Márta, Zoltán; Bobály, Balázs; Fekete, Jenő; Magda, Balázs; Imre, Tímea; Mészáros, Katalin Viola; Szabó, Pál Tamás
2016-09-10
Ultratrace analysis of sample components requires excellent analytical performance in terms of limits of quantitation (LoQ). Micro UHPLC coupling with sensitive tandem mass spectrometry provides state of the art solutions for such analytical problems. Decreased column volume in micro LC limits the injectable sample volume. However, if analyte concentration is extremely low, it might be necessary to inject high sample volumes. This is particularly critical for strong sample solvents and weakly retained analytes, which are often the case when preparing biological samples (protein precipitation, sample extraction, etc.). In that case, high injection volumes may cause band broadening, peak distortion or even elution in dead volume. In this study, we evaluated possibilities of high volume injection onto microbore RP-LC columns, when sample solvent is diluted. The presented micro RP-LC-MS/MS method was optimized for the analysis of steroid hormones from human plasma after protein precipitation with organic solvents. A proper sample dilution procedure helps to increase the injection volume without compromising peak shapes. Finally, due to increased injection volume, the limit of quantitation can be decreased by a factor of 2-5, depending on the analytes and the experimental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR
Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...
The Neutron Tomography Studies of the Rocks from the Kola Superdeep Borehole
NASA Astrophysics Data System (ADS)
Kichanov, S. E.; Kozlenko, D. P.; Ivankina, T. I.; Rutkauskas, A. V.; Lukin, E. V.; Savenko, B. N.
The volume morphology of a gneiss sample K-8802 recovered from the deep of 8802 m of the Kola Superdeep Borehole and its surface homologue sample PL-36 have been studied by means of neutron radiography and tomography methods. The volumes and size distributions of a biotite-muscovite grains as well as grains orientation distribution have been obtained from experimental data. It was found that the average volumes of the biotite-muscovite grains in surface homologue sample is noticeably larger than the average volume of grains in the deep-seated gneiss sample K-8802. This drastically differences in grains volumes can be explained by the recrystallization processes in deep of the Kola Superdeep Borehole at high temperatures and high pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Ryan T.; Wang, Chenchen; Rausch, Sarah J.
2014-07-01
A hybrid microchip/capillary CE system was developed to allow unbiased and lossless sample loading and high throughput repeated injections. This new hybrid CE system consists of a polydimethylsiloxane (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel and a fused silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channelmore » and the fused silica capillary separation column. Analytes are rapidly separated in the fused silica capillary with high resolution. High sensitivity MS detection after CE separation is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a good linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates and CE separation voltages.« less
Toward high-resolution NMR spectroscopy of microscopic liquid samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, Mark C.; Mehta, Hardeep S.; Chen, Ying
A longstanding limitation of high-resolution NMR spectroscopy is the requirement for samples to have macroscopic dimensions. Commercial probes, for example, are designed for volumes of at least 5 mL, in spite of decades of work directed toward the goal of miniaturization. Progress in miniaturizing inductive detectors has been limited by a perceived need to meet two technical requirements: (1) minimal separation between the sample and the detector, which is essential for sensitivity, and (2) near-perfect magnetic-field homogeneity at the sample, which is typically needed for spectral resolution. The first of these requirements is real, but the second can be relaxed,more » as we demonstrate here. By using pulse sequences that yield high-resolution spectra in an inhomogeneous field, we eliminate the need for near-perfect field homogeneity and the accompanying requirement for susceptibility matching of microfabricated detector components. With this requirement removed, typical imperfections in microfabricated components can be tolerated, and detector dimensions can be matched to those of the sample, even for samples of volume << 5 uL. Pulse sequences that are robust to field inhomogeneity thus enable small-volume detection with optimal sensitivity. We illustrate the potential of this approach to miniaturization by presenting spectra acquired with a flat-wire detector that can easily be scaled to subnanoliter volumes. In particular, we report high-resolution NMR spectroscopy of an alanine sample of volume 500 pL.« less
2015-01-01
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary separation column that connects seamlessly to the sample loading channel. The sample introduction channel is pressurized such that when the pneumatic microvalve opens briefly, a variable-volume sample plug is introduced into the loading channel. A high voltage for CE separation is continuously applied across the loading channel and the fused-silica capillary separation column. Analytes are rapidly separated in the fused-silica capillary, and following separation, high-sensitivity MS detection is accomplished via a sheathless CE/ESI-MS interface. The performance evaluation of the complete CE/ESI-MS platform demonstrated that reproducible sample injection with well controlled sample plug volumes could be achieved by using the PDMS microchip injector. The absence of band broadening from microchip to capillary indicated a minimum dead volume at the junction. The capabilities of the new CE/ESI-MS platform in performing high-throughput and quantitative sample analyses were demonstrated by the repeated sample injection without interrupting an ongoing separation and a linear dependence of the total analyte ion abundance on the sample plug volume using a mixture of peptide standards. The separation efficiency of the new platform was also evaluated systematically at different sample injection times, flow rates, and CE separation voltages. PMID:24865952
High-pressure liquid chromatography with direct injection of gas sample.
Astanin, Anton I; Baram, Grigory I
2017-06-09
The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.
Preconcentrator with high volume chiller for high vapor pressure particle detection
Linker, Kevin L
2013-10-22
Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.
EVALUATION OF THE HIGH VOLUME COLLECTION SYSTEM (HVCS) FOR QUANTIFYING FUGITIVE ORGANIC VAPOR LEAKS
The report discusses a recently developed measurements technique that offers the potential for providing an easy-to-use and cost effective means to directly measure organic vapor leaks. The method, called High Volume Collection System (HVCS), uses a high volume sampling device an...
Characterization and improvement of highly inclined optical sheet microscopy
NASA Astrophysics Data System (ADS)
Vignolini, T.; Curcio, V.; Gardini, L.; Capitanio, M.; Pavone, F. S.
2018-02-01
Highly Inclined and Laminated Optical sheet (HILO) microscopy is an optical technique that employs a highly inclined laser beam to illuminate the sample with a thin sheet of light that can be scanned through the sample volume1 . HILO is an efficient illumination technique when applied to fluorescence imaging of thick samples owing to the confined illumination volume that allows high contrast imaging while retaining deep scanning capability in a wide-field configuration. The restricted illumination volume is crucial to limit background fluorescence originating from portions of the sample far from the focal plane, especially in applications such as single molecule localization and super-resolution imaging2-4. Despite its widespread use, current literature lacks comprehensive reports of the actual advantages of HILO in these kinds of microscopies. Here, we thoroughly characterize the propagation of a highly inclined beam through fluorescently labeled samples and implement appropriate beam shaping for optimal application to single molecule and super-resolution imaging. We demonstrate that, by reducing the beam size along the refracted axis only, the excitation volume is consequently reduced while maintaining a field of view suitable for single cell imaging. We quantify the enhancement in signal-tobackground ratio with respect to the standard HILO technique and apply our illumination method to dSTORM superresolution imaging of the actin and vimentin cytoskeleton. We define the conditions to achieve localization precisions comparable to state-of-the-art reports, obtain a significant improvement in the image contrast, and enhanced plane selectivity within the sample volume due to the further confinement of the inclined beam.
Detection of the urban release of a bacillus anthracis simulant by air sampling.
Garza, Alexander G; Van Cuyk, Sheila M; Brown, Michael J; Omberg, Kristin M
2014-01-01
In 2005 and 2009, the Pentagon Force Protection Agency (PFPA) staged deliberate releases of a commercially available organic pesticide containing Bacillus amyloliquefaciens to evaluate PFPA's biothreat response protocols. In concert with, but independent of, these releases, the Department of Homeland Security sponsored experiments to evaluate the efficacy of commonly employed air and surface sampling techniques for detection of an aerosolized biological agent. High-volume air samplers were placed in the expected downwind plume, and samples were collected before, during, and after the releases. Environmental surface and personal air samples were collected in the vicinity of the high-volume air samplers hours after the plume had dispersed. The results indicate it is feasible to detect the release of a biological agent in an urban area both during and after the release of a biological agent using high-volume air and environmental sampling techniques.
2008 Homeland Security S and T Stakeholders Conference West volume 2 Monday
2008-01-16
per collection and pressure to be applied, etc. . - Enviromental effects; dry vs. wet surface (vs. type of sample swipe), clean vs. dirty surfaces...selection of collection via low volume or high volume sampling, distance to suspect item critical, etc. - Enviromental effects; temperature (range of...selection of material, collection via hand wiping or sampling wand, area per collection and pressure to be applied, etc. . - Enviromental effects; dry
Kerkhoff, M.J.; Lee, T.M.; Allen, E.R.; Lundgren, D.A.; Winefordner, J.D.
1985-01-01
A high-volume sampler fitted with a glass-fiber filter and backed by polyurethane foam (PUF) was employed to collect airborne particulate and gas-phase polycylic aromatic hydrocarbons (PAHs) in ambient air. Samples were collected from four sources representing a range of environmental conditions: gasoline engine exhaust, diesel engine exhaust, air near a heavily traveled interstate site, and air from a moderately polluted urban site. Spectral fingerprints of the unseparated particulate and gas-phase samples were obtained by constant energy synchronous luminescence spectroscopy (CESLS). Five major PAHs in the gas-phase extracts were characterized and estimated. The compatibility of a high-volume sampling method using polyurethane foam coupled with CESLS detection is explored for use as a screening technique for PAHs in ambient air. ?? 1985 American Chemical Society.
Sample injector for high pressure liquid chromatography
Paul, Phillip H.; Arnold, Don W.; Neyer, David W.
2001-01-01
Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.
Wei, Zhenwei; Xiong, Xingchuang; Guo, Chengan; Si, Xingyu; Zhao, Yaoyao; He, Muyi; Yang, Chengdui; Xu, Wei; Tang, Fei; Fang, Xiang; Zhang, Sichun; Zhang, Xinrong
2015-11-17
We had developed pulsed direct current electrospray ionization mass spectrometry (pulsed-dc-ESI-MS) for systematically profiling and determining components in small volume sample. Pulsed-dc-ESI utilized constant high voltage to induce the generation of single polarity pulsed electrospray remotely. This method had significantly boosted the sample economy, so as to obtain several minutes MS signal duration from merely picoliter volume sample. The elongated MS signal duration enable us to collect abundant MS(2) information on interested components in a small volume sample for systematical analysis. This method had been successfully applied for single cell metabolomics analysis. We had obtained 2-D profile of metabolites (including exact mass and MS(2) data) from single plant and mammalian cell, concerning 1034 components and 656 components for Allium cepa and HeLa cells, respectively. Further identification had found 162 compounds and 28 different modification groups of 141 saccharides in a single Allium cepa cell, indicating pulsed-dc-ESI a powerful tool for small volume sample systematical analysis.
Jeong, Heon-Ho; Lee, Byungjin; Jin, Si Hyung; Jeong, Seong-Geun; Lee, Chang-Soo
2016-04-26
Droplet-based microfluidics enabling exquisite liquid-handling has been developed for diagnosis, drug discovery and quantitative biology. Compartmentalization of samples into a large number of tiny droplets is a great approach to perform multiplex assays and to improve reliability and accuracy using a limited volume of samples. Despite significant advances in microfluidic technology, individual droplet handling in pico-volume resolution is still a challenge in obtaining more efficient and varying multiplex assays. We present a highly addressable static droplet array (SDA) enabling individual digital manipulation of a single droplet using a microvalve system. In a conventional single-layer microvalve system, the number of microvalves required is dictated by the number of operation objects; thus, individual trap-and-release on a large-scale 2D array format is highly challenging. By integrating double-layer microvalves, we achieve a "balloon" valve that preserves the pressure-on state under released pressure; this valve can allow the selective releasing and trapping of 7200 multiplexed pico-droplets using only 1 μL of sample without volume loss. This selectivity and addressability completely arranged only single-cell encapsulated droplets from a mixture of droplet compositions via repetitive selective trapping and releasing. Thus, it will be useful for efficient handling of miniscule volumes of rare or clinical samples in multiplex or combinatory assays, and the selective collection of samples.
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A technique for sampling low shrub vegetation, by crown volume classes
Jay R. Bentley; Donald W. Seegrist; David A. Blakeman
1970-01-01
The effects of herbicides or other cultural treatments of low shrubs can be sampled by a new technique using crown volume as the key variable. Low shrubs were grouped in 12 crown volume classes with index values based on height times surface area of crown. The number of plants, by species, in each class is counted on quadrats. Many quadrats are needed for highly...
Phelan, Michael P; Reineks, Edmunds Z; Berriochoa, Jacob P; Schold, Jesse D; Hustey, Fredric M; Chamberlin, Janelle; Kovach, Annmarie
2017-10-01
Hemolyzed blood samples commonly occur in hospital emergency departments (EDs). Our objective was to determine whether replacing standard large-volume/high-vacuum sample tubes with low-volume/low-vacuum tubes would significantly affect ED hemolysis. This was a prospective intervention of the use of small-volume/vacuum collection tubes. We evaluated all potassium samples in ED patients and associated hemolysis. We used χ2 tests to compare hemolysis incidence prior to and following utilization of small tubes for chemistry collection. There were 35,481 blood samples collected during the study period. Following implementation of small-volume tubes, overall hemolysis decreased from a baseline of 11.8% to 2.9% (P < .001) with corresponding reductions in hemolysis with comment (8.95% vs 1.99%; P < .001) gross hemolysis (2.84% vs 0.90%; P < .007). This work demonstrates that significant improvements in ED hemolysis can be achieved by utilization of small-volume/vacuum sample collection tubes. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
Terlier, T; Lee, J; Lee, K; Lee, Y
2018-02-06
Technological progress has spurred the development of increasingly sophisticated analytical devices. The full characterization of structures in terms of sample volume and composition is now highly complex. Here, a highly improved solution for 3D characterization of samples, based on an advanced method for 3D data correction, is proposed. Traditionally, secondary ion mass spectrometry (SIMS) provides the chemical distribution of sample surfaces. Combining successive sputtering with 2D surface projections enables a 3D volume rendering to be generated. However, surface topography can distort the volume rendering by necessitating the projection of a nonflat surface onto a planar image. Moreover, the sputtering is highly dependent on the probed material. Local variation of composition affects the sputter yield and the beam-induced roughness, which in turn alters the 3D render. To circumvent these drawbacks, the correlation of atomic force microscopy (AFM) with SIMS has been proposed in previous studies as a solution for the 3D chemical characterization. To extend the applicability of this approach, we have developed a methodology using AFM-time-of-flight (ToF)-SIMS combined with an empirical sputter model, "dynamic-model-based volume correction", to universally correct 3D structures. First, the simulation of 3D structures highlighted the great advantages of this new approach compared with classical methods. Then, we explored the applicability of this new correction to two types of samples, a patterned metallic multilayer and a diblock copolymer film presenting surface asperities. In both cases, the dynamic-model-based volume correction produced an accurate 3D reconstruction of the sample volume and composition. The combination of AFM-SIMS with the dynamic-model-based volume correction improves the understanding of the surface characteristics. Beyond the useful 3D chemical information provided by dynamic-model-based volume correction, the approach permits us to enhance the correlation of chemical information from spectroscopic techniques with the physical properties obtained by AFM.
Technologies for imaging neural activity in large volumes
Ji, Na; Freeman, Jeremy; Smith, Spencer L.
2017-01-01
Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior. PMID:27571194
Novel diamond cells for neutron diffraction using multi-carat CVD anvils.
Boehler, R; Molaison, J J; Haberl, B
2017-08-01
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ∼0.15 mm 3 . High quality spectra were obtained in 1 h for crystalline Ni and in ∼8 h for disordered glassy carbon. These new techniques will open the way for routine megabar neutron diffraction experiments.
The Surgeon Volume-outcome Relationship: Not Yet Ready for Policy.
Modrall, J Gregory; Minter, Rebecca M; Minhajuddin, Abu; Eslava-Schmalbach, Javier; Joshi, Girish P; Patel, Shivani; Rosero, Eric B
2018-05-01
Increasing surgeon volume may improve outcomes for index operations. We hypothesized that there may be surrogate operative experiences that yield similar outcomes for surgeons with a low-volume experience with a specific index operation, such as esophagectomy. The relationship between surgeon volume and outcomes has potential implications for credentialing of surgeons. Restrictions of privileges based on surgeon volume are only reasonable if there is no substitute for direct experience with the index operation. This study was aimed at determining whether there are valid surrogates for direct experience with a sample index operation-open esophagectomy. The Nationwide Inpatient Sample (2003-2009) was utilized. Surgeons were stratified into low and high-volume groups based on annual volume of esophagectomy. Surrogate volume was defined as the aggregate annual volume per surgeon of upper gastrointestinal operations including excision of esophageal diverticulum, gastrectomy, gastroduodenectomy, and repair of diaphragmatic hernia. In all, 26,795 esophagectomies were performed nationwide (2003-2009), with a crude inhospital mortality rate of 5.2%. Inhospital mortality decreased with increasing volume of esophagectomies performed annually: 7.7% and 3.8% for low and high-volume surgeons, respectively (P < 0.0001). Among surgeons with a low-volume esophagectomy experience, increasing volume of surrogate operations improved the outcomes observed for esophagectomy: 9.7%, 7.1%, and 4.3% for low, medium, and high-surrogate-volume surgeons, respectively (P = 0.016). Both operation-specific volume and surrogate volume are significant predictors of inhospital mortality for esophagectomy. Based on these observations, it would be premature to limit hospital privileges based solely on operation-specific surgeon volume criteria.
NASA Astrophysics Data System (ADS)
de Andrade, Jailson B.; Tanner, Roger L.
A method is described for the specific collection of formaldehyde as hydroxymethanesulfonate on bisulfate-coated cellulose filters. Following extraction in aqueous acid and removal on unreacted bisulfite, the hydroxymethanesulfonate is decomposed by base, and HCHO is determined by DNPH (2,4-dinitrophenylhydrazine) derivatization and HPLC. Since the collection efficiency for formaldehyde is moderately high even when sampling ambient air at high-volume flow rates, a limit of detection of 0.2 ppbv is achieved with 30 min sampling times. Interference from acetaldehyde co-collected as 1-hydroxyethanesulfonate is <5% using this procedure. The technique shows promise for both short-term airborne sampling, and as a means of collecting mg-sized samples of HCHO on an inorganic matrix for carbon isotopic analyses.
Quality Control for Ambient Sampling of PCDD/PCDF from Open Combustion Sources
Both long duration (> 6 h) and high temperature (up to 139o C) sampling efforts were conducted using ambient air sampling methods to determine if either high volume throughput or higher than ambient sampling temperatures resulted in loss of target polychlorinated dibenzodioxins/d...
NASA Astrophysics Data System (ADS)
Chan, Y. C.; Vowles, P. D.; McTainsh, G. H.; Simpson, R. W.; Cohen, D. D.; Bailey, G. M.; McOrist, G. D.
This paper describes a method for the simultaneous collection of size-fractionated aerosol samples on several collection substrates, including glass-fibre filter, carbon tape and silver tape, with a commercially available high-volume cascade impactor. This permitted various chemical analysis procedures, including ion beam analysis (IBA), instrumental neutron activation analysis (INAA), carbon analysis and scanning electron microscopy (SEM), to be carried out on the samples.
Bicchi, Carlo; Cordero, Chiara; Liberto, Erica; Rubiolo, Patrizia; Sgorbini, Barbara; Sandra, Pat
2005-04-15
This study evaluates concentration capability of headspace sorptive extraction (HSSE) and the influence of sampling conditions on HSSE recovery of an analyte. A standard mixture in water of six high-to-medium volatility analytes (isobutyl methyl ketone, 3-hexanol, isoamyl acetate, 1,8-cineole, linalool and carvone) was used to sample the headspace by HSSE with stir bars coated with different polydimethylsiloxane (PDMS) volumes (20, 40, 55 and 110 microL, respectively), headspace vial volumes (8, 21.2, 40, 250 and 1000 mL), sampling temperatures (25, 50 and 75 degrees C) and sampling times (30, 60 and 120 min, and 4, 8 and 16 h). The concentration factors (CFs) of HSSE versus static headspace (S-HS) were also determined. Analytes sampled by the PDMS stir bars were recovered by thermal desorption (TDS) and analysed by capillary GC-MS. This study demonstrates how analyte recovery depends on its physico-chemical characteristics and affinity for PDMS (octanol-water partition coefficients), sampling temperatures (50 degrees C) and times (60 min), the volumes of headspace (40 mL) and of PDMS (in particular, for high volatility analytes). HSSE is also shown to be very effective for trace analysis. The HSSE CFs calculated versus S-HS with a 1000 mL headspace volumes at 25 degrees C during 4 h sampling ranged between 10(3) and 10(4) times for all analytes investigated while the limits of quantitation determined under the same conditions were in the nmol/L range.
Novel diamond cells for neutron diffraction using multi-carat CVD anvils
Boehler, R.; Molaison, J. J.; Haberl, B.
2017-08-17
Traditionally, neutron diffraction at high pressure has been severely limited in pressure because low neutron flux required large sample volumes and therefore large volume presses. At the high-flux Spallation Neutron Source at the Oak Ridge National Laboratory, we have developed in this paper new, large-volume diamond anvil cells for neutron diffraction. The main features of these cells are multi-carat, single crystal chemical vapor deposition diamonds, very large diffraction apertures, and gas membranes to accommodate pressure stability, especially upon cooling. A new cell has been tested for diffraction up to 40 GPa with an unprecedented sample volume of ~0.15 mm 3.more » High quality spectra were obtained in 1 h for crystalline Ni and in ~8 h for disordered glassy carbon. Finally, these new techniques will open the way for routine megabar neutron diffraction experiments.« less
NASA Technical Reports Server (NTRS)
Egolf, T. Alan; Anderson, Olof L.; Edwards, David E.; Landgrebe, Anton J.
1988-01-01
A user's manual for the computer program developed for the prediction of propeller-nacelle aerodynamic performance reported in, An Analysis for High Speed Propeller-Nacelle Aerodynamic Performance Prediction: Volume 1 -- Theory and Application, is presented. The manual describes the computer program mode of operation requirements, input structure, input data requirements and the program output. In addition, it provides the user with documentation of the internal program structure and the software used in the computer program as it relates to the theory presented in Volume 1. Sample input data setups are provided along with selected printout of the program output for one of the sample setups.
High-throughput Titration of Luciferase-expressing Recombinant Viruses
Garcia, Vanessa; Krishnan, Ramya; Davis, Colin; Batenchuk, Cory; Le Boeuf, Fabrice; Abdelbary, Hesham; Diallo, Jean-Simon
2014-01-01
Standard plaque assays to determine infectious viral titers can be time consuming, are not amenable to a high volume of samples, and cannot be done with viruses that do not form plaques. As an alternative to plaque assays, we have developed a high-throughput titration method that allows for the simultaneous titration of a high volume of samples in a single day. This approach involves infection of the samples with a Firefly luciferase tagged virus, transfer of the infected samples onto an appropriate permissive cell line, subsequent addition of luciferin, reading of plates in order to obtain luminescence readings, and finally the conversion from luminescence to viral titers. The assessment of cytotoxicity using a metabolic viability dye can be easily incorporated in the workflow in parallel and provide valuable information in the context of a drug screen. This technique provides a reliable, high-throughput method to determine viral titers as an alternative to a standard plaque assay. PMID:25285536
Personal exposure to aerosolized red tide toxins (brevetoxins).
Cheng, Yung Sung; Zhou, Yue; Naar, Jerome; Irvin, C Mitch; Su, Wei-Chung; Fleming, Lora E; Kirkpatrick, Barbara; Pierce, Richard H; Backer, Lorraine C; Baden, Daniel G
2010-06-01
Florida red tides occur annually in the Gulf of Mexico from blooms of the marine dinoflagellate, Karenia brevis, which produces highly potent natural polyether toxins, brevetoxins. Several epidemiologic studies have demonstrated that human exposure to red tide aerosol could result in increased respiratory symptoms. Environmental monitoring of aerosolized brevetoxins was performed using a high-volume sampler taken hourly at fixed locations on Siesta Beach, Florida. Personal exposure was monitored using personal air samplers and taking nasal swab samples from the subjects who were instructed to spend 1 hr on Sarasota Beach during two sampling periods of an active Florida red tide event in March 2005, and in May 2008 when there was no red tide. Results showed that the aerosolized brevetoxins from the personal sampler were in modest agreement with the environmental concentration taken from a high-volume sampler. Analysis of nasal swab samples for brevetoxins demonstrated 68% positive samples in the March 2005 sampling period when air concentrations of brevetoxins were between 50 to 120 ng/m(3) measured with the high-volume sampler. No swab samples showed detectable levels of brevetoxins in the May 2008 study, when all personal samples were below the limit of detection. However, there were no statistical correlations between the amounts of brevetoxins detected in the swab samples with either the environmental or personal concentration. Results showed that the personal sample might provide an estimate of individual exposure level. Nasal swab samples showed that brevetoxins indeed were inhaled and deposited in the nasal passage during the March 2005 red tide event.
Detection of melting by X-ray imaging at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Li; Weidner, Donald J.
2014-06-15
The occurrence of partial melting at elevated pressure and temperature is documented in real time through measurement of volume strain induced by a fixed temperature change. Here we present the methodology for measuring volume strains to one part in 10{sup −4} for mm{sup 3} sized samples in situ as a function of time during a step in temperature. By calibrating the system for sample thermal expansion at temperatures lower than the solidus, the onset of melting can be detected when the melting volume increase is of comparable size to the thermal expansion induced volume change. We illustrate this technique withmore » a peridotite sample at 1.5 GPa during partial melting. The Re capsule is imaged with a CCD camera at 20 frames/s. Temperature steps of 100 K induce volume strains that triple with melting. The analysis relies on image comparison for strain determination and the thermal inertia of the sample is clearly seen in the time history of the volume strain. Coupled with a thermodynamic model of the melting, we infer that we identify melting with 2 vol.% melting.« less
Using fiberglass volumes for VPI of superconductive magnetic systems’ insulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, I. S.; Bezrukov, A. A.; Pischugin, A. B.
2014-01-29
The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor’s PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests atmore » room and cryogenic temperatures. Some results of the tests are also given in this paper.« less
Miller, K.F.; Walters, D.A.
2001-01-01
Dioxin is a toxic chemical that, when present in the environment, can cause cancer and birth defects in humans. Dioxin is of particular concern because concentrations of dioxin that were released into the environment many years ago remain a contributing factor to current exposure. Dioxin exposure often occurs in surface-water systems downstream from contaminated sites and is detrimental to aquatic life. For these reasons and because the U.S. Geological Survey has expertise in conducting high-volume dioxin sampling, the U.S. Environmental Protection Agency and the State of North Carolina asked the U.S. Geological Survey to collect water samples in the lower Roanoke River to be analyzed for the presence of dioxin. Water quality of the lower Roanoke River Basin in North Carolina was assessed at eight sites during February 26-March 7, 2001. Water- quality samples were collected for analysis of suspended-sediment and dioxin concentrations; high-volume (750-liter) water samples were collected for dioxin analysis. Discharge measurements were made at or near the high-volume sampling sites. Suspended-sediment sampling and water-quality measurements of specific conductance, pH, water temperature, and dissolved-oxygen concentrations made at each sampling site included multidepth measurements at two cross-section transects and hourly measurements at the point of high-volume sampling. Multidepth measurements were made near the surface, mid-depth, and near the bottom of the water column. These values were averaged for each cross section. During the sampling period, all sites sampled had dioxin concentrations above detection limits (1 part per quintillion) for both suspended and dissolved dioxin. Suspended dioxin ranged from 5.1 to 900 femtograms per liter, and dissolved dioxin values ranged from 0.31 to 41 femtograms per liter. Suspended-sediment concentrations ranged from 1.1 to 14 milligrams per liter. Specific conductance values ranges from 111 to 340 microsiemens per centimeter at 25 degrees Celsius. The range of pH values at the sampling sites was from 6.6 to 7.7. Water temperatures ranged from 8.9 to 13 degrees Celsius. Dissolved-oxygen concentrations ranged from 7.3 to 10.9 milligrams per liter.
Wang, Donglin; Yang, Kun; Zhou, Yin
2016-03-20
Measuring the refractive index and volume of liquid under high pressure simultaneously is a big challenge. This paper proposed an alternative solution by combing optical coherence tomography with microscopy. An experiment for a feasibility study was carried out on polydimethylsiloxane liquid in a diamond anvil cell. The refractive index of the sample increased dramatically with pressure loaded, and the curve of pressure volume was also obtained.
Dinçer, Murat; Kucukdurmaz, Faruk; Salabas, Emre; Ortac, Mazhar; Aktan, Gulsan; Kadioglu, Ates
2017-01-01
The aim of this study was to evaluate whether there is a difference between gravimetrically and volumetrically measured semen samples and to assess the impact of semen volume, density, and sperm count on the discrepancy between gravimetric and volumetric methods. This study was designed in an andrology laboratory setting and performed on semen samples of 1,055 men receiving infertility treatment. Semen volume was calculated by gravimetric and volumetric methods. The total sperm count, semen density and sperm viability were also examined according to recent version of World Health Organization manual. The median values for gravimetric and volumetric measurements were 3.44 g and 2.96 ml respectively. The numeric difference in semen volume between 2 methods was 0.48. The mean density of samples was 1.01 ± 0.46 g/ml (range 0.90-2.0 g/ml). The numeric difference between 2 methods gets higher as semen volume increases (p < 0.001). Gravimetric and volumetric semen volume measurements were strongly correlated for all samples and for each subgroup of semen volume, semen density and sperm count, with minimum correlation coefficient of 0.895 (p < 0.001). In conclusion, the gravimetric measurement provides higher results than volumetric one and numeric differences between 2 methods increase as semen volume increases. However, further studies are needed to offer the use of gravimetrical method, which was thought to minimize laboratory errors, particularly for a high amount of semen samples. © 2016 S. Karger AG, Basel.
David, Victor; Galaon, Toma; Aboul-Enein, Hassan Y
2014-01-03
Recent studies showed that injection of large volume of hydrophobic solvents used as sample diluents could be applied in reversed-phase liquid chromatography (RP-LC). This study reports a systematic research focused on the influence of a series of aliphatic alcohols (from methanol to 1-octanol) on the retention process in RP-LC, when large volumes of sample are injected on the column. Several model analytes with low hydrophobic character were studied by RP-LC process, for mobile phases containing methanol or acetonitrile as organic modifiers in different proportions with aqueous component. It was found that starting with 1-butanol, the aliphatic alcohols can be used as sample solvents and they can be injected in high volumes, but they may influence the retention factor and peak shape of the dissolved solutes. The dependence of the retention factor of the studied analytes on the injection volume of these alcohols is linear, with a decrease of its value as the sample volume is increased. The retention process in case of injecting up to 200μL of upper alcohols is dependent also on the content of the organic modifier (methanol or acetonitrile) in mobile phase. Copyright © 2013 Elsevier B.V. All rights reserved.
Perilymph composition in scala tympani of the cochlea: influence of cerebrospinal fluid.
Hara, A; Salt, A N; Thalmann, R
1989-11-01
A commonly used technique to obtain cochlear perilymph for analysis has been the aspiration of samples through the round window membrane. The present study has investigated the influence of the volume withdrawn on sample composition in the guinea pig. Samples of less than 200 nl in volume taken through the round window showed relatively high glycine content, comparable to the level found in samples taken from scala vestibuli. If larger volumes are withdrawn, lower glycine levels are observed. This is consistent with cerebrospinal fluid (having a low glycine content) being drawn into scala tympani through the cochlear aqueduct and contaminating the sample. The existence of a concentration difference for glycine between scala tympani perilymph and cerebrospinal fluid suggests the physiologic communication across the cochlear aqueduct is relatively small in this species. The observation of considerable exchange between cerebrospinal fluid and perilymph, as reported in some studies, is more likely to be an artifact of the experimental procedures, rather than of physiologic significance. Alternative sampling procedures have been evaluated which allow larger volumes of uncontaminated scala tympani perilymph to be collected.
Boyacı, Ezel; Bojko, Barbara; Reyes-Garcés, Nathaly; Poole, Justen J; Gómez-Ríos, Germán Augusto; Teixeira, Alexandre; Nicol, Beate; Pawliszyn, Janusz
2018-01-18
In vitro high-throughput non-depletive quantitation of chemicals in biofluids is of growing interest in many areas. Some of the challenges facing researchers include the limited volume of biofluids, rapid and high-throughput sampling requirements, and the lack of reliable methods. Coupled to the above, growing interest in the monitoring of kinetics and dynamics of miniaturized biosystems has spurred the demand for development of novel and revolutionary methodologies for analysis of biofluids. The applicability of solid-phase microextraction (SPME) is investigated as a potential technology to fulfill the aforementioned requirements. As analytes with sufficient diversity in their physicochemical features, nicotine, N,N-Diethyl-meta-toluamide, and diclofenac were selected as test compounds for the study. The objective was to develop methodologies that would allow repeated non-depletive sampling from 96-well plates, using 100 µL of sample. Initially, thin film-SPME was investigated. Results revealed substantial depletion and consequent disruption in the system. Therefore, new ultra-thin coated fibers were developed. The applicability of this device to the described sampling scenario was tested by determining the protein binding of the analytes. Results showed good agreement with rapid equilibrium dialysis. The presented method allows high-throughput analysis using small volumes, enabling fast reliable free and total concentration determinations without disruption of system equilibrium.
Methods of obtaining a uniform volume concentration of implanted ions
NASA Astrophysics Data System (ADS)
Reutov, V. F.
1998-05-01
Three simple practical methods of irradiation with high energy particles (>5 MeV/n), providing the conditions of obtaining a uniform volume concentration of the implanted ions in the massive samples are described in the present paper. Realization of the condition of two-sided irradiation of a plane sample during its rotation in the flux of the projectiles is the basis of the first method. The use of free air as a filter with varying absorbent ability due to the movement of the irradiated sample along ion beam brought to the atmosphere is at the basis of the second method of uniform ion alloying. The third method of obtaining a uniform volume concentration of the implanted ions in a massive sample consists of sample irradiation through the absorbent filter in the shape of a foil curved according to the parabolic law moving along its surface. The first method is the most effective for obtaining a great number of the samples, for mechanical tests, for example, the second one - for irradiation in different gaseous media, the third one - for obtaining high concentration of the implanted ions under controlled (regulated) thermal and deformation conditions.
NASA Astrophysics Data System (ADS)
Peterson, Ronald W.; Wand, A. Joshua
2005-09-01
The design of a sample cell for high-performance nuclear magnetic resonance (NMR) at elevated pressure is described. The cell has been optimized for the study of encapsulated proteins dissolved in low viscosity fluids but is suitable for more general nuclear magnetic resonance (NMR) spectroscopy of biomolecules at elevated pressure. The NMR cell is comprised of an alumina-toughened zirconia tube mounted on a self-sealing nonmagnetic metallic valve. The cell has several advantages, including relatively low cost, excellent NMR performance, high-pressure tolerance, chemical inertness, and a relatively large active volume. Also described is a low volume sample preparation device that allows for the preparation of samples under high hydrostatic pressure and their subsequent transfer to the NMR cell.
SAMPLING ARTIFACT ESTIMATES FOR ALKANES, HOPANES, AND ALIPHATIC CARBOXYLIC ACIDS
Sampling artifacts for molecular markers from organic speciation of particulate matter were investigated by analyzing forty-one samples collected in Philadelphia as a part of the Northeast Oxidant and Particulate Study (NEOPS). Samples were collected using a high volume sampler ...
Schroyer, B.R.; Capel, P.D.
1996-01-01
A high-performance liquid Chromatography (HPLC) method is presented for the for the fast, quantitative analysis of the target analytes in water and in low organic-carbon, sandy soils that are known to be contaminated with the parent herbicides. Speed and ease of sample preparation was prioritized above minimizing detection limits. Soil samples were extracted using 80:20 methanol:water (volume:volume). Water samples (50 ??L) were injected directly into the HPLC without prior preparation. Method quantification limits for soil samples (10 g dry weight) and water samples ranged from 20 to 110 ng/g and from 20 to 110 ??g/L for atrazine and its transformation products and from 80 to 320 ng/g and from 80 to 320 ??g/L for alachlor and its transformation products, respectively.
Holmberg, Rebecca C; Gindlesperger, Alissa; Stokes, Tinsley; Brady, Dane; Thakore, Nitu; Belgrader, Philip; Cooney, Christopher G; Chandler, Darrell P
2013-06-11
TruTip is a simple nucleic acid extraction technology whereby a porous, monolithic binding matrix is inserted into a pipette tip. The geometry of the monolith can be adapted for specific pipette tips ranging in volume from 1.0 to 5.0 ml. The large porosity of the monolith enables viscous or complex samples to readily pass through it with minimal fluidic backpressure. Bi-directional flow maximizes residence time between the monolith and sample, and enables large sample volumes to be processed within a single TruTip. The fundamental steps, irrespective of sample volume or TruTip geometry, include cell lysis, nucleic acid binding to the inner pores of the TruTip monolith, washing away unbound sample components and lysis buffers, and eluting purified and concentrated nucleic acids into an appropriate buffer. The attributes and adaptability of TruTip are demonstrated in three automated clinical sample processing protocols using an Eppendorf epMotion 5070, Hamilton STAR and STARplus liquid handling robots, including RNA isolation from nasopharyngeal aspirate, genomic DNA isolation from whole blood, and fetal DNA extraction and enrichment from large volumes of maternal plasma (respectively).
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment.
Vutukuru, Manjula Ramya; Sharma, Divya Khandige; Ragavendar, M S; Schmolke, Susanne; Huang, Yiwei; Gumbrecht, Walter; Mitra, Nivedita
2016-12-01
Molecular diagnostics is a promising alternative to culture based methods for the detection of bloodstream infections, notably due to its overall lower turnaround time when starting directly from patient samples. Whole blood is usually the starting diagnostic sample in suspected bloodstream infections. The detection of low concentrations of pathogens in blood using a molecular assay necessitates a fairly high starting volume of blood sample in the range of 5-10mL. This large volume of blood sample has a substantial accompanying human genomic content that interferes with pathogen detection. In this study, we have established a workflow using magnetic beads coated with Apolipoprotein H that makes it possible to concentrate pathogens from a 5.0mL whole blood sample, thereby enriching pathogens from whole blood background and also reducing the sample volume to ~200μL or less. We have also demonstrated that this method of enrichment allows detection of 1CFU/mL of Escherichia coli, Enterococcus gallinarum and Candida tropicalis from 5mL blood using quantitative PCR; a detection limit that is not possible in unenriched samples. The enrichment method demonstrated here took 30min to complete and can be easily integrated with various downstream molecular and microbiological techniques. Copyright © 2016 Elsevier B.V. All rights reserved.
Ishibashi, Ryo; Mawatari, Kazuma; Kitamori, Takehiko
2012-04-23
The rapidly developing interest in nanofluidic analysis, which is used to examine liquids ranging in amounts from the attoliter to the femtoliter scale, correlates with the recent interest in decreased sample amounts, such as in the field of single-cell analysis. For general nanofluidic analysis, the fact that a pressure-driven flow does not limit the choice of solvents (aqueous or organic) is important. This study shows the first pressure-driven liquid chromatography technique that enables separation of atto- to femtoliter sample volumes, with a high separation efficiency within a few seconds. The apparent diffusion coefficient measurement of the unretentive sample suggests that there is no increase in the viscosity of toluene in the extended nanospace, unlike in aqueous solvents. Evaluation of the normal phase separation, therefore, should involve only the examination of the effect of the small size of the extended nanospace. Compared to a conventionally packed high-performance liquid chromatography column, the separation here results in a faster separation (4 s) by 2 orders of magnitude, a smaller injection volume (10(0) fL) by 9 orders, and a higher separation efficiency (440,000 plates/m) by 1 order. Moreover, the separation behavior agrees with the theory showing that this high efficiency was due to the small and controlled size of the separation channel, where the diffusion through the channel depth direction is fast enough to be neglected. Our chip-based platform should allow direct and real-time analysis or screening of ultralow volume of sample. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Callegary, J.B.; Ferré, T.P.A.; Groom, R.W.
2012-01-01
There is an ongoing effort to improve the understanding of the correlation of soil properties with apparent soil electrical conductivity as measured by low-induction-number electromagnetic-induction (LIN FEM) instruments. At a minimum, the dimensions of LIN FEM instruments' sample volume, the spatial distribution of sensitivity within that volume, and implications for surveying and analyses must be clearly defined and discussed. Therefore, a series of numerical simulations was done in which a conductive perturbation was moved systematically through homogeneous soil to elucidate the three-dimensional sample volume of LIN FEM instruments. For a small perturbation with electrical conductivity similar to that of the soil, instrument response is a measure of local sensitivity (LS). Our results indicate that LS depends strongly on the orientation of the instrument's transmitter and receiver coils and includes regions of both positive and negative LS. Integration of the absolute value of LS from highest to lowest was used to contour cumulative sensitivity (CS). The 90% CS contour was used to define the sample volume. For both horizontal and vertical coplanar coil orientations, the longest dimension of the sample volume was at the surface along the main instrument axis with a length of about four times the intercoil spacing (s) with maximum thicknesses of about 1 and 0.3 s, respectively. The imaged distribution of spatial sensitivity within the sample volume is highly complex and should be considered in conjunction with the expected scale of heterogeneity before the use and interpretation of LIN FEM for mapping and profiling. ?? Soil Science Society of America.
NASA Astrophysics Data System (ADS)
Alyassin, Abdal M.
2002-05-01
3D Digital mammography (3DDM) is a new technology that provides high resolution X-ray breast tomographic data. Like any other tomographic medical imaging modalities, viewing a stack of tomographic images may require time especially if the images are of large matrix size. In addition, it may cause difficulty to conceptually construct 3D breast structures. Therefore, there is a need to readily visualize the data in 3D. However, one of the issues that hinder the usage of volume rendering (VR) is finding an automatic way to generate transfer functions that efficiently map the important diagnostic information in the data. We have developed a method that randomly samples the volume. Based on the mean and the standard deviation of these samples, the technique determines the lower limit and upper limit of a piecewise linear ramp transfer function. We have volume rendered several 3DDM data using this technique and compared visually the outcome with the result from a conventional automatic technique. The transfer function generated through the proposed technique provided superior VR images over the conventional technique. Furthermore, the improvement in the reproducibility of the transfer function correlated with the number of samples taken from the volume at the expense of the processing time.
NASA Astrophysics Data System (ADS)
Trindade Pedrosa, Elisabete; Putnis, Andrew
2015-04-01
Pseudomorphic mineral replacement reactions are a common phenomena in nature, and often described as interface-coupled dissolution-reprecipitation processes. The generation of porosity is a key factor for its progression since it creates the pathway for fluid infiltration towards an ongoing reaction front. The generation of porosity depends on two key factors: the molar volume differences between parent and product phase, and the relative solubilities of the parent and product in the fluid at the mineral-fluid interface (Pollok et al., 2011). Jamtveit et al., (2009) demonstrated that the permeability of the parent rock may also be enhanced by the development of fractures as a response to stresses generated by local volume changes at the reaction interface, which in turn increases the reaction rate. The replacement of calcite (CaCO3) by fluorite (CaF2) involves a molar volume decrease of 33.5 %. If indeed high volume changes generate high local stresses, a fragmentation process is expected to be driven by this replacement reaction. To test this hypothesis, a number of hydrothermal experiments were performed. Small cubes of calcite rock (Carrara marble), and single crystals of calcite were used as parent materials. Two fluoride solutions (ammonium fluoride and sodium fluoride) were used as reactants. Samples were reacted at temperatures up to 200°C for various times and quenched to room temperature. After drying, samples were mounted in epoxy holders, cross sections through the centre of the samples were cut and polished, and analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMP). The replacement end product of all experiments was confirmed to be fluorite. In every case the external shape of the samples was perfectly maintained. No reaction induced fracturing was visible in any of the samples (rock or single crystals) although the texture of the replaced material was quite complex, often with a 'V' shaped reaction front. The main difference between single crystals and rock was that in the former, grain boundaries were rapid transport pathways for fluid infiltration resulting in the precipitation of fluorite within the sample at locations further from the main reaction front. The porosity formed was very high and complex, its texture depending on the shape and orientation of the replaced material. Very large hollow spaces with diameter >30 μm formed in several samples. In this system the large volume decrease is accommodated by a high porosity rather than fracturing. Jamtveit B., Putnis C.V. & Malthe-Sørenssen A. (2009). Reaction induced fracturing during replacement processes. Contrib. Min. Pet., 157 127-133 Pollok K., Putnis C.V. & Putnis A. (2011) Mineral replacement reactions in solid solution-aqueous solution systems: Volume changes, reaction paths and end points using the example of model salt systems. Am. J. Sci., 311, 211-236
Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine
2014-03-01
Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
Hu, Jian Zhi; Sears, Jr., Jesse A.; Hoyt, David W.; Mehta, Hardeep S.; Peden, Charles H. F.
2015-11-24
A continuous-flow (CF) magic angle sample spinning (CF-MAS) NMR rotor and probe are described for investigating reaction dynamics, stable intermediates/transition states, and mechanisms of catalytic reactions in situ. The rotor includes a sample chamber of a flow-through design with a large sample volume that delivers a flow of reactants through a catalyst bed contained within the sample cell allowing in-situ investigations of reactants and products. Flow through the sample chamber improves diffusion of reactants and products through the catalyst. The large volume of the sample chamber enhances sensitivity permitting in situ .sup.13C CF-MAS studies at natural abundance.
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2017-01-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations. PMID:28845484
Pisharady, Pramod Kumar; Duarte-Carvajalino, Julio M; Sotiropoulos, Stamatios N; Sapiro, Guillermo; Lenglet, Christophe
2015-10-01
The RubiX [1] algorithm combines high SNR characteristics of low resolution data with high spacial specificity of high resolution data, to extract microstructural tissue parameters from diffusion MRI. In this paper we focus on estimating crossing fiber orientations and introduce sparsity to the RubiX algorithm, making it suitable for reconstruction from compressed (under-sampled) data. We propose a sparse Bayesian algorithm for estimation of fiber orientations and volume fractions from compressed diffusion MRI. The data at high resolution is modeled using a parametric spherical deconvolution approach and represented using a dictionary created with the exponential decay components along different possible directions. Volume fractions of fibers along these orientations define the dictionary weights. The data at low resolution is modeled using a spatial partial volume representation. The proposed dictionary representation and sparsity priors consider the dependence between fiber orientations and the spatial redundancy in data representation. Our method exploits the sparsity of fiber orientations, therefore facilitating inference from under-sampled data. Experimental results show improved accuracy and decreased uncertainty in fiber orientation estimates. For under-sampled data, the proposed method is also shown to produce more robust estimates of fiber orientations.
Zhang, Qi; Yang, Xiong; Hu, Qinglei; Bai, Ke; Yin, Fangfang; Li, Ning; Gang, Yadong; Wang, Xiaojun; Zeng, Shaoqun
2017-01-01
To resolve fine structures of biological systems like neurons, it is required to realize microscopic imaging with sufficient spatial resolution in three dimensional systems. With regular optical imaging systems, high lateral resolution is accessible while high axial resolution is hard to achieve in a large volume. We introduce an imaging system for high 3D resolution fluorescence imaging of large volume tissues. Selective plane illumination was adopted to provide high axial resolution. A scientific CMOS working in sub-array mode kept the imaging area in the sample surface, which restrained the adverse effect of aberrations caused by inclined illumination. Plastic embedding and precise mechanical sectioning extended the axial range and eliminated distortion during the whole imaging process. The combination of these techniques enabled 3D high resolution imaging of large tissues. Fluorescent bead imaging showed resolutions of 0.59 μm, 0.47μm, and 0.59 μm in the x, y, and z directions, respectively. Data acquired from the volume sample of brain tissue demonstrated the applicability of this imaging system. Imaging of different depths showed uniform performance where details could be recognized in either the near-soma area or terminal area, and fine structures of neurons could be seen in both the xy and xz sections. PMID:29296503
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Risk factors associated with high potential for serious crashes.
DOT National Transportation Integrated Search
2015-09-01
Crashes are random events and low traffic volumes therefore dont always make crash hot-spot : identification possible. This project has used extensive data collection and analysis for a large sample : of Oregons low volume roads to develop a ri...
Horčičiak, Michal; Masár, Marián; Bodor, Róbert; Danč, Ladislav; Bel, Peter
2012-03-01
A new method for the determination of trace glyphosate (GLYP), non-selective pesticide, by CZE with online ITP pre-treatment of drinking waters on a column-coupling (CC) chip has been developed. CC chip was equipped with two injection channels of 0.9 and 9.9 μL volumes, two separation channels of 9.3 μL total volume and a pair of conductivity detectors. A very effective ITP sample clean-up performed in the first channel at low pH (3.2) was introduced for quick CZE resolution and detection of GLYP carried out at higher pH (6.1) in the second channel on the CC chip. The LOD for GLYP was estimated at 2.5 μg/L (15 nmol/L) using a 9.9 |mL volume of the injection channel. ITP-CZE analyses of model and real samples have provided very favorable intra-day (0.1-1.2% RSD) and inter-day (2.9% RSD) repeatabilities of the migration time for GLYP while 0.2-6.9% RSD values were typical for the peak area data. Recoveries of GLYP in spiked drinking water varied in the range of 99-109%. A minimum pre-treatment of drinking water (degassing and dilution) and a short analysis time (ca. 10 min) were distinctive features of ITP-CZE determinations of GLYP on the CC chip with high sample volume loaded, as well. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aseptic minimum volume vitrification technique for porcine parthenogenetically activated blastocyst.
Lin, Lin; Yu, Yutao; Zhang, Xiuqing; Yang, Huanming; Bolund, Lars; Callesen, Henrik; Vajta, Gábor
2011-01-01
Minimum volume vitrification may provide extremely high cooling and warming rates if the sample and the surrounding medium contacts directly with the respective liquid nitrogen and warming medium. However, this direct contact may result in microbial contamination. In this work, an earlier aseptic technique was applied for minimum volume vitrification. After equilibration, samples were loaded on a plastic film, immersed rapidly into factory derived, filter-sterilized liquid nitrogen, and sealed into sterile, pre-cooled straws. At warming, the straw was cut, the filmstrip was immersed into a 39 degree C warming medium, and the sample was stepwise rehydrated. Cryosurvival rates of porcine blastocysts produced by parthenogenetical activation did not differ from control, vitrified blastocysts with Cryotop. This approach can be used for minimum volume vitrification methods and may be suitable to overcome the biological dangers and legal restrictions that hamper the application of open vitrification techniques.
NASA Astrophysics Data System (ADS)
Pavlov, S. S.; Dmitriev, A. Yu.; Chepurchenko, I. A.; Frontasyeva, M. V.
2014-11-01
The automation system for measurement of induced activity of gamma-ray spectra for multi-element high volume neutron activation analysis (NAA) was designed, developed and implemented at the reactor IBR-2 at the Frank Laboratory of Neutron Physics. The system consists of three devices of automatic sample changers for three Canberra HPGe detector-based gamma spectrometry systems. Each sample changer consists of two-axis of linear positioning module M202A by DriveSet company and disk with 45 slots for containers with samples. Control of automatic sample changer is performed by the Xemo S360U controller by Systec company. Positioning accuracy can reach 0.1 mm. Special software performs automatic changing of samples and measurement of gamma spectra at constant interaction with the NAA database.
Rugged large volume injection for sensitive capillary LC-MS environmental monitoring
NASA Astrophysics Data System (ADS)
Roberg-Larsen, Hanne; Abele, Silvija; Demir, Deniz; Dzabijeva, Diana; Amundsen, Sunniva F.; Wilson, Steven R.; Bartkevics, Vadims; Lundanes, Elsa
2017-08-01
A rugged and high throughput capillary column (cLC) LC-MS switching platform using large volume injection and on-line automatic filtration and filter back-flush (AFFL) solid phase extraction (SPE) for analysis of environmental water samples with minimal sample preparation is presented. Although narrow columns and on-line sample preparation are used in the platform, high ruggedness is achieved e.g. injection of 100 non-filtrated water samples would did not result in a pressure rise/clogging of the SPE/capillary columns (inner diameter 300 µm). In addition, satisfactory retention time stability and chromatographic resolution were also features of the system. The potential of the platform for environmental water samples was demonstrated with various pharmaceutical products, which had detection limits (LOD) in the 0.05 - 12.5 ng/L range. Between-day and within-day repeatability of selected analytes were < 20% RSD.
DOT National Transportation Integrated Search
1975-01-01
The six-volume report presents the technical methodology, data samples, and results of tests conducted on the SOAC on the Rail Transit Test Track at the High Speed Ground Test Center in Pueblo, Colorado during the period April to July 1973. The Test ...
ERIC Educational Resources Information Center
Frederickson, Edward W.; And Others
The development and evaluation of prototype hands-on equipment, job sample performance tests for a high skilled technical Military Occupational Specialty (MOS) are described. An electronic maintenance MOS (26C20) was used as the research vehicle. The results led to the conclusion that valid and reliable performance tests could be constructed, but…
NASA Astrophysics Data System (ADS)
Cen, Wei; Hoppe, Ralph; Lu, Rongbo; Cai, Zhaoquan; Gu, Ning
2017-08-01
In this paper, the relationship between electromagnetic power absorption and temperature distributions inside highly heterogeneous biological samples was accurately determinated using finite volume method. An in-vitro study on pineal gland that is responsible for physiological activities was for the first time simulated to illustrate effectiveness of the proposed method.
High day-to-day reliability in lower leg volume measured by water displacement.
Pasley, Jeffrey D; O'Connor, Patrick J
2008-07-01
The day-to-day reliability of lower leg volume is poorly documented. This investigation determined the day-to-day reliability of lower leg volume (soleus and gastrocnemius) measured using water displacement. Thirty young adults (15 men and 15 women) had their right lower leg volume measured by water displacement on five separate occasions. The participants performed normal activities of daily living and were measured at the same time of day after being seated for 30 min. The results revealed a high day-to-day reliability for lower leg volume. The mean percentage change in lower leg volume across days compared to day 1 ranged between 0 and 0.37%. The mean within subjects coefficient of variation in lower leg volume was 0.72% and the coefficient of variation for the entire sample across days ranged from 5.66 to 6.32%. A two way mixed model intraclass correlation (30 subjects x 5 days) showed that the lower leg volume measurement was highly reliable (ICC = 0.972). Foot and total lower leg volumes showed similarly high reliability. Water displacement offers a cost effective and reliable solution for the measurement of lower leg edema across days.
REGIONAL METHODS INITIATIVE RESEARCH PROJECTS AT HEASD
EPA Regional Laboratories are currently using high volume samplers with a combination of filter and sorbent vapor trap to collect large volume samples (250 liter/min for 24 hours) of semi-volatile organic compounds (SVOCs) and non-volatile organic compounds (NVOCs). These are su...
Robotic liquid handling and automation in epigenetics.
Gaisford, Wendy
2012-10-01
Automated liquid-handling robots and high-throughput screening (HTS) are widely used in the pharmaceutical industry for the screening of large compound libraries, small molecules for activity against disease-relevant target pathways, or proteins. HTS robots capable of low-volume dispensing reduce assay setup times and provide highly accurate and reproducible dispensing, minimizing variation between sample replicates and eliminating the potential for manual error. Low-volume automated nanoliter dispensers ensure accuracy of pipetting within volume ranges that are difficult to achieve manually. In addition, they have the ability to potentially expand the range of screening conditions from often limited amounts of valuable sample, as well as reduce the usage of expensive reagents. The ability to accurately dispense lower volumes provides the potential to achieve a greater amount of information than could be otherwise achieved using manual dispensing technology. With the emergence of the field of epigenetics, an increasing number of drug discovery companies are beginning to screen compound libraries against a range of epigenetic targets. This review discusses the potential for the use of low-volume liquid handling robots, for molecular biological applications such as quantitative PCR and epigenetics.
al Mahbub, Asheque; Haque, Asadul
2016-01-01
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles. PMID:28774011
Al Mahbub, Asheque; Haque, Asadul
2016-11-03
This paper presents the results of X-ray CT imaging of the microstructure of sand particles subjected to high pressure one-dimensional compression leading to particle crushing. A high resolution X-ray CT machine capable of in situ imaging was employed to capture images of the whole volume of a sand sample subjected to compressive stresses up to 79.3 MPa. Images of the whole sample obtained at different load stages were analysed using a commercial image processing software (Avizo) to reveal various microstructural properties, such as pore and particle volume distributions, spatial distribution of void ratios, relative breakage, and anisotropy of particles.
Design and testing a high fuel volume fraction, externally finned, thermionic emitter.
NASA Technical Reports Server (NTRS)
Peelgren, M. L.; Ernst, D. M.
1971-01-01
A prototypical, high fuel volume fraction, thermionic emitter body was designed and tested. The emitter body is all tungsten, with a 1.40-cm ID, a 3.23-cm OD, and eight full-length axial fins. The emitter thickness is 0.15 cm while the fins and outer clad are 0.075 cm thick. Different methods of fabrication were used in making the test samples. Stress analysis was performed with a three-dimensional elastic code. Thermal testing of the samples, duplicating calculated radial temperature gradients, heatup and cooldown rates, and emitter body temperatures in operation, was performed with no structural failures noted (six heatup and cooldown cycles per sample). Further emitter analysis and testing is planned.
Fan, Chen; Cao, Xueli; Liu, Man; Wang, Wei
2016-03-04
Alternariol (AOH), alternariol monomethyl ether (AME), and tenuazonic acid (TeA) are some of the main Alternaria mycotoxins that can be found as contaminants in food materials. The objective of this study was to develop a pretreatment method with countercurrent chromatography (CCC) for enrichment and cleanup of trace Alternaria mycotoxins in food samples prior to high-performance liquid chromatography (HPLC) analysis. An Analytical CCC instrument with a column volume 22.5mL was used, and a two-phase solvent system composed of ethyl acetate and water modified with 6% [HOOMIM][Cl] in mass to volume ratio was selected. Under the optimized CCC operation conditions, trace amounts of AOH, AME, and TeA in large volume of liquid sample were efficiently extracted and enriched in the stationary phase, and then eluted out just by reversing the stationary phase as mobile phase in the opposite flowing direction tail-to-head. The enrichment and elution strategies are unique and can be fulfilled online with high enrichment factors (87-114) and high recoveries (81.14-110.94%). The method has been successively applied to the determination of Alternaria mycotoxins in real apple juice and wine samples with the limits of detection (LOD) in the range of 0.03-0.14μgL(-1). Totally 12 wine samples and 15 apple juice samples from the local market were analyzed. The detection rate of AOH and AME in both kinds of the samples were more than 50%, while TeA was found in relatively high level of 1.75-49.61μgL(-1) in some of the apple juice samples. The proposed method is simple, rapid, and sensitive and could also be used for the analysis and monitoring of Alternaria mycotoxin in other food samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Reduction of Powerplex(®) Y23 reaction volume for genotyping buccal cell samples on FTA(TM) cards.
Raziel, Aliza; Dell'Ariccia-Carmon, Aviva; Zamir, Ashira
2015-01-01
PowerPlex(®) Y23 is a novel kit for Y-STR typing that includes new highly discriminating loci. The Israel DNA Database laboratory has recently adopted it for routine Y-STR analysis. This study examined PCR amplification from 1.2-mm FTA punch in reduced volumes of 5 and 10 μL. Direct amplification and washing of the FTA punches were examined in different PCR cycle numbers. One short robotically performed wash was found to improve the quality and the percent of profiles obtained. The optimal PCR cycle number was determined for 5 and 10 μL reaction volumes. The percent of obtained profiles, color balance, and reproducibility were examined. High-quality profiles were achieved in 90% and 88% of the samples amplified in 5 and 10 μL, respectively, in the first attempt. Volume reduction to 5 μL has a vast economic impact especially for DNA database laboratories. © 2014 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Latief, F. D. E.; Mohammad, I. H.; Rarasati, A. D.
2017-11-01
Digital imaging of a concrete sample using high resolution tomographic imaging by means of X-Ray Micro Computed Tomography (μ-CT) has been conducted to assess the characteristic of the sample’s structure. A standard procedure of image acquisition, reconstruction, image processing of the method using a particular scanning device i.e., the Bruker SkyScan 1173 High Energy Micro-CT are elaborated. A qualitative and a quantitative analysis were briefly performed on the sample to deliver some basic ideas of the capability of the system and the bundled software package. Calculation of total VOI volume, object volume, percent of object volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity were conducted and analysed. This paper should serve as a brief description of how the device can produce the preferred image quality as well as the ability of the bundled software packages to help in performing qualitative and quantitative analysis.
NASA Astrophysics Data System (ADS)
Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.
2017-12-01
Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads < 0.15 MPa, volume increase due to the reaction dominates and samples exhibit monotonic expansion. At loads > 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with models of the creep rate in gypsum, to estimate the temperature dependence of the axial load where total strain transitions from compaction to expansion. Our results have implications for the depth dependence of reaction induced volume changes in the Earth.
Asadi, Mohammad; Dadfarnia, Shayessteh; Haji Shabani, Ali Mohammad; Abbasi, Bijan
2015-07-01
A novel and simple method based on solidified floating organic drop microextraction followed by high-performance liquid chromatography with ultraviolet detection has been developed for simultaneous preconcentration and determination of phenobarbital, lamotrigine, and phenytoin in human plasma and urine samples. Factors affecting microextraction efficiency such as the type and volume of the extraction solvent, sample pH, extraction time, stirring rate, extraction temperature, ionic strength, and sample volume were optimized. Under the optimum conditions (i.e. extraction solvent, 1-undecanol (40 μL); sample pH, 8.0; temperature, 25°C; stirring rate, 500 rpm; sample volume, 7 mL; potassium chloride concentration, 5% and extraction time, 50 min), the limits of detection for phenobarbital, lamotrigine, and phenytoin were 1.0, 0.1, and 0.3 μg/L, respectively. Also, the calibration curves for phenobarbital, lamotrigine, and phenytoin were linear in the concentration range of 2.0-300.0, 0.3-200.0, and 1.0-200.0 μg/L, respectively. The relative standard deviations for six replicate extractions and determinations of phenobarbital, lamotrigine, and phenytoin at 50 μg/L level were less than 4.6%. The method was successfully applied to determine phenobarbital, lamotrigine, and phenytoin in plasma and urine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ciftci, Harun; Er, Cigdem
2013-03-01
In the present study, a separation/preconcentration procedure for determination of aluminum in water samples has been developed by using a new atomic absorption spectrometer concept with a high-intensity xenon short-arc lamp as continuum radiation source, a high-resolution double-echelle monochromator, and a charge-coupled device array detector. Sample solution pH, sample volume, flow rate of sample solution, volume, and concentration of eluent for solid-phase extraction of Al chelates with 4-[(dicyanomethyl)diazenyl] benzoic acid on polymeric resin (Duolite XAD-761) have been investigated. The adsorbed aluminum on resin was eluted with 5 mL of 2 mol L(-1) HNO(3) and its concentration was determined by high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Under the optimal conditions, limit of detection obtained with HR-CS FAAS and Line Source FAAS (LS-FAAS) were 0.49 μg L(-1) and 3.91 μg L(-1), respectively. The accuracy of the procedure was confirmed by analyzing certified materials (NIST SRM 1643e, Trace elements in water) and spiked real samples. The developed procedure was successfully applied to water samples.
NASA Astrophysics Data System (ADS)
Palmer, M. R.; Arata, C.; Huang, K.
2014-12-01
Nitrous oxide (N2O) gas is among the major contributors to global warming and ozone depletion in stratosphere. Quantitative estimate of N2O production in various pathways and N2O fluxes across different reservoirs is the key to understanding the role of N2O in the global change. To achieve this goal, accurate and concurrent measurement of both N2O concentration ([N2O]) and its site-specific isotopic composition (SP-δ15N), namely δ15Nα and δ15Nβ, is desired. Recent developments in Cavity Ring-Down Spectroscopy (CRDS) have enabled high precision measurements of [N2O] and SP-δ15N of a continuous gas flow. However, many N2O samples are discrete with limited volume (< 500 ml), and/or high [N2O] (> 2 ppm), and are not suitable for direct measurements by CRDS. Here we present results of a Small Sample Isotope Module 2 (SSIM2) which is coupled to and automatically coordinated with a Picarro isotopic N2O CRDS analyzer to handle and measure high concentration and/or small volume samples. The SSIM2 requires 20 ml of sample per analysis, and transfers the sample to the CRDS for high precision measurement. When the sample injection is < 20 ml, a zero gas is optionally filled to make up the volume. We used the SSIM2 to dilute high [N2O] samples and < 20 ml samples, and tested the effect of dilution on the measured SP-δ15N. In addition, we employed and tested a newly developed double injection method for samples adequate for two 20 ml injections. After the SSIM2 and the CRDS cavity was primed with the first injection, the second injection, which has negligible dilution of the sample, can be accurately measured for both [N2O] and SP-δ15N. Results of these experiments indicate that the precision of SSIM2-CRDS is similar to that of the continuous measurements using the CRDS alone, and that dilution has minimal effect on SP-δ15N, as along as the [N2O] is > 300 ppb after dilution. Overall, the precision of SP-δ15N measured using the SSIM2 is < 0.5 ‰.
Seagrave, JeanClare; Gigliotti, Andrew; McDonald, Jacob D; Seilkop, Steven K; Whitney, Kevin A; Zielinska, Barbara; Mauderly, Joe L
2005-09-01
Particulate matter (PM) and vapor-phase semivolatile organic compounds (SVOC) were collected from three buses fueled by compressed natural gas. The bus engines included a well-functioning, conventional engine; a "high emitter" engine; and a new technology engine with an oxidation catalyst. Chemical analysis of the emissions showed differences among these samples, with the high emitter sample containing markers of engine oil constituents. PM + SVOC samples were also collected for mutagenicity and toxicity testing. Extraction efficiencies from the collection media were lower than for similarly collected samples from gasoline or diesel vehicles. Responses to the recovered samples were compared on the basis of exhaust volume, to incorporate the emission rates into the potency factors. Mutagenicity was assessed by Salmonella reverse mutation assay. Mutagenicity was greatest for the high emitter sample and lowest for the new technology sample. Metabolic activation reduced mutagenicity in strain TA100, but not TA98. Toxicity, including inflammation, cytotoxicity, and parenchymal changes, was assessed 24 h after intratracheal instillation into rat lungs. Lung responses were generally mild, with little difference between the responses to equivalent volumes of emissions from the normal emitter and the new technology, but greater responses for the high emitter. These emission sample potencies are further compared on the basis of recovered mass with previously reported samples from normal and high-emitter gasoline and diesel vehicles. While mutagenic potencies for the CNG emission samples were similar to the range observed in the gasoline and diesel emission samples, lung toxicity potency factors were generally lower than those for the gasoline and diesel samples.
Rodriguez, Estrella Sanz; Poynter, Sam; Curran, Mark; Haddad, Paul R; Shellie, Robert A; Nesterenko, Pavel N; Paull, Brett
2015-08-28
Preservation of ionic species within Antarctic ice yields a unique proxy record of the Earth's climate history. Studies have been focused until now on two proxies: the ionic components of sea salt aerosol and methanesulfonic acid. Measurement of the all of the major ionic species in ice core samples is typically carried out by ion chromatography. Former methods, whilst providing suitable detection limits, have been based upon off-column preconcentration techniques, requiring larger sample volumes, with potential for sample contamination and/or carryover. Here, a new capillary ion chromatography based analytical method has been developed for quantitative analysis of limited volume Antarctic ice core samples. The developed analytical protocol applies capillary ion chromatography (with suppressed conductivity detection) and direct on-column sample injection and focusing, thus eliminating the requirement for off-column sample preconcentration. This limits the total sample volume needed to 300μL per analysis, allowing for triplicate sample analysis with <1mL of sample. This new approach provides a reliable and robust analytical method for the simultaneous determination of organic and inorganic anions, including fluoride, methanesulfonate, chloride, sulfate and nitrate anions. Application to composite ice-core samples is demonstrated, with coupling of the capillary ion chromatograph to high resolution mass spectrometry used to confirm the presence and purity of the observed methanesulfonate peak. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lefebvre, Joël.; Castonguay, Alexandre; Lesage, Frédéric
2018-02-01
High resolution imaging of whole rodent brains using serial OCT scanners is a promising method to investigate microstructural changes in tissue related to the evolution of neuropathologies. Although micron to sub-micron sampling resolution can be obtained by using high numerical aperture objectives and dynamic focusing, such an imaging system is not adapted to whole brain imaging. This is due to the large amount of data it generates and the significant computational resources required for reconstructing such volumes. To address this limitation, a dual resolution serial OCT scanner was developed. The optical setup consists in a swept-source OCT made of two sample and reference arms, each arm being coupled with different microscope objectives (3X / 40X). Motorized flip mirrors were used to switch between each OCT arm, thus allowing low and high resolution acquisitions within the same sample. The low resolution OCT volumes acquired with the 3X arm were stitched together, providing a 3D map of the whole mouse brain. This brain can be registered to an OCT brain template to enable neurological structures localization. The high resolution volumes acquired with the 40X arm were also stitched together to create local high resolution 3D maps of the tissue microstructure. The 40X data can be acquired at any arbitrary location in the sample, thus limiting storage-heavy high resolution data to application restricted to specific regions of interest. By providing dual-resolution OCT data, this setup can be used to validate diffusion MRI with tissue microstructure derived metrics measured at any location in ex vivo brains.
Evaluation of counting methods for oceanic radium-228
NASA Astrophysics Data System (ADS)
Orr, James C.
1988-07-01
Measurement of open ocean 228Ra is difficult, typically requiring at least 200 L of seawater. The burden of collecting and processing these large-volume samples severely limits the widespread use of this promising tracer. To use smaller-volume samples, a more sensitive means of analysis is required. To seek out new and improved counting method(s), conventional 228Ra counting methods have been compared with some promising techniques which are currently used for other radionuclides. Of the conventional methods, α spectrometry possesses the highest efficiency (3-9%) and lowest background (0.0015 cpm), but it suffers from the need for complex chemical processing after sampling and the need to allow about 1 year for adequate ingrowth of 228Th granddaughter. The other two conventional counting methods measure the short-lived 228Ac daughter while it remains supported by 228Ra, thereby avoiding the complex sample processing and the long delay before counting. The first of these, high-resolution γ spectrometry, offers the simplest processing and an efficiency (4.8%) comparable to α spectrometry; yet its high background (0.16 cpm) and substantial equipment cost (˜30,000) limit its widespread use. The second no-wait method, β-γ coincidence spectrometry, also offers comparable efficiency (5.3%), but it possesses both lower background (0.0054 cpm) and lower initial cost (˜12,000). Three new (i.e., untried for 228Ra) techniques all seem to promise about a fivefold increase in efficiency over conventional methods. By employing liquid scintillation methods, both α spectrometry and β-γ coincidence spectrometry can improve their counter efficiency while retaining low background. The third new 228Ra counting method could be adapted from a technique which measures 224Ra by 220Rn emanation. After allowing for ingrowth and then counting for the 224Ra great-granddaughter, 228Ra could be back calculated, thereby yielding a method with high efficiency, where no sample processing is required. The efficiency and background of each of the three new methods have been estimated and are compared with those of the three methods currently employed to measure oceanic 228Ra. From efficiency and background, the relative figure of merit and the detection limit have been determined for each of the six counters. These data suggest that the new counting methods have the potential to measure most 228Ra samples with just 30 L of seawater, to better than 5% precision. Not only would this reduce the time, effort, and expense involved in sample collection, but 228Ra could then be measured on many small-volume samples (20-30 L) previously collected with only 226Ra in mind. By measuring 228Ra quantitatively on such small-volume samples, three analyses (large-volume 228Ra, large-volume 226Ra, and small-volume 226Ra) could be reduced to one, thereby dramatically improving analytical precision.
Rapid method for measuring rotenone in water at piscicidal concentrations
Dawson, V.K.; Harman, P.D.; Schultz, D.P.; Allen, J.L.
1983-01-01
A high-performance liquid chromatography (HPLC) procedure that is rapid, specific, and sensitive (limit of detection <0.005 mg/liter) was developed for monitoring application and degradation rates of rotenone. For analysis, a water sample is buffered to pH 5 and injected through a Sep Pak(R) C18 disposable cartridge. The cartridge adsorbs and retains the rotenone which then can be eluted quantitatively from the cartridge with a small volume of methanol. This step effectively concentrates the sample and provides sample cleanup. The methanol extract is analyzed directly by HPLC on an MCH 10 reverse-phase column; methanol: water (75:25, volume : volume) is the mobile phase and flow rate is 1.5 ml/minute. The rotenone is detected by ultraviolet spectrophotometry at a wavelength of 295 nm.
van Kooten, Xander F; Truman-Rosentsvit, Marianna; Kaigala, Govind V; Bercovici, Moran
2017-09-05
The use of on-chip isotachophoresis assays for diagnostic applications is often limited by the small volumes of standard microfluidic channels. Overcoming this limitation is particularly important for detection of 'discrete' biological targets (such as bacteria) at low concentrations, where the volume of processed liquid in a standard microchannel might not contain any targets. We present a novel microfluidic chip that enables ITP focusing of target analytes from initial sample volumes of 50 μL into a concentrated zone with a volume of 500 pL, corresponding to a 100,000-fold increase in mean concentration, and a 300,000-fold increase in peak concentration. We present design considerations for limiting sample dispersion in such large-volume focusing (LVF) chips and discuss the trade-off between assay time and Joule heating, which ultimately governs the scalability of LVF designs. Finally, we demonstrate a 100-fold improvement of ITP focusing performance in the LVF chip as compared to conventional microchannels, and apply this enhancement to achieve highly sensitive detection of both molecular targets (DNA, down to 10 fM) and whole bacteria (down to 100 cfu/mL).
Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping
2016-02-01
An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.
Gray, Kerryn; Crowle, Damian; Scott, Pam
2014-09-01
A significant number of evidence items submitted to Forensic Science Service Tasmania (FSST) are blood swabs or bloodstained items. Samples from these items routinely undergo phenol:chloroform:isoamyl alcohol organic extraction and quantitative Polymerase Chain Reaction (qPCR) testing prior to PowerPlex(®) 21 amplification. This multi-step process has significant cost and timeframe implications in a fiscal climate of tightening government budgets, pressure towards improved operating efficiencies, and an increasing emphasis on rapid techniques better supporting intelligence-led policing. Direct amplification of blood and buccal cells on cloth and Whatman FTA™ card with PowerPlex(®) 21 has already been successfully implemented for reference samples, eliminating the requirement for sample pre-treatment. Scope for expanding this method to include less pristine casework blood swabs and samples from bloodstained items was explored in an endeavour to eliminate lengthy DNA extraction, purification and qPCR steps for a wider subset of samples. Blood was deposited onto a range of substrates including those historically found to inhibit STR amplification. Samples were collected with micro-punch, micro-swab, or both. The potential for further fiscal savings via reduced volume amplifications was assessed by amplifying all samples at full and reduced volume (25 and 13μL). Overall success rate data showed 80% of samples yielded a complete profile at reduced volume, compared to 78% at full volume. Particularly high success rates were observed for the blood on fabric/textile category with 100% of micro-punch samples yielding complete profiles at reduced volume and 85% at full volume. Following the success of this trial, direct amplification of suitable casework blood samples has been implemented at reduced volume. Significant benefits have been experienced, most noticeably where results from crucial items have been provided to police investigators prior to interview of suspects, and a coronial identification has been successfully completed in a short timeframe to avoid delay in the release of human remains to family members. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Raterink, Robert-Jan; Witkam, Yoeri; Vreeken, Rob J; Ramautar, Rawi; Hankemeier, Thomas
2014-10-21
In the field of bioanalysis, there is an increasing demand for miniaturized, automated, robust sample pretreatment procedures that can be easily connected to direct-infusion mass spectrometry (DI-MS) in order to allow the high-throughput screening of drugs and/or their metabolites in complex body fluids like plasma. Liquid-Liquid extraction (LLE) is a common sample pretreatment technique often used for complex aqueous samples in bioanalysis. Despite significant developments that have been made in automated and miniaturized LLE procedures, fully automated LLE techniques allowing high-throughput bioanalytical studies on small-volume samples using direct infusion mass spectrometry, have not been matured yet. Here, we introduce a new fully automated micro-LLE technique based on gas-pressure assisted mixing followed by passive phase separation, coupled online to nanoelectrospray-DI-MS. Our method was characterized by varying the gas flow and its duration through the solvent mixture. For evaluation of the analytical performance, four drugs were spiked to human plasma, resulting in highly acceptable precision (RSD down to 9%) and linearity (R(2) ranging from 0.990 to 0.998). We demonstrate that our new method does not only allow the reliable extraction of analytes from small sample volumes of a few microliters in an automated and high-throughput manner, but also performs comparable or better than conventional offline LLE, in which the handling of small volumes remains challenging. Finally, we demonstrate the applicability of our method for drug screening on dried blood spots showing excellent linearity (R(2) of 0.998) and precision (RSD of 9%). In conclusion, we present the proof of principe of a new high-throughput screening platform for bioanalysis based on a new automated microLLE method, coupled online to a commercially available nano-ESI-DI-MS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, N.; Liu, Xiang Yang; Choudary, P.V.
1997-01-01
The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also bemore » used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.« less
Venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms
NASA Technical Reports Server (NTRS)
Hill, Gerald F.; Sachse, Glen W.; Young, Douglas C.; Wade, Larry O.; Burney, Lewis G.
1992-01-01
Documentation of the installation and use of venturi air-jet vacuum ejectors for high-volume atmospheric sampling on aircraft platforms is presented. Information on the types of venturis that are useful for meeting the pumping requirements of atmospheric-sampling experiments is also presented. A description of the configuration and installation of the venturi system vacuum line is included with details on the modifications that were made to adapt a venturi to the NASA Electra aircraft at GSFC, Wallops Flight Facility. Flight test results are given for several venturis with emphasis on applications to the Differential Absorption Carbon Monoxide Measurement (DACOM) system at LaRC. This is a source document for atmospheric scientists interested in using the venturi systems installed on the NASA Electra or adapting the technology to other aircraft.
Alves, Vera; Gonçalves, João; Conceição, Carlota; Teixeira, Helena M; Câmara, José S
2015-08-21
A powerful and sensitive method, by microextraction packed sorbent (MEPS), and ultra-high performance liquid chromatography (UHPLC) with a photodiode array (PDA) detection, is described for the determination of fluoxetine, clomipramine and their active metabolites in human urine samples. The MEPS variables, such as sample volume, pH, number of extraction cycles (draw-eject), and desorption conditions (solvent and solvent volume of elution) were optimized. The analysis were carried out using small sample volumes (500μL) and in a short time period (5min for the entire sample preparation step). Good linearity was obtained for all antidepressants with the correlation coefficients (R(2)) above 0.9965. The limits of detection (LOD) ranged from 0.068 to 0.087μgmL(-1). The recoveries were from 93% to 98%, with relative standard deviations less than 6%. The inter-day precision, expressed as the relative standard deviation, varied between 3.8% and 8.5% while the intra-day precision between 3.0% and 7.1%. In order to evaluate the proposed method for clinical use, the MEPS/UHPLC-PDA method was applied to analysis of urine samples from depressed patients. Copyright © 2015 Elsevier B.V. All rights reserved.
An analytical method using solid phase extraction (SPE) and analysis by gas chromatography/mass spectrometry (GC/MS) was developed for the trace determination of a variety of agricultural pesticides and selected transformation products in large-volume high-elevation lake water sa...
NASA Astrophysics Data System (ADS)
Billings, Andrew; Kaiser, Carl; Young, Craig M.; Hiebert, Laurel S.; Cole, Eli; Wagner, Jamie K. S.; Van Dover, Cindy Lee
2017-03-01
The current standard for large-volume (thousands of cubic meters) zooplankton sampling in the deep sea is the MOCNESS, a system of multiple opening-closing nets, typically lowered to within 50 m of the seabed and towed obliquely to the surface to obtain low-spatial-resolution samples that integrate across 10 s of meters of water depth. The SyPRID (Sentry Precision Robotic Impeller Driven) sampler is an innovative, deep-rated (6000 m) plankton sampler that partners with the Sentry Autonomous Underwater Vehicle (AUV) to obtain paired, large-volume plankton samples at specified depths and survey lines to within 1.5 m of the seabed and with simultaneous collection of sensor data. SyPRID uses a perforated Ultra-High-Molecular-Weight (UHMW) plastic tube to support a fine mesh net within an outer carbon composite tube (tube-within-a-tube design), with an axial flow pump located aft of the capture filter. The pump facilitates flow through the system and reduces or possibly eliminates the bow wave at the mouth opening. The cod end, a hollow truncated cone, is also made of UHMW plastic and includes a collection volume designed to provide an area where zooplankton can collect, out of the high flow region. SyPRID attaches as a saddle-pack to the Sentry vehicle. Sentry itself is configured with a flight control system that enables autonomous survey paths to low altitudes. In its verification deployment at the Blake Ridge Seep (2160 m) on the US Atlantic Margin, SyPRID was operated for 6 h at an altitude of 5 m. It recovered plankton samples, including delicate living larvae, from the near-bottom stratum that is seldom sampled by a typical MOCNESS tow. The prototype SyPRID and its next generations will enable studies of plankton or other particulate distributions associated with localized physico-chemical strata in the water column or above patchy habitats on the seafloor.
A New Technique for In Situ X-ray Microtomography Under High Pressure
NASA Astrophysics Data System (ADS)
Uchida, T.; Wang, Y.; Westferro, F.; Gebhardt, J.; Rivers, M. L.; Sutton, S. R.
2004-12-01
We have developed a new technique for in situ synchrotron microtomography to study texture evolution in multi-phase specimens under high pressure and temperature. Two critical issues in performing tomography experiments under pressure are (1) the limited X-ray access to the sample because of the highly absorbing materials, such as tungsten carbide and tool steel, typically used in the pressure vessel and (2) a high pressure compatible rotation mechanism to collect projections of the sample continuously from 0 to 180° . We addressed these issues by (1) employing an opposed-anvil high pressure cell, known as the Drickamer cell, with an X-ray transparent containment ring, to allow panoramic X-ray access, and (2) rotating the Dricakmer cell by Harmonic DriveTM gear reducers, with thrust bearings supporting the hydraulic load. The design of the rotation mechanism benefited from the rotational deformation apparatus developed by Yamazaki and Karato (Rev. Sci. Instrum., 72, 4207, 2001). We report results obtained from a test run performed under pressure with monochromatic synchrotron radiation. A sapphire sphere (1.0 mm dia.) was embedded in a powdered mixture of Fe and 9 wt.% S alloy. The diameter of the sample chamber was 2 mm. Under pressure, the entire Drickamer cell was rotated to collect radiographs of the sample at various angles from 0 to 179.5° in 0.5° step size. Computational reconstruction of these projections provided three dimensional (3D) distribution of linear attenuation coefficient of the sample with a spatial resolution of 6 microns. The shape change in the sapphire sphere during compression was clearly observed. Using the program Blob3d, reconstructed 3D images of the sphere were separated from the surrounding Fe-S alloy. Volumes of the sphere were then accurately determined from the extracted images, by carefully defining the image intensity threshold. The errors in the volume measurement are about 0.3 to 0.7%, mostly due to shadowing by anvil deformation. The results, although performed using a solid sample, demonstrate the potential of measuring melt volume. Previous density measurements using X-ray radiography with only one dimensional data assumed that the shape of the sample remained unchanged throughout the experiment. In our new technique, this assumption is no longer required and density of melts can be inferred directly from the sample volume even when the molten sample is distorted. Other applications of this apparatus will be also discussed.
NASA Astrophysics Data System (ADS)
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2016-07-01
Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50-100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering.
Ranamukhaarachchi, Sahan A.; Padeste, Celestino; Dübner, Matthias; Häfeli, Urs O.; Stoeber, Boris; Cadarso, Victor J.
2016-01-01
Therapeutic drug monitoring (TDM) typically requires painful blood drawn from patients. We propose a painless and minimally-invasive alternative for TDM using hollow microneedles suitable to extract extremely small volumes (<1 nL) of interstitial fluid to measure drug concentrations. The inner lumen of a microneedle is functionalized to be used as a micro-reactor during sample collection to trap and bind target drug candidates during extraction, without requirements of sample transfer. An optofluidic device is integrated with this microneedle to rapidly quantify drug analytes with high sensitivity using a straightforward absorbance scheme. Vancomycin is currently detected by using volumes ranging between 50–100 μL with a limit of detection (LoD) of 1.35 μM. The proposed microneedle-optofluidic biosensor can detect vancomycin with a sample volume of 0.6 nL and a LoD of <100 nM, validating this painless point of care system with significant potential to reduce healthcare costs and patients suffering. PMID:27380889
Variation of wet deposition chemistry in Sequoia National Park, California
Stohlgren, Thomas J.; Parsons, David J.
1987-01-01
Sequoia National Park has monitored wet deposition chemistry in conjunction with the National Atmospheric Deposition Program and National Trends Network (NADP/NTN), on a weekly basis since July, 1980. Annual deposition of H, NO3 and SO4 (0.045, 3.6, and 3.9 kg ha−1 a−1, respectively) is relatively low compared to that measured in the eastern United States, or in the urban Los Angeles and San Francisco areas. Weekly ion concentrations are highly variable. Maximum concentrations of 324,162, and 156 μeq ol−1 of H, NO3 and SO4 have been recorded for one low volume summer storm (1.4 mm). Summer concentrations of NO3 and SO4 average two and five times higher, respectively, than concentrations reported for remote areas in the world. There is considerable variability in the ionic concentration of low volume samples, and much less variability in moderate and high volume samples.
An evaluation of soil sampling for 137Cs using various field-sampling volumes.
Nyhan, J W; White, G C; Schofield, T G; Trujillo, G
1983-05-01
The sediments from a liquid effluent receiving area at the Los Alamos National Laboratory and soils from an intensive study area in the fallout pathway of Trinity were sampled for 137Cs using 25-, 500-, 2500- and 12,500-cm3 field sampling volumes. A highly replicated sampling program was used to determine mean concentrations and inventories of 137Cs at each site, as well as estimates of spatial, aliquoting, and counting variance components of the radionuclide data. The sampling methods were also analyzed as a function of soil size fractions collected in each field sampling volume and of the total cost of the program for a given variation in the radionuclide survey results. Coefficients of variation (CV) of 137Cs inventory estimates ranged from 0.063 to 0.14 for Mortandad Canyon sediments, whereas CV values for Trinity soils were observed from 0.38 to 0.57. Spatial variance components of 137Cs concentration data were usually found to be larger than either the aliquoting or counting variance estimates and were inversely related to field sampling volume at the Trinity intensive site. Subsequent optimization studies of the sampling schemes demonstrated that each aliquot should be counted once, and that only 2-4 aliquots out of as many as 30 collected need be assayed for 137Cs. The optimization studies showed that as sample costs increased to 45 man-hours of labor per sample, the variance of the mean 137Cs concentration decreased dramatically, but decreased very little with additional labor.
Geophysics Under Pressure: Large-Volume Presses Versus the Diamond-Anvil Cell
NASA Astrophysics Data System (ADS)
Hazen, R. M.
2002-05-01
Prior to 1970, the legacy of Harvard physicist Percy Bridgman dominated high-pressure geophysics. Massive presses with large-volume devices, including piston-cylinder, opposed-anvil, and multi-anvil configurations, were widely used in both science and industry to achieve a range of crustal and upper mantle temperatures and pressures. George Kennedy of UCLA was a particularly influential advocate of large-volume apparatus for geophysical research prior to his death in 1980. The high-pressure scene began to change in 1959 with the invention of the diamond-anvil cell, which was designed simultaneously and independently by John Jamieson at the University of Chicago and Alvin Van Valkenburg at the National Bureau of Standards in Washington, DC. The compact, inexpensive diamond cell achieved record static pressures and had the advantage of optical access to the high-pressure environment. Nevertheless, members of the geophysical community, who favored the substantial sample volumes, geothermally relevant temperature range, and satisfying bulk of large-volume presses, initially viewed the diamond cell with indifference or even contempt. Several factors led to a gradual shift in emphasis from large-volume presses to diamond-anvil cells in geophysical research during the 1960s and 1970s. These factors include (1) their relatively low cost at time of fiscal restraint, (2) Alvin Van Valkenburg's new position as a Program Director at the National Science Foundation in 1964 (when George Kennedy's proposal for a Nation High-Pressure Laboratory was rejected), (3) the development of lasers and micro-analytical spectroscopic techniques suitable for analyzing samples in a diamond cell, and (4) the attainment of record pressures (e.g., 100 GPa in 1975 by Mao and Bell at the Geophysical Laboratory). Today, a more balanced collaborative approach has been adopted by the geophysics and mineral physics community. Many high-pressure laboratories operate a new generation of less expensive large-volume presses side-by-side with a wide variety of diamond-anvil cells.
Van Broeck, Bianca; Timmers, Maarten; Ramael, Steven; Bogert, Jennifer; Shaw, Leslie M; Mercken, Marc; Slemmon, John; Van Nueten, Luc; Engelborghs, Sebastiaan; Streffer, Johannes Rolf
2016-05-19
Cerebrospinal fluid (CSF) amyloid-beta (Aβ) peptides are predictive biomarkers for Alzheimer's disease and are proposed as pharmacodynamic markers for amyloid-lowering therapies. However, frequent sampling results in fluctuating CSF Aβ levels that have a tendency to increase compared with baseline. The impact of sampling frequency, volume, catheterization procedure, and ibuprofen pretreatment on CSF Aβ levels using continuous sampling over 36 h was assessed. In this open-label biomarker study, healthy participants (n = 18; either sex, age 55-85 years) were randomized into one of three cohorts (n = 6/cohort; high-frequency sampling). In all cohorts except cohort 2 (sampling started 6 h post catheterization), sampling through lumbar catheterization started immediately post catheterization. Cohort 3 received ibuprofen (800 mg) before catheterization. Following interim data review, an additional cohort 4 (n = 6) with an optimized sampling scheme (low-frequency and lower volume) was included. CSF Aβ(1-37), Aβ(1-38), Aβ(1-40), and Aβ(1-42) levels were analyzed. Increases and fluctuations in mean CSF Aβ levels occurred in cohorts 1-3 at times of high-frequency sampling. Some outliers were observed (cohorts 2 and 3) with an extreme pronunciation of this effect. Cohort 4 demonstrated minimal fluctuation of CSF Aβ both on a group and an individual level. Intersubject variability in CSF Aβ profiles over time was observed in all cohorts. CSF Aβ level fluctuation upon catheterization primarily depends on the sampling frequency and volume, but not on the catheterization procedure or inflammatory reaction. An optimized low-frequency sampling protocol minimizes or eliminates fluctuation of CSF Aβ levels, which will improve the capability of accurately measuring the pharmacodynamic read-out for amyloid-lowering therapies. ClinicalTrials.gov NCT01436188 . Registered 15 September 2011.
Bunkoed, Opas; Rueankaew, Thanaschaphorn; Nurerk, Piyaluk; Kanatharana, Proespichaya
2016-06-01
Polyaniline coated cigarette filters were successfully synthesized and used as a solid-phase extraction sorbent for the extraction and preconcentration of polycyclic aromatic hydrocarbons in water samples. The polyaniline helped to enhance the adsorption ability of polycyclic aromatic hydrocarbons on the sorbent through π-π interactions. The high porosity and large surface area of the cigarette filters helped to reduce backpressure and can be operated with high sample flow rate without loss of extraction efficiency. The developed sorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The parameters that affected the extraction efficiencies, i.e. polymerization time, type of desorption solvent and its volume, sample flow rate, sample volume, sample pH, ionic strength, and organic modifier were investigated. Under the optimal conditions, the method was linear over the range of 0.5-10 μg/L and a detection limit of 0.5 ng/L. This simple, rapid, and cost-effective method was successfully applied to the preconcentration of polycyclic aromatic hydrocarbons from water samples. The developed method provided a high enrichment factor with good extraction efficiency (85-98%) and a relative standard deviation <10%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DICARBOXYLIC ACID CONCENTRATION TRENDS AND SAMPLING ARTIFACTS
Dicarboxylic acids associated with airborne particulate matter were measured during a summer period in Philadelphia that included multiple air pollution episodes. Samples were collected for two ten hour periods each day using a high volume sampler with two quartz fiber filters in...
Baltussen, E; Snijders, H; Janssen, H G; Sandra, P; Cramers, C A
1998-04-10
A recently developed method for the extraction of organic micropollutants from aqueous samples based on sorptive enrichment in columns packed with 100% polydimethylsiloxane (PDMS) particles was coupled on-line with HPLC analysis. The sorptive enrichment procedure originally developed for relatively nonpolar analytes was used to preconcentrate polar phenylurea herbicides from aqueous samples. PDMS extraction columns of 5, 10 and 25 cm were used to extract the herbicides from distilled, tap and river water samples. A model that allows prediction of retention and breakthrough volumes is presented. Despite the essentially apolar nature of the PDMS material, it is possible to concentrate sample volumes up to 10 ml on PDMS cartridges without losses of the most polar analyte under investigation, fenuron. For less polar analytes significantly larger sample volumes can be applied. Since standard UV detection does not provide adequate selectivity for river water samples, an electrospray (ES)-MS instrument was used to determine phenylurea herbicides in a water sample from the river Dommel. Methoxuron was present at a level of 80 ng/l. The detection limit of the current set-up, using 10 ml water samples and ES-MS detection is 10 ng/l in river water samples. Strategies for further improvement of the detection limits are identified.
Burckhardt, Bjoern B.; Laeer, Stephanie
2015-01-01
In USA and Europe, medicines agencies force the development of child-appropriate medications and intend to increase the availability of information on the pediatric use. This asks for bioanalytical methods which are able to deal with small sample volumes as the trial-related blood lost is very restricted in children. Broadly used HPLC-MS/MS, being able to cope with small volumes, is susceptible to matrix effects. The latter restrains the precise drug quantification through, for example, causing signal suppression. Sophisticated sample preparation and purification utilizing solid-phase extraction was applied to reduce and control matrix effects. A scale-up from vacuum manifold to positive pressure manifold was conducted to meet the demands of high-throughput within a clinical setting. Faced challenges, advances, and experiences in solid-phase extraction are exemplarily presented on the basis of the bioanalytical method development and validation of low-volume samples (50 μL serum). Enalapril, enalaprilat, and benazepril served as sample drugs. The applied sample preparation and extraction successfully reduced the absolute and relative matrix effect to comply with international guidelines. Recoveries ranged from 77 to 104% for enalapril and from 93 to 118% for enalaprilat. The bioanalytical method comprising sample extraction by solid-phase extraction was fully validated according to FDA and EMA bioanalytical guidelines and was used in a Phase I study in 24 volunteers. PMID:25873972
Accuracy of CBCT for volumetric measurement of simulated periapical lesions.
Ahlowalia, M S; Patel, S; Anwar, H M S; Cama, G; Austin, R S; Wilson, R; Mannocci, F
2013-06-01
To compare the accuracy of cone beam computed tomography (CBCT) and micro-computed tomography (μCT) when measuring the volume of bone cavities. Ten irregular-shaped cavities of varying dimensions were created in bovine bone specimens using a rotary diamond bur. The samples were then scanned using the Accuitomo 3D CBCT scanner. The scanned information was converted to the Digital Imaging and Communication in Medicine (DICOM) format ready for analysis. Once formatted, 10 trained and calibrated examiners segmented the scans and measured the volumes of the lesions. Intra/interexaminer agreement was assessed by each examiner re-segmenting each scan after a 2-week interval. Micro-CT scans were analysed by a single examiner. To achieve a physical reading of the artificially created cavities, replicas were created using dimensionally stable silicone impression material. After measuring the mass of each impression sample, the volume was calculated by dividing the mass of each sample by the density of the set impression material. Further corroboration of these measurements was obtained by employing Archimedes' principle to measure the volume of each impression sample. Intraclass correlation was used to assess agreement. Both CBCT (mean volume: 175.9 mm3) and μCT (mean volume: 163.1 mm3) showed a high degree of agreement (intraclass correlation coefficient >0.9) when compared to both weighed and 'Archimedes' principle' measurements (mean volume: 177.7 and 182.6 mm3, respectively). Cone beam computed tomography is an accurate means of measuring volume of artificially created bone cavities in an ex vivo model. This may provide a valuable tool for monitoring the healing rate of apical periodontitis; further investigations are warranted. © 2012 International Endodontic Journal. Published by Blackwell Publishing Ltd.
Sampling Strategies and Processing of Biobank Tissue Samples from Porcine Biomedical Models.
Blutke, Andreas; Wanke, Rüdiger
2018-03-06
In translational medical research, porcine models have steadily become more popular. Considering the high value of individual animals, particularly of genetically modified pig models, and the often-limited number of available animals of these models, establishment of (biobank) collections of adequately processed tissue samples suited for a broad spectrum of subsequent analyses methods, including analyses not specified at the time point of sampling, represent meaningful approaches to take full advantage of the translational value of the model. With respect to the peculiarities of porcine anatomy, comprehensive guidelines have recently been established for standardized generation of representative, high-quality samples from different porcine organs and tissues. These guidelines are essential prerequisites for the reproducibility of results and their comparability between different studies and investigators. The recording of basic data, such as organ weights and volumes, the determination of the sampling locations and of the numbers of tissue samples to be generated, as well as their orientation, size, processing and trimming directions, are relevant factors determining the generalizability and usability of the specimen for molecular, qualitative, and quantitative morphological analyses. Here, an illustrative, practical, step-by-step demonstration of the most important techniques for generation of representative, multi-purpose biobank specimen from porcine tissues is presented. The methods described here include determination of organ/tissue volumes and densities, the application of a volume-weighted systematic random sampling procedure for parenchymal organs by point-counting, determination of the extent of tissue shrinkage related to histological embedding of samples, and generation of randomly oriented samples for quantitative stereological analyses, such as isotropic uniform random (IUR) sections generated by the "Orientator" and "Isector" methods, and vertical uniform random (VUR) sections.
Positional calibration of an ultrasound image-guided robotic breast biopsy system.
Nelson, Thomas R; Tran, Amy; Fakourfar, Hourieh; Nebeker, Jakob
2012-03-01
Precision biopsy of small lesions is essential in providing high-quality patient diagnosis and management. Localization depends on high-quality imaging. We have developed a dedicated, fully automatic volume breast ultrasound (US) imaging system for early breast cancer detection. This work focuses on development of an image-guided robotic biopsy system that is integrated with the volume breast US system for performing minimally invasive breast biopsies. The objective of this work was to assess the positional accuracy of the robotic system for breast biopsy. We have adapted a compact robotic arm for performing breast biopsy. The arm incorporates a force torque sensor and is modified to accommodate breast biopsy sampling needles mounted on the robot end effector. Volume breast US images are used as input to a targeting algorithm that provides the physician with control of biopsy device guidance and trajectory optimization. In this work, the positional accuracy was evaluated using (1) a light-emitting diode (LED) mounted on the end effector and (2) a LED mounted on the end of a biopsy needle, each of which was imaged for each robot controller position as part of mapping the positional accuracy throughout a volume that would contain the breast. We measured the error in each location and the cumulative error. Robotic device performance over the volume provided mean accuracy ± SD of 0.76 ± 0.13 mm (end effector) and 0.55 ± 0.13 mm (needle sample location), sufficient for a targeting accuracy within ±1 mm, which is suitable for clinical use. Depth positioning error also was small: 0.38 ± 0.03 mm. Reproducibility was excellent with less than 0.5% variation. Overall accuracy and reproducibility of the compact robotic device were excellent, well within clinical biopsy performance requirements. Volume breast US data provide high-quality input to a biopsy sampling algorithm under physician control. Robotic devices may provide more precise device placement, assisting physicians with biopsy procedures.
Microfluidic-Based sample chips for radioactive solutions
Tripp, J. L.; Law, J. D.; Smith, T. E.; ...
2015-01-01
Historical nuclear fuel cycle process sampling techniques required sample volumes ranging in the tens of milliliters. The radiation levels experienced by analytical personnel and equipment, in addition to the waste volumes generated from analysis of these samples, have been significant. These sample volumes also impacted accountability inventories of required analytes during process operations. To mitigate radiation dose and other issues associated with the historically larger sample volumes, a microcapillary sample chip was chosen for further investigation. The ability to obtain microliter volume samples coupled with a remote automated means of sample loading, tracking, and transporting to the analytical instrument wouldmore » greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste volumes. Sample chip testing was completed to determine the accuracy, repeatability, and issues associated with the use of microfluidic sample chips used to supply µL sample volumes of lanthanide analytes dissolved in nitric acid for introduction to an analytical instrument for elemental analysis.« less
High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second
NASA Astrophysics Data System (ADS)
Kolb, Jan Philip; Klein, Thomas; Wieser, Wolfgang; Draxinger, Wolfgang; Huber, Robert
2015-07-01
We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.
Direct observation of nucleation in the bulk of an opaque sample
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; ...
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map amore » selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. In conclusion, possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.« less
Direct observation of nucleation in the bulk of an opaque sample.
Xu, Chaoling; Zhang, Yubin; Godfrey, Andrew; Wu, Guilin; Liu, Wenjun; Tischler, Jonathan Z; Liu, Qing; Juul Jensen, Dorte
2017-02-14
Remarkably little is known about the physical phenomena leading to nucleation of new perfect crystals within deformed metals during annealing, in particular how and where volumes with nearly perfect lattices evolve from structures filled with dislocations, and how local variations at the micrometer length scale affect this nucleation process. We present here the first experimental measurements that relate directly nucleation of recrystallization to the local deformation microstructure in the bulk of a sample of cold rolled aluminum, further deformed locally by a hardness indentation. White beam differential aperture X-ray microscopy is used for the measurements, allowing us to map a selected gauge volume in the bulk of the sample in the deformed state, then anneal the sample and map the exact same gauge volume in the annealed state. It is found that nuclei develop at sites of high stored energy and they have crystallographic orientations from those present in the deformed state. Accordingly we suggest that for each nucleus the embryonic volume arises from a structural element contained within the voxels identified with the same orientation. Possible nucleation mechanisms are discussed and the growth potentials of the nuclei are also analyzed and discussed.
Integration of a Capacitive EIS Sensor into a FIA System for pH and Penicillin Determination
Rolka, David; Poghossian, Arshak; Schöning, Michael J.
2004-01-01
A field-effect based capacitive EIS (electrolyte-insulator-semiconductor) sensor with a p-Si-SiO2-Ta2O5 structure has been successfully integrated into a commercial FIA (flow-injection analysis) system and system performances have been proven and optimised for pH and penicillin detection. A flow-through cell was designed taking into account the requirement of a variable internal volume (from 12 μl up to 48 μl) as well as an easy replacement of the EIS sensor. FIA parameters (sample volume, flow rate, distance between the injection valve and the EIS sensor) have been optimised in terms of high sensitivity and reproducibility as well as a minimum dispersion of the injected sample zone. An acceptable compromise between different FIA parameters has been found. For the cell design used in this study, best results have been achieved with a flow rate of 1.4 ml/min, distance between the injection valve and the EIS sensor of 6.5 cm, probe volume of 0.75 ml, cell internal volume of 12 μl. A sample throughput of at least 15 samples/h was typically obtained.
NASA Astrophysics Data System (ADS)
Fisher, Mark; Sikes, John; Prather, Mark
2004-09-01
The dog's nose is an effective, highly-mobile sampling system, while the canine olfactory organs are an extremely sensitive detector. Having been trained to detect a wide variety of substances with exceptional results, canines are widely regarded as the 'gold standard' in chemical vapor detection. Historically, attempts to mimic the ability of dogs to detect vapors of explosives using electronic 'dogs noses' has proven difficult. However, recent advances in technology have resulted in development of detection (i.e., sampling and sensor) systems with performance that is rapidly approaching that of trained canines. The Nomadics Fido was the first sensor to demonstrate under field conditions the detection of landmines with performance approaching that of canines. More recently, comparative testing of Fido against canines has revealed that electronic vapor detection, when coupled with effective sampling methods, can produce results comparable to that of highly-trained canines. The results of these comparative tests will be presented, as will recent test results in which explosives hidden in cargo were detected using Fido with a high-volume sampling technique. Finally, the use of canines along with electronic sensors will be discussed as a means of improving the performance and expanding the capabilities of both methods.
Pillay, Pavitra; Taylor, Myra; Zulu, Siphosenkosi G.; Gundersen, Svein G.; Verweij, Jaco J.; Hoekstra, Pytsje; Brienen, Eric A. T.; Kleppa, Elisabeth; Kjetland, Eyrun F.; van Lieshout, Lisette
2014-01-01
Schistosoma haematobium eggs and Schistosoma DNA levels were measured in urine samples from 708 girls recruited from 18 randomly sampled primary schools in South Africa. Microscopic analysis of two 10-mL urine subsamples collected on three consecutive days confirmed high day-to-day variation; 103 (14.5%) girls had positive results at all six examinations, and at least one positive sample was seen in 225 (31.8%) girls. Schistosoma-specific DNA, which was measured in a 200-μL urine subsample by using real-time polymerase chain reaction, was detected in 180 (25.4%) cases, and levels of DNA corresponded significantly with average urine egg excretion. In concordance with microscopic results, polymerase chain reaction results were significantly associated with history of gynecologic symptoms and confirmed highly focal distribution of urogenital schistosomiasis. Parasite-specific DNA detection has a sensitivity comparable to single urine microscopy and could be used as a standardized high-throughput procedure to assess distribution of urogenital schistosomiasis in relatively large study populations by using small sample volumes. PMID:24470560
Code of Federal Regulations, 2011 CFR
2011-01-01
..., TESTING, AND STANDARDS Cotton Classification and Market News Service for Producers Sampling § 28.909 Costs... the service. After classification the samples shall become the property of the Government. The... this subpart. (b) The cost of High Volume Instrument (HVI) cotton classification service to producers...
Segmented surface coil resonator for in vivo EPR applications at 1.1GHz.
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L
2009-05-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20mm.
Segmented surface coil resonator for in vivo EPR applications at 1.1 GHz
Petryakov, Sergey; Samouilov, Alexandre; Chzhan-Roytenberg, Michael; Kesselring, Eric; Sun, Ziqi; Zweier, Jay L.
2010-01-01
A four-loop segmented surface coil resonator (SSCR) with electronic frequency and coupling adjustments was constructed with 18 mm aperture and loading capability suitable for in vivo Electron Paramagnetic Resonance (EPR) spectroscopy and imaging applications at L-band. Increased sample volume and loading capability were achieved by employing a multi-loop three-dimensional surface coil structure. Symmetrical design of the resonator with coupling to each loop resulted in high homogeneity of RF magnetic field. Parallel loops were coupled to the feeder cable via balancing circuitry containing varactor diodes for electronic coupling and tuning over a wide range of loading conditions. Manually adjusted high Q trimmer capacitors were used for initial tuning with subsequent tuning electronically controlled using varactor diodes. This design provides transparency and homogeneity of magnetic field modulation in the sample volume, while matching components are shielded to minimize interference with modulation and ambient RF fields. It can accommodate lossy samples up to 90% of its aperture with high homogeneity of RF and modulation magnetic fields and can function as a surface loop or a slice volume resonator. Along with an outer coaxial NMR surface coil, the SSCR enabled EPR/NMR co-imaging of paramagnetic probes in living rats to a depth of 20 mm. PMID:19268615
Design of planar microcoil-based NMR probe ensuring high SNR
NASA Astrophysics Data System (ADS)
Ali, Zishan; Poenar, D. P.; Aditya, Sheel
2017-09-01
A microNMR probe for ex vivo applications may consist of at least one microcoil, which can be used as the oscillating magnetic field (MF) generator as well as receiver coil, and a sample holder, with a volume in the range of nanoliters to micro-liters, placed near the microcoil. The Signal-to-Noise ratio (SNR) of such a probe is, however, dependent not only on its design but also on the measurement setup, and the measured sample. This paper introduces a performance factor P independent of both the proton spin density in the sample and the external DC magnetic field, and which can thus assess the performance of the probe alone. First, two of the components of the P factor (inhomogeneity factor K and filling factor η ) are defined and an approach to calculate their values for different probe variants from electromagnetic simulations is devised. A criterion based on dominant component of the magnetic field is then formulated to help designers optimize the sample volume which also affects the performance of the probe, in order to obtain the best SNR for a given planar microcoil. Finally, the P factor values are compared between different planar microcoils with different number of turns and conductor aspect ratios, and planar microcoils are also compared with conventional solenoids. These comparisons highlight which microcoil geometry-sample volume combination will ensure a high SNR under any external setup.
Axelrud, Luiza K; Santoro, Marcos L; Pine, Daniel S; Talarico, Fernanda; Gadelha, Ary; Manfro, Gisele G; Pan, Pedro M; Jackowski, Andrea; Picon, Felipe; Brietzke, Elisa; Grassi-Oliveira, Rodrigo; Bressan, Rodrigo A; Miguel, Eurípedes C; Rohde, Luis A; Hakonarson, Hakon; Pausova, Zdenka; Belangero, Sintia; Paus, Tomas; Salum, Giovanni A
2018-06-01
Alzheimer's disease is a heritable neurodegenerative disorder in which early-life precursors may manifest in cognition and brain structure. The authors evaluate this possibility by examining, in youths, associations among polygenic risk score for Alzheimer's disease, cognitive abilities, and hippocampal volume. Participants were children 6-14 years of age in two Brazilian cities, constituting the discovery (N=364) and replication samples (N=352). As an additional replication, data from a Canadian sample (N=1,029), with distinct tasks, MRI protocol, and genetic risk, were included. Cognitive tests quantified memory and executive function. Reading and writing abilities were assessed by standardized tests. Hippocampal volumes were derived from the Multiple Automatically Generated Templates (MAGeT) multi-atlas segmentation brain algorithm. Genetic risk for Alzheimer's disease was quantified using summary statistics from the International Genomics of Alzheimer's Project. Analyses showed that for the Brazilian discovery sample, each one-unit increase in z-score for Alzheimer's polygenic risk score significantly predicted a 0.185 decrement in z-score for immediate recall and a 0.282 decrement for delayed recall. Findings were similar for the Brazilian replication sample (immediate and delayed recall, β=-0.259 and β=-0.232, both significant). Quantile regressions showed lower hippocampal volumes bilaterally for individuals with high polygenic risk scores. Associations fell short of significance for the Canadian sample. Genetic risk for Alzheimer's disease may affect early-life cognition and hippocampal volumes, as shown in two independent samples. These data support previous evidence that some forms of late-life dementia may represent developmental conditions with roots in childhood. This result may vary depending on a sample's genetic risk and may be specific to some types of memory tasks.
Outcomes of PCI in Relation to Procedural Characteristics and Operator Volumes in the United States.
Fanaroff, Alexander C; Zakroysky, Pearl; Dai, David; Wojdyla, Daniel; Sherwood, Matthew W; Roe, Matthew T; Wang, Tracy Y; Peterson, Eric D; Gurm, Hitinder S; Cohen, Mauricio G; Messenger, John C; Rao, Sunil V
2017-06-20
Professional guidelines have reduced the recommended minimum number to an average of 50 percutaneous coronary intervention (PCI) procedures performed annually by each operator. Operator volume patterns and associated outcomes since this change are unknown. The authors describe herein PCI operator procedure volumes; characteristics of low-, intermediate-, and high-volume operators; and the relationship between operator volume and clinical outcomes in a large, contemporary, nationwide sample. Using data from the National Cardiovascular Data Registry collected between July 1, 2009, and March 31, 2015, we examined operator annual PCI volume. We divided operators into low- (<50 PCIs per year), intermediate- (50 to 100 PCIs per year), and high- (>100 PCIs per year) volume groups, and determined the adjusted association between annual PCI volume and in-hospital outcomes, including mortality. The median annual number of procedures performed per operator was 59; 44% of operators performed <50 PCI procedures per year. Low-volume operators more frequently performed emergency and primary PCI procedures and practiced at hospitals with lower annual PCI volumes. Unadjusted in-hospital mortality was 1.86% for low-volume operators, 1.73% for intermediate-volume operators, and 1.48% for high-volume operators. The adjusted risk of in-hospital mortality was higher for PCI procedures performed by low- and intermediate-volume operators compared with those performed by high-volume operators (adjusted odds ratio: 1.16 for low versus high; adjusted odds ratio: 1.05 for intermediate vs. high volume) as was the risk for new dialysis post PCI. No volume relationship was observed for post-PCI bleeding. Many PCI operators in the United States are performing fewer than the recommended number of PCI procedures annually. Although absolute risk differences are small and may be partially explained by unmeasured differences in case mix between operators, there remains an inverse relationship between PCI operator volume and in-hospital mortality that persisted in risk-adjusted analyses. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Poletti, Sara; Vai, Benedetta; Smeraldi, Enrico; Cavallaro, Roberto; Colombo, Cristina; Benedetti, Francesco
2016-01-01
Adverse childhood experiences (ACE) can lead to several negative consequences in adult life, are highly prevalent in psychiatric disorders where they associate with clinical and brain morphological features. Grey matter volume loss is a central characteristic of bipolar disorder (BD) and schizophrenia (SCZ). The aim of this study is to measure the effect of diagnosis and ACE on GM volume in a sample of patients with BD or SCZ compared with healthy controls (HC). We studied 206 depressed BD patients, 96 SCZ patients and 136 healthy subjects. GM volumes were estimated with 3.0 Tesla MRI and analyzed with VBM technique. The effect of diagnosis was investigated in the whole sample and separately exposed to high and low ACE subjects. An effect of diagnosis was observed in orbitofrontal cortex encompassing BA 47 and insula, and in the thalamus. HC had the highest volume and SCZ patients the lowest with BD patients showing an intermediate volume. This pattern persisted only in subjects with high ACE. No differences were observed for low ACE subjects. The three diagnostic groups differ for age and education, previous and current medications, and treatment periods. Our results underline the importance of ACE on the neural underpinnings of psychiatric psychopathology and suggest a major role of exposure to ACE for the GM deficits to reveal in clinical populations. Exposure to early stress is a crucial factor that must be taken in to account when searching for biomarkers of BD and SCZ. Copyright © 2015 Elsevier B.V. All rights reserved.
Volume change measurements of rice by environmental scanning electron microscopy and stereoscopy.
Tang, Xiaohu; De Rooij, Mario; De Jong, Liesbeth
2007-01-01
The measurement of volume change, which is induced by changing the relative humidity, is performed on rice by using environmental scanning electron microscope (ESEM) and stereoscopy techniques. The typical DeltaV% approximately RH curve of rice in both sorption and desorption can be categorized into three regions: low, intermediate, and high dependence on relative humidity from low- to high-relative humidity. The volume changes faster for rice samples with lower crystallinity, which is because the amorphous component is easier to absorb moisture than the crystalline component. The volume change behavior in various relative humidity environments is comparable with rice isotherm curve in sorption process though discrepancies exist in desorption, which are thought to be the presence of small pores and microstructure changes at high relative humidity. The volume in the desorption branch is less than that in the sorption branch at the same relative humidity, which can be attributed to the collapse of interior structures, existence of small pores, surface topography loss, and amylose leach.
GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.
2011-01-01
In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tyndall, R.L.
1983-07-01
Air was sampled at the point of discharge and at short distances downwind and upwind from industrial and power-plant cooling towers. Both high-volume electrostatic and impinger type samplers were used. Concentrates of the air samples were analyzed for Legionnaires' Disease Bacteria (LDB). In some cases, the samples were also tested for the presence of free-living amoebae. The concentrations of LDB in the air samples were well below the minimal infectious dose for guinea pigs and precluded testing of the samples for infectious LDB. Results of LDB analysis were related to the meteorological conditions at the time of sampling. Generally, themore » concentrations of LDB in the air at the discharge of the cooling towers were 1 x 10/sup -6/ to 1 x 10/sup -7/ of that found in comparable volumes of tower basin water. During periods of high humidity and wind speed, LDB was detected in a few downwind samples and one upwind sample. One site with extensive construction and excavation activity had higher LDB concentrations in air samples relative to other sites. Nonpathogenic Naegleria were present in one of two air samples taken in the mist at the base of a natural-draft cooling tower.« less
Note: Four-port microfluidic flow-cell with instant sample switching
NASA Astrophysics Data System (ADS)
MacGriff, Christopher A.; Wang, Shaopeng; Tao, Nongjian
2013-10-01
A simple device for high-speed microfluidic delivery of liquid samples to a surface plasmon resonance sensor surface is presented. The delivery platform is comprised of a four-port microfluidic cell, two ports serve as inlets for buffer and sample solutions, respectively, and a high-speed selector valve to control the alternate opening and closing of the two outlet ports. The time scale of buffer/sample switching (or sample injection rise and fall time) is on the order of milliseconds, thereby minimizing the opportunity for sample plug dispersion. The high rates of mass transport to and from the central microfluidic sensing region allow for SPR-based kinetic analysis of binding events with dissociation rate constants (kd) up to 130 s-1. The required sample volume is only 1 μL, allowing for minimal sample consumption during high-speed kinetic binding measurement.
Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand
NASA Astrophysics Data System (ADS)
Reed, A. H.; Pandey, R. B.; Lavoie, D. L.
Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.
Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi
2016-01-01
The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region. PMID:27577974
NASA Astrophysics Data System (ADS)
Zheng, Bei; Li, Wentao; Li, Hongyan; Liu, Lin; Lei, Pei; Ge, Xiaopeng; Yu, Zhiyong; Zhou, Yiqi
2016-08-01
The components for connecting high-performance liquid chromatography (HPLC) with Fourier-transform infrared spectroscopy (FTIR) were investigated to determine estrogen in the water environment, including heating for atomization, solvent removal, sample deposition, drive control, spectrum collection, chip swap, cleaning and drying. Results showed that when the atomization temperature was increased to 388 K, the interference of mobile phase components (methanol, H2O, acetonitrile, and NaH2PO4) were completely removed in the IR measurement of estrogen, with 0.999 of similarity between IR spectra obtained after separation and corresponding to the standard IR spectra. In experiments with varying HPLC injection volumes, high similarity for IR spectra was obtained at 20 ul injection volume at 0.01 mg/L BPA while a useful IR spectrum for 10 ng/L BPA was obtained at 80 ul injection volume. In addition, estrogen concentrations in the natural water samples were calculated semi-quantitatively from the peak intensities of IR spectrum in the mid-infrared region.
Robust Means and Covariance Matrices by the Minimum Volume Ellipsoid (MVE).
ERIC Educational Resources Information Center
Blankmeyer, Eric
P. Rousseeuw and A. Leroy (1987) proposed a very robust alternative to classical estimates of mean vectors and covariance matrices, the Minimum Volume Ellipsoid (MVE). This paper describes the MVE technique and presents a BASIC program to implement it. The MVE is a "high breakdown" estimator, one that can cope with samples in which as…
Quantification of Protozoa and Viruses from Small Water Volumes
Bonilla, J. Alfredo; Bonilla, Tonya D.; Abdelzaher, Amir M.; Scott, Troy M.; Lukasik, Jerzy; Solo-Gabriele, Helena M.; Palmer, Carol J.
2015-01-01
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The goals of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation—IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels. PMID:26114244
Quantification of Protozoa and Viruses from Small Water Volumes.
Bonilla, J Alfredo; Bonilla, Tonya D; Abdelzaher, Amir M; Scott, Troy M; Lukasik, Jerzy; Solo-Gabriele, Helena M; Palmer, Carol J
2015-06-24
Large sample volumes are traditionally required for the analysis of waterborne pathogens. The need for large volumes greatly limits the number of samples that can be processed. The aims of this study were to compare extraction and detection procedures for quantifying protozoan parasites and viruses from small volumes of marine water. The intent was to evaluate a logistically simpler method of sample collection and processing that would facilitate direct pathogen measures as part of routine monitoring programs. Samples were collected simultaneously using a bilayer device with protozoa capture by size (top filter) and viruses capture by charge (bottom filter). Protozoan detection technologies utilized for recovery of Cryptosporidium spp. and Giardia spp. were qPCR and the more traditional immunomagnetic separation-IFA-microscopy, while virus (poliovirus) detection was based upon qPCR versus plaque assay. Filters were eluted using reagents consistent with the downstream detection technologies. Results showed higher mean recoveries using traditional detection methods over qPCR for Cryptosporidium (91% vs. 45%) and poliovirus (67% vs. 55%) whereas for Giardia the qPCR-based methods were characterized by higher mean recoveries (41% vs. 28%). Overall mean recoveries are considered high for all detection technologies. Results suggest that simultaneous filtration may be suitable for isolating different classes of pathogens from small marine water volumes. More research is needed to evaluate the suitability of this method for detecting pathogens at low ambient concentration levels.
High Volume Air Sampling for Viral Aerosols: A Comparative Approach
2010-03-01
Solid Impaction Aerosol Collection (Verreault, 2008. Reproduced with Permission from American Society of Microbiology ) Liquid collection...Reproduced with Permission from American Society of Microbiology ) Filter aerosol collection is often more efficient than other sampling...collected using a crude filter consisting of a glass tube packed with dry cotton. Sample analysis was conducted by inoculating chicken embryos with
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Volume II of the Site Environmental Report for 2006 is provided by Ernest Orlando Lawrence Berkeley National Laboratory as a supplemental appendix to Volume I, which contains the body of the report. Volume II contains the environmental monitoring and sampling data used to generate summary results of routine and nonroutine activities at the Laboratory (except for groundwater sampling data, which may be found in the reports referred to in Chapter 4). Volume I summarizes the results from analyses of the data. The results from sample collections are more comprehensive in Volume II than in Volume I: For completeness, all resultsmore » from sample collections that began or ended in calendar year (CY) 2006 are included in this volume. However, the samples representing CY 2005 data have not been used in the summary results that are reported in Volume I. (For example, although ambient air samples collected on January 2, 2006, are presented in Volume II, they represent December 2005 data and are not included in Table 4-2 in Volume I.)« less
Modrall, J Gregory; Chung, Jayer; Kirkwood, Melissa L; Baig, M Shadman; Tsai, Shirling X; Timaran, Carlos H; Valentine, R James; Rosero, Eric B
2014-07-01
Prior studies have demonstrated improved clinical outcomes for surgeons with a high-volume experience with certain open vascular operations. A high-volume experience with carotid artery stenting (CAS) improves clinical outcomes. Moreover, it is not known whether experience with other endovascular procedures, including percutaneous coronary interventions (PCIs), is an adequate substitute for experience with CAS. The goal of this study was to quantify the effect of increasing clinician volume of CAS, endovascular aneurysm repair (EVAR), and thoracic endovascular aortic aneurysm repair (TEVAR), and PCI on the outcomes for CAS. The Nationwide Inpatient Sample was analyzed to identify patients undergoing CAS for the years 2005 to 2009. Clinicians were stratified into tertiles of low-volume, medium-volume, and high-volume groups by annual volume of CAS, EVAR/TEVAR, and PCI. Multiple logistic regression analyses were used to examine the relationship between clinician volume and a composite outcome of the in-hospital stroke and death rate after CAS. Between 2005 and 2009, 56,374 elective CAS procedures were performed nationwide, with a crude in-hospital stroke and death rate of 3.22%. A median of nine CAS procedures (interquartile range, 3-20) were performed annually per clinician. As expected, stroke and death rates for CAS decreased with increasing volume of CAS performed by a clinician (low-volume vs medium-volume vs high-volume: 4.43% vs 2.89% vs 2.27%; P = .0001). Similar patterns were noted between clinicians' volume of EVAR/TEVAR (low-volume vs medium-volume vs high-volume: 4.58% vs 3.18% vs 2.16%; P = .0023). In contrast, increasing PCI volume was not associated with decreased stroke and death rates after CAS (low-volume vs medium-volume vs high-volume: 2.99% vs 3.18% vs 3.55%; P = .35). After adjusting for patient and hospital characteristics, clinician volume of CAS (odds ratio [OR], 0.84; 95% confidence interval [CI], 0.74-0.94; P = .003) and EVAR/TEVAR (OR, 0.85; 95% CI, 0.75-0.97; P = .020) remained significant predictors of stroke and death after CAS, whereas increasing clinician volume of PCI was associated with significantly increasing likelihood of stroke or death after CAS (OR, 1.025; 95% CI, 1.004-1.047; P = .019). The stroke and death rate for CAS to treat carotid stenosis is inversely affected by the number of CAS and EVAR/TEVAR procedures performed by a clinician. In contrast, a high-volume experience with PCI is not associated with improved outcomes after CAS. Copyright © 2014 Society for Vascular Surgery. All rights reserved.
A method to calculate the volume of palatine tonsils.
Prim, M P; De Diego, J I; García-Bermúdez, C; Pérez-Fernández, E; Hardisson, D
2010-12-01
The purpose of this study was to obtain a mathematical formula to calculate the tonsillar volume out of its measurements assessed on surgical specimens. Thirty consecutive surgical specimens of pediatric tonsils were studied. The maximum lengths ("a"), widths ("b"), and depths ("c") of the dissected specimens were measured in millimeters, and the volume of each tonsil was measured in milliliters. One-sample Kolmogorov-Smirnov test was used to check the normality of the sample. To calculate the reproducibility of the quantitative variables, intraclass correlation coefficients were used. Two formulas with high reproducibility (coefficient R between 0.75 and 1) were obtained: 1) [a*b*c* 0.5236] with R = 0.8688; and 2) [a*b*b* 0.3428] with R = 0.9073. It is possible to calculate the volume of the palatine tonsils in surgical specimens precisely enough based on their three measures, or their two main measures (length and width).
NASA Astrophysics Data System (ADS)
Bălău, Oana; Bica, Doina; Koneracka, Martina; Kopčansky, Peter; Susan-Resiga, Daniela; Vékás, Ladislau
Rheological and magnetorheological behaviour of monolayer and double layer sterically stabilized magnetic fluids, with transformer oil (UTR), diloctilsebacate (DOS), heptanol (Hept), pentanol (Pent) and water (W) as carrier liquids, were investigated. The data for volumic concentration dependence of dynamic viscosity of high colloidal stability UTR, DOS, Hept and Pent samples are particularly well fitted by the formulas given by Vand (1948) and Chow (1994). The Chow type dependence proved its universal character as the viscosity data for dilution series of various magnetic fluids are well fitted by the same curve, regardless the nonpolar or polar charcater of the sample. The magnetorheological effect measured for low and medium concentration water based magnetic fluids is much higher, due to agglomerate formation process, than the corresponding values obtained for the well stabilized UTR, DOS, Hept and Pent samples, even at very high volumic fraction of magnetic nanoparticles.
Sexual steroids in serum and prostatic tissue of human non-cancerous prostate (STERPROSER trial).
Neuzillet, Yann; Raynaud, Jean-Pierre; Radulescu, Camélia; Fiet, Jean; Giton, Franck; Dreyfus, Jean-François; Ghoneim, Tarek P; Lebret, Thierry; Botto, Henry
2017-11-01
The specific involvement of the sex steroids in the growth of the prostatic tissue remains unclear. Sex steroid concentrations in plasma and in fresh surgical samples of benign central prostate were correlated to prostate volume. Monocentric prospective study performed between September 2014 and January 2017. Age, obesity parameters, and both serum and intraprostatic concentrations of sex steroids were collected complying with the latest Endocrine Society guidelines and the steroids assessed by GC/MS. Statistical calculations were adjusted for age and body mass index (BMI). Thirty-two patients, equally divided between normal- and high-volume prostate groups, were included in the analysis. High-volume prostate patients were older, heavier and had higher BMI. Comparison adjusted for age and BMI showed higher DHT concentrations in high-volume prostate. Both normal- and high-volume prostate tissues concentrate sex steroids in a similar way. Comparison of enzymatic activity surrogate marker ratios within tissue highlighted similar TT/E1 and TT/E2 ratios, and higher DHT/E1 ratio and lower DHT/PSA ratio in the high-volume prostates. STERPROSER trial provides evidence for higher DHT concentration in highvolume prostates, that could reflect either higher 5-alpha reductase expression or lower expression of downstream metabolizing enzymes such as 3a-hydoxysteroid dehydrogenase. © 2017 Wiley Periodicals, Inc.
Abercrombie, M L; Jewell, J S
1986-01-01
Results of EMIT, Abuscreen RIA, and GC/MS tests for THC metabolites in a high volume random urinalysis program are compared. Samples were field tested by non-laboratory personnel with an EMIT system using a 100 ng/mL cutoff. Samples were then sent to the Army Forensic Toxicology Drug Testing Laboratory (WRAMC) at Fort Meade, Maryland, where they were tested by RIA (Abuscreen) using a statistical 100 ng/mL cutoff. Confirmations of all RIA positives were accomplished using a GC/MS procedure. EMIT and RIA results agreed for 91% of samples. Data indicated a 4% false positive rate and a 10% false negative rate for EMIT field testing. In a related study, results for samples which tested positive by RIA for THC metabolites using a statistical 100 ng/mL cutoff were compared with results by GC/MS utilizing a 20 ng/mL cutoff for the THCA metabolite. Presence of THCA metabolite was detected in 99.7% of RIA positive samples. No relationship between quantitations determined by the two tests was found.
Pereira, Jorge; Câmara, José S; Colmsjö, Anders; Abdel-Rehim, Mohamed
2014-06-01
Sample preparation is an important analytical step regarding the isolation and concentration of desired components from complex matrices and greatly influences their reliable and accurate analysis and data quality. It is the most labor-intensive and error-prone process in analytical methodology and, therefore, may influence the analytical performance of the target analytes quantification. Many conventional sample preparation methods are relatively complicated, involving time-consuming procedures and requiring large volumes of organic solvents. Recent trends in sample preparation include miniaturization, automation, high-throughput performance, on-line coupling with analytical instruments and low-cost operation through extremely low volume or no solvent consumption. Micro-extraction techniques, such as micro-extraction by packed sorbent (MEPS), have these advantages over the traditional techniques. This paper gives an overview of MEPS technique, including the role of sample preparation in bioanalysis, the MEPS description namely MEPS formats (on- and off-line), sorbents, experimental and protocols, factors that affect the MEPS performance, and the major advantages and limitations of MEPS compared with other sample preparation techniques. We also summarize MEPS recent applications in bioanalysis. Copyright © 2014 John Wiley & Sons, Ltd.
Wang, Huiyong; Campiglia, Andres D
2008-11-01
A novel alternative is presented for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAH) from water samples. The new approachwhich we have named solid-phase nanoextraction (SPNE)takes advantage of the strong affinity that exists between PAH and gold nanoparticles. Carefully optimization of experimental parameters has led to a high-performance liquid chromatography method with excellent analytical figures of merit. Its most striking feature correlates to the small volume of water sample (500 microL) for complete PAH analyses. The limits of detection ranged from 0.9 (anthracene) to 58 ng.L (-1) (fluorene). The relative standard deviations at medium calibration concentrations vary from 3.2 (acenaphthene) to 9.1% (naphthalene). The analytical recoveries from tap water samples of the six regulated PAH varied from 83.3 +/- 2.4 (benzo[ k]fluoranthene) to 95.7 +/- 4.1% (benzo[ g,h,i]perylene). The entire extraction procedure consumes less than 100 microL of organic solvents per sample, which makes it environmentally friendly. The small volume of extracting solution makes SPNE a relatively inexpensive extraction approach.
Wetherbee, Gregory A.; Rhodes, Mark F.
2013-01-01
The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance project (PCQA) to provide independent, external quality-assurance for the National Atmospheric Deposition Program (NADP). NADP is composed of five monitoring networks that measure the chemical composition of precipitation and ambient air. PCQA and the NADP Program Office completed five short-term studies to investigate the effects of equipment performance with respect to the National Trends Network (NTN) and Mercury Deposition Network (MDN) data quality: sample evaporation from NTN collectors; sample volume and mercury loss from MDN collectors; mercury adsorption to MDN collector glassware, grid-type precipitation sensors for precipitation collectors, and the effects of an NTN collector wind shield on sample catch efficiency. Sample-volume evaporation from an NTN Aerochem Metrics (ACM) collector ranged between 1.1–33 percent with a median of 4.7 percent. The results suggest that weekly NTN sample evaporation is small relative to sample volume. MDN sample evaporation occurs predominantly in western and southern regions of the United States (U.S.) and more frequently with modified ACM collectors than with N-CON Systems Inc. collectors due to differences in airflow through the collectors. Variations in mercury concentrations, measured to be as high as 47.5 percent per week with a median of 5 percent, are associated with MDN sample-volume loss. Small amounts of mercury are also lost from MDN samples by adsorption to collector glassware irrespective of collector type. MDN 11-grid sensors were found to open collectors sooner, keep them open longer, and cause fewer lid cycles than NTN 7-grid sensors. Wind shielding an NTN ACM collector resulted in collection of larger quantities of precipitation while also preserving sample integrity.
Kittelmann, Jörg; Ottens, Marcel; Hubbuch, Jürgen
2015-04-15
High-throughput batch screening technologies have become an important tool in downstream process development. Although continuative miniaturization saves time and sample consumption, there is yet no screening process described in the 384-well microplate format. Several processes are established in the 96-well dimension to investigate protein-adsorbent interactions, utilizing between 6.8 and 50 μL resin per well. However, as sample consumption scales with resin volumes and throughput scales with experiments per microplate, they are limited in costs and saved time. In this work, a new method for in-well resin quantification by optical means, applicable in the 384-well format, and resin volumes as small as 0.1 μL is introduced. A HTS batch isotherm process is described, utilizing this new method in combination with optical sample volume quantification for screening of isotherm parameters in 384-well microplates. Results are qualified by confidence bounds determined by bootstrap analysis and a comprehensive Monte Carlo study of error propagation. This new approach opens the door to a variety of screening processes in the 384-well format on HTS stations, higher quality screening data and an increase in throughput. Copyright © 2015 Elsevier B.V. All rights reserved.
Offenthaler, I; Jakobi, G; Kaiser, A; Kirchner, M; Kräuchi, N; Niedermoser, B; Schramm, K-W; Sedivy, I; Staudinger, M; Thanner, G; Weiss, P; Moche, W
2009-12-01
High- and low-volume active air samplers as well as bulk deposition samplers were developed to sample atmospheric SOCs under the adverse conditions of a mountain environment. Active sampling employed separate filters for different European source regions. Filters were switched depending on daily trajectory forecasts, whose accuracy was evaluated post hoc. The sampling continued on three alpine summits over five periods of four months. The prevailing trajectories varied stronger between sampling periods than between stations. The sampling equipment (active and bulk deposition) proved dependable for operation in a mountain environment, with idle times being mainly due to non-routine manipulations and connectivity.
Savoie, Jennifer G.; LeBlanc, D.R.; Blackwood, D.S.; McCobb, T.D.; Rendigs, R. R.; Clifford, Scott
2000-01-01
Diffusion samplers were installed in the bottom of Johns Pond, Cape Cod, Massachusetts, to confirm that volatile organic compounds from the Storm Drain-5 (SD-5) plume emanating from the Massachusetts Military Reservation (MMR) were discharging into the pond. An array of 134 vapor-diffusion samplers was buried by divers about 0.5 feet below the pond bottom in the presumed discharge area of the SD-5 plume and left in place for about 2 weeks to equilibrate. Two areas of high concentrations of volatile organic compounds (VOCs) were identified. Samples from the first area contained trichloroethene (TCE) and tetrachloroethene with concentrations in vapor as high as 890 and 667 parts per billion by volume, respectively. This discharge area is about 1,000 feet wide, extends from 100 to 350 feet offshore, and is interpreted to be the discharge area of the SD-5 plume. Samples from the second area were located closer to shore than the discharge area of the SD-5 plume and contained unexpectedly high vapor concentrations of TCE (more than 40,000 parts per billion by volume). Ground-water samples collected with a drive-point sampler near the second area had aqueous TCE concentrations as high as 1,100 micrograms per liter. Subsequently, a more closely spaced array of 110 vapor-diffusion samplers was installed to map the area of elevated TCE concentrations . The discharge area detected with the samplers is about 75 feet wide and extends from about 25 to 200 feet offshore . TCE vapor concentrations in this area were as high as 42,800 parts per billion by volume. TCE concentrations in micrograms per liter in water-diffusion samples from 15 selected sites in the two discharge areas were about 35 times lower than the TCE concentrations in parts per billion by volume in corresponding vapor-diffusion samples. The difference in values is due to the volatile nature of TCE and the different units of measure. TCE was detected in diffusion samplers set in the pond water column above the plume discharge areas, but the TCE concentrations were 20 to 30 times lower than the corresponding levels in diffusion samplers buried in the pond bottom.
This SOP describes the method for collecting a floor dust sample from carpet. Dust samples will be collected in the room that the child uses most at home and/or at day care using a High Volume Small Surface Sampler (HVS3). In addition, participants will also be asked to donate a ...
Laurin, Nancy; DeMoors, Anick; Frégeau, Chantal
2012-09-01
Direct amplification of STR loci from biological samples collected on FTA cards without prior DNA purification was evaluated using Identifiler Direct and PowerPlex 16 HS in conjunction with the use of a high throughput Applied Biosystems 3730 DNA Analyzer. In order to reduce the overall sample processing cost, reduced PCR volumes combined with various FTA disk sizes were tested. Optimized STR profiles were obtained using a 0.53 mm disk size in 10 μL PCR volume for both STR systems. These protocols proved effective in generating high quality profiles on the 3730 DNA Analyzer from both blood and buccal FTA samples. Reproducibility, concordance, robustness, sample stability and profile quality were assessed using a collection of blood and buccal samples on FTA cards from volunteer donors as well as from convicted offenders. The new developed protocols offer enhanced throughput capability and cost effectiveness without compromising the robustness and quality of the STR profiles obtained. These results support the use of these protocols for processing convicted offender samples submitted to the National DNA Data Bank of Canada. Similar protocols could be applied to the processing of casework reference samples or in paternity or family relationship testing. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Automated Microflow NMR: Routine Analysis of Five-Microliter Samples
Jansma, Ariane; Chuan, Tiffany; Geierstanger, Bernhard H.; Albrecht, Robert W.; Olson, Dean L.; Peck, Timothy L.
2006-01-01
A microflow CapNMR probe double-tuned for 1H and 13C was installed on a 400-MHz NMR spectrometer and interfaced to an automated liquid handler. Individual samples dissolved in DMSO-d6 are submitted for NMR analysis in vials containing as little as 10 μL of sample. Sets of samples are submitted in a low-volume 384-well plate. Of the 10 μL of sample per well, as with vials, 5 μL is injected into the microflow NMR probe for analysis. For quality control of chemical libraries, 1D NMR spectra are acquired under full automation from 384-well plates on as many as 130 compounds within 24 h using 128 scans per spectrum and a sample-to-sample cycle time of ∼11 min. Because of the low volume requirements and high mass sensitivity of the microflow NMR system, 30 nmol of a typical small molecule is sufficient to obtain high-quality, well-resolved, 1D proton or 2D COSY NMR spectra in ∼6 or 20 min of data acquisition time per experiment, respectively. Implementation of pulse programs with automated solvent peak identification and suppression allow for reliable data collection, even for samples submitted in fully protonated DMSO. The automated microflow NMR system is controlled and monitored using web-based software. PMID:16194121
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration
Mull, Bonnie; Hill, Vincent R.
2015-01-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.
Mull, Bonnie; Hill, Vincent R
2012-12-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.
Yu, Conrad M.; Koo, Jackson C.
2000-01-01
A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.
Regan, Rainy D; Fenyk-Melody, Judy E; Tran, Sam M; Chen, Guang; Stocking, Kim L
2016-01-01
Nonterminal blood sample collection of sufficient volume and quality for research is complicated in mice due to their small size and anatomy. Large (>100 μL) nonterminal volumes of unhemolyzed or unclotted blood currently are typically collected from the retroorbital sinus or submandibular plexus. We developed a third method—submental blood collection—which is similar in execution to the submandibular method but with minor changes in animal restraint and collection location. Compared with other techniques, submental collection is easier to perform due to the direct visibility of the target vessels, which are located in a sparsely furred region. Compared with the submandibular method, the submental method did not differ regarding weight change and clotting score but significantly decreased hemolysis and increased the overall number of high-quality samples. The submental method was performed with smaller lancets for the majority of the bleeds, yet resulted in fewer repeat collection attempts, fewer insufficient samples, and less extraneous blood loss and was qualitatively less traumatic. Compared with the retroorbital technique, the submental method was similar regarding weight change but decreased hemolysis, clotting, and the number of overall high-quality samples; however the retroorbital method resulted in significantly fewer incidents of insufficient sample collection. Extraneous blood loss was roughly equivalent between the submental and retroorbital methods. We conclude that the submental method is an acceptable venipuncture technique for obtaining large, nonterminal volumes of blood from mice. PMID:27657712
High-Temperature Cyclic Oxidation Data, Volume 1
NASA Technical Reports Server (NTRS)
Barrett, C. A.; Garlick, R. G.; Lowell, C. E.
1984-01-01
This first in a series of cyclic oxidation handbooks contains specific-weight-change-versus-time data and X-ray diffraction results derived from high-temperature cyclic tests on high-temperature, high-strength nickel-base gamma/gamma' and cobalt-base turbine alloys. Each page of data summarizes a complete test on a given alloy sample.
Breast cancer management: is volume related to quality? Clinical Advisory Panel.
Ma, M; Bell, J; Campbell, S; Basnett, I; Pollock, A; Taylor, I
1997-01-01
A method of carrying out region-wide audit for breast cancer was developed by collaboration between the cancer registry, providers and purchasers as part of work to fulfill the 'Calman-Hine' recommendations. In order to test the audit method, a retrospective audit in North Thames East compared practice in 1992 against current guidelines. The analysis compared care in specialist and non-specialist centres. A stratified random sample comprising 28% of all breast cancer patients diagnosed in 1992 was selected from the population-based Thames Cancer Registry. The data for 309 patients with stage I-III tumours were analysed by hospital type using local guidelines. No difference between specialist (high volume) and non-specialist centres was detected for factors important in survival. Pathological staging was good with over 70% reporting tumour size and grade. A small number of patients were undertreated; after conservative surgery, 10% (19) of women did not receive radiotherapy, and 15% (8) of node-positive premenopausal women did not receive chemotherapy or ovarian ablation. In contrast, a significant trend with hospital volume was found for several quality of life factors. These included access to a specialist breast surgeon and specialist breast nurses, availability of fine-needle aspiration (FNA), which ranged from 84% in high-volume to 42% in low-volume centres, and quality of surgery (axillary clearance rates ranged from 51% to 8% and sampling of less than three nodes from 3% to 25% for high- and very low-volume centres respectively). Confidential feedback of results to surgeons was welcomed and initiated change. The summary information gave purchasers information relevant to the evaluation of cancer services. While the audit applied present standards to past practice, it provided the impetus for prospective audit of current practice (now being implemented in North Thames).
Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime
NASA Astrophysics Data System (ADS)
Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie
2017-09-01
Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.
Cryo-Compression System in a 3000 Ton Multi-Anvil Press
NASA Astrophysics Data System (ADS)
Secco, R. A.; Yong, W.
2016-12-01
Most large volume high pressure devices are capable of high temperature experiments that are typically achieved by using localized resistive heating of a metal foil, graphite or ceramic sleeve inside a thermally insulated sample volume in a high pressure cell. Low temperatures at high pressures are needed for physical property studies of materials that comprise planetary bodies in the outer solar system. However, low temperatures are more difficult to achieve mainly because the massive steel components of the press, which are in good thermal contact with each other under high load, act as large heat reservoirs and pathways that encumber the removal of heat from the pressure cell. We describe a new custom-designed system under development for a 3000 ton multi-anvil press to reach temperatures below 295K at high pressures. The system was designed to remove heat selectively and conductively from the sample volume through six of the eight WC cubes in direct contact with the octahedral pressure cell. Cooling fins made of Cu are sandwiched between, and in thermal contact with, neighboring anvil faces and are each connected to a dedicated Cu heat exchanger chamber through which liquid nitrogen flows. The chamber internal geometry consists of either square pillars that double the internal surface area of the rectangular parallelepiped enclosed volume or continuous walls separated by valleys. Gas from each chamber is vented to the lab through an exhaust pipe. High pressure results will be presented of several temperature monitoring points in the center of the pressure cell and on the surfaces of the WC cubes and steel wedges which recorded the time-dependent cooling progress. Temperature stability tests will also be presented.
Susceptibility-matched plugs for microcoil NMR probes
NASA Astrophysics Data System (ADS)
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D.; Park, Gregory H. J.; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 μL) and larger volume (15-20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples.
Susceptibility-matched plugs for microcoil NMR probes.
Kc, Ravi; Gowda, Yashas N; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-07-01
For mass-limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5-2 microL) and larger volume (15-20 microL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6-12-fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Susceptibility-matched plugs for microcoil NMR probes
Kc, Ravi; Gowda, Yashas N.; Djukovic, Danijel; Henry, Ian D; Park, Gregory H J; Raftery, Daniel
2010-01-01
For mass limited samples, the residual sample volume outside the detection coil is an important concern, as is good base line resolution. Here, we present the construction and evaluation of magnetic susceptibility-matched plugs for microcoil NMR sample cells which address these issues. Mixed-epoxy glue and ultem tube plugs that have susceptibility values close to those of perfluorocarbon FC-43 (fluorinert) and copper were used in small volume (0.5 to 2 μL) and larger volume (15 to 20 μL) thin glass capillary sample cells. Using these plugs, the sample volume efficiency (i.e. ratio of active volume to total sample volume in the microcoil NMR cell) was improved by 6 to 12 fold without sensitivity and resolution trade-offs. Comparison with laser etched or heat etched microcoil sample cells is provided. The approaches described are potentially useful in metabolomics for biomarkers detection in mass limited biological samples. PMID:20510638
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Leuther, Frederic; Vogler, Steffen; Vogel, Hans-Jörg
2016-04-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of <-100kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent to any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
X-ray microtomography analysis of soil structure deformation caused by centrifugation
NASA Astrophysics Data System (ADS)
Schlüter, S.; Leuther, F.; Vogler, S.; Vogel, H.-J.
2016-01-01
Centrifugation provides a fast method to measure soil water retention curves over a wide moisture range. However, deformation of soil structure may occur at high angular velocities in the centrifuge. The objective of this study was to capture these changes in soil structure with X-ray microtomography and to measure local deformations via digital volume correlation. Two samples were investigated that differ in texture and rock content. A detailed analysis of the pore space reveals an interplay between shrinkage due to drying and soil compaction due to compression. Macroporosity increases at moderate angular velocity because of crack formation due to moisture release. At higher angular velocities, corresponding to capillary pressure of ψ < -100 kPa, macroporosity decreases again because of structure deformation due to compression. While volume changes due to swelling clay minerals are immanent in any drying process, the compaction of soil is a specific drawback of the centrifugation method. A new protocol for digital volume correlation was developed to analyze the spatial heterogeneity of deformation. In both samples the displacement of soil constituents is highest in the top part of the sample and exhibits high lateral variability explained by the spatial distribution of macropores in the sample. Centrifugation should therefore only be applied after the completion of all other hydraulic or thermal experiments, or any other analysis that depends on the integrity of soil structure.
Maskarinec, Gertraud; Morimoto, Yukiko; Conroy, Shannon M; Pagano, Ian S; Franke, Adrian A
2011-04-01
Based on the hypothesis that soy food consumption may influence breast tissue activity, we examined its effect on the production of nipple aspirate fluid (NAF), a possible indicator of breast cancer risk. Of 310 premenopausal women screened, 112 (36%) produced at least 10 μL of NAF, the minimum for study participation. In a crossover design, we randomized 96 women to 2 groups who, in reverse order, consumed a high-soy diet with 2 soy servings/d (1 serving = 177 mL soy milk, 126 g tofu, or 23 g soy nuts) and a low-soy diet with <3 servings/wk of soy for 6 mo each separated by a 1-mo washout period. During each diet period, 3 NAF samples were obtained (baseline and 3 and 6 mo) using a FirstCyte Aspirator and 4 urine samples (baseline and 1, 3, and 6 mo) were analyzed for isoflavonoids by liquid chromatography tandem MS. Adherence to the study protocol according to 24-h dietary recalls and urinary isoflavonoid excretion was high. The drop-out rate was 15% (n = 14); 82 women completed the intervention. The 2 groups produced similar mean NAF volumes at baseline (P = 0.95) but differed in age and previous soy intake and in their response to the intervention (P = 0.03). In both groups, NAF volume decreased during the first 3 mo of the high-soy diet period and returned to baseline at 6 mo, but there was no effect of the high-soy diet on NAF volume (P = 0.50 for diet; P-interaction = 0.21 for diet with time). Contrary to an earlier report, soy foods in amounts consumed by Asians did not increase breast tissue activity as assessed by NAF volume.
Maskarinec, Gertraud; Morimoto, Yukiko; Conroy, Shannon M.; Pagano, Ian S.; Franke, Adrian A.
2011-01-01
Based on the hypothesis that soy food consumption may influence breast tissue activity, we examined its effect on the production of nipple aspirate fluid (NAF), a possible indicator of breast cancer risk. Of 310 premenopausal women screened, 112 (36%) produced at least 10 μL of NAF, the minimum for study participation. In a crossover design, we randomized 96 women to 2 groups who, in reverse order, consumed a high-soy diet with 2 soy servings/d (1 serving = 177 mL soy milk, 126 g tofu, or 23 g soy nuts) and a low-soy diet with <3 servings/wk of soy for 6 mo each separated by a 1-mo washout period. During each diet period, 3 NAF samples were obtained (baseline and 3 and 6 mo) using a FirstCyte Aspirator and 4 urine samples (baseline and 1, 3, and 6 mo) were analyzed for isoflavonoids by liquid chromatography tandem MS. Adherence to the study protocol according to 24-h dietary recalls and urinary isoflavonoid excretion was high. The drop-out rate was 15% (n = 14); 82 women completed the intervention. The 2 groups produced similar mean NAF volumes at baseline (P = 0.95) but differed in age and previous soy intake and in their response to the intervention (P = 0.03). In both groups, NAF volume decreased during the first 3 mo of the high-soy diet period and returned to baseline at 6 mo, but there was no effect of the high-soy diet on NAF volume (P = 0.50 for diet; P-interaction = 0.21 for diet with time). Contrary to an earlier report, soy foods in amounts consumed by Asians did not increase breast tissue activity as assessed by NAF volume. PMID:21325473
Site Environmental Report for 2009, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Suying
2010-08-19
Volume II of the Site Environmental Report for 2009 is provided by Ernest Orlando Lawrence Berkeley National Laboratory as a supplemental appendix to Volume I, which contains the body of the report. Volume II contains the environmental monitoring and sampling data used to generate summary results of routine and nonroutine sampling at the Laboratory, except for groundwater sampling data, which may be found in the reports referred to in Chapter 4 of Volume I. The results from sample collections are more comprehensive in Volume II than in Volume I: for completeness, all results from sample collections that began or endedmore » in calendar year (CY) 2009 are included in this volume. However, the samples representing CY 2008 data have not been used in the summary results that are reported in Volume I. (For example, although ambient air samples collected on January 6, 2009, are presented in Volume II, they represent December 2008 data and are not included in Table 4-2 in Volume I.) When appropriate, sampling results are reported in both conventional and International System (SI) units. For some results, the rounding procedure used in data reporting may result in apparent differences between the numbers reported in SI and conventional units. (For example, stack air tritium results reported as < 1.5 Bq/m3 are shown variously as < 39 and < 41 pCi/m3. Both of these results are rounded correctly to two significant digits.)« less
Modulation infrared thermometry of caloric effects at up to kHz frequencies
NASA Astrophysics Data System (ADS)
Döntgen, Jago; Rudolph, Jörg; Waske, Anja; Hägele, Daniel
2018-03-01
We present a novel non-contact method for the direct measurement of caloric effects in low volume samples. The adiabatic temperature change ΔT of a magnetocaloric sample is very sensitively determined from thermal radiation. Rapid modulation of ΔT is induced by an oscillating external magnetic field. Detection of thermal radiation with a mercury-cadmium-telluride detector allows for measurements at field frequencies exceeding 1 kHz. In contrast to thermoacoustic methods, our method can be employed in vacuum which enhances adiabatic conditions especially in the case of small volume samples. Systematic measurements of the magnetocaloric effect as a function of temperature, magnetic field amplitude, and modulation frequency give a detailed picture of the thermal behavior of the sample. Highly sensitive measurements of the magnetocaloric effect are demonstrated on a 2 mm thick sample of gadolinium and a 60 μm thick Fe80B12Nb8 ribbon.
GPU-based multi-volume ray casting within VTK for medical applications.
Bozorgi, Mohammadmehdi; Lindseth, Frank
2015-03-01
Multi-volume visualization is important for displaying relevant information in multimodal or multitemporal medical imaging studies. The main objective with the current study was to develop an efficient GPU-based multi-volume ray caster (MVRC) and validate the proposed visualization system in the context of image-guided surgical navigation. Ray casting can produce high-quality 2D images from 3D volume data but the method is computationally demanding, especially when multiple volumes are involved, so a parallel GPU version has been implemented. In the proposed MVRC, imaginary rays are sent through the volumes (one ray for each pixel in the view), and at equal and short intervals along the rays, samples are collected from each volume. Samples from all the volumes are composited using front to back α-blending. Since all the rays can be processed simultaneously, the MVRC was implemented in parallel on the GPU to achieve acceptable interactive frame rates. The method is fully integrated within the visualization toolkit (VTK) pipeline with the ability to apply different operations (e.g., transformations, clipping, and cropping) on each volume separately. The implemented method is cross-platform (Windows, Linux and Mac OSX) and runs on different graphics card (NVidia and AMD). The speed of the MVRC was tested with one to five volumes of varying sizes: 128(3), 256(3), and 512(3). A Tesla C2070 GPU was used, and the output image size was 600 × 600 pixels. The original VTK single-volume ray caster and the MVRC were compared when rendering only one volume. The multi-volume rendering system achieved an interactive frame rate (> 15 fps) when rendering five small volumes (128 (3) voxels), four medium-sized volumes (256(3) voxels), and two large volumes (512(3) voxels). When rendering single volumes, the frame rate of the MVRC was comparable to the original VTK ray caster for small and medium-sized datasets but was approximately 3 frames per second slower for large datasets. The MVRC was successfully integrated in an existing surgical navigation system and was shown to be clinically useful during an ultrasound-guided neurosurgical tumor resection. A GPU-based MVRC for VTK is a useful tool in medical visualization. The proposed multi-volume GPU-based ray caster for VTK provided high-quality images at reasonable frame rates. The MVRC was effective when used in a neurosurgical navigation application.
Ceramic Ti—B Composites Synthesized by Combustion Followed by High-Temperature Deformation
Bazhin, Pavel M.; Stolin, Alexander M.; Konstantinov, Alexander S.; Kostitsyna, Elena V.; Ignatov, Andrey S.
2016-01-01
Long compact cylindrical rods, which consist of a titanium monoboride-based TiB—30 wt % Ti ceramic composite material, are synthesized during combustion of the initial components (titanium, boron) followed by high-temperature deformation. High-temperature deformation is found to affect the orientation of the hardening titanium monoboride phase in the sample volume and the phase composition of the sample. The combustion temperature is studied as a function of the relative density of the initial workpiece under the experimental conditions. PMID:28774147
Ceramic Ti-B Composites Synthesized by Combustion Followed by High-Temperature Deformation.
Bazhin, Pavel M; Stolin, Alexander M; Konstantinov, Alexander S; Kostitsyna, Elena V; Ignatov, Andrey S
2016-12-20
Long compact cylindrical rods, which consist of a titanium monoboride-based TiB-30 wt % Ti ceramic composite material, are synthesized during combustion of the initial components (titanium, boron) followed by high-temperature deformation. High-temperature deformation is found to affect the orientation of the hardening titanium monoboride phase in the sample volume and the phase composition of the sample. The combustion temperature is studied as a function of the relative density of the initial workpiece under the experimental conditions.
Post, Eric G.; Bell, David R.; Trigsted, Stephanie M.; Pfaller, Adam Y.; Hetzel, Scott J.; Brooks, M. Alison; McGuine, Timothy A.
2017-01-01
Background: High school athletes are increasingly encouraged to participate in 1 sport year-round to increase their sport skills. However, no study has examined the association of competition volume, club sport participation, and sport specialization with sex and lower extremity injury (LEI) in a large sample of high school athletes. Hypothesis: Increased competition volume, participating on a club team outside of school sports, and high levels of specialization will all be associated with a history of LEI. Girls will be more likely to engage in higher competition volume, participate on a club team, and be classified as highly specialized. Study Design: Cross-sectional study. Level of Evidence: Level 3. Methods: High school athletes completed a questionnaire prior to the start of their competitive season regarding their sport participation and previous injury history. Multivariable logistic regression analyses were used to investigate associations of competition volume, club sport participation, and sport specialization with history of LEI, adjusting for sex. Results: A cohort of 1544 high school athletes (780 girls; grades 9-12) from 29 high schools completed the questionnaire. Girls were more likely to participate at high competition volume (23.2% vs 11.0%, χ2 = 84.7, P < 0.001), participate on a club team (61.2% vs 37.2%, χ2 = 88.3, P < 0.001), and be highly specialized (16.4% vs 10.4%, χ2 = 19.7, P < 0.001). Athletes with high competition volume, who participated in a club sport, or who were highly specialized had greater odds of reporting a previous LEI than those with low competition volume (odds ratio [OR], 2.08; 95% CI, 1.55-2.80; P < 0.001), no club sport participation (OR, 1.50; 95% CI, 1.20-1.88; P < 0.001), or low specialization (OR, 2.58; 95% CI, 1.88-3.54; P < 0.001), even after adjusting for sex. Conclusion: Participating in high sport volume, on a club team, or being highly specialized was associated with history of LEI. Girls were more likely to participate at high volumes, be active on club teams, or be highly specialized, potentially placing them at increased risk of injury. Clinical Relevance: Youth athletes, parents, and clinicians should be aware of the potential risks of intense, year-round participation in organized sports. PMID:28628419
Post, Eric G; Bell, David R; Trigsted, Stephanie M; Pfaller, Adam Y; Hetzel, Scott J; Brooks, M Alison; McGuine, Timothy A
High school athletes are increasingly encouraged to participate in 1 sport year-round to increase their sport skills. However, no study has examined the association of competition volume, club sport participation, and sport specialization with sex and lower extremity injury (LEI) in a large sample of high school athletes. Increased competition volume, participating on a club team outside of school sports, and high levels of specialization will all be associated with a history of LEI. Girls will be more likely to engage in higher competition volume, participate on a club team, and be classified as highly specialized. Cross-sectional study. Level 3. High school athletes completed a questionnaire prior to the start of their competitive season regarding their sport participation and previous injury history. Multivariable logistic regression analyses were used to investigate associations of competition volume, club sport participation, and sport specialization with history of LEI, adjusting for sex. A cohort of 1544 high school athletes (780 girls; grades 9-12) from 29 high schools completed the questionnaire. Girls were more likely to participate at high competition volume (23.2% vs 11.0%, χ 2 = 84.7, P < 0.001), participate on a club team (61.2% vs 37.2%, χ 2 = 88.3, P < 0.001), and be highly specialized (16.4% vs 10.4%, χ 2 = 19.7, P < 0.001). Athletes with high competition volume, who participated in a club sport, or who were highly specialized had greater odds of reporting a previous LEI than those with low competition volume (odds ratio [OR], 2.08; 95% CI, 1.55-2.80; P < 0.001), no club sport participation (OR, 1.50; 95% CI, 1.20-1.88; P < 0.001), or low specialization (OR, 2.58; 95% CI, 1.88-3.54; P < 0.001), even after adjusting for sex. Participating in high sport volume, on a club team, or being highly specialized was associated with history of LEI. Girls were more likely to participate at high volumes, be active on club teams, or be highly specialized, potentially placing them at increased risk of injury. Youth athletes, parents, and clinicians should be aware of the potential risks of intense, year-round participation in organized sports.
VandenBussche, Christopher J; Rosenthal, Dorothy L; Olson, Matthew T
2016-03-01
Adequacy assessment is one of the most controversial and overlooked components in the daily practice of cytopathology, because it is generally determined from limited samples. Because voided urine varies widely in terms of its volume and cellularity, there is little consensus about the proper role for these variables in assessing specimen adequacy. In this study, the authors explored the role of volume in voided urine specimens to determine whether it plays a role in determining adequacy for the detection of high-grade urothelial carcinoma. Voided urine specimens received at the authors' laboratory over the 9.5 years since the introduction of the Johns Hopkins Template for Reporting Urinary Cytopathology were analyzed for correlations between volume, specimen adequacy, and the diagnosis of high-grade malignancy. The same data set also was queried to determine whether a patient who provided a voided low-volume specimen could yield a higher volume specimen and thereby increase adequacy. In total, 15,731 voided urine specimens with a cumulative volume of 891 liters originating from 8594 individual patients were analyzed. Specimen adequacy increased linearly for each increment of volume submitted to the laboratory up to 30 mL, after which the correlation was nonlinear. Low-volume specimens below this cutoff also had lower fractions of specimens that were diagnosed as malignant or suspicious. Volume is an important component in the evaluation of adequacy for voided urine cytology specimens. © 2015 American Cancer Society.
A rapid method for estimation of Pu-isotopes in urine samples using high volume centrifuge.
Kumar, Ranjeet; Rao, D D; Dubla, Rupali; Yadav, J R
2017-07-01
The conventional radio-analytical technique used for estimation of Pu-isotopes in urine samples involves anion exchange/TEVA column separation followed by alpha spectrometry. This sequence of analysis consumes nearly 3-4 days for completion. Many a times excreta analysis results are required urgently, particularly under repeat and incidental/emergency situations. Therefore, there is need to reduce the analysis time for the estimation of Pu-isotopes in bioassay samples. This paper gives the details of standardization of a rapid method for estimation of Pu-isotopes in urine samples using multi-purpose centrifuge, TEVA resin followed by alpha spectrometry. The rapid method involves oxidation of urine samples, co-precipitation of plutonium along with calcium phosphate followed by sample preparation using high volume centrifuge and separation of Pu using TEVA resin. Pu-fraction was electrodeposited and activity estimated using 236 Pu tracer recovery by alpha spectrometry. Ten routine urine samples of radiation workers were analyzed and consistent radiochemical tracer recovery was obtained in the range 47-88% with a mean and standard deviation of 64.4% and 11.3% respectively. With this newly standardized technique, the whole analytical procedure is completed within 9h (one working day hour). Copyright © 2017 Elsevier Ltd. All rights reserved.
Sex Differences in Brain Volume Are Related to Specific Skills, Not to General Intelligence
ERIC Educational Resources Information Center
Burgaleta, Miguel; Head, Kevin; Alvarez-Linera, Juan; Martinez, Kenia; Escorial, Sergio; Haier, Richard; Colom, Roberto
2012-01-01
It has been proposed that males would show higher mean scores than females in general intelligence ("g") because (1) men have, on average, larger brains than women, and (2) brain volume correlates with "g." Here we report a failure to support the conclusion derived from these premises. High resolution MRIs were acquired in a sample of one hundred…
Comparison of high-pressure CO 2 sorption isotherms on Eastern and Western US coals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, V; Hur, T -B; Fazio, J
2013-10-01
Accurate estimation of carbon dioxide (CO 2) sorption capacity of coal is important for planning the CO 2 sequestration efforts. In this work, we investigated sorption and swelling behavior of several Eastern and Western US coal samples from the Central Appalachian Basin and from San Juan Basin. The CO 2 sorption isotherms have been completed at 55°C for as received and dried samples. The role of mineral components in coal, the coal swelling, the effects of temperature and moisture, and the error propagation have been analyzed. Changes in void volume due to dewatering and other factors such as temporary cagingmore » of carbon dioxide molecules in coal matrix were identified among the main factors affecting accuracy of the carbon dioxide sorption isotherms. The (helium) void volume in the sample cells was measured before and after the sorption isotherm experiments and was used to build the volume-corrected data plots.« less
Accurate high-speed liquid handling of very small biological samples.
Schober, A; Günther, R; Schwienhorst, A; Döring, M; Lindemann, B F
1993-08-01
Molecular biology techniques require the accurate pipetting of buffers and solutions with volumes in the microliter range. Traditionally, hand-held pipetting devices are used to fulfill these requirements, but many laboratories have also introduced robotic workstations for the handling of liquids. Piston-operated pumps are commonly used in manually as well as automatically operated pipettors. These devices cannot meet the demands for extremely accurate pipetting of very small volumes at the high speed that would be necessary for certain applications (e.g., in sequencing projects with high throughput). In this paper we describe a technique for the accurate microdispensation of biochemically relevant solutions and suspensions with the aid of a piezoelectric transducer. It is suitable for liquids of a viscosity between 0.5 and 500 milliPascals. The obtainable drop sizes range from 5 picoliters to a few nanoliters with up to 10,000 drops per second. Liquids can be dispensed in single or accumulated drops to handle a wide volume range. The system proved to be excellently suitable for the handling of biological samples. It did not show any detectable negative impact on the biological function of dissolved or suspended molecules or particles.
Depping, Malte S; Wolf, Nadine D; Vasic, Nenad; Sambataro, Fabio; Thomann, Philipp A; Christian Wolf, R
2015-03-15
Abnormal brain volume has been frequently demonstrated in major depressive disorder (MDD). It is unclear if these findings are specific for MDD since aberrant brain structure is also present in disorders with depressive comorbidity and affective dysregulation, such as borderline personality disorder (BPD). In this transdiagnostic study, we aimed to investigate if regional brain volume loss differentiates between MDD and BPD. Further, we tested for associations between brain volume and clinical variables within and between diagnostic groups. 22 Females with a DSM-IV diagnosis of MDD, 17 females with a DSM-IV diagnosis of BPD and without comorbid posttraumatic stress disorder, and 22 age-matched female healthy controls (HC) were investigated using magnetic resonance imaging. High-resolution structural data were analyzed using voxel-based morphometry. A significant (p<0.05, cluster-corrected) volume decrease of the anterior cingulate cortex (ACC) was found in MDD compared to HC, as opposed to volume decreases of the amygdala in BPD compared to both HC and MDD. Sensitivity and specificity of regional gray matter volume for a diagnosis of MDD were modest to fair. Amygdala volume was related to depressive symptoms across the entire patient sample. Potential limitations of this study include the modest sample size and the heterogeneous psychotropic drug treatment. ACC volume reduction is more pronounced in MDD with an intermediate degree of volume loss in BPD compared to HC. In contrast, amygdala volume loss is more pronounced in BPD compared to MDD, yet amygdala volume is associated with affective symptom expression in both disorders. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Lei; Pei, Junxian; Huang, Xiaojia; Lu, Min
2018-06-05
On-site sample preparation is highly desired because it avoids the transportation of large-volume samples and ensures the accuracy of the analytical results. In this work, a portable prototype of tip microextraction device (TMD) was designed and developed for on-site sample pretreatment. The assembly procedure of TMD is quite simple. Firstly, polymeric ionic liquid (PIL)-based adsorbent was in-situ prepared in a pipette tip. After that, the tip was connected with a syringe which was driven by a bidirectional motor. The flow rates in adsorption and desorption steps were controlled accurately by the motor. To evaluate the practicability of the developed device, the TMD was used to on-site sample preparation of waters and combined with high-performance liquid chromatography with diode array detection to measure trace estrogens in water samples. Under the most favorable conditions, the limits of detection (LODs, S/N = 3) for the target analytes were in the range of 4.9-22 ng/L, with good coefficients of determination. Confirmatory study well evidences that the extraction performance of TMD is comparable to that of the traditional laboratory solid-phase extraction process, but the proposed TMD is more simple and convenient. At the same time, the TMD avoids complicated sampling and transferring steps of large-volume water samples. Copyright © 2018 Elsevier B.V. All rights reserved.
Generation of sub-femtoliter droplet by T-junction splitting on microfluidic chips
NASA Astrophysics Data System (ADS)
Yang, Yu-Jun; Feng, Xuan; Xu, Na; Pang, Dai-Wen; Zhang, Zhi-Ling
2013-03-01
In the paper, sub-femtoliter droplets were easily produced by droplet splitting at a simple T-junction with orifice, which did not need expensive equipments, complex photolithography skill, or high energy input. The volume of the daughter droplet was not limited by channel size but controlled by channel geometry and fluidic characteristic. Moreover, single bead sampling and bead quantification in different orders of magnitude of droplet volumes were investigated. The droplets split at our T-junction chip had small volume and monodispersed size and could be produced efficiently, orderly, and controllably.
ERIC Educational Resources Information Center
Montgomery County Public Schools, Rockville, MD.
Three volumes report the findings of a student survey among a random sample of 2,777 junior high and senior high school students. Volume one presents the overall findings: the typical student believes that drug use and experimentation are not common, except for marihuana, alcohol, cigarettes, and glue; believes that drug use is increasing; is not…
Ptolemy, Adam S; Britz-McKibbin, Philip
2006-02-17
New strategies for integrating sample pretreatment with chemical analyses under a single format is required for rapid, sensitive and enantioselective analyses of low abundance metabolites in complex biological samples. Capillary electrophoresis (CE) offers a unique environment for controlling analyte/reagent band dispersion and electromigration properties using discontinuous electrolyte systems. Recent work in our laboratory towards developing a high-throughput CE platform for low abundance metabolites via on-line sample preconcentration with chemical derivatization (SPCD) is primarily examined in this review, as there have been surprisingly only a few strategies reported in the literature to date. In-capillary sample preconcentration serves to enhance concentration sensitivity via electrokinetic focusing of long sample injection volumes for lower detection limits, whereas chemical derivatization by zone passing is used to expand detectability and selectivity, notably for enantiomeric resolution of metabolites lacking intrinsic chromophores using nanolitre volumes of reagent. Together, on-line SPCD-CE can provide over a 100-fold improvement in concentration sensitivity, shorter total analysis times, reduced sample handling and improved reliability for a variety of amino acid and amino sugar metabolites, which is also amenable to automated high-throughput screening. This review will highlight basic method development and optimization parameters relevant to SPCD-CE, including applications to bacterial metabolite flux and biomarker analyses. Insight into the mechanism of analyte focusing and labeling by SPCD-CE is also discussed, as well as future directions for continued research.
Zhang, Shasha; Fang, Yunting; Xi, Dan
2015-07-30
There are several preparation methods for the measurement of the nitrogen (N) isotopic composition of ammonium (NH4 (+) ) in different types of samples (freshwater, saltwater and soil extracts). The diffusion method is the most popular and it involves NH4 (+) in solutions being released under alkaline conditions and then immediately trapped by an acidified filter. However, the traditional preparation is designed for samples with large volume and relatively high N concentrations. The performance of diffusion for small-volume samples (e.g., a few milliliters) remains unknown. We examined the overall performance of micro-diffusion on 5 mL samples on varying the incubation time, temperature and initial NH4 (+) concentration. The trapped ammonia was chemically converted into nitrous oxide (N2 O) with hypobromite and hydroxylamine in sequence. The produced N2 O was analyzed by a commercially available purge and cryogenic trap system coupled to an isotope ratio mass spectrometer. We found that diffusion can be complete with no more than 7 days of treatment at 37 °C. Increasing the temperature to 50 °C and the incubation time to 11 days did not improve the overall performance. There were no significant differences in the overall performance during diffusion with NH4 (+) concentrations from 15 to 60 μM. The blank size was relatively large, and the N contamination might come from the reagents especially KCl salts. The method presented here combines micro-diffusion and hypobromite oxidation and hydroxylamine reduction. It is suitable for samples with small volume and low NH4 (+) concentrations. Our study demonstrates that the NH4 (+) concentrations in samples can be as low as 15 μM, and a volume of 5 mL is sufficient for this method. We suggest that this method can be used for the routine determination of (15) N/(14) N for either natural abundance or (15) N-enriched NH4 (+) . Copyright © 2015 John Wiley & Sons, Ltd.
Rugged, Portable, Real-Time Optical Gaseous Analyzer for Hydrogen Fluoride
NASA Technical Reports Server (NTRS)
Pilgrim, Jeffrey; Gonzales, Paula
2012-01-01
Hydrogen fluoride (HF) is a primary evolved combustion product of fluorinated and perfluorinated hydrocarbons. HF is produced during combustion by the presence of impurities and hydrogen- containing polymers including polyimides. This effect is especially dangerous in closed occupied volumes like spacecraft and submarines. In these systems, combinations of perfluorinated hydrocarbons and polyimides are used for insulating wiring. HF is both highly toxic and short-lived in closed environments due to its reactivity. The high reactivity also makes HF sampling problematic. An infrared optical sensor can detect promptly evolving HF with minimal sampling requirements, while providing both high sensitivity and high specificity. A rugged optical path length enhancement architecture enables both high HF sensitivity and rapid environmental sampling with minimal gaseous contact with the low-reactivity sensor surfaces. The inert optical sample cell, combined with infrared semiconductor lasers, is joined with an analog and digital electronic control architecture that allows for ruggedness and compactness. The combination provides both portability and battery operation on a simple camcorder battery for up to eight hours. Optical detection of gaseous HF is confounded by the need for rapid sampling with minimal contact between the sensor and the environmental sample. A sensor is required that must simultaneously provide the required sub-parts-permillion detection limits, but with the high specificity and selectivity expected of optical absorption techniques. It should also be rugged and compact for compatibility with operation onboard spacecraft and submarines. A new optical cell has been developed for which environmental sampling is accomplished by simply traversing the few mm-thick cell walls into an open volume where the measurement is made. A small, low-power fan or vacuum pump may be used to push or pull the gaseous sample into the sample volume for a response time of a few seconds. The optical cell simultaneously provides for an enhanced optical interaction path length between the environmental sample and the infrared laser. Further, the optical cell itself is comprised of inert materials that render it immune to attack by HF. In some cases, the sensor may be configured so that the optoelectronic devices themselves are protected and isolated from HF by the optical cell. The optical sample cell is combined with custom-developed analog and digital control electronics that provide rugged, compact operation on a platform that can run on a camcorder battery. The sensor is inert with respect to acidic gases like HF, while providing the required sensitivity, selectivity, and response time. Certain types of combustion events evolve copious amounts of HF, very little of other gases typically associated with combustion (e.g., carbon monoxide), and very low levels of aerosols and particulates (which confound traditional smoke detectors). The new sensor platform could warn occupants early enough to take the necessary countermeasures.
Walker, Sue; Oosterhuis, Derrick M.; Wiebe, Herman H.
1984-01-01
Evaporative losses from the cut edge of leaf samples are of considerable importance in measurements of leaf water potential using thermocouple psychrometers. The ratio of cut surface area to leaf sample volume (area to volume ratio) has been used to give an estimate of possible effects of evaporative loss in relation to sample size. A wide range of sample sizes with different area to volume ratios has been used. Our results using Glycine max L. Merr. cv Bragg indicate that leaf samples with area to volume values less than 0.2 square millimeter per cubic millimeter give psychrometric leaf water potential measurements that compare favorably with pressure chamber measurements. PMID:16663578
Measuring pedestrian volumes and conflicts. Volume 1, Pedestrian volume sampling
DOT National Transportation Integrated Search
1987-12-01
This final report presents the findings, conclusions, and recommendations of the study conducted to develop a model to predict pedestrian volumes using small sampling schemes. This research produced four pedestrian volume prediction models (i.e., 1-,...
Lactate response to different volume patterns of power clean.
Date, Anand S; Simonson, Shawn R; Ransdell, Lynda B; Gao, Yong
2013-03-01
The ability to metabolize or tolerate lactate and produce power simultaneously can be an important determinant of performance. Current training practices for improving lactate use include high-intensity aerobic activities or a combination of aerobic and resistance training. Excessive aerobic training may have undesired physiological adaptations (e.g., muscle loss, change in fiber types). The role of explosive power training in lactate production and use needs further clarification. We hypothesized that high-volume explosive power movements such as Olympic lifts can increase lactate production and overload lactate clearance. Hence, the purpose of this study was to assess lactate accumulation after the completion of 3 different volume patterns of power cleans. Ten male recreational athletes (age 24.22 ± 1.39 years) volunteered. Volume patterns consisted of 3 sets × 3 repetition maximum (3RM) (low volume [LV]), 3 sets × 6 reps at 80-85% of 3RM (midvolume [MV]), and 3 sets × 9 reps at 70-75% of 3RM (high volume [HV]). Rest period was identical at 2 minutes. Blood samples were collected immediately before and after each volume pattern. The HV resulted in the greatest lactate accumulation (7.43 ± 2.94 mmol·L) vs. (5.27 ± 2.48 and 4.03 ± 1.78 mmol·L in MV and LV, respectively). Mean relative increase in lactate was the highest in HV (356.34%). The findings indicate that lactate production in power cleans is largely associated with volume, determined by number of repetitions, load, and rest interval. High-volume explosive training may impose greater metabolic demands than low-volume explosive training and may improve ability to produce power in the presence of lactate. The role of explosive power training in overloading the lactate clearance mechanism should be examined further, especially for athletes of intermittent sport.
Arkin, Nicole; Lee, Peter H U; McDonald, Kathryn; Hernandez-Boussard, Tina
2014-03-01
To examine hospital resources associated with patient outcomes for aortic valve replacement (AVR), including inpatient adverse events and mortality. We used the Nationwide Inpatient Sample to identify AVR procedures from 1998 to 2010 and the American Hospital Association Annual Survey to augment hospital characteristics. Primary outcomes included mortality and the development of adverse events, identified using standardized patient safety indicators (PSI). Patient and hospital characteristics associated with PSI development were evaluated using univariate and multivariate analyses. An estimated 410,157 AVRs at 5009 hospitals were performed in the US between 1998 and 2010. The number of procedures grew annually by 4.72% (p=0.0003) in high volume hospitals, 4.48% in medium volume hospitals (p<0.0001), and 2.03% in low volume hospitals (p=0.154). Mortality was highest in low volume hospitals, 4.70%, decreased from 4.14% to 3.73% in medium and high volume hospitals, respectively (p=0.0002). Rates of PSIs did not vary significantly across volume terciles (p=0.254). Multivariate logistic regression analysis showed low volume hospitals had increased risk of mortality as compared with high volume hospitals (odds ratio [OR]: 1.42; 95% confidence interval [CI]: 1.01 to 2.00), while hospital volume was not associated with adverse events. PSI development was associated with small hospitals as compared with large (OR: 1.63, 95% CI: 1.16 to 2.28) and inversely associated with higher nurse-to-patient ratio (OR: 0.94, 95% CI: 0.90 to 0.99). The volume-outcomes relationship was associated with mortality outcomes but not postoperative complications. We identified structural differences in hospital size, nurses-to-patient ratio, and nursing skill level indicative of high quality outcomes. © 2014 Wiley Periodicals, Inc.
Sun, Jirun; Eidelman, Naomi; Lin-Gibson, Sheng
2009-03-01
The objectives of this study were to (1) demonstrate X-ray micro-computed tomography (microCT) as a viable method for determining the polymerization shrinkage and microleakage on the same sample accurately and non-destructively, and (2) investigate the effect of sample geometry (e.g., C-factor and volume) on polymerization shrinkage and microleakage. Composites placed in a series of model cavities of controlled C-factors and volumes were imaged using microCT to determine their precise location and volume before and after photopolymerization. Shrinkage was calculated by comparing the volume of composites before and after polymerization and leakage was predicted based on gap formation between composites and cavity walls as a function of position. Dye penetration experiments were used to validate microCT results. The degree of conversion (DC) of composites measured using FTIR microspectroscopy in reflectance mode was nearly identical for composites filled in all model cavity geometries. The shrinkage of composites calculated based on microCT results was statistically identical regardless of sample geometry. Microleakage, on the other hand, was highly dependent on the C-factor as well as the composite volume, with higher C-factors and larger volumes leading to a greater probability of microleakage. Spatial distribution of microleakage determined by microCT agreed well with results determined by dye penetration. microCT has proven to be a powerful technique in quantifying polymerization shrinkage and corresponding microleakage for clinically relevant cavity geometries.
Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi
2013-02-01
A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.
Razmi, Rasoul; Shahpari, Behrouz; Pourbasheer, Eslam; Boustanifar, Mohammad Hasan; Azari, Zhila; Ebadi, Amin
2016-11-01
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid-liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001-10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Efficient Stochastic Rendering of Static and Animated Volumes Using Visibility Sweeps.
von Radziewsky, Philipp; Kroes, Thomas; Eisemann, Martin; Eisemann, Elmar
2017-09-01
Stochastically solving the rendering integral (particularly visibility) is the de-facto standard for physically-based light transport but it is computationally expensive, especially when displaying heterogeneous volumetric data. In this work, we present efficient techniques to speed-up the rendering process via a novel visibility-estimation method in concert with an unbiased importance sampling (involving environmental lighting and visibility inside the volume), filtering, and update techniques for both static and animated scenes. Our major contributions include a progressive estimate of partial occlusions based on a fast sweeping-plane algorithm. These occlusions are stored in an octahedral representation, which can be conveniently transformed into a quadtree-based hierarchy suited for a joint importance sampling. Further, we propose sweep-space filtering, which suppresses the occurrence of fireflies and investigate different update schemes for animated scenes. Our technique is unbiased, requires little precomputation, is highly parallelizable, and is applicable to a various volume data sets, dynamic transfer functions, animated volumes and changing environmental lighting.
Stout, Peter R; Horn, Carl K; Klette, Kevin L
2002-01-01
To facilitate analysis of high sample volumes, an extraction, derivatization and gas chromatographic-mass spectrometric analysis method was developed to simultaneously determine amphetamine (AMP), methamphetamine (MAMP), 3,4-methylenedioxyamphetamine (MDA) 3,4-methylenedioxymethamphetamine (MDMA), and 3,4-methylenedioxyethylamphetamine (MDEA) in urine. This method utilized a positive-pressure manifold cation-exchange polymer-based solid-phase extraction followed by elution directly into automated liquid sampler (ALS) vials. Rapid derivatization was accomplished using heptafluorobutyric anhydride (HFBA). Recoveries averaged 90% or greater for each of the compounds. Limits of detection were 62.5 ng/mL (AMP and MDEA), 15.6 ng/mL (MAMP), and 31.3 ng/mL (MDA and MDMA) using a 2-mL sample volume. The method was linear to 5000 ng/mL for all compounds using MDMA-d5 and MAMP-d14 as internal standards. Over 200 human urine samples previously determined to contain the target analytes were analyzed using the method. Excellent agreement was seen with previous quantitations. The method was challenged with 75 potentially interfering compounds and no interferences were seen. These interfering compounds included ephedrine, pseudoephedrine, phenylpropanolamine, and phenethylamine. The method resulted in dramatic reductions in processing time and waste production.
Kim, Yong-Hyun; Kim, Ki-Hyun
2012-10-02
To understand the ultimately lowest detection range of volatile organic compounds (VOCs) in air, application of a high sensitivity analytical system was investigated by coupling thermal desorption (TD) technique with gas chromatography (GC) and time-of-flight (TOF) mass spectrometry (MS). The performance of the TD-GC/TOF MS system was evaluated using liquid standards of 19 target VOCs prepared in the range of 35 pg to 2.79 ng per μL. Studies were carried out using both total ion chromatogram (TIC) and extracted ion chromatogram (EIC) mode. EIC mode was used for calibration to reduce background and to improve signal-to-noise. The detectability of 19 target VOCs, if assessed in terms of method detection limit (MDL, per US EPA definition) and limit of detection (LOD), averaged 5.90 pg and 0.122 pg, respectively, with the mean coefficient of correlation (R(2)) of 0.9975. The minimum quantifiable mass of target analytes, when determined using real air samples by the TD-GC/TOF MS, is highly comparable to the detection limits determined experimentally by standard. In fact, volumes for the actual detection of the major aromatic VOCs like benzene, toluene, and xylene (BTX) in ambient air samples were as low as 1.0 mL in the 0.11-2.25 ppb range. It was thus possible to demonstrate that most target compounds including those in low abundance could be reliably quantified at concentrations down to 0.1 ppb at sample volumes of less than 10 mL. The unique sensitivity of this advanced analytical system can ultimately lead to a shift in field sampling strategy with smaller air sample volumes facilitating faster, simpler air sampling (e.g., use of gas syringes rather than the relative complexity of pumps or bags/canisters), with greatly reduced risk of analyte breakthrough and minimal interference, e.g., from atmospheric humidity. The improved detection limits offered by this system can also enhance accuracy and measurement precision.
Grotti, Marco; Abelmoschi, Maria Luisa; Soggia, Francesco; Frache, Roberto
2003-01-01
A study was carried out on the preconcentration of ultratrace amounts of cadmium, lead, manganese, copper and iron from high-salinity aqueous samples and determination by atomic spectrometry methods. Sample volume, amount of resin, loading flow rate, and elution volume were optimized in order to obtain the simultaneous preconcentration of all the analytes. Quantitative recoveries were obtained by using 200 mg of iminodiacetic resin with a loading flow rate of 2 mL min(-1), elution volume of 3 mL and sample volume of 50-450 mL. Only copper in seawater samples was not completely retained by the resin (60-70% recovery), due to unfavorable competition of iminodiacetic-active groups with organically bound metal.To quantify the metals in the eluates, two atomic spectrometry techniques were compared: electrothermal atomization atomic absorption spectrometry (ETAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES) with simultaneous CCD detection system. Both techniques are suitable for sample analysis with detection limits of 1.0, 4.7, 3.3, 6.8, and 53 ng L(-1) using ETAAS and 12, 122, 3.4, 17, and 21 ng L(-1) using ICP-OES for Cd, Pb, Mn, Cu, and Fe, respectively. Relative standard deviations of the procedures ranged from 1.7 to 14% at the sub-microg L(-1) concentration level. The accuracy of both methods was verified by analyzing various certified reference materials (river water, estuarine water, coastal and off-shore seawater).
NASA Astrophysics Data System (ADS)
McMillan, Lindsay A.; Rivett, Michael O.; Wealthall, Gary P.; Zeeb, Peter; Dumble, Peter
2018-03-01
Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation.
Asadi, Mohammad
2018-03-01
A rapid, simple, and green vortex-assisted emulsification microextraction method based on solidification of floating organic drop was developed for the extraction and determination of ochratoxin A (OTA) with high-performance liquid chromatography. Some factors influencing the extraction efficiency of OTA such as the type and volume of extraction solvent, sample pH, salt concentration, vortex time, and sample volume were optimized. Under optimized conditions, the calibration curve exhibited linearity in the range of 50.0-500 ng L -1 with a coefficient of determination higher than 0.999. The limit of detection was 15.0 ng L -1 . The inter- and intra-assays relative standard deviations were in a range of 4.7-8.7%. The accuracy of the developed method was investigated through recovery experiments, and it was successfully used for the quantification of OTA in 40 samples of fruit juice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dill, Eric D.; Folmer, Jacob C.W.; Martin, James D.
A series of simulations was performed to enable interpretation of the material and physical significance of the parameters defined in the Kolmogorov, Johnson and Mehl, and Avrami (KJMA) rate expression commonly used to describe phase boundary controlled reactions of condensed matter. The parameters k, n, and t 0 are shown to be highly correlated, which if unaccounted for seriously challenge mechanistic interpretation. It is demonstrated that rate measurements exhibit an intrinsic uncertainty without precise knowledge of the location and orientation of nucleation with respect to the free volume into which it grows. More significantly, it is demonstrated that the KJMAmore » rate constant k is highly dependent on sample size. However, under the simulated conditions of slow nucleation relative to crystal growth, sample volume and sample anisotropy correction affords a means to eliminate the experimental condition dependence of the KJMA rate constant, k, producing the material-specific parameter, the velocity of the phase boundary, v pb.« less
Multiresolution Distance Volumes for Progressive Surface Compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laney, D E; Bertram, M; Duchaineau, M A
2002-04-18
We present a surface compression method that stores surfaces as wavelet-compressed signed-distance volumes. Our approach enables the representation of surfaces with complex topology and arbitrary numbers of components within a single multiresolution data structure. This data structure elegantly handles topological modification at high compression rates. Our method does not require the costly and sometimes infeasible base mesh construction step required by subdivision surface approaches. We present several improvements over previous attempts at compressing signed-distance functions, including an 0(n) distance transform, a zero set initialization method for triangle meshes, and a specialized thresholding algorithm. We demonstrate the potential of sampled distancemore » volumes for surface compression and progressive reconstruction for complex high genus surfaces.« less
High-field dynamic nuclear polarization in aqueous solutions.
Prandolini, M J; Denysenkov, V P; Gafurov, M; Endeward, B; Prisner, T F
2009-05-06
Unexpected high DNP enhancements of more than 10 have been achieved in liquid water samples at room temperature and magnetic fields of 9.2 T (corresponding to 400 MHz (1)H NMR frequency and 260 GHz EPR frequency). The liquid samples were polarized in situ using a double-resonance structure, which allows simultaneous excitation of NMR and EPR transitions and achieves significant DNP enhancements at very low incident microwave power of only 45 mW. These results demonstrate the first important step toward the application of DNP to high-resolution NMR, increasing the sensitivity on biomolecules with small sample volumes and at physiologically low concentrations.
NASA Astrophysics Data System (ADS)
Hori, Yasuaki; Yasuno, Yoshiaki; Sakai, Shingo; Matsumoto, Masayuki; Sugawara, Tomoko; Madjarova, Violeta; Yamanari, Masahiro; Makita, Shuichi; Yasui, Takeshi; Araki, Tsutomu; Itoh, Masahide; Yatagai, Toyohiko
2006-03-01
A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
Lestremau, François; Wu, Di; Szücs, Roman
2010-07-23
The present study focuses on the evaluation of 1.0 mm i.d. (internal diameter) columns on a commercial Ultra-High Pressure system. These systems have been developed specifically to operate columns with small volumes, typically 2.1 mm i.d., by reducing extra-column volume dispersion. The use of columns with smaller i.d. results in a reduced solvent consumption and required sample volume. The evaluation of the columns was carried out with samples containing neutral and pharmaceutical compounds. In isocratic mode, the extra-column volume produced additional band broadening leading to poor performances compared to equivalent 2.1 mm i.d. columns. By increasing the length of the column, the influence of the extra-column bandspreading could be reduced and 75,000 plates were obtained when four columns were coupled. In gradient mode, the effect of the extra-column contribution on efficiency was limited and about 80% of the performance of the 2.1 mm i.d. columns was obtained. Optimum conditions in gradient mode were further investigated by changing flow rate, gradient time and column length. A different approach of the calculation of peak capacity was also considered for the comparison of the influence of these different parameters. Copyright (c) 2010 Elsevier B.V. All rights reserved.
High performance concentration method for viruses in drinking water.
Kunze, Andreas; Pei, Lu; Elsässer, Dennis; Niessner, Reinhard; Seidel, Michael
2015-09-15
According to the risk assessment of the WHO, highly infectious pathogenic viruses like rotaviruses should not be present in large-volume drinking water samples of up to 90 m(3). On the other hand, quantification methods for viruses are only operable in small volumes, and presently no concentration procedure for processing such large volumes has been reported. Therefore, the aim of this study was to demonstrate a procedure for processing viruses in-line of a drinking water pipeline by ultrafiltration (UF) and consecutive further concentration by monolithic filtration (MF) and centrifugal ultrafiltration (CeUF) of viruses to a final 1-mL sample. For testing this concept, the model virus bacteriophage MS2 was spiked continuously in UF instrumentation. Tap water was processed in volumes between 32.4 m(3) (22 h) and 97.7 m(3) (72 h) continuously either in dead-end (DE) or cross-flow (CF) mode. Best results were found by DE-UF over 22 h. The concentration of MS2 was increased from 4.2×10(4) GU/mL (genomic units per milliliter) to 3.2×10(10) GU/mL and from 71 PFU/mL to 2×10(8) PFU/mL as determined by qRT-PCR and plaque assay, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang
2015-01-01
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification (i.e., no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification (i.e., formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants (i.e., high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume). PMID:26640426
Huang, Haishui; Choi, Jung Kyu; Rao, Wei; Zhao, Shuting; Agarwal, Pranay; Zhao, Gang; He, Xiaoming
2015-11-25
Cryopreservation of stem cells is important to meet their ever-increasing demand by the burgeoning cell-based medicine. The conventional slow freezing for stem cell cryopreservation suffers from inevitable cell injury associated with ice formation and the vitrification ( i.e. , no visible ice formation) approach is emerging as a new strategy for cell cryopreservation. A major challenge to cell vitrification is intracellular ice formation (IIF, a lethal event to cells) induced by devitrification ( i.e. , formation of visible ice in previously vitrified solution) during warming the vitrified cells at cryogenic temperature back to super-zero temperatures. Consequently, high and toxic concentrations of penetrating cryoprotectants ( i.e. , high CPAs, up to ~8 M) and/or limited sample volumes (up to ~2.5 μl) have been used to minimize IIF during vitrification. We reveal that alginate hydrogel microencapsulation can effectively inhibit devitrification during warming. Our data show that if ice formation were minimized during cooling, IIF is negligible in alginate hydrogel-microencapsulated cells during the entire cooling and warming procedure of vitrification. This enables vitrification of pluripotent and multipotent stem cells with up to ~4 times lower concentration of penetrating CPAs (up to 2 M, low CPA) in up to ~100 times larger sample volume (up to ~250 μl, large volume).
NASA Astrophysics Data System (ADS)
Dremov, V. V.; Ionov, G. V.; Sapozhnikov, F. A.; Smirnov, N. A.; Karavaev, A. V.; Vorobyova, M. A.; Ryzhkov, M. V.
2015-09-01
The present work is devoted to classical molecular dynamics investigation into microscopic mechanisms of the bcc-hcp transition in iron. The interatomic potential of EAM type used in the calculations was tested for the capability to reproduce ab initio data on energy evolution along the bcc-hcp transformation path (Burgers deformation + shuffe) and then used in the large-scale MD simulations. The large-scale simulations included constant volume deformation along the Burgers path to study the origin and nature of the plasticity, hydrostatic volume compression of defect free samples above the bcc to hcp transition threshold to observe the formation of new phase embryos, and the volume compression of samples containing screw dislocations to study the effect of the dislocations on the probability of the new phase critical embryo formation. The volume compression demonstrated high level of metastability. The transition starts at pressure much higher than the equilibrium one. Dislocations strongly affect the probability of the critical embryo formation and significantly reduce the onset pressure of transition. The dislocations affect also the resulting structure of the samples upon the transition. The formation of layered structure is typical for the samples containing the dislocations. The results of the simulations were compared with the in-situ experimental data on the mechanism of the bcc-hcp transition in iron.
Lenk, Gabriel; Sandkvist, Sören; Pohanka, Anton; Stemme, Göran; Beck, Olof; Roxhed, Niclas
2015-01-01
DBS samples collected from a fingerprick typically vary in volume and homogeneity and hence make an accurate quantitative analysis of DBS samples difficult. We report a prototype which first defines a precise liquid volume and subsequently stores it to a conventional DBS matrix. Liquid volumes of 2.2 µl ± 7.1% (n = 21) for deionized water and 6.1 µl ± 8.8% (n = 15) for whole blood have been successfully metered and stored in DBS paper. The new method of collecting a defined volume of blood by DBS sampling has the potential to reduce assay bias for the quantitative evaluation of DBS samples while maintaining the simplicity of conventional DBS sampling.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
Code of Federal Regulations, 2012 CFR
2012-01-01
... in Step (c). (6) For an energy or water consumption standard (ECS), compute the upper control limit (UCL2) for the mean of the combined first and second samples using the DOE ECS as the desired mean and a...)(1). (7) For an energy or water consumption standard (ECS), compare the combined sample mean (x2) to...
EVALUATION OF VAPOR EQUILIBRATION AND IMPACT OF PURGE VOLUME ON SOIL-GAS SAMPLING RESULTS
Sequential sampling was utilized at the Raymark Superfund site to evaluate attainment of vapor equilibration and the impact of purge volume on soil-gas sample results. A simple mass-balance equation indicates that removal of three to five internal volumes of a sample system shou...
Color and Vector Flow Imaging in Parallel Ultrasound With Sub-Nyquist Sampling.
Madiena, Craig; Faurie, Julia; Poree, Jonathan; Garcia, Damien; Garcia, Damien; Madiena, Craig; Faurie, Julia; Poree, Jonathan
2018-05-01
RF acquisition with a high-performance multichannel ultrasound system generates massive data sets in short periods of time, especially in "ultrafast" ultrasound when digital receive beamforming is required. Sampling at a rate four times the carrier frequency is the standard procedure since this rule complies with the Nyquist-Shannon sampling theorem and simplifies quadrature sampling. Bandpass sampling (or undersampling) outputs a bandpass signal at a rate lower than the maximal frequency without harmful aliasing. Advantages over Nyquist sampling are reduced storage volumes and data workflow, and simplified digital signal processing tasks. We used RF undersampling in color flow imaging (CFI) and vector flow imaging (VFI) to decrease data volume significantly (factor of 3 to 13 in our configurations). CFI and VFI with Nyquist and sub-Nyquist samplings were compared in vitro and in vivo. The estimate errors due to undersampling were small or marginal, which illustrates that Doppler and vector Doppler images can be correctly computed with a drastically reduced amount of RF samples. Undersampling can be a method of choice in CFI and VFI to avoid information overload and reduce data transfer and storage.
High-Field Liquid-State Dynamic Nuclear Polarization in Microliter Samples.
Yoon, Dongyoung; Dimitriadis, Alexandros I; Soundararajan, Murari; Caspers, Christian; Genoud, Jeremy; Alberti, Stefano; de Rijk, Emile; Ansermet, Jean-Philippe
2018-05-01
Nuclear hyperpolarization in the liquid state by dynamic nuclear polarization (DNP) has been of great interest because of its potential use in NMR spectroscopy of small samples of biological and chemical compounds in aqueous media. Liquid state DNP generally requires microwave resonators in order to generate an alternating magnetic field strong enough to saturate electron spins in the solution. As a consequence, the sample size is limited to dimensions of the order of the wavelength, and this restricts the sample volume to less than 100 nL for DNP at 9 T (∼260 GHz). We show here a new approach that overcomes this sample size limitation. Large saturation of electron spins was obtained with a high-power (∼150 W) gyrotron without microwave resonators. Since high power microwaves can cause serious dielectric heating in polar solutions, we designed a planar probe which effectively alleviates dielectric heating. A thin liquid sample of 100 μm of thickness is placed on a block of high thermal conductivity aluminum nitride, with a gold coating that serves both as a ground plane and as a heat sink. A meander or a coil were used for NMR. We performed 1 H DNP at 9.2 T (∼260 GHz) and at room temperature with 10 μL of water, a volume that is more than 100× larger than reported so far. The 1 H NMR signal is enhanced by a factor of about -10 with 70 W of microwave power. We also demonstrated the liquid state of 31 P DNP in fluorobenzene containing triphenylphosphine and obtained an enhancement of ∼200.
Kawai, Takayuki; Watanabe, Masato; Sueyoshi, Kenji; Kitagawa, Fumihiko; Otsuka, Koji
2012-04-06
To obtain high sensitivity in capillary electrophoresis of oligosaccharide without reducing the high resolution with an easy experimental procedure, large-volume sample stacking with an electroosmotic flow pump (LVSEP) was investigated. As a fundamental study, effect of the conductivity of a sample solution in LVSEP was examined. It was revealed that LVSEP was successfully carried out even in using a sample solution with the ionic strength of 150 μM and the conductivity ratio of 20, indicating a good applicability of LVSEP to the analysis of real samples containing salts. When glucose oligomer was analyzed as a model sample in LVSEP-capillary zone electrophoresis (CZE), all peaks were well resolved with decreasing only 5% of the peak-to-peak distance, which suggested 95% of the whole capillary could be used for the effective separation. In the analysis of maltoheptaose, a good calibration line with correlation coefficient of 0.9995 was obtained. The limit of detection was estimated as 2 pM, which was 500-fold lower than that in the conventional CZE. N-linked glycans released from three glycoproteins, bovine ribonuclease B, bovine fetuin, and human α(1)-acid glycoprotein were also analyzed by LVSEP-CZE. By the sample purification with a gel filtration column, further sample dilution to reduce the sample conductivity for LVSEP was not needed. All glycan samples were well concentrated and separated with up to a 770-fold sensitivity increase. The run-to-run repeatabilities of the migration time, peak height, and peak area were good with relative standard deviations of 0.1-1.3%, 1.2-1.7%, and 2.8-4.9%, respectively. Copyright © 2011 Elsevier B.V. All rights reserved.
Corstjens, Paul L A M; Nyakundi, Ruth K; de Dood, Claudia J; Kariuki, Thomas M; Ochola, Elizabeth A; Karanja, Diana M S; Mwinzi, Pauline N M; van Dam, Govert J
2015-04-22
Accurate determination of Schistosoma infection rates in low endemic regions to examine progress towards interruption of transmission and elimination requires highly sensitive diagnostic tools. An existing lateral flow (LF) based test demonstrating ongoing infections through detection of worm circulating anodic antigen (CAA), was improved for sensitivity through implementation of a protocol allowing increased sample input. Urine is the preferred sample as collection is non-invasive and sample volume is generally not a restriction. Centrifugal filtration devices provided a method to concentrate supernatant of urine samples extracted with trichloroacetic acid (TCA). For field trials a practical sample volume of 2 mL urine allowed detection of CAA down to 0.3 pg/mL. The method was evaluated on a set of urine samples (n = 113) from an S. mansoni endemic region (Kisumu, Kenya) and compared to stool microscopy (Kato Katz, KK). In this analysis true positivity was defined as a sample with either a positive KK or UCAA test. Implementation of the concentration method increased clinical sensitivity (Sn) from 44 to 98% when moving from the standard 10 μL (UCAA10 assay) to 2000 μL (UCAA2000 assay) urine sample input. Sn for KK varied between 23 and 35% for a duplicate KK (single stool, two slides) to 52% for a six-fold KK (three consecutive day stools, two slides). The UCAA2000 assay indicated 47 positive samples with CAA concentration above 0.3 pg/mL. The six-fold KK detected 25 egg positives; 1 sample with 2 eggs detected in the 6-fold KK was not identified with the UCAA2000 assay. Larger sample input increased Sn of the UCAA assay to a level indicating 'true' infection. Only a single 2 mL urine sample is needed, but analysing larger sample volumes could still increase test accuracy. The UCAA2000 test is an appropriate candidate for accurate identification of all infected individuals in low-endemic regions. Assay materials do not require refrigeration and collected urine samples may be stored and transported to central test laboratories without the need to be frozen.
Floyd A. Johnson
1961-01-01
This report assumes a knowledge of the principles of point sampling as described by Grosenbaugh, Bell and Alexander, and others. Whenever trees are counted at every point in a sample of points (large sample) and measured for volume at a portion (small sample) of these points, the sampling design could be called ratio double sampling. If the large...
Kim, Jae-Hyun; Park, Eun-Cheol; Lee, Sang Gyu; Lee, Tae-Hyun; Jang, Sung-In
2016-03-01
We examined whether the level of hospital-based healthcare technology was related to the 30-day postoperative mortality rates, after adjusting for hospital volume, of ischemic stroke patients who underwent a cerebrovascular surgical procedure. Using the National Health Insurance Service-Cohort Sample Database, we reviewed records from 2002 to 2013 for data on patients with ischemic stroke who underwent cerebrovascular surgical procedures. Statistical analysis was performed using Cox proportional hazard models to test our hypothesis. A total of 798 subjects were included in our study. After adjusting for hospital volume of cerebrovascular surgical procedures as well as all for other potential confounders, the hazard ratio (HR) of 30-day mortality in low healthcare technology hospitals as compared to high healthcare technology hospitals was 2.583 (P < 0.001). We also found that, although the HR of 30-day mortality in low healthcare technology hospitals with high volume as compared to high healthcare technology hospitals with high volume was the highest (10.014, P < 0.0001), cerebrovascular surgical procedure patients treated in low healthcare technology hospitals had the highest 30-day mortality rate, irrespective of hospital volume. Although results of our study provide scientific evidence for a hospital volume/30-day mortality rate relationship in ischemic stroke patients who underwent cerebrovascular surgical procedures, our results also suggest that the level of hospital-based healthcare technology is associated with mortality rates independent of hospital volume. Given these results, further research into what components of hospital-based healthcare technology significantly impact mortality is warranted.
Fiber sample presentation system for spectrophotometer cotton fiber color measurements
USDA-ARS?s Scientific Manuscript database
The Uster® High Volume Instrument (HVI) is used to class U.S. cotton for fiber color, yielding the industry accepted, cotton-specific color parameters Rd and +b. The HVI examines a 9 square inch fiber sample, and it is also used to test large AMS standard cotton “biscuits” or rectangles. Much inte...
Pseudolinear gradient ultrahigh-pressure liquid chromatography using an injection valve assembly.
Xiang, Yanqiao; Liu, Yansheng; Stearns, Stanley D; Plistil, Alex; Brisbin, Martin P; Lee, Milton L
2006-02-01
The use of ultrahigh pressures in liquid chromatography (UHPLC) imposes stringent requirements on hardware such as pumps, valves, injectors, connecting tubing, and columns. One of the most difficult components of the UHPLC system to develop has been the sample injector. Static-split injection, which can be performed at pressures up to 6900 bar (100,000 psi), consumes a large sample volume and is very irreproducible. A pressure-balanced injection valve provided better reproducibility, shorter injection time, reduced sample consumption, and greater ease of use; however, it could only withstand pressures up to approximately 1000 bar (15,000 psi). In this study, a new injection valve assembly that can operate at pressures as high as 2070 bar (30,000 psi) was evaluated for UHPLC. This assembly contains six miniature electronically controlled needle valves to provide accurate and precise volumes for introduction into the capillary LC column. It was found that sample volumes as small as several tenths of a nanoliter can be injected, which are comparable to the results obtained from the static-split injector. The reproducibilities of retention time, efficiency, and peak area were investigated, and the results showed that the relative standard deviations of these parameters were small enough for quantitative analyses. Separation experiments using the UHPLC system with this new injection valve assembly showed that this new injector is suitable for both isocratic and gradient operation modes. A newly designed capillary connector was used at a pressure as high as 2070 bar (30,000 psi).
Evaluation of the HISCL Anti-Treponema pallidum Assay as a Screening Test for Syphilis
An, Jingna; Chen, Qixia; Liu, Qianqian; Rao, Chenli; Li, Dongdong; Wang, Tingting
2015-01-01
The resurgence of syphilis in recent years has become a serious threat to public health worldwide, and the serological detection of specific antibodies against Treponema pallidum remains the most reliable method for laboratory diagnosis of syphilis. This study examined the performance of the recently launched HISCL anti-Treponema pallidum (anti-TP) assay as a screening test for syphilis in a high-volume laboratory. The HISCL anti-TP assay was tested in 300 preselected syphilis-positive samples, 704 fresh syphilis-negative samples, 48 preselected potentially interfering samples, and 30 “borderline” samples and was compared head to head with the commercially available Lumipulse G TP-N. In this study, the HISCL anti-TP assay was in perfect agreement with the applied testing algorithms with an overall agreement of 100%, comparable to that of Lumipulse G TP-N (99.63%). The sensitivity and specificity of the HISCL anti-TP assay were 100% (95% confidence interval [CI], 98.42% to 100%) and 100% (95% CI, 99.37% to 100%), respectively. Considering the excellent ease of use and automation, high throughput, and its favorable sensitivity and specificity, the HISCL anti-TP assay may represent a new choice for syphilis screening in high-volume laboratories. PMID:25972403
Evaluation of the HISCL Anti-Treponema pallidum Assay as a Screening Test for Syphilis.
An, Jingna; Chen, Qixia; Liu, Qianqian; Rao, Chenli; Li, Dongdong; Wang, Tingting; Tao, Chuanmin; Wang, Lanlan
2015-07-01
The resurgence of syphilis in recent years has become a serious threat to public health worldwide, and the serological detection of specific antibodies against Treponema pallidum remains the most reliable method for laboratory diagnosis of syphilis. This study examined the performance of the recently launched HISCL anti-Treponema pallidum (anti-TP) assay as a screening test for syphilis in a high-volume laboratory. The HISCL anti-TP assay was tested in 300 preselected syphilis-positive samples, 704 fresh syphilis-negative samples, 48 preselected potentially interfering samples, and 30 "borderline" samples and was compared head to head with the commercially available Lumipulse G TP-N. In this study, the HISCL anti-TP assay was in perfect agreement with the applied testing algorithms with an overall agreement of 100%, comparable to that of Lumipulse G TP-N (99.63%). The sensitivity and specificity of the HISCL anti-TP assay were 100% (95% confidence interval [CI], 98.42% to 100%) and 100% (95% CI, 99.37% to 100%), respectively. Considering the excellent ease of use and automation, high throughput, and its favorable sensitivity and specificity, the HISCL anti-TP assay may represent a new choice for syphilis screening in high-volume laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Rodil, Rosario; Schellin, Manuela; Popp, Peter
2007-09-07
Membrane-assisted solvent extraction (MASE) in combination with large volume injection-gas chromatography-mass spectrometry (LVI-GC-MS) was applied for the determination of 16 polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The MASE conditions were optimized for achieving high enrichment of the analytes from aqueous samples, in terms of extraction conditions (shaking speed, extraction temperature and time), extraction solvent and composition (ionic strength, sample pH and presence of organic solvent). Parameters like linearity and reproducibility of the procedure were determined. The extraction efficiency was above 65% for all the analytes and the relative standard deviation (RSD) for five consecutive extractions ranged from 6 to 18%. At optimized conditions detection limits at the ng/L level were achieved. The effectiveness of the method was tested by analyzing real samples, such as river water, apple juice, red wine and milk.
Methods to enhance seismic faults and construct fault surfaces
NASA Astrophysics Data System (ADS)
Wu, Xinming; Zhu, Zhihui
2017-10-01
Faults are often apparent as reflector discontinuities in a seismic volume. Numerous types of fault attributes have been proposed to highlight fault positions from a seismic volume by measuring reflection discontinuities. These attribute volumes, however, can be sensitive to noise and stratigraphic features that are also apparent as discontinuities in a seismic volume. We propose a matched filtering method to enhance a precomputed fault attribute volume, and simultaneously estimate fault strikes and dips. In this method, a set of efficient 2D exponential filters, oriented by all possible combinations of strike and dip angles, are applied to the input attribute volume to find the maximum filtering responses at all samples in the volume. These maximum filtering responses are recorded to obtain the enhanced fault attribute volume while the corresponding strike and dip angles, that yield the maximum filtering responses, are recoded to obtain volumes of fault strikes and dips. By doing this, we assume that a fault surface is locally planar, and a 2D smoothing filter will yield a maximum response if the smoothing plane coincides with a local fault plane. With the enhanced fault attribute volume and the estimated fault strike and dip volumes, we then compute oriented fault samples on the ridges of the enhanced fault attribute volume, and each sample is oriented by the estimated fault strike and dip. Fault surfaces can be constructed by directly linking the oriented fault samples with consistent fault strikes and dips. For complicated cases with missing fault samples and noisy samples, we further propose to use a perceptual grouping method to infer fault surfaces that reasonably fit the positions and orientations of the fault samples. We apply these methods to 3D synthetic and real examples and successfully extract multiple intersecting fault surfaces and complete fault surfaces without holes.
Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach
NASA Astrophysics Data System (ADS)
Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre
In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, Charles C.; Taylor, Larry T.
1986-01-01
A zero dead volume (ZDV) microbore high performance liquid chromatography (.mu.HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a .mu.HPLC column end fitting to minimize the transfer volume of the effluents exiting the .mu.HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF.sub.2), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T
2004-01-01
Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).
Liquid chromatography/Fourier transform IR spectrometry interface flow cell
Johnson, C.C.; Taylor, L.T.
1985-01-04
A zero dead volume (ZDV) microbore high performance liquid chromatography (..mu.. HPLC)/Fourier transform infrared (FTIR) interface flow cell includes an IR transparent crystal having a small diameter bore therein through which a sample liquid is passed. The interface flow cell further includes a metal holder in combination with a pair of inner, compressible seals for directly coupling the thus configured spectrometric flow cell to the outlet of a ..mu.. HPLC column end fitting to minimize the transfer volume of the effluents exiting the ..mu.. HPLC column which exhibit excellent flow characteristics due to the essentially unencumbered, open-flow design. The IR beam passes transverse to the sample flow through the circular bore within the IR transparent crystal, which is preferably comprised of potassium bromide (KBr) or calcium fluoride (CaF/sub 2/), so as to minimize interference patterns and vignetting encountered in conventional parallel-plate IR cells. The long IR beam pathlength and lensing effect of the circular cross-section of the sample volume in combination with the refractive index differences between the solvent and the transparent crystal serve to focus the IR beam in enhancing sample detection sensitivity by an order of magnitude.
NASA Astrophysics Data System (ADS)
Harvey, J.; Fisher, J. L.; Johnson, S.; Morgan, S.; Peterson, W. T.; Satterthwaite, E. V.; Vrijenhoek, R. C.
2016-02-01
Our ability to accurately characterize the diversity of planktonic organisms is affected by both the methods we use to collect water samples and our approaches to assessing sample contents. Plankton nets collect organisms from high volumes of water, but integrate sample contents along the net's path. In contrast, plankton pumps collect water from discrete depths. Autonomous underwater vehicles (AUVs) can collect water samples with pinpoint accuracy from physical features such as upwelling fronts or biological features such as phytoplankton blooms, but sample volumes are necessarily much smaller than those possible with nets. Characterization of plankton diversity and abundances in water samples may also vary with the assessment method we apply. Morphological taxonomy provides visual identification and enumeration of organisms via microscopy, but is labor intensive. Next generation DNA sequencing (NGS) shows great promise for assessing plankton diversity in water samples but accurate assessment of relative abundances may not be possible in all cases. Comparison of morphological taxonomy to molecular approaches is necessary to identify areas of overlap and also areas of disagreement between these methods. We have compared morphological taxonomic assessments to mitochondrial COI and nuclear 28S ribosomal RNA NGS results for plankton net samples collected in Monterey bay, California. We have made a similar comparison for plankton pump samples, and have also applied our NGS methods to targeted, small volume water samples collected by an AUV. Our goal is to communicate current results and lessons learned regarding application of traditional taxonomy and novel molecular approaches to the study of plankton diversity in spatially and temporally variable, coastal marine environments.
NASA Astrophysics Data System (ADS)
Davis, A. D.; Heimbach, P.; Marzouk, Y.
2017-12-01
We develop a Bayesian inverse modeling framework for predicting future ice sheet volume with associated formal uncertainty estimates. Marine ice sheets are drained by fast-flowing ice streams, which we simulate using a flowline model. Flowline models depend on geometric parameters (e.g., basal topography), parameterized physical processes (e.g., calving laws and basal sliding), and climate parameters (e.g., surface mass balance), most of which are unknown or uncertain. Given observations of ice surface velocity and thickness, we define a Bayesian posterior distribution over static parameters, such as basal topography. We also define a parameterized distribution over variable parameters, such as future surface mass balance, which we assume are not informed by the data. Hyperparameters are used to represent climate change scenarios, and sampling their distributions mimics internal variation. For example, a warming climate corresponds to increasing mean surface mass balance but an individual sample may have periods of increasing or decreasing surface mass balance. We characterize the predictive distribution of ice volume by evaluating the flowline model given samples from the posterior distribution and the distribution over variable parameters. Finally, we determine the effect of climate change on future ice sheet volume by investigating how changing the hyperparameters affects the predictive distribution. We use state-of-the-art Bayesian computation to address computational feasibility. Characterizing the posterior distribution (using Markov chain Monte Carlo), sampling the full range of variable parameters and evaluating the predictive model is prohibitively expensive. Furthermore, the required resolution of the inferred basal topography may be very high, which is often challenging for sampling methods. Instead, we leverage regularity in the predictive distribution to build a computationally cheaper surrogate over the low dimensional quantity of interest (future ice sheet volume). Continual surrogate refinement guarantees asymptotic sampling from the predictive distribution. Directly characterizing the predictive distribution in this way allows us to assess the ice sheet's sensitivity to climate variability and change.
Investigations in Producing Porous NiAl by Combustion Synthesis
NASA Astrophysics Data System (ADS)
Zhong, Songming
In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.
Robert C. Parker; Patrick A. Glass
2004-01-01
LiDAR data (0.5 and 1 m postings) were used in a double-sample forest inventory on the Lee Experimental Forest, Louisiana. Phase 2 plots were established with DGPS. Tree d.b.h. (> 4.5 inches) and two sample heights were measured on every 10 th plot of the Phase 1 sample. Volume was computed for natural and planted pine and mixed hardwood species. LiDAR trees were...
Evaluation of Sampling Methods for Bacillus Spore ...
Journal Article Following a wide area release of biological materials, mapping the extent of contamination is essential for orderly response and decontamination operations. HVAC filters process large volumes of air and therefore collect highly representative particulate samples in buildings. HVAC filter extraction may have great utility in rapidly estimating the extent of building contamination following a large-scale incident. However, until now, no studies have been conducted comparing the two most appropriate sampling approaches for HVAC filter materials: direct extraction and vacuum-based sampling.
Mucci, Veronica; Arenas, Gustavo; Duchowicz, Ricardo; Cook, Wayne D; Vallo, Claudia
2009-01-01
The aim of this study was to assess volume changes that occur during photopolymerization of unfilled dental resins based on bis-GMA-TEGDMA. The resins were activated for visible light polymerization by the addition of camphorquinone (CQ) in combination with dimethylamino ethylmethacrylate (DMAEMA) or ethyl-4-dimethyl aminobenzoate (EDMAB). A fibre-optic sensing method based on a Fizeau-type interferometric scheme was employed for monitoring contraction during photopolymerization. Measurements were carried out on 10mm diameter specimens of different thicknesses (1 and 2mm). The high exothermic nature of the polymerization resulted in volume expansion during the heating, and this effect was more pronounced when the sample thickness increased. Two approaches to assess volume changes due to thermal effects are presented. Due to the difference in thermal expansion coefficients between the rubbery and glassy resins, the increase of volume due to thermal expansion was greater than the decrease in volume due to thermal contraction. As a result, the volume of the vitrified resins was greater than that calculated from polymerization contraction. The observed trends of shrinkage versus sample thickness are explained in terms of light attenuation across the path length during photopolymerization. Results obtained in this research highlight the inherent interlinking of non-isothermal photopolymerization and volumetric changes in bulk polymerizing systems.
Integrated crystal mounting and alignment system for high-throughput biological crystallography
Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William F.; Yegian, Derek T.; Earnest, Thomas N.; Jaklevich, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.
2007-09-25
A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.
Integrated crystal mounting and alignment system for high-throughput biological crystallography
Nordmeyer, Robert A.; Snell, Gyorgy P.; Cornell, Earl W.; Kolbe, William; Yegian, Derek; Earnest, Thomas N.; Jaklevic, Joseph M.; Cork, Carl W.; Santarsiero, Bernard D.; Stevens, Raymond C.
2005-07-19
A method and apparatus for the transportation, remote and unattended mounting, and visual alignment and monitoring of protein crystals for synchrotron generated x-ray diffraction analysis. The protein samples are maintained at liquid nitrogen temperatures at all times: during shipment, before mounting, mounting, alignment, data acquisition and following removal. The samples must additionally be stably aligned to within a few microns at a point in space. The ability to accurately perform these tasks remotely and automatically leads to a significant increase in sample throughput and reliability for high-volume protein characterization efforts. Since the protein samples are placed in a shipping-compatible layered stack of sample cassettes each holding many samples, a large number of samples can be shipped in a single cryogenic shipping container.
Lee, Hangyeore; Mun, Dong-Gi; Bae, Jingi; Kim, Hokeun; Oh, Se Yeon; Park, Young Soo; Lee, Jae-Hyuk; Lee, Sang-Won
2015-08-21
We report a new and simple design of a fully automated dual-online ultra-high pressure liquid chromatography system. The system employs only two nano-volume switching valves (a two-position four port valve and a two-position ten port valve) that direct solvent flows from two binary nano-pumps for parallel operation of two analytical columns and two solid phase extraction (SPE) columns. Despite the simple design, the sDO-UHPLC offers many advantageous features that include high duty cycle, back flushing sample injection for fast and narrow zone sample injection, online desalting, high separation resolution and high intra/inter-column reproducibility. This system was applied to analyze proteome samples not only in high throughput deep proteome profiling experiments but also in high throughput MRM experiments.
A low-volume cavity ring-down spectrometer for sample-limited applications
NASA Astrophysics Data System (ADS)
Stowasser, C.; Farinas, A. D.; Ware, J.; Wistisen, D. W.; Rella, C.; Wahl, E.; Crosson, E.; Blunier, T.
2014-08-01
In atmospheric and environmental sciences, optical spectrometers are used for the measurements of greenhouse gas mole fractions and the isotopic composition of water vapor or greenhouse gases. The large sample cell volumes (tens of milliliters to several liters) in commercially available spectrometers constrain the usefulness of such instruments for applications that are limited in sample size and/or need to track fast variations in the sample stream. In an effort to make spectrometers more suitable for sample-limited applications, we developed a low-volume analyzer capable of measuring mole fractions of methane and carbon monoxide based on a commercial cavity ring-down spectrometer. The instrument has a small sample cell (9.6 ml) and can selectively be operated at a sample cell pressure of 140, 45, or 20 Torr (effective internal volume of 1.8, 0.57, and 0.25 ml). We present the new sample cell design and the flow path configuration, which are optimized for small sample sizes. To quantify the spectrometer's usefulness for sample-limited applications, we determine the renewal rate of sample molecules within the low-volume spectrometer. Furthermore, we show that the performance of the low-volume spectrometer matches the performance of the standard commercial analyzers by investigating linearity, precision, and instrumental drift.
Characterization of two passive air samplers for per- and polyfluoroalkyl substances.
Ahrens, Lutz; Harner, Tom; Shoeib, Mahiba; Koblizkova, Martina; Reiner, Eric J
2013-12-17
Two passive air sampler (PAS) media were characterized under field conditions for the measurement of per- and polyfluoroalkyl substances (PFASs) in the atmosphere. The PASs, consisting of polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) disks, were deployed for over one year in parallel with high volume active air samplers (HV-AAS) and low volume active air samplers (LV-AAS). Samples were analyzed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-A) were calculated for individual PFASs. Sampling rates were similar for PFASs present in the gas phase and particle phase, and the linear sampling rate of 4 m(-3) d(-1) is recommended for calculating effective air sample volumes in the SIP-PAS and PUF-PAS for PFASs except for the FOSAs and FOSEs in the PUF-PAS. SIP disks showed very good performance for all tested PFASs while PUF disks were suitable only for the PFSAs and their precursors. Experiments evaluating the suitability of different isotopically labeled fluorinated depuration compounds (DCs) revealed that (13)C8-perfluorooctanoic acid (PFOA) was suitable for the calculation of site-specific sampling rates. Ambient temperature was the dominant factor influencing the seasonal trend of PFASs.
Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian
2016-01-05
Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.
Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.; Agrawal, Nitin; Tang, Keqi; Smith, Richard D.
2011-01-01
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersection geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, little sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed. PMID:21520147
Matityahu, Shlomi; Emuna, Moran; Yahel, Eyal; Makov, Guy; Greenberg, Yaron
2015-04-01
We present a novel experimental design for high sensitivity measurements of the electrical resistance of samples at high pressures (0-6 GPa) and high temperatures (300-1000 K) in a "Paris-Edinburgh" type large volume press. Uniquely, the electrical measurements are carried out directly on a small sample, thus greatly increasing the sensitivity of the measurement. The sensitivity to even minor changes in electrical resistance can be used to clearly identify phase transitions in material samples. Electrical resistance measurements are relatively simple and rapid to execute and the efficacy of the present experimental design is demonstrated by measuring the electrical resistance of Pb, Sn, and Bi across a wide domain of temperature-pressure phase space and employing it to identify the loci of phase transitions. Based on these results, the phase diagrams of these elements are reconstructed to high accuracy and found to be in excellent agreement with previous studies. In particular, by mapping the locations of several well-studied reference points in the phase diagram of Sn and Bi, it is demonstrated that a standard calibration exists for the temperature and pressure, thus eliminating the need for direct or indirect temperature and pressure measurements. The present technique will allow simple and accurate mapping of phase diagrams under extreme conditions and may be of particular importance in advancing studies of liquid state anomalies.
Low-Dead-Volume Inlet for Vacuum Chamber
NASA Technical Reports Server (NTRS)
Naylor, Guy; Arkin, C.
2010-01-01
Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead -volume. As a result, a high -vacuum gas inlet was developed with low dead -volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.
Low-Dead-Volume Inlet for Vacuum Chamber
NASA Technical Reports Server (NTRS)
Naylor, Guy; Arkin, C.
2011-01-01
Gas introduction from near-ambient pressures to high vacuum traditionally is accomplished either by multi-stage differential pumping that allows for very rapid response, or by a capillary method that allows for a simple, single-stage introduction, but which often has a delayed response. Another means to introduce the gas sample is to use the multi-stage design with only a single stage. This is accomplished by using a very small conductance limit. The problem with this method is that a small conductance limit will amplify issues associated with dead-volume. As a result, a high-vacuum gas inlet was developed with low dead-volume, allowing the use of a very low conductance limit interface. Gas flows through the ConFlat flange at a relatively high flow rate at orders of magnitude greater than through the conductance limit. The small flow goes through a conductance limit that is a double-sided ConFlat.
ERIC Educational Resources Information Center
Crain, Robert L., Ed.
This evaluation sampled 150 pairs of schools (50 pairs of high schools and 100 pairs of elementary schools) eligible for ESAP funds, randomly designating one school from each pair as a control school to receive no ESAP funds and using a flip of the coin to so designate. The first volume of the report comprises four chapters and seven appendices.…
Free-volume characteristics of epoxies
NASA Technical Reports Server (NTRS)
Singh, Jag J.; Eftekhari, Abe; Shultz, William J.; St.clair, Terry L.
1992-01-01
Positron annihilation spectroscopy was used to measure free-volume characteristics of selected epoxies. Fluorene resins, a new family of high-temperature thermosetting resins, were selected as the test medium. Experimental results indicate that the free-volume cell size V sub f varies with the molecular weight between the cross-links M sub c according to an equation of the form V sub f = AM sub c sup B, where A and B are structural constants. In two of the samples, the concentration of bulky fluorene groups was increased in the network backbone by replacement of some of the conventional bisphenol A epoxy resin with fluorene-derived epoxy resin. This resulted in an increase in their glass transition temperature for a given level of cross-linking. It was found that in these samples, the Doppler broadening of the annihilation peak decreases with the increasing fluorene content, presumably due to enhanced damping of the chain motions.
Wang, Po-Yen; Wu, Jing-Yi; Chen, Hung-Jhen; Lin, Tzung-Yi; Wu, Chien-Hou
2008-04-25
It has always been assumed that purge-and-trap (P&T) method is only used for the analysis of volatile organic compounds (VOCs) in aqueous samples. In this paper, a novel P&T preconcentrator has been developed for the determination of trace amounts of ammonium ion in high-salinity water samples by ion chromatography (IC). Method performance is evaluated as a function of concentration of assistant purging material, purging time, and flow rate. Under the optimum P&T conditions with the purified nitrogen gas at flow rate 40 mL/min for 15.0 min at 40 degrees C, the overall collection efficiency is independent of the concentration of ammonium over the range 1.2-5.9 microM. The enrichment factor (EF) of ammonium correlates the ratio of the sample volume to the acceptor solution volume in the trap vessel, providing potentially unlimited increase of the ammonium signal. Our results indicate that environmental samples with low levels of ammonium in matrices with high concentrations of sodium can be easily analyzed and the detection limit down to 75 nM (1.35 ppb) level, corresponding to picomole of ammonia in the injected sample. Calibration graph was constructed with ammonium standards ranging from 0.05 to 6.0 microM and the linearity of the present method was good as suggested by the square of correlation coefficients being better than 0.997. Thus, we have demonstrated that the P&T-IC method allows the routine determination of ammonium ion in seawater samples without cation interferences.
1985-03-01
comparison of samples would be difficult. (5) A restrictive random sample allows the sample to be irregularly spaced throughout the auxiliary variable space ...looking or downward-looking probes and the very low background radiation from space contribute to high signal-to-noise ratio and allow the...sunshine and earthshine, chemiluminescent processes, and radiation to space , in addition to collisional processes, determine the vibrational
NASA Technical Reports Server (NTRS)
Devismes, D.; Cohen, Barbara A.
2014-01-01
In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example, variable vacuum pressure), and c) the ablation is made with hundreds of successive laser pulses. In this work, we aim to understand the effects that occur on LIBS spectra when a homogeneous rock or a mineral is ablated under high vacuum. Understanding these effects is important to define best practices for LIBS measurements and may lead to improved measurement (or possibly prediction) of the ablated volume. We will describe our laboratory approach and first results, and discuss its utility for situ absolute geochronology campaigns.
Schimpf, Karen J.; Meek, Claudia C.; Leff, Richard D.; Phelps, Dale L.; Schmitz, Daniel J.; Cordle, Christopher T.
2015-01-01
Inositol is a six-carbon sugar alcohol and is one of nine biologically significant isomers of hexahydroxycyclohexane. Myo-inositol is the primary biologically active form and is present in higher concentrations in the fetus and newborn than in adults. It is currently being examined for the prevention of retinopathy of prematurity in newborn preterm infants. A robust method for quantifying myo-inositol (MI), D-chiro-inositol (DCI) and 1,5-anhydro-D-sorbitol (ADS) in very small-volume (25 μL) urine, blood serum and/or plasma samples was developed. Using a multiple-column, multiple mobile phase liquid chromatographic system with electrochemical detection, the method was validated with respect to (a) selectivity, (b) accuracy/recovery, (c) precision/reproducibility, (d) sensitivity, (e) stability and (f) ruggedness. The standard curve was linear and ranged from 0.5 to 30 mg/L for each of the three analytes. Above-mentioned performance measures were within acceptable limits described in the Food and Drug Administration’s Guidance for Industry: Bioanalytical Method Validation. The method was validated using blood serum and plasma collected using four common anticoagulants, and also by quantifying the accuracy and sensitivity of MI measured in simulated urine samples recovered from preterm infant diaper systems. The method performs satisfactorily measuring the three most common inositol isomers on 25 μL clinical samples of serum, plasma milk, and/or urine. Similar performance is seen testing larger volume samples of infant formulas and infant formula ingredients. MI, ADS and DCI may be accurately tested in urine samples collected from five different preterm infant diapers if the urine volume is greater than 2–5 mL. PMID:26010453
Cortez, Juliana; Pasquini, Celio
2013-02-05
The ring-oven technique, originally applied for classical qualitative analysis in the years 1950s to 1970s, is revisited to be used in a simple though highly efficient and green procedure for analyte preconcentration prior to its determination by the microanalytical techniques presently available. The proposed preconcentration technique is based on the dropwise delivery of a small volume of sample to a filter paper substrate, assisted by a flow-injection-like system. The filter paper is maintained in a small circular heated oven (the ring oven). Drops of the sample solution diffuse by capillarity from the center to a circular area of the paper substrate. After the total sample volume has been delivered, a ring with a sharp (c.a. 350 μm) circular contour, of about 2.0 cm diameter, is formed on the paper to contain most of the analytes originally present in the sample volume. Preconcentration coefficients of the analyte can reach 250-fold (on a m/m basis) for a sample volume as small as 600 μL. The proposed system and procedure have been evaluated to concentrate Na, Fe, and Cu in fuel ethanol, followed by simultaneous direct determination of these species in the ring contour, employing the microanalytical technique of laser induced breakdown spectroscopy (LIBS). Detection limits of 0.7, 0.4, and 0.3 μg mL(-1) and mean recoveries of (109 ± 13)%, (92 ± 18)%, and (98 ± 12)%, for Na, Fe, and Cu, respectively, were obtained in fuel ethanol. It is possible to anticipate the application of the technique, coupled to modern microanalytical and multianalyte techniques, to several analytical problems requiring analyte preconcentration and/or sample stabilization.
Optimization of Evans blue quantitation in limited rat tissue samples
Wang, Hwai-Lee; Lai, Ted Weita
2014-01-01
Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting. PMID:25300427
Optimization of Evans blue quantitation in limited rat tissue samples
NASA Astrophysics Data System (ADS)
Wang, Hwai-Lee; Lai, Ted Weita
2014-10-01
Evans blue dye (EBD) is an inert tracer that measures plasma volume in human subjects and vascular permeability in animal models. Quantitation of EBD can be difficult when dye concentration in the sample is limited, such as when extravasated dye is measured in the blood-brain barrier (BBB) intact brain. The procedure described here used a very small volume (30 µl) per sample replicate, which enabled high-throughput measurements of the EBD concentration based on a standard 96-well plate reader. First, ethanol ensured a consistent optic path length in each well and substantially enhanced the sensitivity of EBD fluorescence spectroscopy. Second, trichloroacetic acid (TCA) removed false-positive EBD measurements as a result of biological solutes and partially extracted EBD into the supernatant. Moreover, a 1:2 volume ratio of 50% TCA ([TCA final] = 33.3%) optimally extracted EBD from the rat plasma protein-EBD complex in vitro and in vivo, and 1:2 and 1:3 weight-volume ratios of 50% TCA optimally extracted extravasated EBD from the rat brain and liver, respectively, in vivo. This procedure is particularly useful in the detection of EBD extravasation into the BBB-intact brain, but it can also be applied to detect dye extravasation into tissues where vascular permeability is less limiting.
Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.
2008-01-01
The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All rights reserved.
Effects of obesity on lung volume and capacity in children and adolescents: a systematic review
Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno
2016-01-01
Abstract Objective: To assess the effects of obesity on lung volume and capacity in children and adolescents. Data source: This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Data synthesis: Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Conclusions: Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. PMID:27130483
Riedel, Andreas; Maier, Simon; Ulbrich, Melanie; Biscaldi, Monica; Ebert, Dieter; Fangmeier, Thomas; Perlov, Evgeniy; Tebartz van Elst, Ludger
2014-08-30
Autism spectrum disorder (ASD) is increasingly being recognized as an important issue in adult psychiatry and psychotherapy. High intelligence indicates overall good brain functioning and might thus present a particularly good opportunity to study possible cerebral correlates of core autistic features in terms of impaired social cognition, communication skills, the need for routines, and circumscribed interests. Anatomical MRI data sets for 30 highly intelligent patients with high-functioning autism and 30 pairwise-matched control subjects were acquired and analyzed with voxel-based morphometry. The gray matter volume of the pairwise-matched patients and the controls did not differ significantly. When correcting for total brain volume influences, the patients with ASD exhibited smaller left superior frontal volumes on a trend level. Heterogeneous volumetric findings in earlier studies might partly be explained by study samples biased by a high inclusion rate of secondary forms of ASD, which often go along with neuronal abnormalities. Including only patients with high IQ scores might have decreased the influence of secondary forms of ASD and might explain the absence of significant volumetric differences between the patients and the controls in this study. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Micro-differential scanning calorimeter for liquid biological samples
Wang, Shuyu; Yu, Shifeng; Siedler, Michael S.; ...
2016-10-20
Here, we developed an ultrasensitive micro-DSC (differential scanning calorimeter) for liquid protein sample characterization. Our design integrated vanadium oxide thermistors and flexible polymer substrates with microfluidics chambers to achieve a high sensitivity (6 V/W), low thermal conductivity (0.7 mW/K), high power resolutions (40 nW), and well-defined liquid volume (1 μl) calorimeter sensor in a compact and cost-effective way. Furthermore, we demonstrated the performance of the sensor with lysozyme unfolding. The measured transition temperature and enthalpy change were in accordance with the previous literature data. This micro-DSC could potentially raise the prospect of high-throughput biochemical measurement by parallel operation with miniaturizedmore » sample consumption.« less
NASA Astrophysics Data System (ADS)
Deng, Xin-Fa; Song, Jun; Chen, Yi-Qing; Jiang, Peng; Ding, Ying-Ping
2014-08-01
Using two volume-limited Main galaxy samples of the Sloan Digital Sky Survey Data Release 10 (SDSS DR10), we investigate the dependence of the clustering properties of galaxies on stellar velocity dispersion by cluster analysis. It is found that in the luminous volume-limited Main galaxy sample, except at r=1.2, richer and larger systems can be more easily formed in the large stellar velocity dispersion subsample, while in the faint volume-limited Main galaxy sample, at r≥0.9, an opposite trend is observed. According to statistical analyses of the multiplicity functions, we conclude in two volume-limited Main galaxy samples: small stellar velocity dispersion galaxies preferentially form isolated galaxies, close pairs and small group, while large stellar velocity dispersion galaxies preferentially inhabit the dense groups and clusters. However, we note the difference between two volume-limited Main galaxy samples: in the faint volume-limited Main galaxy sample, at r≥0.9, the small stellar velocity dispersion subsample has a higher proportion of galaxies in superclusters ( n≥200) than the large stellar velocity dispersion subsample.
Random laser action in bovine semen
NASA Astrophysics Data System (ADS)
Smuk, Andrei; Lazaro, Edgar; Olson, Leif P.; Lawandy, N. M.
2011-03-01
Experiments using bovine semen reveal that the addition of a high-gain water soluble dye results in random laser action when excited by a Q-switched, frequency doubled, Nd:Yag laser. The data shows that the linewidth collapse of the emission is correlated to the sperm count of the individual samples, potentially making this a rapid, low sample volume approach to count determination.
NASA Astrophysics Data System (ADS)
Sargent, S.; Somers, J. M.
2015-12-01
Trace-gas eddy covariance flux measurement can be made with open-path or closed-path analyzers. Traditional closed-path trace-gas analyzers use multipass absorption cells that behave as mixing volumes, requiring high sample flow rates to achieve useful frequency response. The high sample flow rate and the need to keep the multipass cell extremely clean dictates the use of a fine-pore filter that may clog quickly. A large-capacity filter cannot be used because it would degrade the EC system frequency response. The high flow rate also requires a powerful vacuum pump, which will typically consume on the order of 1000 W. The analyzer must measure water vapor for spectroscopic and dilution corrections. Open-path analyzers are available for methane, but not for nitrous oxide. The currently available methane analyzers have low power consumption, but are very large. Their large size degrades frequency response and disturbs the air flow near the sonic anemometer. They require significant maintenance to keep the exposed multipass optical surfaces clean. Water vapor measurements for dilution and spectroscopic corrections require a separate water vapor analyzer. A new closed-path eddy covariance system for measuring nitrous oxide or methane fluxes provides an elegant solution. The analyzer (TGA200A, Campbell Scientific, Inc.) uses a thermoelectrically-cooled interband cascade laser. Its small sample-cell volume and unique sample-cell configuration (200 ml, 1.5 m single pass) provide excellent frequency response with a low-power scroll pump (240 W). A new single-tube Nafion® dryer removes most of the water vapor, and attenuates fluctuations in the residual water vapor. Finally, a vortex intake assembly eliminates the need for an intake filter without adding volume that would degrade system frequency response. Laboratory testing shows the system attenuates the water vapor dilution term by more than 99% and achieves a half-power band width of 3.5 Hz.
Penningroth, Stephen M; Yarrow, Matthew M; Figueroa, Abner X; Bowen, Rebecca J; Delgado, Soraya
2013-01-01
The risk of contaminating surface and groundwater as a result of shale gas extraction using high-volume horizontal hydraulic fracturing (fracking) has not been assessed using conventional risk assessment methodologies. Baseline (pre-fracking) data on relevant water quality indicators, needed for meaningful risk assessment, are largely lacking. To fill this gap, the nonprofit Community Science Institute (CSI) partners with community volunteers who perform regular sampling of more than 50 streams in the Marcellus and Utica Shale regions of upstate New York; samples are analyzed for parameters associated with HVHHF. Similar baseline data on regional groundwater comes from CSI's testing of private drinking water wells. Analytic results for groundwater (with permission) and surface water are made publicly available in an interactive, searchable database. Baseline concentrations of potential contaminants from shale gas operations are found to be low, suggesting that early community-based monitoring is an effective foundation for assessing later contamination due to fracking.
Rainville, Paul D; Simeone, Jennifer L; Root, Dan S; Mallet, Claude R; Wilson, Ian D; Plumb, Robert S
2015-03-21
The emergence of micro sampling techniques holds great potential to improve pharmacokinetic data quality, reduce animal usage, and save costs in safety assessment studies. The analysis of these samples presents new challenges for bioanalytical scientists, both in terms of sample processing and analytical sensitivity. The use of two dimensional LC/MS with, at-column-dilution for the direct analysis of highly organic extracts prepared from biological fluids such as dried blood spots and plasma is demonstrated. This technique negated the need to dry down and reconstitute, or dilute samples with water/aqueous buffer solutions, prior to injection onto a reversed-phase LC system. A mixture of model drugs, including bromhexine, triprolidine, enrofloxacin, and procaine were used to test the feasibility of the method. Finally an LC/MS assay for the probe pharmaceutical rosuvastatin was developed from dried blood spots and protein-precipitated plasma. The assays showed acceptable recovery, accuracy and precision according to US FDA guidelines. The resulting analytical method showed an increase in assay sensitivity of up to forty fold as compared to conventional methods by maximizing the amount loaded onto the system and the MS response for the probe pharmaceutical rosuvastatin from small volume samples.
NASA Astrophysics Data System (ADS)
Fish, Jason S.
A novel ceramic protonic/electronic conductor composite BaCe 0.2Zr0.7Y0.1O3-delta / Sr0.95 Ti0.9Nb0.1O3-delta (BCZY27/STN95: BS27) has been synthesized, and its electrical properties and hydrogen permeability have been investigated. The volume ratio of the STN95 phase was varied from 50 - 70 % to test the effects on conductivity and hydrogen permeability. BCZY27 and STN95 powders were prepared by solid-state reaction, and membrane samples were fabricated through conventional and spark plasma sintering techniques. The phase composition, density, and microstructure were compared between the sintering methodologies. Total conductivities of 0.01 - 0.06 S·cm -1 were obtained in wet (+1 % H2O) dilute H2/(N 2, He, Ar) from 600 - 800 °C for 50 volume % STN95. With increasing STN content (60 and 70 volume %), conductivity generally increased, though remained lower than predicted by standard effective medium models, even at 70 volume % STN95. A new effective medium model was proposed, which accounted for an interfacial resistance term associated with the heterojunctions formed between the BCZY27 and STN95 phases. Better fits for the measured data were achieved with this new method, although some effects remain unexplained. Discrepancies between the model and experiment were attributed to space charge effects, grain boundary resistances, and insulating impurity phase formation during synthesis. Dense BS27 samples were tested for high-temperature hydrogen permeation and a measured flux of 0.006 mumol·cm-2·s -1 was recorded for a 50 volume % STN95 sample at 700 °C, using dry argon as a sweep gas. This value represents a modest improvement on other ceramic composite membranes, but remains short of targets for commercialization. Persistent leaks in the flux experiments generated a shallower hydrogen gradient across the samples, although this p(H2) on the sweep side simultaneously decreased the oxygen partial pressure gradient across the sample and preserved the reduced state of the membrane. The addition of thin palladium layers (100 nm) to another 50 volume % STN95 sample increased the flux five-fold to 0.026 mumol·cm-2·s -1 at 700 °C. Experiments on 60 and 70 volume % STN95 samples revealed no measurable hydrogen flux, which was attributed to the proton-conducting BCZY27 phase being non-percolating for these compositions.
Catalog of Apollo 17 rocks. Volume 1: Stations 2 and 3 (South Massif)
NASA Technical Reports Server (NTRS)
Ryder, Graham
1993-01-01
The Catalog of Apollo 17 Rocks is a set of volumes that characterize each of 334 individually numbered rock samples (79 larger than 100 g) in the Apollo 17 collection, showing what each sample is and what is known about it. Unconsolidated regolith samples are not included. The catalog is intended to be used by both researchers requiring sample allocations and a broad audience interested in Apollo 17 rocks. The volumes are arranged geographically, with separate volumes for the South Massif and Light Mantle, the North Massif, and two volumes for the mare plains. Within each volume, the samples are arranged in numerical order, closely corresponding with the sample collection stations. The present volume, for the South Massif and Light Mantle, describes the 55 individual rock fragments collected at Stations two, two-A, three, and LRV-five. Some were chipped from boulders, others collected as individual rocks, some by raking, and a few by picking from the soil in the processing laboratory. Information on sample collection, petrography, chemistry, stable and radiogenic isotopes, rock surface characteristics, physical properties, and curatorial processing is summarized and referenced as far as it is known up to early 1992. The intention has been to be comprehensive: to include all published studies of any kind that provide information on the sample, as well as some unpublished information. References which are primarily bulk interpretations of existing data or mere lists of samples are not generally included. Foreign language journals were not scrutinized, but little data appears to have been published only in such journals. We have attempted to be consistent in format across all of the volumes, and have used a common reference list that appears in all volumes. Where possible, ages based on Sr and Ar isotopes have been recalculated using the 'new' decay constants recommended by Steiger and Jager; however, in many of the reproduced diagrams the ages correspond with the 'old' decay constants. In this volume, mg' or Mg' = atomic Mg/(Mg +Fe).
Violi, Ianina L; Perez, M Dolores; Fuertes, M Cecilia; Soler-Illia, Galo J A A
2012-08-01
Highly porous (V(mesopore) = 25-50%) and ordered mesoporous titania thin films (MTTF) were prepared on ITO (indium tin oxide)-covered glass by a fast two-step method. The effects of substrate surface modification and thermal treatment on pore order, accessibility and crystallinity of the MTTF were systematically studied for MTTF deposited onto bare and titania-modified ITO. MTTF exposed briefly to 550 °C resulted in highly ordered films with grid-like structures, enlarged pore size, and increased accessible pore volume when prepared onto the modified ITO substrate. Mesostructure collapse and no significant change in pore volume were observed for MTTF deposited on bare ITO substrates. Highly crystalline anatase was obtained for MTTF prepared on the modified-ITO treated at high temperatures, establishing the relationship between grid-like structures and titania crystallization. Photocatalytic activity was maximized for samples with increased crystallization and high accessible pore volume. In this manner, a simple way of designing materials with optimized characteristics for optoelectronic applications was achieved through the modification of the ITO surface and a controlled thermal treatment.
Hyung, Seok-Won; Piehowski, Paul D; Moore, Ronald J; Orton, Daniel J; Schepmoes, Athena A; Clauss, Therese R; Chu, Rosalie K; Fillmore, Thomas L; Brewer, Heather; Liu, Tao; Zhao, Rui; Smith, Richard D
2014-11-01
Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 μL) due to low yields stemming from losses caused by nonspecific binding to the column matrix and concentration of large eluent volumes. Additionally, the cost of the depletion media can be prohibitive for larger-scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizing sample recovery when samples are limited, as well as for reducing the expense of large-scale studies. We characterized the performance of a 346 μL column volume microscale depletion system, using four different flow rates to determine the most effective depletion conditions for ∼6-μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10-mL depletion column served as the control. Results showed depletion efficiency of the microscale column increased as flow rate decreased, and that our microdepletion was reproducible. In an initial application, a 600-μL sample of human cerebrospinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.
Human blood RNA stabilization in samples collected and transported for a large biobank
2012-01-01
Background The Norwegian Mother and Child Cohort Study (MoBa) is a nation-wide population-based pregnancy cohort initiated in 1999, comprising more than 108.000 pregnancies recruited between 1999 and 2008. In this study we evaluated the feasibility of integrating RNA analyses into existing MoBa protocols. We compared two different blood RNA collection tube systems – the PAXgene™ Blood RNA system and the Tempus™ Blood RNA system - and assessed the effects of suboptimal blood volumes in collection tubes and of transportation of blood samples by standard mail. Endpoints to characterize the samples were RNA quality and yield, and the RNA transcript stability of selected genes. Findings High-quality RNA could be extracted from blood samples stabilized with both PAXgene and Tempus tubes. The RNA yields obtained from the blood samples collected in Tempus tubes were consistently higher than from PAXgene tubes. Higher RNA yields were obtained from cord blood (3 – 4 times) compared to adult blood with both types of tubes. Transportation of samples by standard mail had moderate effects on RNA quality and RNA transcript stability; the overall RNA quality of the transported samples was high. Some unexplained changes in gene expression were noted, which seemed to correlate with suboptimal blood volumes collected in the tubes. Temperature variations during transportation may also be of some importance. Conclusions Our results strongly suggest that special collection tubes are necessary for RNA stabilization and they should be used for establishing new biobanks. We also show that the 50,000 samples collected in the MoBa biobank provide RNA of high quality and in sufficient amounts to allow gene expression analyses for studying the association of disease with altered patterns of gene expression. PMID:22988904
van Boxtel, Niels; Wolfs, Kris; Van Schepdael, Ann; Adams, Erwin
2015-12-18
The sensitivity of gas chromatography (GC) combined with the full evaporation technique (FET) for the analysis of aqueous samples is limited due to the maximum tolerable sample volume in a headspace vial. Using an acetone acetal as water scavenger prior to FET-GC analysis proved to be a useful and versatile tool for the analysis of high boiling analytes in aqueous samples. 2,2-Dimethoxypropane (DMP) was used in this case resulting in methanol and acetone as reaction products with water. These solvents are relatively volatile and were easily removed by evaporation enabling sample enrichment leading to 10-fold improvement in sensitivity compared to the standard 10μL FET sample volumes for a selection of typical high boiling polar residual solvents in water. This could be improved even further if more sample is used. The method was applied for the determination of residual NMP in an aqueous solution of a cefotaxime analogue and proved to be considerably better than conventional static headspace (sHS) and the standard FET approach. The methodology was also applied to determine trace amounts of ethylene glycol (EG) in aqueous samples like contact lens fluids, where scavenging of the water would avoid laborious extraction prior to derivatization. During this experiment it was revealed that DMP reacts quantitatively with EG to form 2,2-dimethyl-1,3-dioxolane (2,2-DD) under the proposed reaction conditions. The relatively high volatility (bp 93°C) of 2,2-DD makes it possible to perform analysis of EG using the sHS methodology making additional derivatization reactions superfluous. Copyright © 2015 Elsevier B.V. All rights reserved.
Tershakovec, A M; Brannon, S D; Bennett, M J; Shannon, B M
1995-08-01
To measure the additional costs of office-based laboratory testing due to the implementation of the Clinical Laboratory Improvement Amendments of 1988 (CLIA '88), using cholesterol screening for children as an example. Four- to ten-year-old children who received their well child care at one of seven participating pediatric practices were screened for hypercholesterolemia. The average number of analyses per day and days per month were derived from the volume of testing completed by the practices. Nurses and technicians time in the screening process were measured and personnel costs were calculated based on salary and fringe benefit rates. Costs of supplies, analyzing control samples, instrument calibration, and instrument depreciation were included. Costs estimates of screening were then completed. CLIA '88 implementation costs were derived from appropriate proficiency testing and laboratory inspection programs. In six practices completing a low volume of testing, 2807 children (5 to 6 children per week) were screened during the observation period, while 414 (about 25 children per week) were screened in one high-volume practice implementing universal screening over a 4-month period. For the six low-volume practices, the cost of screening was $10.60 per child. This decreased to $5.47 for the high-volume practice. Estimated costs of CLIA '88 implementation, including additional proficiency testing and laboratory inspection, added $3.20 per test for the low-volume practices, and $0.71 per test for the high-volume testing. Implementation of CLIA adds significantly to the cost of office-based chemistry laboratory screening. Despite these additional expenses, the cost of testing is still within a reasonable charge for laboratory testing, and is highly sensitive to the volume of tests completed.
Brain Development Parameters and Intelligence in Chilean High School Graduates
ERIC Educational Resources Information Center
Ivanovic, Daniza M.; Leiva, Boris P.; Castro, Carmen G.; Olivares, Manuel G.; Jansana, Joan Manuel M.; Castro, Veronica G.; Almagia, Atilio Aldo F.; Toro, Triana D.; Urrutia, Maria Soledad C.; Miller, Patricio T.; Bosch, Enrique O.; Larrain, Cristian G.; Perez, Hernan T.
2004-01-01
The hypothesis that independently of sex, brain volume (BV) and head circumference (HC) are positively and significantly associated with intellectual quotient (IQ) was examined in a sample of 96 high school graduates of high [Wechsler Intelligence Scale for Adults--Revised (WAIS-R) is greater than 120] and low IQ (WAIS-R is less than 100) (1:1),…
Using large volume samplers for the monitoring of particle bound micro pollutants in rivers
NASA Astrophysics Data System (ADS)
Kittlaus, Steffen; Fuchs, Stephan
2015-04-01
The requirements of the WFD as well as substance emission modelling at the river basin scale require stable monitoring data for micro pollutants. The monitoring concepts applied by the local authorities as well as by many scientists use single sampling techniques. Samples from water bodies are usually taken in volumes of about one litre and depending on predetermined time steps or through discharge thresholds. For predominantly particle bound micro pollutants the small sample size of about one litre results in a very small amount of suspended particles. To measure micro pollutant concentrations in these samples is demanding and results in a high uncertainty of the measured concentrations, if the concentration is above the detection limit in the first place. In many monitoring programs most of the measured values were below the detection limit. This results in a high uncertainty if river loads were calculated from these data sets. The authors propose a different approach to gain stable concentration values for particle bound micro pollutants from river monitoring: A mixed sample of about 1000 L was pumped in a tank with a dirty-water pump. The sampling usually is done discharge dependant by using a gauge signal as input for the control unit. After the discharge event is over or the tank is fully filled, the suspended solids settle in the tank for 2 days. After this time a clear separation of water and solids can be shown. A sample (1 L) from the water phase and the total mass of the settled solids (about 10 L) are taken to the laboratory for analysis. While the micro pollutants can't hardly be detected in the water phase, the signal from the sediment is high above the detection limit, thus certain and very stable. From the pollutant concentration in the solid phase and the total tank volume the initial pollutant concentration in the sample can be calculated. If the concentration in the water phase is detectable, it can be used to correct the total load. This relatively low cost approach (less costs for analysis because of small sample number) allows to quantify the pollutant load, to derive dissolved-solid partition coefficients and to quantify the pollutant load in different particle size classes.
Field methods for sampling and storing nectar from flowers with low nectar volumes.
Morrant, D S; Schumann, R; Petit, S
2009-02-01
Although several methods of sampling and storing floral nectar are available, little information exists on sampling and storing nectar from flowers with low nectar volumes. Methods for sampling and storing nectar from the flowers of species with low floral nectar volumes (<1 microL) were investigated using the flowers of Eucalyptus species. Sampling with microcapillary tubes, blotting up with filter paper, washing and rinsing were compared to determine masses of sugars recovered and differences in sugar ratios. Storage methods included room temperature, refrigeration and freezing treatments; the addition of antimicrobial agents benzyl alcohol or methanol to some of these treatments was also evaluated. Nectar samples were analysed using high-performance liquid chromatography and the masses of sucrose, glucose and fructose in each sample were determined. Masses of sugars varied significantly among sampling treatments, but the highest yielding methods, rinsing and washing, were not significantly different. A washing time of 1 min was as effective as one of 20 min. Storage trials showed that the sugar concentration measurements of nectar solutions changed rapidly, with the best results achieved for refrigeration with no additive (sucrose and fructose were stable for at least 2 weeks). Sugar ratios, however, remained relatively stable in most treatments and did not change significantly across 4 weeks for the methanol plus refrigerator and freezing treatments, and 2 weeks for the refrigeration treatment with no additive. Washing is recommended for nectar collection from flowers with low nectar volumes in the field (with the understanding that one wash underestimates the amounts of sugars present in a flower), as is immediate analysis of sugar mass. In view of the great variation in results depending on nectar collection and storage methods, caution should be exercised in their choice, and their accuracy should be evaluated. The use of pulsed amperometric detection, more specific than refractive index detection, may improve the accuracy of nectar sugar analysis.
van Diepen, Sean; Bakal, Jeffrey A; Lin, Meng; Kaul, Padma; McAlister, Finlay A; Ezekowitz, Justin A
2015-02-27
Little is known about cross-hospital differences in critical care units admission rates and related resource utilization and outcomes among patients hospitalized with acute coronary syndromes (ACS) or heart failure (HF). Using a population-based sample of 16,078 patients admitted to a critical care unit with a primary diagnosis of ACS (n=14,610) or HF (n=1467) between April 1, 2003 and March 31, 2013 in Alberta, Canada, we stratified hospitals into high (>250), medium (200 to 250), or low (<200) volume based on their annual volume of all ACS and HF hospitalization. The percentage of hospitalized patients admitted to critical care units varied across low, medium, and high-volume hospitals for both ACS and HF as follows: 77.9%, 81.3%, and 76.3% (P<0.001), and 18.0%, 16.3%, and 13.0% (P<0.001), respectively. Compared to low-volume units, critical care patients with ACS and HF admitted to high-volume hospitals had shorter mean critical care stays (56.6 versus 95.6 hours, P<0.001), more critical care procedures (1.9 versus 1.2 per patient, <0.001), and higher resource-intensive weighting (2.8 versus 1.5, P<0.001). No differences in in-hospital mortality (5.5% versus 6.2%, adjusted odds ratio 0.93; 95% CI, 0.61 to 1.41) were observed between high- and low-volume hospitals; however, 30-day cardiovascular readmissions (4.6% versus 6.8%, odds ratio 0.77; 95% CI, 0.60 to 0.99) and cardiovascular emergency-room visits (6.6% versus 9.5%, odds ratio 0.80; 95% CI, 0.69 to 0.94) were lower in high-volume compared to low-volume hospitals. Outcomes stratified by ACS or HF admission diagnosis were similar. Cardiac patients hospitalized in low-volume hospitals were more frequently admitted to critical care units and had longer hospitals stays despite lower resource-intensive weighting. These findings may provide opportunities to standardize critical care utilization for ACS and HF patients across high- and low-volume hospitals. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Neural predictors of substance use disorders in Young adulthood.
O'Brien, Jessica W; Hill, Shirley Y
2017-10-30
Offspring from multiplex, alcohol-dependent families are at heightened risk for substance use disorders (SUDs) in adolescence and young adulthood. These high-risk offspring have also been shown to have atypical structure and function of brain regions implicated in emotion regulation, social cognition, and reward processing. This study assessed the relationship between amygdala and orbitofrontal cortex (OFC) volumes obtained in adolescence and SUD outcomes in young adulthood among high-risk offspring and low-risk controls. A total of 78 participants (40 high-risk; 38 low-risk) from a longitudinal family study, ages 8-19, underwent magnetic resonance imaging; volumes of the amygdala and OFC were obtained with manual tracing. SUD outcomes were assessed at approximately yearly intervals. Cox regression survival analyses were used to assess the effect of regional brain volumes on SUD outcomes. The ratio of OFC to amygdala volume significantly predicted SUD survival time across the sample; reduction in survival time was seen in those with smaller ratios for both high-risk and low-risk groups. Morphology of prefrontal relative to limbic regions in adolescence prospectively predicts age of onset for substance use disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Graur, Or; Bianco, Federica B.; Modjaz, Maryam; Shivvers, Isaac; Filippenko, Alexei V.; Li, Weidong; Smith, Nathan
2017-03-01
In Paper I of this series, we showed that the ratio between stripped-envelope (SE) supernova (SN) and Type II SN rates reveals a significant SE SN deficiency in galaxies with stellar masses ≲ {10}10 {M}⊙ . Here, we test this result by splitting the volume-limited subsample of the Lick Observatory Supernova Search (LOSS) SN sample into low- and high-mass galaxies and comparing the relative rates of various SN types found in them. The LOSS volume-limited sample contains 180 SNe and SN impostors and is complete for SNe Ia out to 80 Mpc and core-collapse SNe out to 60 Mpc. All of these transients were recently reclassified by us in Shivvers et al. We find that the relative rates of some types of SNe differ between low- and high-mass galaxies: SNe Ib and Ic are underrepresented by a factor of ˜3 in low-mass galaxies. These galaxies also contain the only examples of SN 1987A-like SNe in the sample and host about nine times as many SN impostors. Normal SNe Ia seem to be ˜30% more common in low-mass galaxies, making these galaxies better sources for homogeneous SN Ia cosmology samples. The relative rates of SNe IIb are consistent in both low- and high-mass galaxies. The same is true for broad-line SNe Ic, although our sample includes only two such objects. The results presented here are in tension with a similar analysis from the Palomar Transient Factory, especially as regards SNe IIb.
Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Schmidt, Matthias; Borsdorf, Helko
2018-03-01
In this study, a general simple and inexpensive method is introduced for the preparation of a paper-based selective disk-type solid phase extraction (SPE) technique, appropriate for fast and high throughput monitoring of target compounds. An ion exchange molecularly imprinted polymer (MIP) was synthesized for the extraction and analysis of acesulfame, an anthropogenic water quality marker. Acesulfame imprinting was used as an example for demonstrating the benefits of a nanosized, swellable MIP extraction sorbents integrated in an on-site compatible concept for water quality monitoring. Compared with an 8 mL standard SPE cartridge, the paper-based MIP disk (47 mm ø) format allowed (1) high sample flow rates up to 30 mL•min -1 without losing extraction efficiency (2) extracting sample volumes up to 500 mL in much shorter times than with standard SPE, (3) the reuse of the disks (up to 3 times more than SPE cartridge) due to high robustness and an efficient post-cleaning, and (4) reducing the sampling time from 100 minutes (using the standard SPE format) to about 2 minutes with the MIP paper disk for 50 mL water sample. Different parameters like cellulose fiber/polymer ratios, sample volume, sample flow-rate, washing, and elution conditions were evaluated and optimized. Using developed extraction technique with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, a new protocol was established that provides detection and quantification limits of 0.015 μg•L -1 and 0.05 μg•L -1 , respectively. The developed paper disks were used in-field for the selective extraction of target compounds and transferred to the laboratory for further analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Gritti, Fabrice; Sanchez, Carl A; Farkas, Tivadar; Guiochon, Georges
2010-04-30
A series of experiments and measurements demonstrate the importance of minimizing the extra-column band broadening contribution of the instrument used. The combination of several measures allowed the achievement of the full potential efficiency of three Kinetex-C(18) columns, using a conventional liquid chromatograph. The first measure consists in minimizing the extra-column volume of the instrument, without increasing much its back pressure contribution, by changing the needle seat volume, the inner diameter and length of the capillary connectors, and the volume of the detector cell of a standard instrument (Agilent 1100). The second measure consists in injecting a volume of weak eluent (less than half the elution strength of the mobile phase) right after the sample, before the sample had time to reach the column. Experimental results show that these changes could provide most of the resolution expected from the true column performance. After the changes were made, the resolutions of the 2.1 mm x 50 mm, 4.6 mm x 50 mm, and 4.6 mm x 100 mm Kinetex-C(18) columns for compounds having retention factors close to 1 were increased by about 180, 35, and 30%, respectively. The resolutions obtained are then similar to those measured with advanced instruments like the Agilent 1200, the Agilent 1290 Infinity HPLC, and the Acquity chromatographs. 2010 Elsevier B.V. All rights reserved.
Biogas production from pineapple core - A preliminary study
NASA Astrophysics Data System (ADS)
Jehan, O. S.; Sanusi, S. N. A.; Sukor, M. Z.; Noraini, M.; Buddin, M. M. H. S.; Hamid, K. H. K.
2017-09-01
Anaerobic digestion of pineapple waste was investigated by using pineapple core as the sole substrate. Pineapple core was chosen due to its high total sugar content thus, indicating high amount of fermentable sugar. As digestion process requires the involvement of microorganisms, wastewater from the same industry was added in the current study at ratio of 1:1 by weight. Two different sources of wastewater (Point 1 and Point 2) were used in this study to distinguish the performance of microorganism consortia in both samples. The experiment was conducted by using a lab scale batch anaerobic digester made up from 5L container with separate gas collecting system. The biogas produced was collected by using water displacement method. The experiment was conducted for 30 days and the biogas produced was collected and its volume was recorded at 3 days interval. Based on the data available, wastewater from the first point recorded higher volume of biogas with the total accumulated biogas volume is 216.1 mL. Meanwhile, wastewater sample from Point 2 produced a total of 140.5 mL of biogas, by volume. The data shows that the origin and type of microorganism undeniably play significant role in biogas production. In fact, other factors; pH of wastewater and temperature were also known to affect biogas production. The anaerobic digestion is seen as the promising and sustainable alternatives to current disposal method.
NASA Astrophysics Data System (ADS)
Latief, F. D. E.; Sari, D. S.; Fitri, L. A.
2017-08-01
High-resolution tomographic imaging by means of x-ray micro-computed tomography (μCT) has been widely utilized for morphological evaluations in dentistry and medicine. The use of μCT follows a standard procedure: image acquisition, reconstruction, processing, evaluation using image analysis, and reporting of results. This paper discusses methods of μCT using a specific scanning device, the Bruker SkyScan 1173 High Energy Micro-CT. We present a description of the general workflow, information on terminology for the measured parameters and corresponding units, and further analyses that can potentially be conducted with this technology. Brief qualitative and quantitative analyses, including basic image processing (VOI selection and thresholding) and measurement of several morphometrical variables (total VOI volume, object volume, percentage of total volume, total VOI surface, object surface, object surface/volume ratio, object surface density, structure thickness, structure separation, total porosity) were conducted on two samples, the mandible of a wistar rat and a urinary tract stone, to illustrate the abilities of this device and its accompanying software package. The results of these analyses for both samples are reported, along with a discussion of the types of analyses that are possible using digital images obtained with a μCT scanning device, paying particular attention to non-diagnostic ex vivo research applications.
Kaufmann, Royi; Yadid, Itamar; Goldfarb, Daniella
2013-05-01
Rapid freeze quench electron paramagnetic resonance (RFQ)-EPR is a method for trapping short lived intermediates in chemical reactions and subjecting them to EPR spectroscopy investigation for their characterization. Two (or more) reacting components are mixed at room temperature and after some delay the mixture is sprayed into a cold trap and transferred into the EPR tube. A major caveat in using commercial RFQ-EPR for high field EPR applications is the relatively large amount of sample needed for each time point, a major part of which is wasted as the dead volume of the instrument. The small sample volume (∼2μl) needed for high field EPR spectrometers, such as W-band (∼3.5T, 95GHz), that use cavities calls for the development of a microfluidic based RFQ-EPR apparatus. This is particularly important for biological applications because of the difficulties often encountered in producing large amounts of intrinsically paramagnetic proteins and spin labeled nucleic acid and proteins. Here we describe a dedicated microfluidic based RFQ-EPR apparatus suitable for small volume samples in the range of a few μl. The device is based on a previously published microfluidic mixer and features a new ejection mechanism and a novel cold trap that allows collection of a series of different time points in one continuous experiment. The reduction of a nitroxide radical with dithionite, employing the signal of Mn(2+) as an internal standard was used to demonstrate the performance of the microfluidic RFQ apparatus. Copyright © 2013 Elsevier Inc. All rights reserved.
Donald R. Gedney; Floyd A. Johnson
1959-01-01
Timber cruising is frequently made easier through use of local volume tables based on d.b.h. alone. These tables are made by establishing the relation between volume and d.b.h. from measurements (including height) made on sample trees in the stand. The sample-tree measurements are converted to volumes through use of standard volume tables, and a volume-diameter curve...
Dehydration, hemodynamics and fluid volume optimization after induction of general anesthesia.
Li, Yuhong; He, Rui; Ying, Xiaojiang; Hahn, Robert G
2014-01-01
Fluid volume optimization guided by stroke volume measurements reduces complications of colorectal and high-risk surgeries. We studied whether dehydration or a strong hemodynamic response to general anesthesia increases the probability of fluid responsiveness before surgery begins. Cardiac output, stroke volume, central venous pressure and arterial pressures were measured in 111 patients before general anesthesia (baseline), after induction and stepwise after three bolus infusions of 3 ml/kg of 6% hydroxyethyl starch 130/0.4 (n=86) or Ringer's lactate (n=25). A subgroup of 30 patients who received starch were preloaded with 500 ml of Ringer's lactate. Blood volume changes were estimated from the hemoglobin concentration and dehydration was estimated from evidence of renal water conservation in urine samples. Induction of anesthesia decreased the stroke volume to 62% of baseline (mean); administration of fluids restored this value to 84% (starch) and 68% (Ringer's). The optimized stroke volume index was clustered around 35-40 ml/m2/beat. Additional fluid boluses increased the stroke volume by ≥10% (a sign of fluid responsiveness) in patients with dehydration, as suggested by a low cardiac index and central venous pressure at baseline and by high urinary osmolality, creatinine concentration and specific gravity. Preloading and the hemodynamic response to induction did not correlate with fluid responsiveness. The blood volume expanded 2.3 (starch) and 1.8 (Ringer's) times over the infused volume. Fluid volume optimization did not induce a hyperkinetic state but ameliorated the decrease in stroke volume caused by anesthesia. Dehydration, but not the hemodynamic response to the induction, was correlated with fluid responsiveness.
Zhong, Cheng; Chen, Beibei; He, Man; Hu, Bin
2017-02-03
In this study, covalent triazine framework-1 (CTF-1) was adopted as solid phase extraction (SPE) sorbents, and a method of SPE inline coupled with high performance liquid chromatography-ultraviolet (HPLC-UV) detection was developed for trace analysis of three nitroimidazolaes (including metronidazole, ronidazole and dimetridazole) in porcine liver and environmental water samples. CTF-1 has rich π-electron and N containing triazine, thus can form π-π interaction and intermolecular hydrogen bond with three target polar nitroimidazoles, resulting in high extraction efficiency (87%-98%). Besides, CTF-1 has large specific area, which benefits rapid mass transfer and low column pressure, leading to fast adsorption/desorption dynamics. Several parameters affecting inline SPE including pH, sample flow rate, sample volume, desorption reagents, elution flow rate, elution volume, and ionic strength were investigated. Under the optimal experimental conditions, the limits of detection (S/N=3) were found to be in the range of 0.11-0.13μg/L. The enrichment factors (EFs) ranged from 52 to 59 fold (theoretical EF was 60-fold). The relative standard deviations were in the range of 4.3-9.4% (n=7, c=1μg/L), and the linear range was 0.5-500μg/L for three target analytes. The sample throughput is 7/h. The proposed method was successfully applied to the analysis of nitroimidazoles in porcine liver and environmental water samples with good recoveries for the spiked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Scheibe, Andrea; Krantz, Lars; Gleixner, Gerd
2012-01-30
We assessed the accuracy and utility of a modified high-performance liquid chromatography/isotope ratio mass spectrometry (HPLC/IRMS) system for measuring the amount and stable carbon isotope signature of dissolved organic matter (DOM) <1 µm. Using a range of standard compounds as well as soil solutions sampled in the field, we compared the results of the HPLC/IRMS analysis with those from other methods for determining carbon and (13)C content. The conversion efficiency of the in-line wet oxidation of the HPLC/IRMS averaged 99.3% for a range of standard compounds. The agreement between HPLC/IRMS and other methods in the amount and isotopic signature of both standard compounds and soil water samples was excellent. For DOM concentrations below 10 mg C L(-1) (250 ng C total) pre-concentration or large volume injections are recommended in order to prevent background interferences. We were able to detect large differences in the (13)C signatures of soil solution DOM sampled in 10 cm depth of plots with either C3 or C4 vegetation and in two different parent materials. These measurements also demonstrated changes in the (13)C signature that demonstrate rapid loss of plant-derived C with depth. Overall the modified HLPC/IRMS system has the advantages of rapid sample preparation, small required sample volume and high sample throughput, while showing comparable performance with other methods for measuring the amount and isotopic signature of DOM. Copyright © 2011 John Wiley & Sons, Ltd.
An inexpensive and portable microvolumeter for rapid evaluation of biological samples.
Douglass, John K; Wcislo, William T
2010-08-01
We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 microL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.
Uranium in US surface, ground, and domestic waters. Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drury, J.S.; Reynolds, S.; Owen, P.T.
1981-04-01
The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.
Illness, at-risk and resilience neural markers of early-stage bipolar disorder.
Lin, Kangguang; Shao, Robin; Geng, Xiujuan; Chen, Kun; Lu, Rui; Gao, Yanling; Bi, Yanan; Lu, Weicong; Guan, Lijie; Kong, Jiehua; Xu, Guiyun; So, Kwok-Fai
2018-05-21
Current knowledge on objective and specific neural markers for bipolar risk and resilience-related processes is lacking, partly due to not subdividing high-risk individuals manifesting different levels of subclinical symptoms who possibly possess different levels of resilience. We delineated grey matter markers for bipolar illness, genetic high risk (endophenotype) and resilience, through comparing across 42 young non-comorbid bipolar patients, 42 healthy controls, and 72 diagnosis-free, medication-naive high-genetic-risk individuals subdivided into a combined-high-risk group who additionally manifested bipolar risk-relevant subsyndromes (N = 38), and an asymptomatic high-risk group (N = 34). Complementary analyses assessed the additional predictive and classification values of grey matter markers beyond those of clinical scores, through using logistic regression and support vector machine analyses. Illness-related effects manifested as reduced grey matter volumes of bilateral temporal limbic-striatal and cerebellar regions, which significantly differentiated bipolar patients from healthy controls and improved clinical classification specificity by 20%. Reduced bilateral cerebellar grey matter volume emerged as a potential endophenotype and (along with parieto-occipital grey matter changes) separated combined-high-risk individuals from healthy and high-risk individuals, and increased clinical classification specificity by approximately 10% and 27%, respectively, while the relatively normalized cerebellar grey matter volumes in the high-risk sample may confer resilience. The cross-validation procedure was not performed on an independent sample using independently-derived features. The BD group had different age and sex distributions than some other groups which may not be fully addressable statistically. Our framework can be applied in other measurement domains to derive complete profiles for bipolar patients and at-risk individuals, towards forming strategies for promoting resilience and preclinical intervention. Copyright © 2018 Elsevier B.V. All rights reserved.
Houssin, Timothée; Cramer, Jérémy; Grojsman, Rébecca; Bellahsene, Lyes; Colas, Guillaume; Moulet, Hélène; Minnella, Walter; Pannetier, Christophe; Leberre, Maël; Plecis, Adrien; Chen, Yong
2016-04-21
To control future infectious disease outbreaks, like the 2014 Ebola epidemic, it is necessary to develop ultrafast molecular assays enabling rapid and sensitive diagnoses. To that end, several ultrafast real-time PCR systems have been previously developed, but they present issues that hinder their wide adoption, notably regarding their sensitivity and detection volume. An ultrafast, sensitive and large-volume real-time PCR system based on microfluidic thermalization is presented herein. The method is based on the circulation of pre-heated liquids in a microfluidic chip that thermalize the PCR chamber by diffusion and ultrafast flow switches. The system can achieve up to 30 real-time PCR cycles in around 2 minutes, which makes it the fastest PCR thermalization system for regular sample volume to the best of our knowledge. After biochemical optimization, anthrax and Ebola simulating agents could be respectively detected by a real-time PCR in 7 minutes and a reverse transcription real-time PCR in 7.5 minutes. These detections are respectively 6.4 and 7.2 times faster than with an off-the-shelf apparatus, while conserving real-time PCR sample volume, efficiency, selectivity and sensitivity. The high-speed thermalization also enabled us to perform sharp melting curve analyses in only 20 s and to discriminate amplicons of different lengths by rapid real-time PCR. This real-time PCR microfluidic thermalization system is cost-effective, versatile and can be then further developed for point-of-care, multiplexed, ultrafast and highly sensitive molecular diagnoses of bacterial and viral diseases.
Jahandar Lashaki, Masoud; Atkinson, John D; Hashisho, Zaher; Phillips, John H; Anderson, James E; Nichols, Mark
2016-09-05
The effect of activated carbon's pore size distribution (PSD) on heel formation during adsorption of organic vapors was investigated. Five commercially available beaded activated carbons (BAC) with varying PSDs (30-88% microporous) were investigated. Virgin samples had similar elemental compositions but different PSDs, which allowed for isolating the contribution of carbon's microporosity to heel formation. Heel formation was linearly correlated (R(2)=0.91) with BAC micropore volume; heel for the BAC with the lowest micropore volume was 20% lower than the BAC with the highest micropore volume. Meanwhile, first cycle adsorption capacities and breakthrough times correlated linearly (R(2)=0.87 and 0.93, respectively) with BAC total pore volume. Micropore volume reduction for all BACs confirmed that heel accumulation takes place in the highest energy pores. Overall, these results show that a greater portion of adsorbed species are converted into heel on highly microporous adsorbents due to higher share of high energy adsorption sites in their structure. This differs from mesoporous adsorbents (low microporosity) in which large pores contribute to adsorption but not to heel formation, resulting in longer adsorbent lifetime. Thus, activated carbon with high adsorption capacity and high mesopore fraction is particularly desirable for organic vapor application involving extended adsorption/regeneration cycling. Copyright © 2016 Elsevier B.V. All rights reserved.
McMillan, Lindsay A; Rivett, Michael O; Wealthall, Gary P; Zeeb, Peter; Dumble, Peter
2018-03-01
Groundwater-quality assessment at contaminated sites often involves the use of short-screen (1.5 to 3 m) monitoring wells. However, even over these intervals considerable variation may occur in contaminant concentrations in groundwater adjacent to the well screen. This is especially true in heterogeneous dense non-aqueous phase liquid (DNAPL) source zones, where cm-scale contamination variability may call into question the effectiveness of monitoring wells to deliver representative data. The utility of monitoring wells in such settings is evaluated by reference to high-resolution multilevel sampler (MLS) wells located proximally to short-screen wells, together with sampling capture-zone modelling to explore controls upon well sample provenance and sensitivity to monitoring protocols. Field data are analysed from the highly instrumented SABRE research site that contained an old trichloroethene source zone within a shallow alluvial aquifer at a UK industrial facility. With increased purging, monitoring-well samples tend to a flow-weighted average concentration but may exhibit sensitivity to the implemented protocol and degree of purging. Formation heterogeneity adjacent to the well-screen particularly, alongside pump-intake position and water level, influence this sensitivity. Purging of low volumes is vulnerable to poor reproducibility arising from concentration variability predicted over the initial 1 to 2 screen volumes purged. Marked heterogeneity may also result in limited long-term sample concentration stabilization. Development of bespoke monitoring protocols, that consider screen volumes purged, alongside water-quality indicator parameter stabilization, is recommended to validate and reduce uncertainty when interpreting monitoring-well data within source zone areas. Generalised recommendations on monitoring well based protocols are also developed. A key monitoring well utility is their proportionately greater sample draw from permeable horizons constituting a significant contaminant flux pathway and hence representative fraction of source mass flux. Acquisition of complementary, high-resolution, site monitoring data, however, vitally underpins optimal interpretation of monitoring-well datasets and appropriate advancement of a site conceptual model and remedial implementation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Effect of Slag Impregnation on Macroscopic Deformation of Bauxite-Based Material
NASA Astrophysics Data System (ADS)
Coulon, Antoine; De Bilbao, Emmanuel; Michel, Rudy; Bouchetou, Marie-Laure; Brassamin, Séverine; Gazeau, Camille; Zanghi, Didier; Poirier, Jacques
This work aims at studying the volume change of bauxite corroded by a molten slag. Cylindrical samples were prepared by mixing ground bauxite with slag. Optical measurement at high temperature (1450 °C) of deformation with a high-resolution camera has been developed. Image processing allowed for determining the change in diameter of the sample. We showed that the deformation was induced by the precipitation of new expansive crystallised phases observed by SEM-EDS analyses. Adding pellets of the same slag upon the samples allowed to emphasize the effect of the slag amount on the size change. The change in diameter significantly increased in the impregnated area.
A compact CCD-monitored atomic force microscope with optical vision and improved performances.
Mingyue, Liu; Haijun, Zhang; Dongxian, Zhang
2013-09-01
A novel CCD-monitored atomic force microscope (AFM) with optical vision and improved performances has been developed. Compact optical paths are specifically devised for both tip-sample microscopic monitoring and cantilever's deflection detecting with minimized volume and optimal light-amplifying ratio. The ingeniously designed AFM probe with such optical paths enables quick and safe tip-sample approaching, convenient and effective tip-sample positioning, and high quality image scanning. An image stitching method is also developed to build a wider-range AFM image under monitoring. Experiments show that this AFM system can offer real-time optical vision for tip-sample monitoring with wide visual field and/or high lateral optical resolution by simply switching the objective; meanwhile, it has the elegant performances of nanometer resolution, high stability, and high scan speed. Furthermore, it is capable of conducting wider-range image measurement while keeping nanometer resolution. Copyright © 2013 Wiley Periodicals, Inc.
Using DTSA-II to simulate and interpret energy dispersive spectra from particles.
Ritchie, Nicholas W M
2010-06-01
A high quality X-ray spectrum image of a 3.3 mum diameter sphere of K411 glass resting on a copper substrate was collected at 25 keV. The same sample configuration was modeled using the NISTMonte Monte Carlo simulation of electron and X-ray transport as is integrated into the quantitative X-ray microanalysis software package DTSA-II. The distribution of measured and simulated X-ray intensity compare favorably for all the major lines present in the spectra. The simulation is further examined to investigate the influence of angle-of-incidence, sample thickness, and sample diameter on the generated and measured X-ray intensity. The distribution of generated X-rays is seen to deviate significantly from a naive model which assumes that the distribution of generated X-rays is similar to bulk within the volume they share in common. It is demonstrated that the angle at which the electron beam strikes the sample has nonnegligible consequences. It is also demonstrated that within the volume that the bulk and particle share in common that electrons, which have exited and later reentered the particle volume, generate a significant fraction of the X-rays. Any general model of X-ray generation in particles must take into account the lateral spread of the scattered electron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xuefei; Kelly, Ryan T.; Danielson, William F.
2011-04-26
A novel hydrodynamic injector that is directly controlled by a pneumatic valve has been developed for reproducible microchip capillary electrophoresis (CE) separations. The poly(dimethylsiloxane) (PDMS) devices used for evaluation comprise a separation channel, a side channel for sample introduction, and a pneumatic valve aligned at the intersection of the channels. A low pressure (≤ 3 psi) applied to the sample reservoir is sufficient to drive sample into the separation channel. The rapidly actuated pneumatic valve enables injection of discrete sample plugs as small as ~100 pL for CE separation. The injection volume can be easily controlled by adjusting the intersectionmore » geometry, the solution back pressure and the valve actuation time. Sample injection could be reliably operated at different frequencies (< 0.1 Hz to >2 Hz) with good reproducibility (peak height relative standard deviation ≤ 3.6%) and no sampling biases associated with the conventional electrokinetic injections. The separation channel was dynamically coated with a cationic polymer, and FITC-labeled amino acids were employed to evaluate the CE separation. Highly efficient (≥ 7.0 × 103 theoretical plates for the ~2.4 cm long channel) and reproducible CE separations were obtained. The demonstrated method has numerous advantages compared with the conventional techniques, including repeatable and unbiased injections, no sample waste, high duty cycle, controllable injected sample volume, and fewer electrodes with no need for voltage switching. The prospects of implementing this injection method for coupling multidimensional separations, for multiplexing CE separations and for sample-limited bioanalyses are discussed.« less
Sampling and physical characterization of diesel exhaust aerosols. SAE Paper 770720
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verrant, J.A.; Kittelson, D.A.
Diesel exhaust aerosols are highly dynamic and therefore, difficult to sample without introducing falsification. This paper describes a study of these aerosols using a rapid dilution sampling system and an electrical aerosol analyzer. An Onan single cylinder indirect injection engine was used as an exhaust source. The sampler diluted the exhaust with clean air in ratios of 400:1 to 600:1 in order to prevent sample falsification by condensation and coagulation. The electrical aerosol analyzer was used to determine particle size and concentration. Volume concentration in the exhaust ranged from 2000 to 50,000 ..mu.. m/sup 3/ cm/sup -3/ which correspond tomore » mass loadings of 2.0 to 50 mg m/sup -3/ (assuming a density of 1 gm cm/sup -3/). Volume geometric mean diameters ranged from 0.12 to 0.19 ..mu..m. Evaporation and coagulation effects on diesel aerosols were observed by aging in a Teflon holding bag. A simple evaporation model was fit to the decrease of aerosol volume concentration with time. The fit revealed that the aerosols evaporated as if they were composed of normal paraffins in the 350 to 500 molecular weight range. Although the sample dilution system used in this study may alter the sample somewhat, it is probably analogous to what happens at the tailpipe of a vehicle. Measurements taken on a test track in the exhaust plume of a Peugeot 504 diesel showed aerosol size distributions very similar to those measured in our laboratory studies.« less
Shrink-induced sorting using integrated nanoscale magnetic traps.
Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle
2013-02-11
We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).
Palmer, W G; Scholz, R C; Moorman, W J
1983-03-01
Sampling of complex mixtures of airborne contaminants for chronic animal toxicity tests often involves numerous sampling devices, requires extensive sampling time, and yields forms of collected materials unsuitable for administration to animals. A method is described which used a high volume, wet venturi scrubber for collection of respirable fractions of emissions from iron foundry casting operations. The construction and operation of the sampler are presented along with collection efficiency data and its application to the preparation of large quantities of samples to be administered to animals by intratracheal instillation.
Liquid scintillation sample analysis in microcentrifuge tubes.
Elliott, J C
1993-01-01
Local regulations prohibiting drain disposal of "biodegradable" liquid scintillation cocktails prompted investigation of volume reduction for these materials. Microcentrifuge tubes were used with aqueous and filter media samples of 3H, 14C, 32P, and 125I. Backgrounds, counting efficiencies, figures of merit, and spectral distributions obtained for microcentrifuge tubes compared favorably to conventional vials. Differences in 32P spectra for solid support samples appeared related to filter material and sample volume. Decreases in sample costs and waste volume and disposal costs were approximately 50-75%.
Properties of Silurian shales from the Barrandian Basin, Czech Republic
NASA Astrophysics Data System (ADS)
Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana
2017-04-01
Although shale gas-bearing deposits have a markedly lower gas content than coal deposits, great attention has recently been paid to shale gas as a new potential source of fossil energy. Shale gas extraction is considered to be quite economical, despite the lower sorption capacity of shales, which is only about 10% of coal sorption capacities The selection of a suitable locality for extracting shale gas requires the sorption capacity of the shale to be determined. The sorption capacity is determined in the laboratory by measuring the amount of methane absorbed in a shale specimen at a pressure and a temperature corresponding to in situ conditions, using high pressure sorption. According to the principles of reversibility of adsorption/desorption, this amount should be roughly related to the amount of gas released by forced degassing. High pressure methane sorption isotherms were measured on seven representative samples of Silurian shales from the Barrandian Basin, Czech Republic. Excess sorption measurements were performed at a temperature of 45oC and at pressures up to 15 MPa on dry samples, using a manometric method. Experimental methane high-pressure isotherms were fitted to a modified Langmuir equation. The maximum measured excess sorption parameter and the Langmuir sorption capacity parameter were used to study the effect of TOC content, organic maturity, inorganic components and porosity on the methane sorption capacity. The studied shale samples with random reflectance of graptolite 0.56 to 1.76% had a very low TOC content and dominant mineral fractions. Illite was the prevailing clay mineral. The sample porosity ranged from 4.6 to 18.8%. In most samples, the micropore volumes were markedly lower than the meso- and macropore volumes. In the Silurian black shales, the occurrence of fractures parallel with the original sedimentary bending was highly significant. A greater proportion of fragments of carbonaceous particles of graptolites and bitumens in the Barrandian Silurian shales had a smooth surface without pores. No relation has been proven between TOC-normalized excess sorption capacities or the TOC-normalized Langmuir sorption capacities and thermal maturation of the shales. The methane sorption capacities of shale samples show a positive correlation with TOC and a positive correlation with the clay content. The highest sorption capacity was observed in shale samples with the highest percentage of micropores, indicating that the micropore volume in the organic matter and clay minerals is a principal factor affecting the sorption capacity of the shale samples.
Effects of obesity on lung volume and capacity in children and adolescents: a systematic review.
Winck, Aline Dill; Heinzmann-Filho, João Paulo; Soares, Rafaela Borges; da Silva, Juliana Severo; Woszezenki, Cristhiele Taís; Zanatta, Letiane Bueno
2016-12-01
To assess the effects of obesity on lung volume and capacity in children and adolescents. This is a systematic review, carried out in Pubmed, Lilacs, Scielo and PEDro databases, using the following Keywords: Plethysmography; Whole Body OR Lung Volume Measurements OR Total Lung Capacity OR Functional Residual Capacity OR Residual Volume AND Obesity. Observational studies or clinical trials that assessed the effects of obesity on lung volume and capacity in children and adolescents (0-18 years) without any other associated disease; in English; Portuguese and Spanish languages were selected. Methodological quality was assessed by the Agency for Healthcare Research and Quality. Of the 1,030 articles, only four were included in the review. The studies amounted to 548 participants, predominantly males, with sample size ranging from 45 to 327 individuals. 100% of the studies evaluated nutritional status through BMI (z-score) and 50.0% reported the data on abdominal circumference. All demonstrated that obesity causes negative effects on lung volume and capacity, causing a reduction mainly in functional residual capacity in 75.0% of the studies; in the expiratory reserve volume in 50.0% and in the residual volume in 25.0%. The methodological quality ranged from moderate to high, with 75.0% of the studies classified as having high methodological quality. Obesity causes deleterious effects on lung volume and capacity in children and adolescents, mainly by reducing functional residual capacity, expiratory reserve volume and residual volume. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.
Diamant, Michael J; Coward, Stephanie; Buie, W Donald; MacLean, Anthony; Dixon, Elijah; Ball, Chad G; Schaffer, Samuel; Kaplan, Gilaad G
2015-01-01
BACKGROUND: Previous studies have found that a higher volume of colorectal surgery was associated with lower mortality rates. While diverticulitis is an increasingly common condition, the effect of hospital volume on outcomes among diverticulitis patients is unknown. OBJECTIVE: To evaluate the relationship between hospital volume and other factors on in-hospital mortality among patients admitted for diverticulitis. METHODS: Data from the Nationwide Inpatient Sample (years 1993 to 2008) were analyzed to identify 822,865 patients representing 4,108,726 admissions for diverticulitis. Hospitals were divided into quartiles based on the volume of diverticulitis cases admitted over the study period, adjusted for years contributed to the dataset. Mortality according to hospital volume was modelled using logistic regression adjusting for age, sex, race, comorbidities, health care insurance, admission type, calendar year, colectomy, disease severity and clustering. Risk estimates were expressed as adjusted ORs with 95% CIs. RESULTS: Patients at high-volume hospitals were more likely to be admitted emergently, undergo surgical treatment and have more severe disease. In-hospital mortality was higher among the lowest quartile of hospital volume compared with the highest volume (OR 1.13 [95% CI 1.05 to 1.21]). In-hospital mortality was increased among patients admitted emergently (OR 2.58 [95% CI 2.40 to 2.78]) as well as those receiving surgical treatment (OR 3.60 [95% CI 3.42 to 3.78]). CONCLUSIONS: Diverticulitis patients admitted to hospitals with a low volume of diverticulitis cases had an increased risk for death compared with those admitted to high-volume centres. PMID:25965439
Wakeam, Elliot; Hyder, Joseph A; Lipsitz, Stuart R; Darling, Gail E; Finlayson, Samuel R G
2015-09-01
Accountable care organizations are designed to improve value by decreasing costs and maintaining quality. Strategies to maximize value are needed for high-risk surgery. We wanted to understand whether certain patient groups were differentially associated with better outcomes at high-volume hospitals in terms of quality and cost. In all, 37,746 patients underwent elective major lung resection in 1,273 hospitals in the Nationwide Inpatient Sample from 2007 to 2011. Patients were stratified by hospital volume quartile and substratified by preoperative mortality risk, age, and chronic obstructive pulmonary disease status. Mortality was evaluated using clustered multivariable hierarchical logistic regression controlling for patient comorbidity, demographics, and procedure. Adjusted cost was evaluated using generalized linear models fit to a gamma distribution. Patients were grouped into volume quartiles based on cases per year (less than 21, 21 to 40, 40 to 78, and more than 78). Patient characteristics and procedure mix differed across quartiles. Overall, mortality decreased across volume quartiles (lowest 1.9% versus highest 1.1%, p < 0.0001). Patients aged more than 80 years were associated with greater absolute and relative mortality rates than patients less than 60 years old in highest volume versus lowest volume hospitals (age more than 80 years, 4.2% versus 1.3%, p < 0.0001, odds ratio 3.31, 95% confidence interval: 1.89 to 5.80; age less than 60 years, 1.0% versus 0.8%, p = 0.19, odds ratio 1.38, 95% confidence interval: 0.74 to 2.56). Patients with high preoperative risk (more than 75th percentile) were also associated with lower absolute mortality in high-volume hospitals. Adjusted costs were not significantly different across quartiles or patient strata. Older patients show a significantly stronger volume-outcome relationship than patients less than 60 years of age. Costs were equivalent across volume quartile and patient strata. Selective patient referral may be a strategy to improve outcomes for elderly patients undergoing lung resection. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Mazonakis, Michalis; Sahin, Bunyamin; Pagonidis, Konstantin; Damilakis, John
2011-06-01
The aim of this study was to combine the stereological technique with magnetic resonance (MR) imaging data for the volumetric and functional analysis of the left ventricle (LV). Cardiac MR examinations were performed in 13 consecutive subjects with known or suspected coronary artery disease. The end-diastolic volume (EDV), end-systolic volume, ejection fraction (EF), and mass were estimated by stereology using the entire slice set depicting LV and systematic sampling intensities of 1/2 and 1/3 that provided samples with every second and third slice, respectively. The repeatability of stereology was evaluated. Stereological assessments were compared with the reference values derived by manually tracing the endocardial and epicardial contours on MR images. Stereological EDV and EF estimations obtained by the 1/3 systematic sampling scheme were significantly different from those by manual delineation (P < .05). No difference was observed between the reference values and the LV parameters estimated by the entire slice set or a sampling intensity of 1/2 (P > .05). For these stereological approaches, a high correlation (r(2) = 0.80-0.93) and clinically acceptable limits of agreement were found with the reference method. Stereological estimations obtained by both sample sizes presented comparable coefficient of variation values of 2.9-5.8%. The mean time for stereological measurements on the entire slice set was 3.4 ± 0.6 minutes and it was reduced to 2.5 ± 0.5 minutes with the 1/2 systematic sampling scheme. Stereological analysis on systematic samples of MR slices generated by the 1/2 sampling intensity provided efficient and quick assessment of LV volumes, function, and mass. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
A COMPARISON OF MATHEMATICS PROGRAMS FOR ABLE JUNIOR HIGH SCHOOL STUDENTS, VOLUME 1 - FINAL REPORT.
ERIC Educational Resources Information Center
GOLDBERG, MIRIAM L.; AND OTHERS
THE TALENTED YOUTH PROJECT (TYP) MATHEMATICS STUDY WAS DESIGNED AS A STUDY TO COMPARE THE EFFECTIVENESS OF VARIOUS CURRICULUM PATTERNS AND PRACTICES IN MATHEMATICS EDUCATION CURRENTLY USED WITH ACADEMICALLY TALENTED JUNIOR HIGH SCHOOL STUDENTS. THE SAMPLE CONSISTED OF 51 CLASSES AND 6 MATHEMATICS PROGRAMS. THE LORGE-THORNDIKE VERBAL INTELLIGENCE…
Lunar sample 14425 - Characterization and resemblance to high-magnesium microtektites
NASA Technical Reports Server (NTRS)
Berliner, L.; Fujii, H.
1985-01-01
Measurements by energy-dispersive X-ray analysis of the surface of lunar sample 14425, a large glass bead, yield a noritic composition enriched in aluminum and magnesium and, as compared with other norites, depleted in iron and especially calcium. The sample is close in composition to the most basic microtektites. Spherical inclusions of nickel-iron, flattened where they protrude, are found to be enriched in sulfur and phosphorus, at least at the surface. The inclusions form approximately 1 percent of the volume.
Effects of Sampling and Spatio/Temporal Granularity in Traffic Monitoring on Anomaly Detectability
NASA Astrophysics Data System (ADS)
Ishibashi, Keisuke; Kawahara, Ryoichi; Mori, Tatsuya; Kondoh, Tsuyoshi; Asano, Shoichiro
We quantitatively evaluate how sampling and spatio/temporal granularity in traffic monitoring affect the detectability of anomalous traffic. Those parameters also affect the monitoring burden, so network operators face a trade-off between the monitoring burden and detectability and need to know which are the optimal paramter values. We derive equations to calculate the false positive ratio and false negative ratio for given values of the sampling rate, granularity, statistics of normal traffic, and volume of anomalies to be detected. Specifically, assuming that the normal traffic has a Gaussian distribution, which is parameterized by its mean and standard deviation, we analyze how sampling and monitoring granularity change these distribution parameters. This analysis is based on observation of the backbone traffic, which exhibits spatially uncorrelated and temporally long-range dependence. Then we derive the equations for detectability. With those equations, we can answer the practical questions that arise in actual network operations: what sampling rate to set to find the given volume of anomaly, or, if the sampling is too high for actual operation, what granularity is optimal to find the anomaly for a given lower limit of sampling rate.
Ashtiani, Dariush; Venugopal, Hari; Belousoff, Matthew; Spicer, Bradley; Mak, Johnson; Neild, Adrian; de Marco, Alex
2018-04-06
Cryo-Electron Microscopy (cryo-EM) has become an invaluable tool for structural biology. Over the past decade, the advent of direct electron detectors and automated data acquisition has established cryo-EM as a central method in structural biology. However, challenges remain in the reliable and efficient preparation of samples in a manner which is compatible with high time resolution. The delivery of sample onto the grid is recognized as a critical step in the workflow as it is a source of variability and loss of material due to the blotting which is usually required. Here, we present a method for sample delivery and plunge freezing based on the use of Surface Acoustic Waves to deploy 6-8 µm droplets to the EM grid. This method minimises the sample dead volume and ensures vitrification within 52.6 ms from the moment the sample leaves the microfluidics chip. We demonstrate a working protocol to minimize the atomised volume and apply it to plunge freeze three different samples and provide proof that no damage occurs due to the interaction between the sample and the acoustic waves. Copyright © 2018 Elsevier Inc. All rights reserved.
Bartholomay, R.C.
1993-01-01
Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as part of the U.S. Geological Survey's quality assurance program to determine the effect of purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The U.S. Department of Energy's Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. The comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.
The International Space Station Urine Monitoring System (UMS)
NASA Technical Reports Server (NTRS)
Feeback, Daniel L.; Cibuzar, Branelle R.; Milstead, Jeffery R.; Pietrzyk,, Robert A.; Clark, Mark S.F.
2009-01-01
A device capable of making in-flight volume measurements of single void urine samples, the Urine Monitoring System (UMS), was developed and flown on seven U.S. Space Shuttle missions. This device provided volume data for each urine void from multiple crewmembers and allowed samples of each to be taken and returned to Earth for post-flight analysis. There were a number of design flaws in the original instrument including the presence of liquid carry-over producing invalid "actual" micturition volumes and cross-contamination between successive users from residual urine in "dead" spots". Additionally, high or low volume voids could not be accurately measured, the on-orbit calibration and nominal use sequence was time intensive, and the unit had to be returned and disassembled to retrieve the volume data. These problems have been resolved in a new version, the International Space Station (ISS) UMS, that has been designed to provide real-time in-flight volume data with accuracy and precision equivalent to measurements made on Earth and the ability to provide urine samples that are unadulterated by the device. Originally conceived to be interfaced with a U.S.-built Waste Collection System (WCS), the unit now has been modified to interface with the Russian-supplied Sanitary Hygiene Device (ASY). The ISS UMS provides significant advantages over the current method of collecting urine samples into Urine Collection Devices (UCDs), from which samples are removed and returned to Earth for analyses. A significant future advantage of the UMS is that it can provide an interface to analytical instrumentation that will allow real-time measurement of urine bioanalytes allowing monitoring of crewmember health status during flight and the ability to provide medical interventions based on the results of these measurements. Currently, the ISS UMS is scheduled to launch along with Node-3 on STS-130 (20A) in December 2009. UMS will be installed and scientific/functional verification completed prior to placing the instrument into operation. Samples collected during the verification sequence will be returned for analyses on STS-131 (19A) currently scheduled for launch in March 2010. The presence of a UMS on ISS will provide the capability to conduct additional collaborative human life science investigations among the ISS International Partners.
Design of portable ultraminiature flow cytometers for medical diagnostics
NASA Astrophysics Data System (ADS)
Leary, James F.
2018-02-01
Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.
NASA Astrophysics Data System (ADS)
Nelke, M.; Selker, J. S.; Udell, C.
2017-12-01
Reliable automatic water samplers allow repetitive sampling of various water sources over long periods of time without requiring a researcher on site, reducing human error as well as the monetary and time costs of traveling to the field, particularly when the scale of the sample period is hours or days. The high fixed cost of buying a commercial sampler with little customizability can be a barrier to research requiring repetitive samples, such as the analysis of septic water pre- and post-treatment. DIY automatic samplers proposed in the past sacrifice maximum volume, customizability, or scope of applications, among other features, in exchange for a lower net cost. The purpose of this project was to develop a low-cost, highly customizable, robust water sampler that is capable of sampling many sources of water for various analytes. A lightweight aluminum-extrusion frame was designed and assembled, chosen for its mounting system, strength, and low cost. Water is drawn from two peristaltic pumps through silicone tubing and directed into 24 foil-lined 250mL bags using solenoid valves. A programmable Arduino Uno microcontroller connected to a circuit board communicates with a battery operated real-time clock, initiating sampling stages. Period and volume settings are programmable in-field by the user via serial commands. The OPEnSampler is an open design, allowing the user to decide what components to use and the modular theme of the frame allows fast mounting of new manufactured or 3D printed components. The 24-bag system weighs less than 10kg and the material cost is under $450. Up to 6L of sample water can be drawn at a rate of 100mL/minute in either direction. Faster flowrates are achieved by using more powerful peristaltic pumps. Future design changes could allow a greater maximum volume by filling the unused space with more containers and adding GSM communications to send real time status information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machado, C. M.; Santos, Erickson O.; Fernandes, Karenn S.
Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as partmore » of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.« less
NASA Astrophysics Data System (ADS)
Mittag, Anja; Lenz, Dominik; Smith, Paul J.; Pach, Susanne; Tarnok, Attila
2005-04-01
Aim: In patients, e.g. with congenital heart diseases, a differential blood count is needed for diagnosis. To this end by standard automatic analyzers 500 μl of blood is required from the patients. In case of newborns and infants this is a substantial volume, especially after operations associated with blood loss. Therefore, aim of this study was to develop a method to determine a differential blood picture with a substantially reduced specimen volume. Methods: To generate a differential blood picture 10 μl EDTA blood were mixed with 10 μl of a DRAQ5 solution (500μM, Biostatus) and 10 μl of an antibody mixture (CD45-FITC, CD14-PE, diluted with PBS). 20 μl of this cell suspension was filled into a Neubauer counting chamber. Due to the defined volume of the chamber it is possible to determine the cell count per volume. The trigger for leukocyte counting was set on DRAQ5 signal in order to be able to distinguish nucleated white blood cells from erythrocytes. Different leukocyte subsets could be distinguished due to the used fluorescence labeled antibodies. For erythrocyte counting cell suspension was diluted another 150 times. 20 μl of this dilution was analyzed in a microchamber by LSC with trigger set on forward scatter signal. Results: This method allows a substantial decrease of blood sample volume for generation of a differential blood picture (10 μl instead of 500μl). There was a high correlation between our method and the results of routine laboratory (r2=0.96, p<0.0001 n=40). For all parameters intra-assay variance was less than 7 %. Conclusions: In patients with low blood volume such as neonates and in critically ill infants every effort has to be taken to reduce the blood volume needed for diagnostics. With this method only 2% of standard sample volume is needed to generate a differential blood picture. Costs are below that of routine laboratory. We suggest this method to be established in paediatric cardiology for routine diagnostics and for resource poor settings.
Karbasi, Mohamad-Hadi; Jahanparast, Babak; Shamsipur, Mojtaba; Hassan, Jalal
2009-10-15
Multielement simultaneous determination of 35 trace elements in environmental samples was carried out by inductively coupled plasma emission spectrometry (ICP-OES) after preconcentration with octadecyl silicagel, modified with aurin tricarboxylic acid (Aluminon). Optimal experimental conditions including pH of sample solution, sample volume, sample and eluent flow rate, type, concentration and volume of eluent and foreign ions effect were investigated and established. Trace element ions in aqueous solution were quantitatively adsorbed onto octadecyl silicagel modified with aurin tricarboxylic acid at pH 8.0 with a flow rate of 11.0 mL min(-1). The adsorbed element ions were eluted with 3-5 mL of 0.5 mol L(-1) HNO(3) at a flow rate of 10.0 mL min(-1) and analyzed by ICP-OES simultaneously. The proposed method has at least preconcentration factor of 100 in water samples, which results high sensitive detection of ultra-trace and trace analysis. The present methodology gave recoveries better than 70% and RSD less than 16%.
Pore water sampling in acid sulfate soils: a new peeper method.
Johnston, Scott G; Burton, Edward D; Keene, Annabelle F; Bush, Richard T; Sullivan, Leigh A; Isaacson, Lloyd
2009-01-01
This study describes the design, deployment, and application of a modified equilibration dialysis device (peeper) optimized for sampling pore waters in acid sulfate soils (ASS). The modified design overcomes the limitations of traditional-style peepers, when sampling firm ASS materials over relatively large depth intervals. The new peeper device uses removable, individual cells of 25 mL volume housed in a 1.5 m long rigid, high-density polyethylene rod. The rigid housing structure allows the device to be inserted directly into relatively firm soils without requiring a supporting frame. The use of removable cells eliminates the need for a large glove-box after peeper retrieval, thus simplifying physical handling. Removable cells are easily maintained in an inert atmosphere during sample processing and the 25-mL sample volume is sufficient for undertaking multiple analyses. A field evaluation of equilibration times indicates that 32 to 38 d of deployment was necessary. Overall, the modified method is simple and effective and well suited to acquisition and processing of redox-sensitive pore water profiles>1 m deep in acid sulfate soil or any other firm wetland soils.
Measurement of the bed material of gravel-bed rivers
Milhous, R.T.; ,
2002-01-01
The measurement of the physical properties of a gravel-bed river is important in the calculation of sediment transport and physical habitat values for aquatic animals. These properties are not always easy to measure. One recent report on flushing of fines from the Klamath River did not contain information on one location because the grain size distribution of the armour could not be measured on a dry river bar. The grain size distribution could have been measured using a barrel sampler and converting the measurements to the same as would have been measured if a dry bar existed at the site. In another recent paper the porosity was calculated from an average value relation from the literature. The results of that paper may be sensitive to the actual value of porosity. Using the bulk density sampling technique based on a water displacement process presented in this paper the porosity could have been calculated from the measured bulk density. The principle topics of this paper are the measurement of the size distribution of the armour, and measurement of the porosity of the substrate. The 'standard' method of sampling of the armour is to do a Wolman-type count of the armour on a dry section of the river bed. When a dry bar does not exist the armour in an area of the wet streambed is to sample and the measurements transformed analytically to the same type of results that would have been obtained from the standard Wolman procedure. A comparison of the results for the San Miguel River in Colorado shows significant differences in the median size of the armour. The method use to determine the porosity is not 'high-tech' and there is a need improve knowledge of the porosity because of the importance of porosity in the aquatic ecosystem. The technique is to measure the in-situ volume of a substrate sample by measuring the volume of a frame over the substrate and then repeated the volume measurement after the sample is obtained from within the frame. The difference in the volumes is the volume of the sample.
High-Dimensional Function Approximation With Neural Networks for Large Volumes of Data.
Andras, Peter
2018-02-01
Approximation of high-dimensional functions is a challenge for neural networks due to the curse of dimensionality. Often the data for which the approximated function is defined resides on a low-dimensional manifold and in principle the approximation of the function over this manifold should improve the approximation performance. It has been show that projecting the data manifold into a lower dimensional space, followed by the neural network approximation of the function over this space, provides a more precise approximation of the function than the approximation of the function with neural networks in the original data space. However, if the data volume is very large, the projection into the low-dimensional space has to be based on a limited sample of the data. Here, we investigate the nature of the approximation error of neural networks trained over the projection space. We show that such neural networks should have better approximation performance than neural networks trained on high-dimensional data even if the projection is based on a relatively sparse sample of the data manifold. We also find that it is preferable to use a uniformly distributed sparse sample of the data for the purpose of the generation of the low-dimensional projection. We illustrate these results considering the practical neural network approximation of a set of functions defined on high-dimensional data including real world data as well.
NASA Astrophysics Data System (ADS)
Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten
2014-05-01
Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly < 0.15 permil) and accuracy (R2 = 0.9997, i.e. comparison TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for δ13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (< 2 mgC/L), were correctly analyzed without any pre-concentration. Moreover, TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD < 0.23 permil). In summary, the TOC-IRMS performs fast and reliable analysis of DOC concentration and δ13C in aqueous samples, without any pre-concentration/freeze-drying. Flexible usage is highlighted by automated, online analysis, a variable injection volume, high throughput and no extensive maintenance. Sample analysis is simple, using small aliquots and with minimal sample preparation. Further investigations should focus on complex, saline matrices and very low DOC concentrations, to achieve a potential lower limit of 0.2 mgC/L. High-resolution, routine delta 13C analysis of DOC by TOC-IRMS offers opportunities for wide-scale application in terrestrial, freshwater and marine research to elucidate the role of DOC in biogeochemical processes and ecosystem functioning.
Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M
2013-06-01
Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.
NASA Astrophysics Data System (ADS)
Yan, Xiaozhi; He, Duanwei; Xu, Chao; Ren, Xiangting; Zhou, Xiaoling; Liu, Shenzuo
2012-12-01
A new method is introduced for investigating the compressibility of solids under high pressure by in situ electrical resistance measurement of a manganin wire, which is wrapped around the sample. This method does not rely on the lattice parameters measurement, and the continuous volume change of the sample versus pressure can be obtained. Therefore, it is convenient to look at the compressibility of solids, especially for the X-ray diffraction amorphous materials. The I-II and II-III phase transition of Bi accompanying with volume change of 4.5% and 3.5% has been detected using the method, respectively, while the volume change for the phase transition of Tl occurring at 3.67 GPa is determined as 0.5%. The fit of the third-order Birch-Murnaghan equation of state to our data yields a zero-pressure bulk modulus K 0=28.98±0.03 GPa for NaCl and 6.97±0.02 GPa for amorphous red phosphorus.
ERTS data user investigation to develop a multistage forest sampling inventory system
NASA Technical Reports Server (NTRS)
Langley, P. G.; Vanroessel, J. W. (Principal Investigator)
1973-01-01
The author has identified the following significant results. A unique digital timber volume estimation system was developed for use with the MSS CCT tapes. The system was tested on a 64-square mile area in Northern California's Trinity Alps. The outcome of a systematic experiment, in which several possible combinations of bands 5 and 7 and a contrast measure were tried, showed that an estimated gain in precision of 50% can be obtained in a multistage sampling design. The difference between bands 5 and 7 proved to be of special importance for the estimation of biomass in the form of timber volume. In addition, an interpretation model for high flight U2 photographs was developed. A maximum multiple correlation coefficient of 0.74 was obtained for the regression model, explaining 55% of the variation in timber volume as estimated from aerial photos and ground measurments. An interpretation model for MSS color composites is in the testing stage.
Zhang, Han; Dong, Bing-Zhi
2012-09-01
An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.
Farajmand, Bahman; Esteki, Mahnaz; Koohpour, Elham; Salmani, Vahid
2017-04-01
The reversed-phase mode of single drop microextraction has been used as a preparation method for the extraction of some phenolic antioxidants from edible oil samples. Butylated hydroxyl anisole, tert-butylhydroquinone and butylated hydroxytoluene were employed as target compounds for this study. High-performance liquid chromatography followed by fluorescence detection was applied for final determination of target compounds. The most interesting feature of this study is the application of a disposable insulin syringe with some modification for microextraction procedure that efficiently improved the volume and stability of the solvent microdrop. Different parameters such as the type and volume of solvent, sample stirring rate, extraction temperature, and time were investigated and optimized. Analytical performances of the method were evaluated under optimized conditions. Under the optimal conditions, relative standard deviations were between 4.4 and 10.2%. Linear dynamic ranges were 20-10 000 to 2-1000 μg/g (depending on the analytes). Detection limits were 5-670 ng/g. Finally, the proposed method was successfully used for quantification of the antioxidants in some edible oil samples prepared from market. Relative recoveries were achieved from 88 to 111%. The proposed method had a simplicity of operation, low cost, and successful application for real samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio
2007-02-12
A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.
More practical critical height sampling.
Thomas B. Lynch; Jeffrey H. Gove
2015-01-01
Critical Height Sampling (CHS) (Kitamura 1964) can be used to predict cubic volumes per acre without using volume tables or equations. The critical height is defined as the height at which the tree stem appears to be in borderline condition using the point-sampling angle gauge (e.g. prism). An estimate of cubic volume per acre can be obtained from multiplication of the...
Revelsky, A I; Samokhin, A S; Virus, E D; Rodchenkov, G M; Revelsky, I A
2011-04-01
The method of high sensitive gas chromatographic/time-of-flight mass-spectrometric (GC/TOF-MS) analysis of steroids was developed. Low-resolution TOF-MS instrument (with fast spectral acquisition rate) was used. This method is based on the formation of the silyl derivatives of steroids; exchange of the reagent mixture (pyridine and N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA)) for tert-butylmethylether; offline large sample volume injection of this solution based on sorption concentration of the respective derivatives from the vapour-gas mixture flow formed from the solution and inert gas flows; and entire analytes solvent-free concentrate transfer into the injector of the gas chromatograph. Detection limits for 100 µl sample solution volume were 0.5-2 pg/µl (depending on the component). Application of TOF-MS model 'TruTOF' (Leco, St Joseph, MO, USA) coupled with gas chromatograph and ChromaTOF software (Leco, St Joseph, MO, USA) allowed extraction of the full mass spectra and resolving coeluted peaks. Due to use of the proposed method (10 µl sample aliquot) and GC/TOF-MS, two times more steroid-like compounds were registered in the urine extract in comparison with the injection of 1 µl of the same sample solution. Copyright © 2010 John Wiley & Sons, Ltd.
Ray Casting of Large Multi-Resolution Volume Datasets
NASA Astrophysics Data System (ADS)
Lux, C.; Fröhlich, B.
2009-04-01
High quality volume visualization through ray casting on graphics processing units (GPU) has become an important approach for many application domains. We present a GPU-based, multi-resolution ray casting technique for the interactive visualization of massive volume data sets commonly found in the oil and gas industry. Large volume data sets are represented as a multi-resolution hierarchy based on an octree data structure. The original volume data is decomposed into small bricks of a fixed size acting as the leaf nodes of the octree. These nodes are the highest resolution of the volume. Coarser resolutions are represented through inner nodes of the hierarchy which are generated by down sampling eight neighboring nodes on a finer level. Due to limited memory resources of current desktop workstations and graphics hardware only a limited working set of bricks can be locally maintained for a frame to be displayed. This working set is chosen to represent the whole volume at different local resolution levels depending on the current viewer position, transfer function and distinct areas of interest. During runtime the working set of bricks is maintained in CPU- and GPU memory and is adaptively updated by asynchronously fetching data from external sources like hard drives or a network. The CPU memory hereby acts as a secondary level cache for these sources from which the GPU representation is updated. Our volume ray casting algorithm is based on a 3D texture-atlas in GPU memory. This texture-atlas contains the complete working set of bricks of the current multi-resolution representation of the volume. This enables the volume ray casting algorithm to access the whole working set of bricks through only a single 3D texture. For traversing rays through the volume, information about the locations and resolution levels of visited bricks are required for correct compositing computations. We encode this information into a small 3D index texture which represents the current octree subdivision on its finest level and spatially organizes the bricked data. This approach allows us to render a bricked multi-resolution volume data set utilizing only a single rendering pass with no loss of compositing precision. In contrast most state-of-the art volume rendering systems handle the bricked data as individual 3D textures, which are rendered one at a time while the results are composited into a lower precision frame buffer. Furthermore, our method enables us to integrate advanced volume rendering techniques like empty-space skipping, adaptive sampling and preintegrated transfer functions in a very straightforward manner with virtually no extra costs. Our interactive volume ray tracing implementation allows high quality visualizations of massive volume data sets of tens of Gigabytes in size on standard desktop workstations.
Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano-Furukawa, A., E-mail: sano.asami@jaea.go.jp; Hattori, T.; J-PARC Center, Japan Atomic Energy Agency, Ibaraki 319-1195
2014-11-15
We developed a six-axis multi-anvil press, ATSUHIME, for high-pressure and high-temperature in situ time-of-flight neutron powder diffraction experiments. The press has six orthogonally oriented hydraulic rams that operate individually to compress a cubic sample assembly. Experiments indicate that the press can generate pressures up to 9.3 GPa and temperatures up to 2000 K using a 6-6-type cell assembly, with available sample volume of about 50 mm{sup 3}. Using a 6-8-type cell assembly, the available conditions expand to 16 GPa and 1273 K. Because the six-axis press has no guide blocks, there is sufficient space around the sample to use themore » aperture for diffraction and place an incident slit, radial collimators, and a neutron imaging camera close to the sample. Combination of the six-axis press and the collimation devices realized high-quality diffraction pattern with no contamination from the heater or the sample container surrounding the sample. This press constitutes a new tool for using neutron diffraction to study the structures of crystals and liquids under high pressures and temperatures.« less
Volume collapse phase transitions in cerium-praseodymium alloys under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.
Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less
Volume collapse phase transitions in cerium-praseodymium alloys under high pressure
Perreault, Christopher S.; Velisavljevic, Nenad; Samudrala, Gopi K.; ...
2018-06-08
Cerium-12at%Praseodymium(Ce 0.88Pr 0.12) and Ce-50at%Praseodymium(Ce 0.50Pr 0.50) alloy samples that contain a random solid-solution of Ce (4f1 (J=5/2)) and Pr (4f2 (J=4)) localized f-states have been studied by angle dispersive x-ray diffraction in a diamond anvil cell to a pressure of 65 GPa and 150 GPa respectively using a synchrotron source. Ce 0.88Pr 0.12 alloy crystallizes in a face-centered cubic (γ-phase) structure at ambient conditions, while Ce 0.50Pr 0.50 alloy crystallizes in the double hexagonal close packed (dhcp) structure at ambient conditions. Two distinct volume collapse transitions are observed in Ce 0.88Pr 0.12 alloy at 1.5 GPa and 18 GPamore » with volume change of 8.5% and 3% respectively. In contrast, Ce 0.50Pr 0.50 alloy shows only a single volume collapse of 5.6% at 20 GPa on phase transformation to α-Uranium structure under high pressure. Electrical transport measurements under high pressure show anomalies in electrical resistance at phase transitions for both compositions of this alloy.« less
High lung volume increases stress failure in pulmonary capillaries
NASA Technical Reports Server (NTRS)
Fu, Z.; Costello, M. L.; Tsukimoto, K.; Prediletto, R.; Elliott, A. R.; Mathieu-Costello, O.; West, J. B.
1992-01-01
We previously showed that when pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to test whether stress failure occurred more frequently at high than at low lung volumes for the same Ptm. Lungs of anesthetized rabbits were inflated to a transpulmonary pressure of 20 cmH2O, perfused with autologous blood at 32.5 or 2.5 cmH2O Ptm, and fixed by intravascular perfusion. Samples were examined by both transmission and scanning electron microscopy. The results were compared with those of a previous study in which the lung was inflated to a transpulmonary pressure of 5 cmH2O. There was a large increase in the frequency of stress failure of the capillary walls at the higher lung volume. For example, at 32.5 cmH2O Ptm, the number of endothelial breaks per millimeter cell lining was 7.1 +/- 2.2 at the high lung volume compared with 0.7 +/- 0.4 at the low lung volume. The corresponding values for epithelium were 8.5 +/- 1.6 and 0.9 +/- 0.6. Both differences were significant (P less than 0.05). At 52.5 cmH2O Ptm, the results for endothelium were 20.7 +/- 7.6 (high volume) and 7.1 +/- 2.1 (low volume), and the corresponding results for epithelium were 32.8 +/- 11.9 and 11.4 +/- 3.7. At 32.5 cmH2O Ptm, the thickness of the blood-gas barrier was greater at the higher lung volume, consistent with the development of more interstitial edema. Ballooning of the epithelium caused by accumulation of edema fluid between the epithelial cell and its basement membrane was seen at 32.5 and 52.5 cmH2O Ptm. At high lung volume, the breaks tended to be narrower and fewer were oriented perpendicular to the axis of the pulmonary capillaries than at low lung volumes. Transmission and scanning electron microscopy measurements agreed well. Our findings provide a physiological mechanism for other studies showing increased capillary permeability at high states of lung inflation.
NASA Astrophysics Data System (ADS)
Kunert, Anna Theresa; Scheel, Jan Frederik; Helleis, Frank; Klimach, Thomas; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine
2016-04-01
Freezing of water above homogeneous freezing is catalyzed by ice nucleation active (INA) particles called ice nuclei (IN), which can be of various inorganic or biological origin. The freezing temperatures reach up to -1 °C for some biological samples and are dependent on the chemical composition of the IN. The standard method to analyze IN in solution is the droplet freezing assay (DFA) established by Gabor Vali in 1970. Several modifications and improvements were already made within the last decades, but they are still limited by either small droplet numbers, large droplet volumes or inadequate separation of the single droplets resulting in mutual interferences and therefore improper measurements. The probability that miscellaneous IN are concentrated together in one droplet increases with the volume of the droplet, which can be described by the Poisson distribution. At a given concentration, the partition of a droplet into several smaller droplets leads to finely dispersed IN resulting in better statistics and therefore in a better resolution of the nucleation spectrum. We designed a new customized high-performance droplet freezing assay (HP-DFA), which represents an upgrade of the previously existing DFAs in terms of temperature range and statistics. The necessity of observing freezing events at temperatures lower than homogeneous freezing due to freezing point depression, requires high-performance thermostats combined with an optimal insulation. Furthermore, we developed a cooling setup, which allows both huge and tiny temperature changes within a very short period of time. Besides that, the new DFA provides the analysis of more than 750 droplets per run with a small droplet volume of 5 μL. This enables a fast and more precise analysis of biological samples with complex IN composition as well as better statistics for every sample at the same time.
Srinivasu, Pavuluri; Suresh, Koppoju; Datt, Gopal; Abhayankar, Ashutosh C; Rao, Pothuraju Nageswara; Lakshmi Kantam, Mannepalli; Bhargava, Suresh K; Tang, Jing; Yamauchi, Yusuke
2014-11-07
Ordered mesoporous ferrosilicate materials with highly dispersed iron oxide nanoparticles are directly synthesized through a hydrothermal approach under acidic conditions. The obtained samples possess a high surface area (up to 1236 m(2) g(-1)) and a large pore volume (up to 1.1 cm(3) g(-1)). By changing the amount of iron content, the magnetic properties can be tuned.
Miller, B.; Jimenez, M.; Bridle, H.
2016-01-01
Inertial focusing is a microfluidic based separation and concentration technology that has expanded rapidly in the last few years. Throughput is high compared to other microfluidic approaches although sample volumes have typically remained in the millilitre range. Here we present a strategy for achieving rapid high volume processing with stacked and cascaded inertial focusing systems, allowing for separation and concentration of particles with a large size range, demonstrated here from 30 μm–300 μm. The system is based on curved channels, in a novel toroidal configuration and a stack of 20 devices has been shown to operate at 1 L/min. Recirculation allows for efficient removal of large particles whereas a cascading strategy enables sequential removal of particles down to a final stage where the target particle size can be concentrated. The demonstration of curved stacked channels operating in a cascaded manner allows for high throughput applications, potentially replacing filtration in applications such as environmental monitoring, industrial cleaning processes, biomedical and bioprocessing and many more. PMID:27808244
NASA Astrophysics Data System (ADS)
Zhao, Bingshan; He, Man; Chen, Beibei; Xu, Hongrun; Hu, Bin
2018-05-01
In this study, poly(1-vinylimidazole) functionalized gold ion imprinted polymer coated magnetic nanoparticles (MNPs@PVIM-Au-IIP) were prepared and characterized. The adsorption behaviors of the prepared MNPs@PVIM-Au-IIP toward gold ions (Au(III)) were studied, it was found that MNPs@PVIM-Au-IIP has good selectivity, high adsorption capacity (185.4 mg g-1) and fast adsorption kinetic for Au(III). Based on it, a new method of ion imprinted magnetic solid phase extraction (II-MSPE) coupled with graphite furnace atomic absorption spectrometry (GFAAS) detection was proposed for the analysis of trace Au(III) in real samples with complicated matrix. Factors affecting MSPE including sample pH, desorption reagent, elution concentration and volume, elution time, sample volume and adsorption time were optimized. With high enrichment factor of 100-fold, the detection limit of the proposed method is 7.9 ng L-1 for Au(III) with the relative standard deviation of 7.4% (c = 50 ng L-1, n = 7). In order to validate the accuracy of the proposed method, the Certified Reference Material of GBW07293 geological sample (platinpalladium ore) was analyzed, and the determined value was in good agreement with the certified value. The proposed II-MSPE-GFAAS method is simple, fast, selective, sensitive and has been successfully applied in the determination of trace Au in ore, sediment, environmental water and human urine samples with satisfactory results.
Liaud, Céline; Brucher, Michel; Schummer, Claude; Coscollà, Clara; Wolff, Hélène; Schwartz, Jean-Jacques; Yusà, Vicent; Millet, Maurice
2016-10-02
Atmospheric samples have been collected between 14 March and 12 September 2012 on a 2-week basis (15 days of sampling and exchange of traps each 7 days) in Strasbourg (east of France) for the analysis of 43 pesticides. Samples (particle and gas phases) were separately extracted using Accelerated Solvent Extraction (ASE) and pre-concentrated by Solid Phase Micro-Extraction (SPME) before analysis by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Four SPME consecutive injections at distinct temperatures were made in order to increase the sensitivity of detection for the all monitored pesticides. Currently used detected pesticides can be grouped in four classes; those used in maize crops (acetochlor, benoxacor, dicamba, s-metolachlor, pendimethalin, and bromoxynil), in cereal crops (benoxacor, chlorothalonil, fenpropimorph, and propiconazole), in vineyards (tebuconazole), and as herbicides for orchards, meadows of green spaces (2,4-MCPA, trichlopyr). This is in accordance with the diversity of crops found in the Alsace region and trends observed are in accordance with the period of application of these pesticides. Variations observed permit also to demonstrate that the long time sampling duration used in this study is efficient to visualize temporal variations of airborne pesticides concentrations. Then, long time high-volume sampling could be a simple method permitting atmospheric survey of atmospheric contamination without any long analysis time and consequently low cost.
Wave optics theory and 3-D deconvolution for the light field microscope
Broxton, Michael; Grosenick, Logan; Yang, Samuel; Cohen, Noy; Andalman, Aaron; Deisseroth, Karl; Levoy, Marc
2013-01-01
Light field microscopy is a new technique for high-speed volumetric imaging of weakly scattering or fluorescent specimens. It employs an array of microlenses to trade off spatial resolution against angular resolution, thereby allowing a 4-D light field to be captured using a single photographic exposure without the need for scanning. The recorded light field can then be used to computationally reconstruct a full volume. In this paper, we present an optical model for light field microscopy based on wave optics, instead of previously reported ray optics models. We also present a 3-D deconvolution method for light field microscopy that is able to reconstruct volumes at higher spatial resolution, and with better optical sectioning, than previously reported. To accomplish this, we take advantage of the dense spatio-angular sampling provided by a microlens array at axial positions away from the native object plane. This dense sampling permits us to decode aliasing present in the light field to reconstruct high-frequency information. We formulate our method as an inverse problem for reconstructing the 3-D volume, which we solve using a GPU-accelerated iterative algorithm. Theoretical limits on the depth-dependent lateral resolution of the reconstructed volumes are derived. We show that these limits are in good agreement with experimental results on a standard USAF 1951 resolution target. Finally, we present 3-D reconstructions of pollen grains that demonstrate the improvements in fidelity made possible by our method. PMID:24150383
NASA Astrophysics Data System (ADS)
Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.
2016-02-01
Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.
Health tourism on the rise? Evidence from the Balance of Payments Statistics.
Loh, Chung-Ping A
2014-09-01
The study assesses the presence and magnitude of global trends in health tourism using health-related travel (HRT) spending reported in the International Monetary Fund's Balance of Payments Statistics database. Linear regression and quantile regression are applied to estimate secular trends of the import and export of HRT based on a sample of countries from 2003 to 2009. The results show that from 2003 to 2009 the import and export of health tourism rose among countries with a high volume of such activities (accounting for the upper 40% of the countries), but not among those with a low volume. The uneven growth in health tourism has generated greater contrast between countries with high and low volumes of health tourism activities. However, the growth in the total import of health tourism did not outpace the population growth, implying that in general the population's tendency to engage in health tourism remained static.
Efficient high-quality volume rendering of SPH data.
Fraedrich, Roland; Auer, Stefan; Westermann, Rüdiger
2010-01-01
High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.
Nemes, Peter; Hoover, William J; Keire, David A
2013-08-06
Sensors with high chemical specificity and enhanced sample throughput are vital to screening food products and medical devices for chemical or biochemical contaminants that may pose a threat to public health. For example, the rapid detection of oversulfated chondroitin sulfate (OSCS) in heparin could prevent reoccurrence of heparin adulteration that caused hundreds of severe adverse events including deaths worldwide in 2007-2008. Here, rapid pyrolysis is integrated with direct analysis in real time (DART) mass spectrometry to rapidly screen major glycosaminoglycans, including heparin, chondroitin sulfate A, dermatan sulfate, and OSCS. The results demonstrate that, compared to traditional liquid chromatography-based analyses, pyrolysis mass spectrometry achieved at least 250-fold higher sample throughput and was compatible with samples volume-limited to about 300 nL. Pyrolysis yielded an abundance of fragment ions (e.g., 150 different m/z species), many of which were specific to the parent compound. Using multivariate and statistical data analysis models, these data enabled facile differentiation of the glycosaminoglycans with high throughput. After method development was completed, authentically contaminated samples obtained during the heparin crisis by the FDA were analyzed in a blinded manner for OSCS contamination. The lower limit of differentiation and detection were 0.1% (w/w) OSCS in heparin and 100 ng/μL (20 ng) OSCS in water, respectively. For quantitative purposes the linear dynamic range spanned approximately 3 orders of magnitude. Moreover, this chemical readout was successfully employed to find clues in the manufacturing history of the heparin samples that can be used for surveillance purposes. The presented technology and data analysis protocols are anticipated to be readily adaptable to other chemical and biochemical agents and volume-limited samples.
Dilution effects on ultrafine particle emissions from Euro 5 and Euro 6 diesel and gasoline vehicles
NASA Astrophysics Data System (ADS)
Louis, Cédric; Liu, Yao; Martinet, Simon; D'Anna, Barbara; Valiente, Alvaro Martinez; Boreave, Antoinette; R'Mili, Badr; Tassel, Patrick; Perret, Pascal; André, Michel
2017-11-01
Dilution and temperature used during sampling of vehicle exhaust can modify particle number concentration and size distribution. Two experiments were performed on a chassis dynamometer to assess exhaust dilution and temperature on particle number and particle size distribution for Euro 5 and Euro 6 vehicles. In the first experiment, the effects of dilution (ratio from 8 to 4 000) and temperature (ranging from 50 °C to 150 °C) on particle quantification were investigated directly from tailpipe for a diesel and a gasoline Euro 5 vehicles. In the second experiment, particle emissions from Euro 6 diesel and gasoline vehicles directly sampled from the tailpipe were compared to the constant volume sampling (CVS) measurements under similar sampling conditions. Low primary dilutions (3-5) induced an increase in particle number concentration by a factor of 2 compared to high primary dilutions (12-20). Low dilution temperatures (50 °C) induced 1.4-3 times higher particle number concentration than high dilution temperatures (150 °C). For the Euro 6 gasoline vehicle with direct injection, constant volume sampling (CVS) particle number concentrations were higher than after the tailpipe by a factor of 6, 80 and 22 for Artemis urban, road and motorway, respectively. For the same vehicle, particle size distribution measured after the tailpipe was centred on 10 nm, and particles were smaller than the ones measured after CVS that was centred between 50 nm and 70 nm. The high particle concentration (≈106 #/cm3) and the growth of diameter, measured in the CVS, highlighted aerosol transformations, such as nucleation, condensation and coagulation occurring in the sampling system and this might have biased the particle measurements.
3D imaging of optically cleared tissue using a simplified CLARITY method and on-chip microscopy
Zhang, Yibo; Shin, Yoonjung; Sung, Kevin; Yang, Sam; Chen, Harrison; Wang, Hongda; Teng, Da; Rivenson, Yair; Kulkarni, Rajan P.; Ozcan, Aydogan
2017-01-01
High-throughput sectioning and optical imaging of tissue samples using traditional immunohistochemical techniques can be costly and inaccessible in resource-limited areas. We demonstrate three-dimensional (3D) imaging and phenotyping in optically transparent tissue using lens-free holographic on-chip microscopy as a low-cost, simple, and high-throughput alternative to conventional approaches. The tissue sample is passively cleared using a simplified CLARITY method and stained using 3,3′-diaminobenzidine to target cells of interest, enabling bright-field optical imaging and 3D sectioning of thick samples. The lens-free computational microscope uses pixel super-resolution and multi-height phase recovery algorithms to digitally refocus throughout the cleared tissue and obtain a 3D stack of complex-valued images of the sample, containing both phase and amplitude information. We optimized the tissue-clearing and imaging system by finding the optimal illumination wavelength, tissue thickness, sample preparation parameters, and the number of heights of the lens-free image acquisition and implemented a sparsity-based denoising algorithm to maximize the imaging volume and minimize the amount of the acquired data while also preserving the contrast-to-noise ratio of the reconstructed images. As a proof of concept, we achieved 3D imaging of neurons in a 200-μm-thick cleared mouse brain tissue over a wide field of view of 20.5 mm2. The lens-free microscope also achieved more than an order-of-magnitude reduction in raw data compared to a conventional scanning optical microscope imaging the same sample volume. Being low cost, simple, high-throughput, and data-efficient, we believe that this CLARITY-enabled computational tissue imaging technique could find numerous applications in biomedical diagnosis and research in low-resource settings. PMID:28819645
Nanocomposites with increased energy density through high aspect ratio PZT nanowires.
Tang, Haixiong; Lin, Yirong; Andrews, Clark; Sodano, Henry A
2011-01-07
High energy storage plays an important role in the modern electric industry. Herein, we investigated the role of filler aspect ratio in nanocomposites for energy storage. Nanocomposites were synthesized using lead zirconate titanate (PZT) with two different aspect ratio (nanowires, nanorods) fillers at various volume fractions dispersed in a polyvinylidene fluoride (PVDF) matrix. The permittivity constants of composites containing nanowires (NWs) were higher than those with nanorods (NRs) at the same inclusion volume fraction. It was also indicated that the high frequency loss tangent of samples with PZT nanowires was smaller than for those with nanorods, demonstrating the high electrical energy storage efficiency of the PZT NW nanocomposite. The high aspect ratio PZT NWs showed a 77.8% increase in energy density over the lower aspect ratio PZT NRs, under an electric field of 15 kV mm(-1) and 50% volume fraction. The breakdown strength was found to decrease with the increasing volume fraction of PZT NWs, but to only change slightly from a volume fraction of around 20%-50%. The maximum calculated energy density of nanocomposites is as high as 1.158 J cm(-3) at 50% PZT NWs in PVDF. Since the breakdown strength is lower compared to a PVDF copolymer such as poly(vinylidene fluoride-tertrifluoroethylene-terchlorotrifluoroethylene) P(VDF-TreEE-CTFE) and poly(vinylidene fluoride-co-hexafluoropropylene) P(VDF-HFP), the energy density of the nanocomposite could be significantly increased through the use of PZT NWs and a polymer with greater breakdown strength. These results indicate that higher aspect ratio fillers show promising potential to improve the energy density of nanocomposites, leading to the development of advanced capacitors with high energy density.
The Role of the Surgeon on Outcomes of Vaginal Prolapse Surgery With Mesh.
Eilber, Karyn S; Alperin, Marianna; Khan, Aqsa; Wu, Ning; Pashos, Chris L; Clemens, J Quentin; Anger, Jennifer T
Adverse outcomes after surgery for pelvic organ prolapse (POP) with mesh are often attributed to the mesh material with little attention paid to the influence of surgeon factors. We used a national data set to determine whether surgeon case volume and specialty influenced vaginal prolapse surgery outcomes with mesh. Public Use File data on a 5% random national sample of female Medicare beneficiaries were obtained from the Centers for Medicare and Medicaid Services. Women with a diagnosis of POP who underwent surgery with mesh between 2007 and 2008 were identified by relevant International Classification of Diseases, 9th Revision, Clinical Modification and Current Procedural Terminology, 4th Edition procedure codes. Outcomes were compared by surgeon case volume and specialty. From 2007 to 2008, 1657 surgeries for POP were performed with mesh. Low-, intermediate-, and high-volume surgeons performed 881 (53%), 408 (25%), and 368 (22%) of the cases with mesh, respectively. The cumulative reoperation rates for low-, intermediate-, and high-volume providers were 6%, 2%, and 3%, respectively. The difference in reoperation rates between low and intermediate and low- and high-volume surgeons was statistically significant (P = 0.007 and 0.003, respectively). There was no significant difference in reoperation rates between gynecologists and urologists when vaginal mesh was implanted for POP surgery. Low-volume surgeons performed most of the vaginal prolapse repairs with mesh and had significantly higher reoperation rates. Surgeon experience must be a consideration when reporting mesh-related complications of POP surgery.
Extraction of citral oil from lemongrass (Cymbopogon Citratus) by steam-water distillation technique
NASA Astrophysics Data System (ADS)
Alam, P. N.; Husin, H.; Asnawi, T. M.; Adisalamun
2018-04-01
In Indonesia, production of citral oil from lemon grass (Cymbopogon Cytratus) is done by a traditional technique whereby a low yield results. To improve the yield, an appropriate extraction technology is required. In this research, a steam-water distillation technique was applied to extract the essential oil from the lemongrass. The effects of sample particle size and bed volume on yield and quality of citral oil produced were investigated. The drying and refining time of 2 hours were used as fixed variables. This research results that minimum citral oil yield of 0.53% was obtained on sample particle size of 3 cm and bed volume of 80%, whereas the maximum yield of 1.95% on sample particle size of 15 cm and bed volume of 40%. The lowest specific gravity of 0.80 and the highest specific gravity of 0.905 were obtained on sample particle size of 8 cm with bed volume of 80% and particle size of 12 cm with bed volume of 70%, respectively. The lowest refractive index of 1.480 and the highest refractive index of 1.495 were obtained on sample particle size of 8 cm with bed volume of 70% and sample particle size of 15 cm with bed volume of 40%, respectively. The solubility of the produced citral oil in alcohol was 70% in ratio of 1:1, and the citral oil concentration obtained was around 79%.
Investigation to develop a multistage forest sampling inventory system using ERTS-1 imagery
NASA Technical Reports Server (NTRS)
Langley, P. G.; Vanroessel, J. W. (Principal Investigator); Wert, S. L.
1975-01-01
The author has identified the following significant results. The annotation system produced a RMSE of about 200 m ground distance in the MSS data system with the control data used. All the analytical MSS interpretation models tried were highly significant. However, the gains in forest sampling efficiency that can be achieved by using the models vary from zero to over 50 percent depending on the area to which they are applied and the sampling method used. Among the sampling methods tried, regression sampling yielded substantial and the most consistent gains. The single most significant variable in the interpretation model was the difference between bands 5 and 7. The contrast variable, computed by the Hadamard transform was significant but did not contribute much to the interpretation model. Forest areas containing very large timber volumes because of large tree sizes were not separable from areas of similar crown cover but containing smaller trees using ERTS image interpretation only. All correlations between space derived timber volume predictions and estimates obtained from aerial and ground sampling were relatively low but significant and stable. There was a much stronger relationship between variables derived from MSS and U2 data than between U2 and ground data.
The Complete Local-Volume Groups Sample (CLoGS): Early results from X-ray and radio observations
NASA Astrophysics Data System (ADS)
Vrtilek, Jan M.; O'Sullivan, Ewan; David, Laurence P.; Giacintucci, Simona; Kolokythas, Konstantinos
2017-08-01
Although the group environment is the dominant locus of galaxy evolution (in contrast to rich clusters, which contain only a few percent of galaxies), there has been a lack of reliable, representative group samples in the local Universe. In particular, X-ray selected samples are strongly biased in favor of the X-ray bright, centrally-concentrated cool-core systems. In response, we have designed the Complete Local-Volume Groups Sample (CLoGS), an optically-selected statistically-complete sample of 53 groups within 80 Mpc which is intended to overcome the limitations of X-ray selected samples and serve as a representative survey of groups in the local Universe. We have supplemented X-ray data from Chandra and XMM (70% complete to date, using both archival and new observations, with a 26-group high richness subsample 100% complete) with GMRT radio continuum observations (at 235 and 610 MHz, complete for the entire sample). CLoGS includes groups with a wide variety of properties in terms of galaxy population, hot gas content, and AGN power. We here describe early results from the survey, including the range of AGN activity observed in the dominant galaxies, the relative fraction of cool-core and non-cool-core groups in our sample, and the degree of disturbance observed in the IGM.
Huang, Ke-Jing; Li, Jing; Liu, Yan-Ming; Wang, Lan
2013-02-01
The graphene functionalized with (3-aminopropyl) triethoxysilane was synthesized by a simple hydrothermal reaction and applied as SPE sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. These sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large specific surface area of nanoparticles, and only 10 mg of sorbents are required to extract PAHs from 100 mL water samples. Several condition parameters, such as eluent and its volume, adsorbent amount, sample volume, sample pH, and sample flow rate, were optimized to achieve good sensitivity and precision. Under the optimized extraction conditions, the method showed good linearity in the range of 1-100 μg/L, repeatability of the extraction (the RSDs were between 1.8 and 2.9%, n = 6), and satisfactory detection limits of 0.029-0.1 μg/L. The recoveries of PAHs spiked in environmental water samples ranged from 84.6 to 109.5%. All these results demonstrated that this new SPE technique was a viable alternative to conventional enrichment techniques for the extraction and analysis of PAHs in complex samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bohaychuk, Valerie M.; Checkley, Sylvia L.; Gensler, Gary E.; Barrios, Pablo Romero
2009-01-01
Studies to determine baseline levels of microbial contaminants and foodborne bacterial pathogens are needed to evaluate the effectiveness of Hazard Analysis Critical Control Point (HACCP) programs, Good Manufacturing/Production Practices, and various interventions. In 2004 and 2005 poultry carcass rinses from provincially inspected abattoirs in Alberta, Canada, were tested to determine the levels of aerobic plate count bacteria, coliform bacteria, and generic Escherichia coli, the prevalence and levels of Campylobacter spp., and the prevalence of Salmonella spp. and Shiga toxin-producing E. coli (STEC). Samples were collected from 3 high volume and 62 low volume abbatoirs. All samples (1296) were positive for aerobic plate count bacteria, with 98.8% of samples having counts of 100 000 or less colony forming units (CFU)/cm2. Coliform bacteria were isolated from 99.7% of the 1296 carcasses and were recovered at levels of ≤ 1000 CFU/cm2 for 98.3% of the samples. Generic E. coli were recovered from 99.1% of the 1296 carcasses at levels of ≤ 1000 CFU/cm2 for 98.6% of the samples. Seventy five percent of 1234 samples that were tested for Campylobacter were positive; 37.5% of 1295 samples that were tested for Salmonella were positive; and only 2 of 1296 samples tested for STEC were positive (0.15%). PMID:19412397
Thermal Battery Operating Gas Atmosphere Control and Heat Transfer Optimization
2012-09-01
volume of water vapor present at 21.8 C in sample bottles std atm cc 1.533645 Maximum volume of water vapor present at 21.8 C in gas handling system and...sample bottles std atm cc Comparison of gas volumes measured at 838.197 and 1682.297 seconds shows that no water vapor was present and that the gas reacted...temperature of 22.0 ºC torr 0.241556 Maximum volume of water vapor present in one sample bottle std atm cc 0.000194 Maximum weight of water vapor present
Critical length sampling: a method to estimate the volume of downed coarse woody debris
G& #246; ran St& #229; hl; Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey
2010-01-01
In this paper, critical length sampling for estimating the volume of downed coarse woody debris is presented. Using this method, the volume of downed wood in a stand can be estimated by summing the critical lengths of down logs included in a sample obtained using a relascope or wedge prism; typically, the instrument should be tilted 90° from its usual...
Harry V., Jr. Wiant; Michael L. Spangler; John E. Baumgras
2002-01-01
Various taper systems and the centroid method were compared to unbiased volume estimates made by importance sampling for 720 hardwood trees selected throughout the state of West Virginia. Only the centroid method consistently gave volumes estimates that did not differ significantly from those made by importance sampling, although some taper equations did well for most...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Conner, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Connor, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
A field test of cut-off importance sampling for bole volume
Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes
2000-01-01
Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...
Lee, Joo Eun; Park, Eun Cheol; Jang, Suk Yong; Lee, Sang Ah; Choy, Yoon Soo; Kim, Tae Hyun
2018-03-01
Readmission and mortality rates of patients with heart failure are good indicators of care quality. To determine whether hospital resources are associated with care quality for cardiac patients, we analyzed the effect of number of physicians and the combined effects of number of physicians and beds on 30-day readmission and 1-year mortality. We used national cohort sample data of the National Health Insurance Service (NHIS) claims in 2002-2013. Subjects comprised 2345 inpatients (age: >65 years) admitted to acute-care hospitals for heart failure. A multivariate Cox regression was used. Of the 2345 patients hospitalized with heart failure, 812 inpatients (34.6%) were readmitted within 30 days and 190 (8.1%) had died within a year. Heart-failure patients treated at hospitals with low physician volumes had higher readmission and mortality rates than high physician volumes [30-day readmission: hazard ratio (HR)=1.291, 95% confidence interval (CI)=1.020-1.633; 1-year mortality: HR=2.168, 95% CI=1.415-3.321]. Patients admitted to hospitals with low or middle bed and physician volume had higher 30-day readmission and 1-year mortality rates than those admitted to hospitals with high volume (30-day readmission: HR=2.812, 95% CI=1.561-5.066 for middle-volume beds & low-volume physicians, 1-year mortality: HR=8.638, 95% CI=2.072-36.02 for middle-volume beds & low-volume physicians). Physician volume is related to lower readmission and mortality for heart failure. Of interest, 30-day readmission and 1-year mortality were significantly associated with the combined effects of physician and institution bed volume. © Copyright: Yonsei University College of Medicine 2018
Preservation of Liquid Biological Samples
NASA Technical Reports Server (NTRS)
Putcha, Lakshmi (Inventor); Nimmagudda, Ramalingeshwara R. (Inventor)
2000-01-01
The present invention provides a method of preserving a liquid biological sample, comprising the step of: contacting said liquid biological sample with a preservative comprising, sodium benzoate in an amount of at least about 0.15% of the sample (weight/volume) and citric acid in an amount of at least about 0.025% of the sample (weight/volume).
Fazey, Francesca M C; Ryan, Peter G
2016-03-01
Recent estimates suggest that roughly 100 times more plastic litter enters the sea than is found floating at the sea surface, despite the buoyancy and durability of many plastic polymers. Biofouling by marine biota is one possible mechanism responsible for this discrepancy. Microplastics (<5 mm in diameter) are more scarce than larger size classes, which makes sense because fouling is a function of surface area whereas buoyancy is a function of volume; the smaller an object, the greater its relative surface area. We tested whether plastic items with high surface area to volume ratios sank more rapidly by submerging 15 different sizes of polyethylene samples in False Bay, South Africa, for 12 weeks to determine the time required for samples to sink. All samples became sufficiently fouled to sink within the study period, but small samples lost buoyancy much faster than larger ones. There was a direct relationship between sample volume (buoyancy) and the time to attain a 50% probability of sinking, which ranged from 17 to 66 days of exposure. Our results provide the first estimates of the longevity of different sizes of plastic debris at the ocean surface. Further research is required to determine how fouling rates differ on free floating debris in different regions and in different types of marine environments. Such estimates could be used to improve model predictions of the distribution and abundance of floating plastic debris globally. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartholomay, R.C.
1993-12-31
Water from 11 wells completed in the Snake River Plain aquifer at the Idaho National Engineering Laboratory was sampled as Part of the US. Geological Survey`s quality assurance program to determine the effect of Purging different borehole volumes on tritium and strontium-90 concentrations. Wells were selected for sampling on the basis of the length of time it took to purge a borehole volume of water. Samples were collected after purging one, two, and three borehole volumes. The US Department of Energy`s Radiological and Environmental Sciences Laboratory provided analytical services. Statistics were used to determine the reproducibility of analytical results. Themore » comparison between tritium and strontium-90 concentrations after purging one and three borehole volumes and two and three borehole volumes showed that all but two sample pairs with defined numbers were in statistical agreement. Results indicate that concentrations of tritium and strontium-90 are not affected measurably by the number of borehole volumes purged.« less
Music-listening habits with MP3 player in a group of adolescents: a descriptive survey.
Pellegrino, E; Lorini, C; Allodi, G; Buonamici, C; Garofalo, G; Bonaccorsi, G
2013-01-01
Listening to music through portable MP3 players has become a very popular mode among young people and adolescents. The aim of this study is to investigate the behaviors of adolescents engaged in listening to music with MP3 player and the attendance at clubs (pubs, discotheques) where music is played at high volume. Among the 1470 students attending a secondary school in Scandicci (FI) during the school year 2009/2010, 1278 (86.9%) were at school the day of the examination and 1276 completely filled in the questionnaire. Descriptive analysis and univariate and multivariate logistic regression were performed to calculate the degree of association (OR) among the sociodemographic characteristics, listening habits and some factors identified as risky or protective as regards the possibility of developing health disorders. MP3 player users are 88.2% of the sample. Among these, a high proportion engaged behaviours that increase the risk of presenting disorders, including the exposure to high-volume (27.4%). Furthermore, 44.6% use the MP3 while driving. From the regression analysis it emerges that MP3 users showed a sort of addiction: by increasing the time and the occasions of exposure to music, they increased the volume, used maximum or medium-high volume, did not take breaks and did not decrease the volume. The study points out the spread of risky behavior in music listening, so it is necessary to better inform especially the youngsters and achieve specific preventive interventions.
Forest inventory using multistage sampling with probability proportional to size. [Brazil
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Lee, D. C. L.; Hernandezfilho, P.; Shimabukuro, Y. E.; Deassis, O. R.; Demedeiros, J. S.
1984-01-01
A multistage sampling technique, with probability proportional to size, for forest volume inventory using remote sensing data is developed and evaluated. The study area is located in the Southeastern Brazil. The LANDSAT 4 digital data of the study area are used in the first stage for automatic classification of reforested areas. Four classes of pine and eucalypt with different tree volumes are classified utilizing a maximum likelihood classification algorithm. Color infrared aerial photographs are utilized in the second stage of sampling. In the third state (ground level) the time volume of each class is determined. The total time volume of each class is expanded through a statistical procedure taking into account all the three stages of sampling. This procedure results in an accurate time volume estimate with a smaller number of aerial photographs and reduced time in field work.
NASA Technical Reports Server (NTRS)
Noever, David A.
2000-01-01
Resources studies for asteroidal mining evaluation have depended historically on remote sensing analysis for chemical elements. During the November 1998 Leonids meteor shower, a stratospheric balloon and various low-density capture media were used to sample fragments from Comet Tempel-Tuttle debris during a peak Earth crossing. The analysis not only demonstrates how potential sampling strategies may improve the projections for metals or rare elements in astromining, but also benchmarks materials during low temperature (-60 F), high dessication environments as seen during atmospheric exposure. The results indicate high aluminum, magnesium and iron content for various sampled particles recovered, but generalization to the sporadic meteors expected from asteroidal sources will require future improvements in larger sampling volumes before a broad-use strategy for chemical analysis can be described. A repeat of the experimental procedure is planned for the November 1999 Leonids' shower, and various improvements for atmospheric sampling will be discussed.
Patil, Nitin S; Mendhe, Rakesh B; Sankar, Ajeet A; Iyer, Harish
2008-01-11
In preparative chromatography, often the solubility of the sample in the mobile phase is limited, making the mobile phase unsuitable as a solvent for preparation of load. Generally, solvents that have high solubility for the sample also have higher elution strengths than the mobile phase. Additionally, at high loading volumes, these strong sample solvents are known to adversely affect the band profiles leading to poor chromatographic performance. Here, we show that controlling the mobile phase strength during loading and post-load elution resulted in improved band profiles when the sample solvent was stronger than the mobile phase. Such an approach improves performance in preparative chromatography by allowing either higher sample loading or higher organic content in mobile phase (without loss of yield). Alternately, the approach can be used for improvement in performance by increase in yield or product purity.
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao; Prost, Spencer A; Tang, Keqi; Kelly, Ryan T
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of high-precision microsampled blood and plasma mass densitometry
NASA Technical Reports Server (NTRS)
Hinghofer-Szalkay, H.
1986-01-01
The reliability of the mechanical oscillator technique for blood and plasma density measurements on samples of volumes less than 0.1 ml is examined, and a precision of 0.001 g/l is found if plasma-isodensic heparin solution and siliconized densitometers are employed. Sources of measurement errors in the density determinations include storage of plasma samples, inhomogeneity of blood samples, and density reading before adequate temperature equilibration. In tests of plasma sample storage, the best reproducibility was obtained with samples kept at 4 C. Linear correlations were found between plasma density and plasma protein concentration, blood density and blood hemoglobin concentration, and erythrocyte density and MCHC.
Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kyoo Sil; Li, Dongsheng; Sun, Xin
2013-06-01
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) Magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses tomore » induce the fracture by element removal, leading to the prediction of ductility. The results in this study show that the ductility monotonically decreases as the pore volume fraction increases and that the effect of ‘skin region’ on the ductility is noticeable under the condition of same local pore volume fraction in the center region of the sample and its existence can be beneficial for the improvement of ductility. The further synthetic microstructure-based 3D finite element analyses are planned to investigate the effects of pore size and pore size distribution.« less
NASA Astrophysics Data System (ADS)
Romero, Rodrigo; Sienra, Rosario; Richter, Pablo
A rapid analytical approach for determination of polycyclic aromatic hydrocarbons (PAHs) present in real samples of particulate matter (PM10 filters) was investigated, based on the use of water under sub critical conditions, and the subsequent determination by GC-MS (SIM). The method avoids the use of large volumes of organic solvents as dichloromethane, toluene or other unhealthy liquid organic mixtures which are normally used in time-consuming conventional sample preparation methods. By using leaching times <1 h, the method allows determination of PAHs in the range of ng/m 3 (detection limits between 0.05 and 0.2 ng/m 3 for 1458 m 3 of sampled air) with a precision expressed as RSD between 5.6% and 11.2%. The main idea behind this approach is to raise the temperature and pressure of water inside a miniaturized laboratory-made extraction unit and to decrease its dielectric constant from 80 to nearly 20. This effect allows an increase in the solubility of low polarity hydrocarbons such as PAHs. In this way, an extraction step of a few minutes can be sufficient for a quantitative extraction of airborne particles collected in high volume PM10 samplers. Parameters such as: extraction flow, static or dynamic extraction times and water volume were optimized by using a standard reference material. Technical details are given and a comparison using real samples is made between the conventional Soxhlet extraction method and the proposed approach. The proposed approach can be used as a quantitative method to characterize low molecular PAHs and simultaneously as a screening method for high molecular weight PAHs, because the recoveries are not quantitative for molecular weights over 202. In the specific case of the Santiago metropolitan area, due to the frequent occurrence of particulate matter during high pollution episodes, this approach was applied as an efficient short-time screening method for urban PAHs. Application of this screening method is recommended especially during the winter, when periods of clear detriment of the atmospheric and meteorological conditions occur in the area.
Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh
2016-06-01
A novel, simple, and rapid vortex-assisted hollow-fiber liquid-phase microextraction method was developed for the simultaneous extraction of albendazole and triclabendazole from various matrices before their determination by high-performance liquid chromatography with fluorescence detection. Several factors influencing the microextraction efficiency including sample pH, nature and volume of extraction solvent, ionic strength, vortex time, and sample volume were investigated and optimized. Under the optimal conditions, the limits of detection were 0.08 and 0.12 μg/L for albendazole and triclabendazole, respectively. The calibration curves were linear in the concentration ranges of 0.3-50.0 and 0.4-50.0 μg/L with the coefficients of determination of 0.9999 and 0.9995 for albendazole and triclabendazole, respectively. The interday and intraday relative standard deviations for albendazole and triclabendazole at three concentration levels (1.0, 10.0, and 30.0 μg/L) were in the range of 6.0-11.0 and 5.0-7.9%, respectively. The developed method was successfully applied to determine albendazole and triclabendazole in water, milk, honey, and urine samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Behbahani, Mohammad; Najafi, Fatemeh; Bagheri, Saman; Bojdi, Majid Kalate; Hassanlou, Parmoon Ghareh; Bagheri, Akbar
2014-04-01
A simple, rapid, and efficient sample pretreatment technique, based on solvent-based de-emulsification dispersive liquid-liquid microextraction (SD-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for simultaneous preconcentration and trace detection of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid (MCPA) in water and urine samples. Some parameters such as acidity of solution, the amount of salt, type, and volume of extraction solvents, type of disperser/de-emulsifier solvent, and its volume were investigated and optimized. Under optimum extraction conditions, the limits of detections (LODs) of this method for MCPA and 2,4-D were 0.2 and 0.6 μg L(-1) (based on 3S(b)/m) in water and 0.4 and 1.6 μg L(-1) in urine, respectively. Furthermore, dynamic linear range of this method for MCPA and 2,4-D was 1-300 and 2-400 μg L(-1), repectively. Finally, the applicability of the proposed method was evaluated by extraction and determination of the herbicides in urine and different water samples.
Widmayer, Sonja; Sowislo, Julia F; Jungfer, Hermann A; Borgwardt, Stefan; Lang, Undine E; Stieglitz, Rolf D; Huber, Christian G
2018-01-01
Background: Aggression in psychoses is of high clinical importance, and volumetric MRI techniques have been used to explore its structural brain correlates. Methods: We conducted a systematic review searching EMBASE, ScienceDirect, and PsycINFO through September 2017 using thesauri representing aggression, psychosis, and brain imaging. We calculated effect sizes for each study and mean Hedge's g for whole brain (WB) volume. Methodological quality was established using the PRISMA checklist (PROSPERO: CRD42014014461). Results: Our sample consisted of 12 studies with 470 patients and 155 healthy controls (HC). After subtracting subjects due to cohort overlaps, 314 patients and 96 HC remained. Qualitative analyses showed lower volumes of WB, prefrontal regions, temporal lobe, hippocampus, thalamus and cerebellum, and higher volumes of lateral ventricles, amygdala, and putamen in violent vs. non-violent people with schizophrenia. In quantitative analyses, violent persons with schizophrenia exhibited a significantly lower WB volume than HC ( p = 0.004), and also lower than non-violent persons with schizophrenia ( p = 0.007). Conclusions: We reviewed evidence for differences in brain volume correlates of aggression in persons with schizophrenia. Our results point toward a reduced whole brain volume in violent as opposed to non-violent persons with schizophrenia. However, considerable sample overlap in the literature, lack of reporting of potential confounding variables, and missing research on affective psychoses limit our explanatory power. To permit stronger conclusions, further studies evaluating structural correlates of aggression in psychotic disorders are needed.
Quantifying Golgi structure using EM: combining volume-SEM and stereology for higher throughput.
Ferguson, Sophie; Steyer, Anna M; Mayhew, Terry M; Schwab, Yannick; Lucocq, John Milton
2017-06-01
Investigating organelles such as the Golgi complex depends increasingly on high-throughput quantitative morphological analyses from multiple experimental or genetic conditions. Light microscopy (LM) has been an effective tool for screening but fails to reveal fine details of Golgi structures such as vesicles, tubules and cisternae. Electron microscopy (EM) has sufficient resolution but traditional transmission EM (TEM) methods are slow and inefficient. Newer volume scanning EM (volume-SEM) methods now have the potential to speed up 3D analysis by automated sectioning and imaging. However, they produce large arrays of sections and/or images, which require labour-intensive 3D reconstruction for quantitation on limited cell numbers. Here, we show that the information storage, digital waste and workload involved in using volume-SEM can be reduced substantially using sampling-based stereology. Using the Golgi as an example, we describe how Golgi populations can be sensed quantitatively using single random slices and how accurate quantitative structural data on Golgi organelles of individual cells can be obtained using only 5-10 sections/images taken from a volume-SEM series (thereby sensing population parameters and cell-cell variability). The approach will be useful in techniques such as correlative LM and EM (CLEM) where small samples of cells are treated and where there may be variable responses. For Golgi study, we outline a series of stereological estimators that are suited to these analyses and suggest workflows, which have the potential to enhance the speed and relevance of data acquisition in volume-SEM.
NASA Astrophysics Data System (ADS)
Gusyev, Maksym; Yamazaki, Yusuke; Morgenstern, Uwe; Stewart, Mike; Kashiwaya, Kazuhisa; Hirai, Yasuyuki; Kuribayashi, Daisuke; Sawano, Hisaya
2015-04-01
The goal of this study is to estimate subsurface water transit times and volumes in headwater catchments of Hokkaido, Japan, using the New Zealand high-accuracy tritium analysis technique. Transit time provides insights into the subsurface water storage and therefore provides a robust and quick approach to quantifying the subsurface groundwater volume. Our method is based on tritium measurements in river water. Tritium is a component of meteoric water, decays with a half-life of 12.32 years, and is inert in the subsurface after the water enters the groundwater system. Therefore, tritium is ideally suited for characterization of the catchment's responses and can provide information on mean water transit times up to 200 years. Only in recent years has it become possible to use tritium for dating of stream and river water, due to the fading impact of the bomb-tritium from thermo-nuclear weapons testing, and due to improved measurement accuracy for the extremely low natural tritium concentrations. Transit time of the water discharge is one of the most crucial parameters for understanding the response of catchments and estimating subsurface water volume. While many tritium transit time studies have been conducted in New Zealand, only a limited number of tritium studies have been conducted in Japan. In addition, the meteorological, orographic and geological conditions of Hokkaido Island are similar to those in parts of New Zealand, allowing for comparison between these regions. In 2014, three field trips were conducted in Hokkaido in June, July and October to sample river water at river gauging stations operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT). These stations have altitudes between 36 m and 860 m MSL and drainage areas between 45 and 377 km2. Each sampled point is located upstream of MLIT dams, with hourly measurements of precipitation and river water levels enabling us to distinguish between the snow melt and baseflow contributions to the river discharge. For the June sampling, the tritium and stable isotope results indicate below normal river discharges with a strong contribution of snow melt at some sampling points, and relatively short groundwater transit times. The tritium concentration results are used to interpret mean transit times (MTTs) for each sampling point using a tritium input curve constructed from historical International Atomic Energy Agency and available Japanese data, and subsurface volumes are estimated from the MTTs and measured river discharges.
* Minimum # Experimental Samples DNA Volume (ul) Genomic DNA Concentration (ng/ul) Low Input DNA Volume (ul . **Please inquire about additional cost for low input option. Genotyping Minimum # Experimental Samples DNA sample quality. If you do submit WGA samples, you should anticipate a higher non-random missing data rate
Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash.
Rendek, Eva; Ducom, Gaëlle; Germain, Patrick
2006-01-16
During bottom ash weathering, carbonation under atmospheric conditions induces physico-chemical evolutions leading to the pacification of the material. Fresh bottom ash samples were subjected to an accelerated carbonation using pure CO2. The aim of this work was to quantify the volume of CO2 that could be sequestrated with a view to reduce greenhouse gas emissions and investigate the possibility of upgrading some specific properties of the material with accelerated carbonation. Carbonation was performed by putting 4mm-sieved samples in a CO2 chamber. The CO2 pressure and the humidity of the samples were varied to optimize the reaction parameters. Unsieved material was also tested. Calcite formation resulting from accelerated carbonation was investigated by thermogravimetry and differential scanning calorimetry (TG/DSC) and metal leaching tests were performed. The volume of sequestrated CO2 was on average 12.5L/kg dry matter (DM) for unsieved material and 24 L/kg DM for 4mm-sieved samples. An ash humidity of 15% appeared to give the best results. The reaction was drastically accelerated at high pressure but it did not increase the volume of sequestrated CO2. Accelerated carbonation, like the natural phenomenon, reduces the dangerous nature of the material. It decreases the pH from 11.8 to 8.2 and causes Pb, Cr and Cd leaching to decrease. This process could reduce incinerator CO2 emissions by 0.5-1%.
A controlled rate freeze/thaw system for cryopreservation of biological materials
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Harrison, R. G.
1979-01-01
A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.
X-Ray Nanofocus CT: Visualising Of Internal 3D-Structures With Submicrometer Resolution
NASA Astrophysics Data System (ADS)
Weinekoetter, Christian
2008-09-01
High-resolution X-ray Computed Tomography (CT) allows the visualization and failure analysis of the internal micro structure of objects—even if they have complicated 3D-structures where 2D X-ray microscopy would give unclear information. During the past several years, computed tomography has progressed to higher resolution and quicker reconstruction of the 3D-volume. Most recently it even allows a three-dimensional look into the inside of materials with submicron resolution. With the use of nanofocus® tube technology, nanoCT®-systems are pushing forward into application fields that were exclusive to high cost and rare available synchrotron techniques. The study was performed with the new nanotom, a very compact laboratory system which allows the analysis of samples up to 120 mm in diameter and weighing up to 1 kg with exceptional voxel-resolution down to <500 nm (<0.5 microns). It is the first 180 kV nanofocus® computed tomography system in the world which is tailored specifically to the highest-resolution applications in the fields of material science, micro electronics, geology and biology. Therefore it is particularly suitable for nanoCT-examinations e.g. of synthetic materials, metals, ceramics, composite materials, mineral and organic samples. There are a few physical effects influencing the CT quality, such as beam-hardening within the sample or ring-artefacts, which can not be completely avoided. To optimize the quality of high resolution 3D volumes, the nanotom® includes a variety of effective software tools to reduce ring-artefacts and correct beam hardenings or drift effects which occurred during data acquisition. The resulting CT volume data set can be displayed in various ways, for example by virtual slicing and sectional views in any direction of the volume. By the fact that this requires only a mouse click, this technique will substitute destructive mechanical slicing and cutting in many applications. The initial CT results obtained with the nanotom® demonstrate that it is now possible to analyze the three-dimensional micro structure of materials and small objects with submicrometer resolution. Any internal difference in material, density or porosity within a sample can be visualized and data like distances can be measured. NanoCT® widely expands the spectrum of detectable micro-structures. The nanotom® opens a new dimension of 3D-microanalysis and will replace more destructive methods—saving costs and time per sample inspected.
Laser excited confocal microscope fluorescence scanner and method
Mathies, Richard A.; Peck, Konan
1992-01-01
A fluorescent scanner for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier including a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from said volume to provide a display of the separated sample.
Undergraduate Laboratory Module for Implementing ELISA on the High Performance Microfluidic Platform
ERIC Educational Resources Information Center
Giri, Basant; Peesara, Ravichander R.; Yanagisawa, Naoki; Dutta, Debashis
2015-01-01
Implementing enzyme-linked immunosorbent assays (ELISA) in microchannels offers several advantages over its traditional microtiter plate-based format, including a reduced sample volume requirement, shorter incubation period, and greater sensitivity. Moreover, microfluidic ELISA platforms are inexpensive to fabricate and allow integration of…
Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories
USDA-ARS?s Scientific Manuscript database
Bead based multiplex assays (BBMA) also referred to as Luminex, MultiAnalyte Profiling or cytometric bead array (CBA) assays, are applicable for high throughput, simultaneous detection of multiple analytes in solution (from several, up to 50-500 analytes within a single, small sample volume). Curren...
2008-07-01
volume of the system is 64 L. The propeller pump is 2.6 m upstream from the bed sediment sample tray . Flows in the VOST are up to 1.54 m/s, generating...159 High Flow Water Year...160 Low Flow Water Year
Neutron Diffraction of Large-Volume Samples at High Pressure Using Compact Opposed-Anvil Cells
NASA Astrophysics Data System (ADS)
Ni, Xiao-Lin; Fang, Lei-Ming; Li, Xin; Chen, Xi-Ping; Xie, Lei; He, Duan-Wei; Kou, Zi-Li
2018-04-01
Not Available Supported by the National Key Research and Development Program of China under Grant No 2016YFA0401503, the Science Challenge Project under Grant No TZ2016001, and the National Natural Science Foundation of China under Grant No 11427810.
SU-E-I-79: Source Geometry Dependence of Gamma Well-Counter Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, M; Belanger, A; Kijewski, M
Purpose: To determine the effect of liquid sample volume and geometry on counting efficiency in a gamma well-counter, and to assess the relative contributions of sample geometry and self-attenuation. Gamma wellcounters are standard equipment in clinical and preclinical studies, for measuring patient blood radioactivity and quantifying animal tissue uptake for tracer development and other purposes. Accurate measurements are crucial. Methods: Count rates were measured for aqueous solutions of 99m- Tc at four liquid volume values in a 1-cm-diam tube and at six volume values in a 2.2-cm-diam vial. Total activity was constant for all volumes, and data were corrected formore » decay. Count rates from a point source in air, supported by a filter paper, were measured at seven heights between 1.3 and 5.7 cm from the bottom of a tube. Results: Sample volume effects were larger for the tube than for the vial. For the tube, count efficiency relative to a 1-cc volume ranged from 1.05 at 0.05 cc to 0.84 at 3 cc. For the vial, relative count efficiency ranged from 1.02 at 0.05 cc to 0.87 at 15 cc. For the point source, count efficiency relative to 1.3 cm from the tube bottom ranged from 0.98 at 1.8 cm to 0.34 at 5.7 cm. The relative efficiency of a 3-cc liquid sample in a tube compared to a 1-cc sample is 0.84; the average relative efficiency for the solid sample in air between heights in the tube corresponding to the surfaces of those volumes (1.3 and 4.8 cm) is 0.81, implying that the major contribution to efficiency loss is geometry, rather than attenuation. Conclusion: Volume-dependent correction factors should be used for accurate quantitation radioactive of liquid samples. Solid samples should be positioned at the bottom of the tube for maximum count efficiency.« less
Mushet, David M.; Goldhaber, Martin B.; Mills, Christopher T.; McLean, Kyle I.; Aparicio, Vanessa M.; McCleskey, R. Blaine; Holloway, JoAnn M.; Stockwell, Craig A.
2015-09-28
The climate of the prairie pothole region of North America is known for variability that results in significant interannual changes in water depths and volumes of prairie lakes and wetlands; however, beginning in July 1993, the climate of the region shifted to an extended period of increased precipitation that has likely been unequaled in the preceding 500 years. Associated changing water volumes also affect water chemical characteristics, with potential effects on fish and wildlife populations. To explore the effect of changing climate patterns, in 2012 and 2013, the U.S. Geological Survey revisited 167 of 178 prairie lakes and large wetlands of south-central North Dakota that were originally sampled in the mid-1960s to mid-1970s. During the earlier sampling period, these lakes and wetlands displayed a great range of chemical characteristics (for example, specific conductance ranged from 365 microsiemens per centimeter at 25 degrees Celsius to 70,300 microsiemens per centimeter at 25 degrees Celsius); however, increased water volumes have resulted in greatly reduced variation among lakes and wetlands and a more homogeneous set of chemical conditions defined by pH, specific conductance, and concentrations of major cations and anions. High concentrations of dissolved solids previously limited fish occurrence in many of the lakes and wetlands sampled; however, freshening of these lakes and large wetlands has allowed fish to populate and flourish where they were previously absent. Conversely, the freshening of previously saline lakes and wetlands has resulted in concurrent shifts away from invertebrate species adapted to live in these highly saline environments. A shift in the regional climate has changed a highly diverse landscape of wetlands (fresh to highly saline) to a markedly more homogeneous landscape that has reshaped the fish and wildlife communities of this ecologically and economically important region.
Helwa, Inas; Cai, Jingwen; Drewry, Michelle D; Zimmerman, Arthur; Dinkins, Michael B; Khaled, Mariam Lotfy; Seremwe, Mutsa; Dismuke, W Michael; Bieberich, Erhard; Stamer, W Daniel; Hamrick, Mark W; Liu, Yutao
2017-01-01
Exosomes play a role in cell-to-cell signaling and serve as possible biomarkers. Isolating exosomes with reliable quality and substantial concentration is a major challenge. Our purpose is to compare the exosomes extracted by three different exosome isolation kits (miRCURY, ExoQuick, and Invitrogen Total Exosome Isolation Reagent) and differential ultracentrifugation (UC) using six different volumes of a non-cancerous human serum (5 ml, 1 ml, 500 μl, 250 μl, 100 μl, and 50 μl) and three different volumes (1 ml, 500 μl and 100 μl) of six individual commercial serum samples collected from human donors. The smaller starting volumes (100 μl and 50 μl) are used to mimic conditions of limited availability of heterogeneous biological samples. The isolated exosomes were characterized based upon size, quantity, zeta potential, CD63 and CD9 protein expression, and exosomal RNA (exRNA) quality and quantity using several complementary methods: nanoparticle tracking analysis (NTA) with ZetaView, western blot, transmission electron microscopy (TEM), the Agilent Bioanalyzer system, and droplet digital PCR (ddPCR). Our NTA results showed that all isolation techniques produced exosomes within the expected size range (40-150 nm). The three kits, though, produced a significantly higher yield (80-300 fold) of exosomes as compared to UC for all serum volumes, except 5 mL. We also found that exosomes isolated by the different techniques and serum volumes had similar zeta potentials to previous studies. Western blot analysis and TEM immunogold labelling confirmed the expression of two common exosomal protein markers, CD63 and CD9, in samples isolated by all techniques. All exosome isolations yielded high quality exRNA, containing mostly small RNA with a peak between 25 and 200 nucleotides in size. ddPCR results indicated that exosomes isolated from similar serum volumes but different isolation techniques rendered similar concentrations of two selected exRNA: hsa-miR-16 and hsa-miR-451. In summary, the three commercial exosome isolation kits are viable alternatives to UC, even when limited amounts of biological samples are available.
An Ultra-Sensitive Method for the Analysis of Perfluorinated ...
In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analysis. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10 mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100 - 1000 mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10 mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4 ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Nor
Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz
2015-03-01
FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.
Krueger, Aaron B; Carnell, Pauline; Carpenter, John F
2016-04-01
In many manufacturing and research areas, the ability to accurately monitor and characterize nanoparticles is becoming increasingly important. Nanoparticle tracking analysis is rapidly becoming a standard method for this characterization, yet several key factors in data acquisition and analysis may affect results. Nanoparticle tracking analysis is prone to user input and bias on account of a high number of parameters available, contains a limited analysis volume, and individual sample characteristics such as polydispersity or complex protein solutions may affect analysis results. This study systematically addressed these key issues. The integrated syringe pump was used to increase the sample volume analyzed. It was observed that measurements recorded under flow caused a reduction in total particle counts for both polystyrene and protein particles compared to those collected under static conditions. In addition, data for polydisperse samples tended to lose peak resolution at higher flow rates, masking distinct particle populations. Furthermore, in a bimodal particle population, a bias was seen toward the larger species within the sample. The impacts of filtration on an agitated intravenous immunoglobulin sample and operating parameters including "MINexps" and "blur" were investigated to optimize the method. Taken together, this study provides recommendations on instrument settings and sample preparations to properly characterize complex samples. Copyright © 2016. Published by Elsevier Inc.
Cao, Yupin; Deng, Biyang; Yan, Lizhen; Huang, Hongli
2017-05-15
An environmentally friendly and highly efficient gas pressure-assisted sample introduction system (GPASIS) was developed for inductively-coupled plasma mass spectrometry. A GPASIS consisting of a gas-pressure control device, a customized nebulizer, and a custom-made spray chamber was fabricated. The advantages of this GPASIS derive from its high nebulization efficiencies, small sample volume requirements, low memory effects, good precision, and zero waste emission. A GPASIS can continuously, and stably, nebulize 10% NaCl solution for more than an hour without clogging. Sensitivity, detection limits, precision, long-term stability, double charge and oxide ion levels, nebulization efficiencies, and matrix effects of the sample introduction system were evaluated. Experimental results indicated that the performance of this GPASIS, was equivalent to, or better than, those obtained by conventional sample introduction systems. This GPASIS was successfully used to determine Cd and Pb by ICP-MS in human plasma. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid
2017-03-01
In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.
Baraud, Laurent; Tessier, Didier; Aaron, Jean-Jacques; Quisefit, Jean-Paul; Pinart, Johann
2003-12-01
The extensive use of pesticides to protect agricultural crops can result in the transfer of these compounds into the atmosphere and their diffusion towards urban areas. Precise evaluation of the geographic impact of this type of pollution is important environmentally. In this paper, analytical methods for the sampling, characterization, and determination of agricultural pesticides in air were developed; the methods were then applied in the Paris and Champagne regions. Sixteen pesticides belonging to nine chemical families were monitored. Sampling was carried out in urban (Paris) and rural (Aube district) sites, utilizing either a high-volume pump (12.5 m3 h(-1)) (urban site) or a low-volume pump (2.3 m3 h(-1)) for the rural site. Quartz filters and polyurethane foams (PUF) were used for sampling in all cases. After extracting the samples and concentrating the recovered solutions, high-performance liquid chromatography (HPLC) analysis with UV detection was performed. Identification of the pesticides was confirmed by applying to the HPLC measurements a novel UV-detection procedure based on the normalized absorbance variation with wavelength (Noravawa procedure). The presence of metsulfuron methyl, isoproturon, linuron, deltamethrin (and/or malathion), and chlorophenoxy acids (2,4-D and MCPP) was found at the urban sampling site at levels ranging from about 1 to 1130 ng m(-3) of air, depending on the compound and sampling period. On the rural sampling site residues of isoproturon, deltamethrin (and/or malathion), MCPP, and 2,4-D were generally detected at higher levels (19-5130 ng m(-3)) than on the urban site, as expected. The effects of the weather conditions and agricultural activity on the atmospheric concentrations of pesticides are discussed, as are long-range atmospheric transfer processes for these pesticides.
Mathematics for Junior High School. Commentary for Teachers. Volume II (Part 2).
ERIC Educational Resources Information Center
Anderson, R. D.; And Others
This is part two of a two-part manual for teachers using SMSG junior high school text materials. A chapter-by-chapter commentary on the text is given as well as answers to all the exercises; a few chapters contain sample text questions. Chapter topics include: (1) real numbers; (2) similar triangles; (3) variation; (4) non-metric polyhedrons; (5)…
NASA Astrophysics Data System (ADS)
Abou Chakra, Charbel; Somma, Janine; Elali, Taha; Drapeau, Laurent
2017-04-01
Climate change and its negative impact on water resource is well described. For countries like Lebanon, undergoing major population's rise and already decreasing precipitations issues, effective water resources management is crucial. Their continuous and systematic monitoring overs long period of time is therefore an important activity to investigate drought risk scenarios for the Lebanese territory. Snow cover on Lebanese mountains is the most important water resources reserve. Consequently, systematic observation of snow cover dynamic plays a major role in order to support hydrologic research with accurate data on snow cover volumes over the melting season. For the last 20 years few studies have been conducted for Lebanese snow cover. They were focusing on estimating the snow cover surface using remote sensing and terrestrial measurement without obtaining accurate maps for the sampled locations. Indeed, estimations of both snow cover area and volumes are difficult due to snow accumulation very high variability and Lebanese mountains chains slopes topographic heterogeneity. Therefore, the snow cover relief measurement in its three-dimensional aspect and its Digital Elevation Model computation is essential to estimate snow cover volume. Despite the need to cover the all lebanese territory, we favored experimental terrestrial topographic site approaches due to high resolution satellite imagery cost, its limited accessibility and its acquisition restrictions. It is also most challenging to modelise snow cover at national scale. We therefore, selected a representative witness sinkhole located at Ouyoun el Siman to undertake systematic and continuous observations based on topographic approach using a total station. After four years of continuous observations, we acknowledged the relation between snow melt rate, date of total melting and neighboring springs discharges. Consequently, we are able to forecast, early in the season, dates of total snowmelt and springs low water flows which are essentially feeded by snowmelt water. Simulations were ran, predicting the snow level between two sampled dates, they provided promising result for national scale extrapolation.
NASA Astrophysics Data System (ADS)
Wang, Lu; Yu, Qingchun
2016-11-01
This study investigated the effects of moisture on high-pressure methane adsorption in carboniferous shales from the Qaidam Basin, China. The shale characteristics, including the organic/inorganic compositions and pore structure (volume and surface) distribution, were obtained using various techniques. Gibbs adsorption measurements were performed over a pressure range up to 6 MPa and temperatures of 308.15 K on dry samples and moisture-equilibrated samples to analyze the correlations between organic/inorganic matter, pore structure, and moisture content on the methane sorption capacity. Compared to dry samples, the sorption capacity of wet samples (0.44-2.52% of water content) is reduced from 19.7 ± 5.3% to 36.1% ± 6.1%. Langmuir fitting is conducted to investigate moisture-dependent variations of adsorbed methane density, Langmuir pressure, and volume. By combining the pore volume and surface distribution analyses, our observations suggested that the main competition sites for CH4-H2O covered pores of approximately 2-7 nm, whereas the effective sites for methane and water were predominantly distributed within smaller (<4 nm) and larger pores (>10 nm), respectively. Regarding the compositional correlations, the impact of moisture on the amount of adsorbed methane shows a roughly linearly decreasing trend with increasing TOC content ranging from 0.62 to 2.88%, whereas the correlation between the moisture effect and various inorganic components is more complicated. Further fitting results indicate that illite/smectite mixed formations are closely related to the methane capacity, whereas the illite content show an evident connection to the pore structural (volume and surface) variations in the presence of moisture.
Pierson, Stephen A; Trujillo-Rodríguez, María J; Anderson, Jared L
2018-05-29
An ionic-liquid-based in situ dispersive liquid-liquid microextraction method coupled to headspace gas chromatography and mass spectrometry was developed for the rapid analysis of ultraviolet filters. The chemical structures of five ionic liquids were specifically designed to incorporate various functional groups for the favorable extraction of the target analytes. Extraction parameters including ionic liquid mass, molar ratio of ionic liquid to metathesis reagent, vortex time, ionic strength, pH, and total sample volume were studied and optimized. The effect of the headspace temperature and volume during the headspace sampling step was also evaluated to increase the sensitivity of the method. The optimized procedure is fast as it only required ∼7-10 min per extraction and allowed for multiple extractions to be performed simultaneously. In addition, the method exhibited high precision, good linearity, and low limits of detection for six ultraviolet filters in aqueous samples. The developed method was applied to both pool and lake water samples attaining acceptable relative recovery values. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thyroid volumes and urinary iodine in German school children.
Rendl, J; Juhran, N; Reiners, C
2001-01-01
Several recently published investigations showed a significant improvement in the iodine supply of the German population, but so far Germany is still considered an iodine deficient country. However most of the studies presented do not meet the epidemiological criteria established by WHO, UNICEF and ICCIDD and may therefore suffer from a selection bias with respect to goiter prevalence estimates. School children, owing to their easy recruitment, representativeness of different socio-economic classes and high vulnerability of Iodine deficiency disorders (IDD), are one of the best target groups for surveillance of IDD. In this field study a total of 591 children were investigated. The total sample included 268 females and 323 males aged 7-17 years. The following data were collected: thyroid size by ultrasound, urinary iodine concentration in a first-morning spot urine, weight, height, sex and age. The median urinary iodine concentration of the children was 183 microg/L. The proportion of samples with concentrations below 100 microg/L or below 50 microg/L was 15.4% and 4.3% respectively. Urine samples with high iodine concentrations were also found amounting to 17.3%. Almost all families (97%) declared to use iodized kitchen salt and 19.6% of all children are taking regularly iodine tablets. Application of the WHO/ICCIDD thyroid volume references to the German children resulted in a goiter prevalence of 0.2%, using either age/sex-specific or body surface area (BSA)/sex-specific cut-off values. Comparison with the P97 values of the original normative data of Gutekunst and Martin-Teichert however gives a goiter prevalence of 3% as expected. The thyroid volumes of the children in our study appear comparable with those reported recently for iodine sufficient children from Switzerland and for iodine replete Berlin children and for children with sufficient iodine supply in the region of Leipzig, so that Germany probably has no longer to be considered an iodine deficient country. Our own study and the most recently published studies on iodine replete children give rise to the supposition that the WHO/ICCIDD recommended thyroid volume references are too high.
'Predatory' open access: a longitudinal study of article volumes and market characteristics.
Shen, Cenyu; Björk, Bo-Christer
2015-10-01
A negative consequence of the rapid growth of scholarly open access publishing funded by article processing charges is the emergence of publishers and journals with highly questionable marketing and peer review practices. These so-called predatory publishers are causing unfounded negative publicity for open access publishing in general. Reports about this branch of e-business have so far mainly concentrated on exposing lacking peer review and scandals involving publishers and journals. There is a lack of comprehensive studies about several aspects of this phenomenon, including extent and regional distribution. After an initial scan of all predatory publishers and journals included in the so-called Beall's list, a sample of 613 journals was constructed using a stratified sampling method from the total of over 11,000 journals identified. Information about the subject field, country of publisher, article processing charge and article volumes published between 2010 and 2014 were manually collected from the journal websites. For a subset of journals, individual articles were sampled in order to study the country affiliation of authors and the publication delays. Over the studied period, predatory journals have rapidly increased their publication volumes from 53,000 in 2010 to an estimated 420,000 articles in 2014, published by around 8,000 active journals. Early on, publishers with more than 100 journals dominated the market, but since 2012 publishers in the 10-99 journal size category have captured the largest market share. The regional distribution of both the publisher's country and authorship is highly skewed, in particular Asia and Africa contributed three quarters of authors. Authors paid an average article processing charge of 178 USD per article for articles typically published within 2 to 3 months of submission. Despite a total number of journals and publishing volumes comparable to respectable (indexed by the Directory of Open Access Journals) open access journals, the problem of predatory open access seems highly contained to just a few countries, where the academic evaluation practices strongly favor international publication, but without further quality checks.
ERIC Educational Resources Information Center
Guion, Robert M.; Ironson, Gail H.
Challenges to classical psychometric theory are examined in the context of a broader range of fundamental, derived, and intuitive measurements in psychology; the challenges include content-referenced testing, latent trait theory, and generalizability theory. A taxonomy of psychological measurement is developed, based on: (1) purposes of…
Silva, Catarina L; Gonçalves, João L; Câmara, José S
2012-08-20
A new approach based on microextraction by packed sorbent (MEPS) and reversed-phase high-throughput ultra high pressure liquid chromatography (UHPLC) method that uses a gradient elution and diode array detection to quantitate three biologically active flavonols in wines, myricetin, quercetin, and kaempferol, is described. In addition to performing routine experiments to establish the validity of the assay to internationally accepted criteria (selectivity, linearity, sensitivity, precision, accuracy), experiments are included to assess the effect of the important experimental parameters such as the type of sorbent material (C2, C8, C18, SIL, and C8/SCX), number of extraction cycles (extract-discard), elution volume, sample volume, and ethanol content, on the MEPS performance. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (250μL) in five extraction cycle and in a short time period (about 5min for the entire sample preparation step). Under optimized conditions, excellent linearity (R(values)(2)>0.9963), limits of detection of 0.006μgmL(-1) (quercetin) to 0.013μgmL(-1) (myricetin) and precision within 0.5-3.1% were observed for the target flavonols. The average recoveries of myricetin, quercetin and kaempferol for real samples were 83.0-97.7% with relative standard deviation (RSD, %) lower than 1.6%. The results obtained showed that the most abundant flavonol in the analyzed samples was myricetin (5.8±3.7μgmL(-1)). Quercetin (0.97±0.41μgmL(-1)) and kaempferol (0.66±0.24μgmL(-1)) were found in a lower concentration. The optimized MEPS(C8) method was compared with a reverse-phase solid-phase extraction (SPE) procedure using as sorbent a macroporous copolymer made from a balanced ratio of two monomers, the lipophilic divinylbenzene and the hydrophilic N-vinylpyrrolidone (Oasis HLB) were used as reference. MEPS(C8) approach offers an attractive alternative for analysis of flavonols in wines, providing a number of advantages including highest extraction efficiency (from 85.9±0.9% to 92.1±0.5%) in the shortest extraction time with low solvent consumption, fast sample throughput, more environmentally friendly and easy to perform. Copyright © 2012 Elsevier B.V. All rights reserved.
Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture
NASA Astrophysics Data System (ADS)
Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi
2015-04-01
Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities. Electronic supplementary information (ESI) available: Elemental and XPS analyses and XPS peak positions and relative content of N species in the NPCs. See DOI: 10.1039/c4nr07409b
Parikh, Nehal A.; Kennedy, Kathleen A.; Lasky, Robert E.; McDavid, Georgia E.; Tyson, Jon E.
2012-01-01
Objective To test the hypothesis that high-risk ventilator-dependent extremely low birth weight (ELBW; BW ≤1000g) infants treated with seven days of hydrocortisone will have larger total brain tissue volumes than placebo treated infants. Study design A predetermined sample size of 64 ELBW infants, between 10 to 21 days old and ventilator-dependent with a respiratory index score ≥2, were randomized to systemic hydrocortisone (17 mg/kg cumulative dose) or saline placebo. Primary outcome was total brain tissue volume. Volumetric MRI was performed at 38 weeks postmenstrual age; brain tissue regions were segmented and quantified automatically with a high degree of accuracy and nine structures were segmented manually. All analyses of regional brain volumes were adjusted by postmenstrual age at MRI scan. Results The study groups were similar at baseline and eight infants died in each arm. Unadjusted total brain tissue volume (mean±SD) in the hydrocortisone (N=23) and placebo treated infants (N=21) was 272±40.3 cm3 and 277.8±59.1 cm3, respectively (adjusted mean difference: 6.35 cm3 (95% CI: (−20.8, 32.5); P=0.64). Three of the 31 hydrocortisone treated infants and five of the 33 placebo treated infants survived without severe BPD (RR 0.62, 95% CI: 0.13, 2.66; P=0.49). No significant differences were noted in pre-specified secondary outcomes of regional structural volumes or days on respiratory support. No adverse effects of hydrocortisone were observed. Conclusions Low dose hydrocortisone in high-risk ventilator-dependent infants after a week of age had no discernible effect on regional brain volumes or pulmonary outcomes prior to NICU discharge. PMID:23140612
Estimating the carbon in coarse woody debris with perpendicular distance sampling. Chapter 6
Harry T. Valentine; Jeffrey H. Gove; Mark J. Ducey; Timothy G. Gregoire; Michael S. Williams
2008-01-01
Perpendicular distance sampling (PDS) is a design for sampling the population of pieces of coarse woody debris (logs) in a forested tract. In application, logs are selected at sample points with probability proportional to volume. Consequently, aggregate log volume per unit land area can be estimated from tallies of logs at sample points. In this chapter we provide...
Critical point relascope sampling for unbiased volume estimation of downed coarse woody debris
Jeffrey H. Gove; Michael S. Williams; Mark J. Ducey; Mark J. Ducey
2005-01-01
Critical point relascope sampling is developed and shown to be design-unbiased for the estimation of log volume when used with point relascope sampling for downed coarse woody debris. The method is closely related to critical height sampling for standing trees when trees are first sampled with a wedge prism. Three alternative protocols for determining the critical...
Laser excited confocal microscope fluorescence scanner and method
Mathies, R.A.; Peck, K.
1992-02-25
A fluorescent scanner is designed for scanning the fluorescence from a fluorescence labeled separated sample on a sample carrier. The scanner includes a confocal microscope for illuminating a predetermined volume of the sample carrier and/or receiving and processing fluorescence emissions from the volume to provide a display of the separated sample. 8 figs.
USDA-ARS?s Scientific Manuscript database
Naturally-occurring inhibitory compounds are a major concern during qPCR and RT-qPCR analysis of environmental samples, particularly large volume water samples. Here, a standardized method for measuring and mitigating sample inhibition in environmental water concentrates is described. Specifically, ...
40 CFR 141.858 - Repeat monitoring and E. coli requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Repeat monitoring and E. coli....858 Repeat monitoring and E. coli requirements. (a) Repeat monitoring. (1) If a sample taken under... volume repeat sample(s) in one or more sample containers of any size, as long as the total volume...
1988-10-01
sample these ducts. This judgement was based on the following factors : 1. The ducts were open to the atmosphere. 2. RMA records of building area samples...selected based on several factors including piping arrangements, volume to be sampled, sampling equipment flow rates, and the flow rate necessary for...effective sampling. Therefore, each sampling point strategy and procedure was customized based on these factors . The individual specific sampling
NASA Astrophysics Data System (ADS)
Rajabi, Hamid Reza; Razmpour, Saham
2016-01-01
Here, the researchers report on the synthesis of ion imprinted polymeric (IIP) nanoparticles using a thermal polymerization strategy, and their usage for the separation of Ni2 + ion from water samples. The prepared Ni-IIP was characterized by colorimetry, FT-IR spectroscopy, and scanning electron microscopy. It was found that the particle size of the prepared particle to be 50-70 nm in diameter with the highly selective binding capability for Ni2 + ion, with reasonable adsorption and desorption process. After preconcentration, bound ions can be eluted with an aqueous solution of hydrochloric acid, after their complexation with dimethylglyoxime, these ions can be quantified by UV-Vis absorption spectrophotometry. The effect of various parameters on the extraction efficiency including pH of sample solution, adsorption and leaching times, initial sample volume, concentration and volume of eluent were investigated. In selectivity study, it was found that imprinting causes increased affinity of the prepared IIP toward Ni2 + ion over other ions such as Na+, K+, Ag+, Co2 +, Cu2 +, Cd2 +, Hg2 +, Pb2 +, Zn2 +, Mn2 +, Mg2 +, Cr3 +, and Fe3 +. The prepared IIP can be used and regenerated for at least eight times without any significant decrease in binding affinities. The prepared IIP is considered to be promising and selective sorbent for solid-phase extraction and preconcentration of Ni2 + ion from different water samples.
Liberto, Erica; Cagliero, Cecilia; Cordero, Chiara; Rubiolo, Patrizia; Bicchi, Carlo; Sgorbini, Barbara
2017-03-17
Recent technological advances in dynamic headspace sampling (D-HS) and the possibility to automate this sampling method have lead to a marked improvement in its the performance, a strong renewal of interest in it, and have extended its fields of application. The introduction of in-parallel and in-series automatic multi-sampling and of new trapping materials, plus the possibility to design an effective sampling process by correctly applying the breakthrough volume theory, have make profiling more representative, and have enhanced selectivity, and flexibility, also offering the possibility of fractionated enrichment in particular for high-volatility compounds. This study deals with fractionated D-HS ability to produce a sample representative of the volatile fraction of solid or liquid matrices. Experiments were carried out on a model equimolar (0.5mM) EtOH/water solution, comprising 16 compounds with different polarities and volatilities, structures ranging from C5 to C15 and vapor pressures from 4.15kPa (2,3-pentandione) to 0.004kPa (t-β-caryophyllene), and on an Arabica roasted coffee powder. Three trapping materials were considered: Tenax TA™ (TX), Polydimethylsiloxane foam (PDMS), and a three-carbon cartridge Carbopack B/Carbopack C/Carbosieve S-III™ (CBS). The influence of several parameters on the design of successful fractionated D-HS sampling. Including the physical and chemical characteristics of analytes and matrix, trapping material, analyte breakthrough, purge gas volumes, and sampling temperature, were investigated. The results show that, by appropriately choosing sampling conditions, fractionated D-HS sampling, based on component volatility, can produce a fast and representative profile of the matrix volatile fraction, with total recoveries comparable to those obtained by full evaporation D-HS for liquid samples, and very high concentration factors for solid samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Design and Calibration of a High Volume Cascade Impactor
ERIC Educational Resources Information Center
Gussman, R. A.; And Others
1973-01-01
This study was to develop an air sampling device capable of classifying large quantities of airborne particulate matter into discrete size fractions. Such fractionation will facilitate chemical analysis of the various particulate pollutants and thereby provide a more realistic assessment of the effects of particulate matter on human beings. (BL)
The Quality Assurance Division of the Environmental Monitoring Systems Laboratory, Research Triangle Park, North Carolina, administers semiannual Surveys of Analytical Proficiency for sulfur dioxide, nitrogen dioxide, carbon monoxide, sulfate, nitrate and lead. Sample material, s...
Fugitive gas adsorption capacity of biomass and animal-manure derived biochars
USDA-ARS?s Scientific Manuscript database
This research characterized and investigated ammonia and hydrogen sulfide gas adsorption capacities of low- and high-temperature biochars made from wood shavings and chicken litter. The biochar samples were activated with steam or phosphoric acid. The specific surface areas and pore volumes of the a...
Effects of lint cleaning on lint trash particle size distribution
USDA-ARS?s Scientific Manuscript database
Cotton quality trash measurements used today typically yield a single value for trash parameters for a lint sample (i.e. High Volume Instrument – percent area; Advanced Fiber Information System – total count, trash size, dust count, trash count, and visible foreign matter). A Cotton Trash Identifica...
Smoke particulate matter from conifers subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane and the crude extracts...
Smoke particulate matter from deciduous trees (angiosperms) subjected to controlled burning, both under smoldering and flaming conditions, was sampled by high volume air filtration on precleaned quartz fiber filters. The filtered particles were extracted with dichloromethane a...
NASA Astrophysics Data System (ADS)
Breier, J. A.; Sheik, C. S.; Gomez-Ibanez, D.; Sayre-McCord, R. T.; Sanger, R.; Rauch, C.; Coleman, M.; Bennett, S. A.; Cron, B. R.; Li, M.; German, C. R.; Toner, B. M.; Dick, G. J.
2014-12-01
A new tool was developed for large volume sampling to facilitate marine microbiology and biogeochemical studies. It was developed for remotely operated vehicle and hydrocast deployments, and allows for rapid collection of multiple sample types from the water column and dynamic, variable environments such as rising hydrothermal plumes. It was used successfully during a cruise to the hydrothermal vent systems of the Mid-Cayman Rise. The Suspended Particulate Rosette V2 large volume multi-sampling system allows for the collection of 14 sample sets per deployment. Each sample set can include filtered material, whole (unfiltered) water, and filtrate. Suspended particulate can be collected on filters up to 142 mm in diameter and pore sizes down to 0.2 μm. Filtration is typically at flowrates of 2 L min-1. For particulate material, filtered volume is constrained only by sampling time and filter capacity, with all sample volumes recorded by digital flowmeter. The suspended particulate filter holders can be filled with preservative and sealed immediately after sample collection. Up to 2 L of whole water, filtrate, or a combination of the two, can be collected as part of each sample set. The system is constructed of plastics with titanium fasteners and nickel alloy spring loaded seals. There are no ferrous alloys in the sampling system. Individual sample lines are prefilled with filtered, deionized water prior to deployment and remain sealed unless a sample is actively being collected. This system is intended to facilitate studies concerning the relationship between marine microbiology and ocean biogeochemistry.
Gao, Leyi; Patterson, Eric E; Shippy, Scott A
2006-02-01
A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevcik, R. S.; Hyman, D. A.; Basumallich, L.
2013-01-01
A technique for carbohydrate analysis for bioprocess samples has been developed, providing reduced analysis time compared to current practice in the biofuels R&D community. The Thermofisher CarboPac SA10 anion-exchange column enables isocratic separation of monosaccharides, sucrose and cellobiose in approximately 7 minutes. Additionally, use of a low-volume (0.2 mL) injection valve in combination with a high-volume detection cell minimizes the extent of sample dilution required to bring sugar concentrations into the linear range of the pulsed amperometric detector (PAD). Three laboratories, representing academia, industry, and government, participated in an interlaboratory study which analyzed twenty-one opportunistic samples representing biomass pretreatment, enzymaticmore » saccharification, and fermentation samples. The technique's robustness, linearity, and interlaboratory reproducibility were evaluated and showed excellent-to-acceptable characteristics. Additionally, quantitation by the CarboPac SA10/PAD was compared with the current practice method utilizing a HPX-87P/RID. While these two methods showed good agreement a statistical comparison found significant quantitation difference between them, highlighting the difference between selective and universal detection modes.« less
Díaz-Piedra, Pablo; Cervantes-Villagrana, Alberto Rafael; Ramos-Jiménez, Raúl; Presno-Bernal, José Miguel; Cervantes-Villagrana, Rodolfo Daniel
2015-01-01
Hemoglobin S is an abnormal protein that induces morphological changes in erythrocyte in low-oxygen conditions. In Mexico, it is reported that up to 13.7% of the population with mutation in one allele are considered asymptomatic (sickle cell trait). The sickle cell trait and diabetes mellitus are conditions that occur together in more than one million patients worldwide. Both diseases possibly produce microvascular changes in retinopathy and acute chest syndrome. The aim of this study was to evaluate the induction of sickle cells in samples of diabetic patients with sickle cell trait to identify altered red cell parameters. We obtained samples of diabetic patients to determine hemoglobin A1c and S; furthermore, red blood cell biometrics data were analyzed. We found that older men with diabetes were susceptible to generate sickle cells and this correlated with reduced red blood cell count and an increase in media cell volume. In samples of women diabetes, there were no differences. We conclude that samples from patients with sickle cell trait and diabetes can cause sickle cells with high frequency in men, with lower red blood cells count and increased mean corpuscular volume as susceptibility parameters.
NASA Astrophysics Data System (ADS)
Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.
2015-11-01
In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.
On-chip polarimetry for high-throughput screening of nanoliter and smaller sample volumes
NASA Technical Reports Server (NTRS)
Bachmann, Brian O. (Inventor); Bornhop, Darryl J. (Inventor); Dotson, Stephen (Inventor)
2012-01-01
A polarimetry technique for measuring optical activity that is particularly suited for high throughput screening employs a chip or substrate (22) having one or more microfluidic channels (26) formed therein. A polarized laser beam (14) is directed onto optically active samples that are disposed in the channels. The incident laser beam interacts with the optically active molecules in the sample, which slightly alter the polarization of the laser beam as it passes multiple times through the sample. Interference fringe patterns (28) are generated by the interaction of the laser beam with the sample and the channel walls. A photodetector (34) is positioned to receive the interference fringe patterns and generate an output signal that is input to a computer or other analyzer (38) for analyzing the signal and determining the rotation of plane polarized light by optically active material in the channel from polarization rotation calculations.
Kumar, B; Han, L-F; Wassenaar, L I; Klaus, P M; Kainz, G G; Hillegonds, D; Brummer, D; Ahmad, M; Belachew, D L; Araguás, L; Aggarwal, P
2016-12-01
Tritium ( 3 H) in natural waters is a powerful tracer of hydrological processes, but its low concentrations require electrolytic enrichment before precise measurements can be made with a liquid scintillation counter. Here, we describe a newly developed, compact tritium enrichment unit which can be used to enrich up to 2L of a water sample. This allows a high enrichment factor (>100) for measuring low 3 H contents of <0.05TU. The TEU uses a small cell (250mL) with automated re-filling and a CO 2 bubbling technique to neutralize the high alkalinity of enriched samples. The enriched residual sample is retrieved from the cell under vacuum by cryogenic distillation at -20°C and the tritium enrichment factor for each sample is accurately determined by measuring pre- and post- enrichment 2 H concentrations with laser spectrometry. Copyright © 2016. Published by Elsevier Ltd.
A source of PCB contamination in modified high-volume air samplers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Basu, I.; O'Dell, J.M.; Arnold, K.
2000-02-01
Modified Anderson High Volume (Hi-Vol) air samplers are widely used for the collection of semi-volatile organic compounds (such as PCBs) from air. The foam gasket near the main air flow path in these samplers can become contaminated with PCBs if the sampler or the gasket is stored at a location with high indoor air PCB levels. Once the gasket is contaminated, it releases PCBs back into the air stream during sampling, and as a result, incorrectly high air PCB concentrations are measured. This paper presents data demonstrating this contamination problem using measurements from two Integrated Atmospheric Deposition Network sites: onemore » at Sleeping Bear Dunes on Lake Michigan and the other at Point Petre on Lake Ontario. The authors recommend that these gaskets be replaced by Teflon tape and that the storage history of each sampler be carefully tracked.« less
NASA Astrophysics Data System (ADS)
Ha, Jeong Won; Seong, Baek Seok; Jeong, Hi Won; Choi, Yoon Suk; Kang, Namhyun
2015-02-01
Inconel X-750 is a Ni-based precipitation-hardened superalloy typically used in springs designed for high-temperature applications such as the hold-down springs in nuclear power plants. γ‧ is a major precipitate in X-750 alloys which affects the strength, creep resistance, and stress relaxation properties of the spring. In this study, a solution-treated X-750 wire coiled into a spring was used that was aged at various temperatures and submitted to stress relaxation tests with and without loading. Small angle neutron scattering was employed to quantify the size and volume fraction of γ‧ phase in the springs as a function of the aging temperature and the application of a load during stress relaxation. The volume fraction of γ‧ precipitates increased in the specimen aged at 732 °C following stress relaxation at 500 °C for 300 h. However, the mean size of the precipitates in the samples was not affected by stress relaxation. The specimen aged at the lower temperature (620 °C) contained a smaller γ‧ volume fraction and gained a smaller fraction of γ‧ during stress relaxation compared with the sample aged at the higher temperature (732 °C). The smaller increase in the γ‧ volume fraction for the sample aged at 620 °C was associated with a larger increase in the M23C6 secondary carbide content during relaxation. The Cr depletion zone around the secondary carbides raises the solubility of γ‧ thereby decreasing the volume fraction of γ‧ precipitates in Inconel X-750. In terms of stress relaxation, a larger increase in the γ‧ volume fraction was measured with loading rather than without. This is probably associated with the dislocation accumulation generated under loading that facilitate the nucleation and growth of heterogeneous γ‧ phase due to enhanced diffusion.
Dasu, Kavitha; Nakayama, Shoji F; Yoshikane, Mitsuha; Mills, Marc A; Wright, J Michael; Ehrlich, Shelley
2017-04-21
In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analyses. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on a WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100-1000mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Northern Kentucky, United States and the sources of drinking water samples are both surface water and ground water, and supplied by different water distribution facilities. Only five PFAAs, perfluoro-1-butanesulfonic acid (PFBS), perfluoro-1- -hexanesulfonic acid (PFHxS), perfluoro-1-octanesulfonic acid (PFOS), perfluoro-n-heptanoic acid (PFHpA) and perfluoro-n-octanoic acid (PFOA) are detected above the LCMRL values. The median concentrations of these five PFAAs detected in the samples was ≤4.1ng/L with PFOS at 7.6ng/L and PFOA at 10ng/L. Concentrations of perfluoro-1-decanesulfonic acid, PFDS and other perfluoroalkyl carboxylic acids were below the LCMRL values. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsujimura, Maki; Yano, Shinjiro; Abe, Yutaka; Matsumoto, Takehiro; Yoshizawa, Ayumi; Watanabe, Ysuhito; Ikeda, Koichi
2015-04-01
Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time and stock information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time and storage volume of subsurface water in time and space at the mountainous headwaters especially with steep slope. We performed an investigation on age dating and estimation of storage volume using simple water budget model in subsurface water with tracing of hydrological flow processes in mountainous catchments underlain by granite, Paleozoic and Tertiary, Yamanashi and Tsukuba, central Japan. We conducted hydrometric measurements and sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2012 in the catchments, and CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Residence time of subsurface water ranged from 11 to 60 years in the granite catchments, from 17 to 32 years in the Paleozoic catchments, from 13 to 26 years in the Tertiary catchments, and showed a younger age during the high-flow season, whereas it showed an older age in the low-flow season. Storage volume of subsurface water was estimated to be ranging from 10 ^ 4 to 10 ^ 6 m3 in the granite catchments, from 10 ^ 5 to 10 ^ 7 m3 in the Paleozoic catchments, from 10 ^ 4 to 10 ^ 6 m3 in the Tertiary catchments. In addition, seasonal change of storage volume in the granite catchments was the highest as compared with those of the Paleozoic and the Tertiary catchments. The results suggest that dynamic change of hydrological process seems to cause a larger variation of the residence time and storage volume of subsurface water in time and space in the granite catchments, whereas higher groundwater recharge rate due to frequent fissures or cracks seems to cause larger storage volume of the subsurface water in the Paleozoic catchments though the variation is not so considerable. Also, numerical simulation results support these findings.
Sweeney, J F; Albrink, M H; Bischof, E; McAllister, E W; Rosemurgy, A S
1994-12-01
While the ability of diagnostic peritoneal lavage (DPL) to 'rule out' occult intra-abdominal injuries has been well established, the volume of lavage effluent necessary for accurate prediction of a negative lavage has not been determined. To address this, 60 injured adults with blunt (N = 45) or penetrating (N = 15) trauma undergoing DPL were evaluated prospectively through protocol. After infusion of 1l of Ringer's lactate solution, samples of lavage effluent were obtained at 100 cm3, 250 cm3, 500 cm3, and 759 cm3, and when no more effluent could be returned (final sample). DPL was considered negative if final sample RBC count was < or = 100,000/mm3 for blunt injury and < 50,000/mm3 for penetrating injury. The conclusion is that at 100 cm3 of lavage effluent returned, negative results are highly predictive of a negative DPL (98 per cent), though 250 cm3 of lavage effluent is required to predict a negative DPL uniformly (100 per cent).
Distributed database kriging for adaptive sampling (D²KAS)
Roehm, Dominic; Pavel, Robert S.; Barros, Kipton; ...
2015-03-18
We present an adaptive sampling method supplemented by a distributed database and a prediction method for multiscale simulations using the Heterogeneous Multiscale Method. A finite-volume scheme integrates the macro-scale conservation laws for elastodynamics, which are closed by momentum and energy fluxes evaluated at the micro-scale. In the original approach, molecular dynamics (MD) simulations are launched for every macro-scale volume element. Our adaptive sampling scheme replaces a large fraction of costly micro-scale MD simulations with fast table lookup and prediction. The cloud database Redis provides the plain table lookup, and with locality aware hashing we gather input data for our predictionmore » scheme. For the latter we use kriging, which estimates an unknown value and its uncertainty (error) at a specific location in parameter space by using weighted averages of the neighboring points. We find that our adaptive scheme significantly improves simulation performance by a factor of 2.5 to 25, while retaining high accuracy for various choices of the algorithm parameters.« less
NASA Technical Reports Server (NTRS)
1980-01-01
General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.
External evaluation of the Dimension Vista 1500® intelligent lab system.
Bruneel, Arnaud; Dehoux, Monique; Barnier, Anne; Boutten, Anne
2012-09-01
Dimension Vista® analyzer combines four technologies (photometry, nephelometry, V-LYTE® integrated multisensor potentiometry, and LOCI® chemiluminescence) into one high-throughput system. We assessed analytical performance of assays routinely performed in our emergency laboratory according to the VALTEC protocol, and practicability. Precision was good for most parameters. Analytical domain was large and suitable for undiluted analysis in most clinical settings encountered in our hospital. Data were comparable and correlated to our routine analyzers (Roche Modular DP®, Abbott AXSYM®, Siemens Dimension® RxL, and BN ProSpec®). Performance of nephelometric and LOCI modules was excellent. Functional sensitivity of high-sensitivity C-reactive protein and cardiac troponin I were 0.165 mg/l and 0.03 ng/ml, respectively (coefficient of variation; CV < 10%). The influence of interfering substances (i.e., hemoglobin, bilirubin, or lipids) was moderate, and Dimension Vista® specifically alerted for interference according to HIL (hemolysis, icterus, lipemia) indices. Good instrument performance and full functionality (no reagent or sample carryover in the conditions evaluated, effective sample-volume detection, and clot detection) were confirmed. Simulated routine testing demonstrated excellent practicability, throughput, ease of use of software and security. Performance and practicability of Dimension Vista® are highly suitable for both routine and emergency use. Since no volume detection and thus no warning is available on limited sample racks, pediatric samples require special caution to the Siemens protocol to be analyzed in secured conditions. Our experience in routine practice is also discussed, i.e., the impact of daily workload, "manual" steps resulting from dilutions and pediatric samples, maintenances, flex hydration on instrument's performance on throughput and turnaround time. © 2012 Wiley Periodicals, Inc.
Brennan, K A; Eapen, G; Turnbull, D
2010-04-01
In 2008, the National Patient Safety Agency (NPSA) published a report after 42 incidents and two deaths where glucose-containing flush solutions were attached to the arterial line. The molar concentration of 5% glucose is 277 mmol litre(-1). Only a tiny amount of sample contamination will lead to an artificially high glucose. As the NPSA sought a solution, a bench model was constructed to compare the performance of three open and three closed arterial line systems in limiting sample contamination. All arterial line systems were set up in a standard manner and pressurized to 300 mm Hg with 5% glucose used as the flush solution. This was connected to the 'radial artery' using an 18 G needle representing the radial cannula. The radial artery was simulated using a wide-bore extension set with 'blood' flow at 60 ml min(-1). Blood was simulated by the addition of red dye to Hartmann's solution. Increasing multiples of arterial line dead space were aspirated and discarded. Blood samples were then obtained and glucose concentration was measured. Significant glucose contamination (3 mmol litre(-1) +/-3.4) was detected in all open arterial line systems up to an aspiration volume of five times the dead space. No samples from the closed systems recorded glucose concentration >1 mmol litre(-1). Recommended minimal discard volumes are inadequate in the presence of glucose as the flush solution and can lead to high blood glucose readings, inappropriate insulin use, and iatrogenic neuroglycopaenia. Our study demonstrates that the closed-loop arterial sampling system could be the universal solution sought by the NPSA.
The effects of spatial sampling choices on MR temperature measurements.
Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L
2011-02-01
The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.
Temporal and spatial resolution required for imaging myocardial function
NASA Astrophysics Data System (ADS)
Eusemann, Christian D.; Robb, Richard A.
2004-05-01
4-D functional analysis of myocardial mechanics is an area of significant interest and research in cardiology and vascular/interventional radiology. Current multidimensional analysis is limited by insufficient temporal resolution of x-ray and magnetic resonance based techniques, but recent improvements in system design holds hope for faster and higher resolution scans to improve images of moving structures allowing more accurate functional studies, such as in the heart. This paper provides a basis for the requisite temporal and spatial resolution for useful imaging during individual segments of the cardiac cycle. Multiple sample rates during systole and diastole are compared to determine an adequate sample frequency to reduce regional myocardial tracking errors. Concurrently, out-of-plane resolution has to be sufficiently high to minimize partial volume effect. Temporal resolution and out-of-plane spatial resolution are related factors that must be considered together. The data used for this study is a DSR dynamic volume image dataset with high temporal and spatial resolution using implanted fiducial markers to track myocardial motion. The results of this study suggest a reduced exposure and scan time for x-ray and magnetic resonance imaging methods, since a lower sample rate during systole is sufficient, whereas the period of rapid filling during diastole requires higher sampling. This could potentially reduce the cost of these procedures and allow higher patient throughput.
Sommer, Edward J.; Rich, John T.
2001-01-01
A high accuracy rapid system for sorting a plurality of waste products by polymer type. The invention involves the application of Raman spectroscopy and complex identification techniques to identify and sort post-consumer plastics for recycling. The invention reads information unique to the molecular structure of the materials to be sorted to identify their chemical compositions and uses rapid high volume sorting techniques to sort them into product streams at commercially viable throughput rates. The system employs a laser diode (20) for irradiating the material sample (10), a spectrograph (50) is used to determine the Raman spectrum of the material sample (10) and a microprocessor based controller (70) is employed to identify the polymer type of the material sample (10).
Bigger is better! Hippocampal volume and declarative memory performance in healthy young men.
Pohlack, Sebastian T; Meyer, Patric; Cacciaglia, Raffaele; Liebscher, Claudia; Ridder, Stephanie; Flor, Herta
2014-01-01
The importance of the hippocampus for declarative memory processes is firmly established. Nevertheless, the issue of a correlation between declarative memory performance and hippocampal volume in healthy subjects still remains controversial. The aim of the present study was to investigate this relationship in more detail. For this purpose, 50 healthy young male participants performed the California Verbal Learning Test. Hippocampal volume was assessed by manual segmentation of high-resolution 3D magnetic resonance images. We found a significant positive correlation between putatively hippocampus-dependent memory measures like short-delay retention, long-delay retention and discriminability and percent hippocampal volume. No significant correlation with measures related to executive processes was found. In addition, percent amygdala volume was not related to any of these measures. Our data advance previous findings reported in studies of brain-damaged individuals in a large and homogeneous young healthy sample and are important for theories on the neural basis of episodic memory.
Vogel, J.R.; Brown, G.O.
2003-01-01
Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.
Estimating TCP Packet Loss Ratio from Sampled ACK Packets
NASA Astrophysics Data System (ADS)
Yamasaki, Yasuhiro; Shimonishi, Hideyuki; Murase, Tutomu
The advent of various quality-sensitive applications has greatly changed the requirements for IP network management and made the monitoring of individual traffic flows more important. Since the processing costs of per-flow quality monitoring are high, especially in high-speed backbone links, packet sampling techniques have been attracting considerable attention. Existing sampling techniques, such as those used in Sampled NetFlow and sFlow, however, focus on the monitoring of traffic volume, and there has been little discussion of the monitoring of such quality indexes as packet loss ratio. In this paper we propose a method for estimating, from sampled packets, packet loss ratios in individual TCP sessions. It detects packet loss events by monitoring duplicate ACK events raised by each TCP receiver. Because sampling reveals only a portion of the actual packet loss, the actual packet loss ratio is estimated statistically. Simulation results show that the proposed method can estimate the TCP packet loss ratio accurately from a 10% sampling of packets.
Marinozzi, Franco; Bini, Fabiano; Marinozzi, Andrea; Zuppante, Francesca; De Paolis, Annalisa; Pecci, Raffaella; Bedini, Rossella
2013-01-01
Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact. Voxels at the external surface of the sample can contain both bone and air so thresholding operates an incorrect estimation of volume occupied by the two materials. The aim of this study is the extraction of bone volumetric information directly from the image histograms, by fitting them with a suitable set of functions. Nineteen trabecular bone samples were extracted from femoral heads of eight patients subject to a hip arthroplasty surgery. Trabecular bone samples were acquired using micro-CT Scanner. Hystograms of the acquired images were computed and fitted by Gaussian-like functions accounting for: a) gray levels produced by the bone x-ray absorption, b) the portions of the image occupied by air and c) voxels that contain a mixture of bone and air. This latter contribution can be considered such as an estimation of the partial volume effect. The comparison of the proposed technique to the bone volumes measured by a reference instrument such as by a helium pycnometer show the method as a good way for an accurate bone volume calculation of trabecular bone samples.
A computer system for analysis and transmission of spirometry waveforms using volume sampling.
Ostler, D V; Gardner, R M; Crapo, R O
1984-06-01
A microprocessor-controlled data gathering system for telemetry and analysis of spirometry waveforms was implemented using a completely digital design. Spirometry waveforms were obtained from an optical shaft encoder attached to a rolling seal spirometer. Time intervals between 10-ml volume changes (volume sampling) were stored. The digital design eliminated problems of analog signal sampling. The system measured flows up to 12 liters/sec with 5% accuracy and volumes up to 10 liters with 1% accuracy. Transmission of 10 waveforms took about 3 min. Error detection assured that no data were lost or distorted during transmission. A pulmonary physician at the central hospital reviewed the volume-time and flow-volume waveforms and interpretations generated by the central computer before forwarding the results and consulting with the rural physician. This system is suitable for use in a major hospital, rural hospital, or small clinic because of the system's simplicity and small size.
Estimating Mixed Broadleaves Forest Stand Volume Using Dsm Extracted from Digital Aerial Images
NASA Astrophysics Data System (ADS)
Sohrabi, H.
2012-07-01
In mixed old growth broadleaves of Hyrcanian forests, it is difficult to estimate stand volume at plot level by remotely sensed data while LiDar data is absent. In this paper, a new approach has been proposed and tested for estimating stand forest volume. The approach is based on this idea that forest volume can be estimated by variation of trees height at plots. In the other word, the more the height variation in plot, the more the stand volume would be expected. For testing this idea, 120 circular 0.1 ha sample plots with systematic random design has been collected in Tonekaon forest located in Hyrcanian zone. Digital surface model (DSM) measure the height values of the first surface on the ground including terrain features, trees, building etc, which provides a topographic model of the earth's surface. The DSMs have been extracted automatically from aerial UltraCamD images so that ground pixel size for extracted DSM varied from 1 to 10 m size by 1m span. DSMs were checked manually for probable errors. Corresponded to ground samples, standard deviation and range of DSM pixels have been calculated. For modeling, non-linear regression method was used. The results showed that standard deviation of plot pixels with 5 m resolution was the most appropriate data for modeling. Relative bias and RMSE of estimation was 5.8 and 49.8 percent, respectively. Comparing to other approaches for estimating stand volume based on passive remote sensing data in mixed broadleaves forests, these results are more encouraging. One big problem in this method occurs when trees canopy cover is totally closed. In this situation, the standard deviation of height is low while stand volume is high. In future studies, applying forest stratification could be studied.
NASA Astrophysics Data System (ADS)
Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten
2013-04-01
Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among samples did not affect the precision of the analysis of natural abundance and labeled samples. Natural DOM, derived from different soils and assessed at various concentrations, was measured with similar good analytical performance, and also tested for the effect of freezing and re-dissolving. We found good performance of TOC-IRMS in comparison with other systems capable of determining C concentration and isotopic signatures. We recognize the advantages of this system providing: - High sample throughput, short measurement time (15 minutes), flexible sample volume - Easy maintenance, handling, rapid sample preparation (no pretreatment) This preliminary assessment highlights wide-ranging opportunities for further research on concentrations and isotopic signatures by TOC-IRMS to elucidate the role of dissolved carbon in terrestrial and aquatic systems.
Light sheet theta microscopy for rapid high-resolution imaging of large biological samples.
Migliori, Bianca; Datta, Malika S; Dupre, Christophe; Apak, Mehmet C; Asano, Shoh; Gao, Ruixuan; Boyden, Edward S; Hermanson, Ola; Yuste, Rafael; Tomer, Raju
2018-05-29
Advances in tissue clearing and molecular labeling methods are enabling unprecedented optical access to large intact biological systems. These developments fuel the need for high-speed microscopy approaches to image large samples quantitatively and at high resolution. While light sheet microscopy (LSM), with its high planar imaging speed and low photo-bleaching, can be effective, scaling up to larger imaging volumes has been hindered by the use of orthogonal light sheet illumination. To address this fundamental limitation, we have developed light sheet theta microscopy (LSTM), which uniformly illuminates samples from the same side as the detection objective, thereby eliminating limits on lateral dimensions without sacrificing the imaging resolution, depth, and speed. We present a detailed characterization of LSTM, and demonstrate its complementary advantages over LSM for rapid high-resolution quantitative imaging of large intact samples with high uniform quality. The reported LSTM approach is a significant step for the rapid high-resolution quantitative mapping of the structure and function of very large biological systems, such as a clarified thick coronal slab of human brain and uniformly expanded tissues, and also for rapid volumetric calcium imaging of highly motile animals, such as Hydra, undergoing non-isomorphic body shape changes.
Recent advances of mesoporous materials in sample preparation.
Zhao, Liang; Qin, Hongqiang; Wu, Ren'an; Zou, Hanfa
2012-03-09
Sample preparation has been playing an important role in the analysis of complex samples. Mesoporous materials as the promising adsorbents have gained increasing research interest in sample preparation due to their desirable characteristics of high surface area, large pore volume, tunable mesoporous channels with well defined pore-size distribution, controllable wall composition, as well as modifiable surface properties. The aim of this paper is to review the recent advances of mesoporous materials in sample preparation with emphases on extraction of metal ions, adsorption of organic compounds, size selective enrichment of peptides/proteins, specific capture of post-translational peptides/proteins and enzymatic reactor for protein digestion. Copyright © 2011 Elsevier B.V. All rights reserved.
Post-irradiation-examination of irradiated fuel outside the hot cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawn E. Janney; Adam B. Robinson; Thomas P. O'Holleran
Because of their high radioactivity, irradiated fuels are commonly examined in a hot cell. However, the Idaho National Laboratory (INL) has recently investigated irradiated U-Mo-Al metallic fuel from the Reduced Enrichment for Research and Test Reactors (RERTR) project using a conventional unshielded scanning electron microscope outside a hot cell. This examination was possible because of a two-step sample-preparation approach in which a small volume of fuel was isolated in a hot cell and shielding was introduced during later stages of sample preparation. The resulting sample contained numerous sample-preparation artifacts but allowed analysis of microstructures from selected areas.
Laser-induced incandescence calibration via gravimetric sampling
NASA Technical Reports Server (NTRS)
Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.
1996-01-01
Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.
Sadi, A Yari; Shokrgozar, M A; Homaeigohar, S Sh; Hosseinalipour, M; Khavandi, A; Javadpour, J
2006-05-01
The effect of partially stabilized zirconia (PSZ) on the biological properties of the hyroxyapatite - high density polyethylene (HA/HDPE) composites was studied by investigating the simultaneous effect of hydroxyapatite and PSZ volume fractions on the in vitro response of human osteoblast cells. The biocompatibility of composite samples with different volume fraction of HA and PSZ powders was assessed by proliferation, alkaline phosphatase (ALP) and cell attachment assays on the osteoblast cell line (G-292) in different time periods. The effect of composites on the behavior of G-292 cells was compared with those of HDPE and TPS (Tissue Culture Poly Styrene as negative control) samples. Results showed a higher proliferation rate of G-292 cells in the presence of composite samples as compared to the HDPE sample after 7 and 14 days of incubation period. ALP production rate in all composite samples was higher than HDPE and TPS samples. The number of adhered cells on the composite samples was higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods. These findings indicates that the addition of PSZ does not have any adverse affect on the biocompatibility of HA/HDPE composites. In fact in some experiments PSZ added HA/HDPE composites performed better in proliferation, differentiation and attachment of osteoblastic cells.
Programmable temperature control system for biological materials
NASA Technical Reports Server (NTRS)
Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.
1982-01-01
A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.
NanoDrop Microvolume Quantitation of Nucleic Acids
Desjardins, Philippe; Conklin, Deborah
2010-01-01
Biomolecular assays are continually being developed that use progressively smaller amounts of material, often precluding the use of conventional cuvette-based instruments for nucleic acid quantitation for those that can perform microvolume quantitation. The NanoDrop microvolume sample retention system (Thermo Scientific NanoDrop Products) functions by combining fiber optic technology and natural surface tension properties to capture and retain minute amounts of sample independent of traditional containment apparatus such as cuvettes or capillaries. Furthermore, the system employs shorter path lengths, which result in a broad range of nucleic acid concentration measurements, essentially eliminating the need to perform dilutions. Reducing the volume of sample required for spectroscopic analysis also facilitates the inclusion of additional quality control steps throughout many molecular workflows, increasing efficiency and ultimately leading to greater confidence in downstream results. The need for high-sensitivity fluorescent analysis of limited mass has also emerged with recent experimental advances. Using the same microvolume sample retention technology, fluorescent measurements may be performed with 2 μL of material, allowing fluorescent assays volume requirements to be significantly reduced. Such microreactions of 10 μL or less are now possible using a dedicated microvolume fluorospectrometer. Two microvolume nucleic acid quantitation protocols will be demonstrated that use integrated sample retention systems as practical alternatives to traditional cuvette-based protocols. First, a direct A260 absorbance method using a microvolume spectrophotometer is described. This is followed by a demonstration of a fluorescence-based method that enables reduced-volume fluorescence reactions with a microvolume fluorospectrometer. These novel techniques enable the assessment of nucleic acid concentrations ranging from 1 pg/ μL to 15,000 ng/ μL with minimal consumption of sample. PMID:21189466
Birdcage volume coils and magnetic resonance imaging: a simple experiment for students.
Vincent, Dwight E; Wang, Tianhao; Magyar, Thalia A K; Jacob, Peni I; Buist, Richard; Martin, Melanie
2017-01-01
This article explains some simple experiments that can be used in undergraduate or graduate physics or biomedical engineering laboratory classes to learn how birdcage volume radiofrequency (RF) coils and magnetic resonance imaging (MRI) work. For a clear picture, and to do any quantitative MRI analysis, acquiring images with a high signal-to-noise ratio (SNR) is required. With a given MRI system at a given field strength, the only means to change the SNR using hardware is to change the RF coil used to collect the image. RF coils can be designed in many different ways including birdcage volume RF coil designs. The choice of RF coil to give the best SNR for any MRI study is based on the sample being imaged. The data collected in the simple experiments show that the SNR varies as inverse diameter for the birdcage volume RF coils used in these experiments. The experiments were easily performed by a high school student, an undergraduate student, and a graduate student, in less than 3 h, the time typically allotted for a university laboratory course. The article describes experiments that students in undergraduate or graduate laboratories can perform to observe how birdcage volume RF coils influence MRI measurements. It is designed for students interested in pursuing careers in the imaging field.
Korkusuz, Huedayi; Fehre, Niklas; Sennert, Michael; Happel, Christian; Grünwald, Frank
2015-01-01
High-intensity focused ultrasound (HIFU) is a promising, non-invasive technique in treating benign thyroid nodules (TNs). The aim of this study was to evaluate the efficacy of HIFU to induce clinically meaningful shrinkage in benign predominantly solid TNs and to identify variables that influence or predict the magnitude of TN volume reduction. For each of ten subjects, HIFU treatment was conducted on a single nodule. Nodular volume was measured sonographically at baseline and at 3 months post-procedure. Nodular function and early treatment assessment was done scintigraphically. Median nodular volume reduction was 0.7 ml absolute and 48.8% relative to pre-interventional size (p < 0.05). Absolute shrinkage was negatively correlated with the average treatment depth (τ = -0.61, p < 0.05). Absolute nodular volume was positively correlated with the scintigraphic nodular uptake reduction (τ = 0.66, p < 0.05). HIFU treatment of benign predominantly solid TNs appears to be safe and effective for inducing nodular shrinkage. Despite potential for improvement, a single treatment session with HIFU is already a viable alternative to more standard methods. The feasibility of multiple HIFU treatments requires further investigation. Due to the small sample size, the findings of this analysis need conformation by larger studies.
Storage flux uncertainty impact on eddy covariance net ecosystem exchange measurements
NASA Astrophysics Data System (ADS)
Nicolini, Giacomo; Aubinet, Marc; Feigenwinter, Christian; Heinesch, Bernard; Lindroth, Anders; Mamadou, Ossénatou; Moderow, Uta; Mölder, Meelis; Montagnani, Leonardo; Rebmann, Corinna; Papale, Dario
2017-04-01
Complying with several assumption and simplifications, most of the carbon budget studies based on eddy covariance (EC) measurements, quantify the net ecosystem exchange (NEE) by summing the flux obtained by EC (Fc) and the storage flux (Sc). Sc is the rate of change of CO2, within the so called control volume below the EC measurement level, given by the difference in the instantaneous profiles of concentration at the beginning and end of the EC averaging period, divided by the averaging period. While cumulating over time led to a nullification of Sc, it can be significant at short time periods. The approaches used to estimate Sc fluxes largely vary, from measurements based only on a single sampling point (usually located at the EC measurement height) to measurements based on several sampling profiles distributed within the control volume. Furthermore, the number of sampling points within each profile vary, according to their height and the ecosystem typology. It follows that measurement accuracy increases with the sampling intensity within the control volume. In this work we use the experimental dataset collected during the ADVEX campaign in which Sc flux has been measured in three similar forest sites by the use of 5 sampling profiles (towers). Our main objective is to quantify the impact of Sc measurement uncertainty on NEE estimates. Results show that different methods may produce substantially different Sc flux estimates, with problematic consequences in case high frequency (half-hourly) data are needed for the analysis. However, the uncertainty on long-term estimates may be tolerate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boedicker, J.; Li, L; Kline, T
2008-01-01
This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminatingmore » the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.« less
Temporal Coding of Volumetric Imagery
NASA Astrophysics Data System (ADS)
Llull, Patrick Ryan
'Image volumes' refer to realizations of images in other dimensions such as time, spectrum, and focus. Recent advances in scientific, medical, and consumer applications demand improvements in image volume capture. Though image volume acquisition continues to advance, it maintains the same sampling mechanisms that have been used for decades; every voxel must be scanned and is presumed independent of its neighbors. Under these conditions, improving performance comes at the cost of increased system complexity, data rates, and power consumption. This dissertation explores systems and methods capable of efficiently improving sensitivity and performance for image volume cameras, and specifically proposes several sampling strategies that utilize temporal coding to improve imaging system performance and enhance our awareness for a variety of dynamic applications. Video cameras and camcorders sample the video volume (x,y,t) at fixed intervals to gain understanding of the volume's temporal evolution. Conventionally, one must reduce the spatial resolution to increase the framerate of such cameras. Using temporal coding via physical translation of an optical element known as a coded aperture, the compressive temporal imaging (CACTI) camera emonstrates a method which which to embed the temporal dimension of the video volume into spatial (x,y) measurements, thereby greatly improving temporal resolution with minimal loss of spatial resolution. This technique, which is among a family of compressive sampling strategies developed at Duke University, temporally codes the exposure readout functions at the pixel level. Since video cameras nominally integrate the remaining image volume dimensions (e.g. spectrum and focus) at capture time, spectral (x,y,t,lambda) and focal (x,y,t,z) image volumes are traditionally captured via sequential changes to the spectral and focal state of the system, respectively. The CACTI camera's ability to embed video volumes into images leads to exploration of other information within that video; namely, focal and spectral information. The next part of the thesis demonstrates derivative works of CACTI: compressive extended depth of field and compressive spectral-temporal imaging. These works successfully show the technique's extension of temporal coding to improve sensing performance in these other dimensions. Geometrical optics-related tradeoffs, such as the classic challenges of wide-field-of-view and high resolution photography, have motivated the development of mulitscale camera arrays. The advent of such designs less than a decade ago heralds a new era of research- and engineering-related challenges. One significant challenge is that of managing the focal volume (x,y,z ) over wide fields of view and resolutions. The fourth chapter shows advances on focus and image quality assessment for a class of multiscale gigapixel cameras developed at Duke. Along the same line of work, we have explored methods for dynamic and adaptive addressing of focus via point spread function engineering. We demonstrate another form of temporal coding in the form of physical translation of the image plane from its nominal focal position. We demonstrate this technique's capability to generate arbitrary point spread functions.
NASA Astrophysics Data System (ADS)
Padmanabhan, Saraswathi; Shinoj, Vengalathunadakal K.; Murukeshan, Vadakke M.; Padmanabhan, Parasuraman
2010-01-01
A simple optical method using hollow-core photonic crystal fiber for protein detection has been described. In this study, estrogen receptor (ER) from a MCF-7 breast carcinoma cell lysates immobilized inside a hollow-core photonic crystal fiber was detected using anti-ER primary antibody with either Alexa™ Fluor 488 (green fluorescent dye) or 555 (red Fluorescent dye) labeled Goat anti-rabbit IgG as the secondary antibody. The fluorescence fingerprints of the ERα protein were observed under fluorescence microscope, and its optical characteristics were analyzed. The ERα protein detection by this proposed method is based on immuno binding from sample volume as low as 50 nL. This method is expected to offer great potential as a biosensor for medical diagnostics and therapeutics applications.
Dahling, D R; Wright, B A
1988-12-01
An improved concentration method using sample volumes as large as 1500 ml has been developed to monitor for viruses in wastewaters. Non-precipitating dry beef extract powder is added to wastewater samples to give a 3% concentration and mixed until dissolved. This is followed by the addition of Celite as a virus adsorbent. By manipulating pH, viruses are eluted from the Celite in small volumes of phosphate buffer. This procedure was further tested without the aid of the Celite additives using a precipitating beef extract powder and substituting FeCl3 as an alternate reagent for the Celite. Comparison testing was also made with the currently recommended cartridge and disc filter procedures. In all cases, the non-precipitating beef extract-Celite method gave higher recovery rates in highly polluted waters.
XMM-Subaru:Complete High Precision Study of Galaxy Clusters for Modern Cosmology
NASA Astrophysics Data System (ADS)
Zhang, Yu-Ying
2011-10-01
We request 382 ks data for 12 clusters to complete our survey of a volume-limited sample of 55 clusters. We investigated the existing data, which hints a mass dependent bias in the X-ray to weak lensing mass ratios for disturbed ones. X-ray mass proxies, e.g., Yx, show low scatter, but the best fits, particularly the slopes, of the mass-observable relations may be biased due to this mass dependence. Our program will quantify any mass/radial dependent bias based on three independent probes (X-ray/lensing/velocity dispersion) for such a volume-limited sample, and deliver definitive constraints on systematics for upcoming cluster cosmology surveys. The dataset will be a major asset for programs aiming to measure dark energy and programs adding a multi-wavelength focus to studies of cluster physics.
Second-harmonic diffraction from holographic volume grating.
Nee, Tsu-Wei
2006-10-01
The full polarization property of holographic volume-grating enhanced second-harmonic diffraction (SHD) is investigated theoretically. The nonlinear coefficient is derived from a simple atomic model of the material. By using a simple volume-grating model, the SHD fields and Mueller matrices are first derived. The SHD phase-mismatching effect for a thick sample is analytically investigated. This theory is justified by fitting with published experimental SHD data of thin-film samples. The SHD of an existing polymethyl methacrylate (PMMA) holographic 2-mm-thick volume-grating sample is investigated. This sample has two strong coupling linear diffraction peaks and five SHD peaks. The splitting of SHD peaks is due to the phase-mismatching effect. The detector sensitivity and laser power needed to measure these peak signals are quantitatively estimated.
Mechanical properties of kenaf composites using dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Loveless, Thomas A.
Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.
Periodontitis is related to lung volumes and airflow limitation: a cross-sectional study.
Holtfreter, Birte; Richter, Stefanie; Kocher, Thomas; Dörr, Marcus; Völzke, Henry; Ittermann, Till; Obst, Anne; Schäper, Christoph; John, Ulrich; Meisel, Peter; Grotevendt, Anne; Felix, Stephan B; Ewert, Ralf; Gläser, Sven
2013-12-01
This study aimed to assess the potential association of periodontal diseases with lung volumes and airflow limitation in a general adult population. Based on a representative population sample of the Study of Health in Pomerania (SHIP), 1463 subjects aged 25-86 years were included. Periodontal status was assessed by clinical attachment loss (CAL), probing depth and number of missing teeth. Lung function was measured using spirometry, body plethysmography and diffusing capacity of the lung for carbon monoxide. Linear regression models using fractional polynomials were used to assess associations between periodontal disease and lung function. Fibrinogen and high-sensitivity C-reactive protein (hs-CRP) were evaluated as potential intermediate factors. After full adjustment for potential confounders mean CAL was significantly associated with variables of mobile dynamic and static lung volumes, airflow limitation and hyperinflation (p<0.05). Including fibrinogen and hs-CRP did not change coefficients of mean CAL; associations remained statistically significant. Mean CAL was not associated with total lung capacity and diffusing capacity of the lung for carbon monoxide. Associations were confirmed for mean probing depth, extent measures of CAL/probing depth and number of missing teeth. Periodontal disease was significantly associated with reduced lung volumes and airflow limitation in this general adult population sample. Systemic inflammation did not provide a mechanism linking both diseases.
Nordholm, Dorte; Krogh, Jesper; Mondelli, Valeria; Dazzan, Paola; Pariante, Carmine; Nordentoft, Merete
2013-11-01
A larger pituitary size is thought to reflect a greater activation of the hypothalamic-pituitary-adrenal (HPA) axis, which may be related to an increase in the number and size of corticotroph cells. Some studies, but not all, indicate that pituitary volume increases before or at the onset of psychosis. There is a need for at critical appraisal of the literature on this topic accompanied by a meta-analytical evaluation of the data. We included studies comparing the volume of the pituitary gland in healthy controls and patients with schizophrenia, first episode of psychosis (FEP), schizotypal disorder or ultra high-risk (UHR) subjects. We defined three groups of subjects for the analyses: healthy controls; UHR and schizotypal patients; and patients diagnosed with first episode of psychosis, schizophrenia or schizoaffective disorder. Ten studies were included in the meta-analysis. We found a trend of a larger pituitary volume in both UHR subject who had transition to psychosis (p=0.05) and in FEP subjects (p=0.09) compared to healthy controls. There was no difference in pituitary volume between patients with schizophrenia combined with FEP versus healthy controls (p=0.52) or between UHR (with and without transition) and healthy controls (p=0.24). In a regression analysis, we demonstrated that the number of subjects receiving antipsychotics and pituitary volume were positively correlated. As previously reported in other samples, gender also had an impact on pituitary volume with females presenting with a larger mean volume. Results from this meta-analysis suggest that the pituitary gland could be increasing before the onset of psychosis. Both gender and use of antipsychotics have a major impact on the pituitary volume. Copyright © 2013 Elsevier Ltd. All rights reserved.
Development of an Inline Urine Monitoring System for the International Space Station
NASA Technical Reports Server (NTRS)
Broyan, James Lee, Jr.; Cibuzar, Banelle R.
2008-01-01
Human exposure to microgravity during spaceflight causes bone loss. Calcium and other metabolic byproducts are excreted in urine voids. Frequent and accurate measurement of urine void volume and constituents is essential to determining crew bone loss and the effectiveness of countermeasures. Previous US Space Shuttle (SS) Urine Monitoring System (UMS) technology was unable to accurately measure urine void volumes due to cross contamination between users and fluid system instabilities. Currently, urine voids must be collected manually in a flexible plastic bag containing a known tracer quantity. The crew member must completely mix the bag then withdraw a representative syringe sample for later ground analysis. The current bag system accuracy is highly dependent on mixing technique. The International Space Station (ISS) UMS has been developed as an automated device that collects urine from the Waste and Hygiene Compartment (WHC) urinal funnel interface, separates the urine, measures the void volume, and allows for syringe sampling. After operations, the ISS UMS delivers the urine to the WHC for normal processing then flushes its plumbing with a small water volume. The current ISS UMS design incorporates an innovative rotary separator that minimizes foaming, greatly reduces cross contamination between urine voids (< 0.5 ml urine), and provides accurate volume measurements (< +/- 2% error for 100 to 1000 ml void volumes). The system performance has been validated with extensive ground tests and reduced gravity aircraft flights. The lockersized ISS UMS is currently being modified to interface with the ISS Node 3 WHC Russian ACY hardware. The operation principles, characteristics, and results are outlined in the paper.
Boisvert, Michel; Fayad, Paul B; Sauvé, Sébastien
2012-11-19
A new solid phase extraction (SPE) method coupled to a high throughput sample analysis technique was developed for the simultaneous determination of nine selected emerging contaminants in wastewater (atrazine, desethylatrazine, 17β-estradiol, ethynylestradiol, norethindrone, caffeine, carbamazepine, diclofenac and sulfamethoxazole). We specifically included pharmaceutical compounds from multiple therapeutic classes, as well as pesticides. Sample pre-concentration and clean-up was performed using a mixed-mode SPE cartridge (Strata ABW) having both cation and anion exchange properties, followed by analysis by laser diode thermal desorption atmospheric pressure chemical ionization coupled to tandem mass spectrometry (LDTD-APCI-MS/MS). The LDTD interface is a new high-throughput sample introduction method, which reduces total analysis time to less than 15s per sample as compared to minutes with traditional liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS). Several SPE parameters were evaluated in order to optimize recovery efficiencies when extracting analytes from wastewater, such as the nature of the stationary phase, the loading flow rate, the extraction pH, the volume and composition of the washing solution and the initial sample volume. The method was successfully applied to real wastewater samples from the primary sedimentation tank of a municipal wastewater treatment plant. Recoveries of target compounds from wastewater ranged from 78% to 106%, the limit of detection ranged from 30 to 122ng L(-1) while the limit of quantification ranged from 90 to 370ng L(-1). Calibration curves in the wastewater matrix showed good linearity (R(2)≥0.991) for all target analytes and the intraday and interday coefficient of variation was below 15%, reflecting a good precision. Copyright © 2012 Elsevier B.V. All rights reserved.
Colt, J S
1998-01-01
Epidemiologic studies of the association between residential pesticide use and cancer risk require an assessment of past pesticide exposures. Pesticide levels in carpet dust are believed to reflect long-term pesticide use. Recent epidemiologic studies have found collection of dust samples using the high-volume surface sampler (HVS3) to be expensive and cumbersome. We compared the levels of pesticides and other compounds in dust obtained from subjects' personal used vacuum cleaner bags to that collected by the HVS3 to see if this simpler method could replace the HVS3 in epidemiologic research. We visited the homes of 15 subjects, took the used bags from their vacuums, and collected carpet dust samples with the HVS3. The samples were analyzed for 42 target compounds: 26 pesticides, 10 polycyclic aromatic hydrocarbons (PAHs), and six polychlorinated biphenyl (PCB) congeners using GC/MS in selected ion monitoring mode. The two methods agreed in detecting the presence of the target compounds between 80% and 100% of the time. Neither sampling method was consistently more sensitive. The median target compound concentrations were similar, and a paired t-test showed no significant differences. For many compounds, the concentrations of compounds in the HVS3 samples were higher than those in the used bag samples at the upper end of the concentration ranges. However, the Spearman rank correlation coefficients were 0.85 or higher for most compounds, indicating that homes would be ranked similarly using both methods. Overall, there appears to be no clear difference in the quality of the pesticide, PAH, or PCB concentration data for the two dust collection methods. Images Figure 1 PMID:9799187
Sun, Jieping; Liang, Qionglin; Han, Qiang; Zhang, Xiaoqiong; Ding, Mingyu
2015-01-01
A novel magnetic graphene oxide nanocomposite was synthesized by one-step coprecipitation method and characterized by transmission electron microscopy, X-ray photoelectron spectroscopy and vibrating sample magnetometer. The nanocomposite beard many intriguing properties, including chemical stability, high adsorption capacity, and superparamagnetic. These properties evoked great interest and desire of its exploration in magnetic solid-phase extraction of heavy metal ions from complex samples. Several parameters effecting the analytical performance, such as the sample pH, amounts of adsorbent, sample volumes, elution volumes, and coexisting ions, had been investigated in detail. The adsorbed metal ions were easy eluted by controlling the pH condition and the materials could be reused more than 20 times. Under the optimized conditions, the limits of detection were 0.016, 0.046, 0.395, 0.038, 0.157 μg L(-1) for Co(2+), Ni(2+), Cu(2+), Cd(2+), and Pb(2+), respectively. The intra-day relative standard deviations (n=5) were in the range of 1.8-5.5% at 10 μg L(-1). The proposed method was successfully applied to biological sample analysis and got excellent recoveries in the range of 81-113% even the matrix was complex. Copyright © 2014 Elsevier B.V. All rights reserved.
Pan, Yuchen; Sackmann, Eric K; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S; Herr, Amy E
2016-12-23
High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality - the binding affinity - is quantified through the dissociation constant (K D ) of each recombinant antibody and the target antigen. To characterize the K D of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The K D for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization.
Pan, Yuchen; Sackmann, Eric K.; Wypisniak, Karolina; Hornsby, Michael; Datwani, Sammy S.; Herr, Amy E.
2016-01-01
High-quality immunoreagents enhance the performance and reproducibility of immunoassays and, in turn, the quality of both biological and clinical measurements. High quality recombinant immunoreagents are generated using antibody-phage display. One metric of antibody quality – the binding affinity – is quantified through the dissociation constant (KD) of each recombinant antibody and the target antigen. To characterize the KD of recombinant antibodies and target antigen, we introduce affinity electrophoretic mobility shift assays (EMSAs) in a high-throughput format suitable for small volume samples. A microfluidic card comprised of free-standing polyacrylamide gel (fsPAG) separation lanes supports 384 concurrent EMSAs in 30 s using a single power source. Sample is dispensed onto the microfluidic EMSA card by acoustic droplet ejection (ADE), which reduces EMSA variability compared to sample dispensing using manual or pin tools. The KD for each of a six-member fragment antigen-binding fragment library is reported using ~25-fold less sample mass and ~5-fold less time than conventional heterogeneous assays. Given the form factor and performance of this micro- and mesofluidic workflow, we have developed a sample-sparing, high-throughput, solution-phase alternative for biomolecular affinity characterization. PMID:28008969
NASA Astrophysics Data System (ADS)
Mustasaar, Mario; Comas, Xavier
2017-09-01
The importance of peatlands as sources of greenhouse gas emissions has been demonstrated in many studies during the last two decades. While most studies have shown the heterogeneous distribution of biogenic gas in peat soils at the field scale (sampling volumes in the order of meters), little information exists for submeter scales, particularly relevant to properly capture the dynamics of hot spots for gas accumulation and release when designing sampling routines with methods that use smaller (i.e., submeter) sampling volumes like flux chambers. In this study, ground-penetrating radar is used at the laboratory scale to evaluate biogenic gas dynamics at high spatial resolution (i.e., cm) in a peat monolith from the Everglades. The results indicate sharp changes (both spatially and temporally) in the dynamics of gas accumulation and release, representing hot spots for production and release of biogenic gases with surface areas ranging between 5 to 10 cm diameter and are associated with increases in porosity. Furthermore, changes in gas composition and inferred methane (CH4) and carbon dioxide (CO2) fluxes also displayed a high spatiotemporal variability associated with hot spots, resulting in CH4 and CO2 flux estimates showing differences up to 1 order of magnitude during the same day for different parts of the sample. This work follows on recent studies in the Everglades and questions the appropriateness of spatial and temporal scales of measurement when defining gas dynamics by showing how flux values may change both spatially and temporarily even when considering submeter spatial scales.
Nanopipettes: probes for local sample analysis.
Saha-Shah, Anumita; Weber, Anna E; Karty, Jonathan A; Ray, Steven J; Hieftje, Gary M; Baker, Lane A
2015-06-01
Nanopipettes (pipettes with diameters <1 μm) were explored as pressure-driven fluid manipulation tools for sampling nanoliter volumes of fluids. The fundamental behavior of fluids confined in the narrow channels of the nanopipette shank was studied to optimize sampling volume and probe geometry. This method was utilized to collect nanoliter volumes (<10 nL) of sample from single Allium cepa cells and live Drosophila melanogaster first instar larvae. Matrix assisted laser desorption/ionization-mass spectrometry (MALDI-MS) was utilized to characterize the collected sample. The use of nanopipettes for surface sampling of mouse brain tissue sections was also explored. Lipid analyses were performed on mouse brain tissues with spatial resolution of sampling as small as 50 μm. Nanopipettes were shown to be a versatile tool that will find further application in studies of sample heterogeneity and population analysis for a wide range of samples.
UCLA High Speed, High Volume Laboratory Network for Infectious Diseases. Addendum
2009-08-01
s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation... Design : Because of current public health and national security threats, influenza surveillance and analysis will be the initial focus. In the upcoming...throughput and automated systems will enable processing of tens of thousands of samples and provide critical laboratory capacity. Its overall design and
Effect of the extent of well purging on laboratory parameters of groundwater samples
NASA Astrophysics Data System (ADS)
Reka Mathe, Agnes; Kohler, Artur; Kovacs, Jozsef
2017-04-01
Chemicals reaching groundwater cause water quality deterioration. Reconnaissance and remediation demands high financial and human resources. Groundwater samples are important sources of information. Representativity of these samples is fundamental to decision making. According to relevant literature the way of sampling and the sampling equipment can affect laboratory concentrations measured in samples. Detailed and systematic research on this field is missing from even international literature. Groundwater sampling procedures are regulated worldwide. Regulations describe how to sample a groundwater monitoring well. The most common element in these regulations is well purging prior to sampling. The aim of purging the well is to avoid taking the sample from the stagnant water instead of from formation water. The stagnant water forms inside and around the well because the well casing provides direct contact with the atmosphere, changing the physico-chemical composition of the well water. Sample from the stagnant water is not representative of the formation water. Regulations regarding the extent of the purging are different. Purging is mostly defined as multiply (3-5) well volumes, and/or reaching stabilization of some purged water parameters (pH, specific conductivity, etc.). There are hints for sampling without purging. To define the necessary extent of the purging repeated pumping is conducted, triplicate samples are taken at the beginning of purging, at one, two and three times well volumes and at parameter stabilization. Triplicate samples are the means to account for laboratory errors. The subsurface is not static, the test is repeated 10 times. Up to now three tests were completed.
Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption.
Melo, L Q; Costa, S F; Lopes, F; Guerreiro, M C; Armentano, L E; Pereira, M N
2013-04-01
The effects of rumen digesta volume and pH on VFA absorption and its relation to rumen wall morphology were evaluated. Nine rumen cannulated cows formed 3 groups based on desired variation in rumen morphology: The High group was formed by Holsteins yielding 25.9 kg milk/d and fed on a high-grain total mixed ration (TMR); the Medium group by Holstein-Zebu crossbreds yielding 12.3 kg milk/d and fed on corn silage, tropical pasture, and a commercial concentrate; and the Dry group by nonlactating grazing Jerseys fed exclusively on tropical pasture. Within each group, a sequence of 3 ruminal conditions was induced on each cow in 3 × 3 Latin Squares, with 7-d periods: high digesta volume and high pH (HVHP), low volume and high pH (LVHP), and low volume and low pH (LVLP). Rumen mucosa was biopsied on the first day of Period 1. Ruminal morphometric variables evaluated were mitotic index, absorptive surface and papillae number per square centimeter of wall, area per papillae, papillae area as a percentage of absorptive surface, and epithelium, keratinized layer, and nonkeratinized layer thickness. There was marked variation in rumen morphology among the groups of cows. Grazing Jerseys had decreased rumen wall absorptive surface area and basal cells mitotic index, and increased thickness of the epithelium and of the keratin layer compared with cows receiving concentrates. Mean rumen pH throughout the 4 h sampling period was: 6.78 for HVHP, 7.08 for LVHP, and 5.90 for LVLP (P < 0.01). The capacity of the rumen wall to absorb VFA was estimated by the Valerate/CrEDTA technique. The fractional exponential decay rate for the ratio of valeric acid to Cr (k Val/Cr) was determined by rumen digesta sampling at 20-min intervals during 4 h, after the mixing of markers and the return of the evacuated ruminal content. The k Val/Cr values for treatments HVHP, LVHP, and LVLP were, respectively: 19.6, 23.9, and 35.0 %/h (SEM = 2.01; P = 0.21 for contrast HVHP vs. LVHP and P < 0.01 for contrast LVHP vs. LVLP). The k Val/Cr was faster under low pH, but decreasing digesta volume under high pH did not elicit such a response. The correlation between the absorptive surface area per square centimeter of rumen wall and the mean of the 3 k Val/Cr values of each cow was 0.90 (P < 0.01). Cows capable of maintaining a less-acidic rumen environment had greater inflow of water into the digestive cavity, had a more developed rumen mucosa, and were more efficient VFA absorbers.
1989-09-30
26 QUESTIONNAIRE INSTRUMENT ri. -I., DATA TABULATION VOLUMES This material provides information for use by readers to interpret...The second longitudinal Tabulation Volume reports the 1988 questionnaire responses of the junior enlisted "stayers" who were used as the sample to...the specific crossing variables used for the cross-sectional and longitudinal Tabulation Volumes. Cross-Sectional Tabulation Volumes. Demographic
Webster, Koa N; Dawson, Terence J
2012-09-15
We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.
2006-11-01
A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T.more » Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.« less
Detection of Organophosphate Flame Retardants in Furniture Foam and US House Dust
Stapleton, Heather M.; Klosterhaus, Susan; Eagle, Sarah; Fuh, Jennifer; Meeker, John D.; Blum, Arlene; Webster, Thomas F.
2009-01-01
Restrictions on the use of polybrominated diphenyl ethers (PBDEs) have resulted in the increased use of alternate flame retardant chemicals to meet flammability standards. However, it has been difficult to determine which chemical formulations are currently being used in high volumes to meet flammability standards since the use of flame retardant formulations in consumer products is not transparent (i.e. not provided to customers). To investigate chemicals being used as replacements for PentaBDE in polyurethane foam, we analyzed foam samples from 26 different pieces of furniture purchased in the United States primarily between 2003 and 2009 using gas chromatography mass spectrometry. Samples included foam from couches, chairs, mattress pads, pillows, and, in one case, foam from a sound proofing system of a laboratory grade dust sieve. Fifteen of the foam samples contained the flame retardant tris(1,3-dichloro-2-propyl) phosphate (TDCPP; 1–5% by weight), four samples contained tris(1-chloro-2-propyl) phosphate (TCPP; 0.5 –2.2 % by weight), one sample contained brominated chemicals found in a new flame retardant mixture called Firemaster 550 (4.2% by weight), and one foam sample collected from a futon likely purchased prior to 2004 contained PentaBDE (0.5% by weight). Due to the high frequency of detection of the chlorinated phosphate compounds in furniture foam, we analyzed extracts from 50 house dust samples collected between 2002 and 2007 in the Boston, MA area for TDCPP, TCPP, and another high volume use organophosphate-based flame retardant used in foam, triphenylphosphate (TPP). Detection frequencies for TDCPP and TPP in the dust samples were >96% and were log normally distributed, similar to observations for PBDEs. TCPP was positively detected in dust in only 24% of the samples, but detection was significantly limited by a co-elution problem. The geometric mean concentrations for TCPP, TDCPP and TPP in house dust were 570, 1890, and 7360 ng/g, respectively, and maximum values detected in dust were 5490, 56,080 and 1,798,000 ng/g, respectively. These data suggest that levels of these organophosphate flame retardants are comparable, or in some cases, greater than, levels of PBDEs in house dust. The high prevalence of these chemicals in foam and the high concentrations measured in dust (as high as 1.8 mg/g), warrant further studies to evaluate potential health effects from dust exposure, particularly for children. PMID:19848166
Large-volume, low-δ18O rhyolites of the central Snake River Plain, Idaho, USA
Boroughs, Scott; Wolff, John; Bonnichsen, Bill; Godchaux, Martha; Larson, Peter
2005-01-01
The Miocene Bruneau-Jarbidge and adjacent volcanic fields of the central Snake River Plain, southwest Idaho, are dominated by high-temperature rhyolitic tuffs and lavas having an aggregate volume estimated as 7000 km3. Samples from units representing at least 50% of this volume are strongly depleted in 18O, with magmatic feldspar δ18OVSMOW (Vienna standard mean ocean water) values between −1.4‰ and 3.8‰. The magnitude of the 18O depletion and the complete lack of any rhyolites with normal values (7‰–10‰) combine to suggest that assimilation or melting of a caldera block altered by near- contemporaneous hydrothermal activity is unlikely. Instead, we envisage generation of the high-temperature rhyolites by shallow melting of Idaho Batholith rocks, under the influence of the Yellowstone hotspot, affected by Eocene meteoric-hydrothermal events. The seeming worldwide scarcity of strongly 18O-depleted rhyolites may simply reflect a similar scarcity of suitable crustal protoliths.
Liu, Xiaofang; Zhu, Quanfei; Chen, Huaixia; Zhou, Liuzi; Dang, Xueping; Huang, Jianlin
2014-03-01
An organic-inorganic hybrid molecular imprinting monolith (HMIM) has been prepared, characterized and applied for the determination of 2,4-dichlorophenoxyacetic acid (2,4-D) in rice with high-performance liquid chromatography-photodiodes array detector (HPLC-PAD). By optimizing the polymerization conditions, such as the volume ratio of the inorganic alcoholysate and organic part, the 2,4-D-HMIM was synthesized in a micro pipette tip using acrylamide as the functional monomer, ethylene dimethacrylate as the cross-linker and methanol as the porogenic solvent. The morphology of the monolith was studied by scanning electronmicroscopy and Fourier transform infrared spectra. The imprinted factor of the monolith for 2,4-D reached 3.29. A simple, rapid and sensitive method for the determination of 2,4-D in rice using the HMIM microextraction combined with high-performance liquid chromatography-photodiodes array detector was developed. Some parameters affecting the sample pretreatment were investigated, including the type and volume of eluent, the flow rate and volume of sample solution. The assay exhibited a linear dynamic range of 167-4167μg/kg with the correlation coefficient above 0.9972. The detection limit (at S/N=3) was 50μg/kg. The proposed method was successfully applied for the selective determination of 2,4-D in rice. Copyright © 2014 Elsevier B.V. All rights reserved.
Loukas, Christos-Moritz; Mowlem, Matthew C; Tsaloglou, Maria-Nefeli; Green, Nicolas G
2018-05-01
This paper presents a novel portable sample filtration/concentration system, designed for use on samples of microorganisms with very low cell concentrations and large volumes, such as water-borne parasites, pathogens associated with faecal matter, or toxic phytoplankton. The example application used for demonstration was the in-field collection and concentration of microalgae from seawater samples. This type of organism is responsible for Harmful Algal Blooms (HABs), an example of which is commonly referred to as "red tides", which are typically the result of rapid proliferation and high biomass accumulation of harmful microalgal species in the water column or at the sea surface. For instance, Karenia brevis red tides are the cause of aquatic organism mortality and persistent blooms may cause widespread die-offs of populations of other organisms including vertebrates. In order to respond to, and adequately manage HABs, monitoring of toxic microalgae is required and large-volume sample concentrators would be a useful tool for in situ monitoring of HABs. The filtering system presented in this work enables consistent sample collection and concentration from 1 L to 1 mL in five minutes, allowing for subsequent benchtop sample extraction and analysis using molecular methods such as NASBA and IC-NASBA. The microalga Tetraselmis suecica was successfully detected at concentrations ranging from 2 × 10 5 cells/L to 20 cells/L. Karenia brevis was also detected and quantified at concentrations between 10 cells/L and 10 6 cells/L. Further analysis showed that the filter system, which concentrates cells from very large volumes with consequently more reliable sampling, produced samples that were more consistent than the independent non-filtered samples (benchtop controls), with a logarithmic dependency on increasing cell numbers. This filtering system provides simple, rapid, and consistent sample collection and concentration for further analysis, and could be applied to a wide range of different samples and target organisms in situations lacking laboratories. Copyright © 2018. Published by Elsevier B.V.
Microfluidics-to-Mass Spectrometry: A review of coupling methods and applications
Wang, Xue; Yi, Lian; Mukhitov, Nikita; Schrell, Adrian M.; Dhumpa, Raghuram; Roper, Michael G.
2014-01-01
Microfluidic devices offer great advantages in integrating sample processes, minimizing sample and reagent volumes, and increasing analysis speed, while mass spectrometry detection provides high information content, is sensitive, and can be used in quantitative analyses. The coupling of microfluidic devices to mass spectrometers is becoming more common with the strengths of both systems being combined to analyze precious and complex samples. This review summarizes select achievements published between 2010 – July 2014 in novel coupling between microfluidic devices and mass spectrometers. The review is subdivided by the types of ionization sources employed, and the different microfluidic systems used. PMID:25458901
Digital Fresnel reflection holography for high-resolution 3D near-wall flow measurement.
Kumar, S Santosh; Hong, Jiarong
2018-05-14
We propose a novel backscatter holographic imaging system, as a compact and effective tool for 3D near-wall flow diagnostics at high resolutions, utilizing light reflected at the solid-liquid interface as a reference beam. The technique is fully calibrated, and is demonstrated in a densely seeded channel to achieve a spatial resolution of near-wall flows equivalent to or exceeding prior digital inline holographic measurements using local tracer seeding technique. Additionally, we examined the effects of seeding concentration and laser coherence on the measurement resolution and sample volume resolved, demonstrating the potential to manipulate sample domain by tuning the laser coherence profile.
Yasaki, Hirotoshi; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu
2017-10-11
Measuring ionic currents passing through nano- or micropores has shown great promise for the electrical discrimination of various biomolecules, cells, bacteria, and viruses. However, conventional measurements have shown there is an inherent limitation to the detectable particle volume (1% of the pore volume), which critically hinders applications to real mixtures of biomolecule samples with a wide size range of suspended particles. Here we propose a rational methodology that can detect samples with the detectable particle volume of 0.01% of the pore volume by measuring a transient current generated from the potential differences in a microfluidic bridge circuit. Our method substantially suppresses the background ionic current from the μA level to the pA level, which essentially lowers the detectable particle volume limit even for relatively large pore structures. Indeed, utilizing a microscale long pore structure (volume of 5.6 × 10 4 aL; height and width of 2.0 × 2.0 μm; length of 14 μm), we successfully detected various samples including polystyrene nanoparticles (volume: 4 aL), bacteria, cancer cells, and DNA molecules. Our method will expand the applicability of ionic current sensing systems for various mixed biomolecule samples with a wide size range, which have been difficult to measure by previously existing pore technologies.
Piezo- and solenoid valve-based liquid dispensing for miniaturized assays.
Niles, Walter D; Coassin, Peter J
2005-04-01
Miniaturization of biological assays requires dispensing liquids in the submicroliter range of volumes. Accuracy and reproducibility of dispensing this range depend on both the dispenser and the receptacle in which the assay is constructed. Miniaturization technologies developed by Aurora Discovery, Inc. (San Diego, CA) include high-density multiwell plates for assay samples and reagent storage, as well as piezo-based and solenoid valve-based liquid dispensers. Some basic principles of small-volume dispensing by jetting are described to provide context for dispenser design and function. Performance of the latest instruments incorporating these dispensing devices is presented.
Dielectric resonator antenna for coupling to NV centers in diamond
NASA Astrophysics Data System (ADS)
Kapitanova, Polina; Soshenko, Vladimir; Vorobyov, Vadim; Dobrykh, Dmitry; Bolshedvorskiih, Stepan; Sorokin, Vadim; Akimov, Alexey
2017-09-01
Here we present the design of a dielectric resonator antenna for spin manipulation of large volume ensemble of nitrogen-vacancy centers in a bulk diamond. The proposed antenna design is based on a high permittivity hollow dielectric resonator excited by a symmetric microstrip loop. We present the result of numerical simulation of the magnetic field excited at the TE01δ mode of the dielectric resonator. We analyze the uniformity of the magnetic field in volume and discuss the possibility to use the antenna for efficient excitation of nitrogen-vacancy centers in whole commercially available sample.
Benett, William J.; Krulevitch, Peter A.
2001-01-01
A miniature connector for introducing microliter quantities of solutions into microfabricated fluidic devices. The fluidic connector, for example, joins standard high pressure liquid chromatography (HPLC) tubing to 1 mm diameter holes in silicon or glass, enabling ml-sized volumes of sample solutions to be merged with .mu.l-sized devices. The connector has many features, including ease of connect and disconnect; a small footprint which enables numerous connectors to be located in a small area; low dead volume; helium leak-tight; and tubing does not twist during connection. Thus the connector enables easy and effective change of microfluidic devices and introduction of different solutions in the devices.
Scan-based volume animation driven by locally adaptive articulated registrations.
Rhee, Taehyun; Lewis, J P; Neumann, Ulrich; Nayak, Krishna S
2011-03-01
This paper describes a complete system to create anatomically accurate example-based volume deformation and animation of articulated body regions, starting from multiple in vivo volume scans of a specific individual. In order to solve the correspondence problem across volume scans, a template volume is registered to each sample. The wide range of pose variations is first approximated by volume blend deformation (VBD), providing proper initialization of the articulated subject in different poses. A novel registration method is presented to efficiently reduce the computation cost while avoiding strong local minima inherent in complex articulated body volume registration. The algorithm highly constrains the degrees of freedom and search space involved in the nonlinear optimization, using hierarchical volume structures and locally constrained deformation based on the biharmonic clamped spline. Our registration step establishes a correspondence across scans, allowing a data-driven deformation approach in the volume domain. The results provide an occlusion-free person-specific 3D human body model, asymptotically accurate inner tissue deformations, and realistic volume animation of articulated movements driven by standard joint control estimated from the actual skeleton. Our approach also addresses the practical issues arising in using scans from living subjects. The robustness of our algorithms is tested by their applications on the hand, probably the most complex articulated region in the body, and the knee, a frequent subject area for medical imaging due to injuries. © 2011 IEEE
Chen, Bo; Huang, Yuming
2014-06-25
Dispersive liquid-phase microextraction with solidification of floating organic drop (SFO-DLPME) is one of the most interesting sample preparation techniques developed in recent years. In this paper, a new, rapid, and efficient SFO-DLPME coupled with high-performance liquid chromatography (HPLC) was established for the extraction and sensitive detection of banned Sudan dyes, namely, Sudan I, Sudan II, Sudan III, and Sudan IV, in foodstuff and water samples. Various factors, such as the type and volume of extractants and dispersants, pH and volume of sample solution, extraction time and temperature, ion strength, and humic acid concentration, were investigated and optimized to achieve optimal extraction of Sudan dyes in one single step. After optimization of extraction conditions using 1-dodecanol as an extractant and ethanol as a dispersant, the developed procedure was applied for extraction of the target Sudan dyes from 2 g of food samples and 10 mL of the spiked water samples. Under the optimized conditions, all Sudan dyes could be easily extracted by the proposed SFO-DLPME method. Limits of detection of the four Sudan dyes obtained were 0.10-0.20 ng g(-1) and 0.03 μg L(-1) when 2 g of foodstuff samples and 10 mL of water samples were adopted, respectively. The inter- and intraday reproducibilities were below 4.8% for analysis of Sudan dyes in foodstuffs. The method was satisfactorily used for the detection of Sudan dyes, and the recoveries of the target for the spiked foodstuff and water samples ranged from 92.6 to 106.6% and from 91.1 to 108.6%, respectively. These results indicated that the proposed method is simple, rapid, sensitive, and suitable for the pre-concentration and detection of the target dyes in foodstuff samples.
Cabaleiro, N; de la Calle, I; Bendicho, C; Lavilla, I
2014-11-01
In this work, a new method based on headspace-single drop microextraction for the determination of residual acetone in cosmetics by microfluorospectrometry is proposed. Acetone causes fluorescence changes in a 2.5 µL-ethanolic drop (40% v/v) containing 3.10(-4) mol L(-1) 7-hydroxy-4-methylcoumarin ('turn off') or 6.10(-6) mol L(-1) 7-diethylamino-4-methylcoumarin ('turn on'). Polarity and ability to form hydrogen bonds of short chain alcohols (polar protic solvents) were crucial in order to observe these changes in the presence of acetone (polar aprotic solvent). Parameters related with the HS-SDME procedure were studied, namely headspace volume, composition, volume and temperature of drop, microextraction time, stirring rate, mass and temperature of sample, as well as the effect of potential interferents (alcohols and fragrances). The high volatility of acetone allows its extraction from an untreated cosmetic sample within 3 min. A detection limit of 0.26 µg g(-1) and repeatability, expressed as relative standard deviation, around 5% were reached. Accuracy of the proposed methodology was evaluated by means of recovery studies. The method was successfully used to analyze different cosmetics. Simplicity and high sample throughput can be highlighted. Copyright © 2014 Elsevier B.V. All rights reserved.
Hand-Held Photometer for Instant On-Spot Quantification of Nucleic Acids, Proteins, and Cells.
Li, Shi-Hao; Jain, Abhinav; Tscharntke, Timo; Arnold, Tobias; Trau, Dieter W
2018-02-20
This paper presents a novel hand-held photometer, termed "Photopette", for on-spot absorbance measurements of biochemical analytes. The Photopette is a multicomponent, highly portable device with an overall weight of 160 g, which fits within 202 mm × 47 mm × 42 mm. Designed in the form factor of a micropipette, Photopette integrates a photodiode detector with light emitting diodes (LEDs) to form a highly customizable photometer which supports a wide variety of applications within the wavelengths between 260 and 1050 nm. A dual-purpose disposable reflective tip was designed to act as a sample holder and a light-reflecting system, which is in stark contrast to the operation of mainstream spectrophotometers and photometers. Small volume analytes may be measured with low sample loss using this proprietary CuveTip. A user-friendly software application running on smart devices was developed to control and read the values from Photopette via a low-energy Bluetooth link. This one-step strategy allows measurements on-spot without sample transfer, minimizing cross-contamination and human error. The results reported in this paper demonstrate Photopette's great potential to quantify DNA, direct protein, and cell density directly within the laminar flow hood. Results are compared with a Nanodrop 2000c spectrophotometer, a mainstream spectrophotometer for small-volume measurements.
Asadi, Mohammad; Haji Shabani, Ali Mohammad; Dadfarnia, Shayessteh; Abbasi, Bijan
2015-12-18
A novel, rapid, simple and green vortex-assisted surfactant-enhanced emulsification microextraction method based on solidification of floating organic drop was developed for simultaneous separation/preconcentration and determination of ultra trace amounts of naproxen and nabumetone with high performance liquid chromatography-fluorescence detection. Some parameters influencing the extraction efficiency of analytes such as type and volume of extractant, type and concentration of surfactant, sample pH, KCl concentration, sample volume, and vortex time were investigated and optimized. Under optimal conditions, the calibration graph exhibited linearity in the range of 3.0-300.0ngL(-1) for naproxen and 7.0-300.0ngL(-1) for nabumetone with a good coefficient of determination (R(2)>0.999). The limits of detection were 0.9 and 2.1ngL(-1). The relative standard deviations for inter- and intra-day assays were in the range of 5.8-10.1% and 3.8-6.1%, respectively. The method was applied to the determination of naproxen and nabumetone in urine, water, wastewater and milk samples and the accuracy was evaluated through recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Paredes-Alvarez, Leonardo; Nusdeo, Daniel Anthony; Henry, Todd J.; Jao, Wei-Chun; Gies, Douglas R.; White, Russel; RECONS Team
2017-01-01
To understand fundamental aspects of stellar populations, astronomers need carefully vetted, volume-complete samples. In our K-KIDS effort, our goal is to survey a large sample of K dwarfs for their "kids", companions that may be stellar, brown dwarf, or planetary in nature. Four surveys for companions orbiting an initial set of 1048 K dwarfs with declinations between +30 and -30 have begun. Companions are being detected with separations less than 1 AU out to 10000 AU. Fortuitously, the combination of Hipparcos and Gaia DR1 astrometry with optical photometry from APASS and infrared photometry from 2MASS now allows us to create an effectively volume-complete sample of K dwarfs to a horizon of 50 pc. This sample facilitates rigorous studies of the luminosity and mass functions, as well as comprehensive mapping of the companions orbiting K dwarfs that have never before been possible.Here we present two important results. First, we find that our initial sample of ~1000 K dwarfs can be expanded to 2000-3000 stars in what is an effectively volume-complete sample. This population is sufficiently large to provide superb statistics on the outcomes of star and planet formation processes. Second, initial results from our high-precision radial velocity survey of K dwarfs with the CHIRON spectrograph on the CTIO/SMARTS 1.5m reveal its short-term precision and indicate that stellar, brown dwarf and Jovian planets will be detectable. We present radial velocity curves for an inital sample of 8 K dwarfs with V = 7-10 using cross-correlation techniques on R=80,000 spectra, and illustrate the stability of CHIRON over hours, days, and weeks. Ultimately, the combination of all four surveys will provide an unprecedented portrait of K dwarfs and their kids.This effort has been supported by the NSF through grants AST-1412026 and AST-1517413, and via observations made possible by the SMARTS Consortium
Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I.; Dwyer, Karen M.; Saffery, Richard
2018-01-01
Aim To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. Background DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. Methods QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Results Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0–0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0–9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0–17.7μg/mL and 0–1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. Conclusion High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease. PMID:29462136
Lecamwasam, Ashani; Sexton-Oates, Alexandra; Carmody, Jake; Ekinci, Elif I; Dwyer, Karen M; Saffery, Richard
2018-01-01
To characterise the genomic DNA (gDNA) yield from urine and quality of derived methylation data generated from the widely used Illuminia Infinium MethylationEPIC (HM850K) platform and compare this with buffy coat samples. DNA methylation is the most widely studied epigenetic mark and variations in DNA methylation profile have been implicated in diabetes which affects approximately 415 million people worldwide. QIAamp Viral RNA Mini Kit and QIAamp DNA micro kit were used to extract DNA from frozen and fresh urine samples as well as increasing volumes of fresh urine. Matched buffy coats to the frozen urine were also obtained and DNA was extracted from the buffy coats using the QIAamp DNA Mini Kit. Genomic DNA of greater concentration than 20μg/ml were used for methylation analysis using the HM850K array. Irrespective of extraction technique or the use of fresh versus frozen urine samples, limited genomic DNA was obtained using a starting sample volume of 5ml (0-0.86μg/mL). In order to optimize the yield, we increased starting volumes to 50ml fresh urine, which yielded only 0-9.66μg/mL A different kit, QIAamp DNA Micro Kit, was trialled in six fresh urine samples and ten frozen urine samples with inadequate DNA yields from 0-17.7μg/mL and 0-1.6μg/mL respectively. Sufficient genomic DNA was obtained from only 4 of the initial 41 frozen urine samples (10%) for DNA methylation profiling. In comparison, all four buffy coat samples (100%) provided sufficient genomic DNA. High quality data can be obtained provided a sufficient yield of genomic DNA is isolated. Despite optimizing various extraction methodologies, the modest amount of genomic DNA derived from urine, may limit the generalisability of this approach for the identification of DNA methylation biomarkers of chronic diabetic kidney disease.
NASA Technical Reports Server (NTRS)
Boubel, Richard W.
1971-01-01
The stack sampler described in this paper has been developed to overcome the difficulties of particulate sampling with presently available equipment. Its use on emissions from hog fuel fired boilers, back-fired incinerators, wigwam burners, asphalt plants, and seed cleaning cyclones is reported. The results indicate that the sampler is rapid and reliable in its use. It is relatively simple and inexpensive to operate. For most sources it should be considered over the more complicated and expensive sampling trains being used and specified.
Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets
Zhao, Teng; Lau, Sze Cheung; Wang, Ying; Su, Yumian; Wang, Hao; Cheng, Aifang; Herrup, Karl; Ip, Nancy Y.; Du, Shengwang; Loy, M. M. T.
2016-01-01
We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution. PMID:27189786
NASA Astrophysics Data System (ADS)
O'Sullivan, Ewan; Ponman, Trevor J.; Kolokythas, Konstantinos; Raychaudhury, Somak; Babul, Arif; Vrtilek, Jan M.; David, Laurence P.; Giacintucci, Simona; Gitti, Myriam; Haines, Chris P.
2017-12-01
We present the Complete Local-Volume Groups Sample (CLoGS), a statistically complete optically selected sample of 53 groups within 80 Mpc. Our goal is to combine X-ray, radio and optical data to investigate the relationship between member galaxies, their active nuclei and the hot intra-group medium (IGM). We describe sample selection, define a 26-group high-richness subsample of groups containing at least four optically bright (log LB ≥ 10.2 LB⊙) galaxies, and report the results of XMM-Newton and Chandra observations of these systems. We find that 14 of the 26 groups are X-ray bright, possessing a group-scale IGM extending at least 65 kpc and with luminosity >1041 erg s-1, while a further three groups host smaller galaxy-scale gas haloes. The X-ray bright groups have masses in the range M500 ≃ 0.5-5 × 1013 M⊙, based on system temperatures of 0.4-1.4 keV, and X-ray luminosities in the range 2-200 × 1041 erg s-1. We find that ∼53-65 per cent of the X-ray bright groups have cool cores, a somewhat lower fraction than found by previous archival surveys. Approximately 30 per cent of the X-ray bright groups show evidence of recent dynamical interactions (mergers or sloshing), and ∼35 per cent of their dominant early-type galaxies host active galactic nuclei with radio jets. We find no groups with unusually high central entropies, as predicted by some simulations, and confirm that CLoGS is in principle capable of detecting such systems. We identify three previously unrecognized groups, and find that they are either faint (LX, R500 < 1042 erg s-1) with no concentrated cool core, or highly disturbed. This leads us to suggest that ∼20 per cent of X-ray bright groups in the local universe may still be unidentified.
Salt, Alec N; Hale, Shane A; Plonkte, Stefan K R
2006-05-15
Measurements of drug levels in the fluids of the inner ear are required to establish kinetic parameters and to determine the influence of specific local delivery protocols. For most substances, this requires cochlear fluids samples to be obtained for analysis. When auditory function is of primary interest, the drug level in the perilymph of scala tympani (ST) is most relevant, since drug in this scala has ready access to the auditory sensory cells. In many prior studies, ST perilymph samples have been obtained from the basal turn, either by aspiration through the round window membrane (RWM) or through an opening in the bony wall. A number of studies have demonstrated that such samples are likely to be contaminated with cerebrospinal fluid (CSF). CSF enters the basal turn of ST through the cochlear aqueduct when the bony capsule is perforated or when fluid is aspirated. The degree of sample contamination has, however, not been widely appreciated. Recent studies have shown that perilymph samples taken through the round window membrane are highly contaminated with CSF, with samples greater than 2microL in volume containing more CSF than perilymph. In spite of this knowledge, many groups continue to sample from the base of the cochlea, as it is a well-established method. We have developed an alternative, technically simple method to increase the proportion of ST perilymph in a fluid sample. The sample is taken from the apex of the cochlea, a site that is distant from the cochlear aqueduct. A previous problem with sampling through a perforation in the bone was that the native perilymph rapidly leaked out driven by CSF pressure and was lost to the middle ear space. We therefore developed a procedure to collect all the fluid that emerged from the perforated apex after perforation. We evaluated the method using a marker ion trimethylphenylammonium (TMPA). TMPA was applied to the perilymph of guinea pigs either by RW irrigation or by microinjection into the apical turn. The TMPA concentration of the fluid sample was compared with that measured in perilymph prior to taking the sample using a TMPA-selective microelectrode sealed into ST. Data were interpreted with a finite element model of the cochlear fluids that was used to simulate each aspect of the experiment. The correction of sample concentration back to the perilymph concentration prior to sampling can be performed based on the known ST volume (4.7microL in the guinea pig) and the sample volume. A more precise correction requires some knowledge of the profile of drug distribution along the cochlear prior to sampling. This method of sampling from the apex is technically simple and provides a larger sample volume with a greater proportion of perilymph compared to sampling through the RW.
Salt, Alec N.; Hale, Shane A.; Plontke, Stefan K. R.
2006-01-01
Measurements of drug levels in the fluids of the inner ear are required to establish kinetic parameters and to determine the influence of specific local delivery protocols. For most substances, this requires cochlear fluids samples to be obtained for analysis. When auditory function is of primary interest, the drug level in the perilymph of scala tympani (ST) is most relevant, since drug in this scala has ready access to the auditory sensory cells. In many prior studies, ST perilymph samples have been obtained from the basal turn, either by aspiration through the round window membrane (RWM) or through an opening in the bony wall. A number of studies have demonstrated that such samples are likely to be contaminated with cerebrospinal fluid (CSF). CSF enters the basal turn of ST through the cochlear aqueduct when the bony capsule is perforated or when fluid is aspirated. The degree of sample contamination has, however, not been widely appreciated. Recent studies have shown that perilymph samples taken through the round window membrane are highly contaminated with CSF, with samples greater than 2 μL in volume containing more CSF than perilymph. In spite of this knowledge, many groups continue to sample from the base of the cochlea, as it is a well-established method. We have developed an alternative, technically simple method to increase the proportion of ST perilymph in a fluid sample. The sample is taken from the apex of the cochlea, a site that is distant from the cochlear aqueduct. A previous problem with sampling through a perforation in the bone was that the native perilymph rapidly leaked out driven by CSF pressure and was lost to the middle ear space. We therefore developed a procedure to collect all the fluid that emerged from the perforated apex after perforation. We evaluated the method using a marker ion trimethylphenylammonium (TMPA). TMPA was applied to the perilymph of guinea pigs either by RW irrigation or by microinjection into the apical turn. The TMPA concentration of the fluid sample was compared with that measured in perilymph prior to taking the sample using a TMPA-selective microelectrode sealed into ST. Data were interpreted with a finite element model of the cochlear fluids that was used to simulate each aspect of the experiment. The correction of sample concentration back to the perilymph concentration prior to sampling can be performed based on the known ST volume (4.7 μL in the guinea pig) and the sample volume. A more precise correction requires some knowledge of the profile of drug distribution along the cochlear prior to sampling. This method of sampling from the apex is technically simple and provides a larger sample volume with a greater proportion of perilymph compared to sampling through the RW. PMID:16310856
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cong, Yongzheng; Katipamula, Shanta; Geng, Tao
2016-02-01
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for electrophoresis using a single microvalve. The PDMS microchip consists of a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, can serve as a preconcentrator under an applied electric potential, enabling current to pass through while blocking bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected intomore » the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ~450 in 230 s. The performance of the platform was validated by the online preconcentration, injection and electrophoretic separation of fluorescently labeled peptides. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high resolution capillary electrophoresis.« less
Horká, Marie; Karásek, Pavel; Roth, Michal; Šlais, Karel
2017-05-01
In this work, single-piece fused silica capillaries with two different internal diameter segments featuring different inner surface roughness were prepared by new etching technology with supercritical water and used for volume coupling electrophoresis. The concept of separation and online pre-concentration of analytes in high conductivity matrix is based on the online large-volume sample pre-concentration by the combination of transient isotachophoretic stacking and sweeping of charged proteins in micellar electrokinetic chromatography using non-ionogenic surfactant. The modified surface roughness step helped to the significant narrowing of the zones of examined analytes. The sweeping and separating steps were accomplished simultaneously by the use of phosphate buffer (pH 7) containing ethanol, non-ionogenic surfactant Brij 35, and polyethylene glycol (PEG 10000) after sample injection. Sample solution of a large volume (maximum 3.7 μL) dissolved in physiological saline solution was injected into the wider end of capillary with inlet inner diameter from 150, 185 or 218 μm. The calibration plots were linear (R 2 ∼ 0.9993) over a 0.060-1 μg/mL range for the proteins used, albumin and cytochrome c. The peak area RSDs from at least 20 independent measuremens were below 3.2%. This online pre-concentration technique produced a more than 196-fold increase in sensitivity, and it can be applied for detection of, e.g. the presence of albumin in urine (0.060 μg/mL). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540