-useful peaks. Existing noise removing algorithms are limited in their data-reduction capability and are compute intensive making them unsuitable for big data and high-throughput environments. In this paper we introduce a novel low-complexity technique based on classification, quantization and sampling of MS peaks. We present a novel data-reductive strategy for analysis of Big MS data. Our algorithm, called MS-REDUCE, is capable of eliminating noisy peaks as well as peaks that do not contribute to peptide deduction before any peptide deduction is attempted. Our experiments have shown up to 100× speed up over existing state of the art noise elimination algorithms while maintaining comparable high quality matches. Using our approach we were able to process a million spectra in just under an hour on a moderate server. The developed tool and strategy has been made available to wider proteomics and parallel computing community and the code can be found at https://github.com/pcdslab/MSREDUCE CONTACT: : fahad.saeed@wmich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
High-throughput full-length single-cell mRNA-seq of rare cells.
Ooi, Chin Chun; Mantalas, Gary L; Koh, Winston; Neff, Norma F; Fuchigami, Teruaki; Wong, Dawson J; Wilson, Robert J; Park, Seung-Min; Gambhir, Sanjiv S; Quake, Stephen R; Wang, Shan X
2017-01-01
Single-cell characterization techniques, such as mRNA-seq, have been applied to a diverse range of applications in cancer biology, yielding great insight into mechanisms leading to therapy resistance and tumor clonality. While single-cell techniques can yield a wealth of information, a common bottleneck is the lack of throughput, with many current processing methods being limited to the analysis of small volumes of single cell suspensions with cell densities on the order of 107 per mL. In this work, we present a high-throughput full-length mRNA-seq protocol incorporating a magnetic sifter and magnetic nanoparticle-antibody conjugates for rare cell enrichment, and Smart-seq2 chemistry for sequencing. We evaluate the efficiency and quality of this protocol with a simulated circulating tumor cell system, whereby non-small-cell lung cancer cell lines (NCI-H1650 and NCI-H1975) are spiked into whole blood, before being enriched for single-cell mRNA-seq by EpCAM-functionalized magnetic nanoparticles and the magnetic sifter. We obtain high efficiency (> 90%) capture and release of these simulated rare cells via the magnetic sifter, with reproducible transcriptome data. In addition, while mRNA-seq data is typically only used for gene expression analysis of transcriptomic data, we demonstrate the use of full-length mRNA-seq chemistries like Smart-seq2 to facilitate variant analysis of expressed genes. This enables the use of mRNA-seq data for differentiating cells in a heterogeneous population by both their phenotypic and variant profile. In a simulated heterogeneous mixture of circulating tumor cells in whole blood, we utilize this high-throughput protocol to differentiate these heterogeneous cells by both their phenotype (lung cancer versus white blood cells), and mutational profile (H1650 versus H1975 cells), in a single sequencing run. This high-throughput method can help facilitate single-cell analysis of rare cell populations, such as circulating tumor or endothelial cells, with demonstrably high-quality transcriptomic data.
Lessons from high-throughput protein crystallization screening: 10 years of practical experience
JR, Luft; EH, Snell; GT, DeTitta
2011-01-01
Introduction X-ray crystallography provides the majority of our structural biological knowledge at a molecular level and in terms of pharmaceutical design is a valuable tool to accelerate discovery. It is the premier technique in the field, but its usefulness is significantly limited by the need to grow well-diffracting crystals. It is for this reason that high-throughput crystallization has become a key technology that has matured over the past 10 years through the field of structural genomics. Areas covered The authors describe their experiences in high-throughput crystallization screening in the context of structural genomics and the general biomedical community. They focus on the lessons learnt from the operation of a high-throughput crystallization screening laboratory, which to date has screened over 12,500 biological macromolecules. They also describe the approaches taken to maximize the success while minimizing the effort. Through this, the authors hope that the reader will gain an insight into the efficient design of a laboratory and protocols to accomplish high-throughput crystallization on a single-, multiuser-laboratory or industrial scale. Expert Opinion High-throughput crystallization screening is readily available but, despite the power of the crystallographic technique, getting crystals is still not a solved problem. High-throughput approaches can help when used skillfully; however, they still require human input in the detailed analysis and interpretation of results to be more successful. PMID:22646073
High-throughput screening based on label-free detection of small molecule microarrays
NASA Astrophysics Data System (ADS)
Zhu, Chenggang; Fei, Yiyan; Zhu, Xiangdong
2017-02-01
Based on small-molecule microarrays (SMMs) and oblique-incidence reflectivity difference (OI-RD) scanner, we have developed a novel high-throughput drug preliminary screening platform based on label-free monitoring of direct interactions between target proteins and immobilized small molecules. The screening platform is especially attractive for screening compounds against targets of unknown function and/or structure that are not compatible with functional assay development. In this screening platform, OI-RD scanner serves as a label-free detection instrument which is able to monitor about 15,000 biomolecular interactions in a single experiment without the need to label any biomolecule. Besides, SMMs serves as a novel format for high-throughput screening by immobilization of tens of thousands of different compounds on a single phenyl-isocyanate functionalized glass slide. Based on the high-throughput screening platform, we sequentially screened five target proteins (purified target proteins or cell lysate containing target protein) in high-throughput and label-free mode. We found hits for respective target protein and the inhibition effects for some hits were confirmed by following functional assays. Compared to traditional high-throughput screening assay, the novel high-throughput screening platform has many advantages, including minimal sample consumption, minimal distortion of interactions through label-free detection, multi-target screening analysis, which has a great potential to be a complementary screening platform in the field of drug discovery.
Lin, Frank Yeong-Sung; Hsiao, Chiu-Han; Yen, Hong-Hsu; Hsieh, Yu-Jen
2013-01-01
One of the important applications in Wireless Sensor Networks (WSNs) is video surveillance that includes the tasks of video data processing and transmission. Processing and transmission of image and video data in WSNs has attracted a lot of attention in recent years. This is known as Wireless Visual Sensor Networks (WVSNs). WVSNs are distributed intelligent systems for collecting image or video data with unique performance, complexity, and quality of service challenges. WVSNs consist of a large number of battery-powered and resource constrained camera nodes. End-to-end delay is a very important Quality of Service (QoS) metric for video surveillance application in WVSNs. How to meet the stringent delay QoS in resource constrained WVSNs is a challenging issue that requires novel distributed and collaborative routing strategies. This paper proposes a Near-Optimal Distributed QoS Constrained (NODQC) routing algorithm to achieve an end-to-end route with lower delay and higher throughput. A Lagrangian Relaxation (LR)-based routing metric that considers the “system perspective” and “user perspective” is proposed to determine the near-optimal routing paths that satisfy end-to-end delay constraints with high system throughput. The empirical results show that the NODQC routing algorithm outperforms others in terms of higher system throughput with lower average end-to-end delay and delay jitter. In this paper, for the first time, the algorithm shows how to meet the delay QoS and at the same time how to achieve higher system throughput in stringently resource constrained WVSNs.
USDA-ARS?s Scientific Manuscript database
The field of high-content screening (HCS) typically uses measures of screen quality conceived for fairly straightforward high-throughput screening (HTS) scenarios. However, in contrast to HTS, image-based HCS systems rely on multidimensional readouts reporting biological responses associated with co...
Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections
NASA Technical Reports Server (NTRS)
Tchorowski, Nicole; Murawski, Robert
2014-01-01
New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option, such as during real time transmissions, the SLE implementation cannot support high data rate communication.
QPatch: the missing link between HTS and ion channel drug discovery.
Mathes, Chris; Friis, Søren; Finley, Michael; Liu, Yi
2009-01-01
The conventional patch clamp has long been considered the best approach for studying ion channel function and pharmacology. However, its low throughput has been a major hurdle to overcome for ion channel drug discovery. The recent emergence of higher throughput, automated patch clamp technology begins to break this bottleneck by providing medicinal chemists with high-quality, information-rich data in a more timely fashion. As such, these technologies have the potential to bridge a critical missing link between high-throughput primary screening and meaningful ion channel drug discovery programs. One of these technologies, the QPatch automated patch clamp system developed by Sophion Bioscience, records whole-cell ion channel currents from 16 or 48 individual cells in a parallel fashion. Here, we review the general applicability of the QPatch to studying a wide variety of ion channel types (voltage-/ligand-gated cationic/anionic channels) in various expression systems. The success rate of gigaseals, formation of the whole-cell configuration and usable cells ranged from 40-80%, depending on a number of factors including the cell line used, ion channel expressed, assay development or optimization time and expression level in these studies. We present detailed analyses of the QPatch features and results in case studies in which secondary screening assays were successfully developed for a voltage-gated calcium channel and a ligand-gated TRP channel. The increase in throughput compared to conventional patch clamp with the same cells was approximately 10-fold. We conclude that the QPatch, combining high data quality and speed with user friendliness and suitability for a wide array of ion channels, resides on the cutting edge of automated patch clamp technology and plays a pivotal role in expediting ion channel drug discovery.
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Wu, Szu-Huei; Yao, Chun-Hsu; Hsieh, Chieh-Jui; Liu, Yu-Wei; Chao, Yu-Sheng; Song, Jen-Shin; Lee, Jinq-Chyi
2015-07-10
Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors are of current interest as a treatment for type 2 diabetes. Efforts have been made to discover phlorizin-related glycosides with good SGLT2 inhibitory activity. To increase structural diversity and better understand the role of non-glycoside SGLT2 inhibitors on glycemic control, we initiated a research program to identify non-glycoside hits from high-throughput screening. Here, we report the development of a novel, fluorogenic probe-based glucose uptake system based on a Cu(I)-catalyzed [3+2] cycloaddition. The safer processes and cheaper substances made the developed assay our first priority for large-scale primary screening as compared to the well-known [(14)C]-labeled α-methyl-D-glucopyranoside ([(14)C]-AMG) radioactive assay. This effort culminated in the identification of a benzimidazole, non-glycoside SGLT2 hit with an EC50 value of 0.62 μM by high-throughput screening of 41,000 compounds. Copyright © 2015 Elsevier B.V. All rights reserved.
High-throughput diagnosis of potato cyst nematodes in soil samples.
Reid, Alex; Evans, Fiona; Mulholland, Vincent; Cole, Yvonne; Pickup, Jon
2015-01-01
Potato cyst nematode (PCN) is a damaging soilborne pest of potatoes which can cause major crop losses. In 2010, a new European Union directive (2007/33/EC) on the control of PCN came into force. Under the new directive, seed potatoes can only be planted on land which has been found to be free from PCN infestation following an official soil test. A major consequence of the new directive was the introduction of a new harmonized soil sampling rate resulting in a threefold increase in the number of samples requiring testing. To manage this increase with the same staffing resources, we have replaced the traditional diagnostic methods. A system has been developed for the processing of soil samples, extraction of DNA from float material, and detection of PCN by high-throughput real-time PCR. Approximately 17,000 samples are analyzed each year using this method. This chapter describes the high-throughput processes for the production of float material from soil samples, DNA extraction from the entire float, and subsequent detection and identification of PCN within these samples.
Zhang, Shu-Xin; Peng, Rong; Jiang, Ran; Chai, Xin-Sheng; Barnes, Donald G
2018-02-23
This paper reports on a high-throughput headspace gas chromatographic method (HS-GC) for the determination of nitrite content in water sample, based on GC measurement of cyclohexene produced from the reaction between nitrite and cyclamate in a closed vial. The method has a relative standard deviation of <3.5%; The differences between the results of the nitrite measurements obtained by this method and those of a reference method were less than 5.8% and the recoveries of the method were in the range of 94.8-102% (for a spiked nitrite content range from 0.002 to 0.03 mg/L). The limit of detection of the method was 0.46 μg L -1 . Due to an overlapping mode in the headspace auto-sampler system, the method can provide an automated and high-throughput nitrite analysis for the surface water samples. In short, the present HS-GC method is simple, accurate, and sensitive, and it is very suitable to be used in the batch sample testing. Copyright © 2018 Elsevier B.V. All rights reserved.
Development and use of molecular markers: past and present.
Grover, Atul; Sharma, P C
2016-01-01
Molecular markers, due to their stability, cost-effectiveness and ease of use provide an immensely popular tool for a variety of applications including genome mapping, gene tagging, genetic diversity diversity, phylogenetic analysis and forensic investigations. In the last three decades, a number of molecular marker techniques have been developed and exploited worldwide in different systems. However, only a handful of these techniques, namely RFLPs, RAPDs, AFLPs, ISSRs, SSRs and SNPs have received global acceptance. A recent revolution in DNA sequencing techniques has taken the discovery and application of molecular markers to high-throughput and ultrahigh-throughput levels. Although, the choice of marker will obviously depend on the targeted use, microsatellites, SNPs and genotyping by sequencing (GBS) largely fulfill most of the user requirements. Further, modern transcriptomic and functional markers will lead the ventures onto high-density genetic map construction, identification of QTLs, breeding and conservation strategies in times to come in combination with other high throughput techniques. This review presents an overview of different marker technologies and their variants with a comparative account of their characteristic features and applications.
Rioualen, Claire; Da Costa, Quentin; Chetrit, Bernard; Charafe-Jauffret, Emmanuelle; Ginestier, Christophe
2017-01-01
High-throughput RNAi screenings (HTS) allow quantifying the impact of the deletion of each gene in any particular function, from virus-host interactions to cell differentiation. However, there has been less development for functional analysis tools dedicated to RNAi analyses. HTS-Net, a network-based analysis program, was developed to identify gene regulatory modules impacted in high-throughput screenings, by integrating transcription factors-target genes interaction data (regulome) and protein-protein interaction networks (interactome) on top of screening z-scores. HTS-Net produces exhaustive HTML reports for results navigation and exploration. HTS-Net is a new pipeline for RNA interference screening analyses that proves better performance than simple gene rankings by z-scores, by re-prioritizing genes and replacing them in their biological context, as shown by the three studies that we reanalyzed. Formatted input data for the three studied datasets, source code and web site for testing the system are available from the companion web site at http://htsnet.marseille.inserm.fr/. We also compared our program with existing algorithms (CARD and hotnet2). PMID:28949986
Lueangchaichaweng, Warunee; Geukens, Inge; Peeters, Annelies; Jarry, Benjamin; Launay, Franck; Bonardet, Jean-Luc; Jacobs, Pierre A; Pescarmona, Paolo P
2012-02-01
Transition-metal-free oxides were studied as heterogeneous catalysts for the sustainable epoxidation of alkenes with aqueous H₂O₂ by means of high throughput experimentation (HTE) techniques. A full-factorial HTE approach was applied in the various stages of the development of the catalysts: the synthesis of the materials, their screening as heterogeneous catalysts in liquid-phase epoxidation and the optimisation of the reaction conditions. Initially, the chemical composition of transition-metal-free oxides was screened, leading to the discovery of gallium oxide as a novel, active and selective epoxidation catalyst. On the basis of these results, the research line was continued with the study of structured porous aluminosilicates, gallosilicates and silica-gallia composites. In general, the gallium-based materials showed the best catalytic performances. This family of materials represents a promising class of heterogeneous catalysts for the sustainable epoxidation of alkenes and offers a valid alternative to the transition-metal heterogeneous catalysts commonly used in epoxidation. High throughput experimentation played an important role in promoting the development of these catalytic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhabra, S.R.; Butland, G.; Elias, D.
The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high- throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA “parts” to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications including gene replacement and creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications inmore » a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation.« less
Use of high-throughput mass spectrometry to elucidate host pathogen interactions in Salmonella
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodland, Karin D.; Adkins, Joshua N.; Ansong, Charles
Capabilities in mass spectrometry are evolving rapidly, with recent improvements in sensitivity, data analysis, and most important, from the standpoint of this review, much higher throughput allowing analysis of many samples in a single day. This short review describes how these improvements in mass spectrometry can be used to dissect host-pathogen interactions using Salmonella as a model system. This approach enabled direct identification of the majority of annotated Salmonella proteins, quantitation of expression changes under various in vitro growth conditions, and new insights into virulence and expression of Salmonella proteins within host cell cells. One of the most significant findingsmore » is that a very high percentage of the all annotated genes (>20%) in Salmonella are regulated post-transcriptionally. In addition, new and unexpected interactions have been identified for several Salmonella virulence regulators that involve protein-protein interactions, suggesting additional functions of these regulators in coordinating virulence expression. Overall high throughput mass spectrometry provides a new view of pathogen-host interactions emphasizing the protein products and defining how protein interactions determine the outcome of infection.« less
NASA Astrophysics Data System (ADS)
Zhu, Feng; Akagi, Jin; Hall, Chris J.; Crosier, Kathryn E.; Crosier, Philip S.; Delaage, Pierre; Wlodkowic, Donald
2013-12-01
Drug discovery screenings performed on zebrafish embryos mirror with a high level of accuracy. The tests usually performed on mammalian animal models, and the fish embryo toxicity assay (FET) is one of the most promising alternative approaches to acute ecotoxicity testing with adult fish. Notwithstanding this, conventional methods utilising 96-well microtiter plates and manual dispensing of fish embryos are very time-consuming. They rely on laborious and iterative manual pipetting that is a main source of analytical errors and low throughput. In this work, we present development of a miniaturised and high-throughput Lab-on-a-Chip (LOC) platform for automation of FET assays. The 3D high-density LOC array was fabricated in poly-methyl methacrylate (PMMA) transparent thermoplastic using infrared laser micromachining while the off-chip interfaces were fabricated using additive manufacturing processes (FDM and SLA). The system's design facilitates rapid loading and immobilization of a large number of embryos in predefined clusters of traps during continuous microperfusion of drugs/toxins. It has been conceptually designed to seamlessly interface with both upright and inverted fluorescent imaging systems and also to directly interface with conventional microtiter plate readers that accept 96-well plates. We also present proof-of-concept interfacing with a high-speed imaging cytometer Plate RUNNER HD® capable of multispectral image acquisition with resolution of up to 8192 x 8192 pixels and depth of field of about 40 μm. Furthermore, we developed a miniaturized and self-contained analytical device interfaced with a miniaturized USB microscope. This system modification is capable of performing rapid imaging of multiple embryos at a low resolution for drug toxicity analysis.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System.
Olatinwo, Segun O; Joubert, Trudi-H
2018-04-13
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near-far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity.
Optimizing the Energy and Throughput of a Water-Quality Monitoring System
Olatinwo, Segun O.
2018-01-01
This work presents a new approach to the maximization of energy and throughput in a wireless sensor network (WSN), with the intention of applying the approach to water-quality monitoring. Water-quality monitoring using WSN technology has become an interesting research area. Energy scarcity is a critical issue that plagues the widespread deployment of WSN systems. Different power supplies, harvesting energy from sustainable sources, have been explored. However, when energy-efficient models are not put in place, energy harvesting based WSN systems may experience an unstable energy supply, resulting in an interruption in communication, and low system throughput. To alleviate these problems, this paper presents the joint maximization of the energy harvested by sensor nodes and their information-transmission rate using a sum-throughput technique. A wireless information and power transfer (WIPT) method is considered by harvesting energy from dedicated radio frequency sources. Due to the doubly near–far condition that confronts WIPT systems, a new WIPT system is proposed to improve the fairness of resource utilization in the network. Numerical simulation results are presented to validate the mathematical formulations for the optimization problem, which maximize the energy harvested and the overall throughput rate. Defining the performance metrics of achievable throughput and fairness in resource sharing, the proposed WIPT system outperforms an existing state-of-the-art WIPT system, with the comparison based on numerical simulations of both systems. The improved energy efficiency of the proposed WIPT system contributes to addressing the problem of energy scarcity. PMID:29652866
Virtual Embryo: Systems Modeling in Developmental Toxicity
High-throughput and high-content screening (HTS-HCS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition t...
High Throughput and Mechano-Active Platforms to Promote Cartilage Regeneration and Repair
NASA Astrophysics Data System (ADS)
Mohanraj, Bhavana
Traumatic joint injuries initiate acute degenerative changes in articular cartilage that can lead to progressive loss of load-bearing function. As a result, patients often develop post-traumatic osteoarthritis (PTOA), a condition for which there currently exists no biologic interventions. To address this need, tissue engineering aims to mimic the structure and function of healthy, native counterparts. These constructs can be used to not only replace degenerated tissue, but also build in vitro, pre-clinical models of disease. Towards this latter goal, this thesis focuses on the design of a high throughput system to screen new therapeutics in a micro-engineered model of PTOA, and the development of a mechanically-responsive drug delivery system to augment tissue-engineered approaches for cartilage repair. High throughput screening is a powerful tool for drug discovery that can be adapted to include 3D tissue constructs. To facilitate this process for cartilage repair, we built a high throughput mechanical injury platform to create an engineered cartilage model of PTOA. Compressive injury of functionally mature constructs increased cell death and proteoglycan loss, two hallmarks of injury observed in vivo. Comparison of this response to that of native cartilage explants, and evaluation of putative therapeutics, validated this model for subsequent use in small molecule screens. A primary screen of 118 compounds identified a number of 'hits' and relevant pathways that may modulate pathologic signaling post-injury. To complement this process of therapeutic discovery, a stimuli-responsive delivery system was designed that used mechanical inputs as the 'trigger' mechanism for controlled release. The failure thresholds of these mechanically-activated microcapsules (MAMCs) were influenced by physical properties and composition, as well as matrix mechanical properties in 3D environments. TGF-beta released from the system upon mechano-activation stimulated stem cell chondrogenesis, demonstrating the potential of MAMCs to actively deliver therapeutics within demanding mechanical environments. Taken together, this work advances our capacity to identify and deliver new compounds of clinical relevance to modulate disease progression following traumatic injury using state-of-the-art micro-engineered screening tools and a novel mechanically-activated delivery system. These platforms advance strategies for cartilage repair and regeneration in PTOA and provide new options for the treatment of this debilitating condition.
Systems metabolic engineering: genome-scale models and beyond.
Blazeck, John; Alper, Hal
2010-07-01
The advent of high throughput genome-scale bioinformatics has led to an exponential increase in available cellular system data. Systems metabolic engineering attempts to use data-driven approaches--based on the data collected with high throughput technologies--to identify gene targets and optimize phenotypical properties on a systems level. Current systems metabolic engineering tools are limited for predicting and defining complex phenotypes such as chemical tolerances and other global, multigenic traits. The most pragmatic systems-based tool for metabolic engineering to arise is the in silico genome-scale metabolic reconstruction. This tool has seen wide adoption for modeling cell growth and predicting beneficial gene knockouts, and we examine here how this approach can be expanded for novel organisms. This review will highlight advances of the systems metabolic engineering approach with a focus on de novo development and use of genome-scale metabolic reconstructions for metabolic engineering applications. We will then discuss the challenges and prospects for this emerging field to enable model-based metabolic engineering. Specifically, we argue that current state-of-the-art systems metabolic engineering techniques represent a viable first step for improving product yield that still must be followed by combinatorial techniques or random strain mutagenesis to achieve optimal cellular systems.
A set of ligation-independent in vitro translation vectors for eukaryotic protein production.
Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás
2008-03-27
The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed which allow fast and parallel cloning and protein purification, thus representing useful molecular tools for high-throughput production of eukaryotic proteins.
Algorithm for fast event parameters estimation on GEM acquired data
NASA Astrophysics Data System (ADS)
Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz
2016-09-01
We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.
Vision-based Nano Robotic System for High-throughput Non-embedded Cell Cutting
NASA Astrophysics Data System (ADS)
Shang, Wanfeng; Lu, Haojian; Wan, Wenfeng; Fukuda, Toshio; Shen, Yajing
2016-03-01
Cell cutting is a significant task in biology study, but the highly productive non-embedded cell cutting is still a big challenge for current techniques. This paper proposes a vision-based nano robotic system and then realizes automatic non-embedded cell cutting with this system. First, the nano robotic system is developed and integrated with a nanoknife inside an environmental scanning electron microscopy (ESEM). Then, the positions of the nanoknife and the single cell are recognized, and the distance between them is calculated dynamically based on image processing. To guarantee the positioning accuracy and the working efficiency, we propose a distance-regulated speed adapting strategy, in which the moving speed is adjusted intelligently based on the distance between the nanoknife and the target cell. The results indicate that the automatic non-embedded cutting is able to be achieved within 1-2 mins with low invasion benefiting from the high precise nanorobot system and the sharp edge of nanoknife. This research paves a way for the high-throughput cell cutting at cell’s natural condition, which is expected to make significant impact on the biology studies, especially for the in-situ analysis at cellular and subcellular scale, such as cell interaction investigation, neural signal transduction and low invasive cell surgery.
Using Microelectrode Arrays for Neurotoxicity Screening
Chemicals can disrupt nervous system electrical activity, rapidly causing toxicity prior to, or in the absence of, biochemical or morphological changes. However, high-throughput, functional approaches to detect chemical induced changes in electrical excitability are lacking. Micr...
Erickson, Heidi S
2012-09-28
The future of personalized medicine depends on the ability to efficiently and rapidly elucidate a reliable set of disease-specific molecular biomarkers. High-throughput molecular biomarker analysis methods have been developed to identify disease risk, diagnostic, prognostic, and therapeutic targets in human clinical samples. Currently, high throughput screening allows us to analyze thousands of markers from one sample or one marker from thousands of samples and will eventually allow us to analyze thousands of markers from thousands of samples. Unfortunately, the inherent nature of current high throughput methodologies, clinical specimens, and cost of analysis is often prohibitive for extensive high throughput biomarker analysis. This review summarizes the current state of high throughput biomarker screening of clinical specimens applicable to genetic epidemiology and longitudinal population-based studies with a focus on considerations related to biospecimens, laboratory techniques, and sample pooling. Copyright © 2012 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leung, Elo; Huang, Amy; Cadag, Eithon
In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less
Leung, Elo; Huang, Amy; Cadag, Eithon; ...
2016-01-20
In this study, we introduce the Protein Sequence Annotation Tool (PSAT), a web-based, sequence annotation meta-server for performing integrated, high-throughput, genome-wide sequence analyses. Our goals in building PSAT were to (1) create an extensible platform for integration of multiple sequence-based bioinformatics tools, (2) enable functional annotations and enzyme predictions over large input protein fasta data sets, and (3) provide a web interface for convenient execution of the tools. In this paper, we demonstrate the utility of PSAT by annotating the predicted peptide gene products of Herbaspirillum sp. strain RV1423, importing the results of PSAT into EC2KEGG, and using the resultingmore » functional comparisons to identify a putative catabolic pathway, thereby distinguishing RV1423 from a well annotated Herbaspirillum species. This analysis demonstrates that high-throughput enzyme predictions, provided by PSAT processing, can be used to identify metabolic potential in an otherwise poorly annotated genome. Lastly, PSAT is a meta server that combines the results from several sequence-based annotation and function prediction codes, and is available at http://psat.llnl.gov/psat/. PSAT stands apart from other sequencebased genome annotation systems in providing a high-throughput platform for rapid de novo enzyme predictions and sequence annotations over large input protein sequence data sets in FASTA. PSAT is most appropriately applied in annotation of large protein FASTA sets that may or may not be associated with a single genome.« less
Framework for a Quantitative Systemic Toxicity Model (FutureToxII)
EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...
Aharonovich, Marius; Arnon, Shlomi
2005-08-01
Optical wireless communication (OWC) systems use the atmosphere as a propagation medium. However, a common problem is that from time to time moderate cloud and fog emerge between the receiver and the transmitter. These adverse weather conditions impose temporal broadening and power loss on the optical signal, which reduces the digital signal-to-noise ratio (DSNR), produces significant intersymbol interference (ISI), and degrades the communication system's bit error rate (BER) and throughput. We propose and investigate the use of a combined adaptive bandwidth mechanism and decision feedback equalizer (DFE) to mitigate these atmospheric multipath effects. Based on theoretical analysis and simulations of DSNR penalties, BER, and optimum system bandwidths, we show that a DFE improves the outdoor OWC system immunity to ISI in foggy weather while maintaining high throughput and desired low BER.
Acquisition of gamma camera and physiological data by computer.
Hack, S N; Chang, M; Line, B R; Cooper, J A; Robeson, G H
1986-11-01
We have designed, implemented, and tested a new Research Data Acquisition System (RDAS) that permits a general purpose digital computer to acquire signals from both gamma camera sources and physiological signal sources concurrently. This system overcomes the limited multi-source, high speed data acquisition capabilities found in most clinically oriented nuclear medicine computers. The RDAS can simultaneously input signals from up to four gamma camera sources with a throughput of 200 kHz per source and from up to eight physiological signal sources with an aggregate throughput of 50 kHz. Rigorous testing has found the RDAS to exhibit acceptable linearity and timing characteristics. In addition, flood images obtained by this system were compared with flood images acquired by a commercial nuclear medicine computer system. National Electrical Manufacturers Association performance standards of the flood images were found to be comparable.
A rapid high-resolution method for resolving DNA topoisomers.
Mitchenall, Lesley A; Hipkin, Rachel E; Piperakis, Michael M; Burton, Nicolas P; Maxwell, Anthony
2018-01-16
Agarose gel electrophoresis has been the mainstay technique for the analysis of DNA samples of moderate size. In addition to separating linear DNA molecules, it can also resolve different topological forms of plasmid DNAs, an application useful for the analysis of the reactions of DNA topoisomerases. However, gel electrophoresis is an intrinsically low-throughput technique and suffers from other potential disadvantages. We describe the application of the QIAxcel Advanced System, a high-throughput capillary electrophoresis system, to separate DNA topoisomers, and compare this technique with gel electrophoresis. We prepared a range of topoisomers of plasmids pBR322 and pUC19, and a 339 bp DNA minicircle, and compared their separation by gel electrophoresis and the QIAxcel System. We found superior resolution with the QIAxcel System, and that quantitative analysis of topoisomer distributions was straightforward. We show that the QIAxcel system has advantages in terms of speed, resolution and cost, and can be applied to DNA circles of various sizes. It can readily be adapted for use in compound screening against topoisomerase targets.
Improvement of an automated protein crystal exchange system PAM for high-throughput data collection
Hiraki, Masahiko; Yamada, Yusuke; Chavas, Leonard M. G.; Wakatsuki, Soichi; Matsugaki, Naohiro
2013-01-01
Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable. PMID:24121334
Multiplexed SNP genotyping using the Qbead™ system: a quantum dot-encoded microsphere-based assay
Xu, Hongxia; Sha, Michael Y.; Wong, Edith Y.; Uphoff, Janet; Xu, Yanzhang; Treadway, Joseph A.; Truong, Anh; O’Brien, Eamonn; Asquith, Steven; Stubbins, Michael; Spurr, Nigel K.; Lai, Eric H.; Mahoney, Walt
2003-01-01
We have developed a new method using the Qbead™ system for high-throughput genotyping of single nucleotide polymorphisms (SNPs). The Qbead system employs fluorescent Qdot™ semiconductor nanocrystals, also known as quantum dots, to encode microspheres that subsequently can be used as a platform for multiplexed assays. By combining mixtures of quantum dots with distinct emission wavelengths and intensities, unique spectral ‘barcodes’ are created that enable the high levels of multiplexing required for complex genetic analyses. Here, we applied the Qbead system to SNP genotyping by encoding microspheres conjugated to allele-specific oligonucleotides. After hybridization of oligonucleotides to amplicons produced by multiplexed PCR of genomic DNA, individual microspheres are analyzed by flow cytometry and each SNP is distinguished by its unique spectral barcode. Using 10 model SNPs, we validated the Qbead system as an accurate and reliable technique for multiplexed SNP genotyping. By modifying the types of probes conjugated to microspheres, the Qbead system can easily be adapted to other assay chemistries for SNP genotyping as well as to other applications such as analysis of gene expression and protein–protein interactions. With its capability for high-throughput automation, the Qbead system has the potential to be a robust and cost-effective platform for a number of applications. PMID:12682378
The Impact of the Condenser on Cytogenetic Image Quality in Digital Microscope System
Ren, Liqiang; Li, Zheng; Li, Yuhua; Zheng, Bin; Li, Shibo; Chen, Xiaodong; Liu, Hong
2013-01-01
Background: Optimizing operational parameters of the digital microscope system is an important technique to acquire high quality cytogenetic images and facilitate the process of karyotyping so that the efficiency and accuracy of diagnosis can be improved. OBJECTIVE: This study investigated the impact of the condenser on cytogenetic image quality and system working performance using a prototype digital microscope image scanning system. Methods: Both theoretical analysis and experimental validations through objectively evaluating a resolution test chart and subjectively observing large numbers of specimen were conducted. Results: The results show that the optimal image quality and large depth of field (DOF) are simultaneously obtained when the numerical aperture of condenser is set as 60%–70% of the corresponding objective. Under this condition, more analyzable chromosomes and diagnostic information are obtained. As a result, the system shows higher working stability and less restriction for the implementation of algorithms such as autofocusing especially when the system is designed to achieve high throughput continuous image scanning. Conclusions: Although the above quantitative results were obtained using a specific prototype system under the experimental conditions reported in this paper, the presented evaluation methodologies can provide valuable guidelines for optimizing operational parameters in cytogenetic imaging using the high throughput continuous scanning microscopes in clinical practice. PMID:23676284
High-Density Droplet Microarray of Individually Addressable Electrochemical Cells.
Zhang, Huijie; Oellers, Tobias; Feng, Wenqian; Abdulazim, Tarik; Saw, En Ning; Ludwig, Alfred; Levkin, Pavel A; Plumeré, Nicolas
2017-06-06
Microarray technology has shown great potential for various types of high-throughput screening applications. The main read-out methods of most microarray platforms, however, are based on optical techniques, limiting the scope of potential applications of such powerful screening technology. Electrochemical methods possess numerous complementary advantages over optical detection methods, including its label-free nature, capability of quantitative monitoring of various reporter molecules, and the ability to not only detect but also address compositions of individual compartments. However, application of electrochemical methods for the purpose of high-throughput screening remains very limited. In this work, we develop a high-density individually addressable electrochemical droplet microarray (eDMA). The eDMA allows for the detection of redox-active reporter molecules irrespective of their electrochemical reversibility in individual nanoliter-sized droplets. Orthogonal band microelectrodes are arranged to form at their intersections an array of three-electrode systems for precise control of the applied potential, which enables direct read-out of the current related to analyte detection. The band microelectrode array is covered with a layer of permeable porous polymethacrylate functionalized with a highly hydrophobic-hydrophilic pattern, forming spatially separated nanoliter-sized droplets on top of each electrochemical cell. Electrochemical characterization of single droplets demonstrates that the underlying electrode system is accessible to redox-active molecules through the hydrophilic polymeric pattern and that the nonwettable hydrophobic boundaries can spatially separate neighboring cells effectively. The eDMA technology opens the possibility to combine the high-throughput biochemical or living cell screenings using the droplet microarray platform with the sequential electrochemical read-out of individual droplets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
NASA Technical Reports Server (NTRS)
Egen, N. B.; Twitty, G. E.; Bier, M.
1979-01-01
Isoelectric focusing is a high-resolution technique for separating and purifying large peptides, proteins, and other biomolecules. The apparatus described in the present paper constitutes a new approach to fluid stabilization and increased throughput. Stabilization is achieved by flowing the process fluid uniformly through an array of closely spaced filter elements oriented parallel both to the electrodes and the direction of the flow. This seems to overcome the major difficulties of parabolic flow and electroosmosis at the walls, while limiting the convection to chamber compartments defined by adjacent spacers. Increased throughput is achieved by recirculating the process fluid through external heat exchange reservoirs, where the Joule heat is dissipated.
Automated Analysis of siRNA Screens of Virus Infected Cells Based on Immunofluorescence Microscopy
NASA Astrophysics Data System (ADS)
Matula, Petr; Kumar, Anil; Wörz, Ilka; Harder, Nathalie; Erfle, Holger; Bartenschlager, Ralf; Eils, Roland; Rohr, Karl
We present an image analysis approach as part of a high-throughput microscopy screening system based on cell arrays for the identification of genes involved in Hepatitis C and Dengue virus replication. Our approach comprises: cell nucleus segmentation, quantification of virus replication level in cells, localization of regions with transfected cells, cell classification by infection status, and quality assessment of an experiment. The approach is fully automatic and has been successfully applied to a large number of cell array images from screening experiments. The experimental results show a good agreement with the expected behavior of positive as well as negative controls and encourage the application to screens from further high-throughput experiments.
High-throughput ab-initio dilute solute diffusion database
Wu, Henry; Mayeshiba, Tam; Morgan, Dane
2016-01-01
We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308
Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo
2015-01-01
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973
Convenient, sensitive and high-throughput method for screening botanic origin.
Yuan, Yuan; Jiang, Chao; Liu, Libing; Yu, Shulin; Cui, Zhanhu; Chen, Min; Lin, Shufang; Wang, Shu; Huang, Luqi
2014-06-23
In this work, a rapid (within 4-5 h), sensitive and visible new method for assessing botanic origin is developed by combining loop-mediated isothermal amplification with cationic conjugated polymers. The two Chinese medicinal materials (Jin-Yin-Hua and Shan-Yin-Hua) with similar morphology and chemical composition were clearly distinguished by gene SNP genotyping assays. The identification of plant species in Patented Chinese drugs containing Lonicera buds is successfully performed using this detection system. The method is also robust enough to be used in high-throughput screening. This new method is very helpful to identify herbal materials, and is beneficial for detecting safety and quality of botanic products.
Computational Tools for Stem Cell Biology
Bian, Qin; Cahan, Patrick
2016-01-01
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the last several years, a new sub-discipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single-cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. PMID:27318512
2011-11-15
uncle) fcc (uncle) hcp (uncle) phase-diagram Ag Al Al Au Au Bi Bi Ca Ca Cd Cd Ce Ce Co Co Cr Cr Cu Cu Fe Fe Ga Ga Gd Gd Ge Ge Hf...Hf Hg Hg In In Ir Ir La La Li Li Mg Mg Mn Mn Mo Mo Na Na Nb Nb Ni Ni Os Os Pb Pb Pd Pd Pt Pt Rb Rb Re Re Rh Rh Ru Ru Sb Sb Sc...2 S. Curtarolo, A. N. Kolmogorov, and F. H. Cocks, High-throughput ab initio analysis of the Bi-In, Bi- Mg , Bi-Sb, In- Mg , In-Sb, and Mg -Sb systems
Computational Tools for Stem Cell Biology.
Bian, Qin; Cahan, Patrick
2016-12-01
For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Emerging Technologies for Gut Microbiome Research
Arnold, Jason W.; Roach, Jeffrey; Azcarate-Peril, M. Andrea
2016-01-01
Understanding the importance of the gut microbiome on modulation of host health has become a subject of great interest for researchers across disciplines. As an intrinsically multidisciplinary field, microbiome research has been able to reap the benefits of technological advancements in systems and synthetic biology, biomaterials engineering, and traditional microbiology. Gut microbiome research has been revolutionized by high-throughput sequencing technology, permitting compositional and functional analyses that were previously an unrealistic undertaking. Emerging technologies including engineered organoids derived from human stem cells, high-throughput culturing, and microfluidics assays allowing for the introduction of novel approaches will improve the efficiency and quality of microbiome research. Here, we will discuss emerging technologies and their potential impact on gut microbiome studies. PMID:27426971
Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ.
Aida, Tomomi; Nakade, Shota; Sakuma, Tetsushi; Izu, Yayoi; Oishi, Ayu; Mochida, Keiji; Ishikubo, Harumi; Usami, Takako; Aizawa, Hidenori; Yamamoto, Takashi; Tanaka, Kohichi
2016-11-28
Although CRISPR/Cas enables one-step gene cassette knock-in, assembling targeting vectors containing long homology arms is a laborious process for high-throughput knock-in. We recently developed the CRISPR/Cas-based precise integration into the target chromosome (PITCh) system for a gene cassette knock-in without long homology arms mediated by microhomology-mediated end-joining. Here, we identified exonuclease 1 (Exo1) as an enhancer for PITCh in human cells. By combining the Exo1 and PITCh-directed donor vectors, we achieved convenient one-step knock-in of gene cassettes and floxed allele both in human cells and mouse zygotes. Our results provide a technical platform for high-throughput knock-in.
High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors.
Myers, Stephanie M; Bawn, Ruth H; Bisset, Louise C; Blackburn, Timothy J; Cottyn, Betty; Molyneux, Lauren; Wong, Ai-Ching; Cano, Celine; Clegg, William; Harrington, Ross W; Leung, Hing; Rigoreau, Laurent; Vidot, Sandrine; Golding, Bernard T; Griffin, Roger J; Hammonds, Tim; Newell, David R; Hardcastle, Ian R
2016-08-08
The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.
Design of an electron projection system with slider lenses and multiple beams
NASA Astrophysics Data System (ADS)
Moonen, Daniel; Leunissen, Peter L. H. A.; de Jager, Patrick W.; Kruit, Pieter; Bleeker, Arno J.; Van der Mast, Karel D.
2002-07-01
The commercial applicability of electron beam projection lithography systems may be limited at high resolution because of low throughput. The main limitations to the throughput are: (i) Beam current. The Coulomb interaction between electrons result in an image blue. Therefore less beam current can be allowed at higher resolution, impacting the illuminate time of the wafer. (ii) Exposure field size. Early attempts to improve throughput with 'full chip' electron beam projection systems failed, because the system suffered from large off-axis aberrations of the electron optics, which severely restricted the useful field size. This has impact on the overhead time. A new type of projection optics will be proposed in this paper to overcome both limits. A slider lens is proposed that allows an effective field that is much larger than schemes proposed by SCALPEL and PREVAIL. The full width of the die can be exposed without mechanical scanning by sliding the beam through the slit-like bore of the lens. Locally, at the beam position, a 'round'-lens field is created with a combination of a rectangular magnetic field and quadruples that are positioned inside the lens. A die can now be exposed during a single mechanical scan as in state-of-the-art light optical tools. The total beam current can be improved without impact on the Coulomb interaction blur by combining several beams in a single lithography system if these beams do not interfere with each other. Several optical layouts have been proposed that combined up to 5 beams in a projection system consisting of a doublet of slider lenses. This type of projection optics has a potential throughput of 50 WPH at 45 nm with a resist sensitivity of 6 (mu) C/cm2.
High-Throughput Synthesis and Structure of Zeolite ZSM-43 with Two-Directional 8-Ring Channels.
Willhammar, Tom; Su, Jie; Yun, Yifeng; Zou, Xiaodong; Afeworki, Mobae; Weston, Simon C; Vroman, Hilda B; Lonergan, William W; Strohmaier, Karl G
2017-08-07
The aluminosilicate zeolite ZSM-43 (where ZSM = Zeolite Socony Mobil) was first synthesized more than 3 decades ago, but its chemical structure remained unsolved because of its poor crystallinity and small crystal size. Here we present optimization of the ZSM-43 synthesis using a high-throughput approach and subsequent structure determination by the combination of electron crystallographic methods and powder X-ray diffraction. The synthesis required the use of a combination of both inorganic (Cs + and K + ) and organic (choline) structure-directing agents. High-throughput synthesis enabled a screening of the synthesis conditions, which made it possible to optimize the synthesis, despite its complexity, in order to obtain a material with significantly improved crystallinity. When both rotation electron diffraction and high-resolution transmission electron microscopy imaging techniques are applied, the structure of ZSM-43 could be determined. The structure of ZSM-43 is a new zeolite framework type and possesses a unique two-dimensional channel system limited by 8-ring channels. ZSM-43 is stable upon calcination, and sorption measurements show that the material is suitable for adsorption of carbon dioxide as well as methane.
Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
Zhang, Xinjie; Zhu, Zhixian; Xiang, Nan; Long, Feifei; Ni, Zhonghua
2018-03-20
Microfluidic technologies for cell separation were reported frequently in recent years. However, a compact microfluidic instrument enabling thoroughly automated cell separation is still rarely reported until today due to the difficult hybrid between the macrosized fluidic control system and the microsized microfluidic device. In this work, we propose a novel and automated microfluidic instrument to realize size-based separation of cancer cells in a label-free and high-throughput manner. Briefly, the instrument is equipped with a fully integrated microfluidic device and a set of robust fluid-driven and control units, and the instrument functions of precise fluid infusion and high-throughput cell separation are guaranteed by a flow regulatory chip and two cell separation chips which are the key components of the microfluidic device. With optimized control programs, the instrument is successfully applied to automatically sort human breast adenocarcinoma cell line MCF-7 from 5 mL of diluted human blood with a high recovery ratio of ∼85% within a rapid processing time of ∼23 min. We envision that our microfluidic instrument will be potentially useful in many biomedical applications, especially cell separation, enrichment, and concentration for the purpose of cell culture and analysis.
The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, C.A.; Cohen, A.E.
2009-05-26
The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screenedmore » in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.« less
Boosalis, Michael S.; Sangerman, Jose I.; White, Gary L.; Wolf, Roman F.; Shen, Ling; Dai, Yan; White, Emily; Makala, Levi H.; Li, Biaoru; Pace, Betty S.; Nouraie, Mehdi; Faller, Douglas V.; Perrine, Susan P.
2015-01-01
High-level fetal (γ) globin expression ameliorates clinical severity of the beta (β) hemoglobinopathies, and safe, orally-bioavailable γ-globin inducing agents would benefit many patients. We adapted a LCR-γ-globin promoter-GFP reporter assay to a high-throughput robotic system to evaluate five diverse chemical libraries for this activity. Multiple structurally- and functionally-diverse compounds were identified which activate the γ-globin gene promoter at nanomolar concentrations, including some therapeutics approved for other conditions. Three candidates with established safety profiles were further evaluated in erythroid progenitors, anemic baboons and transgenic mice, with significant induction of γ-globin expression observed in vivo. A lead candidate, Benserazide, emerged which demonstrated > 20-fold induction of γ-globin mRNA expression in anemic baboons and increased F-cell proportions by 3.5-fold in transgenic mice. Benserazide has been used chronically to inhibit amino acid decarboxylase to enhance plasma levels of L-dopa. These studies confirm the utility of high-throughput screening and identify previously unrecognized fetal globin inducing candidates which can be developed expediently for treatment of hemoglobinopathies. PMID:26713848
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits-High Throughput Transfer Racks 9 Table 9 to Subpart EEEE of Part 63 Protection of Environment...—Continuous Compliance With Operating Limits—High Throughput Transfer Racks As stated in §§ 63.2378(a) and (b...
A major challenge facing the Environmental Protection Agency is the development of high-throughput screening assays amendable to resource-efficient developmental neurotoxicity for chemical screening and toxicity prioritization. One approach uses in vitro, cell-based assays which...
Accelerating the design of solar thermal fuel materials through high throughput simulations.
Liu, Yun; Grossman, Jeffrey C
2014-12-10
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastable structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.
Droplet Array-Based 3D Coculture System for High-Throughput Tumor Angiogenesis Assay.
Du, Xiaohui; Li, Wanming; Du, Guansheng; Cho, Hansang; Yu, Min; Fang, Qun; Lee, Luke P; Fang, Jin
2018-03-06
Angiogenesis is critical for tumor progression and metastasis, and it progresses through orchestral multicellular interactions. Thus, there is urgent demand for high-throughput tumor angiogenesis assays for concurrent examination of multiple factors. For investigating tumor angiogenesis, we developed a microfluidic droplet array-based cell-coculture system comprising a two-layer polydimethylsiloxane chip featuring 6 × 9 paired-well arrays and an automated droplet-manipulation device. In each droplet-pair unit, tumor cells were cultured in 3D in one droplet by mixing cell suspensions with Matrigel, and in the other droplet, human umbilical vein endothelial cells (HUVECs) were cultured in 2D. Droplets were fused by a newly developed fusion method, and tumor angiogenesis was assayed by coculturing tumor cells and HUVECs in the fused droplet units. The 3D-cultured tumor cells formed aggregates harboring a hypoxic center-as observed in vivo-and secreted more vascular endothelial growth factor (VEGF) and more strongly induced HUVEC tubule formation than did 2D-cultured tumor cells. Our single array supported 54 assays in parallel. The angiogenic potentials of distinct tumor cells and their differential responses to antiangiogenesis agent, Fingolimod, could be investigated without mutual interference in a single array. Our droplet-based assay is convenient to evaluate multicellular interaction in high throughput in the context of tumor sprouting angiogenesis, and we envision that the assay can be extensively implementable for studying other cell-cell interactions.
Gupta, Surya; De Puysseleyr, Veronic; Van der Heyden, José; Maddelein, Davy; Lemmens, Irma; Lievens, Sam; Degroeve, Sven; Tavernier, Jan; Martens, Lennart
2017-05-01
Protein-protein interaction (PPI) studies have dramatically expanded our knowledge about cellular behaviour and development in different conditions. A multitude of high-throughput PPI techniques have been developed to achieve proteome-scale coverage for PPI studies, including the microarray based Mammalian Protein-Protein Interaction Trap (MAPPIT) system. Because such high-throughput techniques typically report thousands of interactions, managing and analysing the large amounts of acquired data is a challenge. We have therefore built the MAPPIT cell microArray Protein Protein Interaction-Data management & Analysis Tool (MAPPI-DAT) as an automated data management and analysis tool for MAPPIT cell microarray experiments. MAPPI-DAT stores the experimental data and metadata in a systematic and structured way, automates data analysis and interpretation, and enables the meta-analysis of MAPPIT cell microarray data across all stored experiments. MAPPI-DAT is developed in Python, using R for data analysis and MySQL as data management system. MAPPI-DAT is cross-platform and can be ran on Microsoft Windows, Linux and OS X/macOS. The source code and a Microsoft Windows executable are freely available under the permissive Apache2 open source license at https://github.com/compomics/MAPPI-DAT. jan.tavernier@vib-ugent.be or lennart.martens@vib-ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press.
Bernstock, Joshua D; Lee, Yang-ja; Peruzzotti-Jametti, Luca; Southall, Noel; Johnson, Kory R; Maric, Dragan; Volpe, Giulio; Kouznetsova, Jennifer; Zheng, Wei; Pluchino, Stefano
2015-01-01
The conjugation/de-conjugation of Small Ubiquitin-like Modifier (SUMO) has been shown to be associated with a diverse set of physiologic/pathologic conditions. The clinical significance and ostensible therapeutic utility offered via the selective control of the global SUMOylation process has become readily apparent in ischemic pathophysiology. Herein, we describe the development of a novel quantitative high-throughput screening (qHTS) system designed to identify small molecules capable of increasing SUMOylation via the regulation/inhibition of members of the microRNA (miRNA)-182 family. This assay employs a SHSY5Y human neuroblastoma cell line stably transfected with a dual firefly-Renilla luciferase reporter system for identification of specific inhibitors of either miR-182 or miR-183. In this study, we have identified small molecules capable of inducing increased global conjugation of SUMO in both SHSY5Y cells and rat E18-derived primary cortical neurons. The protective effects of a number of the identified compounds were confirmed via an in vitro ischemic model (oxygen/glucose deprivation). Of note, this assay can be easily repurposed to allow high-throughput analyses of the potential drugability of other relevant miRNA(s) in ischemic pathobiology. PMID:26661196
Mizutani, Kimihiko
2015-01-01
Homologous recombination is a system for repairing the broken genomes of living organisms by connecting two DNA strands at their homologous sequences. Today, homologous recombination in yeast is used for plasmid construction as a substitute for traditional methods using restriction enzymes and ligases. This method has various advantages over the traditional method, including flexibility in the position of DNA insertion and ease of manipulation. Recently, the author of this review reported the construction of plasmids by homologous recombination in the methanol-utilizing yeast Pichia pastoris, which is known to be an excellent expression host for secretory proteins and membrane proteins. The method enabled high-throughput construction of expression systems of proteins using P. pastoris; the constructed expression systems were used to investigate the expression conditions of membrane proteins and to perform X-ray crystallography of secretory proteins. This review discusses the mechanisms and applications of homologous recombination, including the production of proteins for X-ray crystallography.
FLIC: High-Throughput, Continuous Analysis of Feeding Behaviors in Drosophila
Pletcher, Scott D.
2014-01-01
We present a complete hardware and software system for collecting and quantifying continuous measures of feeding behaviors in the fruit fly, Drosophila melanogaster. The FLIC (Fly Liquid-Food Interaction Counter) detects analog electronic signals as brief as 50 µs that occur when a fly makes physical contact with liquid food. Signal characteristics effectively distinguish between different types of behaviors, such as feeding and tasting events. The FLIC system performs as well or better than popular methods for simple assays, and it provides an unprecedented opportunity to study novel components of feeding behavior, such as time-dependent changes in food preference and individual levels of motivation and hunger. Furthermore, FLIC experiments can persist indefinitely without disturbance, and we highlight this ability by establishing a detailed picture of circadian feeding behaviors in the fly. We believe that the FLIC system will work hand-in-hand with modern molecular techniques to facilitate mechanistic studies of feeding behaviors in Drosophila using modern, high-throughput technologies. PMID:24978054
Pérez Del Palacio, José; Díaz, Caridad; de la Cruz, Mercedes; Annang, Frederick; Martín, Jesús; Pérez-Victoria, Ignacio; González-Menéndez, Víctor; de Pedro, Nuria; Tormo, José R; Algieri, Francesca; Rodriguez-Nogales, Alba; Rodríguez-Cabezas, M Elena; Reyes, Fernando; Genilloud, Olga; Vicente, Francisca; Gálvez, Julio
2016-07-01
It is widely accepted that central nervous system inflammation and systemic inflammation play a significant role in the progression of chronic neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, neurotropic viral infections, stroke, paraneoplastic disorders, traumatic brain injury, and multiple sclerosis. Therefore, it seems reasonable to propose that the use of anti-inflammatory drugs might diminish the cumulative effects of inflammation. Indeed, some epidemiological studies suggest that sustained use of anti-inflammatory drugs may prevent or slow down the progression of neurodegenerative diseases. However, the anti-inflammatory drugs and biologics used clinically have the disadvantage of causing side effects and a high cost of treatment. Alternatively, natural products offer great potential for the identification and development of bioactive lead compounds into drugs for treating inflammatory diseases with an improved safety profile. In this work, we present a validated high-throughput screening approach in 96-well plate format for the discovery of new molecules with anti-inflammatory/immunomodulatory activity. The in vitro models are based on the quantitation of nitrite levels in RAW264.7 murine macrophages and interleukin-8 in Caco-2 cells. We have used this platform in a pilot project to screen a subset of 5976 noncytotoxic crude microbial extracts from the MEDINA microbial natural product collection. To our knowledge, this is the first report on an high-throughput screening of microbial natural product extracts for the discovery of immunomodulators. © 2016 Society for Laboratory Automation and Screening.
2011-01-01
The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments. PMID:22136293
Salvo-Chirnside, Eliane; Kane, Steven; Kerr, Lorraine E
2011-12-02
The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments.
Asati, Atul; Kachurina, Olga; Kachurin, Anatoly
2012-01-01
Considering importance of ganglioside antibodies as biomarkers in various immune-mediated neuropathies and neurological disorders, we developed a high throughput multiplexing tool for the assessment of gangliosides-specific antibodies based on Biolpex/Luminex platform. In this report, we demonstrate that the ganglioside high throughput multiplexing tool is robust, highly specific and demonstrating ∼100-fold higher concentration sensitivity for IgG detection than ELISA. In addition to the ganglioside-coated array, the high throughput multiplexing tool contains beads coated with influenza hemagglutinins derived from H1N1 A/Brisbane/59/07 and H1N1 A/California/07/09 strains. Influenza beads provided an added advantage of simultaneous detection of ganglioside- and influenza-specific antibodies, a capacity important for the assay of both infectious antigen-specific and autoimmune antibodies following vaccination or disease. Taken together, these results support the potential adoption of the ganglioside high throughput multiplexing tool for measuring ganglioside antibodies in various neuropathic and neurological disorders. PMID:22952605
High throughput nanoimprint lithography for semiconductor memory applications
NASA Astrophysics Data System (ADS)
Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun
2017-03-01
Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non-fill defectivity is well under 1.0 defects/cm2 for both field types. Next, by further reducing drop volume and optimizing drop patterns, a fill time of 1.1 seconds was demonstrated.
High throughput DNA damage quantification of human tissue with home-based collection device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costes, Sylvain V.; Tang, Jonathan; Yannone, Steven M.
Kits, methods and systems for providing a service to provide a subject with information regarding the state of a subject's DNA damage. Collection, processing and analysis of samples are also described.
Computationally-Predicted AOPs and Systems Toxicology
The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...
Computational Toxicology at the US EPA
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developin...
Systems-Level Synthetic Biology for Advanced Biofuel Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruffing, Anne; Jensen, Travis J.; Strickland, Lucas Marshall
2015-03-01
Cyanobacteria have been shown to be capable of producing a variety of advanced biofuels; however, product yields remain well below those necessary for large scale production. New genetic tools and high throughput metabolic engineering techniques are needed to optimize cyanobacterial metabolisms for enhanced biofuel production. Towards this goal, this project advances the development of a multiple promoter replacement technique for systems-level optimization of gene expression in a model cyanobacterial host: Synechococcus sp. PCC 7002. To realize this multiple-target approach, key capabilities were developed, including a high throughput detection method for advanced biofuels, enhanced transformation efficiency, and genetic tools for Synechococcusmore » sp. PCC 7002. Moreover, several additional obstacles were identified for realization of this multiple promoter replacement technique. The techniques and tools developed in this project will help to enable future efforts in the advancement of cyanobacterial biofuels.« less
High throughput dual-wavelength temperature distribution imaging via compressive imaging
NASA Astrophysics Data System (ADS)
Yao, Xu-Ri; Lan, Ruo-Ming; Liu, Xue-Feng; Zhu, Ge; Zheng, Fu; Yu, Wen-Kai; Zhai, Guang-Jie
2018-03-01
Thermal imaging is an essential tool in a wide variety of research areas. In this work we demonstrate high-throughput double-wavelength temperature distribution imaging using a modified single-pixel camera without the requirement of a beam splitter (BS). A digital micro-mirror device (DMD) is utilized to display binary masks and split the incident radiation, which eliminates the necessity of a BS. Because the spatial resolution is dictated by the DMD, this thermal imaging system has the advantage of perfect spatial registration between the two images, which limits the need for the pixel registration and fine adjustments. Two bucket detectors, which measures the total light intensity reflected from the DMD, are employed in this system and yield an improvement in the detection efficiency of the narrow-band radiation. A compressive imaging algorithm is utilized to achieve under-sampling recovery. A proof-of-principle experiment was presented to demonstrate the feasibility of this structure.
High-throughput mouse genotyping using robotics automation.
Linask, Kaari L; Lo, Cecilia W
2005-02-01
The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.
Kang, Kyungsu; Peng, Lei; Jung, Yu-Jin; Kim, Joo Yeon; Lee, Eun Ha; Lee, Hee Ju; Kim, Sang Min; Sung, Sang Hyun; Pan, Cheol-Ho; Choi, Yongsoo
2018-02-01
To develop a high-throughput screening system to measure the conversion of testosterone to dihydrotestosterone (DHT) in cultured human prostate cancer cells using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS). After optimizing the cell reaction system, this method demonstrated a screening capability of 103 samples, including 78 single compounds and 25 extracts, in less than 12 h without manual sample preparation. Consequently, fucoxanthin, phenethyl caffeate, and Curcuma longa L. extract were validated as bioactive chemicals that inhibited DHT production in cultured DU145 cells. In addition, naringenin boosted DHT production in DU145 cells. The method can facilitate the discovery of bioactive chemicals that modulate the DHT production, and four phytochemicals are potential candidates of nutraceuticals to adjust DHT levels in male hormonal dysfunction.
High-Throughput Single-Cell RNA Sequencing and Data Analysis.
Sagar; Herman, Josip Stefan; Pospisilik, John Andrew; Grün, Dominic
2018-01-01
Understanding biological systems at a single cell resolution may reveal several novel insights which remain masked by the conventional population-based techniques providing an average readout of the behavior of cells. Single-cell transcriptome sequencing holds the potential to identify novel cell types and characterize the cellular composition of any organ or tissue in health and disease. Here, we describe a customized high-throughput protocol for single-cell RNA-sequencing (scRNA-seq) combining flow cytometry and a nanoliter-scale robotic system. Since scRNA-seq requires amplification of a low amount of endogenous cellular RNA, leading to substantial technical noise in the dataset, downstream data filtering and analysis require special care. Therefore, we also briefly describe in-house state-of-the-art data analysis algorithms developed to identify cellular subpopulations including rare cell types as well as to derive lineage trees by ordering the identified subpopulations of cells along the inferred differentiation trajectories.
Wyatt, S K; Barck, K H; Kates, L; Zavala-Solorio, J; Ross, J; Kolumam, G; Sonoda, J; Carano, R A D
2015-11-01
The ability to non-invasively measure body composition in mouse models of obesity and obesity-related disorders is essential for elucidating mechanisms of metabolic regulation and monitoring the effects of novel treatments. These studies aimed to develop a fully automated, high-throughput micro-computed tomography (micro-CT)-based image analysis technique for longitudinal quantitation of adipose, non-adipose and lean tissue as well as bone and demonstrate utility for assessing the effects of two distinct treatments. An initial validation study was performed in diet-induced obesity (DIO) and control mice on a vivaCT 75 micro-CT system. Subsequently, four groups of DIO mice were imaged pre- and post-treatment with an experimental agonistic antibody specific for anti-fibroblast growth factor receptor 1 (anti-FGFR1, R1MAb1), control immunoglobulin G antibody, a known anorectic antiobesity drug (rimonabant, SR141716), or solvent control. The body composition analysis technique was then ported to a faster micro-CT system (CT120) to markedly increase throughput as well as to evaluate the use of micro-CT image intensity for hepatic lipid content in DIO and control mice. Ex vivo chemical analysis and colorimetric analysis of the liver triglycerides were performed as the standard metrics for correlation with body composition and hepatic lipid status, respectively. Micro-CT-based body composition measures correlate with ex vivo chemical analysis metrics and enable distinction between DIO and control mice. R1MAb1 and rimonabant have differing effects on body composition as assessed by micro-CT. High-throughput body composition imaging is possible using a modified CT120 system. Micro-CT also provides a non-invasive assessment of hepatic lipid content. This work describes, validates and demonstrates utility of a fully automated image analysis technique to quantify in vivo micro-CT-derived measures of adipose, non-adipose and lean tissue, as well as bone. These body composition metrics highly correlate with standard ex vivo chemical analysis and enable longitudinal evaluation of body composition and therapeutic efficacy monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindedam, Jane; Bruun, Sander; Jorgensen, Henning
2014-07-01
Here, we present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL andmore » CPH, respectively. We found the best correlation of glucose yields between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). The three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.« less
High-Throughput Quantitative Lipidomics Analysis of Nonesterified Fatty Acids in Plasma by LC-MS.
Christinat, Nicolas; Morin-Rivron, Delphine; Masoodi, Mojgan
2017-01-01
Nonesterified fatty acids are important biological molecules which have multiple functions such as energy storage, gene regulation, or cell signaling. Comprehensive profiling of nonesterified fatty acids in biofluids can facilitate studying and understanding their roles in biological systems. For these reasons, we have developed and validated a high-throughput, nontargeted lipidomics method coupling liquid chromatography to high-resolution mass spectrometry for quantitative analysis of nonesterified fatty acids. Sufficient chromatographic separation is achieved to separate positional isomers such as polyunsaturated and branched-chain species and quantify a wide range of nonesterified fatty acids in human plasma samples. However, this method is not limited only to these fatty acid species and offers the possibility to perform untargeted screening of additional nonesterified fatty acid species.
L-edge spectroscopy of dilute, radiation-sensitive systems using a transition-edge-sensor array
NASA Astrophysics Data System (ADS)
Titus, Charles J.; Baker, Michael L.; Lee, Sang Jun; Cho, Hsiao-Mei; Doriese, William B.; Fowler, Joseph W.; Gaffney, Kelly; Gard, Johnathon D.; Hilton, Gene C.; Kenney, Chris; Knight, Jason; Li, Dale; Marks, Ronald; Minitti, Michael P.; Morgan, Kelsey M.; O'Neil, Galen C.; Reintsema, Carl D.; Schmidt, Daniel R.; Sokaras, Dimosthenis; Swetz, Daniel S.; Ullom, Joel N.; Weng, Tsu-Chien; Williams, Christopher; Young, Betty A.; Irwin, Kent D.; Solomon, Edward I.; Nordlund, Dennis
2017-12-01
We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000 eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by grating spectrometers. These results show that soft-X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry, and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples.
Ligand screening systems for human glucose transporters as tools in drug discovery
NASA Astrophysics Data System (ADS)
Schmidl, Sina; Iancu, Cristina V.; Choe, Jun-yong; Oreb, Mislav
2018-05-01
Hexoses are the major source of energy and carbon skeletons for biosynthetic processes in all kingdoms of life. Their cellular uptake is mediated by specialized transporters, including glucose transporters (GLUT, SLC2 gene family). Malfunction or altered expression pattern of GLUTs in humans is associated with several widespread diseases including cancer, diabetes and severe metabolic disorders. Their high relevance in the medical area makes these transporters valuable drug targets and potential biomarkers. Nevertheless, the lack of a suitable high-throughput screening system has impeded the determination of compounds that would enable specific manipulation of GLUTs so far. Availability of structural data on several GLUTs enabled in silico ligand screening, though limited by the fact that only two major conformations of the transporters can be tested. Recently, convenient high-throughput microbial and cell-free screening systems have been developed. These remarkable achievements set the foundation for further and detailed elucidation of the molecular mechanisms of glucose transport and will also lead to great progress in the discovery of GLUT effectors as therapeutic agents. In this mini-review, we focus on recent efforts to identify potential GLUT-targeting drugs, based on a combination of structural biology and different assay systems.
Xu, Like; Ouyang, Weiying; Qian, Yanyun; Su, Chao; Su, Jianqiang; Chen, Hong
2016-06-01
Antibiotic resistance genes (ARGs) are present in surface water and often cannot be completely eliminated by drinking water treatment plants (DWTPs). Improper elimination of the ARG-harboring microorganisms contaminates the water supply and would lead to animal and human disease. Therefore, it is of utmost importance to determine the most effective ways by which DWTPs can eliminate ARGs. Here, we tested water samples from two DWTPs and distribution systems and detected the presence of 285 ARGs, 8 transposases, and intI-1 by utilizing high-throughput qPCR. The prevalence of ARGs differed in the two DWTPs, one of which employed conventional water treatments while the other had advanced treatment processes. The relative abundance of ARGs increased significantly after the treatment with biological activated carbon (BAC), raising the number of detected ARGs from 76 to 150. Furthermore, the final chlorination step enhanced the relative abundance of ARGs in the finished water generated from both DWTPs. The total enrichment of ARGs varied from 6.4-to 109.2-fold in tap water compared to finished water, among which beta-lactam resistance genes displayed the highest enrichment. Six transposase genes were detected in tap water samples, with the transposase gene TnpA-04 showing the greatest enrichment (up to 124.9-fold). We observed significant positive correlations between ARGs and mobile genetic elements (MGEs) during the distribution systems, indicating that transposases and intI-1 may contribute to antibiotic resistance in drinking water. To our knowledge, this is the first study to investigate the diversity and abundance of ARGs in drinking water treatment systems utilizing high-throughput qPCR techniques in China. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neilson, E. H.; Edwards, A. M.; Blomstedt, C. K.; Berger, B.; Møller, B. Lindberg; Gleadow, R. M.
2015-01-01
The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator® at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf ‘greenness’ correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants. PMID:25697789
Nance, William C.; Dowd, Scot E.; Samarian, Derek; Chludzinski, Jeffrey; Delli, Joseph; Battista, John; Rickard, Alexander H.
2013-01-01
Objectives Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. Methods Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%–0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. Results The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%–0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. Conclusions This work demonstrates the utility of a high-throughput microfluidic–CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials. PMID:23800904
The MaNGA integral field unit fiber feed system for the Sloan 2.5 m telescope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drory, N.; MacDonald, N.; Byler, N.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 10{sup 4} local galaxies covering 360–1030 nm at R∼2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3–7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffermore » fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.« less
The MaNGA Integral Field Unit Fiber Feed System for the Sloan 2.5 m Telescope
NASA Astrophysics Data System (ADS)
Drory, N.; MacDonald, N.; Bershady, M. A.; Bundy, K.; Gunn, J.; Law, D. R.; Smith, M.; Stoll, R.; Tremonti, C. A.; Wake, D. A.; Yan, R.; Weijmans, A. M.; Byler, N.; Cherinka, B.; Cope, F.; Eigenbrot, A.; Harding, P.; Holder, D.; Huehnerhoff, J.; Jaehnig, K.; Jansen, T. C.; Klaene, M.; Paat, A. M.; Percival, J.; Sayres, C.
2015-02-01
We describe the design, manufacture, and performance of bare-fiber integral field units (IFUs) for the SDSS-IV survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) on the the Sloan 2.5 m telescope at Apache Point Observatory. MaNGA is a luminosity-selected integral-field spectroscopic survey of 104 local galaxies covering 360-1030 nm at R˜ 2200. The IFUs have hexagonal dense packing of fibers with packing regularity of 3 μm (rms), and throughput of 96 ± 0.5% from 350 nm to 1 μm in the lab. Their sizes range from 19 to 127 fibers (3-7 hexagonal layers) using Polymicro FBP 120:132:150 μm core:clad:buffer fibers to reach a fill fraction of 56%. High throughput (and low focal-ratio degradation (FRD)) is achieved by maintaining the fiber cladding and buffer intact, ensuring excellent surface polish, and applying a multi-layer anti-reflection (AR) coating of the input and output surfaces. In operations on-sky, the IFUs show only an additional 2.3% FRD-related variability in throughput despite repeated mechanical stressing during plate plugging (however other losses are present). The IFUs achieve on-sky throughput 5% above the single-fiber feeds used in SDSS-III/BOSS, attributable to equivalent performance compared to single fibers and additional gains from the AR coating. The manufacturing process is geared toward mass-production of high-multiplex systems. The low-stress process involves a precision ferrule with a hexagonal inner shape designed to lead inserted fibers to settle in a dense hexagonal pattern. The ferrule ID is tapered at progressively shallower angles toward its tip and the final 2 mm are straight and only a few microns larger than necessary to hold the desired number of fibers. Our IFU manufacturing process scales easily to accommodate other fiber sizes and can produce IFUs with substantially larger fiber counts. To assure quality, automated testing in a simple and inexpensive system enables complete characterization of throughput and fiber metrology. Future applications include larger IFUs, higher fill factors with stripped buffer, de-cladding, and lenslet coupling.
High throughput light absorber discovery, Part 1: An algorithm for automated tauc analysis
Suram, Santosh K.; Newhouse, Paul F.; Gregoire, John M.
2016-09-23
High-throughput experimentation provides efficient mapping of composition-property relationships, and its implementation for the discovery of optical materials enables advancements in solar energy and other technologies. In a high throughput pipeline, automated data processing algorithms are often required to match experimental throughput, and we present an automated Tauc analysis algorithm for estimating band gap energies from optical spectroscopy data. The algorithm mimics the judgment of an expert scientist, which is demonstrated through its application to a variety of high throughput spectroscopy data, including the identification of indirect or direct band gaps in Fe 2O 3, Cu 2V 2O 7, and BiVOmore » 4. Here, the applicability of the algorithm to estimate a range of band gap energies for various materials is demonstrated by a comparison of direct-allowed band gaps estimated by expert scientists and by automated algorithm for 60 optical spectra.« less
2015-01-01
High-throughput production of nanoparticles (NPs) with controlled quality is critical for their clinical translation into effective nanomedicines for diagnostics and therapeutics. Here we report a simple and versatile coaxial turbulent jet mixer that can synthesize a variety of NPs at high throughput up to 3 kg/d, while maintaining the advantages of homogeneity, reproducibility, and tunability that are normally accessible only in specialized microscale mixing devices. The device fabrication does not require specialized machining and is easy to operate. As one example, we show reproducible, high-throughput formulation of siRNA-polyelectrolyte polyplex NPs that exhibit effective gene knockdown but exhibit significant dependence on batch size when formulated using conventional methods. The coaxial turbulent jet mixer can accelerate the development of nanomedicines by providing a robust and versatile platform for preparation of NPs at throughputs suitable for in vivo studies, clinical trials, and industrial-scale production. PMID:24824296
Infrastructure to Support Ultra High Throughput Biodosimetry Screening after a Radiological Event
Garty, G.; Karam, P.A.; Brenner, D. J.
2011-01-01
Purpose After a large-scale radiological event, there will be a pressing need to assess, within a few days, the radiation doses received by tens or hundreds of thousands of individuals. This is for triage, to prevent treatment locations from being overwhelmed, in what is sure to be a resource limited scenario, as well as to facilitate dose-dependent treatment decisions. In addition there are psychosocial considerations, in that active reassurance of minimal exposure is a potentially effective antidote to mass panic, as well as long-term considerations, to facilitate later studies of cancer and other long-term disease risks. Materials and Methods As described elsewhere in this issue, we are developing a Rapid Automated Biodosimetry Tool (RABiT). The RABiT allows high throughput analysis of thousands of blood samples per day, providing a dose estimate that can be used to support clinical triage and treatment decisions. Results Development of the RABiT has motivated us to consider the logistics of incorporating such a system into the existing emergency response scenarios of a large metropolitan area. We present here a view of how one or more centralized biodosimetry readout devices might be incorporated into an infrastructure in which fingerstick blood samples are taken at many distributed locations within an affected city or region and transported to centralized locations. Conclusions High throughput biodosimetry systems offer the opportunity to perform biodosimetric assessments on a large number of persons. As such systems reach a high level of maturity, emergency response scenarios will need to be tweaked to make use of these powerful tools. This can be done relatively easily within the framework of current scenarios. PMID:21675819
Controlled electrosprayed formation of non-spherical microparticles
NASA Astrophysics Data System (ADS)
Jeyhani, Morteza; Mak, Sze Yi; Sammut, Stephen; Shum, Ho Cheung; Hwang, Dae Kun; Tsai, Scott S. H.
2017-11-01
Fabrication of biocompatible microparticles, such as alginate particles, with the possibility of controlling the particles' morphology in a high-throughput manner, is essential for pharmaceutical and cosmetic industries. Even though the shape of alginate particles has been shown to be an important parameter in controlling drug delivery, there are very limited manufacturing methods to produce non-spherical alginate microparticles in a high-throughput fashion. Here, we present a system that generates non-spherical biocompatible alginate microparticles with a tunable size and shape, and at high-throughput, using an electrospray technique. Alginate solution, which is a highly biocompatible material, is flown through a needle using a constant flow rate syringe pump. The alginate phase is connected to a high-voltage power supply to charge it positively. There is a metallic ring underneath the needle that is charged negatively. The applied voltage creates an electric field that forces the dispensing droplets to pass through the metallic ring toward the collection bath. During this migration, droplets break up to smaller droplets to dissipate their energy. When the droplets reach the calcium chloride bath, polymerization happens and solidifies the droplets. We study the effects of changing the distance from the needle to the bath, and the concentration of calcium chloride in the bath, to control the size and the shape of the resulting microparticles.
2015-01-01
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952
Miller, C.; Waddell, K.; Tang, N.
2010-01-01
RP-122 Peptide quantitation using Multiple Reaction Monitoring (MRM) has been established as an important methodology for biomarker verification andvalidation.This requires high throughput combined with high sensitivity to analyze potentially thousands of target peptides in each sample.Dynamic MRM allows the system to only acquire the required MRMs of the peptide during a retention window corresponding to when each peptide is eluting. This reduces the number of concurrent MRM and therefore improves quantitation and sensitivity. MRM Selector allows the user to generate an MRM transition list with retention time information from discovery data obtained on a QTOF MS system.This list can be directly imported into the triple quadrupole acquisition software.However, situations can exist where a) the list of MRMs contain an excess of MRM transitions allowable under the ideal acquisition conditions chosen ( allowing for cycle time and chromatography conditions), or b) too many transitions in a certain retention time region which would result in an unacceptably low dwell time and cycle time.A new tool - MRM viewer has been developed to help users automatically generate multiple dynamic MRM methods from a single MRM list.In this study, a list of 3293 MRM transitions from a human plasma sample was compiled.A single dynamic MRM method with 3293 transitions results in a minimum dwell time of 2.18ms.Using MRM viewer we can generate three dynamic MRM methods with a minimum dwell time of 20ms which can give a better quality MRM quantitation.This tool facilitates both high throughput and high sensitivity for MRM quantitation.
Adapting the γ-H2AX assay for automated processing in human lymphocytes. 1. Technological aspects.
Turner, Helen C; Brenner, David J; Chen, Youhua; Bertucci, Antonella; Zhang, Jian; Wang, Hongliang; Lyulko, Oleksandra V; Xu, Yanping; Shuryak, Igor; Schaefer, Julia; Simaan, Nabil; Randers-Pehrson, Gerhard; Yao, Y Lawrence; Amundson, Sally A; Garty, Guy
2011-03-01
The immunofluorescence-based detection of γ-H2AX is a reliable and sensitive method for quantitatively measuring DNA double-strand breaks (DSBs) in irradiated samples. Since H2AX phosphorylation is highly linear with radiation dose, this well-established biomarker is in current use in radiation biodosimetry. At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a fully automated high-throughput system, the RABIT (Rapid Automated Biodosimetry Tool), that can be used to measure γ-H2AX yields from fingerstick-derived samples of blood. The RABIT workstation has been designed to fully automate the γ-H2AX immunocytochemical protocol, from the isolation of human blood lymphocytes in heparin-coated PVC capillaries to the immunolabeling of γ-H2AX protein and image acquisition to determine fluorescence yield. High throughput is achieved through the use of purpose-built robotics, lymphocyte handling in 96-well filter-bottomed plates, and high-speed imaging. The goal of the present study was to optimize and validate the performance of the RABIT system for the reproducible and quantitative detection of γ-H2AX total fluorescence in lymphocytes in a multiwell format. Validation of our biodosimetry platform was achieved by the linear detection of a dose-dependent increase in γ-H2AX fluorescence in peripheral blood samples irradiated ex vivo with γ rays over the range 0 to 8 Gy. This study demonstrates for the first time the optimization and use of our robotically based biodosimetry workstation to successfully quantify γ-H2AX total fluorescence in irradiated peripheral lymphocytes.
High-radiance LDP source for mask inspection and beam line applications (Conference Presentation)
NASA Astrophysics Data System (ADS)
Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Yamatani, Daiki; Shirai, Takahiro; Kasama, Kunihiko
2017-04-01
High-throughput actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. One of the key technologies to realize such inspection tools is a high-radiance EUV source of which radiance is supposed to be as high as 100 W/mm2/sr. Ushio is developing laser-assisted discharge-produced plasma (LDP) sources. Ushio's LDP source is able to provide sufficient radiance as well as cleanliness, stability and reliability. Radiance behind the debris mitigation system was confirmed to be 120 W/mm2/sr at 9 kHz and peak radiance at the plasma was increased to over 200 W/mm2/sr in the recent development which supports high-throughput, high-precision mask inspection in the current and future technology nodes. One of the unique features of Ushio's LDP source is cleanliness. Cleanliness evaluation using both grazing-incidence Ru mirrors and normal-incidence Mo/Si mirrors showed no considerable damage to the mirrors other than smooth sputtering of the surface at the pace of a few nm per Gpulse. In order to prove the system reliability, several long-term tests were performed. Data recorded during the tests was analyzed to assess two-dimensional radiance stability. In addition, several operating parameters were monitored to figure out which contributes to the radiance stability. The latest model that features a large opening angle was recently developed so that the tool can utilize a large number of debris-free photons behind the debris shield. The model was designed both for beam line application and high-throughput mask inspection application. At the time of publication, the first product is supposed to be in use at the customer site.
Li, Fumin; Wang, Jun; Jenkins, Rand
2016-05-01
There is an ever-increasing demand for high-throughput LC-MS/MS bioanalytical assays to support drug discovery and development. Matrix effects of sofosbuvir (protonated) and paclitaxel (sodiated) were thoroughly evaluated using high-throughput chromatography (defined as having a run time ≤1 min) under 14 elution conditions with extracts from protein precipitation, liquid-liquid extraction and solid-phase extraction. A slight separation, in terms of retention time, between underlying matrix components and sofosbuvir/paclitaxel can greatly alleviate matrix effects. High-throughput chromatography, with proper optimization, can provide rapid and effective chromatographic separation under 1 min to alleviate matrix effects and enhance assay ruggedness for regulated bioanalysis.
A Combination Therapy of JO-I and Chemotherapy in Ovarian Cancer Models
2013-10-01
which consists of a 3PAR storage backend and is sharing data via a highly available NetApp storage gateway and 2 high throughput commodity storage...Environment is configured as self- service Enterprise cloud and currently hosts more than 700 virtual machines. The network infrastructure consists of...technology infrastructure and information system applications designed to integrate, automate, and standardize operations. These systems fuse state of
High-throughput hyperpolarized 13C metabolic investigations using a multi-channel acquisition system
NASA Astrophysics Data System (ADS)
Lee, Jaehyuk; Ramirez, Marc S.; Walker, Christopher M.; Chen, Yunyun; Yi, Stacey; Sandulache, Vlad C.; Lai, Stephen Y.; Bankson, James A.
2015-11-01
Magnetic resonance imaging and spectroscopy of hyperpolarized (HP) compounds such as [1-13C]-pyruvate have shown tremendous potential for offering new insight into disease and response to therapy. New applications of this technology in clinical research and care will require extensive validation in cells and animal models, a process that may be limited by the high cost and modest throughput associated with dynamic nuclear polarization. Relatively wide spectral separation between [1-13C]-pyruvate and its chemical endpoints in vivo are conducive to simultaneous multi-sample measurements, even in the presence of a suboptimal global shim. Multi-channel acquisitions could conserve costs and accelerate experiments by allowing acquisition from multiple independent samples following a single dissolution. Unfortunately, many existing preclinical MRI systems are equipped with only a single channel for broadband acquisitions. In this work, we examine the feasibility of this concept using a broadband multi-channel digital receiver extension and detector arrays that allow concurrent measurement of dynamic spectroscopic data from ex vivo enzyme phantoms, in vitro anaplastic thyroid carcinoma cells, and in vivo in tumor-bearing mice. Throughput and the cost of consumables were improved by up to a factor of four. These preliminary results demonstrate the potential for efficient multi-sample studies employing hyperpolarized agents.
Quantitative Model of Systemic Toxicity Using ToxCast and ToxRefDB (SOT)
EPA’s ToxCast program profiles the bioactivity of chemicals in a diverse set of ~700 high throughput screening (HTS) assays. In collaboration with L’Oreal, a quantitative model of systemic toxicity was developed using no effect levels (NEL) from ToxRefDB for 633 chemicals with HT...
Comparative Microbial Modules Resource: Generation and Visualization of Multi-species Biclusters
Bate, Ashley; Eichenberger, Patrick; Bonneau, Richard
2011-01-01
The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures – results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation. PMID:22144874
Comparative microbial modules resource: generation and visualization of multi-species biclusters.
Kacmarczyk, Thadeous; Waltman, Peter; Bate, Ashley; Eichenberger, Patrick; Bonneau, Richard
2011-12-01
The increasing abundance of large-scale, high-throughput datasets for many closely related organisms provides opportunities for comparative analysis via the simultaneous biclustering of datasets from multiple species. These analyses require a reformulation of how to organize multi-species datasets and visualize comparative genomics data analyses results. Recently, we developed a method, multi-species cMonkey, which integrates heterogeneous high-throughput datatypes from multiple species to identify conserved regulatory modules. Here we present an integrated data visualization system, built upon the Gaggle, enabling exploration of our method's results (available at http://meatwad.bio.nyu.edu/cmmr.html). The system can also be used to explore other comparative genomics datasets and outputs from other data analysis procedures - results from other multiple-species clustering programs or from independent clustering of different single-species datasets. We provide an example use of our system for two bacteria, Escherichia coli and Salmonella Typhimurium. We illustrate the use of our system by exploring conserved biclusters involved in nitrogen metabolism, uncovering a putative function for yjjI, a currently uncharacterized gene that we predict to be involved in nitrogen assimilation. © 2011 Kacmarczyk et al.
A tunable hole-burning filter for lidar applications
NASA Astrophysics Data System (ADS)
Billmers, R. I.; Davis, J.; Squicciarini, M.
The fundamental physical principles for the development of a 'hole-burning' optical filter based on saturable absorption in dye-doped glasses are outlined. A model was developed to calculate the required pump intensity, throughput, and linewidth for this type of filter. Rhodamine 6G, operating at 532 nm, was found to require a 'warm-up' time of 110 pulses and a pump intensity of 100 kW/sq cm per pulse. The linewidth was calculated to be approximately 15 GHz at 77 K with a throughput of at least 25 percent and five orders of magnitude noise suppression. A 'hole-burning' filter offers significant advantages over current filter technology, including tunability over a 10-nm bandwidth, perfect wavelength and bandwidth matching to the transmitting laser in a pulsed lidar system, transform limited response times, and moderately high throughputs (at least 25 percent).
Accelerating Adverse Outcome Pathway Development via Systems Approaches
The Adverse Outcome Pathway has emerged as an internationally harmonized mechanism for organizing biological information in a chemical agnostic manner. This construct is valuable for interpreting the results from high-throughput toxicity (HTT) assessment by providing a mechanisti...
Kračun, Stjepan Krešimir; Fangel, Jonatan Ulrik; Rydahl, Maja Gro; Pedersen, Henriette Lodberg; Vidal-Melgosa, Silvia; Willats, William George Tycho
2017-01-01
Cell walls are an important feature of plant cells and a major component of the plant glycome. They have both structural and physiological functions and are critical for plant growth and development. The diversity and complexity of these structures demand advanced high-throughput techniques to answer questions about their structure, functions and roles in both fundamental and applied scientific fields. Microarray technology provides both the high-throughput and the feasibility aspects required to meet that demand. In this chapter, some of the most recent microarray-based techniques relating to plant cell walls are described together with an overview of related contemporary techniques applied to carbohydrate microarrays and their general potential in glycoscience. A detailed experimental procedure for high-throughput mapping of plant cell wall glycans using the comprehensive microarray polymer profiling (CoMPP) technique is included in the chapter and provides a good example of both the robust and high-throughput nature of microarrays as well as their applicability to plant glycomics.
Liu, X-L; Liu, H-N; Tan, P-H
2017-08-01
Resonant Raman spectroscopy requires that the wavelength of the laser used is close to that of an electronic transition. A tunable laser source and a triple spectrometer are usually necessary for resonant Raman profile measurements. However, such a system is complex with low signal throughput, which limits its wide application by scientific community. Here, a tunable micro-Raman spectroscopy system based on the supercontinuum laser, transmission grating, tunable filters, and single-stage spectrometer is introduced to measure the resonant Raman profile. The supercontinuum laser in combination with transmission grating makes a tunable excitation source with a bandwidth of sub-nanometer. Such a system exhibits continuous excitation tunability and high signal throughput. Its good performance and flexible tunability are verified by resonant Raman profile measurement of twisted bilayer graphene, which demonstrates its potential application prospect for resonant Raman spectroscopy.
Hupert, Mateusz L; Jackson, Joshua M; Wang, Hong; Witek, Małgorzata A; Kamande, Joyce; Milowsky, Matthew I; Whang, Young E; Soper, Steven A
2014-10-01
Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.
Suzuki, Kazumichi; Palmer, Matthew B; Sahoo, Narayan; Zhang, Xiaodong; Poenisch, Falk; Mackin, Dennis S; Liu, Amy Y; Wu, Richard; Zhu, X Ronald; Frank, Steven J; Gillin, Michael T; Lee, Andrew K
2016-07-01
To determine the patient throughput and the overall efficiency of the spot scanning system by analyzing treatment time, equipment availability, and maximum daily capacity for the current spot scanning port at Proton Therapy Center Houston and to assess the daily throughput capacity for a hypothetical spot scanning proton therapy center. At their proton therapy center, the authors have been recording in an electronic medical record system all treatment data, including disease site, number of fields, number of fractions, delivered dose, energy, range, number of spots, and number of layers for every treatment field. The authors analyzed delivery system downtimes that had been recorded for every equipment failure and associated incidents. These data were used to evaluate the patient census, patient distribution as a function of the number of fields and total target volume, and equipment clinical availability. The duration of each treatment session from patient walk-in to patient walk-out of the spot scanning treatment room was measured for 64 patients with head and neck, central nervous system, thoracic, and genitourinary cancers. The authors retrieved data for total target volume and the numbers of layers and spots for all fields from treatment plans for a total of 271 patients (including the above 64 patients). A sensitivity analysis of daily throughput capacity was performed by varying seven parameters in a throughput capacity model. The mean monthly equipment clinical availability for the spot scanning port in April 2012-March 2015 was 98.5%. Approximately 1500 patients had received spot scanning proton therapy as of March 2015. The major disease sites treated in September 2012-August 2014 were the genitourinary system (34%), head and neck (30%), central nervous system (21%), and thorax (14%), with other sites accounting for the remaining 1%. Spot scanning beam delivery time increased with total target volume and accounted for approximately 30%-40% of total treatment time for the total target volumes exceeding 200 cm(3), which was the case for more than 80% of the patients in this study. When total treatment time was modeled as a function of the number of fields and total target volume, the model overestimated total treatment time by 12% on average, with a standard deviation of 32%. A sensitivity analysis of throughput capacity for a hypothetical four-room spot scanning proton therapy center identified several priority items for improvements in throughput capacity, including operation time, beam delivery time, and patient immobilization and setup time. The spot scanning port at our proton therapy center has operated at a high performance level and has been used to treat a large number of complex cases. Further improvements in efficiency may be feasible in the areas of facility operation, beam delivery, patient immobilization and setup, and optimization of treatment scheduling.
ERIC Educational Resources Information Center
Ardiel, Evan L.; Giles, Andrew C.; Yu, Alex J.; Lindsay, Theodore H.; Lockery, Shawn R.; Rankin, Catharine H.
2016-01-01
Habituation is a highly conserved phenomenon that remains poorly understood at the molecular level. Invertebrate model systems, like "Caenorhabditis elegans," can be a powerful tool for investigating this fundamental process. Here we established a high-throughput learning assay that used real-time computer vision software for behavioral…
High definition infrared chemical imaging of colorectal tissue using a Spero QCL microscope.
Bird, B; Rowlette, J
2017-04-10
Mid-infrared microscopy has become a key technique in the field of biomedical science and spectroscopy. This label-free, non-destructive technique permits the visualisation of a wide range of intrinsic biochemical markers in tissues, cells and biofluids by detection of the vibrational modes of the constituent molecules. Together, infrared microscopy and chemometrics is a widely accepted method that can distinguish healthy and diseased states with high accuracy. However, despite the exponential growth of the field and its research world-wide, several barriers currently exist for its full translation into the clinical sphere, namely sample throughput and data management. The advent and incorporation of quantum cascade lasers (QCLs) into infrared microscopes could help propel the field over these remaining hurdles. Such systems offer several advantages over their FT-IR counterparts, a simpler instrument architecture, improved photon flux, use of room temperature camera systems, and the flexibility of a tunable illumination source. In this current study we explore the use of a QCL infrared microscope to produce high definition, high throughput chemical images useful for the screening of biopsied colorectal tissue.
Accelerating the Design of Solar Thermal Fuel Materials through High Throughput Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y; Grossman, JC
2014-12-01
Solar thermal fuels (STF) store the energy of sunlight, which can then be released later in the form of heat, offering an emission-free and renewable solution for both solar energy conversion and storage. However, this approach is currently limited by the lack of low-cost materials with high energy density and high stability. In this Letter, we present an ab initio high-throughput computational approach to accelerate the design process and allow for searches over a broad class of materials. The high-throughput screening platform we have developed can run through large numbers of molecules composed of earth-abundant elements and identifies possible metastablemore » structures of a given material. Corresponding isomerization enthalpies associated with the metastable structures are then computed. Using this high-throughput simulation approach, we have discovered molecular structures with high isomerization enthalpies that have the potential to be new candidates for high-energy density STF. We have also discovered physical principles to guide further STF materials design through structural analysis. More broadly, our results illustrate the potential of using high-throughput ab initio simulations to design materials that undergo targeted structural transitions.« less
40 CFR Table 3 to Subpart Eeee of... - Operating Limits-High Throughput Transfer Racks
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits-High Throughput Transfer Racks 3 Table 3 to Subpart EEEE of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Throughput Transfer Racks As stated in § 63.2346(e), you must comply with the operating limits for existing...
ADVANCES IN DISCOVERING SMALL MOLECULES TO PROBE PROTEIN FUNCTION IN A SYSTEMS CONTEXT
Doyle, Shelby K; Pop, Marius S; Evans, Helen L; Koehler, Angela N
2015-01-01
High throughput screening has historically been used for drug discovery almost exclusively by the pharmaceutical industry. Due to a significant decrease in costs associated with establishing a high throughput facility and an exponential interest in discovering probes of development and disease associated biomolecules, HTS core facilities have become an integral part of most academic and non-profit research institutions over the past decade. This major shift has led to the development of new HTS methodologies extending beyond the capabilities and target classes used in classical drug discovery approaches such as traditional enzymatic activity-based screens. In this brief review we describe some of the most interesting developments in HTS technologies and methods for chemical probe discovery. PMID:26615565
Next generation platforms for high-throughput biodosimetry
Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.
2014-01-01
Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of biodosimetry assays was described. These platforms can be used at different stages of biodosimetry assays starting from blood collection into microtubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multiwell and multichannel plates. Robotically friendly platforms can be used for different biodosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. PMID:24837249
A robust robotic high-throughput antibody purification platform.
Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J
2016-07-15
Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.
Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.
2016-01-01
Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239