Sample records for high water discharge

  1. The dynamic monitoring of warm-water discharge based on the airborne high-resolution thermal infrared remote sensing data

    NASA Astrophysics Data System (ADS)

    Shao, Honglan; Xie, Feng; Liu, Chengyu; Liu, Zhihui; Zhang, Changxing; Yang, Gui; Wang, Jianyu

    2016-04-01

    The cooling water discharged from the coastal plants flow into the sea continuously, whose temperature is higher than original sea surface temperature (SST). The fact will have non-negligible influence on the marine environment in and around where the plants site. Hence, it's significant to monitor the temporal and spatial variation of the warm-water discharge for the assessment of the effect of the plant on its surrounding marine environment. The paper describes an approach for the dynamic monitoring of the warm-water discharge of coastal plants based on the airborne high-resolution thermal infrared remote sensing technology. Firstly, the geometric correction was carried out for the thermal infrared remote sensing images acquired on the aircraft. Secondly, the atmospheric correction method was used to retrieve the sea surface temperature of the images. Thirdly, the temperature-rising districts caused by the warm-water discharge were extracted. Lastly, the temporal and spatial variations of the warm-water discharge were analyzed through the geographic information system (GIS) technology. The approach was applied to Qinshan nuclear power plant (NPP), in Zhejiang Province, China. In considering with the tide states, the diffusion, distribution and temperature-rising values of the warm-water discharged from the plant were calculated and analyzed, which are useful to the marine environment assessment.

  2. Dependency of high coastal water level and river discharge at the global scale

    NASA Astrophysics Data System (ADS)

    Ward, P.; Couasnon, A.; Haigh, I. D.; Muis, S.; Veldkamp, T.; Winsemius, H.; Wahl, T.

    2017-12-01

    It is widely recognized that floods cause huge socioeconomic impacts. From 1980-2013, global flood losses exceeded $1 trillion, with 220,000 fatalities. These impacts are particularly hard felt in low-lying densely populated deltas and estuaries, whose location at the coast-land interface makes them naturally prone to flooding. When river and coastal floods coincide, their impacts in these deltas and estuaries are often worse than when they occur in isolation. Such floods are examples of so-called `compound events'. In this contribution, we present the first global scale analysis of the statistical dependency of high coastal water levels (and the storm surge component alone) and river discharge. We show that there is statistical dependency between these components at more than half of the stations examined. We also show time-lags in the highest correlation between peak discharges and coastal water levels. Finally, we assess the probability of the simultaneous occurrence of design discharge and design coastal water levels, assuming both independence and statistical dependence. For those stations where we identified statistical dependency, the probability is between 1 and 5 times greater, when the dependence structure is accounted for. This information is essential for understanding the likelihood of compound flood events occurring at locations around the world as well as for accurate flood risk assessments and effective flood risk management. The research was carried out by analysing the statistical dependency between observed coastal water levels (and the storm surge component) from GESLA-2 and river discharge using gauged data from GRDC stations all around the world. The dependence structure was examined using copula functions.

  3. Water purification by electrical discharges

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Ghaffar, Abdul; Akbar Malik, Salman

    2001-02-01

    There is a continuing need for the development of effective, cheap and environmentally friendly processes for the disinfection and degradation of organic pollutants from water. Ozonation processes are now replacing conventional chlorination processes because ozone is a stronger oxidizing agent and a more effective disinfectant without any side effects. However, the fact that the cost of ozonation processes is higher than chlorination processes is their main disadvantage. In this paper recent developments targeted to make ozonation processes cheaper by improving the efficiency of ozone generation, for example, by incorporation of catalytic packing in the ozone generator, better dispersion of ozone in water and faster conversion of dissolved ozone to free radicals are described. The synthesis of ozone in electrical discharges is discussed. Furthermore, the generation and plasma chemical reactions of several chemically active species, such as H2O2, Obullet, OHbullet, HO2bullet, O3*, N2*, e-, O2-, O-, O2+, etc, which are produced in the electrical discharges are described. Most of these species are stronger oxidizers than ozone. Therefore, water treatment by direct electrical discharges may provide a means to utilize these species in addition to ozone. Much research and development activity has been devoted to achieve these targets in the recent past. An overview of these techniques and important developments that have taken place in this area are discussed. In particular, pulsed corona discharge, dielectric barrier discharge and contact glow discharge electrolysis techniques are being studied for the purpose of cleaning water. The units based on electrical discharges in water or close to the water level are being tested at industrial-scale water treatment plants.}

  4. Problems associated with estimating ground water discharge and recharge from stream-discharge records

    USGS Publications Warehouse

    Halford, K.J.; Mayer, G.C.

    2000-01-01

    Ground water discharge and recharge frequently have been estimated with hydrograph-separation techniques, but the critical assumptions of the techniques have not been investigated. The critical assumptions are that the hydraulic characteristics of the contributing aquifer (recession index) can be estimated from stream-discharge records; that periods of exclusively ground water discharge can be reliably identified; and that stream-discharge peaks approximate the magnitude and tinting of recharge events. The first assumption was tested by estimating the recession index from st earn-discharge hydrographs, ground water hydrographs, and hydraulic diffusivity estimates from aquifer tests in basins throughout the eastern United States and Montana. The recession index frequently could not be estimated reliably from stream-discharge records alone because many of the estimates of the recession index were greater than 1000 days. The ratio of stream discharge during baseflow periods was two to 36 times greater than the maximum expected range of ground water discharge at 12 of the 13 field sites. The identification of the ground water component of stream-discharge records was ambiguous because drainage from bank-storage, wetlands, surface water bodies, soils, and snowpacks frequently exceeded ground water discharge and also decreased exponentially during recession periods. The timing and magnitude of recharge events could not be ascertained from stream-discharge records at any of the sites investigated because recharge events were not directly correlated with stream peaks. When used alone, the recession-curve-displacement method and other hydrograph-separation techniques are poor tools for estimating ground water discharge or recharge because the major assumptions of the methods are commonly and grossly violated. Multiple, alternative methods of estimating ground water discharge and recharge should be used because of the uncertainty associated with any one technique.

  5. Multi-spark discharge system for preparation of nutritious water

    NASA Astrophysics Data System (ADS)

    Nakaso, Tetsushi; Harigai, Toru; Kusumawan, Sholihatta Aziz; Shimomura, Tomoya; Tanimoto, Tsuyoshi; Suda, Yoshiyuki; Takikawa, Hirofumi

    2018-01-01

    The nitrogen compound concentration in water is increased by atmospheric-pressure plasma discharge treatment. A rod-to-water electrode discharge treatment system using plasma discharge has been developed by our group to obtain water with a high concentration of nitrogen compounds, and this plasma-treated water improves the growth of chrysanthemum roots. However, it is difficult to apply the system to the agriculture because the amount of treated water obtained by using the system too small. In this study, a multi-spark discharge system (MSDS) equipped multiple spark plugs is presented to obtain a large amount of plasma-treated water. The MSDS consisted of inexpensive parts in order to reduce the system introduction cost for agriculture. To suppress the temperature increase of the spark plugs, the 9 spark plugs were divided into 3 groups, which were discharged in order. The plasma-treated water with a NO3- concentration of 50 mg/L was prepared using the MSDS for 90 min, and the treatment efficiency was about 6 times higher than that of our previous system. It was confirmed that the NO2-, O3, and H2O2 concentrations in the water were also increased by treating the water using the MSDS.

  6. Generation of ozone by pulsed corona discharge over water surface in hybrid gas liquid electrical discharge reactor

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Janda, Vaclav; Sunka, Pavel

    2005-02-01

    Ozone formation by a pulse positive corona discharge generated in the gas phase between a planar high voltage electrode made from reticulated vitreous carbon and a water surface with an immersed ground stainless steel plate electrode was investigated under various operating conditions. The effects of gas flow rate (0.5-3 litre min-1), discharge gap spacing (2.5-10 mm), applied input power (2-45 W) and gas composition (oxygen containing argon or nitrogen) on ozone production were determined. Ozone concentration increased with increasing power input and with increasing discharge gap. The production of ozone was significantly affected by the presence of water vapour formed through vaporization of water at the gas-liquid interface by the action of the gas phase discharge. The highest energy efficiency for ozone production was obtained using high voltage pulses of approximately 150 ns duration in Ar/O2 mixtures with the maximum efficiency (energy yield) of 23 g kW h-1 for 40% argon content.

  7. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  8. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  9. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  10. Submarine ground-water discharge: nutrient loading and nitrogen transformations

    USGS Publications Warehouse

    Kroeger, Kevin D.; Swarzenski, Peter W.; Crusius, John; Bratton, John F.; Charette, Matthew A.

    2006-01-01

    Eutrophication of coastal waters due to nonpoint source land-derived nitrogen (N) loads is a worldwide phenomenon and perhaps the greatest agent of change altering coastal ecology (National Research Council, 2000; Howarth and others, 2000). Within the United States, a majority of estuaries have been determined to be moderately to severely impaired by eutrophication associated with increasing nutrient loads (Bricker and others, 1999).In coastal watersheds with soils of high hydraulic conductivity and permeable coastal sediments, ground water is a major route of transport of freshwater and its solutes from land to sea. Freshwater flowing downgradient from aquifers may either discharge from a seepage face near the intertidal zone, or flow directly into the sea as submarine ground-water discharge (SGD) (fig. 1). In the coastal aquifer, entrainment of saline pore water occurs prior to discharge, producing a gradient in ground-water salinity from land to sea, referred to as a subterranean estuary (Moore, 1999). In addition, processes including density-driven flow and tidal pumping create brackish and saline ground-water circulation. Hence, submarine ground-water discharge often consists of a substantial amount of recirculating seawater. Mixing of fresh and saline ground waters in the context of coastal sediments may alter the chemical composition of the discharging fluid. Depending on the biogeochemical setting, removal of fixed N due to processes leading to N2 (dinitrogen gas) production in the nearshore aquifer and subterranean estuary may significantly attenuate land-derived N loads; or, processes such as ion exchange and tidal pumping in the subterranean estuary may substantially accelerate the transport of both land-derived and sediment re-mineralized N to estuarine water columns.As emphasized by Burnett and others (2001, 2002), a fundamental problem in evaluating the importance of ground-water discharge in marine geochemical budgets is the difficulty of collecting

  11. [Desulphurization with multi-needle-water film electrodes by corona discharge].

    PubMed

    Huang, Xu-ran; Li, Guo-feng; Li, Jie; Wu, Yan

    2008-09-01

    The study of this paper adopted stainless steel multi-needle as a high voltage electrode system, and water film as low voltage electrode. The electrodes were supplied with negative DC high voltage. Polluted gas containing sulfur dioxide (SO2) flowed into the corona discharge field from the center of the high voltage electrode system in an axis direction, then get across the water surface. Under the effect of corona discharge plasma and water absorption, SO2 was removed by converting it into sulfuric acid. The effect of the three factors which were the applied voltage, SO2 inlet concentration and duration of the exposure to the corona discharge on desulphurization efficiency has been studied mostly. Moreover, the concentrations of SO3(2-) and SO4(2-) ions in the water were measured and the mechanism of desulphurization was analyzed. The results showed that there was a synergistic effect on the removal of SO2 when combining corona discharge and water absorption, and both the desulphurization efficiency and the amount of sulfuric acid increased evidently. As the applied voltage and the duration increased, the desulphurization efficiency increased. Also, the SO2 inlet concentration had effect on desulphurization efficiency. When the SO2 inlet concentration was 430 x 10(-6), the voltage was 14.5 kV and the duration was 7.5 s, a desulphurization efficiency of more than 90% could be attained.

  12. High-frequency underwater plasma discharge application in antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population onmore » the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.« less

  13. Estimated ground-water discharge by evapotranspiration from Death Valley, California, 1997-2001

    USGS Publications Warehouse

    DeMeo, Guy A.; Laczniak, Randell J.; Boyd, Robert A.; Smith, J. LaRue; Nylund, Walter E.

    2003-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service and Inyo County, Calif., collected field data from 1997 through 2001 to accurately estimate the amount of annual ground-water discharge by evapotranspiration (ET) from the floor of Death Valley, California. Multispectral satellite-imagery and National Wetlands Inventory data are used to delineate evaporative ground-water discharge areas on the Death Valley floor. These areas are divided into five general units where ground-water discharge from ET is considered to be significant. Based upon similarities in soil type, soil moisture, vegetation type, and vegetation density; the ET units are salt-encrusted playa (21,287 acres), bare-soil playa (75,922 acres), low-density vegetation (6,625 acres), moderate-density vegetation (5,019 acres), and high-density vegetation (1,522 acres). Annual ET was computed for ET units with micrometeorological data which were continuously measured at six instrumented sites. Total ET was determined at sites that were chosen for their soil- and vegetated-surface conditions, which include salt-encrusted playa (extensive salt encrustation) 0.17 feet per year, bare-soil playa (silt and salt encrustation) 0.21 feet per year, pickleweed (pickleweed plants, low-density vegetation) 0.60 feet per year, Eagle Borax (arrowweed plants and salt grass, moderate-density vegetation) 1.99 feet per year, Mesquite Flat (mesquite trees, high-density vegetation) 2.86 feet per year, and Mesquite Flat mixed grasses (mixed meadow grasses, high-density vegetation) 3.90 feet per year. Precipitation, flooding, and ground-water discharge satisfy ET demand in Death Valley. Ground-water discharge is estimated by deducting local precipitation and flooding from cumulative ET estimates. Discharge rates from ET units were not estimated directly because the range of vegetation units far exceeded the five specific vegetation units that were measured. The rate of annual ground-water discharge by ET for

  14. Discharge and water chemistry of High Arctic rivers in NW Greenland (76° N, 68° W)

    NASA Astrophysics Data System (ADS)

    Hagedorn, B.; Sletten, R. S.; Vigna, A. C.; Hallet, B.

    2004-12-01

    The volume, temperature, and quality of freshwater runoff from high latitude areas ultimately affect sensitive components of polar oceans, including water stratification, nutrient cycling, and formation of deepwater currents. Freshwater is conveyed from Greenland to the ocean from a multitude of medium-sized rivers for which little is known about discharge and water characteristics. River runoff together with microclimate and soil processes were recorded in a typical high Arctic area in NW Greenland where complete climate records from pre-1978 to the present indicate increases in mean annual air temperature from -12.0° C to -10.7° C and precipitation from 65 mm to 120 mm water equivalent between 1993 and 2002. The study will improve understanding of the interaction between climate, landscape processes, and river runoff. The study site extends from the western edge of the Greenland Ice Sheet to Baffin Bay; it covers an area ranging between 10-20 km E-W and 10-15 km N-S, and the elevations reach 700 m. It is a typical high Arctic environment with sparse vegetation and pervasive active patterned ground. Most of the area is covered by glacial drift that resembles the underlying sedimentary and igneous Archean and Proterozoic bedrock. To address how seasonal weather patterns and landscape processes affect runoff and water quality, as well as to examine weathering and carbon budgets in the drainage, we monitor water discharge and suspended load, water temperature, water chemistry (pH, dissolved ions, dissolved organic and inorganic carbon) of three rivers. Two of these rivers originate as melt water runoff from the Greenland Ice Sheet. The third stream is fed by local snowmelt and summer rain events. In addition, climate data along with soil moisture and temperature are recorded with automated stations at two locations. The potential sources of river water are thawing permafrost, local snowmelt, rain, and melting of glacial ice that all have distinct isotopic

  15. Ground water recharge and discharge in the central Everglades

    USGS Publications Warehouse

    Harvey, Judson W.; Krupa, Steven L.; Krest, James M.

    2004-01-01

    Rates of ground water recharge and discharge are not well known in the central Everglades. Here we report estimates of ground water recharge and discharge at 15 sites in the Everglades Nutrient Removal Project and in Water Conservation Area 2A (WCA-2A), along with measurements of hydraulic properties of peat at 11 sites. A simple hydrogeologic simulation was used to assess how specific factors have influenced recharge and discharge. Simulations and measurements agreed that the highest values of recharge and discharge occur within 600 m of levees, the result of ground water flow beneath levees. There was disagreement in the interior wetlands of WCA-2A (located > 1000 m from levees) where measurements of recharge and discharge were substantially higher than simulated fluxes. A five-year time series (1997 to 2002) of measured fluxes indicated that recharge and discharge underwent reversals in direction on weekly, monthly, and annual timescales at interior sites in WCA-2A. Ground water discharge tended to occur during average to moderately dry conditions when local surface water levels were decreasing. Recharge tended to occur during moderately wet periods or during very dry periods just as water levels began to increase following precipitation or in response to a pulse of surface water released from water-control structures by water managers. Discharge also tended to occur at sites in the wetland interior for ∼1 week preceding the arrival of the surface water pulse. We conclude that ground water recharge and discharge vary cyclically in the interior wetlands of the central Everglades, driven by the differential responses of surface water and ground water to annual, seasonal, and weekly trends in precipitation and operation of water-control structures.

  16. Micro electrical discharge milling using deionized water as a dielectric fluid

    NASA Astrophysics Data System (ADS)

    Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam

    2007-05-01

    In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.

  17. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  18. Fine-Water-Mist Multiple-Orientation-Discharge Fire Extinguisher

    NASA Technical Reports Server (NTRS)

    Butz, James R.; Turchi, Craig S.; Kimball, Amanda; McKinnon, Thomas; Riedel, Edward

    2010-01-01

    A fine-water-mist fire-suppression device has been designed so that it can be discharged uniformly in any orientation via a high-pressure gas propellant. Standard fire extinguishers used while slightly tilted or on their side will not discharge all of their contents. Thanks to the new design, this extinguisher can be used in multiple environments such as aboard low-gravity spacecraft, airplanes, and aboard vehicles that may become overturned prior to or during a fire emergency. Research in recent years has shown that fine water mist can be an effective alternative to Halons now banned from manufacture. Currently, NASA uses carbon dioxide for fire suppression on the International Space Station (ISS) and Halon chemical extinguishers on the space shuttle. While each of these agents is effective, they have drawbacks. The toxicity of carbon dioxide requires that the crew don breathing apparatus when the extinguishers are deployed on the ISS, and Halon use in future spacecraft has been eliminated because of international protocols on substances that destroy atmospheric ozone. A major advantage to the new system on occupied spacecraft is that the discharged system is locally rechargeable. Since the only fluids used are water and nitrogen, the system can be recharged from stores of both carried aboard the ISS or spacecraft. The only support requirement would be a pump to fill the water and a compressor to pressurize the nitrogen propellant gas. This system uses a gaseous agent to pressurize the storage container as well as to assist in the generation of the fine water mist. The portable fire extinguisher hardware works like a standard fire extinguisher with a single storage container for the agents (water and nitrogen), a control valve assembly for manual actuation, and a discharge nozzle. The design implemented in the proof-of-concept experiment successfully extinguished both open fires and fires in baffled enclosures.

  19. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  20. Pulsed high voltage electric discharge disinfection of microbially contaminated liquids.

    PubMed

    Anpilov, A M; Barkhudarov, E M; Christofi, N; Kop'ev, V A; Kossyi, I A; Taktakishvili, M I; Zadiraka, Y

    2002-01-01

    To examine the use of a novel multielectrode slipping surface discharge (SSD) treatment system, capable of pulsed plasma discharge directly in water, in killing micro-organisms. Potable water containing Escherichia coli and somatic coliphages was treated with pulsed electric discharges generated by the SSD. The SSD system was highly efficient in the microbial disinfection of water with a low energy utilization (eta approximately 10-4 kW h l-1). The SSD treatment was effective in the destruction of E. coli and its coliphages through the generation of u.v. radiation, ozone and free radicals. The non-thermal treatment method can be used for the eradication of micro-organisms in a range of contaminated liquids, including milk, negating the use of pasteurization. The method utilizes multipoint electric discharges capable of treating large volumes of liquid under static and flowing regimes.

  1. Simulation of ground-water discharge to Biscayne Bay, southeastern Florida

    USGS Publications Warehouse

    Langevin, Christian David

    2001-01-01

    -dimensional, regional-scale model was calibrated to ground-water heads, canal baseflow, and the general position of the saltwater interface for nearly a 10-year period from 1989 to 1998. The mean absolute error between observed and simulated head values is 0.15 meter. The mean absolute error between observed and simulated baseflow is 3 x 105 cubic meters per day. The position of the simulated saltwater interface generally matches the position observed in the field, except for areas north of the Miami Canal where the simulated saltwater interface is located about 5 kilometers inland of the observed saltwater interface. Results from the regional-scale model suggest that the average rate of fresh ground-water discharge to Biscayne Bay for the 10-year period (1989-98) is about 2 x 105 cubic meters per day for 100 kilometers of coastline. This simulated discharge rate is about 6 percent of the measured surface-water discharge to Biscayne Bay for the same period. The model also suggests that nearly 100 percent of the fresh ground-water discharge is to the northern half of Biscayne Bay, north of the Cutler Drain Canal. South of the Cutler Drain Canal, coastal lowlands prevent the water table from rising high enough to drive measurable quantities of ground water to Biscayne Bay. Annual variations in sea-level elevation, which can be as large as 0.3 meter, have a substantial effect on rates of ground-water discharge. During 1989-98, simulated rates of ground-water discharge to Biscayne Bay generally are highest when sea level is relatively low.

  2. Using thermal-infrared imagery to delineate ground-water discharge

    USGS Publications Warehouse

    Banks, W.S.L.; Paylor, R.L.; Hughes, W.B.

    1996-01-01

    On March 8 and 9, 1992, a thermal-infrared-multispectral scanner (TIMS) was flown over two military ordnance disposal facilities at the Edgewood Area of Aberdeen Proving Ground, Maryland. The data, collected bythe National Aeronautics and Space Administration, in cooperation with the U.S. Army and the U.S. Geological Survey, were used to locate ground-water discharge zones in surface water. The images from the flight show areas where ground-water discharge is concentrated, as well as areas of diffuse discharge. Concentrated discharge is predominant in isolated or nearly isolated ponds and creeks in the study area. Diffuse dicharge is found near parts of the shoreline where the study area meets the surrounding estuaries of the Chesapeake Bay and the Gunpowder River. The average temperature for surface water, measured directly in the field, and the average temperature, calculated from atmospherically corrected TIMS images, was 10.6??C (Celsius) at the first of two sites. Potentiometric surface maps of both field sites show discharge toward the nontidal marshes, the estuaries which surround the field sites, and creeks which drain into the estuaries. The average measured temperature of ground water at both sites was 10.7??C. The calculated temperature from the TIMS imagery at both sites where ground-water discharge is concentrated within a surface-water body is 10.4??C. In the estuaries which surround the field sites, field measurements of temperature were made resulting in an average temperature of 9.0??C. The average calculated TIMS temperature from the estuaries was 9.3??C. Along the shoreline at the first site and within 40 to 80 meters of the western and southern shores of the second site, water was 1?? to 2??C warmer than water more than 80 meters away. The pattern of warmer water grading to cooler water in an offshore direction could result from diffuse ground-water discharge. Tonal differences in the TIMS imagery could indicate changes in surface-water

  3. Impacts of a high-discharge submarine sewage outfall on water quality in the coastal zone of Salvador (Bahia, Brazil).

    PubMed

    Roth, F; Lessa, G C; Wild, C; Kikuchi, R K P; Naumann, M S

    2016-05-15

    Carbon and nitrogen stable isotopic signatures of suspended particulate organic matter and seawater biological oxygen demand (BOD) were measured along a coastal transect during summer 2015 to investigate pollution impacts of a high-discharge submarine sewage outfall close to Salvador, Brazil. Impacts of untreated sewage discharge were evident at the outfall site by depleted δ(13)Corg and δ(15)N signatures and 4-fold increased BOD rates. Pollution effects of a sewage plume were detectable for more than 6km downstream from the outfall site, as seasonal wind- and tide-driven shelf hydrodynamics facilitated its advective transport into near-shore waters. There, sewage pollution was detectable at recreational beaches by depleted stable isotope signatures and elevated BOD rates at high tides, suggesting high bacterial activity and increased infection risk by human pathogens. These findings indicate the urgent necessity for appropriate wastewater treatment in Salvador to achieve acceptable standards for released effluents and coastal zone water quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  5. Bio-Decontamination of Water and Surfaces by DC Discharges in Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Machala, Zdenko; Tarabová, Barbora; Pelach, Michal; Šipoldová, Zuzana; Hensel, Karol; Janda, Mário; Šikurová, Libuša

    Two types of DC-driven atmospheric air discharges, including a streamer corona and a transient spark with short high current pulses of limited energy, were employed for bio-decontamination of water and various surfaces (agar plates, plastic foils, human teeth) contaminated by bacteria or spores (Salmonella typhimurium, Bacillus cereus). Both discharges generate cold non-equilibrium plasma. The discharges combined with the electro-spraying of the treated water through the needle electrode lead to fast and efficient bio-decontamination. Experiments comparing direct and indirect plasma effects, oxidation stress measurements in the cell membranes, and chemical changes induced in the treated water enable assessment of the plasma agents being responsible for microbial inactivation. Radicals and reactive oxygen species seem to be dominant biocidal agents, although deeper understanding of the plasma-induced water chemistry and of the temporal evolution of the bio-inactivation processes is needed.

  6. Pulsed Power Discharges in Water

    NASA Astrophysics Data System (ADS)

    Kratel, Axel Wolf Hendrik

    An Electrohydraulic Discharge Process (EHD) for the treatment of hazardous chemical wastes in water has been developed. Liquid waste in a 4 L EHD reactor is directly exposed to high-energy pulsed electrical discharges between two submerged electrodes. The high-temperature (> 14,000 K) plasma channel created by an EHD discharge emits ultraviolet radiation, and produces an intense shock wave as it expands against the surrounding water. A simulation of the EHD process is presented along with experimental results. The simulation assumes a uniform plasma channel with a plasma that obeys the ideal gas law and the Spitzer conductivity law. The results agree with previously published data. The simulation is used to predict the total energy efficiency, energy partitioning, maximum plasma channel temperature and pressure for the Caltech Pulsed Power Facility (CPPF). The simulation shows that capacitance, initial voltage and gap length can be used to control the efficiency of the discharge. The oxidative degradation of 4-chlorophenol (4 -CP), 3,4-dichloroaniline (3,4-DCA), and 2,4,6 trinitrotoluene (TNT) in an EHD reactor was explored. The initial rates of degradation for the three substrates are described by a first-order rate equation, where k_{ it 0/} is the zero-order rate constant that accounts for direct photolysis; and k_ {it 1/} is the first-order term that accounts for oxidation in the plasma channel region. For 4-CP in the 4.0 L reactor, the values of these two rate constants are k_{it 0/} = 0.73 +/- 0.08 mu M, and k_{ it 1/} =(9.4 +/- 1.4) times 10^{-4}. For a 200 mu M 4-CP solution this corresponds to an overall intrinsic zero-order rate constant of 0.022 M s^{it -1/} , and a G-value of 4.45 times 10^{-3}. Ozone increases the rate and extent of degradation of the substrates in the EHD reactor. Combined EHD/ozone treatment of a 160 mu M TNT solution resulted in the complete degradation of TNT, and a 34% reduction of the total organic carbon (TOC). The intrinsic

  7. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  8. 77 FR 17082 - Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters: Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Organisms in Ships' Ballast Water Discharged in U.S. Waters: Final Programmatic Environmental Impact... entitled ``Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters'' (Docket No... impacts associated with the establishment of a ballast water discharge standard for the allowable...

  9. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  10. Feasibility of potable water generators to meet vessel numeric ballast water discharge limits.

    PubMed

    Albert, Ryan J; Viveiros, Edward; Falatko, Debra S; Tamburri, Mario N

    2017-07-15

    Ballast water is taken on-board vessels into ballast water tanks to maintain vessel draft, buoyancy, and stability. Unmanaged ballast water contains aquatic organisms that, when transported and discharged to non-native waters, may establish as invasive species. Technologies capable of achieving regulatory limits designed to decrease the likelihood of invasion include onboard ballast water management systems. However, to date, the treatment development and manufacturing marketplace is limited to large vessels with substantial ballast requirements. For smaller vessels or vessels with reduced ballast requirements, we evaluated the feasibility of meeting the discharge limits by generating ballast water using onboard potable water generators. Case studies and parametric analyses demonstrated the architectural feasibility of installing potable water generators onboard actual vessels with minimal impacts for most vessel types evaluated. Furthermore, land-based testing of a potable water generator demonstrated capability to meet current numeric discharge limits for living organisms in all size classes. Published by Elsevier Ltd.

  11. Natural Attenuation of Chlorinated Solvent Ground-Water Plumes Discharging into Wetlands

    DTIC Science & Technology

    2003-09-01

    ground water in highly saline wetlands (Swanson et al., 1984), and the distribution of marsh marigold (Caltha palustris L.) has been used to map...seeps and springs next to a lake and in wetlands in Minnesota (Rosenberry et al., 2000). Marsh marigold favors ground-water discharge areas across the

  12. Evolution of concentration-discharge relations revealed by high frequency diurnal sampling of stream water during spring snowmelt

    NASA Astrophysics Data System (ADS)

    Olshansky, Y.; White, A. M.; Thompson, M.; Moravec, B. G.; McIntosh, J. C.; Chorover, J.

    2017-12-01

    Concentration discharge (C-Q) relations contain potentially important information on critical zone (CZ) processes including: weathering reactions, water flow paths and nutrient export. To examine the C-Q relations in a small (3.3 km2) headwater catchment - La Jara Creek located in the Jemez River Basin Critical Zone Observatory, daily, diurnal stream water samples were collected during spring snow melt 2017, from two flumes located in outlets of the La Jara Creek and a high elevation zero order basin within this catchment. Previous studies from this site (McIntosh et al., 2017) suggested that high frequency sampling was needed to improve our interpretation of C-Q relations. The dense sampling covered two ascending and two descending limbs of the snowmelt hydrograph, from March 1 to May 15, 2017. While Na showed inverse correlation (dilution) with discharge, most other solutes (K, Mg, Fe, Al, dissolved organic carbon) exhibited positive (concentration) or chemostatic trends (Ca, Mn, Si, dissolved inorganic carbon and dissolved nitrogen). Hysteresis in the C-Q relation was most pronounced for bio-cycled cations (K, Mg) and for Fe, which exhibited concentration during the first ascending limb followed by a chemostatic trend. A pulsed increase in Si concentration immediately after the first ascending limb in both flumes suggests mixing of deep groundwater with surface water. A continual increase in Ge/Si concentrations followed by a rapid decrease after the second rising limb may suggest a fast transition between soil water to ground water dominating the stream flow. Fourier transform infrared spectroscopy of selected samples across the hydrograph demonstrated pronounced changes in dissolved organic matter molecular composition with the advancement of the spring snow melt. X-ray micro-spectroscopy of colloidal material isolated from the collected water samples indicated a significant role for organic matter in the transport of inorganic colloids. Analyses of high

  13. Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update

    USGS Publications Warehouse

    Rutledge, A.T.

    1998-01-01

    The computer programs included in this report can be used to develop a mathematical expression for recession of ground-water discharge and estimate mean ground-water recharge and discharge. The programs are intended for analysis of the daily streamflow record of a basin where one can reasonably assume that all, or nearly all, ground water discharges to the stream except for that which is lost to riparian evapotranspiration, and where regulation and diversion of flow can be considered to be negligible. The program RECESS determines the master reces-sion curve of streamflow recession during times when all flow can be considered to be ground-water discharge and when the profile of the ground-water-head distribution is nearly stable. The method uses a repetitive interactive procedure for selecting several periods of continuous recession, and it allows for nonlinearity in the relation between time and the logarithm of flow. The program RORA uses the recession-curve displacement method to estimate the recharge for each peak in the streamflow record. The method is based on the change in the total potential ground-water discharge that is caused by an event. Program RORA is applied to a long period of record to obtain an estimate of the mean rate of ground-water recharge. The program PART uses streamflow partitioning to estimate a daily record of base flow under the streamflow record. The method designates base flow to be equal to streamflow on days that fit a requirement of antecedent recession, linearly interpolates base flow for other days, and is applied to a long period of record to obtain an estimate of the mean rate of ground-water discharge. The results of programs RORA and PART correlate well with each other and compare reasonably with results of the corresponding manual method.

  14. Characteristics of pulse corona discharge over water surface

    NASA Astrophysics Data System (ADS)

    Fujii, Tomio; Arao, Yasushi; Rea, Massimo

    2008-12-01

    Production of ozone and OH radical is required to advance the plasma chemical reactions in the NOx removal processes for combustion gas treatment. The corona discharge to the water surface is expected to induce the good conditions for the proceeding of the NO oxidation and the NO2 dissolution removal into water. In order to get the fundamental data of the corona discharge over the water surface, the positive and negative V-I characteristics and the ozone production were measured with the multi needle and the saw-edge type of the discharge electrodes. The pulse corona characteristics were also measured with some different waveforms of the applied pulse voltage. The experiments were carried out under the atmospheric pressure and room temperature. Both the DC and the pulse corona to the water surface showed a stable and almost the same V-I characteristics as to plate electrodes though the surface of water was waved by corona wind. The positive streamer corona showed more ozone production than the negative one both in the DC and in the pulse corona.

  15. Optimal design of zero-water discharge rinsing systems.

    PubMed

    Thöming, Jorg

    2002-03-01

    This paper is about zero liquid discharge in processes that use water for rinsing. Emphasis was given to those systems that contaminate process water with valuable process liquor and compounds. The approach involved the synthesis of optimal rinsing and recycling networks (RRN) that had a priori excluded water discharge. The total annualized costs of the RRN were minimized by the use of a mixed-integer nonlinear program (MINLP). This MINLP was based on a hyperstructure of the RRN and contained eight counterflow rinsing stages and three regenerator units: electrodialysis, reverse osmosis, and ion exchange columns. A "large-scale nickel plating process" case study showed that by means of zero-water discharge and optimized rinsing the total waste could be reduced by 90.4% at a revenue of $448,000/yr. Furthermore, with the optimized RRN, the rinsing performance can be improved significantly at a low-cost increase. In all the cases, the amount of valuable compounds reclaimed was above 99%.

  16. ESTIMATING FLOW AND FLUX OF GROUND-WATER DISCHARGE USING WATER TEMPERATURE AND VELOCITY. (R827961)

    EPA Science Inventory

    The nature of ground water discharge to a stream has important implications for nearby ground water flow, especially with respect to contaminant transport and well-head protection. Measurements of ground water discharge were accomplished in this study using (1) differences bet...

  17. Ballast Water Discharges into the Great Lakes from Overseas Vessels

    EPA Pesticide Factsheets

    Analysis of Ballast Water Discharges into the Great Lakes from Overseas Vessels from 2010 to 2013 - An assessment of the volume, location, and global port origins of ballast water discharges in the Great Lakes (May 2015).

  18. Demonstration of a high repetition rate capillary discharge waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonsalves, A. J., E-mail: ajgonsalves@lbl.gov; Pieronek, C.; Daniels, J.

    2016-01-21

    A hydrogen-filled capillary discharge waveguide operating at kHz repetition rates is presented for parameters relevant to laser plasma acceleration (LPA). The discharge current pulse was optimized for erosion mitigation with laser guiding experiments and MHD simulation. Heat flow simulations and measurements showed modest temperature rise at the capillary wall due to the average heat load at kHz repetition rates with water-cooled capillaries, which is promising for applications of LPAs such as high average power radiation sources.

  19. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 4. Cleaning of Lakes and Marshes by Pulsed Power Produced Streamer Discharges in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Hidenori; Katsuki, Sunao; Namihira, Takao; Ishibashi, Kazuo; Kiyosaki, Noriaki

    Pulsed power has been used to produce non-thermal plasmas in atmospheric pressure gases that generate a high electric field at the tips of streamer discharges, where high energy electrons, free radicals, ultraviolet rays, and ozone are produced. These manifestations of streamer discharges have been used in the treatment of exhaust gases, removal of volatile and toxic compounds such as dioxin, and the sterilization of microorganisms. Here, large volume streamer discharges in water are described. These streamer discharges in liquids are able to produce a high electric field, high energy electrons, ozone, chemically active species, ultraviolet rays, and shock waves, which readily sterilize microorganisms and decompose molecules and materials. An application of this phenomenon to the cleaning of lakes and marshes is also described.

  20. Discharge of oilfield-produced water in Nueces Bay, Texas: A case study

    USGS Publications Warehouse

    D'Unger, Claude; Chapman, Duane C.; Carr, R. Scott

    1996-01-01

    During oil and gas production, water is often extracted from geological formations along with the hydrocarbons. These “produced waters” have been discharged to Nueces Bay since the turn of the century. These effluents were found to be highly toxic, and sediments in the vicinity of the discharges were also toxic. We developed a map of wells and produced-water discharge sites in the vicinity of Nueces Bay and identified numerous unplugged wells suitable for conversion to produced water disposal wells. An economic analysis of conversion to subterranean injection of produced water indicates that most of the wells currently in production could pay out the cost of conversion to injection in one to three years. The use of one injection well for two or more water-producing wells could yield greater savings. Wells that could not support the cost of injection are small producers, and their loss would not constitute a major loss of jobs or dollars to the area. This study could serve as a useful model for evaluating the economic feasibility of conversion to injection in other areas of Texas and Louisiana.

  1. Characteristics and applications of diffuse discharge of water electrode in air

    NASA Astrophysics Data System (ADS)

    Wenzheng, LIU; Tahan, WANG; Xiaozhong, CHEN; Chuanlong, MA

    2018-01-01

    Plasma water treatment technology, which aims to produce strong oxidizing reactive particles that act on the gas-liquid interface by way of discharging, is used to treat the organic pollutants that do not degrade easily in water. This paper presents a diffuse-discharge plasma water treatment method, which is realized by constructing a conical air gap through an uneven medium layer. The proposed method uses water as one electrode, and a dielectric barrier discharge electrode is constructed by using an uneven dielectric. The electric field distribution in the discharge space will be uneven, wherein the long gap electric field will have a smaller intensity, while the short one will have a larger intensity. A diffuse glow discharge is formed in the cavity. With this type of plasma water treatment equipment, a methyl orange solution with a concentration of 10 mg l-1 was treated, and the removal rate was found to reach 88.96%.

  2. Characterizing hydrology and the importance of ground-water discharge in natural and constructed wetlands

    USGS Publications Warehouse

    Hunt, Randall J.; Walker, John F.; Krabbenhoft, David P.

    1999-01-01

    Although considered the most important component for the establishment and persistence of wetlands, hydrology has been hard to characterize and linkages between hydrology and other environmental conditions are often poorly understood. In this work, methods for characterizing a wetland’s hydrology from hydrographs were developed, and the importance of ground water to the physical and geochemical conditions in the root zone was investigated. Detailed sampling of nearly continuous hydrographs showed that sites with greater ground-water discharge had higher water tables and more stable hydrographs. Subsampling of the continuous hydrograph failed to characterize the sites correctly, even though the wetland complex is located in a strong regional ground-water-discharge area. By comparing soil-moisture-potential measurements to the water-table hydrograph at one site, we noted that the amount of root-zone saturation was not necessarily driven by the water-table hydrograph but can be a result of other soil parameters (i.e., soil texture and associated capillary fringe). Ground-water discharge was not a significant determinant of maximum or average temperatures in the root zone. High ground-water discharge was associated with earliest date of thaw and shortest period of time that the root zone was frozen, however. Finally, the direction and magnitude of shallow ground-water flow was found to affect the migration and importance of a geochemical species. Areas of higher ground-water discharge had less downward penetration of CO2 generated in the root zone. In contrast, biotically derived CO2 was able to penetrate the deeper ground-water system in areas of ground-water recharge. Although ground-water flows are difficult to characterize, understanding these components is critical to the success of wetland restoration and creation efforts.

  3. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  4. Trans-Himalayan water contributions to river discharge

    NASA Astrophysics Data System (ADS)

    Andermann, Christoff; Stieglitz, Thomas; Schuessler, Jan A.; Parajouli, Binod

    2017-04-01

    Hydrological processes in high mountains are not well understood. Groundwater is commonly considered to be of little importance in the mountain water balance, while direct runoff, snow and ice melt are thought to be the principal hydrological buffer. We present new insights into hydrological fluxes between major reservoirs in a trans-Himalayan catchment. The study area is the Kali Gandaki catchment, rising in the dry Tibetan interior, carving through the high Himalayas and draining the full width of the foothills to the Ganges foreland. The catchment has a well-defined monsoon climate, with pronounced annual wet and dry seasons and a clear separation of wind- and leeward regions. We have sampled the main river and its tributaries as well as several springs during the four hydrological seasons (winter, pre-monsoon, monsoon, post-monsoon). We have measured major element abundances as well as 222Rn in situ, as a tracer for groundwater contribution. These measurements are placed in a context of topographic analyses as well as continuous discharge and precipitation measurements. Furthermore, we have equipped two sites with continuous water samplers, sampling over > 4 monsoon seasons, allowing us to resolve the seasonal hydrological dynamic range on a very high temporal resolution. Chemical fluxes vary spatially over several orders of magnitude, showing a systematic downstream dilution trend for most major elements during all hydrological seasons. High initial concentrations derive from evaporite deposits in the uppermost part of the catchment, constituting a large scale, natural salt tracer experiment. The well-defined decline of solute concentrations along the main river, paired with constraints on the composition of lateral water inputs downstream allow the calculation of the spatial distribution of additional hydrological fluxes, by applying end member mixing modeling. Continuous river stage and bulk dissolved load (electrical conductivity) monitoring depict well

  5. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    NASA Astrophysics Data System (ADS)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  6. Risk assessment for produced water discharges to Louisiana open bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1995-11-01

    Potential human health and environmental impacts from discharge of produced water to the Gulf of Mexico concern regulators at the State and Federal levels, environmental interest groups, industry and the public. Current regulations in the United States require or propose azero discharge limit for coastal facilities based primarily on studies performed in low energy,poorly flushed environments. Produced water discharges in coastal Louisiana, however,include a number located in open bays, where potential and impacts are likely to be larger than the minimal impacts associated with offshore discharges, but smaller than those demonstrated in low-energy canal environments. This paper summarizes results ofmore » a conservative screening-level health and ecological assessment for contaminants discharged in produced water to open bays in Louisiana, and reports results of a probabilistic human health risk assessment for radium and lead. The initial human health and ecological risk assessments consisted of conservative screening analyses that identified potentially important contaminants and excluded others from further consideration. A more quantitative probabilistic risk assessment was completed for the human health effects of the two contaminants identified in this screen: radium and lead. This work is part of a series of studies on the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the United States Department of Energy (USDOE).« less

  7. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in themore » samples.« less

  8. Identification of ballast water discharge profiles of a port to enable effective ballast water management and environmental studies

    NASA Astrophysics Data System (ADS)

    David, Matej; Gollasch, Stephan; Penko, Ludvik

    2018-03-01

    Information about the profile of ballast water discharges in a port is one of the basic elements of the decision making process in ballast water risk assessment and management, and supports the evaluation of dimensions and processes of aquatic species invasions with vessels ballast water. In the lack of ballast water reporting, ballast water discharge assessments need to be conducted. In this study we have assessed and compared ballast water discharge profiles of two ports with different maritime traffic and cargo profiles, the Port of Hamburg (Germany) and the Muuga Harbour, Port of Tallinn (Estonia). This study shows methods and approaches which can be used to assess volumes and donor ports of ballast water discharges for a port at the level of each vessel call. These methods and approaches can be applied to any port to support the implementation of feasible and efficient ballast water management measures and to enable environmental studies including long-term accumulation risks of disinfection by-products from ballast water management systems making use of active substances, as well as for discharges of other chemical compounds.

  9. Recombination of electrons with water cluster ions in the afterglow of a high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2018-07-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in H2O:N2 and H2O:O2 mixtures are presented for room temperature and at pressures from 2 to 5 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 1  ×  1012 and 2  ×  1012 cm‑3. Calculations showed that the plasma decay was controlled by recombination of thermalized electrons with H3O+(H2O) n ions for n from 0 to 4. Agreement between calculated and measured electron density histories was obtained only when using the recombination coefficients measured in the pulsed plasma afterglow experiments. The electron densities calculated using the data from the storage ring experiments were consistently greater than the values measured in this work for all conditions. It was concluded that the measurements of recombination coefficients for H3O+(H2O) n ions in the pulsed plasma afterglow were more appropriate for simulating the properties of high-density plasmas with high fractions of H2O, O2 and N2, such as discharge plasmas in water vapor and in humid air instead of the measurements in the storage ring experiments.

  10. Ultraviolet radiation from the pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sunka, Pavel

    2008-05-01

    Quantitative analysis of ultraviolet radiation from the pulsed corona discharge in water with needle-plate electrode geometry (~1-3 J pulse-1) was performed using the potassium ferrioxalate actinometry. Photon flux J190-280 and radiant energy Q190-280 of the UV light emitted from the discharge at spectral region 190-280 nm was determined in dependence on the applied voltage (17-29 kV, positive polarity) and the solution conductivity (100-500 µS cm-1). The intensity of the UV radiation strongly increased with increasing water conductivity and applied voltage. Depending on the applied voltage the determined photon flux varied by more than two orders of magnitude within the range of solution conductivities 100-500 µS cm-1. It was found that photon flux from the discharge may be directly related to the discharge pulse mean power Pp as J190-280 = 44.33 P_p^{2.11} (quanta pulse-1). A significant role of UV radiation in the production of hydrogen peroxide and bacterial inactivation by the corona discharge in water has been identified. As the solution conductivity increased the yield of H2O2 produced by the discharge decreased due to increasing photolysis of H2O2 accounting for up to 14% of the total decomposition rate of H2O2. As regards bactericidal effects, it was estimated that the UV radiation contributes about 30% to the overall inactivation of Escherichia coli.

  11. Ground-penetrating radar methods used in surface-water discharge measurements

    USGS Publications Warehouse

    Haeni, F.P.; Buursink, Marc L.; Costa, John E.; Melcher, Nick B.; Cheng, Ralph T.; Plant, William J.

    2000-01-01

    In 1999, an experiment was conducted to see if a combination of complementary radar methods could be used to calculate the discharge of a river without having any of the measuring equipment in the water. The cross-sectional area of the 183-meter wide Skagit River in Washington State was measured using a ground-penetrating radar (GPR) system with a single 100-MHz antenna. A van-mounted, side-looking pulsed-Doppler radar system was used to collect water-surface velocity data across the same section of the river. The combined radar data sets were used to calculate the river discharge and the results compared closely to the discharge measurement made by using the standard in-water measurement techniques.

  12. Ecosystem under pressure: ballast water discharge into Galveston Bay, Texas (USA) from 2005 to 2010.

    PubMed

    Steichen, Jamie L; Windham, Rachel; Brinkmeyer, Robin; Quigg, Antonietta

    2012-04-01

    Ballast water exchange processes facilitate the dispersal and unnatural geographic expansion of phytoplankton, including harmful algal bloom species. From 2005 to 2010, over 45,000 vessels (≈ 8000 annually) travelled across Galveston Bay (Texas, USA) to the deep-water ports of Houston (10th largest in the world), Texas City and Galveston. These vessels (primarily tankers and bulkers) discharged ≈ 1.2 × 10(8) metrictons of ballast water; equivalent to ≈ 3.4% of the total volume of the Bay. Over half of the ballast water discharged had a coastwise origin, 96% being from US waters. Galveston Bay has fewer non-indigenous species but receives a higher volume of ballast water discharge, relative to the highly invaded Chesapeake and San Francisco Bays. Given the magnitude of shipping traffic, the role of Galveston Bay, both as a recipient and donor region of non-indigenous phytoplankton species is discussed here in terms of the invasibility risk to this system by way of ballast water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 33 CFR 151.2030 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... possibly prevent the introduction and spread of non-indigenous aquatic invasive species. ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in Waters... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United...

  14. 33 CFR 151.2030 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... possibly prevent the introduction and spread of non-indigenous aquatic invasive species. ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in Waters... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United...

  15. 33 CFR 151.2030 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... possibly prevent the introduction and spread of non-indigenous aquatic invasive species. ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in Waters... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United...

  16. Fresh-water discharge salinity relations in the tidal Delaware River

    USGS Publications Warehouse

    Keighton, Walter B.

    1966-01-01

    Sustained flows of fresh water greater than 3,500, 4,400, and 5,300 cubic feet per second into the Delaware River estuary at Trenton, NJ assure low salinity at League Island, Eddystone, and Marcus Hook, respectively. When the discharge at Trenton is less than these critical values, salinity is very sensitive to change in discharge, so that a relatively small decrease in fresh-water discharge results in a relatively great increase in salinity. Comparison of the discharge-salinity relations observed for the 14-year period August 1949-December 1963 with relations proposed by other workers but based on other time periods indicate that such relations change with time and that salinity is affected not only by discharge but also by dredging; construction of breakwater, dikes, and tidal barriers; changing sea level; tidal elevation; tidal range; and wind intensity and direction.

  17. Potential water-quality effects of coal-bed methane production water discharged along the upper Tongue River, Wyoming and Montana

    USGS Publications Warehouse

    Kinsey, Stacy M.; Nimick, David A.

    2011-01-01

    Water quality in the upper Tongue River from Monarch, Wyoming, downstream to just upstream from the Tongue River Reservoir in Montana potentially could be affected by discharge of coal-bed methane (CBM) production water (hereinafter referred to as CBM discharge). CBM discharge typically contains high concentrations of sodium and other ions that could increase dissolved-solids (salt) concentrations, specific conductance (SC), and sodium-adsorption ratio (SAR) in the river. Increased inputs of sodium and other ions have the potential to alter the river's suitability for agricultural irrigation and aquatic ecosystems. Data from two large tributaries, Goose Creek and Prairie Dog Creek, indicate that these tributaries were large contributors to the increase in SC and SAR in the Tongue River. However, water-quality data were not available for most of the smaller inflows, such as small tributaries, irrigation-return flows, and CBM discharges. Thus, effects of these inflows on the water quality of the Tongue River were not well documented. Effects of these small inflows might be subtle and difficult to determine without more extensive data collection to describe spatial patterns. Therefore, synoptic water-quality sampling trips were conducted in September 2005 and April 2006 to provide a spatially detailed profile of the downstream changes in water quality in this reach of the Tongue River. The purpose of this report is to describe these downstream changes in water quality and to estimate the potential water-quality effects of CBM discharge in the upper Tongue River. Specific conductance of the Tongue River through the study reach increased from 420 to 625 microsiemens per centimeter (.μS/cm; or 49 percent) in the downstream direction in September 2005 and from 373 to 543 .μS/cm (46 percent) in April 2006. Large increases (12 to 24 percent) were measured immediately downstream from Goose Creek and Prairie Dog Creek during both sampling trips. Increases attributed to

  18. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    PubMed

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  19. Quantifying time-varying ground-water discharge and recharge in wetlands of the northern Florida Everglades

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.

    2000-01-01

    Developing a more thorough understanding of water and chemical budgets in wetlands depends in part on our ability to quantify time-varying interactions between ground water and surface water. We used a combined water and solute mass balance approach to estimate time-varying ground-water discharge and recharge in the Everglades Nutrient Removal project (ENR), a relatively large constructed wetland (1544 hectare) built for removing nutrients from agricultural drainage in the norther Everglades in South Florida, USA. Over a 4-year period (1994 through 1998), ground-water recharge averaged 13.4 hectare-meter per day (ha-m/day) or 0.9 cm/day, which is approximately 31% of surface water pumped into the ENR for treatment. In contrast, ground-water discharge was much smaller (1.4 ha-m/day, or 0.09 cm/day, or 2.8% of water input to ENR for treatment). Using a water-balance approach alone only allowed net ground-water exchange (discharge - recharge) to be estimated (-12 ?? 2.4 ha-ma/day). Disharge and recharge were individually determined by combining a chloride mass balance with the water balance. For a variety of reasons, the ground-water discharge estimated by the combined mass balance approach was not reliable (1.4 ?? 37 ha-m/day). As a result, ground-water interactions could only be reliably estimated by comparing the mass-balance results with other independent approaches, including direct seepage-meter measurements and previous estimates using ground-water modeling. All three independent approaches provided similar estimates of average ground-water recharge, ranging from 13 to 14 ha-m/day. There was also relatively good agreement between ground-water discharge estimates for the mass balance and seepage meter methods, 1.4 and 0.9 ha-m/day, respectively. However, ground-water-flow modeling provided an average discharge estimate that was approximately a factor of four higher (5.4 ha-m/day) than the other two methods. Our study developed an initial understanding of how the

  20. Water-Quality Assessment of Southern Florida - Wastewater Discharges and Runoff

    USGS Publications Warehouse

    Marella, Richard L.

    1998-01-01

    Nearly 800 million gallons per day of treated wastewater was discharged in the Southern Florida National Water-Quality Assessment (NAWQA) study unit in 1990, most to the Atlantic Ocean (44 percent) and to deep, saline aquifers (25 percent). About 9 percent was discharged to fresh surface waters and about 22 percent to shallow ground water, of which septic tanks accounted for 9 percent. Runoff from agricultural and urban lands, though not directly measured, is a large source of wastewater in southern Florida.

  1. Density matters: Review of approaches to setting organism-based ballast water discharge standards

    USGS Publications Warehouse

    Lee II,; Frazier,; Ruiz,

    2010-01-01

    As part of their effort to develop national ballast water discharge standards under NPDES permitting, the Office of Water requested that WED scientists identify and review existing approaches to generating organism-based discharge standards for ballast water. Six potential approaches were identified and the utility and uncertainties of each approach was evaluated. During the process of reviewing the existing approaches, the WED scientists, in conjunction with scientists at the USGS and Smithsonian Institution, developed a new approach (per capita invasion probability or "PCIP") that addresses many of the limitations of the previous methodologies. THE PCIP approach allows risk managers to generate quantitative discharge standards using historical invasion rates, ballast water discharge volumes, and ballast water organism concentrations. The statistical power of sampling ballast water for both the validation of ballast water treatment systems and ship-board compliance monitoring with the existing methods, though it should be possible to obtain sufficient samples during treatment validation. The report will go to a National Academy of Sciences expert panel that will use it in their evaluation of approaches to developing ballast water discharge standards for the Office of Water.

  2. Characteristics of produced water discharged to the Gulf of Mexico hypoxiczone.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Kimmell, T. A.; Rechner, A. C.

    2005-08-24

    Each summer, an area of low dissolved oxygen (the hypoxic zone) forms in the shallow nearshore Gulf of Mexico waters from the Mississippi River Delta westward to near the Texas/Louisiana border. Most scientists believe that the leading contributor to the hypoxic zone is input of nutrients (primarily nitrogen and phosphorus compounds) from the Mississippi and Atchafalaya Rivers. The nutrients stimulate growth of phytoplankton. As the phytoplankton subsequently die, they fall to the bottom waters where they are decomposed by microorganisms. The decomposition process consumes oxygen in the bottom waters to create hypoxic conditions. Sources other than the two rivers mentionedmore » above may also contribute significant quantities of oxygen-demanding pollutants. One very visible potential source is the hundreds of offshore oil and gas platforms located within or near the hypoxic zone. Many of these platforms discharge varying volumes of produced water. However, only limited data characterizing oxygen demand and nutrient concentration and loading from offshore produced water discharges have been collected. No comprehensive and coordinated oxygen demand data exist for produced water discharges in the Gulf of Mexico. This report describes the results of a program to sample 50 offshore oil and gas platforms located within the Gulf of Mexico hypoxic zone. The program was conducted in response to a requirement in the U.S. Environmental Protection Agency (EPA) general National Pollutant Discharge Elimination System (NPDES) permit for offshore oil and gas discharges. EPA requested information on the amount of oxygen-demanding substances contained in the produced water discharges. This information is needed as inputs to several water quality models that EPA intends to run to estimate the relative contributions of the produced water discharges to the occurrence of the hypoxic zone. Sixteen platforms were sampled 3 times each at approximately one-month intervals to give an

  3. 33 CFR 151.1511 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in the... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United..., practicable, and/or may possibly prevent the introduction and spread of non-indigenous aquatic invasive...

  4. 33 CFR 151.1511 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in the... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United..., practicable, and/or may possibly prevent the introduction and spread of non-indigenous aquatic invasive...

  5. 33 CFR 151.1511 - Ballast water discharge standard (BWDS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COMMERCIAL WASTE, AND BALLAST WATER Ballast Water Management for Control of Nonindigenous Species in the... maximum extent practicable that aquatic nuisance species are not discharged into waters of the United..., practicable, and/or may possibly prevent the introduction and spread of non-indigenous aquatic invasive...

  6. Initial studies of submarine groundwater discharge in Mississippi coastal waters

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.; Moore, W. S.; Joung, D. J.; Box, H.; Ho, P.; Whitmore, L. M.; Gilbert, M.; Anderson, H.

    2017-12-01

    Submarine groundwater discharge (SGD) is a critical component of coastal ecosystems, affecting biogeochemistry and productivity. The SGD flux and effect on the ecosystem of the Mississippi (MS) Bight has not previously been studied. We have determined Ba, δ18O of water, and Ra-isotopes, together with nutrients, chlorophyll, and dissolved oxygen (DO) during multiple cruises from fall 2015 to summer 2016. Water isotope distributions (δ18O) show that, although the MS River Delta bounds the western side of the Bight, nonetheless, Mobile Bay and other local rivers are the Bight's dominant freshwater sources. But elevated dissolved Ba and Ra isotopes cannot be explained by river input. Spatially, SGD in the MS Bight occurs over a wide area, with hot spots near the barrier islands (e.g., Chandeleurs, Horn and Dauphin Islands) and the mouth of Mobile Bay, probably in association with old buried river channels, or dredged ship channels. Based on their high concentrations in saline groundwaters sampled on the barrier islands, the elevated Ba and Ra in MS Bight water are likely due to SGD. In subsurface waters, long-lived Ra isotopes were negatively correlated with DO during spring and summer 2016, suggesting direct discharge of DO-depleted groundwater and/or accumulation of SGD-derived Ra and microbial DO consumption under strongly stratified conditions. Our ongoing study suggests that seasonal variability in flushing, water stratification, and SGD input play important roles in biological production and bottom water hypoxia in the MS Bight.

  7. Estimation of the discharges of the multiple water level stations by multi-objective optimization

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kazuhiro; Miyamoto, Mamoru; Yamakage, Yuzuru; Tsuda, Morimasa; Yanami, Hitoshi; Anai, Hirokazu; Iwami, Yoichi

    2016-04-01

    This presentation shows two aspects of the parameter identification to estimate the discharges of the multiple water level stations by multi-objective optimization. One is how to adjust the parameters to estimate the discharges accurately. The other is which optimization algorithms are suitable for the parameter identification. Regarding the previous studies, there is a study that minimizes the weighted error of the discharges of the multiple water level stations by single-objective optimization. On the other hand, there are some studies that minimize the multiple error assessment functions of the discharge of a single water level station by multi-objective optimization. This presentation features to simultaneously minimize the errors of the discharges of the multiple water level stations by multi-objective optimization. Abe River basin in Japan is targeted. The basin area is 567.0km2. There are thirteen rainfall stations and three water level stations. Nine flood events are investigated. They occurred from 2005 to 2012 and the maximum discharges exceed 1,000m3/s. The discharges are calculated with PWRI distributed hydrological model. The basin is partitioned into the meshes of 500m x 500m. Two-layer tanks are placed on each mesh. Fourteen parameters are adjusted to estimate the discharges accurately. Twelve of them are the hydrological parameters and two of them are the parameters of the initial water levels of the tanks. Three objective functions are the mean squared errors between the observed and calculated discharges at the water level stations. Latin Hypercube sampling is one of the uniformly sampling algorithms. The discharges are calculated with respect to the parameter values sampled by a simplified version of Latin Hypercube sampling. The observed discharge is surrounded by the calculated discharges. It suggests that it might be possible to estimate the discharge accurately by adjusting the parameters. In a sense, it is true that the discharge of a water

  8. Field evaluation of shallow-water acoustic doppler current profiler discharge measurements

    USGS Publications Warehouse

    Rehmel, M.S.

    2007-01-01

    In 2004, the U.S. Geological Survey (USGS) Office of Surface Water staff and USGS Water Science employees began testing the StreamPro, an acoustic Doppler current profiler (ADCP) for shallow-water discharge measurements. Teledyne RD Instruments introduced the StreamPro in December of 2003. The StreamPro is designed to make a "moving boat" discharge measurement in streams with depths between 0.15 and 2 m. If the StreamPro works reliably in these conditions, it will allow for use of ADCPs in a greater number of streams than previously possible. Evaluation sites were chosen to test the StreamPro over a range of conditions. Simultaneous discharge measurements with mechanical and other acoustic meters, along with stable rating curves at established USGS streamflow-gaging stations, were used for comparisons. The StreamPro measurements ranged in mean velocity from 0.076 to 1.04 m/s and in discharge from 0.083 m 3/s to 43.4 m 3/s. Tests indicate that discharges measured with the StreamPro compare favorably to the discharges measured with the other meters when the mean channel velocity is greater than 0.25 m/s. When the mean channel velocity is less than 0.25 m/s, the StreamPro discharge measurements for individual transects have greater variability than those StreamPro measurements where the mean channel velocity is greater than 0.25 m/s. Despite this greater variation in individual transects, there is no indication that the StreamPro measured discharges (the mean discharge for all transects) are biased, provided that enough transects are used to determine the mean discharge. ?? 2007 ASCE.

  9. Verification of 1921 peak discharge at Skagit River near Concrete, Washington, using 2003 peak-discharge data

    USGS Publications Warehouse

    Mastin, M.C.; Kresch, D.L.

    2005-01-01

    The 1921 peak discharge at Skagit River near Concrete, Washington (U.S. Geological Survey streamflow-gaging station 12194000), was verified using peak-discharge data from the flood of October 21, 2003, the largest flood since 1921. This peak discharge is critical to determining other high discharges at the gaging station and to reliably estimating the 100-year flood, the primary design flood being used in a current flood study of the Skagit River basin. The four largest annual peak discharges of record (1897, 1909, 1917, and 1921) were used to determine the 100-year flood discharge at Skagit River near Concrete. The peak discharge on December 13, 1921, was determined by James E. Stewart of the U.S. Geological Survey using a slope-area measurement and a contracted-opening measurement. An extended stage-discharge rating curve based on the 1921 peak discharge was used to determine the peak discharges of the three other large floods. Any inaccuracy in the 1921 peak discharge also would affect the accuracies of the three other largest peak discharges. The peak discharge of the 1921 flood was recalculated using the cross sections and high-water marks surveyed after the 1921 flood in conjunction with a new estimate of the channel roughness coefficient (n value) based on an n-verification analysis of the peak discharge of the October 21, 2003, flood. The n value used by Stewart for his slope-area measurement of the 1921 flood was 0.033, and the corresponding calculated peak discharge was 240,000 cubic feet per second (ft3/s). Determination of a single definitive water-surface profile for use in the n-verification analysis was precluded because of considerable variation in elevations of surveyed high-water marks from the flood on October 21, 2003. Therefore, n values were determined for two separate water-surface profiles thought to bracket a plausible range of water-surface slopes defined by high-water marks. The n value determined using the flattest plausible slope was 0

  10. Density Matters: Review of Approaches to Setting Organism-Based Ballast Water Discharge Standards

    EPA Science Inventory

    As part of their effort to develop national ballast water discharge standards under NPDES permitting, the Office of Water requested that WED scientists identify and review existing approaches to generating organism-based discharge standards for ballast water. Six potential appro...

  11. Study of a DC gas discharge with a copper cathode in a water flow

    NASA Astrophysics Data System (ADS)

    Tazmeev, G. Kh.; Timerkaev, B. A.; Tazmeev, Kh. K.

    2017-07-01

    A dc gas discharge between copper electrodes in the current range of 5-20 A was studied experimentally. The discharge gap length was varied within 45-70 mm. The cathode was a 10-mm-diameter rod placed in the water flowing out from a dielectric tube. Three discharge configurations differing in the position of the cathode upper end with respect to the water surface were considered: (i) above water; (ii) flush with the water surface, and (iii) under water. The electric and optical characteristics of the discharge in the second configuration were studied in more detail. It is established that the discharge properties are similar to those of an electric arc. Considerable cathode erosion was observed in the third configuration. It is revealed that fine-dispersed copper grains form in the course of erosion.

  12. Analyzing Conductivity Profiles in Stream Waters Influenced by Mine Water Discharges

    NASA Astrophysics Data System (ADS)

    Räsänen, Teemu; Hämäläinen, Emmy; Hämäläinen, Matias; Turunen, Kaisa; Pajula, Pasi; Backnäs, Soile

    2015-04-01

    Conductivity is useful as a general measure of stream water quality. Each stream inclines to have a quite constant range of conductivity that can be used as a baseline for comparing and detecting influence of contaminant sources. Conductivity in natural streams and rivers is affected primarily by the geology of the watershed. Thus discharges from ditches and streams affect not only the flow rate in the river but also the water quality and conductivity. In natural stream waters, the depth and the shape of the river channel change constantly, which changes also the water flow. Thus, an accurate measuring of conductivity or other water quality indicators is difficult. Reliable measurements are needed in order to have holistic view about amount of contaminants, sources of discharges and seasonal variation in mixing and dilution processes controlling the conductivity changes in river system. We tested the utility of CastAway-CTD measuring device (SonTek Inc) to indicate the influence of mine waters as well as mixing and dilution occurring in the recipient river affected by treated dewatering and process effluent water discharges from a Finnish gold mine. The CastAway-CTD measuring device is a small, rugged and designed for profiling of depths of up to 100m. Device measures temperature, salinity, conductivity and sound of speed using 5 Hz response time. It has also built-in GPS which produces location information. CTD casts are normally used to produce vertical conductivity profile for rather deep waters like seas or lakes. We did seasonal multiple Castaway-CTD measurements during 2013 and 2014 and produced scaled vertical and horizontal profiles of conductivity and water temperature at the river. CastAway-CTD measurement pinpoints how possible contaminants behave and locate in stream waters. The conductivity profiles measured by CastAway-CTD device show the variation in maximum conductivity values vertically in measuring locations and horizontally in measured cross

  13. High-repetition-rate short-pulse gas discharge.

    PubMed

    Tulip, J; Seguin, H; Mace, P N

    1979-09-01

    A high-average-power short-pulse gas discharge is described. This consists of a volume-preionized transverse discharge of the type used in gas lasers driven by a Blumlein energy storage circuit. The Blumlein circuit is fabricated from coaxial cable, is pulse-charged from a high-repetition-rate Marx-bank generator, and is switched by a high-repetition-rate segmented rail gap. The operation of this discharge under conditions typical of rare-gas halide lasers is described. A maximum of 900 pps was obtained, giving a power flow into the discharge of 30 kW.

  14. Estimates of ground-water discharge as determined from measurements of evapotranspiration, Ash Meadows area, Nye County, Nevada

    USGS Publications Warehouse

    Laczniak, R.J.; DeMeo, G.A.; Reiner, S.R.; Smith, J. LaRue; Nylund, W.E.

    1999-01-01

    of the seven identified ET units. Micrometeorological data were collected for a minimum of 1 year at each site during 1994 through 1997. Evapotranspiration ranged from 0.6 foot per year in a sparse, dry saltgrass environment to 8.6 feet per year over open water. Ancillary data, including water levels, were collected during this same period to gain additional insight into the evapotranspiration process. Water levels measured in shallow wells showed annual declines of more than 10 feet and daily declines as high as 0.3 foot attributed to water losses associated with evapotranspiration. Mean annual ET from the Ash Meadows area is estimated at 21,000 acre-feet. An estimate of ground-water discharge, based on this ET estimate, is presented as a range to account for uncertainties in the contribution of local precipitation. The estimates given for mean annual ground-water discharge range from 18,000 to 21,000 acre-feet. The low estimate assumes a large contribution from local precipitation in computed ET rates; whereas, the high estimate assumes no contribution from local precipitation. The range presented is only slightly higher than previous estimates of ground-water discharge from the Ash Meadows area based primarily on springflow measurements.

  15. Atmospheric-pressure electric discharge as an instrument of chemical activation of water solutions

    NASA Astrophysics Data System (ADS)

    Rybkin, V. V.; Shutov, D. A.

    2017-11-01

    Results of experimental studies and numerical simulations of physicochemical characteristics of plasmas generated in different types of atmospheric-pressure discharges (pulsed streamer corona, gliding electric arc, dielectric barrier discharge, glow-discharge electrolysis, diaphragmatic discharge, and dc glow discharge) used to initiate various chemical processes in water solutions are analyzed. Typical reactor designs are considered. Data on the power supply characteristics, plasma electron parameters, gas temperatures, and densities of active particles in different types of discharges excited in different gases and their dependences on the external parameters of discharges are presented. The chemical composition of active particles formed in water is described. Possible mechanisms of production and loss of plasma particles are discussed.

  16. Ground-water discharge determined from estimates of evapotranspiration, Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; Elliott, Peggy E.; DeMeo, Guy A.; Chatigny, Melissa A.; Roemer, Gaius J.

    2001-01-01

    The Death Valley regional flow system (DVRFS) is one of the larger ground-water flow systems in the southwestern United States and includes much of southern Nevada and the Death Valley region of eastern California. Centrally located within the ground-water flow system is the Nevada Test Site (NTS). The NTS, a large tract covering about 1,375 square miles, historically has been used for testing nuclear devices and currently is being studied as a potential repository for the long-term storage of high-level nuclear waste generated in the United States. The U.S. Department of Energy, as mandated by Federal and State regulators, is evaluating the risk associated with contaminants that have been or may be introduced into the subsurface as a consequence of any past or future activities at the NTS. Because subsurface contaminants can be transported away from the NTS by ground water, components of the ground-water budget are of great interest. One such component is regional ground-water discharge. Most of the ground water leaving the DVRFS is limited to local areas where geologic and hydrologic conditions force ground water upward toward the surface to discharge at springs and seeps. Available estimates of ground-water discharge are based primarily on early work done as part of regional reconnaissance studies. These early efforts covered large, geologically complex areas and often applied substantially different techniques to estimate ground-water discharge. This report describes the results of a study that provides more consistent, accurate, and scientifically defensible measures of regional ground-water losses from each of the major discharge areas of the DVRFS. Estimates of ground-water discharge presented in this report are based on a rigorous quantification of local evapotranspiration (ET). The study identifies areas of ongoing ground-water ET, delineates different ET areas based on similarities in vegetation and soil-moisture conditions, and determines an ET rate for

  17. Water withdrawals, use, discharge, and trends in Florida, 2000

    USGS Publications Warehouse

    Marella, Richard L.

    2004-01-01

    River, Lake Okeechobee and associated canals, and the canals associated with the headwaters of the Upper St. Johns River. Freshwater withdrawals increased 46 percent and saline water withdrawals increased 25 percent in Florida between 1970 and 2000. Ground-water withdrawals increased 82 percent, and surface-water withdrawals increased 10 percent during this period. Between 1970 and 2000, total freshwater withdrawals increased for public supply by 176 percent and for agricultural self-supplied by 87 percent; withdrawals for commercial-industrial self-supplied decreased by 37 percent, and power generation (thermoelectric) decreased by 57 percent. Recreational irrigation withdrawals increased 127 percent between 1985 and 2000. Between 1995 and 2000, freshwater withdrawals increased 13 percent, and saline withdrawals increased 9 percent. An estimated 52 percent of the freshwater withdrawn in Florida was consumed; the remaining 48 percent was returned for further use. Domestic wastewater discharged in 2000 totaled 1,495 Mgal/d, of which 44 percent was discharged to surface waters, 34 percent to the ground through land application systems, and 22 percent to deep injection wells. Domestic wastewater discharge increased by 33 percent between 1985 and 2000, but decreased by 3 percent between 1995 and 2000. An estimated 11.21 million people were served by domestic wastewater systems in 2000, whereas the remaining 4.77 million people discharged wastewater to more than 1.95 million septic tanks. Discharge from the septic tanks was estimated to be 263 Mgal/d in 2000.

  18. Approaches to setting organism-based ballast water discharge standards

    EPA Science Inventory

    As a major vector by which foreign species invade coastal and freshwater waterbodies, ballast water discharge from ships is recognized as a major environmental threat. The International Maritime Organization (IMO) drafted an international ballast water treaty establishing ballast...

  19. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    NASA Astrophysics Data System (ADS)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  20. Research on the degradation mechanism of dimethyl phthalate in drinking water by strong ionization discharge

    NASA Astrophysics Data System (ADS)

    Hong, ZHAO; Chengwu, YI; Rongjie, YI; Huijuan, WANG; Lanlan, YIN; I, N. MUHAMMAD; Zhongfei, MA

    2018-03-01

    The degradation mechanism of dimethyl phthalate (DMP) in the drinking water was investigated using strong ionization discharge technology in this study. Under the optimized condition, the degradation efficiency of DMP in drinking water was up to 93% in 60 min. A series of analytical techniques including high-performance liquid chromatography, liquid chromatography mass spectrometry, total organic carbon analyzer and ultraviolet-visible spectroscopy were used in the study. It was found that a high concentration of ozone (O3) produced by dielectric barrier discharge reactor was up to 74.4 mg l-1 within 60 min. Tert-butanol, isopropyl alcohol, carbonate ions ({{{{CO}}}3}2-) and bicarbonate ions ({{{{HCO}}}3}-) was added to the sample solution to indirectly prove the presence and effect of hydroxyl radicals (·OH). These analytical findings indicate that mono-methyl phthalate, phthalic acid (PA) and methyl ester PA were detected as the major intermediates in the process of DMP degradation. Finally, DMP and all products were mineralized into carbon dioxide (CO2) and water (H2O) ultimately. Based on these analysis results, the degradation pathway of DMP by strong ionization discharge technology were proposed.

  1. [Removal of SO2 from flue gas by water vapor DC corona discharge].

    PubMed

    Sun, Ming; Wu, Yan

    2006-07-01

    The influence of several factors on removal rate of SO2 from flue gas in unsaturated water vapor DC corona discharge was researched. Furthermore, the experiments of the removal rate of SO2 in pulsed discharge increased by water vapor DC corona discharge plasma were conducted. The experiment system is supplied with multi-nozzle-plate electrodes and the flow of simulated flue gas is under 70 m3/h. The results show that removal rate of SO2 can be improved by increasing the concentration of water vapor, intensity of electric field or decreasing flow of simulated flue gas. In unsaturated water vapor DC corona discharge, removal rate of SO2 can be improved by 10%, when NH3 is added as NH3 and SO2 is in a mole ratio of two to one, it can reach 60%. The removal rate of SO2 can be increased by 5% in pulsed corona discharge and reach above 90%.

  2. Power Plant Bromide Discharges and Downstream Drinking Water Systems in Pennsylvania.

    PubMed

    Good, Kelly D; VanBriesen, Jeanne M

    2017-10-17

    Coal-fired power plants equipped with wet flue gas desulfurization (FGD) systems have been implicated in increasing bromide levels and subsequent increases in disinfection byproducts at downstream drinking water plants. Bromide was not included as a regulated constituent in the recent steam electric effluent limitations guidelines and standards (ELGs) since the U.S. EPA analysis suggested few drinking water facilities would be affected by bromide discharges from power plants. The present analysis uses a watershed approach to identify Pennsylvania drinking water intakes downstream of wet FGD discharges and to assess the potential for bromide discharge effects. Twenty-two (22) public drinking water systems serving 2.5 million people were identified as being downstream of at least one wet FGD discharge. During mean August conditions (generally low-flow, minimal dilution) in receiving rivers, the median predicted bromide concentrations contributed by wet FGD at Pennsylvania intake locations ranged from 5.2 to 62 μg/L for the Base scenario (including only natural bromide in coal) and from 16 to 190 μg/L for the Bromide Addition scenario (natural plus added bromide for mercury control); ranges depend on bromide loads and receiving stream dilution capacity.

  3. Inferring Discharge at River Mouths from Water Surface Height Measurements

    NASA Astrophysics Data System (ADS)

    Branch, R.; Horner-Devine, A.; Chickadel, C. C.

    2016-02-01

    Numerical model results suggest that a relationship exists between river discharge and surface height anomalies near the mouth of rivers, which presents an opportunity to use satellite elevation data to measure discharge remotely. Here we investigate whether such a relationship can be observed in the field using airborne lidar data at the mouth of the Columbia River. Airborne Lidar data were used because current NASA altimeter data does not have high enough spatial resolution to image surface elevation along a river. NASA's Surface Water and Ocean Topography, SWOT, sensor is planned to have a spatial resolution of less than 100 m and maximum height precision of 1 cm. The magnitude and temporal duration of the elevation signal found in the lidar data will be used to determine if SWOT will have the resolution and precision capabilities to measure discharge from space. Lidar data were acquired during a range of tidal conditions and discharge rates from May through September of 2013. Our results suggest that there is a measurable surface height anomaly at the river mouth during part of the tidal cycle. A 0.7 m surface depression was found during ebb tide and a uniform surface tilt was found at slack tide. The variation of the anomaly over the tidal period presents a challenge for decoupling the tidal component from that due to the discharge.

  4. Ballast water regulations and the move toward concentration-based numeric discharge limits.

    PubMed

    Albert, Ryan J; Lishman, John M; Saxena, Juhi R

    2013-03-01

    Ballast water from shipping is a principal source for the introduction of nonindigenous species. As a result, numerous government bodies have adopted various ballast water management practices and discharge standards to slow or eliminate the future introduction and dispersal of these nonindigenous species. For researchers studying ballast water issues, understanding the regulatory framework is helpful to define the scope of research needed by policy makers to develop effective regulations. However, for most scientists, this information is difficult to obtain because it is outside the standard scientific literature and often difficult to interpret. This paper provides a brief review of the regulatory framework directed toward scientists studying ballast water and aquatic invasive species issues. We describe different approaches to ballast water management in international, U.S. federal and state, and domestic ballast water regulation. Specifically, we discuss standards established by the International Maritime Organization (IMO), the U.S. Coast Guard and U.S. Environmental Protection Agency, and individual states in the United States including California, New York, and Minnesota. Additionally, outside the United States, countries such as Australia, Canada, and New Zealand have well-established domestic ballast water regulatory regimes. Different approaches to regulation have recently resulted in variations between numeric concentration-based ballast water discharge limits, particularly in the United States, as well as reliance on use of ballast water exchange pending development and adoption of rigorous science-based discharge standards. To date, numeric concentration-based discharge limits have not generally been based upon a thorough application of risk-assessment methodologies. Regulators, making decisions based on the available information and methodologies before them, have consequently established varying standards, or not established standards at all. The

  5. HIGH ENERGY GASEOUS DISCHARGE DEVICES

    DOEpatents

    Josephson, V.

    1960-02-16

    The high-energy electrical discharge device described comprises an envelope, a pair of main discharge electrodes supported in opposition in the envelope, and a metallic shell symmetrically disposed around and spaced from the discharge path between the electrodes. The metallic shell comprises a first element of spaced helical turns of metallic material and a second element of spaced helical turns of methllic material insulatedly supported in superposition outside the first element and with the turns overlapping the gap between the turns of the first element.

  6. NPDES (National Pollution Discharge & Elimination System) Minor Dischargers

    EPA Pesticide Factsheets

    As authorized by the Clean Water Act, the National Pollutant Discharge Elimination System (NPDES) permit program controls water pollution by regulating point sources that discharge pollutants into waters of the United States. The NPDES permit program regulates direct discharges from municipal and industrial wastewater treatment facilities that discharge directly into surface waters. The NPDES permit program is part of the Permit Compliance System (PCS) which issues, records, tracks, and regulates point source discharge facilities. Individual homes that are connected to a municipal system, use a septic system, or do not have a surface discharge do not need an NPDES permit. Facilities in PCS are identified as either major or minor. Within the major/minor classification, facilities are grouped into municipals or non-municipals. In many cases, non-municipals are industrial facilities. This data layer contains Minor dischargers. Major municipal dischargers include all facilities with design flows of greater than one million gallons per day; minor dischargers are less that one million gallons per day. Essentially, a minor discharger does not meet the discharge criteria for a major. Since its introduction in 1972, the NPDES permit program is responsible for significant improvements to our Nation's water quality.

  7. Estimates of Nutrient Loading by Ground-Water Discharge into the Lynch Cove Area of Hood Canal, Washington

    USGS Publications Warehouse

    Simonds, F. William; Swarzenski, Peter W.; Rosenberry, Donald O.; Reich, Christopher D.; Paulson, Anthony J.

    2008-01-01

    field investigations show that ground-water discharge into the Lynch Cove area of Hood Canal is highly dynamic and strongly affected by the large tidal range. In areas with a steep shoreline and steep hydraulic gradient, ground-water discharge is spatially concentrated in or near the intertidal zone, with increased discharge during low tide. Topographically flat areas with weak hydraulic gradients had more spatial variability, including larger areas of seawater recirculation and more widely dispersed discharge. Measured total-dissolved-nitrogen concentrations in ground water ranged from below detection limits to 2.29 milligrams per liter and the total load entering Lynch Cove was estimated to be approximately 98 ? 10.3 metric tons per year (MT/yr). This estimate is based on net freshwater seepage rates from Lee-type seepage meter measurements and can be compared to estimates derived from geochemical tracer mass balance estimates (radon and radium) of 231 to 749 MT/yr, and previous water-mass-balance estimates (14 to 47 MT/ yr). Uncertainty in these loading estimates is introduced by complex biogeochemical cycles of relevant nutrient species, the representativeness of measurement sites, and by energetic dynamics at the coastal aquifer-seawater interface caused by tidal forcing.

  8. Requiring Pollutant Discharge Permits for Pesticide Applications that Deposit Residues in Surface Waters

    PubMed Central

    Centner, Terence; Eberhart, Nicholas

    2014-01-01

    Agricultural producers and public health authorities apply pesticides to control pests that damage crops and carry diseases. Due to the toxic nature of most pesticides, they are regulated by governments. Regulatory provisions require pesticides to be registered and restrictions operate to safeguard human health and the environment. Yet pesticides used near surface waters pose dangers to non-target species and drinking water supplies leading some governments to regulate discharges of pesticides under pollution discharge permits. The dual registration and discharge permitting provisions are burdensome. In the United States, agricultural interest groups are advancing new legislation that would exempt pesticide residues from water permitting requirements. An analysis of the dangers posed by pesticide residues in drinking water leads to a conclusion that both pesticide registration and pollutant discharge permitting provisions are needed to protect human health and aquatic species. PMID:24814945

  9. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  10. The estimation for ballast water discharged to China from 2007 to 2014.

    PubMed

    Zhang, Xiaofang; Bai, Mindong; Tian, Yiping; Du, Huan; Zhang, Zhitao

    2017-11-15

    Ballast water has been identified as one of the main causes for worldwide transfer of non-indigenous marine species. The volume and source of ballast water are the fundamental elements for an evaluation of the risk posed. However, it is difficult to obtain the volume of ballast water discharged to China, because of the absence of information platform, and until now there is no public report. In this paper, the total volume of ballast water discharged to China and Chinese five major port-groups were estimated. Results showed: the total volume of ballast water exhibited a trend of slow increase from 2007 to 2014, and reached 311 million tons in 2014. Yangtze River Delta received the highest volume of ballast water among all port-groups. The information provided in this research may play an important role in helping policy decision-makers manage such coastal discharges. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Approaches to setting organism-based ballast water discharge standards

    USGS Publications Warehouse

    Lee, Henry; Reusser, Deborah A.; Frazier, Melanie

    2013-01-01

    As a vector by which foreign species invade coastal and freshwater waterbodies, ballast water discharge from ships is recognized as a major environmental threat. The International Maritime Organization (IMO) drafted an international treaty establishing ballast water discharge standards based on the number of viable organisms per volume of ballast discharge for different organism size classes. Concerns that the IMO standards are not sufficiently protective have initiated several state and national efforts in the United States to develop more stringent standards. We evaluated seven approaches to establishing discharge standards for the >50-μm size class: (1) expert opinion/management consensus, (2) zero detectable living organisms, (3) natural invasion rates, (4) reaction–diffusion models, (5) population viability analysis (PVA) models, (6) per capita invasion probabilities (PCIP), and (7) experimental studies. Because of the difficulty in synthesizing scientific knowledge in an unbiased and transparent fashion, we recommend the use of quantitative models instead of expert opinion. The actual organism concentration associated with a “zero detectable organisms” standard is defined by the statistical rigor of its monitoring program; thus it is not clear whether such a standard is as stringent as other standards. For several reasons, the natural invasion rate, reaction–diffusion, and experimental approaches are not considered suitable for generating discharge standards. PVA models can be used to predict the likelihood of establishment of introduced species but are limited by a lack of population vital rates for species characteristic of ballast water discharges. Until such rates become available, PVA models are better suited to evaluate relative efficiency of proposed standards rather than predicting probabilities of invasion. The PCIP approach, which is based on historical invasion rates at a regional scale, appears to circumvent many of the indicated problems

  12. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  13. The effects of sewage discharge on water quality and phytoplankton of Hawai'ian coastal waters.

    PubMed

    Parnell, P Ed

    2003-05-01

    The effects of sewage discharge on algal populations and the quality of Hawai'ian coastal waters were investigated. Two outfalls were studied. One discharges primary treated sewage and the other discharges secondary treated sewage but are otherwise similar. This enabled comparisons of the effects of these different levels of treatment on the water quality and algal productivity of receiving waters. Plumes were followed and repeatedly sampled in a time-series manner. Rhodamine dye was used as a conservative tracer to compare the dilution behavior of the plume constituents MRP, NO(3)+NO(2), NH(4), Silicate, TDP, TDN, total bacteria, PC, and PN. Rates of initial dilution ranged from two to almost three orders of magnitude, and were in reasonable agreement with engineering model predictions. Dilution of plume constituents approximated that of Rhodamine until background concentrations were reached, typically within 10 min of discharge. Chl a concentrations did not increase through time in the primary sewage plume but did increase up to 30% in the secondary sewage plume. However, rates of far-field dilution were so rapid that the increase could not have been due to algal growth. The increase was attributed to the plume mixing with a water mass whose relative chl a concentrations were greater. Rates of secondary dilution ranged from 2 to 3 orders of magnitude resulting in total dilutions of 10(5)-10(6) within 3 h of discharge. These rates of secondary dilution were much greater than model predictions. From a nutrient standpoint, secondary treatment exhibited no advantages over primary treatment because dilutions were so rapid. Copyright 2002 Elsevier Science B.V.

  14. Effect of land cover, stream discharge, and precipitation on water quality in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Hall, J. S.; Uriarte, M.

    2017-12-01

    In 2015, Puerto Rico experienced one of the worst droughts in its history, causing widespread water rationing and sparking concerns for future resources. The drought represents precipitation extremes that provide valuable insight into the effects of land cover (LC), on modulating discharge and water quality indices at varying spatial scales. We used data collected from 38 water quality and 55 precipitation monitoring stations in Puerto Rico from 2005 to 2016, paired with a 2010 land cover map to (1) determine whether temporal variability in discharge, precipitation, or antecedent precipitation was a better predictor of water quality, (2) find the spatial scale where LC has the greatest impact on water quality, and (3) quantify impacts of LC on water quality indices, including dissolved oxygen (mg/L), total nitrogen (mg/L), phosphorous (mg/L), turbidity (NTRU), fecal coliforms (colony units/100mL) and instantaneous discharge (ft3/s). The resulting linear mixed effects models account for between 36-68% of the variance in water quality. Preliminary results indicate that phosphorous and nitrogen were best predicted from instantaneous stream discharge, the log of discharge was the better predictor for turbidity and fecal coliforms, and summed 2 and 14-day antecedent precipitation indices were better predictors for dissolved oxygen and discharge, respectively. Increased urban and pasture area reliably decreased water quality in relation to forest cover, while agriculture and wetlands had little or mixed effects. Turbidity and nitrogen responded to a watershed level LC, while phosphorous, fecal coliforms, and discharge responded to LC in 60 m riparian buffers at the watershed scale. Our results indicate that LC modulates changing precipitation regimes and the ensuing impacts on water quality at a range of spatial scales.

  15. Atmospheric Pressure Glow Discharge for Point-of-Use Water Treatment

    NASA Astrophysics Data System (ADS)

    Lindsay, Alexander; Byrns, Brandon; Shannon, Steven; Knappe, Detlef

    2012-10-01

    Treatment of biological and chemical contaminants is an area of growing global interest where atmospheric pressure plasmas can make a significant contribution. Addressing key challenges of volume processing and operational cost, a large volume 162 MHz coaxial air-plasma source has been developed.footnotetextByrns (2012) J. Phys. D: Appl. Phys. 45 (2012) 195204 Because of VHF ballasting effects, the electric discharge is maintained at a steady glow, allowing formation of critical non-equilibrium chemistry. High densities, ne = 10^11-10^12, have been recorded. The atmospheric nature of the device permits straightforward and efficient treatment of water samples. [H^+] concentrations in 150 milliliter tap water samples have been shown to increase by 10^5 after five minutes of discharge exposure. Recent literature has demonstrated that increasing acidity is strongly correlated with a solution's ability to deactivate microbial contaminants.footnotetextTraylor (2011) J. Phys. D: Appl. Phys. 44 (2011) 472001 The work presented here will explore the impact of treatment gas, system configuration, and power density on water disinfection and PFC abatement. An array of plasma diagnostics, including OES and electrical measurements, are combined with post-process water analysis, including GC-MS and QT analysis of coliform and E.coli bacteria. Development of volume processing atmospheric plasma disinfection methods offers promise for point-of-use treatments in developing areas of the world, potentially supplementing or replacing supply and weather-dependent disinfection methods.

  16. Time-resolved processes in a pulsed electrical discharge in argon bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, S.; Belkind, A.

    2010-12-01

    A phenomenological picture of a pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging characterization methods. The discharge is generated by applying 1 μ s pulses of 5 to 20 kV between a needle and a disk electrode submerged in water. An Ar gas bubble surrounds the tip of the needle electrode. Imaging, electrical characteristics, and time-resolved optical emission spectroscopic data suggest a fast streamer propagation mechanism and the formation of a plasma channel in the bubble. Comparing the electrical and imaging data for consecutive pulses applied to the bubble at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from the presence of long-lived chemical species, such as ozone and oxygen. Imaging and electrical data show the presence of two discharge events during each applied voltage pulse, a forward discharge near the beginning of the applied pulse depositing charge on the surface of the bubble and a reverse discharge removing the accumulated charge from the water/gas interface when the applied voltage is turned off. The pd value of ~ 300-500 torr cm, the 1 μs long pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique compared to the traditional corona or dielectric barrier discharges.

  17. Corona discharges with water electrospray for Escherichia coli biofilm eradication on a surface.

    PubMed

    Kovalova, Zuzana; Leroy, Magali; Kirkpatrick, Michael J; Odic, Emmanuel; Machala, Zdenko

    2016-12-01

    Low-temperature plasma (cold), a new method for the decontamination of surfaces, can be an advantageous alternative to the traditional chemical methods, autoclave or dry heat. Positive and negative corona discharges in air were tested for the eradication of 48-h Escherichia coli biofilms grown on glass slides. The biofilms were treated by cold corona discharge plasma for various exposure times. Water electrospray from the high voltage electrode was applied in some experiments. Thermostatic cultivation of the biofilm, and confocal laser scanning microscopy (CLSM) of the biofilm stained with fluorescent dyes were used for biocidal efficiency quantification. Up to 5 log10 reduction of bacterial concentration in the biofilm was measured by thermostatic cultivation after exposure to both corona discharges for 15min. This decontamination efficiency was significantly enhanced by simultaneous water electrospray through the plasma. CLSM showed that the live/dead ratio after treatment remained almost constant inside the biofilm; only cells on the top layers of the biofilm were affected. DAPI fluorescence showed that biofilm thickness was reduced by about 1/3 upon exposure to the corona discharges with electrospray for 15min. The biofilm biomass loss by about 2/3 was confirmed by crystal violet assay. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Water-discharge determinations for the tidal reach of the Willamette River from Ross Island Bridge to Mile 10.3, Portland, Oregon

    USGS Publications Warehouse

    Dempster, G.R.; Lutz, Gale A.

    1968-01-01

    Water-discharge, velocity, and slope variations for a 3.7-mile-Iong tidal reach of the Willamette River at Portland, Oreg., were defined from discharge measurements and river stage data collected between July 1962 and January 1965. Observed water discharge during tide-affected flows, during floods, and during backwater from the Columbia River and recorded stages at each end of the river reach were used to determine water discharge from two mathematical models. These models use a finite-difference method to solve the equations of moderately unsteady open-channel streamflow, and discharges are computed by an electronic digital computer. Discharges computed by using the mathematical models compare satisfactorily with observed discharges, except during the period of backwater from the annual flood of the Columbia River. The flow resistance coefficients used in the models vary with discharge; for one model, the coefficients for discharges above 30,000 cfs (cubic feet per second) are 12 and 24 percent less than the coefficient used for discharges below 30,000 cfs. Daily mean discharges were determined by use of one mathematical model for approximately two-thirds of the water year, October 1963 through September 1964. Agreement of computed with routed daily mean discharges is fair; above 30,000 cfs, average differences between the two discharges are about 10 percent, and below 30,000 cfs, computed daily discharges are consistently greater (by as much as 25 percent) than routed discharges. The other model was used to compute discharges for the unusually high flood flows of December 1964.

  19. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    concentrations (in 1999) from multilevel samplers about 75 feet upgradient of the pond, indicate that dissolved phosphorus moves towards the pond and discharges to it with the inflowing ground water at a rate as high as about 316 kilograms per year.

  20. Statistical considerations in estimating organism concentrations in ballast water discharges

    EPA Science Inventory

    Sampling probabilities may affect the practical use of different ballast water performance standards which establish the acceptable concentration of organisms in ballast discharges. The International Maritime Organization (IMO) has initiated a ballast water standard of <10 viabl...

  1. Plants as indicators of focused ground water discharge to a northern Minnesota lake

    USGS Publications Warehouse

    Rosenberry, D.O.; Striegl, Robert G.; Hudson, D.C.

    2000-01-01

    Determining the discharge of ground water to Shingobee Lake (66 ha), north-central Minnesota, is complicated by the presence of numerous springs situated adjacent to the lake and in the shallow portion of the lakebed. Springs first had to be located before these areas of more rapid discharge could be quantified. Two methods that rely on the distribution of aquatic plants are useful for locating springs. One method identifies areas of the near-shore lakebed where floating-leaf and emergent aquatic vegetation are absent. The second method uses the distribution of marsh marigold (Caltha palustris L.) to locate springs that discharge on land near the shoreline of the lake. Marsh marigold produces large (2 to 4 cm diameter) yellow flowers that provide a ready marker for locating ground water springs. Twice as many springs (38) were identified using this method as were identified using the lack of near-shore vegetation. A portable weir was used to measure discharge from onshore springs, and seepage meters were used to measure discharge from near-shore springs. Of the total 56.7 L s-1 that enters the lake from ground water, approximately 30% comes from onshore and near-shore springs.Determining the discharge of ground water to Shingobee Lake (66 ha), north-central Minnesota, is complicated by the presence of numerous springs situated adjacent to the lake and in the shallow portion of the lakebed. Springs first had to be located before these areas of more rapid discharge could be quantified. Two methods that rely on the distribution of aquatic plants are useful for locating springs. One method identifies areas of the near-shore lakebed where floating-leaf and emergent aquatic vegetation are absent. The second method uses the distribution of marsh marigold (Caltha palustris L.) to locate springs that discharge on land near the shoreline of the lake. Marsh marigold produces large (2 to 4 cm diameter) yellow flowers that provide a ready marker for locating ground water

  2. The hydrological function of upland swamps in eastern Australia: The role of geomorphic condition in regulating water storage and discharge

    NASA Astrophysics Data System (ADS)

    Cowley, Kirsten L.; Fryirs, Kirstie A.; Hose, Grant C.

    2018-06-01

    Temperate Highland Peat Swamps on Sandstone (THPSS) are a type of wetland found in low-order streams on the plateaus of eastern Australia. They are sediment and organic matter accumulation zones, which combined with a climate of high rainfall and low evaporation function as water storage systems. Changes to the geomorphic structure of these systems via incision and channelisation can have profound impacts on their hydrological function. The aim of this study was to develop an understanding of how changes to the geomorphic structure of these systems alter their hydrological function, measured as changes and variability in swamp water table levels and discharge. We monitored the water table levels and discharges of three intact and three channelised THPSS in the Blue Mountains between March 2015 and June 2016. We found that water levels in intact swamps were largely stable over the monitoring period. Water levels rose only in high rainfall events, returned quickly to antecedent levels after rain, and drawdown during dry periods was not significant. In contrast, the water table levels in channelised THPSS were highly variable. Water levels rose quickly after almost all rainfall events and declined significantly during dry periods. Discharge also showed marked differences with the channelised THPSS discharging 13 times more water than intact swamps, even during dry periods. Channelised THPSS also had flashier storm hydrographs than intact swamps. These results have profound implications for the capacity of these swamps to act as water storage reservoirs in the headwaters of catchments and for their ability to maintain base flow to downstream catchments during dry times. Changes to geomorphic structure and hydrological function also have important implications for a range of other swamp functions such as carbon storage, emission and exports, contaminant sorption, downstream water quality and biodiversity, as well as the overall fate of these swamps under a changing

  3. Fowl play? Forensic environmental assessment of alleged discharge of highly contaminated effluent from a chicken slaughterhouse

    NASA Astrophysics Data System (ADS)

    Harvey, P.; Taylor, M. P.; Handley, H. K.

    2016-12-01

    Multiple lines of geochemical and biological evidence are applied to identify and fingerprint the nature and source of alleged contamination emanating from a chicken slaughterhouse on the urban fringe of Sydney, Australia. The slaughterhouse has a long history of alleged environmental misconduct. The impact of the facility on catchment source waters by the slaughterhouse has been the subject of controversy. The facility owner has persistently denied breach of their licence condition and maintains it is `a very environmentally conscious operation'. The disputed nature of the possible sources of discharges and its contaminants required a detailed forensic environmental assessment. Water samples collected from off-site discharge points associated with the facility show highly elevated concentrations of faecal coliforms (max 68,000 cfu), ammonia-N (51,000 µg/L), total nitrogen (98,000 µg/L) and phosphorous (32,000 µg/L). Upstream and adjacent watercourses were markedly less contaminated. Water discharge points associated with the slaughterhouse and natural catchment runoff were sampled for arsenic speciation, including assessment for the organoarsenic compound Roxarsone. Roxarsone is used as a chicken growth promoter. Water draining the slaughterhouse facility contained concentrations around 10 times local background levels. The Roxarsone compound was not detected in any waters, but inorganic arsenic, As(V), was present in all waters with the greatest concentrations in waters draining from the slaughterhouse. The environmental evidence was compiled over a series of discharges events and presented to the NSW EPA. Subsequent to receipt of the data supported by their own investigations, the NSW EPA mandated that the slaughterhouse be subject to a pollution reduction program. The efficacy of the pollution reduction program to stem the release of highly contaminated effluent is currently subject to ongoing investigation using a suite of water chemistry measures including

  4. Grafted cellulose for PAHs removal present in industrial discharge waters

    NASA Astrophysics Data System (ADS)

    Euvrard, Elise; Druart, Coline; Poupeney, Amandine; Crini, Nadia; Vismara, Elena; Lanza, Tommaso; Torri, Giangiacomo; Gavoille, Sophie; Crini, Gregorio

    2014-05-01

    , the grafted cellulose showed lower adsorption capacities of PAHs (about 40% for the total PAH content) when they were in real effluents than they were in synthetic solutions. However, it was observed that PAH composition in discharge waters was different than in synthetic solutions, qualitatively and quantitatively. Despite the presence of numerous other substances in industrial effluents at high concentrations (for instance metals equal to mg/L and salts to g/L), the grafted cellulose was demonstrated as suitable to remove organic substances at trace levels like PAHs (equal to ng/L). Reference: [1] Vismara E., Melone L., Gastaldi G., Cosentino C., Torri G. J. Hazardous Mat. 170 (2009) 798-808. Acknowledgements: The authors thank Agence de l'Eau, FEDER and the Conseil regional de Franche-Comté for financial support (NIRHOFEX Program).

  5. Field Evaluation Of Arsenic Transport Across The Ground-Water/Surface Water Interface: Ground-Water Discharge And Iron Oxide Precipitation

    EPA Science Inventory

    A field investigation was conducted to examine the distribution of arsenic in ground water, surface water, and sediments at a Superfund Site in the northeastern United States (see companion presentation by K. G. Scheckel et al). Ground-water discharge into the study area was cha...

  6. Electric discharge in water as a source of UV radiation, ozone and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Anpilov, A. M.; Barkhudarov, E. M.; Bark, Yu B.; Zadiraka, Yu V.; Christofi, M.; Kozlov, Yu N.; Kossyi, I. A.; Kop'ev, V. A.; Silakov, V. P.; Taktakishvili, M. I.; Temchin, S. M.

    2001-03-01

    Results are presented from investigations of multispark electric discharge in water excited along multielectrode metal-dielectric systems with gas supply into the interelectrode gaps. The intensity distribution of discharge radiation in the region covering the biologically active soft UV (190≤λ≤430 nm) has been determined and the absolute number of quanta in this wavelength interval has been measured. The potentiality of the slipping surface discharge in water for its disinfection is analysed. The energy expenditure for water cleansing is estimated to be as low as ~10-4 kWh l-1.

  7. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    exceptionally high skill reaching explained variances of 86% in the cross validation using ModSnow processed snow cover data and CRU temperature and precipitation data, i.e. freely available data only. Using antecedent discharge information from the Uchterek station over the period January to April the skill can be improved even further. Also the addition of latest EGSIEM GRACE products can improve this skill to > 90% explained variance by replacing the CRU temperature data in the forecast model. From all variables the ModSnow processed MODIS snow cover data proved to be the most important predictor. However, although the prediction models proved to be robust in the cross validation, it has to be mentioned that the models are based on a limited time spanning the period 2000-2012 only. Nevertheless it is believed that the models are reliable, as this time period shows a high variability in seasonal water availability spanning from exceptionally dry to wet years. In summary, the developed forecast model may be a valuable complementary tool for the seasonal discharge prediction in Central Asia for water resources planning, that does not suffer from limited data access required for other forecast methods.

  8. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, Walter P.; Keeffe, William M.; Liebermann, Richard W.; Maya, Jakob

    1987-01-01

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO.sub.2, with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube.

  9. High intensity discharge device containing oxytrihalides

    DOEpatents

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  10. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    USGS Publications Warehouse

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Mathew; Clark, Jordan F.

    2018-01-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  11. The suitability of using dissolved gases to determine groundwater discharge to high gradient streams

    NASA Astrophysics Data System (ADS)

    Gleeson, Tom; Manning, Andrew H.; Popp, Andrea; Zane, Matthew; Clark, Jordan F.

    2018-02-01

    Determining groundwater discharge to streams using dissolved gases is known to be useful over a wide range of streamflow rates but the suitability of dissolved gas methods to determine discharge rates in high gradient mountain streams has not been sufficiently tested, even though headwater streams are critical as ecological habitats and water resources. The aim of this study is to test the suitability of using dissolved gases to determine groundwater discharge rates to high gradient streams by field experiments in a well-characterized, high gradient mountain stream and a literature review. At a reach scale (550 m) we combined stream and groundwater radon activity measurements with an in-stream SF6 tracer test. By means of numerical modeling we determined gas exchange velocities and derived very low groundwater discharge rates (∼15% of streamflow). These groundwater discharge rates are below the uncertainty range of physical streamflow measurements and consistent with temperature, specific conductance and streamflow measured at multiple locations along the reach. At a watershed-scale (4 km), we measured CFC-12 and δ18O concentrations and determined gas exchange velocities and groundwater discharge rates with the same numerical model. The groundwater discharge rates along the 4 km stream reach were highly variable, but were consistent with the values derived in the detailed study reach. Additionally, we synthesized literature values of gas exchange velocities for different stream gradients which show an empirical relationship that will be valuable in planning future dissolved gas studies on streams with various gradients. In sum, we show that multiple dissolved gas tracers can be used to determine groundwater discharge to high gradient mountain streams from reach to watershed scales.

  12. Estimated predevelopment discharge to streams from the High Plains Aquifer in northwestern Oklahoma, southwestern Kansas, and northwestern Texas

    USGS Publications Warehouse

    Luckey, R.R.; Becker, M.F.

    1998-01-01

    A study of the High Plains aquifer in Okla homa was initiated in 1996 to: (1) provide the information needed by the Oklahoma Water Resources Board to manage the quantity of water produced from the aquifer; and (2) provide base line water-chemistry data. The approach used to meet the first objective is to develop a digital ground-water flow model. The model will be cali brated, in part, by comparing simulated and esti mated predevelopment discharge from the aquifer to streams and cross-boundary flow. This report presents the estimated predevelopment discharge to streams from the High Plains aquifer. Streamflow data were the primary source of information used to estimate predevelopment dis charge from the High Plains aquifer. Data from 30 streamflow stations between the Arkansas and Canadian Rivers were considered in the analysis, and winter low-flow frequencies for 7-, 14-, and 30-day periods were determined for 25 stations. The 14-day low flow with a recurrence interval of 2 years was the primary value used to estimate pre development discharge from the aquifer. The streams that drain the eastern part of the High Plains aquifer in Kansas (generally east of 99.5 longitude) are estimated to have had large predevelopment discharge from the aquifer, and most of them received discharge from near their headwaters. For streams with more than one streamflow gage, the upper perennial reaches appeared to have gained more discharge from the aquifer than the lower reaches. The total predevel opment discharge from the aquifer in this area to several streams is estimated to have been about 312 cubic feet per second, not including discharge that probably went directly to the Arkansas River. The Cimarron River and its tributaries are estimated to have gained about 78 cubic feet per second, but nearly one-half that amount was lost in the lower reaches of the river. The cause of the loss in the lower reaches is unknown. The Beaver River and its tributaries are estimated to have

  13. Desalination Brine Discharge Impacts on Coastal Biology and Water Chemistry - A Case Study from Carlsbad Southern California

    NASA Astrophysics Data System (ADS)

    Petersen, K. L.; Heck, N.; Potts, D. C.; Paytan, A.

    2017-12-01

    Fresh water demand is increasing world-wide due to on-going droughts, climate change and increasing human population and associated demand for food and water. Desalination of seawater is a reliable source of potable water; however the effects of byproduct brine discharge from desalination plants on coastal areas have not been thoroughly assessed. Here we report results from in-situmeasurements of the effects of brine discharge on water chemistry and coastal biology from a desalination plant in Carlsbad, Southern California. We compared select parameters in the coastal zone around the discharge site before and after operation began and conducted additional controlled laboratory incubations with key coastal species and brine effluent. Our in-situ data shows differences in salinity and temperature between the discharge area and a control site both before and after the desalination plant started operation. The discharge water is warmer by 3-5 Co than the ambient seawater and a temperature gradient is seen around the discharge channel. This is likely a result of mixing of the desalination brine with power plant cooling water for dilution prior to discharge and the higher temperatures are not directly attributed to the desalination. Our post-discharge results show a decipherable salinity plume at the bottom of the water column ( 6 m depth) reaching up to 600 m offshore from the discharge site. This indicates inefficient mixing of the brine in the coastal discharge zone. No significant differences are found in nutrient levels, organic carbon or chlorophyll a concentrations around the discharge. The benthic biology assemblage post-discharge is significantly different from the pre-discharge organisms' assemblage. However, the role of seasonal changes in temperature may also have impacted the data as the sampling was conducted during different seasons. Controlled incubation experiments of brittle stars (Ophiothrix spiculata) shows no significant difference in growth or

  14. Risk assessment for produced water discharges to Louisiana Open Bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks frommore » radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.« less

  15. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  16. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  17. Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film

    NASA Astrophysics Data System (ADS)

    He, Yuanji; Dong, Liming; Yang, Jiaxiang

    2004-04-01

    In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water, and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.

  18. The impact of commercially treated oil and gas produced water discharges on bromide concentrations and modeled brominated trihalomethane disinfection byproducts at two downstream municipal drinking water plants in the upper Allegheny River, Pennsylvania, USA.

    PubMed

    Landis, Matthew S; Kamal, Ali S; Kovalcik, Kasey D; Croghan, Carry; Norris, Gary A; Bergdale, Amy

    2016-01-15

    In 2010, a dramatic increase in the levels of total trihalomethane (THM) and the relative proportion of brominated species was observed in finished water at several Pennsylvania water utilities (PDW) using the Allegheny River as their raw water supply. An increase in bromide (Br(-)) concentrations in the Allegheny River was implicated to be the cause of the elevated water disinfection byproducts. This study focused on quantifying the contribution of Br(-) from a commercial wastewater treatment facility (CWTF) that solely treats wastes from oil and gas producers and discharges into the upper reaches of the Allegheny River, and impacts on two downstream PDWs. In 2012, automated daily integrated samples were collected on the Allegheny River at six sites during three seasonal two-week sampling campaigns to characterize Br(-) concentrations and river dispersion characteristics during periods of high and low river discharges. The CWTF discharges resulted in significant increases in Br(-) compared to upstream baseline values in PDW raw drinking water intakes during periods of low river discharge. During high river discharge, the assimilative dilution capacity of the river resulted in lower absolute halide concentrations, but significant elevations Br(-) concentrations were still observed at the nearest downstream PDW intake over baseline river levels. On days with active CWTF effluent discharge the magnitude of bromide impact increased by 39 ppb (53%) and 7 ppb (22%) for low and high river discharge campaigns, respectively. Despite a declining trend in Allegheny River Br(-) (2009-2014), significant impacts from CWTF and coal-fired power plant discharges to Br(-) concentrations during the low river discharge regime at downstream PDW intakes was observed, resulting in small modeled increases in total THM (3%), and estimated positive shifts (41-47%) to more toxic brominated THM analogs. The lack of available coincident measurements of THM, precursors, and physical parameters

  19. Produced water discharges to the Gulf of Mexico: Background information for ecological risk assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; Holtzman, S.; DePhillips, M.P.

    1996-06-01

    This report reviews ecological risk assessment concepts and methods; describes important biological resources in the Gulf of Mexico of potential concern for produced water impacts; and summarizes data available to estimate exposure and effects of produced water discharges. The emphasis is on data relating to produced water discharges in the central and western Gulf of Mexico, especially in Louisiana. Much of the summarized data and cited literature are relevant to assessments of impacts in other regions. Data describing effects on marine and estuarine fishes, mollusks, crustaceans and benthic invertebrates are emphasized. This review is part of a series of studiesmore » of the health and ecological risks from discharges of produced water to the Gulf of Mexico. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the use of appropriate discharge practices.« less

  20. Habitat use by a Midwestern U.S.A. riverine fish assemblage: effects of season, water temperature and river discharge

    USGS Publications Warehouse

    Gillette, D.P.; Tiemann, J.S.; Edds, D.R.; Wildhaber, M.L.

    2006-01-01

    The hypothesis that temperate stream fishes alter habitat use in response to changing water temperature and stream discharge was evaluated over a 1 year period in the Neosho River, Kansas, U.S.A. at two spatial scales. Winter patterns differed from those of all other seasons, with shallower water used less frequently, and low-flow habitat more frequently, than at other times. Non-random habitat use was more frequent at the point scale (4.5 m2) than at the larger reach scale (20-40 m), although patterns at both scales were similar. Relative to available habitats, assemblages used shallower, swifter-flowing water as temperature increased, and shallower, slower-flowing water as river discharge increased. River discharge had a stronger effect on assemblage habitat use than water temperature. Proportion of juveniles in the assemblage did not have a significant effect. This study suggests that many riverine fishes shift habitats in response to changing environmental conditions, and supports, at the assemblage level, the paradigm of lotic fishes switching from shallower, high-velocity habitats in summer to deeper, low-velocity habitats in winter, and of using shallower, low-velocity habitats during periods of high discharge. Results also indicate that different species within temperate river fish assemblages show similar habitat use patterns at multiple scales in response to environmental gradients, but that non-random use of available habitats is more frequent at small scales. ?? 2006 The Fisheries Society of the British Isles.

  1. Water withdrawals, use, discharge, and trends in Florida, 1995

    USGS Publications Warehouse

    Marella, R.L.

    1999-01-01

    , Lake Apopka, Lake Okeechobee and associated canals, and the St. Johns River. Freshwater withdrawals increased nearly 29 percent in Florida between 1970 and 1995. Ground-water withdrawals increased 56 percent, and surface-water withdrawals increased 2 percent during this period. Between 1990 and 1995, freshwater withdrawals decreased 5 percent. Fresh ground-water withdrawals decreased 7 percent, and fresh surface-water withdrawals decreased 1 percent during this period. Saline water withdrawals increased 13 percent between 1970 and 1995, and increased 6 percent between 1990 and 1995. An estimated 39 percent of the freshwater withdrawn in Florida was consumed; the remaining 61 percent was returned for use again. Wastewater discharged from the 615 treatment facilities inventoried in 1995 totaled 1,836 Mgal/d, of which 84 percent was from domestic wastewater facilities and the remaining 16 percent was from industrial facilities. Domestic wastewater discharge increased 37 percent between 1985 and 1995, while industrial wastewater discharge increased 7 percent during this period.

  2. A Review on overboard CEOR discharged produced water treatment and remediation

    NASA Astrophysics Data System (ADS)

    Rawindran, H.; Krishnan, S.; Sinnathambi, C. M.

    2017-06-01

    Produced water is a waste by-product generated during oil and gas recovery operations. It contains the mixture of organic and inorganic compounds. Produced water management is a challenge faced by the petroleum practitioners worldwide. Build-up of chemical wastes from produced water causes huge footprint, which results in high CapEx and OpEx. Different technologies are practiced by various practitioners to treat the produced waste water. However, the constituents removed by each technology and the degree of organic compound removal has to be considered to identify the potential and effective treatment technologies for offshore industrial applications. Current produced water technologies and their successful applications have advantages and disadvantages and can be ranked on the basis of several factors, such as their discharge limit into water bodies, reinjection in producing well, or for any miscellaneous beneficial use. This paper attempts to provide a review of existing physical and chemical treatment technologies used for management of produced water. Based on our analysis, suitable methods will be recommended for offshore waste water treatment technologies.

  3. Effects of River Discharge and Land Use and Land Cover (LULC) on Water Quality Dynamics in Migina Catchment, Rwanda

    NASA Astrophysics Data System (ADS)

    Uwimana, Abias; van Dam, Anne; Gettel, Gretchen; Bigirimana, Bonfils; Irvine, Kenneth

    2017-09-01

    Agricultural intensification may accelerate the loss of wetlands, increasing the concentrations of nutrients and sediments in downstream water bodies. The objective of this study was to assess the effects of land use and land cover and river discharge on water quality in the Migina catchment, southern Rwanda. Rainfall, discharge and water quality (total nitrogen, total phosphorus, total suspended solids, dissolved oxygen, conductivity, pH, and temperature) were measured in different periods from May 2009 to June 2013. In 2011, measurements were done at the outlets of 3 sub-catchments (Munyazi, Mukura and Akagera). Between May 2012 and May 2013 the measurements were done in 16 reaches of Munyazi dominated by rice, vegetables, grass/forest or ponds/reservoirs. Water quality was also measured during two rainfall events. Results showed seasonal trends in water quality associated with high water flows and farming activities. Across all sites, the total suspended solids related positively to discharge, increasing 2-8 times during high flow periods. Conductivity, temperature, dissolved oxygen, and pH decreased with increasing discharge, while total nitrogen and total phosphorus did not show a clear pattern. The total suspended solids concentrations were consistently higher downstream of reaches dominated by rice and vegetable farming. For total nitrogen and total phosphorus results were mixed, but suggesting higher concentration of total nitrogen and total phosphorus during the dry and early rainy (and farming) season, and then wash out during the rainy season, with subsequent dilution at the end of the rains. Rice and vegetable farming generate the transport of sediment as opposed to ponds/reservoir and grass/forest.

  4. High-current discharge channel contraction in high density gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutberg, Ph. G.; Bogomaz, A. A.; Pinchuk, M. E.

    Research results for discharges at current amplitudes of 0.5-1.6 MA and current rise rate of {approx}10{sup 10} A/s are presented. The discharge is performed in the hydrogen environment at the initial pressure of 5-35 MPa. Initiation is implemented by a wire explosion. The time length of the first half-period of the discharge current is 70-150 {mu}s. Under such conditions, discharge channel contraction is observed; the contraction is followed by soft x-ray radiation. The phenomena are discussed, which are determined by high density of the gas surrounding the discharge channel. These phenomena are increase of the current critical value, where themore » channel contraction begins and growth of temperature in the axis region of the channel, where the initial density of the gas increases.« less

  5. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Kim, Hyun-Ha; Negishi, Nobuaki; Machala, Zdenko

    2014-08-01

    The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

  6. Characterization of fish hold effluent discharged from commercial fishing vessels into harbor waters.

    PubMed

    Albert, Ryan J; McLaughlin, Christine; Falatko, Debra

    2014-10-15

    Fish hold effluent and the effluent produced from the cleaning of fish holds may contain organic material resulting from the degradation of seafood and cleaning products (e.g., soaps and detergents). This effluent is often discharged by vessels into near shore waters and, therefore, could have the potential to contribute to water pollution in bays and estuaries. We characterized effluent from commercial fishing vessels with holds containing refrigerated seawater, ice slurry, or chipped ice. Concentrations of trace heavy metals, wet chemistry parameters, and nutrients in effluent were compared to screening benchmarks to determine if there is a reasonable potential for effluent discharge to contribute to nonattainment of water quality standards. Most analytes (67%) exceeded their benchmark concentration and, therefore, may have the potential to pose risk to human health or the environment if discharges are in significant quantities or there are many vessels discharging in the same areas. Published by Elsevier Ltd.

  7. Pulsed Discharge in Aerosol for Waste Water Clean-up.

    NASA Astrophysics Data System (ADS)

    Bystritskii, V. M.; Gonzales, A.; Olson, T.; Puchkarev, V.; Rosocha, L.; Wessel, F.; Yankelevich, Y.

    1996-11-01

    Aerosol (drop diameter of 10-100 μm) is injected into a discharge reactor with a repetitively pulsed voltage of 40--60 kV, 50--150 ns, 10^2--10^3 Hz. The relatively large water dielectric constant and high degree of atomization result in efficient degradation of organic molecules. Results on the characterization of operational parameters of the device and on degradation performance for a variety of organic pollutants (paranitrophenol, di-Chlorophenol, per-chloro-ethylene) are discussed. Work was supported by the Los Alamos National Laboratories 96 LACOR Program. ^AUniversity of Southern California, Los Angeles, CA 94007 ^BLos Alamos National Laboratory, Los Alamos, NM 87545

  8. Multi-Model Assessment of Global Hydropower and Cooling Water Discharge Potential Under Climate Change

    NASA Technical Reports Server (NTRS)

    van Vliet, M. T. H.; van Beek, L. P. H.; Eisener, S.; Wada, Y.; Bierkens, M. F. P.

    2016-01-01

    Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971-2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18-33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11-14% (for RCP2.6 and the shared socioeconomic

  9. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    PubMed

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (P<0.05), respectively. However, the sediment load exhibited a significant decreasing trend in all tributaries of the Yangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Long-term effects of discharges of produced water the marine environment from petroleum-related activities at Sonda de Campeche, Gulf of México.

    PubMed

    Schifter, I; González-Macías, C; Salazar-Coria, L; Sánchez-Reyna, G; González-Lozano, C

    2015-11-01

    Produced water from offshore oil platforms is a major source of oil and related chemicals into the sea. The large volume and high salinity of produced water could pose severe environmental impacts upon inadequate disposal. This study is based on direct field sampling of effluents released into the ocean in the years 2003 and 2013 at the Sonda de Campeche located in the southern part of the Gulf of Mexico. Metals and hydrocarbons were characterized in water, sediments, and fish tissues at the discharge site and compared with those obtained at two reference sites. Chemicals that exceeded risk-based concentrations in the discharge included the metals As, Pb, Cd, and Cr, and a variety of compounds polycyclic aromatic hydrocarbon (PAHs), including naphthalene, fluorenes, and low molecular weight PAHs. The values of low to high molecular weight polycyclic aromatic hydrocarbon (PAHs), and carbon preference index indicate that hydrocarbons in sediments of the discharge zone are originated from the produced water and combustion sources. Fish tissues at the discharge zone and reference site are contaminated with PAHs, dominated by 2- and 3-rings; 4-ring accounted for less than 1% of total PAHs (TPAHs) in 2003, but increased to 7% in 2013. Results suggest that, from 2003 to 2013, discharges of produced water have had a non-negligible impact on ecosystems at a regional level, so the possibility of subtle, cumulative effects from operational discharges should not be ignored.

  11. Physicochemical properties of the AC-excited helium discharges using a water electrode

    NASA Astrophysics Data System (ADS)

    Hafiz, Imran Ahmad QAZI; Yiying, XIN; Muhammad Ajmal, KHAN; Heping, LI; Lu, ZHOU; Chengyu, BAO

    2018-07-01

    In this paper, the AC-excited helium discharges generated between the powered needle electrode enclosed in a conical quartz tube and the grounded de-ionized water electrode are investigated. The current and voltage waveforms exhibit a transition from the glow-like to streamer-like mode discharges, which forms a stable cone-shaped structure at the gas–liquid interface. In this region, the air and water vapor diffusion initiate various physical–chemical processes leading to substantial changes of the primary species emission intensities (e.g., OH, N2, NO, and O) and the rotational temperatures. The experimentally measured rotational temperature at the gas–liquid interface is 870 K from the N2(C–B) band with a power input of 26 W. With the prolongation of the discharge time, significant changes in the discharge voltage and current, discharge emission patterns, instantaneous concentrations of the secondary species (e.g., H2O2, {{{NO}}}2-, and {{{NO}}}3-) in the liquid phase, pH values and electrical conductivities of the liquids are observed experimentally. The present study is helpful for deepening the understandings to the basic physical–chemical processes in the discharges in contact with liquids, especially to those occurring in the vicinity of the gas–liquid interface, and also for promoting existing and potential applications of such type of discharges in the fields of environmental protection, biomedicine, agriculture, and so on.

  12. Laser guiding of Tesla coil high voltage discharges.

    PubMed

    Henriksson, Markus; Daigle, Jean-Francois; Théberge, Francis; Châteauneuf, Marc; Dubois, Jacques

    2012-06-04

    We have investigated the guiding and triggering of discharges from a Tesla coil type 280 kHz AC high voltage source using filaments created by a femtosecond Terawatt laser pulse. Without the laser the discharges were maximum 30 cm long. With the laser straight, guided discharges up to 110 cm length were detected. The discharge length was limited by the voltage amplitude of the Tesla coil.

  13. National water quality assessment of the Georgia-Florida Coastal Plain study unit; water withdrawals and treated wastewater discharges, 1990

    USGS Publications Warehouse

    Marella, R.L.; Fanning, J.L.

    1996-01-01

    ,293 million gallons per day, of which 69 percent was ground water and 31 percent was surface water. An estimated 1.254 millon acres were irrigated within the study unit during 1990. Water withdrawn for thermoelectric power generation in the study unit in 1990 totaled 1,552 million gallons per day, of which 99 percent was surface water and 1 percent was ground water. An additional 6,919 million gallons per day of saline surface water were withdrawn for thermoelectric power generation in 1990, solely for cooling purposes. Treated wastewater discharged within the Georgia-Florida Coastal Plain study unit totaled nearly 1,187 million gallons per day in 1990. Of the total water discharged, 58 percent was discharged directly into surface water and the remaining 42 percent was discharged to ground water (through drain fields, injection wells, percolation ponds or spray fields). Domestic wastewater facilities discharged in the study unit totaled nearly 789 million gallons per day, industrial wastewater facilities discharged 213 million gallons per day, and releases from septic tanks was estimated at 185 million gallons per day. More than 1.3 million septic tanks were estimated in use within the study unit in 1990.

  14. Analysis of the high water wave volume for the Sava River near Zagreb

    NASA Astrophysics Data System (ADS)

    Trninic, Dusan

    2010-05-01

    The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm

  15. Electron density in surface barrier discharge emerging at argon/water interface: quantification for streamers and leaders

    NASA Astrophysics Data System (ADS)

    Cvetanović, Nikola; Galmiz, Oleksandr; Synek, Petr; Zemánek, Miroslav; Brablec, Antonín; Hoder, Tomáš

    2018-02-01

    Optical emission spectroscopy, fast intensified CCD imaging and electrical measurements were applied to investigate the basic plasma parameters of surface barrier discharge emerging from a conductive water electrode. The discharge was generated at the triple-line interface of atmospheric pressure argon gas and conductive water solution at the fused silica dielectrics using a sinusoidal high-voltage waveform. The spectroscopic methods of atomic line broadening and molecular spectroscopy were used to determine the electron densities and the gas temperature in the active plasma. These parameters were obtained for both applied voltage polarities and resolved spatially. Two different spectral signatures were identified in the spatially resolved spectra resulting in electron densities differing by two orders of magnitude. It is shown that two discharge mechanisms take a place: the streamer and the leader one, with electron densities of 1014 and 1016 cm-3, respectively. This spectroscopic evidence is supported by the combined diagnostics of electrical current measurements and phase-resolved intensified CCD camera imaging.

  16. Effects of high salinity wastewater discharges on unionid mussels in the Allegheny River, Pennsylvania

    USGS Publications Warehouse

    Kathleen Patnode,; Hittle, Elizabeth A.; Robert Anderson,; Lora Zimmerman,; Fulton, John W.

    2015-01-01

    We examined the effect of high salinity wastewater (brine) from oil and natural gas drilling on freshwater mussels in the Allegheny River, Pennsylvania, during 2012. Mussel cages (N = 5 per site) were deployed at two sites upstream and four sites downstream of a brine treatment facility on the Allegheny River. Each cage contained 20 juvenile northern riffleshell mussels Epioblasma torulosa rangiana). Continuous specific conductance and temperature data were recorded by water quality probes deployed at each site. To measure the amount of mixing throughout the entire study area, specific conductance surveys were completed two times during low-flow conditions along transects from bank to bank that targeted upstream (reference) reaches, a municipal wastewater treatment plant discharge upstream of the brine-facility discharge, the brine facility, and downstream reaches. Specific conductance data indicated that high specific conductance water from the brine facility (4,000–12,000 µS/cm; mean 7,846) compared to the reference reach (103–188 µS/cm; mean 151) is carried along the left descending bank of the river and that dilution of the discharge via mixing does not occur until 0.5 mi (805 m) downstream. Juvenile northern riffleshell mussel survival was severely impaired within the high specific conductance zone (2 and 34% at and downstream of the brine facility, respectively) and at the municipal wastewater treatment plant (21%) compared to background (84%). We surveyed native mussels (family Unionidae) at 10 transects: 3 upstream, 3 within, and 4 downstream of the high specific conductance zone. Unionid mussel abundance and diversity were lower for all transects within and downstream of the high conductivity zone compared to upstream. The results of this study clearly demonstrate in situ toxicity to juvenile northern riffleshell mussels, a federally endangered species, and to the native unionid mussel assemblage located downstream of a brine discharge to the

  17. Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: Challenges and solutions

    NASA Astrophysics Data System (ADS)

    Montiel, Daniel; Dimova, Natasha; Andreo, Bartolomé; Prieto, Jorge; García-Orellana, Jordi; Rodellas, Valentí

    2018-02-01

    Groundwater discharge in coastal karst aquifers worldwide represents a substantial part of the water budget and is a main pathway for nutrient transport to the sea. Groundwater discharge to the sea manifests under different forms, making its assessment very challenging particularly in highly heterogeneous coastal systems karst systems. In this study, we present a methodology approach to identify and quantify four forms of groundwater discharge in a mixed lithology system in southern Spain (Maro-Cerro Gordo) that includes an ecologically protected coastal area comprised of karstic marble. We found that groundwater discharge to the sea occurs via: (1) groundwater-fed creeks, (2) coastal springs, (3) diffuse groundwater seepage through seabed sediments, and (4) submarine springs. We used a multi-method approach combining tracer techniques (salinity, 224Ra, and 222Rn) and direct measurements (seepage meters and flowmeters) to evaluate the discharge. Groundwater discharge via submarine springs was the most difficult to assess due to their depth (up to 15 m) and extensive development of the springs conduits. We determined that the total groundwater discharge over the 16 km of shoreline of the study area was at least 11 ± 3 × 103 m3 d-1 for the four types of discharge assessed. Groundwater-derived nitrate (NO3-) fluxes to coastal waters over ∼3 km (or 20%) in a highly populated and farmed section of Maro-Cerro Gordo was 641 ± 166 mol d-1, or ∼75% of the total NO3- loading in the study area. We demonstrate in this study that a multi-method approach must be applied to assess all forms of SGD and derived nutrient fluxes to the sea in highly heterogeneous karst aquifer systems.

  18. Discharge, sediment, and water chemistry in Clear Creek, western Nevada, water years 2013–16

    USGS Publications Warehouse

    Huntington, Jena M.; Riddle, Daniel J.; Paul, Angela P.

    2018-05-01

    Clear Creek is a small stream that drains the eastern Carson Range near Lake Tahoe, flows roughly parallel to the Highway 50 corridor, and discharges to the Carson River near Carson City, Nevada. Historical and ongoing development in the drainage basin is thought to be affecting Clear Creek and its sediment-transport characteristics. Previous studies from water years (WYs) 2004 to 2007 and from 2010 to 2012 evaluated discharge, selected water-quality parameters, and suspended-sediment concentrations, loads, and yields at three Clear Creek sampling sites. This report serves as a continuation of the data collection and analyses of the Clear Creek discharge regime and associated water-chemistry and sediment concentrations and loads during WYs 2013–16.Total annual sediment loads ranged from 870 to 5,300 tons during WYs 2004–07, from 320 to 1,770 tons during WYs 2010–12, and from 50 to 200 tons during WYs 2013–16. Ranges in annual loads during the three study periods were not significantly different; however, total loads were greater during 2004–07 than they were during 2013–16. Annual suspended-sediment loads in WYs 2013–16 showed no significant change since WYs 2010–12 at sites 1 (U.S. Geological Survey reference site 10310485; Clear Creek above Highway 50, near Spooner Summit, Nevada) or 2 (U.S. Geological Survey streamgage 10310500; Clear Creek above Highway 50, near Spooner Summit, Nevada), but significantly lower loads at site 3 (U.S. Geological Survey site 10310518; Clear Creek at Fuji Park, at Carson City, Nevada), supporting the theory of sediment deposition between sites 2 and 3 where the stream gradient becomes more gradual. Currently, a threshold discharge of about 3.3 cubic feet per second is required to mobilize streambed sediment (bedload) from site 2 in Clear Creek. Mean daily discharge was significantly lower in 2010–12 than in 2004–07 and also significantly lower in 2013–16 than in 2010–12. During this study, lower bedload, and

  19. Experimental measurement of spatially resolved electron density in a filament of a pulsed positive streamer discharge in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiao Qiong; Niu, Zhi Wen; Ren, Chun-Sheng

    2015-06-29

    By combining a high-speed frame camera with a monochromator, the spatially resolved optical emission spectrum of hydrogen α line in a single filament of a pulsed positive streamer discharge in water has been experimentally measured. The spatially resolved electron densities in a single filament of a pulsed positive streamer discharge in water with a conductivity of 200 μS/cm were investigated. During the experiment, the average energy per pulse of discharge was 90.6 ± 13.6 mJ. The results show that the electron density in the streamer filament is 10{sup 17–18}/cm{sup 3}, and present a decreasing tendency along the axial direction of the streamer filamentmore » with increasing distance from the tip of the anode.« less

  20. Temporal modelling of ballast water discharge and ship-mediated invasion risk to Australia

    PubMed Central

    Cope, Robert C.; Prowse, Thomas A. A.; Ross, Joshua V.; Wittmann, Talia A.; Cassey, Phillip

    2015-01-01

    Biological invasions have the potential to cause extensive ecological and economic damage. Maritime trade facilitates biological invasions by transferring species in ballast water, and on ships' hulls. With volumes of maritime trade increasing globally, efforts to prevent these biological invasions are of significant importance. Both the International Maritime Organization and the Australian government have developed policy seeking to reduce the risk of these invasions. In this study, we constructed models for the transfer of ballast water into Australian waters, based on historic ballast survey data. We used these models to hindcast ballast water discharge over all vessels that arrived in Australian waters between 1999 and 2012. We used models for propagule survival to compare the risk of ballast-mediated propagule transport between ecoregions. We found that total annual ballast discharge volume into Australia more than doubled over the study period, with the vast majority of ballast water discharge and propagule pressure associated with bulk carrier traffic. As such, the ecoregions suffering the greatest risk are those associated with the export of mining commodities. As global marine trade continues to increase, effective monitoring and biosecurity policy will remain necessary to combat the risk of future marine invasion events. PMID:26064643

  1. Reconnaissance investigations of the discharge and water quality of the Amazon River

    USGS Publications Warehouse

    Oltman, Roy Edwin

    1968-01-01

    Selected published estimates of the discharge of Amazon River in the vicinity of Obidos and the mouth are presented to show the great variance of available information. The most reasonable estimates prepared by those who measured some parameters of the flow were studied by Maurice Parde, who concluded that the mean annual discharge is 90,000 to 100,000 cms (cubic meters per second) or 3,200,000 to 3,500,000 cfs (cubic feet per second). A few published estimates of discharge at mouth of 110,000 cms (3,900,000 cfs) based on rainfall-runoff relationships developed for other humid regions of the world are available. Three measurements of discharge made at the Obidos narrows in 1963-64 by a joint Brazil-United States expedition at high, low, and medium river stage are referred to the datum used at the Obidos gage during the period of operation, 1928-46, and a relationship between stage and discharge prepared on the basis of the measurements and supplementary data and computations. Recovery of the original Obidos gage datum is verified by referring the 1963-64 concurrent river stages at Manaus, Obidos, and Taperinha to gage relation curves developed for Manaus-Obidos and Obidos-Taperinha for periods of concurrent operation, 1928-46 and 1931-46, respectively. The average discharge, based on the stage-discharge relation and record of river stage for the period 1928-46, is computed to be 5,500,000 cfs (157,000 cms) for the Obidos site. The greatest known flood at Obidos, that of June 1953, is computed to have been a flow of 12,500,000 cfs (350,000 cms) at stage of 7.6 meters (24.9 feet) in the main channel and an indeterminate amount of overflow which, under the best assumed overflow conditions, may have amounted to about 10 percent of the main channel flow. Overflow discharge at stage equivalent to mean annual discharge is judged to be an insignificant percentage of flow down the main channel. Miscellaneous data collected during the flow measurements show that the tidal

  2. Annual ground-water discharge by evapotranspiration from areas of spring-fed riparian vegetation along the eastern margin of Death Valley, 2000-02

    USGS Publications Warehouse

    Laczniak, Randell J.; Smith, J. LaRue; DeMeo, Guy A.

    2006-01-01

    Flow from major springs and seeps along the eastern margin of Death Valley serves as the primary local water supply and sustains much of the unique habitat in Death Valley National Park. Together, these major spring complexes constitute the terminus of the Death Valley Regional Ground-Water Flow System--one of the larger flow systems in the Southwestern United States. The Grapevine Springs complex is the least exploited for water supply and consequently contains the largest area of undisturbed riparian habitat in the park. Because few estimates exist that quantify ground-water discharge from these spring complexes, a study was initiated to better estimate the amount of ground water being discharged annually from these sensitive, spring-fed riparian areas. Results of this study can be used to establish a basis for estimating water rights and as a baseline from which to assess any future changes in ground-water discharge in the park. Evapotranspiration (ET) is estimated volumetrically as the product of ET-unit (general vegetation type) acreage and a representative ET rate. ET-unit acreage is determined from high-resolution multi-spectral imagery; and a representative ET rate is computed from data collected in the Grapevine Springs area using the Bowen-ratio solution to the energy budget, or from rates given in other ET studies in the Death Valley area. The ground-water component of ET is computed by removing the local precipitation component from the ET rate. Two different procedures, a modified soil-adjusted vegetation index using the percent reflectance of the red and near-infrared wavelengths and land-cover classification using multi-spectral imagery were used to delineate the ET units within each major spring-discharge area. On the basis of the more accurate procedure that uses the vegetation index, ET-unit acreage for the Grapevine Springs discharge area totaled about 192 acres--of which 80 acres were moderate-density vegetation and 112 acres were high

  3. Time-delayed transition of normal-to-abnormal glow in pin-to-water discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, S.-Y.; Byeon, Y.-S.; Yoo, S.

    2016-08-15

    Time-delayed transition of normal-to-abnormal glow was investigated in discharge between spoke-like pins and ultrapure water by applying AC-driven power at a frequency of 14.3 kHz at atmospheric pressure. The normal-to-abnormal transition can be recognized from the slope changes of current density, gas temperature, electrode temperature, and OH density. The slope changes took place in tens of minutes rather than just after discharge, in other words, the transition was delayed. The time-delay of the transition was caused by the interaction between the plasma and water. The plasma affected water properties, and then the water affected plasma properties.

  4. Snowmelt discharge characteristics Sierra Nevada, California

    USGS Publications Warehouse

    Peterson, David; Smith, Richard; Stewart, Iris; Knowles, Noah; Soulard, Chris; Hager, Stephen

    2005-01-01

    Alpine snow is an important water resource in California and the western U.S. Three major features of alpine snowmelt are the spring pulse (the first surge in snowmelt-driven river discharge in spring), maximum snowmelt discharge, and base flow (low river discharge supported by groundwater in fall). A long term data set of hydrologic measurements at 24 gage locations in 20 watersheds in the Sierra Nevada was investigated to relate patterns of snowmelt with stream discharge In wet years, the daily variations in snowmelt discharge at all the gage locations in the Sierra Nevada correlate strongly with the centrally located Merced River at Happy Isles, Yosemite National Park (i.e., in 1983, the mean of the 23 correlations was R= 0.93 + 0.09) ; in dry years, however, this correlation breaks down (i.e., in year 1977, R=0.72 + 0.24). A general trend towards earlier snowmelt was found and modeled using correlations with the timing of the spring pulse and the river discharge center of mass. For the 24 river and creek gage locations in this study, the spring pulse appeared to be a more sensitive measure of early snowmelt than the center of mass. The amplitude of maximum daily snowmelt discharge correlates strongly with initial snow water equivalent. Geologic factors, base rock permeability and soil-to-bedrock ratio, influence snowmelt flow pathways. Although both surface and ground water flows and water levels increase in wet years compared to dry years, the increase was greater for surface water in a watershed with relatively impermeable base rock than for surface water in a watershed with highly permeable base rock The relation was the opposite for base flow (ground water). The increase was greater for groundwater in a watershed with permeable rock compared to ground water in a watershed with impermeable rock. A similar, but weaker, surface/groundwater partitioning was observed in relatively impermeable granitic watersheds with differing soil-to-bedrock ratios. The

  5. Study of Wastewater Treatment by OH Radicals Using DC and Pulsed Corona Discharge over Water

    NASA Astrophysics Data System (ADS)

    Tochikubo, Fumiyoshi; Furuta, Yasutomo; Uchida, Satoshi; Watanabe, Tsuneo

    2006-04-01

    Water treatment by OH radicals is studied using dc and pulsed corona discharge over water at atmospheric pressure and reduced pressure. In particular, we pay attention to the influence of discharge configuration on the efficiency of wastewater treatment. Experiment is carried out in N2 to clarify the contribution of OH radicals. Needle-cylinder electrodes are designed expecting the efficient generation of OH radicals close to the water surface. N,N-dimethyl- p-nitrosoaniline (RNO) solution is used as a persistent test pollutant. The results strongly suggest that OH radical production close to the water surface is a key factor for efficient wastewater treatment. The use of pulsed discharge at reduced pressure is effective in improving RNO reduction efficiency because of the rapid diffusion of OH radicals to the water surface.

  6. Discrete simulations of spatio-temporal dynamics of small water bodies under varied stream flow discharges

    NASA Astrophysics Data System (ADS)

    Daya Sagar, B. S.

    2005-01-01

    Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.

  7. Ground-water discharge determined from measurements of evapotranspiration, other available hydrologic components, and shallow water-level changes, Oasis Valley, Nye County, Nevada

    USGS Publications Warehouse

    Reiner, S.R.; Laczniak, R.J.; DeMeo, G.A.; Smith, J. LaRue; Elliott, P.E.; Nylund, W.E.; Fridrich, C.J.

    2002-01-01

    Oasis Valley is an area of natural ground-water discharge within the Death Valley regional ground-water flow system of southern Nevada and adjacent California. Ground water discharging at Oasis Valley is replenished from inflow derived from an extensive recharge area that includes the northwestern part of the Nevada Test Site (NTS). Because nuclear testing has introduced radionuclides into the subsurface of the NTS, the U.S. Department of Energy currently is investigating the potential transport of these radionuclides by ground water flow. To better evaluate any potential risk associated with these test-generated contaminants, a number of studies were undertaken to accurately quantify discharge from areas downgradient in the regional ground-water flow system from the NTS. This report refines the estimate of ground-water discharge from Oasis Valley. Ground-water discharge from Oasis Valley was estimated by quantifying evapotranspiration (ET), estimating subsurface outflow, and compiling ground-water withdrawal data. ET was quantified by identifying areas of ongoing ground-water ET, delineating areas of ET defined on the basis of similarities in vegetation and soil-moisture conditions, and computing ET rates for each of the delineated areas. A classification technique using spectral-reflectance characteristics determined from satellite imagery acquired in 1992 identified eight unique areas of ground-water ET. These areas encompass about 3,426 acres of sparsely to densely vegetated grassland, shrubland, wetland, and open water. Annual ET rates in Oasis Valley were computed with energy-budget methods using micrometeorological data collected at five sites. ET rates range from 0.6 foot per year in a sparse, dry saltgrass environment to 3.1 feet per year in dense meadow vegetation. Mean annual ET from Oasis Valley is estimated to be about 7,800 acre-feet. Mean annual ground-water discharge by ET from Oasis Valley, determined by removing the annual local precipitation

  8. High Throughput Plasma Water Treatment

    NASA Astrophysics Data System (ADS)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  9. Study on optical emission analysis of AC air water discharges under He, Ar and N2 environments

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Kostyuk, P. V.; Han, S. B.; Kim, J. S.; Vu, C. N.; Lee, H. W.

    2006-09-01

    In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen evolution. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates and point-to-plane electrode gap distance. The experiments were primarily focused on the optical emission of the near UV range, providing a sufficient energy threshold for water dissociation and excitation. The OH(A 2Σ+ → X 2Π, Δν = 0) band optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. Despite the fact that energy input was high, the OH(A-X) optical emission was found to be negligible at the zero gap distance between the tip of the metal rod and water surface. In the gas atmosphere saturated with water vapour the OH(A-X) intensity was relatively high compared with the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. The gas phase was found to be more favourable because of less energy consumption in the cases of He and Ar carrier gases, and quenching mechanisms of oxygen in the N2 carrier gas atmosphere, preventing hydrogen from recombining with oxygen. In the gas phase the discharge was at a steady state, in contrast to the other phases, in which bubbles interrupted propagation of the plasma channel. Optical emission intensity of OH(A-X) band increased according to the flow rate or residence time of the He feeding gas. Nevertheless, a reciprocal tendency was acquired for N2 and Ar carrier gases. The peak value of OH(A-X) band optical emission intensity was observed near the water surface; however in the cases of Ar and N2 with a 0.5 SLM flow rate, it was shifted below the water surface. Rotational temperature was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which is sufficient for hydrogen production.

  10. Effects of air temperature and discharge on Upper Mississippi River summer water temperatures

    USGS Publications Warehouse

    Gray, Brian R.; Robertson, Dale M.; Rogala, James T.

    2018-01-01

    Recent interest in the potential effects of climate change has prompted studies of air temperature and precipitation associations with water temperatures in rivers and streams. We examined associations between summer surface water temperatures and both air temperature and discharge for 5 reaches of the Upper Mississippi River during 1994–2011. Water–air temperature associations at a given reach approximated 1:1 when estimated under an assumption of reach independence but declined to approximately 1:2 when water temperatures were permitted to covary among reaches and were also adjusted for upstream air temperatures. Estimated water temperature–discharge associations were weak. An apparently novel feature of this study is that of addressing changes in associations between water and air temperatures when both are correlated among reaches.

  11. The source, discharge, and chemical characteristics of water from Agua Caliente Spring, Palm Springs, California

    USGS Publications Warehouse

    Brandt, Justin; Catchings, Rufus D.; Christensen, Allen H.; Flint, Alan L.; Gandhok, Gini; Goldman, Mark R.; Halford, Keith J.; Langenheim, V.E.; Martin, Peter; Rymer, Michael J.; Schroeder, Roy A.; Smith, Gregory A.; Sneed, Michelle; Martin, Peter

    2011-01-01

    Agua Caliente Spring, in downtown Palm Springs, California, has been used for recreation and medicinal therapy for hundreds of years and currently (2008) is the source of hot water for the Spa Resort owned by the Agua Caliente Band of the Cahuilla Indians. The Agua Caliente Spring is located about 1,500 feet east of the eastern front of the San Jacinto Mountains on the southeast-sloping alluvial plain of the Coachella Valley. The objectives of this study were to (1) define the geologic structure associated with the Agua Caliente Spring; (2) define the source(s), and possibly the age(s), of water discharged by the spring; (3) ascertain the seasonal and longer-term variability of the natural discharge, water temperature, and chemical characteristics of the spring water; (4) evaluate whether water-level declines in the regional aquifer will influence the temperature of the spring discharge; and, (5) estimate the quantity of spring water that leaks out of the water-collector tank at the spring orifice.

  12. Heated Discharge Control and Management Alternatives: Small Water Bodies and Rivers.

    ERIC Educational Resources Information Center

    MacLaren, James F.

    Basic concepts of waste heat management on shallow and deep small water bodies and rivers are reviewed and examples are given. This study defines a small water body as a body in which the far field hydrothermal effects of a heated discharge can be detected in a major portion or practically all of the water body. Environmental effects due to…

  13. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    PubMed

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  14. The effects of precipitation, river discharge, land use and coastal circulation on water quality in coastal Maine

    PubMed Central

    Tilburg, Charles E.; Jordan, Linda M.; Carlson, Amy E.; Zeeman, Stephan I.; Yund, Philip O.

    2015-01-01

    Faecal pollution in stormwater, wastewater and direct run-off can carry zoonotic pathogens to streams, rivers and the ocean, reduce water quality, and affect both recreational and commercial fishing areas of the coastal ocean. Typically, the closure of beaches and commercial fishing areas is governed by the testing for the presence of faecal bacteria, which requires an 18–24 h period for sample incubation. As water quality can change during this testing period, the need for accurate and timely predictions of coastal water quality has become acute. In this study, we: (i) examine the relationship between water quality, precipitation and river discharge at several locations within the Gulf of Maine, and (ii) use multiple linear regression models based on readily obtainable hydrometeorological measurements to predict water quality events at five coastal locations. Analysis of a 12 year dataset revealed that high river discharge and/or precipitation events can lead to reduced water quality; however, the use of only these two parameters to predict water quality can result in a number of errors. Analysis of a higher frequency, 2 year study using multiple linear regression models revealed that precipitation, salinity, river discharge, winds, seasonality and coastal circulation correlate with variations in water quality. Although there has been extensive development of regression models for freshwater, this is one of the first attempts to create a mechanistic model to predict water quality in coastal marine waters. Model performance is similar to that of efforts in other regions, which have incorporated models into water resource managers' decisions, indicating that the use of a mechanistic model in coastal Maine is feasible. PMID:26587258

  15. Spatio-temporal variation of water flow and sediment discharge in the Mahanadi River, India

    NASA Astrophysics Data System (ADS)

    Bastia, Fakira; Equeenuddin, Sk. Md.

    2016-09-01

    The transport of sediments by rivers to the oceans represents an important link between the terrestrial and marine ecosystem. Therefore, this work aims to study spatio-temporal variation of the sediment discharge and erosion rate in the Mahanadi river, one of the biggest rivers in India, over past three decades vis-à-vis their controlling factors. To understand the sediment load variation, the trend analysis in the time series data of rainfall, water and sediment discharge of the Mahanadi river were also attempted. The non-parametric Mann-Kendall and Sen's methods were used to determine whether there was a positive or negative trend in the time series data with their statistical significance. The occurrence of abrupt changes was detected using Pettitt test. The trend test result represents that sediment load delivered from the Mahanadi river to the global ocean has decreased sharply at the rate of 0.515 × 106 tons/year between 1980 and 2010. Water discharge and rainfall in the basin showed no significant decreasing trend except at only one tributary. The decline in sediment discharge from the basin to the Bay of Bengal is mainly due to the increase in the number of dams, which has recorded the increase from 70 to 253 during the period of 1980 to 2010. Over the past 30 years the Mahanadi river has discharged about 49.0 ± 20.5 km3 of water and 17.4 ± 12.7 × 106 tons of sediment annually to the Bay of Bengal whereas the mean erosional rate is 265 ± 125 tons/km2/year over the period of 30 years in the basin. Based on the current data (2000-2001 to 2009-2010), sediment flux and water discharge to the ocean are 12 ± 5 × 106 tons/year and 49 ± 16 km3/year respectively; and ranking Mahanadi river second in terms of water discharge and sediment flux to the ocean among the peninsular rivers in India.

  16. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  17. Discharge, water quality, and native fish abundance in the Virgin River, Utah, Nevada, and Arizona, in support of Pah Tempe Springs discharge remediation efforts

    USGS Publications Warehouse

    Miller, Matthew P.; Lambert, Patrick M.; Hardy, Thomas B.

    2014-01-01

    Pah Tempe Springs discharge hot, saline, low dissolved-oxygen water to the Virgin River in southwestern Utah, which is transported downstream to Lake Mead and the Colorado River. The dissolved salts in the Virgin River negatively influence the suitability of this water for downstream agricultural, municipal, and industrial use. Therefore, various remediation scenarios to remove the salt load discharged from Pah Tempe Springs to the Virgin River are being considered. One concern about this load removal is the potential to impact the ecology of the Virgin River. Specifically, information is needed regarding possible impacts of Pah Tempe Springs remediation scenarios on the abundance, distribution, and survival of native fish in the Virgin River. Future efforts that aim to quantitatively assess how various remediation scenarios to reduce the load of dissolved salts from Pah Tempe Springs into the Virgin River may influence the abundance, distribution, and survival of native fish will require data on discharge, water quality, and native fish abundance. This report contains organized accessible discharge, water quality, and native fish abundance data sets from the Virgin River, documents the compilation of these data, and discusses approaches for quantifying relations between abiotic physical and chemical conditions, and fish abundance.

  18. Coplanar surface barrier discharge ignited in water vapor—a selective source of OH radicals proved by (TA)LIF measurement

    NASA Astrophysics Data System (ADS)

    Procházka, V.; Tučeková, Z.; Dvořák, P.; Kováčik, D.; Slavíček, P.; Zahoranová, A.; Voráč, J.

    2018-01-01

    Coplanar dielectric barrier discharge (DBD) was ignited in pure water vapor at atmospheric pressure in order to generate highly oxidizing plasma with one specific type of reactive radicals. In order to prevent water condensation the used plasma reactor was heated to 120 {}\\circ C. The composition of the radical species in the discharge was studied by methods based on laser-induced fluorescence (LIF) and compared with analogous measurements realized in the same coplanar DBD ignited in air. Fast collisional processes and laser-surface interaction were taken into account during LIF data processing. It was found that coplanar DBD ignited in water vapor produces hydroxyl (OH) radicals with concentration in the order of 1020 m-3, which is 10× higher than the value measured in discharge in humid air (40% relative humidity at 21 {}\\circ C). The concentration of atomic hydrogen radicals in the DBD ignited in water vapor was below the detection limit, which proves that the generation of oxidizing plasma with dominance of one specific type of reactive radicals was achieved. The temporal evolution, spatial distribution, power dependence and rotational temperature of the OH radicals was determined in the DBD ignited in both water vapor and air.

  19. Discharge current modes of high power impulse magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhongzhen, E-mail: wuzz@pkusz.edu.cn; Xiao, Shu; Ma, Zhengyong

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  20. Selective synthesis of turbostratic polyhedral carbon nano-onions by arc discharge in water.

    PubMed

    Alessandro, F; Scarcello, A; Basantes Valverde, M D; Coello Fiallos, D C; Osman, S M; Cupolillo, A; Arias, M; Arias de Fuentes, O; De Luca, G; Aloise, A; Curcio, E; Nicotra, G; Spinella, C; Caputi, L S

    2018-08-10

    Carbon nano-onions (CNOs), in their spherical or polyhedral forms, represent an important class of nanomaterials, due to their peculiar physical and electrochemical properties. Among the different methods of production, arc discharge between graphite electrodes sustained by deionized water is one of the most promising to obtain good quality CNOs in gram quantities. We applied the method with the aim to optimize the production of CNOs, using an innovative experimental arrangement. The discharges generate dispersed nanomaterials and a black hard cathodic deposit, which were studied by transmission electron microscopy-high-resolution TEM, scanning electron microscopy, Raman, thermogravimetric analysis and energy-dispersive x-ray spectroscopy. A simple mechanical grinding of the deposits permitted us to obtain turbostratic polyhedral CNOs that exhibited higher stability towards burning in air, compared to CNOs found in water. We propose a mechanism for the formation of the CNOs present in the deposit, in which the crystallization is driven by a strong temperature gradient existing close to the cathode surface at the beginning of the process, and subsequently close to the deposit surface whenever it is growing.

  1. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  2. Research on the discharge characteristics for water tree in crosslinked polyethylene cable based on plasma-chemical model

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Qi, Yang; Bing, Gao; Rong, Xia; Yanjie, Le; Iroegbu, Paul Ikechukwu

    2018-03-01

    Water tree is the predominant defect in high-voltage crosslinked polyethylene cables. The microscopic mechanism in the discharge process is not fully understood; hence, a drawback is created towards an effective method to evaluate the insulation status. In order to investigate the growth of water tree, a plasma-chemical model is developed. The dynamic characteristics of the discharge process including voltage waveform, current waveform, electron density, electric potential, and electric field intensity are analyzed. Our results show that the distorted electric field is the predominant contributing factor of electron avalanche formation, which inevitably leads to the formation of pulse current. In addition, it is found that characteristic parameters such as the pulse width and pulse number have a great relevance to the length of water tree. Accordingly, the growth of water tree can be divided into the initial stage, development stage, and pre-breakdown stage, which provides a reference for evaluating the deteriorated stages of crosslinked polyethylene cables.

  3. Effect of water on sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas in a direct current corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Yang, Jiaxiang; Chi, Xiaochun; Dong, Limin

    2007-05-01

    A direct current (dc) corona discharge reactor composed of needle-plate electrodes in a glass container filled with flue gas was designed. To clarify the influence of water on discharge characteristics, water was introduced in the plasma reactor as electrode where plate electrode is immersed, under the application of dc voltage. Experiment results show that (1) corona wind forming between high-voltage needle electrode and water by corona discharge enhances the cleaning efficiency of flue gas due to the existence of water and the cleaning efficiency will increase with the increase of applied dc voltage within definite range and (2) both removal efficiencies of NOx and SO2 increased in the presence of water, which reach up to 98% for SO2, and about 85% for NOx under suitable conditions. These results play an important role in flue gas cleanup research.

  4. Inactivation of MS2 bacteriophage by streamer corona discharge in water.

    PubMed

    Lee, Changha; Kim, Jaeeun; Yoon, Jeyong

    2011-02-01

    Electrical discharge processes are emerging as water treatment technologies applicable to both the degradation of organic contaminants as well as inactivation of pathogens. Particularly as a disinfection technology, electrical discharge processes do not produce toxic byproducts, and effectively inactivate a wide spectrum of microorganisms by multiple lethal actions generated by the formation of plasma channels. This study demonstrates the inactivation of a virus using the streamer corona discharge process (SCDP) with MS2 phage as a surrogate. A rapid inactivation of MS2 phage (i.e., approximately 4 log inactivation in 5 min) was observed in all experimental runs conducted. Discharge conditions such as applied voltage and storage capacitance significantly affected the inactivation efficiency of MS2 phage, whereas the influence of water quality parameters was minor. In order to elucidate the mechanism of MS2 phage inactivation, potentially lethal factors that can be generated by the SCDP were selected, and their roles in the inactivation of MS2 phage were examined. As a result, effects of UV radiation, chemical oxidants, and pulsed electric fields were found to be insignificant. The shockwave generated upon plasma channel formation appears to be the most important factor responsible for MS2 phage inactivation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  6. Satellite-Based Estimation of Water Discharge and Runoff in the Magdalena River, Northern Andes of Colombia

    NASA Astrophysics Data System (ADS)

    Restrepo, J. D.; Escobar Correa, R.; Kettner, A.; Brakenridge, G. R.

    2016-12-01

    The Magdalena River and its most important tributary, the Cauca, drain the northern Andes of Colombia. During the wet season, flood events affect the whole region and cause huge damage in low-income communities. Mitigation of such natural disasters in Colombia lacks science-supported tools for evaluating river response to extreme climate events. Here we introduce near-real-time estimations of river discharge towards technical capacity building for evaluation of flood magnitudes and variability along the Magdalena and Cauca. We use the River Watch version 3 system of the Dartmouth Flood Observatory (DFO) at five selected measurement sites on the two rivers. For each site, two different rating curves were constructed to transform microwave signal from TRMM, AMSR-E, AMRS-2, and GPM satellites into river discharge. The first rating curves were based on numerical discharge estimates from a global Water Balance Model (WBM); the second were obtained from the relationship between satellite signal and measured river discharge at ground gauging stations at nearby locations. Determination coefficients (R2) between observed versus satellite-derived daily discharge data, range from 0.38 to 0.57 in the upper basin, whereas in the middle of the basin R2 values vary between 0.47 and 0.64. In the lower basin, observed R2 values are lower and range from 0.32 to 0.4. Once time lags between the microwave satellite signal and river discharge from either WBM estimates or ground-based gauging stations are taken into account, the R2 values increase considerably. The time series of satellite-based river discharge during the 1998 - 2016 period show high inter-annual variability as well as strong pulses associated with the ENSO (La Niña/El Niño) cycle. Numerical runoff magnitude estimates at peaks of extreme climatic anomalies are more correlated than stream flows measured at ground-based gauging stations. In fluvial systems such as the Magdalena, characterized by high spatial variability

  7. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Quantity and quality of ground-water discharge to the South Platte River, Denver to Fort Lupton, Colorado, August 1992 through July 1993

    USGS Publications Warehouse

    McMahon, P.B.; Lull, K.J.; Dennehy, K.F.; Collins, J.A.

    1995-01-01

    the alluvial aquifer in the vicinity of the river. Flow-path lengths in the large-area flow system were considered to be on the order of hundreds of feet to more than a mile, whereas in the small-area flow system, they were considered to be on the order of feet to hundreds of feet. Mass-balance estimates of incremental ground-water discharge from the large- area flow system ranged from -27 to 17 cubic feet per second per mile in three reaches of the river; the median rate was 4.6 cubic feet per second per mile. The median percentage of surface-water discharge derived from ground-water discharge in the river reaches studied was 13 percent. Instantaneous measurements of ground-water discharge from the small-area flow system ranged from -1,360 to 1,000 cubic feet per second per mile, with a median value of -5.8 cubic feet per second per mile. Hourly measurements of discharge from the small-area flow system indicated that the high rates of discharge were transient and may have been caused by daily fluctuations in river stage due to changing effluent-discharge rates from the Metro Wastewater Reclamation District treatment plant. Higher river stages caused surface water to infiltrate bed sediments underlying the river channel, and lower river stages allowed ground water to discharge into the river. Although stage changes apparently cycled large quantities of water in and out of the small- area flow system, the process probably provided no net gain or loss of water to the river. In general, mass balance and instantaneous measurements of ground-water discharge indicated that the ground- water flow system in the vicinity of the river consisted of a large-area flow system that provided a net addition of water to the river and a small- area flow system that cycled water in and out of the riverbed sediments, but provided no net addition of water to the river. The small-area flow system was superimposed on the large-area flow system. The median values of pH and dissolved oxygen

  9. Estimation of combined sewer overflow discharge: a software sensor approach based on local water level measurements.

    PubMed

    Ahm, Malte; Thorndahl, Søren; Nielsen, Jesper E; Rasmussen, Michael R

    2016-12-01

    Combined sewer overflow (CSO) structures are constructed to effectively discharge excess water during heavy rainfall, to protect the urban drainage system from hydraulic overload. Consequently, most CSO structures are not constructed according to basic hydraulic principles for ideal measurement weirs. It can, therefore, be a challenge to quantify the discharges from CSOs. Quantification of CSO discharges are important in relation to the increased environmental awareness of the receiving water bodies. Furthermore, CSO discharge quantification is essential for closing the rainfall-runoff mass-balance in combined sewer catchments. A closed mass-balance is an advantage for calibration of all urban drainage models based on mass-balance principles. This study presents three different software sensor concepts based on local water level sensors, which can be used to estimate CSO discharge volumes from hydraulic complex CSO structures. The three concepts were tested and verified under real practical conditions. All three concepts were accurate when compared to electromagnetic flow measurements.

  10. High-efficiency removal of NOx using dielectric barrier discharge nonthermal plasma with water as an outer electrode

    NASA Astrophysics Data System (ADS)

    Dan, ZHAO; Feng, YU; Amin, ZHOU; Cunhua, MA; Bin, DAI

    2018-01-01

    With the rapid increase in the number of cars and the development of industry, nitrogen oxide (NOx) emissions have become a serious and pressing problem. This work reports on the development of a water-cooled dielectric barrier discharge reactor for gaseous NOx removal at low temperature. The characteristics of the reactor are evaluated with and without packing of the reaction tube with 2 mm diameter dielectric beads composed of glass, ZnO, MnO2, ZrO2, or Fe2O3. It is found that the use of a water-cooled tube reduces the temperature, which stabilizes the reaction, and provides a much greater NO conversion efficiency (28.8%) than that obtained using quartz tube (14.1%) at a frequency of 8 kHz with an input voltage of 6.8 kV. Furthermore, under equivalent conditions, packing the reactor tube with glass beads greatly increases the NO conversion efficiency to 95.85%. This is because the dielectric beads alter the distribution of the electric field due to the influence of polarization at the glass bead surfaces, which ultimately enhances the plasma discharge intensity. The presence of the dielectric beads increases the gas residence time within the reactor. Experimental verification and a theoretical basis are provided for the industrial application of the proposed plasma NO removal process employing dielectric bead packing.

  11. Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona

    USGS Publications Warehouse

    DeMeo, Guy A.; Smith, J. LaRue; Damar, Nancy A.; Darnell, Jon

    2008-01-01

    Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a

  12. Final Report: Risk assessment for produced water discharges to Louisiana open bays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-01

    Potential human health and environmental impacts from discharges of produced water to the Gulf of Mexico are of concern to regulators at the State and Federal levels, the public, environmental interest groups and industry. Current and proposed regulations require a zero discharge limit for coastal facilities, based primarily on studies in low energy, poorly flushed environments. However, produced water discharges in coastal Louisiana include a number of open bay sites, where potential human health and environmental impacts are likely to be smaller than those demonstrated for low energy canal environments, but greater than the minimal impacts associated with offshore discharges.more » Additional data and assessments are needed to support risk managers at the State and Federal levels in the development of regulations that protect human health and the environment without unnecessary cost to the economic welfare of the region and the nation. This project supports the Natural Gas and Oil Initiative objectives to: (1) improve coordination on environmental research; (2) streamline State and Federal regulation; (3) enhance State, and Federal regulatory decision making capability; (4) enhance dialogue through industry/government/public partnerships; and (5) work with States and Native American Tribes.« less

  13. Cross-linked cyclodextrin-based material for treatment of metals and organic substances present in industrial discharge waters

    PubMed Central

    Euvrard, Élise; Morin-Crini, Nadia; Druart, Coline; Bugnet, Justine; Martel, Bernard; Cosentino, Cesare; Moutarlier, Virginie

    2016-01-01

    Summary In this study, a polymer, prepared by crosslinking cyclodextrin (CD) by means of a polycarboxylic acid, was used for the removal of pollutants from spiked solutions and discharge waters from the surface treatment industry. In spiked solutions containing five metals, sixteen polycyclic aromatic hydrocarbons (PAH) and three alkylphenols (AP), the material exhibited high adsorption capacities: >99% of Co2+, Ni2+ and Zn2+ were removed, between 65 and 82% of the PAHs, as well as 69 to 90% of the APs. Due to the structure of the polymer and its specific characteristics, such as the presence of carboxylic groups and CD cavities, the adsorption mechanism involves four main interactions: ion exchange, electrostatic interactions and precipitation for metal removal, and inclusion complexes for organics removal. In industrial discharge waters, competition effects appeared, especially because of the presence of calcium at high concentrations, which competed with other pollutants for the adsorption sites of the adsorbent. PMID:27829889

  14. Application of Microsecond Voltage Pulses for Water Disinfection by Diaphragm Electric Discharge

    NASA Astrophysics Data System (ADS)

    Kakaurov, S. V.; Suvorov, I. F.; Yudin, A. S.; Solovyova, T. L.; Kuznetsova, N. S.

    2015-11-01

    The paper presents the dependence of copper and silver ions formation on the duration of voltage pulses of diaphragm electric discharge and on the pH of treated liquid medium. Knowing it allows one to create an automatic control system to control bactericidal agent's parameters obtained in diaphragm electric discharge reactor. The current-voltage characteristic of the reactor with a horizontal to the diaphragm membrane water flow powered from the author's custom pulse voltage source is also presented. The results of studies of the power consumption of diaphragm electric discharge depending on temperature of the treated liquid medium are given.

  15. Thermal ground-water discharge and associated convective heat flux, Bruneau-Grand View area, southwest Idaho

    USGS Publications Warehouse

    Young, H.W.; Lewis, R.E.; Backsen, R.L.

    1979-01-01

    The Bruneau-Grand View area occupies about 1,100 square miles in southwest Idaho. The area has a rural population dependent on ground-water irrigation. Temperature of the ground water ranges from 15 C to more than 80 C. Ground water for irrigation is obtained from flowing and pumped wells. Discharge of thermal ground water from 104 irrigation wells and from 5 hot springs in 1978 was about 50,500 acre-feet. Convective heat flux from the geothermal system associated with this discharge was 4.97 x 10 to the 7th power calories per second. (Woodard-USGS)

  16. Discharge indices for water quality loads

    USGS Publications Warehouse

    Vogel, Richard M.; Stedinger, Jery R.; Hooper, Richard P.

    2003-01-01

    Effective discharge has been used to describe the streamflow level that is responsible for transporting the most sediment over the long term. Careful inspection reveals that this concept may not have been well defined, and different interpretations have led to conflicting representations. Because total load is ultimately the quantity of interest, we define a new index, the half‐load discharge, which is that discharge above and below which half the total long‐term load is transported. The value of the half‐load discharge is derived for a reasonable model of flows and constituent concentration. The effective discharge has generally been thought to be a relatively common or frequent flood. The half‐load discharge is generally a much greater and less frequent flow than commonly used estimators of the effective discharge. Relations provided here for the frequency and magnitude of the half‐load discharge provide evidence that it is relatively rare floods that transport most of the sediment over the long term. These ideas apply to other constituents as well.

  17. Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.

    PubMed

    Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan

    2017-03-01

    Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO 3 - , and CO 3 2- on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.

  18. ARSENIC CYCLING WITHIN THE WATER COLUMN OF A SMALL LAKE RECEIVING CONTAMINATED GROUND WATER DISCHARGE

    EPA Science Inventory

    The fate of arsenic discharged from contaminated ground water to a small, shallow lake at a hazardous waste site is controlled, in part, by the rate of ferrous iron oxidation-precipitation and arsenic sorption occurring near the lake chemocline. Laboratory experiments were condu...

  19. Charging and discharging of single colloidal particles at oil/water interfaces

    PubMed Central

    Gao, Peng; Xing, XiaoChen; Li, Ye; Ngai, To; Jin, Fan

    2014-01-01

    The physical behavior of solid colloids trapped at a fluid-fluid interface remains in itself an open fundamental issue. Here, we show that the gradients of surface tension can induce particles to jet towards the oil/water interface with velocities as high as ≈ 60 mm/s when particle suspensions come in contact with the interface. We hypothesize that rubbing between the particles and oil lead to the spontaneous accumulation of negative charges on the hemisphere of those interfacial particles that contact the oil phase by means of triboelectrification. The charging process is highly dependent on the sliding distances, and gives rise to long-ranged repulsions that protect interfacial particles from coagulating at the interface by the presence of electrolyte. These triboelectric charges, however, are compensated within several hours, which affect the stability of interfacial particles. Importantly, by charging different kinds of colloidal particles using various spreading solvents and dispersion methods, we have demonstrated that charging and discharging of single colloidal particles at oil/water interfaces impacts a broad range of dynamical behavior. PMID:24786477

  20. Wastewater discharge impact on drinking water sources along the Yangtze River (China).

    PubMed

    Wang, Zhuomin; Shao, Dongguo; Westerhoff, Paul

    2017-12-01

    Unplanned indirect (de facto) wastewater reuse occurs when wastewater is discharged into surface waters upstream of potable drinking water treatment plant intakes. This paper aims to predict percentages and trends of de facto reuse throughout the Yangtze River watershed in order to understand the relative contribution of wastewater discharges into the river and its tributaries towards averting water scarcity concerns. The Yangtze River is the third longest in the world and supports more than 1/15 of the world's population, yet the importance of wastewater on the river remains ill-defined. Municipal wastewater produced in the Yangtze River Basin increased by 41% between 1998 and 2014, from 2580m 3 /s to 3646m 3 /s. Under low flow conditions in the Yangtze River near Shanghai, treated wastewater contributions to river flows increased from 8% in 1998 to 14% in 2014. The highest levels of de facto reuse appeared along a major tributary (Han River) of the Yangtze River, where de facto reuse can exceed 20%. While this initial analysis of de facto reuse used water supply and wastewater data from 110 cities in the basin and 11 gauging stations with >50years of historic streamflow data, the outcome was limited by the lack of gauging stations at more locations (i.e., data had to be predicted using digital elevation mapping) and lack of precise geospatial location of drinking water intakes or wastewater discharges. This limited the predictive capability of the model relative to larger datasets available in other countries (e.g., USA). This assessment is the first analysis of de facto wastewater reuse in the Yangtze River Basin. It will help identify sections of the river at higher risk for wastewater-related pollutants due to presence of-and reliance on-wastewater discharge that could be the focus of field studies and model predictions of higher spatial and temporal resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  2. Discharge, water temperature, and selected meteorological data for Vancouver Lake, Vancouver, Washington, water years 2011-13

    USGS Publications Warehouse

    Foreman, James R.; Marshall, Cameron A.; Sheibley, Rich W.

    2014-01-01

    The U.S. Geological Survey partnered with the Vancouver Lake Watershed Partnership in a 2-year intensive study to quantify the movement of water and nutrients through Vancouver Lake in Vancouver, Washington. This report is intended to assist the Vancouver Lake Watershed Partnership in evaluating potential courses of action to mitigate seasonally driven blooms of harmful cyanobacteria and to improve overall water quality of the lake. This report contains stream discharge, lake water temperature, and selected meteorological data for water years 2011, 2012, and 2013 that were used to develop the water and nutrient budgets for the lake.

  3. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    PubMed

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  5. Risk assessment for produced water discharges to Louisiana open bays. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-22

    The US Department of Energy (USDOE) has a program of research in the environmental aspects of oil and gas extraction. This sampling project will characterize the environmental impacts associated with the discharge of naturally occurring radioactive materials (NORM), metals and organics in produced water. This report is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the USDOE. These assessments are being coordinated with the field study, using the collected data to perform human health and ecological risk assessments. These assessments will provide input tomore » regulators in the development of guidelines and permits, and to industry in the development and use of appropriate discharge practices. The initial human health and ecological risk assessments consist of conservative screening analyses meant to identify potentially important contaminants, and to eliminate others from further consideration. More quantitative assessments were done for contaminants identified, in the screening analysis, as being of potential concern. Section 2 gives an overview of human health and ecological risk assessment to help put the analyses presented here in perspective. Section 3 provides the hazard assessment portion of the risk assessment, and identifies the important receptors and pathways of concern. Section 3 also outlines the approach taken to the risk assessments presented in the rest of the report. The remaining sections (4 through 9) present the human health and ecological risk assessments for discharges of produced water to open bays in Louisiana.« less

  6. Modeling discharge, temperature, and water quality in the Tualatin River, Oregon

    USGS Publications Warehouse

    Rounds, Stewart A.; Wood, Tamara M.; Lynch, Dennis D.

    1999-01-01

    The discharge, water temperature, and water quality of the Tualatin River in northwestern Oregon was simulated with CE-QUAL-W2, a two-dimensional, laterally averaged model developed by the U.S. Army Corps of Engineers. The model was calibrated for May through October periods of 1991, 1992, and 1993. Nine hypothetical scenarios were tested with the model to provide insight for river managers and regulators.

  7. Recharge Area, Base-Flow and Quick-Flow Discharge Rates and Ages, and General Water Quality of Big Spring in Carter County, Missouri, 2000-04

    USGS Publications Warehouse

    Imes, Jeffrey L.; Plummer, Niel; Kleeschulte, Michael J.; Schumacher, John G.

    2007-01-01

    Exploration for lead deposits has occurred in a mature karst area of southeast Missouri that is highly valued for its scenic beauty and recreational opportunities. The area contains the two largest springs in Missouri (Big Spring and Greer Spring), both of which flow into federally designated scenic rivers. Concerns about potential mining effects on the area ground water and aquatic biota prompted an investigation of Big Spring. Water-level measurements made during 2000 helped define the recharge area of Big Spring, Greer Spring, Mammoth Spring, and Boze Mill Spring. The data infer two distinct potentiometric surfaces. The shallow potentiometric surface, where the depth-to-water is less than about 250 feet, tends to mimic topographic features and is strongly controlled by streams. The deep potentiometric surface, where the depth-to-water is greater than about 250 feet represents ground-water hydraulic heads within the more mature karst areas. A highly permeable zone extends about 20 mile west of Big Spring toward the upper Hurricane Creek Basin. Deeper flowing water in the Big Spring recharge area is directed toward this permeable zone. The estimated sizes of the spring recharge areas are 426 square miles for Big Spring, 352 square miles for Greer Spring, 290 square miles for Mammoth Spring, and 54 square miles for Boze Mill Spring. A discharge accumulation curve using Big Spring daily mean discharge data shows no substantial change in the discharge pattern of Big Spring during the period of record (water years 1922 through 2004). The extended periods when the spring flow deviated from the trend line can be attributed to prolonged departures from normal precipitation. The maximum possible instantaneous flow from Big Spring has not been adequately defined because of backwater effects from the Current River during high-flow conditions. Physical constraints within the spring conduit system may restrict its maximum flow. The largest discharge measured at Big Spring

  8. Quantifying the impacts of climate and human activities on water and sediment discharge in a karst region of southwest China

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Xu, Xianli; Yu, Bofu; Xu, Chaohao; Liu, Meixian; Wang, Kelin

    2016-11-01

    Quantifying the impacts of climate and human activities on water and sediment discharge has become a central topic in climate and hydrologic research. This issue, however, has so far received little attention in karst regions around the world. Seven karst catchments located in southwest China were chosen to explore water and sediment discharge responses to different driving factors during the period from the 1950s to 2011. The non-parametric Mann-Kendall test was used to detect both the trends and abrupt changes in water and sediment discharge. The double mass curve method was used to quantify the effects of climate and human activities on water and sediment discharge. Results indicated that the annual water discharge showed a decreasing trend in all catchments (-0.21 to -3.68 × 108 m3 yr-1), and the sediment discharge exhibited a significant decreasing trend (-7 to -101 × 104 t yr-1) for six out of the seven catchments. A rapid decline (abrupt change) in sediment discharge occurred since 2000 for all except Liujiang catchment where the sediment discharge has a slight increase since 1983 as no large dams were constructed in this catchment. Specifically, the magnitude of reduction in sediment discharge (%) significantly increases with the extent of flow regulation as measured by the ratio of the area upstream the dam to the total catchment area for the seven catchments (R2 = 0.98, P < 0.01). This study demonstrated that water discharge was mainly influenced by precipitation, while sediment discharge was mainly influenced by human activities (relative contribution 70-111%, regardless of whether the effect is negative or positive). Ecological restoration played somehow important roles in the decrease in sediment discharge (negative relationships of sediment discharge with the Normalized Differential Vegetation Index (NDVI)), but dam construction was likely to be the principal cause of the significant decrease in sediment discharge. This study is of use for better

  9. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry.

    PubMed

    Bakke, Torgeir; Klungsøyr, Jarle; Sanni, Steinar

    2013-12-01

    Operational discharges of produced water and drill cuttings from offshore oil and gas platforms are a continuous source of contaminants to continental shelf ecosystems. This paper reviews recent research on the biological effects of such discharges with focus on the Norwegian Continental Shelf. The greatest concern is linked to effects of produced water. Alkylphenols (AP) and polyaromatic hydrocarbons (PAH) from produced water accumulate in cod and blue mussel caged near outlets, but are rapidly metabolized in cod. APs, naphtenic acids, and PAHs may disturb reproductive functions, and affect several chemical, biochemical and genetic biomarkers. Toxic concentrations seem restricted to <2 km distance. At the peak of discharge of oil-contaminated cuttings fauna disturbance was found at more than 5 km from some platforms, but is now seldom detected beyond 500 m. Water-based cuttings may seriously affect biomarkers in filter feeding bivalves, and cause elevated sediment oxygen consumption and mortality in benthic fauna. Effects levels occur within 0.5-1 km distance. The stress is mainly physical. The risk of widespread, long term impact from the operational discharges on populations and the ecosystem is presently considered low, but this cannot be verified from the published literature. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  11. Antarctic ice discharge due to warm water intrusion into shelf cavities

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Reese, R.; Albrecht, T.; Mengel, M.; Asay-Davis, X.

    2017-12-01

    Ocean-induced melting below ice shelves is the dominant driver for mass loss from the Antarctic Ice Sheet at present. Observations show that many Antarctic ice shelves are thinning which reduces their buttressing potential and can lead to increased ice discharge from the glaciers upstream. Melt rates from Antarctic ice shelves are determined by the temperature and salinity of the ambient ocean. In many parts, ice shelves are shielded by clearly defined density fronts which keep relatively warm Northern water from entering the cavity underneath the ice shelves. Projections show that a redirection of coastal currents might allow these warmer waters to intrude into ice shelf cavities, for instance in the Weddell Sea, and thereby cause a strong increase in sub-shelf melt rates. Using the Potsdam Ice-shelf Cavity mOdel (PICO), we assess how such a change would influence the dynamic ice loss from Antarctica. PICO is implemented as part of the Parallel Ice Sheet Model (PISM) and mimics the vertical overturning circulation in ice-shelf cavities. The model is capable of capturing the wide range of melt rates currently observed for Antarctic ice shelves and reproduces the typical pattern of comparably high melting near the grounding line and lower melting or refreezing towards the calving front. Based on regional observations of ocean temperatures, we use PISM-PICO to estimate an upper limit for ice discharge resulting from the potential erosion of ocean fronts around Antarctica.

  12. Enhanced shock wave generation via pre-breakdown acceleration using water electrolysis in negative streamer pulsed spark discharges

    NASA Astrophysics Data System (ADS)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.

    2018-03-01

    This paper presents a method for enhancement of shock waves generated from underwater pulsed spark discharges with negative (anode-directed) subsonic streamers, for which the pre-breakdown process is accelerated by preconditioning a gap with water electrolysis. Hydrogen microbubbles are produced at the cathode by the electrolysis and move towards the anode during the preconditioning phase. The numbers and spatial distributions of the microbubbles vary with the amplitude and duration of each preconditioning pulse. Under our experimental conditions, the optimum pulse duration is determined to be ˜250 ms at a pulse voltage of 400 V, where the buoyancy force overwhelms the electric force and causes the microbubbles to be swept out from the water gap. When a high-voltage pulse is applied to the gap just after the preconditioning pulse, the pre-breakdown process is significantly accelerated in the presence of the microbubbles. At the optimum preconditioning pulse duration, the average breakdown delay is reduced by 87% and, more importantly, the energy consumed during the pre-breakdown period decreases by 83%. This reduced energy consumption during the pre-breakdown period, when combined with the morphological advantages of negative streamers, such as thicker and longer stalks, leads to a significant improvement in the measured peak pressure (˜40%) generated by the underwater pulsed spark discharge. This acceleration of pre-breakdown using electrolysis overcomes the biggest drawback of negative subsonic discharges, which is slow vapor bubble formation due to screening effects, and thus enhances the efficiency of the shock wave generation process using pulsed spark discharges in water.

  13. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: impacts of river discharge and aquaculture activities.

    PubMed

    Zou, Shichun; Xu, Weihai; Zhang, Ruijie; Tang, Jianhui; Chen, Yingjun; Zhang, Gan

    2011-10-01

    The presence of 21 antibiotics in six different groups was investigated in coastal water of the Bohai Bay. Meantime, to illuminate the potential effects caused by the river discharge and aquaculture activities, wastewater from three breeding plants and surface water from six rivers flowing into the Bohai Bay were also analyzed for the selected antibiotics. The result revealed that measured antibiotics in the North Bobai Bay were generally higher than those in the South, highlighting the remarkable effects of high density of human activities on the exposure of antibiotics in environment. The antibiotics found in the six rivers were generally higher than those in the Bohai Bay reflecting the important antibiotics source of river discharge. This study reveals that the high consumption of some antibiotics in aquaculture activities may pose high ecological risk to the bay. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Evaluation of a cost effective technique for treating aquaculture water discharge using Lolium perenne Lam as a biofilter.

    PubMed

    Nduwimana, André; Yang, Xiang-Long; Wang, Li-Ren

    2007-01-01

    Wastewater stabilization ponds generate low cost by-products that are useful for agriculture. The utilization of these by-products for soil amendment and as a source of nutrients for plants requires a high level of sanitation and stabilization of the organic matter, to maintain acceptable levels of soil, water and air quality. In this study, two aquaculture wastewater treatment systems; recirculating system and a floating plant bed system were designed to improve the quality of irrigation water in local communities with low income. In both systems the grass species Lolium perenne Lam was used as a plant biofilter while vegetable specie Amaranthus viridis was used to evaluate the performance of the system and the suitability of the phyto-treated water for irrigation. It was found that the harmful material removal rate for recirculating system was 88.9% for TAN (total ammonia nitrogen), 90% for NO2(-)-N, 64.8% for NO3(-)-N while for floating plant bed system 82.7% for TAN, 82% for NO2(-)-N and 60.5% for NO3(-)-N. Comparative analysis of the efficiency of waste element removal between the two systems revealed that both systems performed well, however, plant growth was not robust for floating plant bed system while recirculating system is energy consuming. Although both systems did not attain sufficient levels of TN (total nitrogen) and TP (total phosphorus) load reduction, the treatment with L. perenne remarkably improved the irrigation water quality. A. viridis plants irrigated with the phyto-treated discharge water had lesser concentrations of heavy metals in their tissues compared to those irrigated with untreated discharge. The control plants irrigated with untreated discharge were also found to be highly lignified with few stems and small leaves.

  15. Lithium thionyl chloride high rate discharge

    NASA Technical Reports Server (NTRS)

    Klinedinst, K. A.

    1980-01-01

    Improvements in high rate lithium thionyl chloride power technology achieved by varying the electrolyte composition, operating temperature, cathode design, and cathode composition are discussed. Discharge capacities are plotted as a function of current density, cell voltage, and temperature.

  16. Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

    USGS Publications Warehouse

    Gardner, Philip M.

    2018-04-10

    conductance, water temperature, pH, and discharge) were made at up to 26 sites along the springs reach. These data demonstrate the interaction between the saline, thermal groundwater system and the Virgin River, and provide estimates of reductions in dissolved-solids loads to the river.The interference tests show that pumping thermal groundwater from the shallow carbonate aquifer adjacent to the springs is effective at capturing high dissolved-solids loads discharging from Pah Tempe Springs before they enter the Virgin River. Discharge measurements made in the Virgin River downstream of the springs reach show that streamflow is reduced by approximately the amount pumped, indicating that complete capture of thermal discharge is possible. During the February 2014 test, the dissolved-solids load removed by pumping (190 tons per day) was approximately equal to the dissolved-solids load reduction observed in the river below the springs reach, indicating near 100-percent efficient capture of spring-sourced dissolved solids. However, an observed decrease in temperature and specific conductance of the pumping discharge during the high-flow test in November 2014 showed that capture of the cool, fresh river water can occur and is more likely at a higher stage in the Virgin River.

  17. Discharge mode transition and temporal-spatial evolution of an air-water plasma jet generated by pulsating DC power

    NASA Astrophysics Data System (ADS)

    Lei, J.; Geng, Y.; Liu, K.; Zhu, W.; Zheng, Z.; Hu, H.

    2017-12-01

    In this paper, pulsating direct current air-water plasma jet, which can increase the production of •OH and decrease the temperature, is studied. The results show that the discharge mode changes in one cycle from corona discharge with steep Trichel current pulse to glow-like discharge. It is unknown whether the different discharge modes and water ratio have an effect on the transient process of the excited O and •OH production and the mechanism of plasma propagation. So, a series of experiments are done in this paper. The results show that the changing rules of both the excited state O and the discharge current reach their two peak values synchronously. And its maximum appears at the time of the first peak current value in corona mode. However, the change of the excited state •OH is different. It increases to its maximum at the time of the second peak current value in glow-like mode. Besides, the intensified charge coupled device photographs show that the luminous intensity of the discharge zone at the first peak current value in corona mode is stronger than the second peak current value in glow-like mode. At the same time, the discharge area of the former is larger than the latter. Nevertheless, with the increase in water ratio, the discharge area change reversed. Additionally, the air plasma plume propagation depends on the gas flow. The initial propagation velocity decreases with the increase in water ratio.

  18. Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water

    NASA Astrophysics Data System (ADS)

    Zelong, ZHANG; Jie, SHEN; Cheng, CHENG; Zimu, XU; Weidong, XIA

    2018-04-01

    Atmospheric pressure helium/water dielectric barrier discharge (DBD) plasma is used to investigate the generation of reactive species in a gas-liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy (OES) with different discharge powers at the gas-liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary long-lived reactive species such as H2O2, {{{{NO}}}3}- and O3 are measured based on plasma treatment time. After 5 min of discharge treatment, the concentration of H2O2, {{{{NO}}}3}-, and O3 increased from 0 mg · L-1 to 96 mg · L-1, 19.5 mg · L-1, and 3.5 mg · L-1, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.

  19. Water-elevation, stream-discharge, and ground-water quality data in the Alaska Railroad Industrial Area, Fairbanks, Alaska, May 1993 to May 1995

    USGS Publications Warehouse

    Kriegler, A.T.; Lilly, M.R.

    1995-01-01

    From May 1993 to May 1995, the U.S. Geological Survey in cooperation with the Alaska Department of Natural Resources, Division of Mining and Water Management collected data on ground-water and surface-water elevations, stream discharge, and ground-water quality in the Alaska Railroad Industrial area in Fairbanks, Alaska. The data- collection efforts were coordinated with environmental efforts being made in the study area by the Alaska Railroad Corporation. These data were collected as part of an effort to characterize the hydrogeology of the Alaska Railroad Industrial area and to define the extent of petroleum hydrocarbons in the area. Ground-water data were collected at 52 observation wells, surface-water data at 12 sites, stream discharge data at 9 sites, and chemical water-quality data at 32 observation wells.

  20. Evaluation of the depth-integration method of measuring water discharge in large rivers

    USGS Publications Warehouse

    Moody, J.A.; Troutman, B.M.

    1992-01-01

    The depth-integration method oor measuring water discharge makes a continuos measurement of the water velocity from the water surface to the bottom at 20 to 40 locations or verticals across a river. It is especially practical for large rivers where river traffic makes it impractical to use boats attached to taglines strung across the river or to use current meters suspended from bridges. This method has the additional advantage over the standard two- and eight-tenths method in that a discharge-weighted suspended-sediment sample can be collected at the same time. When this method is used in large rivers such as the Missouri, Mississippi and Ohio, a microwave navigation system is used to determine the ship's position at each vertical sampling location across the river, and to make accurate velocity corrections to compensate for shift drift. An essential feature is a hydraulic winch that can lower and raise the current meter at a constant transit velocity so that the velocities at all depths are measured for equal lengths of time. Field calibration measurements show that: (1) the mean velocity measured on the upcast (bottom to surface) is within 1% of the standard mean velocity determined by 9-11 point measurements; (2) if the transit velocity is less than 25% of the mean velocity, then average error in the mean velocity is 4% or less. The major source of bias error is a result of mounting the current meter above a sounding weight and sometimes above a suspended-sediment sampling bottle, which prevents measurement of the velocity all the way to the bottom. The measured mean velocity is slightly larger than the true mean velocity. This bias error in the discharge is largest in shallow water (approximately 8% for the Missouri River at Hermann, MO, where the mean depth was 4.3 m) and smallest in deeper water (approximately 3% for the Mississippi River at Vickbsurg, MS, where the mean depth was 14.5 m). The major source of random error in the discharge is the natural

  1. [Degradation of 4-chlorophenol in aqueous solution by high-voltage pulsed discharge-ozone technology].

    PubMed

    Wen, Yuezhong; Jiang, Xuanzhen; Liu, Weiping

    2002-03-01

    The combination of high voltage pulse discharge and ozonation as an advanced oxidation technology was used to investigate the degradation of 4-chlorophenol (4-CP) in water. The factors that affect the rate of degradation were discussed. The 1.95 x 10(-3) mol/L solutions of 4-CP were almost completely (96%) degraded after the discharge treatment of 30 min. The degradation of 4-CP was investigated as a function of the ozone concentration, radical scavenger and electrode distance. The rate of 4-CP degradation increases with an increase in ozone concentration and a decrease in the electrode distance from 20 mm to 10 mm. The presence of radical scavenger decreased the rate of 4-CP degradation.

  2. Comparing sulfur and oxygen isotope variability of sulfate in the Mississippi River during high and low discharge from 2009-2011

    NASA Astrophysics Data System (ADS)

    Killingsworth, B.; Kohl, I. E.; Bao, H.

    2011-12-01

    S and O isotope compositions of ocean and river sulfate, SO42-, reflect Earth surface processes and can thus be used to understand the Earth's dynamic past. It has been estimated that riverine SO42- is 22% evaporite (SO42-riv-evap), 11% oxidative weathering (SO42-riv-ow), and 54% atmospheric and agricultural pollution [1]. Two parameters are poorly constrained: 1) the ratio of SO42-riv-evap to SO42-riv-ow, and 2) the extent of human influence on SO42- flux. Furthermore, for isotopic modeling, natural riverine SO42- O and S isotope compositions, δ18OSO4-riv and δ34SSO4-riv, have large measured ranges (e.g. δ18OSO4-riv from -2% to +7% [2]) that are based on limited empirical data with variable and unconstrained influence from human activities. In the lower Mississippi River Basin (MRB) we have sampled river water SO42- biweekly since 2009. Our isotope dataset is used in conjunction with US Geological Survey and US Army Corps of Engineers SO42- concentration and river discharge data. In comparison to MRB low discharge periods, the periods of annual high water discharge are characterized by 1) a doubling in water discharge 2) a concomitant high MRB SO42- flux (>1100 kg/s) 3) an average SO42- concentration at 85% of the low discharge concentrations and 4) a more constrained variability of SO42- isotope composition. The δ18OSO4-riv ranges from +3.2% to +5.5% at high discharge and from +2.6% to +8.8% at low discharge. The δ34SSO4-riv ranges from -4.3% to -0.4 at high discharge and from -6.3% to -0.2% at low discharge. Atmospheric SO42- is estimated from 2009 National Atmospheric Deposition Program maps to contribute only ~10% of total MRB SO42-. We conclude that during annual high discharge a large river basin such as the MRB is less sensitive to variable sub-basin input and that average MRB SO42- isotope composition is best represented by a δ18OSO4-riv value of ~+4.0% and δ34SSO4-riv value of ~-3.0%. MRB SO42- concentration during high discharge is diluted less

  3. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, Niel; Bohlke, John Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs.A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly younger

  4. Effect of inflow discharges on the development of matric suction and volumetric water content for dike during overtopping tests

    NASA Astrophysics Data System (ADS)

    Hassan, Marwan A.; Ismail, Mohd A. M.

    2017-10-01

    The point of this review is to depict the impact of various inflow discharge rate releases on the instruments of matric suction and volumetric water content during an experimental test of spatial overtopping failure at school of civil engineering in universiti Sains of Malaysia. A dry sand dike was conducted inside small flume channel with twelve sensors of tensiometer and Time-Domain Reflectometer (TDR). Instruments are installed in the soil at different locations in downstream and upstream slopes of the dike for measuring the response of matric suction and volumetric water content, respectively. Two values of inflow discharge rates of 30 and 40 L/min are utilized as a part of these experiments to simulate the effectiveness of water reservoirs in erosion mechanism. The outcomes demonstrate that the matric suction and volumetric water content are decreased and increased, respectively for both inflow discharges. The higher inflow discharges accelerate the saturation of dike soil and the erosion process faster than that for the lower inflow discharges.

  5. Longevity of acid discharges from underground mines located above the regional water table.

    PubMed

    Demchak, J; Skousen, J; McDonald, L M

    2004-01-01

    The duration of acid mine drainage flowing out of underground mines is important in the design of watershed restoration and abandoned mine land reclamation projects. Past studies have reported that acid water flows from underground mines for hundreds of years with little change, while others state that poor drainage quality may last only 20 to 40 years. More than 150 above-drainage (those not flooded after abandonment) underground mine discharges from Pittsburgh and Upper Freeport coal seams were located and sampled during 1968 in northern West Virginia, and we revisited 44 of those sites in 1999-2000 and measured water flow, pH, acidity, Fe, sulfate, and conductivity. We found no significant difference in flows between 1968 and 1999-2000. Therefore, we felt the water quality data could be compared and the data represented real changes in pollutant concentrations. There were significant water quality differences between year and coal seam, but no effect of disturbance. While pH was not significantly improved, average total acidity declined 79% between 1968 and 1999-2000 in Pittsburgh mines (from 66.8 to 14 mmol H+ L(-1)) and 56% in Upper Freeport mines (from 23.8 to 10.4 mmol H+ L(-1)). Iron decreased an average of about 80% across all sites (from an average of 400 to 72 mg L(-1)), while sulfate decreased between 50 and 75%. Pittsburgh seam discharge water was much worse in 1968 than Upper Freeport seam water. Twenty of our 44 sites had water quality information in 1980, which served as a midpoint to assess the slope of the decline in acidity and metal concentrations. Five of 20 sites (25%) showed an apparent exponential rate of decline in acidity and iron, while 10 of 20 sites (50%) showed a more linear decline. Drainage from five Upper Freeport sites increased in acidity and iron. While it is clear that surface mines and below-drainage underground mines improve in discharge quality relatively rapidly (20-40 years), above-drainage underground mines are not as

  6. Method and apparatus for nondestructive testing. [using high frequency arc discharges

    NASA Technical Reports Server (NTRS)

    Hoop, J. M. (Inventor)

    1974-01-01

    High voltage is applied to an arc gap adjacent to a test specimen to develop a succession of high frequency arc discharges. Those high frequency arc discharges generate pulses of ultrasonic energy within the test specimen without requiring the arc discharges to contact that test specimen and without requiring a coupling medium. Those pulses can be used for detection of flaws and measurements of certain properties and stresses within the test specimen.

  7. Water quality and discharge data for St. Joseph Bay, Florida, 1997-98

    USGS Publications Warehouse

    Berndt, M.P.; Franklin, M.A.

    1999-01-01

    Historical data were compiled on water quality and water levels for the St. Joseph Bay area to assess quality of possible sources of land-derived water into the Bay. Ground-water quality data were compiled from Florida Department of Environmental Protection and surface-water quality data were compiled from U.S.Geological Survey files. Water-quality and water-level data were measured during two sample collection periods in October 1997 and March 1998 to determine water-quality and discharge rates in St. Joseph Bay under two sets of flow conditions. Measurements in the Bay included water level, temperature, pH, specific conductance, dissolved oxygen, and turbidity. Median pH in water from the surficial, intermediate and Floridan aquifer systems ranged from 4.8 to 7.8, and median specific conductance values were less than 500 microsiemens per centimeter. Median nutrient concentrations-- nitrate plus nitrite, ammonia and phosphorus--in the three aquifers were less than 0.5 milligrams per liter. The median pH was 7.0 and the median specific conductance was 81 microsiemens per centimeter for two samples from the Chipola River distribution canal. Water level data were obtained for several wells near St. Joseph Bay but only two wells yielded sufficient data to plot hydrographs. Measurements in St. Joseph Bay during the October and March collection periods were similar for pH and turbidity but differed for temperature, specific conductance and dissolved oxygen. The median temperature was 20.6 degrees Celsius in October and 15.4 degrees Celsius in March, median specific conductance was 39,500 microsiemens per centimeter in October and 43,300 microsiemens per centimeter in March, and median dissolved oxygen was 7.6 milligrams per liter in October and 8.3 milligrams per liter in March. The range in water levels over a tidal cycle in St. Joseph Bay on October 29, 1997 was about 1 foot. During a 24-hour tidal cycle on October 29, 1997, estimated hourly discharge varied from

  8. 57. LOOKING UP TAILRACE OF PLANE 2 EAST. WATER DISCHARGING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. LOOKING UP TAILRACE OF PLANE 2 EAST. WATER DISCHARGING FROM CULVERT ON LEFT HAD JUST PASSED THROUGH THE FLUME AND POWER HOUSE IN ORDER TO OPERATE THE LIFT MACHINERY. TAILRACE ON RIGHT IS A BYPASS FLUME SO THAT LEVEL OF CANAL BELOW PLANE 2 EAST CAN BE MAINTAINED. - Morris Canal, Phillipsburg, Warren County, NJ

  9. Pilot study of natural attenuation of arsenic in well water discharged to the Little River above Lake Thunderbird, Norman, Oklahoma, 2012

    USGS Publications Warehouse

    Andrews, William J.; Masoner, Jason R.; Rendon, Samuel H.; Smith, Kevin A.; Greer, James R.; Chatterton, Logan A.

    2013-01-01

    The City of Norman, Oklahoma, wanted to augment its water supplies to meet the needs of an increasing population. Among the city’s potential water sources are city wells that produce water that exceeds the 10 micrograms per liter primary drinking-water standard for arsenic. The City of Norman was interested in investigating low-cost means of using natural attenuation to remove arsenic from well water and augment the water supply of Lake Thunderbird, the primary water source for the city. The U.S. Geological Survey, in cooperation with the City of Norman, conducted a preliminary investigation (pilot study) to determine if discharge of water from those wells into the Little River over a 12-day period would reduce arsenic concentrations through natural-attenuation processes. Water in the Little River flows into Lake Thunderbird, the principal water source for the city, so the discharged well water would improve the water balance of that reservoir. During this pilot study, 150–250 gallons per minute from each of six city wells were discharged to the Little River over a 12-day period. Water-quality samples were collected from the wells during discharge and from the river before, during, and after well discharges. Streambed-sediment samples were collected at nine sites in the river before and after the well-discharge period. Water discharge from the six wells added 0.3 kilogram per day of arsenic to the river at the nearest downstream streamflow-gaging station. Dissolved arsenic concentration in the Little River at the closest downstream sampling site from the wells increased from about 4 micrograms per liter to as much as 24 micrograms per liter. Base flow in the river increased by about 1.7 cubic feet per second at the nearest downstream streamflow-gaging station. Streamflow in the river was two-thirds of that expected from the amount of water discharged from the wells because of seepage to soils and evapotranspiration of well water along drainage ways to the river

  10. Electrochemical cell with high discharge/charge rate capability

    DOEpatents

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  11. High Voltage Discharge Profile on Soil Breakdown Using Impulse Discharge

    NASA Astrophysics Data System (ADS)

    Fajingbesi, F. E.; Midi, N. S.; Elsheikh, E. M. A.; Yusoff, S. H.

    2017-06-01

    Grounding terminals are mandatory in electrical appliance design as they provide safety route during overvoltage faults. The soil (earth) been the universal ground is assumed to be at zero electric potential. However, due to properties like moisture, pH and available nutrients; the electric potential may fluctuate between positive and negative values that could be harmful for internally connected circuits on the grounding terminal. Fluctuations in soil properties may also lead to current crowding effect similar to those seen at the emitters of semiconductor transistors. In this work, soil samples are subjected to high impulse voltage discharge and the breakdown characteristics was profiled. The results from profiling discharge characteristics of soil in this work will contribute to the optimization of grounding protection system design in terms of electrode placement. This would also contribute to avoiding grounding electrode current crowding, ground potential rise fault and electromagnetic coupling faults.

  12. Report: State Enforcement of Clean Water Act Dischargers Can Be More Effective

    EPA Pesticide Factsheets

    Report #2001-P-00013, August 14, 2001. We believe that state enforcement programs could be much more effective in deterring noncompliance with discharge permits and, ultimately, improving the quality of the nation’s water.

  13. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    PubMed Central

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  14. Impact of Leachate Discharge from Cipayung Landfill on Water Quality of Pesanggrahan River, Indonesia

    NASA Astrophysics Data System (ADS)

    Noerfitriyani, Eki; Hartono, Djoko M.; Moersidik, Setyo S.; Gusniani, Irma

    2018-03-01

    The landfill operation can cause environmental problems due to solid waste decomposition in the form of leachate. The evaluation of environmental impacts related with solid waste landfilling is needed to ensure that leachate discharge to water bodies does not exceed the standard limit to prevent contamination of the environment. This study aims to analyze the impact of leachate discharge from Cipayung Landfill on water quality of Pesanggrahan River. The data were analyzed based on leachate samples taken from influent and effluent treatment unit, and river water samples taken from upstream, stream at leachate discharge, and downstream. All samples were taken three times under rainy season condition from April to May 2017. The results show the average leachate quality temperature is 34,81 °C, TSS 72.33 mg/L, pH 7.83, BOD 3,959.63 mg/L, COD 6,860 mg/L, TN 373.33 mg/L, Hg 0.0016 mg/L. The BOD5/COD ratio 0.58 indicated that leachate characteristics was biodegradable and resemble intermediate landfill due to the mixing of young leachate and old leachate. The effluent of leachate treatment plant exceeds the leachate standard limit for BOD, COD, and TN parameters. Statistical results from independent T-test showed significant differences (p<0,05) between upstream and downstream influenced with leachate discharge for DO parameter.

  15. Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1981-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.

  16. North Atlantic Deep Water formation inhibits high Arctic contamination by continental perfluorooctane sulfonate discharges

    NASA Astrophysics Data System (ADS)

    Zhang, Xianming; Zhang, Yanxu; Dassuncao, Clifton; Lohmann, Rainer; Sunderland, Elsie M.

    2017-08-01

    Perfluorooctane sulfonate (PFOS) is an aliphatic fluorinated compound with eight carbon atoms that is extremely persistent in the environment and can adversely affect human and ecological health. The stability, low reactivity, and high water solubility of PFOS combined with the North American phaseout in production around the year 2000 make it a potentially useful new tracer for ocean circulation. Here we characterize processes affecting the lifetime and accumulation of PFOS in the North Atlantic Ocean and transport to sensitive Arctic regions by developing a 3-D simulation within the MITgcm. The model captures variability in measurements across biogeographical provinces (R2 = 0.90, p = 0.01). In 2015, the North Atlantic PFOS reservoir was equivalent to 60% of cumulative inputs from the North American and European continents (1400 Mg). Cumulative inputs to the Arctic accounted for 30% of continental discharges, while the remaining 10% was transported to the tropical Atlantic and other regions. PFOS concentrations declined rapidly after 2002 in the surface mixed layer (half-life: 1-2 years) but are still increasing below 1000 m depth. During peak production years (1980-2000), plumes of PFOS-enriched seawater were transported to the sub-Arctic in energetic surface ocean currents. However, Atlantic Meridional Overturning Circulation (AMOC) and deep ocean transport returned a substantial fraction of this northward transport (20%, 530 Mg) to southern latitudes and reduced cumulative inputs to the Arctic (730 Mg) by 70%. Weakened AMOC due to climate change is thus likely to increase the magnitude of persistent bioaccumulative pollutants entering the Arctic Ocean.

  17. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  18. The concentration-discharge slope as a tool for water quality management.

    PubMed

    Bieroza, M Z; Heathwaite, A L; Bechmann, M; Kyllmar, K; Jordan, P

    2018-07-15

    Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to

  19. Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1983-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222

  20. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  1. Water-surface elevation and discharge measurement data for the Red River of the North and its tributaries near Fargo, North Dakota, water years 2014–15

    USGS Publications Warehouse

    Damschen, William C.; Galloway, Joel M.

    2016-08-25

    The U.S. Geological Survey, in cooperation with the Fargo Diversion Board of Authority, collected water-surface elevations during a range of discharges needed for calibration of hydrologic and hydraulic models for specific reaches of interest in water years 2014–15. These water-surface elevation and discharge measurement data were collected for design planning of diversion structures on the Red River of the North and Wild Rice River and the aqueduct/diversion structures on the Sheyenne and Maple Rivers. The Red River of the North and Sheyenne River reaches were surveyed six times, and discharges ranged from 276 to 6,540 cubic feet per second and from 166 to 2,040 cubic feet per second, respectively. The Wild Rice River reach also was surveyed six times during 2014 and 2015, and discharges ranged from 13 to 1,550 cubic feet per second. The Maple River reach was surveyed four times, and discharges ranged from 16.4 to 633 cubic feet per second. Water-surface elevation differences from upstream to downstream in the reaches ranged from 0.33 feet in the Red River of the North reach to 9.4 feet in the Maple River reach.

  2. Electrodeless discharge lamp is easily started, has high stability

    NASA Technical Reports Server (NTRS)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  3. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  4. Device for generation of pulsed corona discharge

    DOEpatents

    Gutsol, Alexander F [San Ramon, CA; Fridman, Alexander [Marlton, NJ; Blank, Kenneth [Philadelphia, PA; Korobtsev, Sergey [Moscow, RU; Shiryaevsky, Valery [Moscow, RU; Medvedev, Dmitry [Moscow, RU

    2012-05-08

    The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.

  5. High rate discharge studies of Li/SO2 cells

    NASA Astrophysics Data System (ADS)

    Dallek, S.; Bis, R. F.; Bowers, F. M.

    Experimental D-size spirally-wound 3V 10 A-hr cells were used in the reported study. The cells were instrumented with four iron-constantan thermocouples. It was found that during a discharge of a thermally insulated cell, the greatest amount of heat builds up in the center of the cell. The heat build-up appears to be purely resistive in nature. Concerning the safe use of these cells, it has been demonstrated that at very high rates of discharge, e.g., 10 A, cells may vent violently and cause a fire. At this high rate of discharge, the internal cell temperature exceeded the melting point of the lithium anode which is in the form of an unsupported strip. Thus, contact of the highly reactive molten lithium with other reactive species in the cell is possible under these conditions and could result in a very exothermic chemical reaction.

  6. Eddy correlation measurements of submarine groundwater discharge

    USGS Publications Warehouse

    Crusius, John; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment–water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5–15 cm above the sediment surface, at a frequency of 16 to 64 Hz, and for a period of 15 to 60 min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d− 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation.

  7. Discharge, suspended sediment, bedload, and water quality in Clear Creek, western Nevada, water years 2010-12

    USGS Publications Warehouse

    Huntington, Jena M.; Savard, Charles S.

    2015-09-30

    During this study, total annual sediment loads ranged from 355 tons per year in 2010 to 1,768 tons per year in 2011 and were significantly lower than the previous study (water years 2004–07). Bedload represented between 29 and 38 percent of total sediment load in water years 2010–12, and between 72 and 90 percent of the total sediment load in water years 2004–07, which indicates a decrease in bedload between study periods. Annual suspended-sediment loads in water years 2010–12 indicated no significant change from water years 2004–07. Mean daily discharge was significantly lower in water years 2010–12 than in waters years 2004–07 and may be the reason for the decrease in bedload that resulted in a lower total sediment load.

  8. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Geng, Jinling; Jia, Pengying; Zhang, Panpan; Zhang, Qi; Li, Yaru

    2017-11-01

    Excited by an alternating current voltage, a patterned discharge and a diffuse discharge are generated in a needle to liquid configuration. Using an intensified charge-coupled device (ICCD), temporal evolution of the discharge between the two electrodes is investigated for the diffuse mode and the patterned mode, respectively. For the diffuse mode, the positive discharge is in a glow regime, and the negative discharge is in a Townsend discharge regime. For the patterned mode, the discharge always belongs to the Townsend discharge regime. Moreover, in the patterned mode, various patterns including the single loop, single loop with the surrounding corona, triple loops, and concentric loops with a central spot are observed on the water surface with the increasing positive peak-value of the applied voltage (Upp). Temporally resolved images of the loop-patterns are captured on the water surface. From the electrical measurements and the ICCD imaging, it is found that the loop pattern emerges after the discharge bridges the two electrodes. Then, it begins to evolve and finally degenerates with the decrease in the discharge current. The pattern does not disappear until the discharge quenches. Formation of the loop-patterns is attributed to the role of negative ions.

  9. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river.

    PubMed

    Devane, Megan L; Moriarty, Elaine M; Wood, David; Webster-Brown, Jenny; Gilpin, Brent J

    2014-07-01

    A series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges. Giardia was the pathogen found most frequently in river water and sediment, although Campylobacter was found at higher levels in water samples. E. coli levels in water above 550 CFU/100 mL were associated with increased likelihood of detection of Campylobacter, Giardia and Cryptosporidium, supporting the use of E. coli as a reliable indicator for public health risk. The strength of the correlation of microbial indicators with pathogen detection in water decreased in the following order: E. coli>F-RNA phage>C. perfringens. All the microorganisms assayed in this study could be recovered from sediments. C. perfringens was observed to accumulate in sediments, which may have confounded its usefulness as an indicator of fresh sewage discharge. F-RNA phage, however, did not appear to accumulate in sediment and in conjunction with E. coli, may have potential as an indicator of recent human sewage discharge in freshwater. There is evidence to support the low-level persistence of Cryptosporidium and Giardia, but not Campylobacter, in river sediments after cessation of sewage discharges. In the event of disturbances of the sediment, it is highly probable that there could be re-mobilisation of microorganisms beyond the sediment-water exchange processes occurring under base flow conditions. Re-suspension events do, therefore, increase the potential risk to human health for those who participate in recreational

  10. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    PubMed

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  11. Trend analysis of ground-water levels and spring discharge in the Yucca Mountain Region, Nevada and California, 1960-2000

    USGS Publications Warehouse

    Fenelon, Joseph M.; Moreo, Michael T.

    2002-01-01

    Ground-water level and discharge data from 1960 to 2000 were analyzed for the Yucca Mountain region of southern Nevada and eastern California. Included were water-level data from 37 wells and a fissure (Devils Hole) and discharge data from five springs and from a flowing well. Data were evaluated for variability and for upward, downward, or cyclic trends with an emphasis on the period 1992-2000. Potential factors causing trends in water levels and discharge include ground-water withdrawal, infiltration of precipitation, earthquakes, evapotranspiration, barometric pressure, and earth tides. Statistically significant trends in ground-water levels or spring discharge from 1992 to 2000 were upward at 12 water-level sites and downward at 14 water-level sites and 1 spring-discharge site. In general, the magnitude of the change in water level from 1992 to 2000 was small (less than 2 feet), except where influenced by pumping or local effects such as possible equilibration from well construction or diversion of nearby surface water. Seasonal trends are superimposed on some of the long-term (1992-2000) trends in water levels and discharge. Factors causing seasonal trends include barometric pressure, evapotranspiration, and pumping. The magnitude of seasonal change in water level can vary from as little as 0.05 foot in regional aquifers to greater than 5 feet in monitoring wells near large supply wells in the Amargosa Farms area. Three major episodes of earthquake activity affected water levels in wells in the Yucca Mountain region between 1992 and 2000: the Landers/Little Skull Mountain, Northridge, and Hector Mine earthquakes. The Landers/Little Skull Mountain earthquakes, in June 1992, had the largest observed effect on water levels and on discharge during the study period. Monthly measurements of wells in the study network show that earthquakes affected water levels from a few tenths of a foot to 3.5 feet. In the Ash Meadows area, water levels remained relatively stable

  12. Miniature whirlwinds produced in the laboratory by high-voltage electrical discharges.

    PubMed

    Ryan, R T; Vonnegut, B

    1970-06-12

    Laboratory experiments showed that under certain conditions of vorticity the electrical heatinig produced by a high-voltage discharge at atmospheric pressure can cause the formation of a miniature tornado-like vortex. Once it forms, this vortex stabilizes the electrical discharge along its axis and changes its character from that of a spark to high-pressure variety of a glow discharge. Electrical and dynamic parameters were measured. By relating observations and measurements made in these experiments to previous work and to analogous situations in nature, it is concluded that the heating produced by electrical discharges in a large storm may play a significant role in forming and maintaining natural tornadoes.

  13. Recycled Coarse Aggregate Produced by Pulsed Discharge in Water

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Shigeishi, Mitsuhiro; Nakashima, Kazuyuki; Murakami, Akira; Kuroki, Kaori; Kiyan, Tsuyoshi; Tomoda, Yuichi; Sakugawa, Takashi; Katsuki, Sunao; Akiyama, Hidenori; Ohtsu, Masayasu

    In Japan, the recycling ratio of concrete scraps has been kept over 98 % after the Law for the Recycling of Construction Materials was enforced in 2000. In the present, most of concrete scraps were recycled as the Lower Subbase Course Material. On the other hand, it is predicted to be difficult to keep this higher recycling ratio in the near future because concrete scraps increase rapidly and would reach to over 3 times of present situation in 2010. In addition, the demand of concrete scraps as the Lower Subbase Course Material has been decreased. Therefore, new way to reuse concrete scraps must be developed. Concrete scraps normally consist of 70 % of coarse aggregate, 19 % of water and 11 % of cement. To obtain the higher recycling ratio, the higher recycling ratio of coarse aggregate is desired. In this paper, a new method for recycling coarse aggregate from concrete scraps has been developed and demonstrated. The system includes a Marx generator and a point to hemisphere mesh electrode immersed in water. In the demonstration, the test piece of concrete scrap was located between the electrodes and was treated by the pulsed discharge. After discharge treatment of test piece, the recycling coarse aggregates were evaluated under JIS and TS and had enough quality for utilization as the coarse aggregate.

  14. The assessment of waters ecological state of the Crimea coastal near high-rise construction zones

    NASA Astrophysics Data System (ADS)

    Vetrova, Natalya; Ivanenko, Tatyana; Mannanov, Emran

    2018-03-01

    The relevance of our study is determined by the significant level of coastal sea waters pollution by sewage near high-rise construction zones, which determines the violation of the sanitary and hygienic of sea waters `characteristics and limits the possibilities for organizing recreational activities. The purpose of this study is to identify the ecological state of the marine aquatic area by the example of the Western Crimea near high-rise construction zones. The studies confirmed that the recreational and coastal area wastewater is intensely mixed with seawater, as a result, the pollution in the coastal strip of the sea in the area of deep water discharges sharply decrease. This happens because of water rapid rise to the surface and under the influence of the continuous movement of sea water huge masses with deep-water discharge, fresh wastewater is actively mixed with sea water. However, with no doubt, it is inadmissible to discharge sewage into the sea directly from the shore, but only at the estimated distance from the coast. The materials of the article can be useful for the management bodies and organizations involved in monitoring the quality of the coastal zone of the sea, teachers and students of higher educational institutions when assessing the ecological situation of the territories.

  15. Temporal 222Rn distributions to reveal groundwater discharge into desert lakes: Implication of water balance in the Badain Jaran Desert, China

    NASA Astrophysics Data System (ADS)

    Luo, Xin; Jiao, Jiu Jimmy; Wang, Xu-sheng; Liu, Kun

    2016-03-01

    How lake systems are maintained and water is balanced in the lake areas in the Badain Jaran Desert (BJD), northeast of China have been debated for about a decade. In this study, continuous 222Rn measurement is used to quantify groundwater discharge into two representative fresh and brine water lakes in the desert using a steady-state mass-balance model. Two empirical equations are used to calculate atmospheric evasion loss crossing the water-air interface of the lakes. Groundwater discharge rates yielded from the radon mass balance model based on the two empirical equations are well correlated and of almost the same values, confirming the validity of the model. The fresh water and brine lakes have a daily averaged groundwater discharge rate of 7.6 ± 1.7 mm d-1 and 6.4 ± 1.8 mm d-1, respectively. The temporal fluctuations of groundwater discharge show similar patterns to those of the lake water level, suggesting that the lakes are recharged from nearby groundwater. Assuming that all the lakes have the same discharge rate as the two studied lakes, total groundwater discharge into all the lakes in the desert is estimated to be 1.59 × 105 m3 d-1. A conceptual model of water balance within a desert lake catchment is proposed to characterize water behaviors within the catchment. This study sheds lights on the water balance in the BJD and is of significance in sustainable regional water resource utilization in such an ecologically fragile area.

  16. Specific Localization of High-Voltage Discharge in Vicinity of Two Gases

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey; Shurupov, Michail; Shneider, Michail; Napartovich, Anatoly; Kochetov, Igor

    2011-10-01

    A subject of paper is the appearance and dynamics of sub-microsecond long filamentary high-voltage discharge generated in atmosphere, and in non-homogeneous gaseous media. Typical discharge parameters are: maximal current 1-3kA, breakdown voltage >100 kV, duration 30-100 ns, gap distance 50-100mm. The effect of discharge specific localization within mixing layer of two gases is particularly discussed. The second discussed idea is the filamentary discharge movement within a region with concentration gradient of different components. For the short-pulse discharge the physical mechanism appears as the following. The first stage of the spark breakdown is the multiple streamers propagation from the high-voltage electrode toward the grounded one. In case of high-power electrical source those streamers occupy a huge volume of the gas, covering all possible paths for the further development. The next phase consists of the real selection of the discharge path among the multiple channels with non-zero conductivity. Experiments and calculations are presented for Air-CO2 and Air-C2H4 pairs. The effects found are supposed to be applied for lightning prediction/protection, and for high-speed mixing acceleration. The work was funded through EOARD-ISTC project #3793p. Some part of this work was supported by RFBR grant #10-08-00952.

  17. Stratification of living organisms in ballast tanks: how do organism concentrations vary as ballast water is discharged?

    PubMed

    First, Matthew R; Robbins-Wamsley, Stephanie H; Riley, Scott C; Moser, Cameron S; Smith, George E; Tamburri, Mario N; Drake, Lisa A

    2013-05-07

    Vertical migrations of living organisms and settling of particle-attached organisms lead to uneven distributions of biota at different depths in the water column. In ballast tanks, heterogeneity could lead to different population estimates depending on the portion of the discharge sampled. For example, concentrations of organisms exceeding a discharge standard may not be detected if sampling occurs during periods of the discharge when concentrations are low. To determine the degree of stratification, water from ballast tanks was sampled at two experimental facilities as the tanks were drained after water was held for 1 or 5 days. Living organisms ≥50 μm were counted in discrete segments of the drain (e.g., the first 20 min of the drain operation, the second 20 min interval, etc.), thus representing different strata in the tank. In 1 and 5 day trials at both facilities, concentrations of organisms varied among drain segments, and the patterns of stratification varied among replicate trials. From numerical simulations, the optimal sampling strategy for stratified tanks is to collect multiple time-integrated samples spaced relatively evenly throughout the discharge event.

  18. Transition from diffuse to self-organized discharge in a high frequency dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Belinger, Antoine; Naudé, Nicolas; Gherardi, Nicolas

    2017-05-01

    Depending on the operating conditions, different regimes can be obtained in a dielectric barrier discharge (DBD): filamentary, diffuse (also called homogeneous) or self-organized. For a plane-to-plane DBD operated at high frequency (160 kHz) and at atmospheric pressure in helium gas, we show that the addition of a small amount of nitrogen induces a transition from the diffuse regime to a self-organized regime characterized by the appearance of filaments at the exit of the discharge. In this paper, we detail mechanisms that could be responsible of the transition from diffuse mode to this self-organized mode. We point out the critical role of the power supply and the importance of the gas memory effect from one discharge to the following one on the transition to the self-organised mode. The self-organized mode is usually attributed to a surface memory effect. In this work, we show an additional involvement of the gas memory effect on the self-organized mode. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  19. Digital-model analysis of the effects of water-use alternatives on spring discharges Gooding and Jerome Counties, Idaho

    USGS Publications Warehouse

    Moreland, Joe A.

    1976-01-01

    Springs discharging from the Snake Plain aquifer contribute approximately 6,000 cubic feet per second (170 cubic metres per second) to flow in the Snake River between Milner and King Hill. Before irrigation began on the Snake River Plain north and east of the springs, total spring discharge was about 4,200 cubic feet per second (120 cubic meters per second). Increasing amounts of irrigated acreage from the early 1900's to the mid-1940's contributed more irrigation-return water to the aquifer resulting in increased discharge at the springs. Maximum discharge of about 6,800 cubic feet per second (190 cubic metres per second) occurred during the late 1940's and early 1950's. Increased use of pumped ground water for irrigation and changing irrigation practices have since resulted in a decline in spring discharge.

  20. Potential health implications of water resources depletion and sewage discharges in the Republic of Macedonia.

    PubMed

    Hristovski, Kiril D; Pacemska-Atanasova, Tatjana; Olson, Larry W; Markovski, Jasmina; Mitev, Trajce

    2016-08-01

    Potential health implications of deficient sanitation infrastructure and reduced surface water flows due to climate change are examined in the case study of the Republic of Macedonia. Changes in surface water flows and wastewater discharges over the period 1955-2013 were analyzed to assess potential future surface water contamination trends. Simple model predictions indicated a decline in surface water hydrology over the last half century, which caused the surface waters in Macedonia to be frequently dominated by >50% of untreated sewage discharges. The surface water quality deterioration is further supported by an increasing trend in modeled biochemical oxygen demand trends, which correspond well with the scarce and intermittent water quality data that are available. Facilitated by the climate change trends, the increasing number of severe weather events is already triggering flooding of the sewage-dominated rivers into urban and non-urban areas. If efforts to develop a comprehensive sewage collection and treatment infrastructure are not implemented, such events have the potential to increase public health risks and cause epidemics, as in the 2015 case of a tularemia outbreak.

  1. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery.

    PubMed

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-09-15

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a "solar water battery". The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E(0) (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge.

  2. Overvoltage effect on electrical discharge type in medium-conductivity water in inhomogeneous pulsed electric field

    NASA Astrophysics Data System (ADS)

    Panov, V. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Son, E. E.

    2018-01-01

    The transition between thermal and streamer discharges has been observed experimentally in water solution with conductivity 100 μS/cm applying positive voltage pulses to pin-to-rod electrodes. The transition happens at five-fold pulse amplitude. Considering streamer propagation as an ionization wave helped to establish relation between the parameters governing transition from one to another discharge mechanism.

  3. Estimating groundwater discharge into the ocean in the Yucatán Peninsula

    NASA Astrophysics Data System (ADS)

    Alvarez Rodriguez, G.; Gutierrez-Jurado, H. A.; Uuh-Sonda, J.

    2017-12-01

    The Yucatán peninsula is an emerged flat carbonate block abundant in soluble rocks. High permeability and dissolution of the rock, facilitates the development of channels, sinkholes and caves where underground rivers discharge into the ocean. There are no rivers or streams acting as a surface drainage system, all rainfall water entering the peninsula is discharged either as evapotranspiration (ET) or as underground runoff into the ocean. To date there are no estimates of the total groundwater discharge from the peninsula into the sea, and of the spatial distribution of recharge and discharge areas thereby hindering efforts to understand the dynamics of a complex hydrologic system. In this study, we estimate the discharge (Q) by solving the water balance equation (ΔS=PPT-ET-Q) using remote sensing products over a period of 12 years; the change in storage (ΔS) was retrieved from the satellite GRACE; precipitation (PPT) from the Tropical Rainfall Measuring Mission; and evapotranspiration (ET) from the Moderate Resolution Imaging Spectroradiometer. Results show that freshwater discharge via evapotranspiration can be a significant portion of the water budget depending on the climatic conditions throughout the year. We observe high recharge-discharge inter-annual variability in the center of the peninsula and some clearly defined recharge and discharge zones around the perimeter. On average the dryer north-east and wetter north-western parts of the peninsula act as recharge zones (where the influx of water is higher than the outflow), while the central-northern part of the peninsula corresponding to agricultural lands, acts as a discharge zone (outflow is higher than influx). The most southern region of the peninsula and the western mangroves are always discharge zones. Finally, our analyses reveal a number of highly subsidized zones, where precipitation levels are consistently lower than evapotranspiration, hence indicating the presence of groundwater dependent

  4. Developing a methodology for real-time trading of water withdrawal and waste load discharge permits in rivers.

    PubMed

    Soltani, Maryam; Kerachian, Reza

    2018-04-15

    In this paper, a new methodology is proposed for the real-time trading of water withdrawal and waste load discharge permits in agricultural areas along the rivers. Total Dissolved Solids (TDS) is chosen as an indicator of river water quality and the TDS load that agricultural water users discharge to the river are controlled by storing a part of return flows in some evaporation ponds. Available surface water withdrawal and waste load discharge permits are determined using a non-linear multi-objective optimization model. Total available permits are then fairly reallocated among agricultural water users, proportional to their arable lands. Water users can trade their water withdrawal and waste load discharge permits simultaneously, in a bilateral, step by step framework, which takes advantage of differences in their water use efficiencies and agricultural return flow rates. A trade that would take place at each time step results in either more benefit or less diverted return flow. The Nucleolus cooperative game is used to redistribute the benefits generated through trades in different time steps. The proposed methodology is applied to PayePol region in the Karkheh River catchment, southwest Iran. Predicting that 1922.7 Million Cubic Meters (MCM) of annual flow is available to agricultural lands at the beginning of the cultivation year, the real-time optimization model estimates the total annual benefit to reach 46.07 million US Dollars (USD), which requires 6.31 MCM of return flow to be diverted to the evaporation ponds. Fair reallocation of the permits, changes these values to 35.38 million USD and 13.69 MCM, respectively. Results illustrate the effectiveness of the proposed methodology in the real-time water and waste load allocation and simultaneous trading of permits. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Computational Study of Anomalous Transport in High Beta DIII-D Discharges with ITBs

    NASA Astrophysics Data System (ADS)

    Pankin, Alexei; Garofalo, Andrea; Grierson, Brian; Kritz, Arnold; Rafiq, Tariq

    2015-11-01

    The advanced tokamak scenarios require a large bootstrap current fraction and high β. These large values are often outside the range that occurs in ``conventional'' tokamak discharges. The GLF23, TGLF, and MMM transport models have been previously validated for discharges with parameters associated with ``conventional'' tokamak discharges. It has been demonstrated that the TGLF model under-predicts anomalous transport in high β DIII-D discharges [A.M. Garofalo et al. 2015 TTF Workshop]. In this research, the validity of MMM7.1 model [T. Rafiq et al. Phys. Plasmas 20 032506 (2013)] is tested for high β DIII-D discharges with low and high torque. In addition, the sensitivity of the anomalous transport to β is examined. It is shown that the MMM7.1 model over-predicts the anomalous transport in the DIII-D discharge 154406. In particular, a significant level of anomalous transport is found just outside the internal transport barrier. Differences in the anomalous transport predicted using TGLF and MMM7.1 are reviewed. Mechanisms for quenching of anomalous transport in the ITB regions of high-beta discharges are investigated. This research is supported by US Department of Energy.

  6. 30 CFR 250.248 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges...) § 250.248 What solid and liquid wastes and discharges information and cooling water intake information must accompany the DPP or DOCD? The following solid and liquid wastes and discharges information and...

  7. General field and office procedures for indirect discharge measurements

    USGS Publications Warehouse

    Benson, M.A.; Dalrymple, Tate

    2001-04-01

    The discharge of streams is usually measured by the current-meter method. During flood periods, however, it is frequently impossible or impractical to measure the discharges by this method when they occur. Consequently, many peak discharges must be determined after the passage of the flood by indirect methods, such as slope-area, contracted-opening, flow-over-dam, and flow-through-culvert, rather than by direct current-meter measurement. Indirect methods of determining peak discharge are based on hydraulic equations which relate the discharge to the water-surface profile and the geometry of the channel. A field survey is made after the flood to determine the location and elevation of high-water marks and the characteristics of the channel. Detailed descriptions of the general procedures used in collecting the field data and in computing the discharge are given in this report. Each of the methods requires special procedures described in subsequent chapters.

  8. A model for water discharge based on energy consumption data (WATEN).

    NASA Astrophysics Data System (ADS)

    Moyano, María Carmen; Tornos, Lucía; Juana, Luis

    2014-05-01

    As the need for water conservation is becoming a major water concern, a lumped model entitled WATEN has been proposed to analyse the water balance in the B-XII Irrigation Sector of the Lower Guadalquivir Irrigated Area, one of the largest irrigated areas in Spain. The aim of this work is to approach the hydrological study of an irrigation district lacking of robust data in such a manner that the water balance is performed from less to more process complexity. WATEN parameters are the total and readily available moisture in the soil, a fix percentage for effective precipitation, and the irrigation efficiency. The Sector presents six different drainage pumping stations, with particular pumping groups and with no water flow measurement devices. Energy consumption depends on the working pumping stations and groups, and on the variable water level to discharge. Energy consumed in the drainage pumping stations has been used for calibration The study has relied on two monthly series of data: the volume of drainage obtained from the model and the energy consumed in the pumping stations. A double mass analysis has permitted the detection of data tendencies. The two resulting series of data have been compared to assess model performance, particularly the Pearson's product moment correlation coefficient and the Nash-Sutcliffe coefficient of efficiency, e2, determined for monthly data and for annual and monthly average data. For model calibration, we have followed a classical approach based on objective functions optimization, and a robust approach based on Markov chain Monte Carlo simulation process, driven in a similar manner to genetic algorithms, entitled Parameters Estimation on Driven Trials (PEDT), and aiming to reduce computational requirements. WATEN has been parameterised maintaining its physical and conceptual rationality. The study approach is outlined as a progressive introduction of data. In this manner, we can observe its effect on the studied objective

  9. Examining Submarine Ground-Water Discharge into Florida Bay by using 222Rn and Continuous Resistivity Profiling

    USGS Publications Warehouse

    Swarzenski, Peter; Reich, Chris; Rudnick, David

    2009-01-01

    Estimates of submarine ground-water discharge (SGD) into Florida Bay remain one of the least understood components of a regional water balance. To quantify the magnitude and seasonality of SGD into upper Florida Bay, research activities included the use of the natural geochemical tracer, 222Rn, to examine potential SGD hotspots (222Rn surveys) and to quantify the total (saline + fresh water component) SGD rates at select sites (222Rn time-series). To obtain a synoptic map of the 222Rn distribution within our study site in Florida Bay, we set up a flow-through system on a small boat that consisted of a Differential Global Positioning System, a calibrated YSI, Inc CTD sensor with a sampling rate of 0.5 min, and a submersible pump (z = 0.5 m) that continuously fed water into an air/water exchanger that was plumbed simultaneously into four RAD7 222Rn air monitors. To obtain local advective ground-water flux estimates, 222Rn time-series experiments were deployed at strategic positions across hydrologic and geologic gradients within our study site. These time-series stations consisted of a submersible pump, a Solinist DIVER (to record continuous CTD parameters) and two RAD7 222Rn air monitors plumbed into an air/water exchanger. Repeat time-series 222Rn measurements were conducted for 3-4 days across several tidal excursions. Radon was also measured in the air during each sampling campaign by a dedicated RAD7. We obtained ground-water discharge information by calculating a 222Rn mass balance that accounted for lateral and horizontal exchange, as well as an appropriate ground-water 222Rn end member activity. Another research component utilized marine continuous resistivity profiling (CRP) surveys to examine the subsurface salinity structure within Florida Bay sediments. This system consisted of an AGI SuperSting 8 channel receiver attached to a streamer cable that had two current (A,B) electrodes and nine potential electrodes that were spaced 10 m apart. A separate DGPS

  10. Phosphonate removal from discharged circulating cooling water using iron-carbon micro-electrolysis.

    PubMed

    Zhou, Zhen; Qiao, Weimin; Lin, Yangbo; Shen, Xuelian; Hu, Dalong; Zhang, Jianqiao; Jiang, Lu-Man; Wang, Luochun

    2014-01-01

    Phosphonate is a commonly used corrosion and scale inhibitor for a circulating cooling water (CCW) system. Its discharge could cause eutrophication of receiving waters. The iron-carbon (Fe/C) micro-electrolysis technology was used to degrade and remove phosphonate from discharged CCW. The influences of initial pH, Fe/C ratio (FCR) and temperature on phosphonate removal were investigated in a series of batch tests and optimized by response surface methodology. The quadratic model of phosphonate removal was obtained with satisfactory degrees of fitness. The optimum conditions with total phosphorus removal efficiency of 95% were obtained at pH 7.0, FCR of 1.25, and temperature of 45 °C. The phosphonate removal mechanisms were also studied. Phosphonate removal occurred predominantly via two consecutive reactive phases: the degradation of phosphonate complexes (Ca-phosphonate) and the precipitation of Fe/C micro-electrolysis products (PO₄(3-), Ca²⁺ and Fe³⁺).

  11. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water

    NASA Astrophysics Data System (ADS)

    Hare, Danielle K.; Briggs, Martin A.; Rosenberry, Donald O.; Boutt, David F.; Lane, John W.

    2015-11-01

    Groundwater has a predictable thermal signature that can be used to locate discrete zones of discharge to surface water. As climate warms, surface water with strong groundwater influence will provide habitat stability and refuge for thermally stressed aquatic species, and is therefore critical to locate and protect. Alternatively, these discrete seepage locations may serve as potential point sources of contaminants from polluted aquifers. This study compares two increasingly common heat tracing methods to locate discrete groundwater discharge: direct-contact measurements made with fiber-optic distributed temperature sensing (FO-DTS) and remote sensing measurements collected with thermal infrared (TIR) cameras. FO-DTS is used to make high spatial resolution (typically m) thermal measurements through time within the water column using temperature-sensitive cables. The spatial-temporal data can be analyzed with statistical measures to reveal zones of groundwater influence, however, the personnel requirements, time to install, and time to georeference the cables can be burdensome, and the control units need constant calibration. In contrast, TIR data collection, either from handheld, airborne, or satellite platforms, can quickly capture point-in-time evaluations of groundwater seepage zones across large scales. However the remote nature of TIR measurements means they can be adversely influenced by a number of environmental and physical factors, and the measurements are limited to the surface ;skin; temperature of water features. We present case studies from a range of lentic to lotic aquatic systems to identify capabilities and limitations of both technologies and highlight situations in which one or the other might be a better instrument choice for locating groundwater discharge. FO-DTS performs well in all systems across seasons, but data collection was limited spatially by practical considerations of cable installation. TIR is found to consistently locate

  12. Considering the summation of the effect of harmful substances during the calculation of the environmentally safe waste water discharge

    NASA Astrophysics Data System (ADS)

    Sokolov, A. K.

    2017-09-01

    This article presents the technique of assessing the maximum allowable (standard) discharge of waste waters with several harmful substances into a water reservoir. The technique makes it possible to take into account the summation of their effect provided that the limiting harmful indices are the same. The expressions for the determination of the discharge limit of waste waters have been derived from the conditions of admissibility of the effect of several harmful substances on the waters of a reservoir. Mathematical conditions of admissibility of the effect of wastewaters on a reservoir are given for the characteristic combinations of limiting harmful indices and hazard classes of several substances. The conditions of admissibility of effects are presented in the form of logical products of the sums of relative concentrations that should not exceed the value of 1. It is shown that the calculation of the process of wastewater dilution in a flowing water reservoir is possible only on the basis of a numerical method to assess the wastewater discharge limit. An example of the numerical calculation of the standard limit of industrial enterprise wastewater discharges that contain polysulfide oil, flocculant VPK-101, and fungicide captan is given to test this method. In addition to these three harmful substances, the water reservoir also contained a fourth substance, namely, Zellek-Super herbicide, above the waste discharge point. The summation of the harmful effect was taken into account for VPK-101, captan, and Zellek-Super. The reliability of the technique was tested by the calculation of concentrations of the four substances in the control point of the flowing reservoir during the estimated maximum allowable wastewater discharge. It is shown that the value of the maximum allowable discharge limit was almost two times higher for the example under consideration, taking into account that the effect of harmful substances was unidirectional, which provides a higher level

  13. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  14. Suspended-sediment and fresh-water discharges in the Ob and Yenisey rivers, 1960-1988

    USGS Publications Warehouse

    Meade, R.H.; Bobrovitskaya, N.N.; Babkin, V.I.

    2000-01-01

    Of the world's great rivers, the Ob and Yenisey rank among the largest suppliers of fresh water and among the smallest suppliers of suspended sediment to the coastal ocean. Sediment in the middle reaches of the rivers is mobilized from bordering terraces and exchanged between channels and flood plains. Sediment in the lower reaches of these great rivers is deposited and stored (permanently, on a millennial time scale) in flood plains. Sediment discharges, already small under natural conditions, are diminished further by large manmade reservoirs that trap significant proportions of the moving solids. The long winter freeze and sudden spring breakup impose a peakedness in seasonal water runoff and sediment discharge that contrasts markedly with that in rivers of the tropics and more temperate climates. Very little sediment from the Ob and Yenisey rivers is being transported to the open waters of the Arctic Ocean under present conditions.

  15. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    NASA Astrophysics Data System (ADS)

    Hernández-Arias, A. N.; Rodríguez-Méndez, B. G.; López-Callejas, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Barocio, S. R.; Muñoz-Castro, A. E.; de la Piedad Beneitez, A.

    2012-06-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 103-107 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ~90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  16. Determination of dilution factors for discharge of aluminum-containing wastes by public water-supply treatment facilities into lakes and reservoirs in Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Massey, Andrew J.; Brandt, Sara L.

    2011-09-16

    reservoir volume was determined to be available for mixing on the basis of vertical and horizontal aluminum-concentration profiling. Losses caused by settling of aluminum were assumed to be proportional to aluminum concentration and reservoir area. The constant of proportionality, as a function of DOC concentration, was established by simulations in each of five reservoirs that differed in DOC concentration.In addition to computing dilution factors, the project determined dilution factors that would be protective with the same statistical basis (frequency of exceedance of the chronic standard) as dilutions computed for streams at the 7-day-average 10-year-recurrence annual low flow (the 7Q10). Low-flow dilutions are used for permitting so that receiving waters are protected even at the worst-case flow levels. The low-flow dilution factors that give the same statistical protection are the lowest annual 7-day-average dilution factors with a recurrence of 10 years, termed 7DF10s. Determination of 7DF10 values for reservoirs required that long periods of record be simulated so that dilution statistics could be determined. Dilution statistics were simulated for 13 reservoirs from 1960 to 2004 using U.S. Geological Survey Firm-Yield Estimator software to model reservoir inputs and outputs and present-day values of filter-effluent discharge and aluminum concentration.Computed settling velocities ranged from 0 centimeters per day (cm/d) at DOC concentrations of 15.5 milligrams per liter (mg/L) to 21.5 cm/d at DOC concentrations of 2.7 mg/L. The 7DF10 values were a function of aluminum effluent discharged. At current (2009) effluent discharge rates, the 7DF10 values varied from 1.8 to 115 among the 13 reservoirs. In most cases, the present-day (2009) discharge resulted in receiving water concentrations that did not exceed the standard at the 7DF10. Exceptions were one reservoir with a very small area and three reservoirs with high concentrations of DOC. Maximum permissible

  17. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    NASA Astrophysics Data System (ADS)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  18. Submarine Ground Water Discharge and Fate Along the Coast of Kaloko-Honokohau National Historical Park, Hawai'i:Part 2, Spatial and Temporal Variations in Salinity, Radium-Isotope Activity, and Nutrient Concentrations in Coastal Waters, December 2003-April 2006

    USGS Publications Warehouse

    Knee, Karen; Street, Joseph; Grossman, Eric E.; Paytan, Adina

    2008-01-01

    The aquatic resources of Kaloko-Honokohau National Historical Park, including rocky shoreline, fishponds, and anchialine pools, provide habitat to numerous plant and animal species and offer recreational opportunities to local residents and tourists. A considerable amount of submarine groundwater discharge was known to occur in the park, and this discharge was suspected to influence the park's water quality. Thus, the goal of this study was to characterize spatial and temporal variations in the quality and quantity of groundwater discharge in the park. Samples were collected in December 2003, November 2005, and April 2006 from the coastal ocean, beach pits, three park observation wells, anchialine pools, fishponds, and Honokohau Harbor. The activities of two Ra isotopes commonly used as natural ground-water tracers (223Ra and 224Ra), salinity, and nutrient concentrations were measured. Fresh ground water composed a significant proportion (8-47 volume percent) of coastal-ocean water. This percentage varied widely between study sites, indicating significant spatial variation in submarine groundwater discharge at small (meter to kilometer) scales. Nitrate + nitrite, phosphate, and silica concentrations were significantly higher in nearshore coastal-ocean samples relative to samples collected 1 km or more offshore, and linear regression showed that most of this difference was due to fresh ground-water discharge. High-Ra-isotope-activity, higher-salinity springs were a secondary source of nutrients, particularly phosphate, at Honokohau Harbor and Aiopio Fishtrap. Salinity, Ra-isotope activity, and nutrient concentrations appeared to vary in response to the daily tidal cycle, although little seasonal variation was observed, indicating that submarine ground-water discharge may buffer the park's water quality against the severe seasonal changes that would occur in a system where freshwater inputs were dominated by rivers and runoff. Ra-isotope-activity ratios indicated

  19. Temporal variability in domestic point source discharges and their associated impact on receiving waters.

    PubMed

    Richards, Samia; Withers, Paul J A; Paterson, Eric; McRoberts, Colin W; Stutter, Marc

    2016-11-15

    Discharges from the widely distributed small point sources of pollutants such as septic tanks contribute to microbial and nutrient loading of streams and can pose risks to human health and stream ecology, especially during periods of ecological sensitivity. Here we present the first comprehensive data on the compositional variability of septic tank effluents (STE) as a potential source of water pollution during different seasons and the associated links to their influence on stream waters. To determine STE parameters and nutrient variations, the biological and physicochemical properties of effluents sampled quarterly from 12 septic tank systems were investigated with concurrent analyses of upstream and downstream receiving waters. The study revealed that during the warmer dryer months of spring and summer, effluents were similar in composition, as were the colder wetter months of autumn and winter. However, spring/summer effluents differed significantly (P<0.05) from autumn/winter for concentrations of biological oxygen demand (BOD), arsenic, barium (Ba), cobalt, chromium, manganese, strontium (Sr), titanium, tungsten (W) and zinc (Zn). With the exception of BOD, Ba and Sr which were greater in summer and spring, the concentrations of these parameters were greater in winter. Receiving stream waters also showed significant seasonal variation (P≤0.05) in alkalinity, BOD, dissolved organic carbon, sulphate, sulphur, lithium, W, Zn and Escherichiacoli abundance. There was a clear significant influence of STE on downstream waters relative to upstream from the source (P<0.05) for total suspended solids, total particulate P and N, ammonium-N, coliforms and E. coli. The findings of this study found seasonal variation in STE and place effluent discharges as a factor affecting adjacent stream quality and call for appropriate measures to reduce or redirect STE discharges away from water courses. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Solar-rechargeable battery based on photoelectrochemical water oxidation: Solar water battery

    PubMed Central

    Kim, Gonu; Oh, Misol; Park, Yiseul

    2016-01-01

    As an alternative to the photoelectrochemical water splitting for use in the fuel cells used to generate electrical power, this study set out to develop a solar energy rechargeable battery system based on photoelectrochemical water oxidation. We refer to this design as a “solar water battery”. The solar water battery integrates a photoelectrochemical cell and battery into a single device. It uses a water oxidation reaction to simultaneously convert and store solar energy. With the solar water battery, light striking the photoelectrode causes the water to be photo-oxidized, thus charging the battery. During the discharge process, the solar water battery reduces oxygen to water with a high coulombic efficiency (>90%) and a high average output voltage (0.6 V). Because the reduction potential of oxygen is more positive [E0 (O2/H2O) = 1.23 V vs. NHE] than common catholytes (e.g., iodide, sulfur), a high discharge voltage is produced. The solar water battery also exhibits a superior storage ability, maintaining 99% of its specific discharge capacitance after 10 h of storage, without any evidence of self-discharge. The optimization of the cell design and configuration, taking the presence of oxygen in the cell into account, was critical to achieving an efficient photocharge/discharge. PMID:27629362

  1. Water resources data, Kansas, water year 2004

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2005-01-01

    Water-resources data for the 2004 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 155 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 14 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 16 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 29 high-flow partial-record stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  2. Illegal discharges in Spanish waters. Analysis of the profile of the Alleged Offending Vessel.

    PubMed

    Martín Alonso, J M; Ortega Piris, Andrés; Pérez Labajos, Carlos

    2015-08-15

    There is at present a growing concern, on an international level, over environmental offences caused by oil discharges into the sea from vessels. The objective of the Spanish Maritime Administration is to prevent the illegal discharges of polluting substances in Spanish maritime waters by vessels in transit. To combat such discharges, since 2007 Spain has reinforced its means of response with the use of aircrafts that provide services of maritime surveillance, identifying the Alleged Offending Vessels and acting as a deterrent. The objective of the present study is both to introduce the concept and to analyze certain aspects of the so-called "Alleged Offending Vessel" (AOV) that have been detected within Spanish Search and Rescue (SAR) jurisdiction waters in the period 2008-2012, in order to build a profile of such a vessel. For this purpose, an analysis methodology is formalized based on the GINI index and Lorenz curves, associated with certain aspects of vessels: type, flag and sailing area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The influence of submarine groundwater discharge on greenhouse gas evasion from coastal waters (Invited)

    NASA Astrophysics Data System (ADS)

    Santos, I. R.

    2013-12-01

    Coastal waters are thought to play a major role on global carbon budgets but we still lack a quantitative understanding about some mechanisms driving greenhouse gas cycling in coastal waters. Very little is known about the role of submarine groundwater discharge (SGD) in delivering carbon to rivers, estuaries and coastal waters even though the concentrations of most carbon species in groundwater are often much higher than those in surface waters. I hypothesize that SGD plays a significant role in coastal carbon and greenhouse gas budgets even if the volumetric SGD contribution is small. I will report new, detailed observations of radon (a natural groundwater tracer) and carbon dioxide and methane concentrations and stable isotopes in tidal rivers, estuaries, coastal wetlands, mangroves and coral reef lagoons. Groundwater exchange at these contrasting sites was driven by a wide range of processes, including terrestrial hydraulic gradients, tidal pumping, and convection. In all systems, SGD was an important source of carbon dioxide, DIC, and methane to surface waters. In some cases, groundwater seepage alone could account for 100% of carbon dioxide evasion from surface waters to the atmosphere. Combining high precision in situ radon and greenhouse gas concentration and stable isotope observations allows for an effective, unambiguous assessment of how groundwater seepage drives carbon dynamics in surface waters.

  4. Changing Waters: Are Climate-Driven Changes in Discharge Regimes Increasing Eutrophication Risk in the Great Lakes Basin?

    NASA Astrophysics Data System (ADS)

    Van Meter, K. J.; Basu, N. B.

    2017-12-01

    In recent decades, the Great Lakes Basin (GLB) has experienced increasing precipitation, warming temperatures, and earlier spring thaws. During this same period, the region has been plagued by problems of water quality, with Lake Erie, in particular, experiencing a re-emergence of major eutrophication events, including an increased incidence of Harmful Algal Blooms. Although the prevailing paradigm is that eutrophication of inland waters is directly correlated with total phosphorus (P) inputs, recent decades have seen a decrease in the total P being delivered to the lakes from contributing watersheds. This apparent disconnect between inputs and outputs, i.e. decreasing P inputs but increased eutrophication, has led some to speculate that loading of total P is an insufficient metric of eutrophication risk and that increasing ratios of soluble reactive P (SRP) in relation to the total P (TP) entering inland water bodies may be a more important driver of algal growth. We hypothesize that changes in seasonal discharge patterns may be contributing to changes in the forms of P being delivered to the lakes, potentially due to changes in delivery pathways-for example surface pathways are more dominant in spring snowmelt, while shallow subsurface and tile pathways are more dominant during winter freeze-thaw events. To test this hypothesis, we have utilized data from more than 200 gaging stations across the GLB to explore the influences of climate and changing hydrologic patterns on biogeochemical processing and transport within the GLB. More specifically, we have asked the following questions: 1) How are discharge patterns changing across the GLB? 2) Are SRP:TP ratios increasing in subwatersheds of the GLB, and what are the spatial patterns in these changes? 3) Are climate-related changes in seasonality, e.g. earlier snowmelt, decreasing snowfall, longer growing seasons, linked to increased ratios of bioavailable P? Our results suggest that changes in precipitation as well

  5. Counting at low concentrations: the statistical challenges of verifying ballast water discharge standards

    USGS Publications Warehouse

    Frazier, Melanie; Miller, A. Whitman; Lee, Henry; Reusser, Deborah A.

    2013-01-01

    Discharge from the ballast tanks of ships is one of the primary vectors of nonindigenous species in marine environments. To mitigate this environmental and economic threat, international, national, and state entities are establishing regulations to limit the concentration of living organisms that may be discharged from the ballast tanks of ships. The proposed discharge standards have ranged from zero detectable organisms to 3. If standard sampling methods are used, verifying whether ballast discharge complies with these stringent standards will be challenging due to the inherent stochasticity of sampling. Furthermore, at low concentrations, very large volumes of water must be sampled to find enough organisms to accurately estimate concentration. Despite these challenges, adequate sampling protocols comprise a critical aspect of establishing standards because they help define the actual risk level associated with a standard. A standard that appears very stringent may be effectively lax if it is paired with an inadequate sampling protocol. We describe some of the statistical issues associated with sampling at low concentrations to help regulators understand the uncertainties of sampling as well as to inform the development of sampling protocols that ensure discharge standards are adequately implemented.

  6. Water withdrawals, wastewater discharge, and water consumption in the Apalachicola-Chattahoochee-Flint River Basin, 2005, and water-use trends, 1970-2005

    USGS Publications Warehouse

    Marella, Richard L.; Fanning, Julia L.

    2011-01-01

    In 2000, an estimated 49 percent of the water withdrawn for public supply in the basin was consumed, and the remaining 51 percent was returned to the hydrologic system through wastewater treatment systems. In 2005, an estimated 38 percent was consumed and 62 percent was returned to the hydrologic system. This contrast between water withdrawals and wastewater discharges for these years was caused primarily by below-average rainfall during 2000 (a dry year) and above-average rainfall during 2005 (a wet year).

  7. Advanced high frequency partial discharge measuring system

    NASA Technical Reports Server (NTRS)

    Karady, George G.

    1994-01-01

    This report explains the Advanced Partial Discharge Measuring System in ASU's High Voltage Laboratory and presents some of the results obtained using the setup. While in operation an insulation is subjected to wide ranging temperature and voltage stresses. Hence, it is necessary to study the effect of temperature on the behavior of partial discharges in an insulation. The setup described in this report can be used to test samples at temperatures ranging from -50 C to 200 C. The aim of conducting the tests described herein is to be able to predict the behavior of an insulation under different operating conditions in addition to being able to predict the possibility of failure.

  8. Spatial and temporal variations in high turbidity surface water off the Thule region, northwestern Greenland

    NASA Astrophysics Data System (ADS)

    Ohashi, Yoshihiko; Iida, Takahiro; Sugiyama, Shin; Aoki, Shigeru

    2016-09-01

    Glacial meltwater discharge from the Greenland ice sheet and ice caps forms high turbidity water in the proglacial ocean off the Greenland coast. Although the timing and magnitude of high turbidity water export affect the coastal marine environment, for example, through impacts on biological productivity, little is known about the characteristics of this high turbidity water. In this paper, we therefore report on the spatial and temporal variations in high turbidity water off the Thule region in northwestern Greenland, based on remote sensing reflectance data at a wavelength of 555 nm (Rrs555). The high turbidity area, identified on the basis of high reflectivity (Rrs555 ≥ 0.0070 sr-1), was generally distributed near the coast, where many outlet glaciers terminate in the ocean and on land. The extent of the high turbidity area exhibited substantial seasonal and interannual variability, and its annual maximum extent was significantly correlated with summer air temperature. Assuming a linear relationship between the high turbidity area and summer temperature, annual maximum extent increases under the influence of increasing glacial meltwater discharge, as can be inferred from present and predicted future warming trends.

  9. Disintegration of rocks based on magnetically isolated high voltage discharge

    NASA Astrophysics Data System (ADS)

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  10. Disintegration of rocks based on magnetically isolated high voltage discharge.

    PubMed

    He, Mengbing; Jiang, Jinbo; Huang, Guoliang; Liu, Jun; Li, Chengzu

    2013-02-01

    Recently, a method utilizing pulsed power technology for disintegration of rocks arouses great interest of many researchers. In this paper, an improved method based on magnetic switch and the results shown that the uniform dielectrics like plastic can be broken down in water is presented, and the feasible mechanism explaining the breakdown of solid is proposed and proved experimentally. A high voltage pulse of 120 kV, rise time 0.2 μs was used to ignite the discharging channel in solids. When the plasma channel is formed in the solid, the resistance of the channel is quiet small; even if a relatively low voltage is applied on the channel on this occasion, it will produce high current to heat the plasma channel rapidly, and eventually disintegrate the solids. The feasibility of promising industrial application in the drilling and demolition of natural and artificial solid materials by the method we presented is verified by the experiment result in the paper.

  11. Daily water and sediment discharges from selected rivers of the eastern United States; a time-series modeling approach

    USGS Publications Warehouse

    Fitzgerald, Michael G.; Karlinger, Michael R.

    1983-01-01

    Time-series models were constructed for analysis of daily runoff and sediment discharge data from selected rivers of the Eastern United States. Logarithmic transformation and first-order differencing of the data sets were necessary to produce second-order, stationary time series and remove seasonal trends. Cyclic models accounted for less than 42 percent of the variance in the water series and 31 percent in the sediment series. Analysis of the apparent oscillations of given frequencies occurring in the data indicates that frequently occurring storms can account for as much as 50 percent of the variation in sediment discharge. Components of the frequency analysis indicate that a linear representation is reasonable for the water-sediment system. Models that incorporate lagged water discharge as input prove superior to univariate techniques in modeling and prediction of sediment discharges. The random component of the models includes errors in measurement and model hypothesis and indicates no serial correlation. An index of sediment production within or between drain-gage basins can be calculated from model parameters.

  12. Surface water discharge and salinity monitoring of coastal estuaries in Everglades National Park, USA, in support of the Comprehensive Everglades Restoration Plan

    USGS Publications Warehouse

    Woods, Jeff

    2010-01-01

    Discharge and salinity were measured along the southwest and the southeast coast of Florida in Everglades National Park (ENP) within several rivers and creeks from 1996 through 2008. Data were collected using hydro-acoustic instruments and continuous water-quality monitors at fixed monitoring stations. Water flowed through ENP within two distinct drainage basins; specifically, Shark Slough and Taylor Slough. Discharge to the southwest coast through Shark Slough was substantially larger than discharge to the southeast coast through Taylor Slough. Correlation analysis between coastal flows and regulated flows at water-management structures upstream from ENP suggests rainfall has a larger impact on discharge through Shark Slough than releases from the S-12 water management structures. In contrast, flow releases from water management structures upstream from Taylor Slough appear to be more closely related to discharge along the southeast coast. Salinity varied within a wide range (0 to 50 parts per thousand) along both coastlines. Periods of hypersalinity were greater along the southeast coast due to shallow compartmentalized basins within Florida Bay, which restrict circulation.

  13. Uncertainty Of Stream Nutrient Transport Estimates Using Random Sampling Of Storm Events From High Resolution Water Quality And Discharge Data

    NASA Astrophysics Data System (ADS)

    Scholefield, P. A.; Arnscheidt, J.; Jordan, P.; Beven, K.; Heathwaite, L.

    2007-12-01

    The uncertainties associated with stream nutrient transport estimates are frequently overlooked and the sampling strategy is rarely if ever investigated. Indeed, the impact of sampling strategy and estimation method on the bias and precision of stream phosphorus (P) transport calculations is little understood despite the use of such values in the calibration and testing of models of phosphorus transport. The objectives of this research were to investigate the variability and uncertainty in the estimates of total phosphorus transfers at an intensively monitored agricultural catchment. The Oona Water which is located in the Irish border region, is part of a long term monitoring program focusing on water quality. The Oona Water is a rural river catchment with grassland agriculture and scattered dwelling houses and has been monitored for total phosphorus (TP) at 10 min resolution for several years (Jordan et al, 2007). Concurrent sensitive measurements of discharge are also collected. The water quality and discharge data were provided at 1 hour resolution (averaged) and this meant that a robust estimate of the annual flow weighted concentration could be obtained by simple interpolation between points. A two-strata approach (Kronvang and Bruhn, 1996) was used to estimate flow weighted concentrations using randomly sampled storm events from the 400 identified within the time series and also base flow concentrations. Using a random stratified sampling approach for the selection of events, a series ranging from 10 through to the full 400 were used, each time generating a flow weighted mean using a load-discharge relationship identified through log-log regression and monte-carlo simulation. These values were then compared to the observed total phosphorus concentration for the catchment. Analysis of these results show the impact of sampling strategy, the inherent bias in any estimate of phosphorus concentrations and the uncertainty associated with such estimates. The

  14. An Improved Method for Interpretation of Concentration-Discharge Relationships in Riverine Water-Quality Data

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Harman, C. J.; Ball, W. P.

    2016-12-01

    Riverine concentration-discharge (C-Q) relationships are powerful indicators that can provide important clues toward understanding nutrient and sediment export dynamics from river systems, and the analysis of such relations has been a long-standing topic of importance in hydrologic literature. Proper interpretation of such relationships can be made complex, however, if the relationships of ln(C) ln(Q) are nonlinear or if the relationships change over time, season, or discharge. Methods of addressing these issues by "binning" data or smoothing trends can introduce artifacts and ambiguities that obscure underlying interactions among time, discharge, and season. Here we illustrate these issues with examples and propose an alternative method that uses the regression coefficients of the recently-developed WRTDS ("Weighted Regressions on Time, Discharge, and Season") model for examining riverine C-Q relationships, including their uncertainty. The method is applied to sediment concentration data from Susquehanna River at Conowingo Dam (Maryland, USA) to illustrate how the WRTDS coefficients can be accessed and presented in ways that provide additional insights toward the interpretation of river water-quality data. For this case, the results clearly reveal that sediment concentration in the reservoir effluent has become more sensitive to discharge at moderate and high flows (but not very low flows) as it approaches sediment storage capacity, reaffirming the recently-documented decadal-scale decline in reservoir trapping performance. The study also highlights an additional benefit of the method, which is the ability to perform uncertainty analyses. The proposed approach can be implemented by running additional R codes within the WRTDS software - such codes are made available to users through a DOI-referenced archive site (http://dx.doi.org/10.7281/T18G8HM0) that will be maintained for at least five years after publication.

  15. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa.

    PubMed

    Koski, Marja; Stedmon, Colin; Trapp, Stefan

    2017-08-01

    To meet the oncoming requirements for lower sulphur emissions, shipping companies can install scrubbers where the exhaust is sprayed with seawater and subsequently discharged to the sea. The discharge water has a pH around 3 and contains elevated concentrations of vanadium, nickel, lead and hydrocarbons. We investigated 1) the threshold concentrations of scrubber discharge water for survival, feeding and reproduction of the copepod Acartia tonsa, 2) whether the effects depend on the exposure route and 3) whether exposure to discharge water can be detected in field-collected organisms. A direct exposure to discharge water increased adult copepod mortality and reduced feeding at metal concentrations which were orders of magnitude lower than the lethal concentrations in previous single-metal studies. In contrast, reproduction was not influenced by dietary uptake of contaminants. Scrubber water constituents could have synergistic effects on plankton productivity and bioaccumulation of metals, although the effects will depend on their dilution in the marine environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Continuous measurements of water surface height and width along a 6.5km river reach for discharge algorithm development

    NASA Astrophysics Data System (ADS)

    Tuozzolo, S.; Durand, M. T.; Pavelsky, T.; Pentecost, J.

    2015-12-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite will provide measurements of river width and water surface elevation and slope along continuous swaths of world rivers. Understanding water surface slope and width dynamics in river reaches is important for both developing and validating discharge algorithms to be used on future SWOT data. We collected water surface elevation and river width data along a 6.5km stretch of the Olentangy River in Columbus, Ohio from October to December 2014. Continuous measurements of water surface height were supplemented with periodical river width measurements at twenty sites along the study reach. The water surface slope of the entire reach ranged from during 41.58 cm/km at baseflow to 45.31 cm/km after a storm event. The study reach was also broken into sub-reaches roughly 1km in length to study smaller scale slope dynamics. The furthest upstream sub-reaches are characterized by free-flowing riffle-pool sequences, while the furthest downstream sub-reaches were directly affected by two low-head dams. In the sub-reaches immediately upstream of each dam, baseflow slope is as low as 2 cm/km, while the furthest upstream free-flowing sub-reach has a baseflow slope of 100 cm/km. During high flow events the backwater effect of the dams was observed to propagate upstream: sub-reaches impounded by the dams had increased water surface slopes, while free flowing sub-reaches had decreased water surface slopes. During the largest observed flow event, a stage change of 0.40 m affected sub-reach slopes by as much as 30 cm/km. Further analysis will examine height-width relationships within the study reach and relate cross-sectional flow area to river stage. These relationships can be used in conjunction with slope data to estimate discharge using a modified Manning's equation, and are a core component of discharge algorithms being developed for the SWOT mission.

  17. Water dissociation in a radio-frequency electromagnetic field with ex situ electrodes—modelling of discharge initiation

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Holzer, Frank; Rabe, Carsten; Häupl, Tilmann; Kopinke, Frank-Dieter; Roland, Ulf

    2013-04-01

    Applying a new experimental design with a capillary glass reactor and plate electrodes outside of the reactor allowed the initiation of discharges in aqueous electrolytes under the influence of a radio-frequency (RF) electromagnetic field. This study focused on the mechanism leading to the initiation of such discharges in the restriction of a glass tube. The light emission correlated with discharges was analysed with optical emission spectroscopy. Electrons with energies between 20 and 45 eV were responsible for the dissociation of water molecules into (excited) OH, H and O radicals. Current-voltage characteristics were measured before and under discharge conditions. Modelling of the experimental setup and simulation of electrical field strength distribution support the hypothesis of the origin of discharges in general and experimental findings such as ring-shaped discharges and a minimum solution conductivity of about 1 S m-1 required for discharge initiation with RF voltages of 2 kV.

  18. Macroscale water fluxes 3. Effects of land processes on variability of monthly river discharge

    USGS Publications Warehouse

    Milly, P.C.D.; Wetherald, R.T.

    2002-01-01

    A salient characteristic of river discharge is its temporal variability. The time series of flow at a point on a river can be viewed as the superposition of a smooth seasonal cycle and an irregular, random variation. Viewing the random component in the spectral domain facilitates both its characterization and an interpretation of its major physical controls from a global perspective. The power spectral density functions of monthly flow anomalies of many large rivers worldwide are typified by a "red noise" process: the density is higher at low frequencies (e.g., <1 y-1) than at high frequencies, indicating disproportionate (relative to uncorrelated "white noise") contribution of low frequencies to variability of monthly flow. For many high-latitude and arid-region rivers, however, the power is relatively evenly distributed across the frequency spectrum. The power spectrum of monthly flow can be interpreted as the product of the power spectrum of monthly basin total precipitation (which is typically white or slightly red) and several filters that have physical significance. The filters are associated with (1) the conversion of total precipitation (sum of rainfall and snowfall) to effective rainfall (liquid flux to the ground surface from above), (2) the conversion of effective rainfall to soil water excess (runoff), and (3) the conversion of soil water excess to river discharge. Inferences about the roles of each filter can be made through an analysis of observations, complemented by information from a global model of the ocean-atmosphere-land system. The first filter causes a snowmelt-related amplification of high-frequency variability in those basins that receive substantial snowfall. The second filter causes a relatively constant reduction in variability across all frequencies and can be predicted well by means of a semiempirical water balance relation. The third filter, associated with groundwater and surface water storage in the river basin, causes a strong

  19. The magnitude and origin of groundwater discharge to eastern U.S. and Gulf of Mexico coastal waters

    USGS Publications Warehouse

    Befus, Kevin; Kroeger, Kevin D.; Smith, Christopher G.; Swarzenski, Peter W.

    2017-01-01

    Fresh groundwater discharge to coastal environments contributes to the physical and chemical conditions of coastal waters, but the role of coastal groundwater at regional to continental scales remains poorly defined due to diverse hydrologic conditions and the difficulty of tracking coastal groundwater flow paths through heterogeneous subsurface materials. We use three-dimensional groundwater flow models for the first time to calculate the magnitude and source areas of groundwater discharge from unconfined aquifers to coastal waterbodies along the entire eastern U.S. We find that 27.1 km3/yr (22.8–30.5 km3/yr) of groundwater directly enters eastern U.S. and Gulf of Mexico coastal waters. The contributing recharge areas comprised ~175,000 km2 of U.S. land area, extending several kilometers inland. This result provides new information on the land area that can supply natural and anthropogenic constituents to coastal waters via groundwater discharge, thereby defining the subterranean domain potentially affecting coastal chemical budgets and ecosystem processes.

  20. Goodenough Spring, Texas, USA: Discharge and water chemistry of a large spring deeply submerged under the binational Amistad Reservoir

    NASA Astrophysics Data System (ADS)

    Kamps, Ray H.; Tatum, Gregg S.; Gault, Mike; Groeger, Alan W.

    2009-06-01

    Goodenough Spring (Texas, USA) is a large spring near the border of the American state of Texas and the Mexican state of Coahuila, discharging into the international Amistad Reservoir on the river Rio Grande (Rio Bravo). Discharge was routinely measured from 1928 until 1968 to partition the flow of the river between the two countries in accordance with water-use treaties. Samples were analyzed for water-quality parameters in 1967-1968 prior to inundation under 45 m of Amistad Reservoir in 1968. Subsequently, discharge has been estimated indirectly by the International Boundary and Water Commission (IBWC). For the first direct measurements of the spring in 37 years, velocity and cross-sectional measurements were made and water samples collected in the summer of 2005 using advanced self-contained underwater breathing apparatus (SCUBA) techniques. Spring discharge was calculated at 2.03 m3 s-1, approximately one-half of the historical mean of 3.94 m3 s-1. In situ and laboratory analyses of samples for temperature, pH, dissolved oxygen, specific conductance, alkalinity, nitrate-nitrogen, dissolved solids, chloride, sulfate, fluoride, phosphorus, calcium, sodium, potassium, magnesium, and iron showed the water quality to be very good for human consumption and crop irrigation. Measurement values are relatively unchanged from those reported 37 years prior.

  1. Water quality and discharge of streams in the Lehigh River Basin, Pennsylvania

    USGS Publications Warehouse

    McCarren, Edward F.; Keighton, Walter B.

    1969-01-01

    The Lehigh River, 100 miles long, is the second largest tributary to the Delaware River. It drains 1,364 square miles in four physiographic provinces. The Lehigh River basin includes mountainous and forested areas, broad agricultural valleys and areas of urban and industrial development. In the headwaters the water is of good quality and has a low concentration of solutes. Downstream, some tributaries receive coal-mine drainage and become acidic; others drain areas underlain by limestone and acquire alkaline characteristics. The alkaline streams neutralize and dilute the acid mine water where they mix. The dissolved-oxygen content of river water, which is high in the upper reaches of the stream, is reduced in the lower reaches because of lower turbulence, higher temperature, and the respiration of organisms. The Lehigh is used for public supply, recreation, waterpower, irrigation, and mining and other industrial purposes. Because the river is shallow in its upper reaches, most of the water comes in contact with the atmosphere as it churns over rocks and around islets and large boulders. Aeration of the water is rapid. When water that was low in dissolved-oxygen concentration was released from the lower strata of the Francis E. Walter Reservoir in June 1966, it quickly became aerated in the Lehigh River, and for 40 miles downstream from the dam the water was nearly saturated with oxygen. Most of the river water requires only moderate treatment for industrial use and public distribution throughout the Lehigh River valley. At times, however, some segments of the main river and its tributaries transport industrial wastes and acid coal-mine drainage. Usually the relatively high concentrations of solutes in water and the ensuing damage caused to quality by such waste discharges are more extensive and prolonged during droughts and other periods of low streamflow. For many years the Lehigh River flow has been continuously measured and its water chemically analyzed. Since

  2. Chemical characteristics of ground-water discharge along the south rim of Grand Canyon in Grand Canyon National Park, Arizona, 2000-2001

    USGS Publications Warehouse

    Monroe, Stephen A.; Antweiler, Ronald C.; Hart, Robert J.; Taylor, Howard E.; Truini, Margot; Rihs, John R.; Felger, Tracey J.

    2005-01-01

    Springs flowing from the south rim of Grand Canyon are an important resource of Grand Canyon National Park, offering refuge to endemic and exotic terrestrial wildlife species and maintaining riparian areas. Population growth on the Coconino Plateau has increased the demand for additional development of ground-water resources, and such development could reduce spring discharge and affect the sustainability of riparian areas within the park. In addition, springs are an important source of drinking water for hikers and are culturally and economically important to Native Americans living in the region. Water samples were collected from May 2000 to September 2001 from 20 spring and creek sites that discharge water from the Redwall-Muav Limestone aquifer along the south rim of Grand Canyon. Sample collection sites were described and samples were analyzed for major ions, nutrients, trace elements, radioactivity, and selected isotopes, and potential sources of ground-water flow to the springs. Rock samples representing the major stratigraphic units of Grand Canyon were collected near the Bright Angel Fault and analyzed for mineralogy, strontium-87/strontium-86, and carbon-13/carbon-12. The chemical composition of water samples collected from a given spring did not vary appreciably over the course of the study. Although water at each spring had a temporally constant composition, the composition was chemically distinct from that of every other spring sampled, indicating spatial variability in the ground-water composition. Most samples had a calcium magnesium bicarbonate composition; a few had a substantial sulfate component. Concentrations of arsenic, nitrate, selenium, uranium, and gross alpha approached or exceeded U.S. Environmental Protection Agency Maximum Contaminant Levels in water discharging from some springs. Oxygen and hydrogen isotopic compositions varied little among samples, and for most sites the isotopic data plot close to the global meteoric water line or

  3. Vessel Sewage Discharges

    EPA Pesticide Factsheets

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  4. Tonle Sap Lake Water Storage Change Over 24 Years From Satellite Observation and Its Link With Mekong River Discharge and Climate Events

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Frappart, F.; Normandin, C.; Blarel, F.; Bourrel, L.; Aumont, M.; Azema, P.; Vu, P. L.; Lubac, B.; Darrozes, J.

    2017-12-01

    The Tonle Sap lake is the largest freshwater lake in Southeast Asia and is located within the Mekong basin (mainly in Cambodia). It is one of he most productive ecosystem of the world and provide two thirds of Cambodia fish catch. It also plays a unique role on the Mekong basin hydrological cycle: during the monsoon period, the Mekong river partially flows to the lake, whereas during the dry season, the lake flows to the Mekong delta. It is therefore crucial to monitor and take into account this lake to estimate Mekong discharge to the ocean. However, in situ measurements of lake level and river discharge are very sparse (especially during the last decades) and computing lake storage variation from in situ data only is difficult due to the huge annual variation of lake area. That's why, satellite data (nadir radar altimetry and visible imagery) have been used to study its volume variation and its relationship with climate events and Mekong river discharge. Multi-mission altimetry data have been extracted (Topex, ERS-2, ENVISAT, Jason-1, Jason-2, Saral and Jason-3, using CTOH data extraction tools) to derive a lake water level from1993 to 2016, which varies from 3 m to 12 m. Lake area have been computed from MODIS data from 2000 to 2016 and varies from 3,400 km2 to 11,800 km2. These dataset clearly shows a relationship between lake water level and area, which has been used to estimate lake water volume change from 1995 to 2016, with a minimum in 2015 and a maximum in 2011. Lake's droughts and floods can be observed during moderate and strong El Nino/La Nina events, enhanced by the Pacific Decadal Oscillation. Besides, comparison with in situ discharge at the outlet of the Mekong basin (over 1995/2000 time period) shows that lake water level is 20 days time lagged and increases/decreases after Mekong discharge at its outlet. This time lag results of Mekong river partially flowing to the lake. Finally, high correlation between lake level and outlet discharge allows to

  5. Numerical and experimental study of the pressure pulsations at the free discharge of water through the turbine

    NASA Astrophysics Data System (ADS)

    Platonov, D. V.

    2017-09-01

    The free discharge through the turbine is applied in the course of construction of hydro power plant or in case of excessive water inflow during floods or emergency situation. The experimental and numerical investigation of flow-induced pressure pulsation in hydraulic turbine draft tube at free discharge was performed.

  6. Continuous-flow laboratory simulation of stream water quality changes downstream of an untreated wastewater discharge.

    PubMed

    Finnegan, C J; van Egmond, R A; Price, O R; Whelan, M J

    2009-04-01

    In regions of the world with poor provision of wastewater treatment, raw sewage is often discharged directly into surface waters. This paper describes an experimental evaluation of the fate of two organic chemicals under these conditions using an artificial channel cascade fed with a mix of settled sewage and river water at its upstream end and operated under continuous steady-state conditions. The experiments underpin an environmental risk assessment methodology based on the idea of an "impact zone" (IZ) - the zone downstream of wastewater emission in which water quality is severely impaired by high concentrations of unionised ammonia, nitrite and biochemical oxygen demand (BOD). Radiolabelled dodecane-6-benzene sulphonate (DOBS) and aniline hydrochloride were used as the model chemical and reference compound respectively. Rapid changes in (14)C counts were observed with flow-time for both these materials. These changes were most likely to be due to complete mineralisation. A dissipation half-life of approximately 7.1 h was observed for the (14)C label with DOBS. The end of the IZ was defined as the point at which the concentration of both unionised ammonia and nitrite fell below their respective predicted no-effect concentrations for salmonids. At these points in the cascade, approximately 83 and 90% of the initial concentration of (14)C had been removed from the water column, respectively. A simple model of mineral nitrogen transformations based on Michaelis-Menten kinetics was fitted to observed concentrations of NH(4), NO(2) and NO(3). The cascade is intended to provide a confirmatory methodology for assessing the ecological risks of chemicals under direct discharge conditions.

  7. Experimental investigations on characteristics of stable water electrospray in air without discharge

    NASA Astrophysics Data System (ADS)

    Park, Inyong; Hong, Won Seok; Kim, Sang Bok; Kim, Sang Soo

    2017-06-01

    An experimental study was conducted to resolve previous conflicting results on water electrospray in air at atmospheric pressure. Using a small flow rate relative to that used in previous studies and a small nonmetallic nozzle, we observed stable electrospray of water in air without discharge and distinguished three distinct operating regimes for applied voltage and flow rate. The well-known cone-jet mode was observed and the general scaling law of the generated droplet size in the cone-jet mode was confirmed by direct visualization of the meniscus, jet, and generated droplets. We also observed and analyzed whipping motion in the electrified water jet.

  8. Anomalous Transport in High Beta Poloidal DIII-D Discharges

    NASA Astrophysics Data System (ADS)

    Pankin, A.; Garofalo, A.; Kritz, A.; Rafiq, T.; Weiland, J.

    2016-10-01

    Dominant instabilities that drive anomalous transport in high beta poloidal DIII-D discharges are investigated using the MMM7.1, and TGLF models in the predictive integrated modeling TRANSP code. The ion thermal transport is found to be strongly reduced in these discharges, but turbulence driven by the ITG modes along with the neoclassical transport still play a role in determining the ion temperature profiles. The electron thermal transport driven by the ETG modes impact the electron temperature profiles. The E × B flow shear is found to have a small effect in reducing the electron thermal transport. The Shafranov shift is found to strongly reduce the anomalous transport in the high beta poloidal DIII-D discharges. The reduction of Shafranov shift can destroy the ion internal transport barrier and can result in significantly lower core temperatures. The MMM7.1 model predicts electron and ion temperature profiles reasonably well, but it fails to accurately predict the properties of electron internal transport barrier, which indicates that the ETG model in MMM7.1 needs to be improved in the high beta poloidal operational regime. Research supported by the Office of Science, US DOE.

  9. Nonlinear behavior in high-intensity discharge lamps

    NASA Astrophysics Data System (ADS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  10. Comparison of two approaches for determining ground-water discharge and pumpage in the lower Arkansas River Basin, Colorado, 1997-98

    USGS Publications Warehouse

    Dash, Russell G.; Troutman, Brent M.; Edelmann, Patrick

    1999-01-01

    In March 1994, the Colorado Division of Water Resources (CDWR) adopted ?Rules Governing the Measurement of Tributary Ground Water Diversions Located in the Arkansas River Basin? (Office of the State Engineer, 1994); these initial rules were amended in February 1996 (Office of the State Engineer, 1996). The amended rules require users of wells that divert tributary ground water to annually report the water pumped monthly by each well. The rules allow a well owner to report the pumpage measured by a totalizing flowmeter (TFM) or pumpage determined from electrical power data and a power conversion coefficient (PCC) (Hurr and Litke, 1989).Opinions by representatives of the State of Kansas, presented before the Special Master hearing a court case [State of Kansas v. State of Colorado, No. 105 Original (1996)] concerning post-Compact well pumping, stated that the PCC approach does not provide the same level of accuracy and reliability as a TFM when used to determine pumpage. In 1997, the U.S. Geological Survey (USGS), in cooperation with the CDWR, began a 2-year study to compare ground-water pumpage estimates made using the TFM and the PCC approaches. The study area was along the Arkansas River between Pueblo, Colorado, and the Colorado-Kansas State line (fig. 1).The two approaches for estimating ground-water discharge and pumpage were compared for more than 100 wells completed in the alluvial aquifer of the Arkansas River Basin. The TFM approach uses an inline flowmeter to directly measure instantaneous discharge and the total volume of water pumped at a well. The PCC approach uses electrical power consumption records and a power conversion coefficient to estimate the pumpage at ground-water wells.This executive summary describes the results of the comparison of the two approaches. Specifically, (1) the differences in instantaneous discharge measured with three portable flowmeters and measured with an inline TFM are evaluated, and the statistical differences in paired

  11. Water Resources Data, Kansas, Water Year 2001

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.

    2002-01-01

    Water-resources data for the 2001 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 145 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 140 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  12. Water Resources Data, Kansas, Water Year 2002

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2003-01-01

    Water-resources data for the 2002 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 149 complete-record gaging stations; elevation and contents at 20 lakes and reservoirs; waterquality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 142 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  13. OH radicals generated by DC corona discharge for improving the pulsed discharge desulfuration efficiency.

    PubMed

    Li, Jie; Li, Guo-feng; Wu, Yan; Wang, Ning-hui; Huang, Qiu-nan

    2004-01-01

    Positive DC corona discharge is formed with needle-plate electrode configuration, in which the water vapor is ejected though the needle points. The purpose is to increase the numbers of the water-based radicals, ionize the water molecule and improve the desulfuration efficiency of pulsed corona reactor. The water ions were determined by four stages molecular beam mass spectrometer and diagnose the water-based radicals by emission spectrograph. A conclusion on formation of ions and radicals with DC corona discharges can be drawn.

  14. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    PubMed

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  15. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    PubMed

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  16. High-order harmonic generation in a capillary discharge

    DOEpatents

    Rocca, Jorge J.; Kapteyn, Henry C.; Mumane, Margaret M.; Gaudiosi, David; Grisham, Michael E.; Popmintchev, Tenio V.; Reagan, Brendan A.

    2010-06-01

    A pre-ionized medium created by a capillary discharge results in more efficient use of laser energy in high-order harmonic generation (HHG) from ions. It extends the cutoff photon energy, and reduces the distortion of the laser pulse as it propagates down the waveguide. The observed enhancements result from a combination of reduced ionization energy loss and reduced ionization-induced defocusing of the driving laser as well as waveguiding of the driving laser pulse. The discharge plasma also provides a means to spectrally tune the harmonics by tailoring the initial level of ionization of the medium.

  17. Isotopic and chemical composition of parbati valley geothermal discharges, North-West Himalaya, India

    USGS Publications Warehouse

    Giggenbach, W.F.; Gonfiantini, R.; Jangi, B.L.; Truesdell, A.H.

    1983-01-01

    The isotopic compositions of the waters discharged from Parbati Valley geothermal areas indicate a higher altitude meteoric origin, with discharge temperatures reflecting variations in the depth of penetration of the waters to levels heated by the existence of a 'normal' geothermal gradient. On the basis of mixing models involving silica, tritium, discharge temperatures and chloride contents, deep equilibration temperatures of 120-140??C were obtained for Manikaran, possibly reaching 160??C at even greater depth. Geothermometers based on sulfate-water 18O exchange and gas reactions point to similar temperatures. Exceptionally high helium contents of the discharges correspond to apparent crustal residence times of the waters in the order of 10-100 Ma; relative nitrogen-argon contents support a largely meteoric origin of the waters with a possible fossil brine, but no detectable magmatic component. ?? 1983.

  18. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    NASA Astrophysics Data System (ADS)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  19. A modified resistance equation for modeling underwater spark discharge with salinity and high pressure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Pengfei; Roy, Subrata, E-mail: roy@ufl.edu

    2014-05-07

    This work investigates the performance of underwater spark discharge relating to bubble growth and decay under high pressure and with salinity conditions by introducing a modified form of the resistance equation. Here, we study salinity influence on circuit parameters by fitting the experimental data for which gap resistance is much larger in conductive water than in dielectric water. Accordingly, the resistance equation is modified by considering the influence of both plasma and its surrounding liquid. Thermal radiation effect of the bubble is also studied by comparing two different radiation models. Numerical results predict a larger bubble pressure for saline watermore » but a reduced size and a smaller bubble cycle at a greater water depth. Such study may be useful in many saltwater applications, including that for deep sea conditions.« less

  20. Wet-weather urban discharges: implications from adopting the revised European Directive concerning the quality of bathing water.

    PubMed

    David, L M; Matos, J S

    2005-01-01

    Wet weather urban discharges are responsible for bathing water contamination. The proposal for a revised EU Directive concerning the quality of bathing water imposes significantly more stringent requirements for the management of bathing water quality, with particularly important repercussions on beaches subjected to short-term pollution incidents. The paper reviews the aspects from EU legislation most directly related to the problem of wet-weather discharges, placing special emphasis on the recent revision process of the Directive on bathing water quality, and evaluates the benefits of some potential solutions based on continuous modelling of a combined sewer system. Increasing the sewer system storage capacity or the STP hydraulic capacity may substantially reduce the untreated discharge volumes, but spill frequency reductions under 2 to 3 spill days per bathing season will hardly be achieved. Results show the severe strains that local rainfall patterns would place on compliance with the Commission's proposal for a revised Directive and highlight the importance of the changes introduced in the amended proposal recently approved by the Council, making it less prescriptive if adequate measures are adopted to prevent bathers' exposure to short-term pollution incidents.

  1. Effect of the Discharge Water which Mixed Sewage Disposal Water with Seawater Desalting Treated Sewage for Bottom Sediment and Hypoxic Water Mass

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryoichi; Yamasaki, Koreyoshi; Minagawa, Tomoko; Iyooka, Hiroki; Kitano, Yoshinori

    For every time in summer season, hypoxic water mass has formed at the inner part of Hakata Bay. Field observation study has carried out at the inner part of Hakata Bay since 2004 with the particular aim of tracking the movement of hypoxic water mass. Hypoxic water masses form the end of June to September on this area because the consumption of oxygen in bottom water layers exceeds the re-supply of oxygen from the atmosphere. Under such hypoxic conditions, the seawater desalination plant has begun to use in 2005. After seawater desalination plant operation starting, hypoxic water mass tends to improve. In this research, the authors show the following result. After seawater desalination plant has begun to operate, the hypoxia around the mixed discharge water outlet tends to be improved.

  2. Water quality impacts from on-site waste disposal systems to coastal areas through groundwater discharge

    NASA Astrophysics Data System (ADS)

    Harris, P. J.

    1995-12-01

    This report summarizes research studies linking on-site waste disposal systems (OSDS) to pathogen and nutrient concentrations in groundwater with the potential to impact coastal embayments. Few studies connect OSDS to coastal water quality. Most studies examined pathogen and nutrient impacts to groundwater and omitted estimations of contaminants discharged to surface water. The majority of studies focused on nitrogen, with little information on pathogens and even less on phosphorus. Nitrogen discharged from OSDS poses the greatest threat to water quality. Vertical distance of septic tank infiltration system from the water table, septic system design, and siting remain the key components in minimizing potential impacts from OSDS for control of both pathogens and nutrients. The most comprehensive information connecting nutrient contributions from OSDS to surface water quality was the study conducted on Buttermilk Bay in Massachusetts where 74% of nitrogen to the bay was attributed to onsite disposal systems. In conclusion, further studies on the viability and transport of pathogens and nutrients through the groundwater aquifer and across the groundwater/surface-water interface are needed. Additional research on the importance of septic system design on the availability of contaminants to groundwater as well as the minimum distance between the septic system and water table necessary to protect groundwater are also indicated.

  3. Proof of principle experiments for helicon discharges in hydrogen

    NASA Astrophysics Data System (ADS)

    Briefi, Stefan; Fantz, Ursel

    2013-09-01

    In order to reduce the amount of power required for generating CW hydrogen discharges with high electron densities and a high degree of dissociation via RF coupling, the helicon concept is investigated. For this purpose a small laboratory experiment (length of the discharge vessel 40 cm, diameter 10 cm) has been built up. The RF generator has a maximum power of 600 W (frequency 13.56 MHz) and a Nagoya type III antenna is applied. As water cooling was avoided in constructing the experiment for simplicity, the induction coils can only generate a rather low magnetic field up to 14 mT. The performed investigations cover a variation of the RF power and the magnetic field in a pressure range between 0.3 and 10 Pa. Around a magnetic field of 3 mT the low field peak which is typical for helicon discharges could be observed. As the high density mode of helicon discharges has not yet been reached, a different RF generator (2 MHz, 2 KW) and water cooled induction coils will be applied in a next step in order to increase the available power and the magnetic field.

  4. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  5. Water Resources Data--Kansas, Water Year 2003

    USGS Publications Warehouse

    Putnam, J.E.; Schneider, D.R.

    2004-01-01

    Water-resources data for the 2003 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 148 complete-record gaging stations; elevation and contents at 17 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 12 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 11 gaging stations and 2 lakes with water-quality monitors. Also included are discharge data for 27 high-flow partial-record stations, miscellaneous onsite water-quality data collected at 138 stations, and suspended-sediment concentration for 11 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  6. Water-Surface Elevations, Discharge, and Water-Quality Data for Selected Sites in the Warm Springs Area near Moapa, Nevada

    USGS Publications Warehouse

    Beck, David A.; Ryan, Roslyn; Veley, Ronald J.; Harper, Donald P.; Tanko, Daron J.

    2006-01-01

    The U.S. Geological Survey, in cooperation with Southern Nevada Water Authority and the Nevada Division of Water Resources, operates and maintains a surface-water monitoring network of 6 continuous-record stream-flow gaging stations and 11 partial-record stations in the Warm Springs area near Moapa, Nevada. Permanent land-surface bench marks were installed within the Warm Springs area by the Las Vegas Valley Water District, the Southern Nevada Water Authority, and the U.S. Geological Survey to determine water-surface elevations at all network monitoring sites. Vertical datum elevation and horizontal coordinates were established for all bench marks through a series of Differential Global Positioning System surveys. Optical theodolite surveys were made to transfer Differential Global Positioning System vertical datums to reference marks installed at each monitoring site. The surveys were completed in June 2004 and water-surface elevations were measured on August 17, 2004. Water-surface elevations ranged from 1,810.33 feet above North American Vertical Datum of 1988 at a stream-gaging station in the Pederson Springs area to 1,706.31 feet at a station on the Muddy River near Moapa. Discharge and water-quality data were compiled for the Warm Springs area and include data provided by the U.S. Geological Survey, Nevada Division of Water Resources, U.S. Fish and Wildlife Service, Moapa Valley Water District, Desert Research Institute, and Converse Consultants. Historical and current hydrologic data-collection networks primarily are related to changes in land- and water-use activities in the Warm Springs area. These changes include declines in ranching and agricultural use, the exportation of water to other areas of Moapa Valley, and the creation of a national wildlife refuge. Water-surface elevations, discharge, and water-quality data compiled for the Warm Springs area will help identify (1) effects of changing vegetation within the former agricultural lands, (2) effects

  7. Assessment of the Impacts of Climate Change on Stream Discharge and Water Quality in an Arid, Urbanized Watershed

    NASA Astrophysics Data System (ADS)

    Ranatunga, T.; Tong, S.; Yang, J.

    2011-12-01

    Hydrologic and water quality models can provide a general framework to conceptualize and investigate the relationships between climate and water resources. Under a hot and dry climate, highly urbanized watersheds are more vulnerable to changes in climate, such as excess heat and drought. In this study, a comprehensive watershed model, Hydrological Simulation Program FORTRAN (HSPF), is used to assess the impacts of future climate change on the stream discharge and water quality in Las Vegas Wash in Nevada, the only surface water body that drains from the Las Vegas Valley (an area with rapid population growth and urbanization) to Lake Mead. In this presentation, the process of model building, calibration and validation, the generation of climate change scenarios, and the assessment of future climate change effects on stream hydrology and quality are demonstrated. The hydrologic and water quality model is developed based on the data from current national databases and existing major land use categories of the watershed. The model is calibrated for stream discharge, nutrients (nitrogen and phosphorus) and sediment yield. The climate change scenarios are derived from the outputs of the Global Climate Models (GCM) and Regional Climate Models (RCM) simulations, and from the recent assessment reports from the Intergovernmental Panel on Climate Change (IPCC). The Climate Assessment Tool from US EPA's BASINS is used to assess the effects of likely future climate scenarios on the water quantity and quality in Las Vegas Wash. Also the presentation discusses the consequences of these hydrologic changes, including the deficit supplies of clean water during peak seasons of water demand, increased eutrophication potentials, wetland deterioration, and impacts on wild life habitats.

  8. Hydrogeologic controls on groundwater discharge and nitrogen loads in a coastal watershed

    USGS Publications Warehouse

    Russoniello, Chrtopher J.; Konikow, Leonard F.; Kroeger, Kevin D.; Fernandez, Cristina; Andres, A. Scott; Michael, Holly A.

    2016-01-01

    Submarine groundwater discharge (SGD) is a small portion of the global water budget, but a potentially large contributor to coastal nutrient budgets due to high concentrations relative to stream discharge. A numerical groundwater flow model of the Inland Bays Watershed, Delaware, USA, was developed to identify the primary hydrogeologic factors that affect groundwater discharge rates and transit times to streams and bays. The distribution of groundwater discharge between streams and bays is sensitive to the depth of the water table below land surface. Higher recharge and reduced hydraulic conductivity raised the water table and increased discharge to streams relative to bays compared to the Reference case (in which 66% of recharge is discharged to streams). Increases to either factor decreased transit times for discharge to both streams and bays compared to the Reference case (in which mean transit times are 56.5 and 94.3 years, respectively), though sensitivity to recharge is greater. Groundwater-borne nitrogen loads were calculated from nitrogen concentrations measured in discharging fresh groundwater and modeled SGD rates. These loads combined with long SGD transit times suggest groundwater-borne nitrogen reductions and estuarine water quality improvements will lag decades behind implementation of efforts to manage nutrient sources. This work enhances understanding of the hydrogeologic controls on and uncertainties in absolute and relative rates and transit times of groundwater discharge to streams and bays in coastal watersheds.

  9. How could discharge management affect Florida spring fish assemblage structure?

    PubMed

    Work, Kirsten; Codner, Keneil; Gibbs, Melissa

    2017-08-01

    Freshwater bodies are increasingly affected by reductions in water quantity and quality and by invasions of exotic species. To protect water quantity and maintain the ecological integrity of many water bodies in central Florida, a program of adopting Minimum Flows and Levels (MFLs) has begun for both lentic and lotic waters. The purpose of this study was to determine whether there were relationships between discharge and stage, water quality, and biological parameters for Volusia Blue Spring, a first magnitude spring (discharge > 380,000 m 3 day -1 or 100 mgd) for which an MFL program was adopted in 2006. Over the course of fourteen years, we assessed fish density and diversity weekly, monthly, or seasonally with seine and snorkel counts. We evaluated annual changes in the assemblages for relationships with water quantity and quality. Low discharge and dissolved oxygen combined with high stage and conductivity produced a fish population with a lower density and diversity in 2014 than in previous years. Densities of fish taxonomic/functional groups also were low in 2014 and measures of water quantity were significant predictors of fish assemblage structure. As a result of the strong relationships between variation in discharge and an array of chemical and biological characteristics of the spring, we conclude that maintaining the historical discharge rate is important for preserving the ecological integrity of Volusia Blue Spring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Multi-scale Analysis of the Fluxes Between Terrestrial Water Storage, Groundwater, and Stream Discharge in the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Sproles, E.; Leibowitz, S. G.; Wigington, P. J.; Patil, S.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River (182,000 sq km), Upper Columbia (155,000 sq km), and the greater CRB (614,000 sq km). These three watersheds represent distinct climatic and geologic provinces found in the region. TWS (the vertically-integrated sum of snow, soil moisture, surface water, and groundwater) was measured remotely by NASA's Gravity Recovery and Climate Experiment (GRACE). Results show that over the course of a water year, TWS and discharge exhibit a characteristic counter clockwise hysteresis pattern for each of the three regional watersheds. Similarly, in each of the three watersheds groundwater and discharge also exhibit a characteristic hysteresis pattern over the course of a water year--only in a clockwise direction. Our findings provide regional characteristics that quantify and describe the fluxes between snow, groundwater, and discharge, and also identify the out-of-phase relationship between the region's wet winters and groundwater recharge from during the spring. The methods and results presented in this study provide an analytic framework to incorporate remotely-sensed measurements of TWS to better understand how regional watersheds function as an integrated system, and also to identify potential water surplus and scarcity in the CRB and other regional watersheds.

  11. Water Resources Data, Kansas, Water Year 2000

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2001-01-01

    Water-resources data for the 2000 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 144 complete-record gaging stations; elevation and contents at 19 lakes and reservoirs; water-quality records at 2 precipitation stations, water-level data at 18 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 8 gaging stations. Also included are discharge data for 26 high-flow partial-record stations, and miscellaneous onsite water-quality data collected at 134 stations, and suspended-sediment concentration for 12 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with local, State, and Federal agencies in Kansas.

  12. Experimental and theoretical study on chemical reactions and species diffusion by a nano-pulse discharged bubble for water treatment

    NASA Astrophysics Data System (ADS)

    He, Yuchen; Uehara, Satoshi; Takana, Hidemasa; Nishiyama, Hideya

    2018-01-01

    Advanced oxidation processes using hydroxyl radicals (ṡOH) generated inside bubbles in water has drawn widely interest for the high oxidation potential of OH radical to decompose persistent organic pollutants such as dioxins and humic acid for water purification. In this study, a two-dimensional diffusion model for a nano-pulse discharged bubble in water is established. Based on the experimental results of streamer propagation inside a bubble, the diffusion processes around the bubble interface and reactions of chemical species in liquids are simulated. The simulation results show that OH radicals can diffuse only several micrometers away from the bubble interface in water. Furthermore, the optimal operating voltage and frequency conditions for OH generation is obtained by comparing the OH concentration in water obtained from numerical simulation with that measured by spectroscopy in experiment.

  13. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    PubMed

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  14. 77 FR 35268 - Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ...On March 23, 2012, the Coast Guard published in the Federal Register a Final Rule entitled ``Standards for Living Organisms in Ships' Ballast Water Discharged in U.S. Waters''. The rulemaking triggered new information collection requirements affecting vessel owners and their potential requests for an extension of the compliance date if they cannot practicably comply with the compliance date otherwise applicable to their vessels. This document announces that the request to revise the existing collection of information to add the new request for an extension provision has been approved by the Office of Management and Budget (OMB) and may now be enforced. The OMB control number is 1625-0069.

  15. Application of microplasma discharge in a spark gap for high repetitive switching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahaman, Hasibur; Nam, Sang Hoon; Nam, Jong Woo

    2010-04-05

    The electrical breakdown in a spark gap for repetitive switching has been a long research interest. For this purpose, microplasma discharge is implemented in the spark gap which is further integrated inside a coaxial transmission line. This work addresses important physical properties and insights of the microplasma discharge, to be optimized, such as plasma generation in a spark channel, dielectric recovery process, and residual plasma in the postspark discharge period. Although understanding the microplasma discharge is the primary goal, considerable attention has been focused on an external circuit scheme to drive the discharge system at a high repetition rate.

  16. Impacts of urban wastewater discharge on seagrass meadows ( Zostera noltii)

    NASA Astrophysics Data System (ADS)

    Cabaço, Susana; Machás, Raquel; Vieira, Vasco; Santos, Rui

    2008-06-01

    The abiotic disturbance of urban wastewater discharge and its effects in the population structure, plant morphology, leaf nutrient content, epiphyte load and macroalgae abundance of Zostera noltii meadows were investigated in Ria Formosa coastal lagoon, southern Portugal using both univariate and multivariate analysis. Four sites were assessed, on a seasonal basis, along a gradient from a major Waste Water Treatment Works (WWTW) discharge to a main navigation channel. The wastewater discharge caused an evident environmental disturbance through the nutrient enrichment of the water and sediment, particularly of ammonium. Zostera noltii of the sites closest to the nutrient source showed higher leaf N content, clearly reflecting the nitrogen load. The anthropogenic nutrient enrichment resulted in higher biomass, and higher leaf and internode length, except for the meadow closest to the wastewater discharge (270 m). The high ammonium concentration (158-663 μM) in the water at this site resulted in the decrease of biomass, and both the leaf and internode length, suggesting a toxic effect on Z. noltii. The higher abundance of macroalgae and epiphytes found in the meadow closest to the nutrient source may also affect the species negatively. Shoot density was higher at the nutrient-undisturbed site. Two of the three abiotic processes revealed by Principal Component Analysis were clearly related to the WWTW discharge, a contrast between water column salinity and nutrient concentration and a sediment contrast between both porewater nutrients and temperature and redox potential. A multiple regression analysis showed that these abiotic processes had a significant effect on the biomass-density dynamics of meadows and on the overall size of Z. noltii plants, respectively. Results show that the wastewater discharge is an important source of environmental disturbance and nutrients availability in Ria Formosa lagoon affecting the population structure, morphology and N content of Z

  17. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  18. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  19. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  20. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  1. 46 CFR 154.1115 - Discharge.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... § 154.1115 Discharge. (a) The discharge density of each water spray system must be at least: (1) 10000 cm3/m2/min. (0.25 gpm/ft.2) over each horizontal surface; and (2) 4000 cm3/m2/min. (0.10 gpm/ft.2) against vertical surface, including the water rundown. (b) The water spray protection under § 154.1110 (d...

  2. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob

    2015-09-01

    Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    PubMed

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Nutrient Enrichment in Estuaries from Discharge of Shallow Ground Water, Mt. Desert Island, Maine

    USGS Publications Warehouse

    Culbertson, Charles W.; Huntington, Thomas G.; Caldwell, James M.

    2007-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park because of the potential problem of water-quality degradation and eutrophication in its estuaries. Water-quality degradation has been observed at the Park?s Bass Harbor Marsh estuary but not in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, but the importance of shallow ground water that may contain nutrients derived from domestic or other sources is unknown. Northeast Creek and Bass Harbor Marsh estuaries were studied to (1) identify shallow ground-water seeps, (2) assess the chemistry of the water discharged from selected seeps, and (3) assess the chemistry of ground water in shallow ground-water hyporheic zones. The hyporheic zone is defined here as the region beneath and lateral to a stream bed, where there is mixing of shallow ground water and surface water. This study also provides baseline chemical data for ground water in selected bedrock monitoring wells and domestic wells on Mt. Desert Island. Water samples were analyzed for concentrations of nutrients, wastewater compounds, dissolved organic carbon, pH, dissolved oxygen, temperature and specific conductance. Samples from bedrock monitoring wells also were analyzed for alkalinity, major cations and anions, and trace metals. Shallow ground-water seeps to Northeast Creek and Bass Harbor Marsh estuaries at Acadia National Park were identified and georeferenced using aerial infrared digital imagery. Monitoring included the deployment of continuously recording temperature and specific conductance sensors in the seep discharge zone to access marine or freshwater signatures related to tidal flooding, gradient-driven shallow ground-water flow, or shallow subsurface flow related to precipitation events. Many potential shallow ground-water discharge zones were

  5. Electric Discharge Sintering and Joining of Tungsten Carbide—Cobalt Composite with High-Speed Steel Substrate

    NASA Astrophysics Data System (ADS)

    Grigoryev, Evgeny G.

    2011-01-01

    Simultaneous electro discharge sintering of high strength structure of tungsten carbide—cobalt composite and connection it with high-speed steel substrate is investigated and suitable operating parameters are defined. Tungsten carbide—cobalt and high-speed steel joining was produced by the method of high voltage electrical discharge together with application of mechanical pressure to powder compact. It was found that the density and hardness of composite material reach its maximum values at certain magnitudes of applied pressure and high voltage electrical discharge parameters. We show that there is an upper level for the discharge voltage beyond which the powder of composite material disintegrates like an exploding wire. Due to our results it is possible to determine optimal parameters for simultaneous electro discharge sintering of WC-Co and bonding it with high-speed steel substrate.

  6. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds

    NASA Technical Reports Server (NTRS)

    Jarzembski, M. A.; Srivastava, V.

    1995-01-01

    Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

  7. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  8. Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in Powder River Basin, Wyoming

    USGS Publications Warehouse

    Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.

    2005-01-01

    Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.

  9. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  10. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  11. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  12. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  13. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  14. 40 CFR 1700.5 - Discharges not requiring control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Blowdown: the water and steam discharged when a steam boiler is blown down, or when a steam safety valve is tested. (b) Catapult Wet Accumulator Discharge: the water discharged from a catapult wet accumulator, which stores a steam/water mixture for launching aircraft from an aircraft carrier. (c) Cathodic...

  15. Penning Effects in High-Pressure Discharge of the Plasma Display Panel

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Choi, E. H.; Uhm, H. S.

    2001-10-01

    The plasma display panel is operated with high-pressure gas, for which the breakdown voltage reduction may be accomplished by mixing a small amount of xenon with neon gas. The UV light emitted from xenon discharge plasma is converted into fluorescent light, providing TV images. A recent theoretical calculation indicates that the breakdown voltage is significantly reduced for the mixed gas due to collisional frequency decrease. It is easy to ionize xenon atoms with low ionization energy. The electrons can also easily get their kinetic energy in neon gas mixed with xenon atoms, thereby reducing their collisional cross section and ionizing xenon atoms. However, previous study indicates that the breakdown voltage can be further reduced by the Penning effects, which has been mostly studied in a low pressure discharge. Influence of the Penning effects on the high-pressure discharge in a neon-xenon mixed gas is investigated in connection with applications to the plasma display panel. A theoretical model for high-pressure discharge is developed. It is shown that the breakdown voltage is reduced by 20 percent at the xenon mole fraction of 0.015, which agree remarkably well with experimental data.

  16. Estimating Discharge in Low-Order Rivers With High-Resolution Aerial Imagery

    NASA Astrophysics Data System (ADS)

    King, Tyler V.; Neilson, Bethany T.; Rasmussen, Mitchell T.

    2018-02-01

    Remote sensing of river discharge promises to augment in situ gauging stations, but the majority of research in this field focuses on large rivers (>50 m wide). We present a method for estimating volumetric river discharge in low-order (<50 m wide) rivers from remotely sensed data by coupling high-resolution imagery with one-dimensional hydraulic modeling at so-called virtual gauging stations. These locations were identified as locations where the river contracted under low flows, exposing a substantial portion of the river bed. Topography of the exposed river bed was photogrammetrically extracted from high-resolution aerial imagery while the geometry of the remaining inundated portion of the channel was approximated based on adjacent bank topography and maximum depth assumptions. Full channel bathymetry was used to create hydraulic models that encompassed virtual gauging stations. Discharge for each aerial survey was estimated with the hydraulic model by matching modeled and remotely sensed wetted widths. Based on these results, synthetic width-discharge rating curves were produced for each virtual gauging station. In situ observations were used to determine the accuracy of wetted widths extracted from imagery (mean error 0.36 m), extracted bathymetry (mean vertical RMSE 0.23 m), and discharge (mean percent error 7% with a standard deviation of 6%). Sensitivity analyses were conducted to determine the influence of inundated channel bathymetry and roughness parameters on estimated discharge. Comparison of synthetic rating curves produced through sensitivity analyses show that reasonable ranges of parameter values result in mean percent errors in predicted discharges of 12%-27%.

  17. Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2017-12-01

    Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.

  18. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qazi, H. I. A.; Li, He-Ping, E-mail: liheping@tsinghua.edu.cn; Zhang, Xiao-Fei

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up themore » generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.« less

  19. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge

    NASA Astrophysics Data System (ADS)

    Lu, P.; Boehm, D.; Cullen, P.; Bourke, P.

    2017-06-01

    Plasma treated liquids (PTLs) provide a means to convey a broad range of effects of relevance for food, environmental, or clinical decontamination, plant growth promotion, and therapeutic applications. Devising the reactive species ingredients and controlling the biological response of PTLs are of great interest. We demonstrate an approach by using an open-air hybrid mode discharge (HMD) to control the principal reactive species composition within plasma treated water (PTW), which is then demonstrated to regulate the cytotoxicity of PTW. The cytotoxicity of HMD produced PTW demonstrates a non-monotonic change over the discharge time. Although hydrogen peroxide and nitrite are not the sole effectors for cell death caused by PTW, using them as principal reactive species indicators, cytotoxicity can be removed and/or enhanced by formulating their concentrations and composition through adjusting the discharge mode and time on-line during PTW generation without the addition of additional working gas or chemical scavengers. This work demonstrates that a hybrid mode discharge can be employed to generate a PTW formulation to control a biological response such as cytotoxicity. This provides insights into how plasma treated liquids may be harnessed for biological applications in a specific and controllable manner.

  20. 30 CFR 250.217 - What solid and liquid wastes and discharges information and cooling water intake information must...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false What solid and liquid wastes and discharges... of Exploration Plans (ep) § 250.217 What solid and liquid wastes and discharges information and cooling water intake information must accompany the EP? The following solid and liquid wastes and...

  1. Stage-discharge relationship in tidal channels

    NASA Astrophysics Data System (ADS)

    Kearney, W. S.; Mariotti, G.; Deegan, L.; Fagherazzi, S.

    2016-12-01

    Long-term records of the flow of water through tidal channels are essential to constrain the budgets of sediments and biogeochemical compounds in salt marshes. Statistical models which relate discharge to water level allow the estimation of such records from more easily obtained records of water stage in the channel. While there is clearly structure in the stage-discharge relationship, nonlinearity and nonstationarity of the relationship complicates the construction of statistical stage-discharge models with adequate performance for discharge estimation and uncertainty quantification. Here we compare four different types of stage-discharge models, each of which is designed to capture different characteristics of the stage-discharge relationship. We estimate and validate each of these models on a two-month long time series of stage and discharge obtained with an Acoustic Doppler Current Profiler in a salt marsh channel. We find that the best performance is obtained by models which account for the nonlinear and time-varying nature of the stage-discharge relationship. Good performance can also be obtained from a simplified version of these models which approximates the fully nonlinear and time-varying models with a piecewise linear formulation.

  2. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizingmore » available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.« less

  3. Sources of nitrate in snowmelt discharge: Evidence from water chemistry and stable isotopes of nitrate

    USGS Publications Warehouse

    Piatek, K.B.; Mitchell, M.J.; Silva, S.R.; Kendall, C.

    2005-01-01

    To determine whether NO3- concentration pulses in surface water in early spring snowmelt discharge are due to atmospheric NO 3-, we analyzed stream ??15N-NO 3- and ??18O-NO3- values between February and June of 2001 and 2002 and compared them to those of throughfall, bulk precipitation, snow, and groundwater. Stream total Al, DOC and Si concentrations were used to indicate preferential water flow through the forest floor, mineral soil, and ground water. The study was conducted in a 135-ha subcatchment of the Arbutus Watershed in the Huntington Wildlife Forest in the Adirondack Region of New York State, U.S.A. Stream discharge in 2001 increased from 0.6 before to 32.4 mm day-1 during snowmelt, and element concentrations increased from 33 to 71 ??mol L-1 for NO3-, 3 to 9 ??mol L-1 for total Al, and 330 to 570 ??mol L-1 for DOC. Discharge in 2002 was variable, with a maximum of 30 mm day-1 during snowmelt. The highest NO3-, Al, and DOC concentrations were 52, 10, and 630 ??mol L -1, respectively, and dissolved Si decreased from 148 ??mol L -1 before to 96 ??mol L-1 during snowmelt. Values of ??15N and ??18O of NO3- in stream water were similar in both years. Stream water, atmospherically- derived solutions, and groundwaters had overlapping ??15N- NO3- values. In stream and ground water, ??18O-NO3- values ranged from +5.9 to +12.9??? and were significantly lower than the +58.3 to +78.7??? values in atmospheric solutions. Values of ??18O-NO3- indicating nitrification, increase in Al and DOC, and decrease in dissolved Si concentrations indicating water flow through the soil suggested a dilution of groundwater NO3- by increasing contributions of forest floor and mineral soil NO3- during snowmelt. ?? Springer 2005.

  4. One-dimensional bubble model of pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Lu, XinPei

    2007-09-01

    In this paper, a one-dimensional bubble model of pulsed discharge in water is presented. With a total input energy of 0.63J, the simulation results show that when the bubble collapses at the center of the bubble, the plasma pressure oscillates strongly. It oscillates between 800 and 1150atm with an oscillation frequency of about 6.9MHz, while at r =R/2 (R: bubble radius), the gas velocity oscillates intensely at the same frequency. It oscillates between -235 and 229m/s when the bubble radius reaches its minimum. But it does not oscillate at r =R because of the inertia of the surrounding water. The bubble collapses and reexpands with almost the same speed as that of the zero-dimensional (0D) model. This further confirms why the shock wave pressure from the 0D mode has a good agreement with the experimental results since the shock wave pressure is only determined by the bubble wall velocity v(R ).

  5. High energy XeBr electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy XeBr laser for producing coherent radiation at 282 nm. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr is used as the halogen donor which undergoes harpooning reactions with Xe.sub.M * to form XeBr*.

  6. High energy XeBr electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy XeBr laser for producing coherent radiation at 282 nm is disclosed. The XeBr laser utilizes an electric discharge as the excitation source to minimize formation of molecular ions thereby minimizing absorption of laser radiation by the active medium. Additionally, HBr, is used as the halogen donor which undergoes harpooning reactions with Xe/sub M/ to form XeBr.

  7. Changes in Water Levels and Storage in the High Plains Aquifer, Predevelopment to 2005

    USGS Publications Warehouse

    McGuire, V.L.

    2007-01-01

    The High Plains aquifer underlies 111.4 million acres (174,000 square miles) in parts of eight States-Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. The area overlying the High Plains aquifer is one of the major agricultural regions in the world. Water-level declines began in parts of the High Plains aquifer soon after the beginning of extensive ground-water irrigation. By 1980, water levels in the High Plains aquifer in parts of Texas, Oklahoma, and southwestern Kansas had declined more than 100 feet (Luckey and others, 1981). In response to these water-level declines, the U.S. Geological Survey (USGS), in cooperation with numerous Federal, State, and local water-resources agencies, began monitoring more than 7,000 wells in 1988 to assess annual water-level change in the aquifer. A report by the USGS, 'Water-Level Changes in the High Plains Aquifer, Predevelopment to 2005 and 2003 to 2005' (McGuire, 2007), shows the areas of substantial water-level changes in the aquifer from the time prior to substantial ground-water irrigation development (predevelopment or about 1950) to 2005 (fig. 1). In parts of the area, farmers began using ground water for irrigation extensively in the 1930s and 1940s. Estimated irrigated acreage in the area overlying the High Plains aquifer increased rapidly from 1940 to 1980 and changed slightly from 1980 to 2002: 1949-2.1 million acres, 1980-13.7 million acres, 1997-13.9 million acres, 2002-12.7 million acres. Irrigated acres in 2002 were 12 percent of the aquifer area, not including the areas with little or no saturated thickness (McGuire, 2007). Ground-water withdrawals for irrigation and other uses are compiled and reported by the USGS and agencies in each State about every 5 years. Ground-water withdrawals from the High Plains aquifer for irrigation increased from 4 to 19 million acre-feet from 1949 to 1974. Ground-water withdrawals for irrigation in 1980, 1985, 1990, and 1995 were from 4 to 18

  8. [Degradation of p-nitrophenol by high voltage pulsed discharge and ozone processes].

    PubMed

    Pan, Li-li; Yan, Guo-qi; Zheng, Fei-yan; Liang, Guo-wei; Fu, Jian-jun

    2005-11-01

    The vigorous oxidation by ozone and the high energy by pulsed discharge are utilized to degrade the big hazardous molecules. And these big hazardous molecules become small and less hazardous by this process in order to improve the biodegradability. When pH value is 8-9, the concentration of p-nitrophenol solution can be degraded by 96.8% and the degradation efficiency of TOC is 38.6% by ozone and pulsed discharge treatment for 30 mins. The comparison results show that the combination treatment efficiency is higher than the separate, so the combination of ozone and pulsed discharge has high synergism. It is approved that the phenyl degradation efficiency is high and the degradation efficiency of linear molecules is relative low.

  9. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  10. Letter from A & R Transport about Section 308 of the Clean Water Act Discharge of Perfluorinated Compounds

    EPA Pesticide Factsheets

    January 16, 2009 letter from Kenneth E. Pate, VP of Safety and Risk Management of A & R Transport, Inc. to EPA Clean Water Enforcement Branch, about an Information Request about the Section 308 of the Clean Water Act, discharge of pefluorinated compounds.

  11. Revisions to the Clean Water Act Regulatory Definition of Discharge of Dredged Material; Final Rule

    EPA Pesticide Factsheets

    The U.S. Army Corps of Engineers (Corps) and the Environmental Protection Agency (EPA) promulgated a final rule Amending a Clean Water Act (CWA) section 404 regulation that defines the term discharge of dredged material.

  12. Sounding experiments of high pressure gas discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biele, Joachim K.

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less

  13. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    NASA Technical Reports Server (NTRS)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  14. Development of a numerical model for calculating exposure to toxic and nontoxic stressors in the water column and sediment from drilling discharges.

    PubMed

    Rye, Henrik; Reed, Mark; Frost, Tone Karin; Smit, Mathijs G D; Durgut, Ismail; Johansen, Øistein; Ditlevsen, May Kristin

    2008-04-01

    Drilling discharges are complex mixtures of chemical components and particles which might lead to toxic and nontoxic stress in the environment. In order to be able to evaluate the potential environmental consequences of such discharges in the water column and in sediments, a numerical model was developed. The model includes water column stratification, ocean currents and turbulence, natural burial, bioturbation, and biodegradation of organic matter in the sediment. Accounting for these processes, the fate of the discharge is modeled for the water column, including near-field mixing and plume motion, far-field mixing, and transport. The fate of the discharge is also modeled for the sediment, including sea floor deposition, and mixing due to bioturbation. Formulas are provided for the calculation of suspended matter and chemical concentrations in the water column, and burial, change in grain size, oxygen depletion, and chemical concentrations in the sediment. The model is fully 3-dimensional and time dependent. It uses a Lagrangian approach for the water column based on moving particles that represent the properties of the release and an Eulerian approach for the sediment based on calculation of the properties of matter in a grid. The model will be used to calculate the environmental risk, both in the water column and in sediments, from drilling discharges. It can serve as a tool to define risk mitigating measures, and as such it provides guidance towards the "zero harm" goal.

  15. Research on water discharge characteristics of PEM fuel cells by using neutron imaging technology at the NRF, HANARO.

    PubMed

    Kim, TaeJoo; Sim, CheulMuu; Kim, MooHwan

    2008-05-01

    An investigation into the water discharge characteristics of proton exchange membrane (PEM) fuel cells is carried out by using a feasibility test apparatus and the Neutron Radiography Facility (NRF) at HANARO. The feasibility test apparatus was composed of a distilled water supply line, a compressed air supply line, heating systems, and single PEM fuel cells, which were a 1-parallel serpentine type with a 100 cm(2) active area. Three kinds of methods were used: compressed air supply-only; heating-only; and a combination of the methods of a compressed air supply and heating, respectively. The resultant water discharge characteristics are different according to the applied methods. The compressed air supply only is suitable for removing the water at a flow field and a heating only is suitable for water at the MEA. Therefore, in order to remove all the water at PEM fuel cells, the combination method is needed at the moment.

  16. Temporal changes in VOC discharge to surface water from a fractured rock aquifer during well installation and operation, Greenville, South Carolina

    USGS Publications Warehouse

    Vroblesky, D.A.; Robertson, J.F.

    1996-01-01

    Analysis of the vapor in passive vapor samplers retrieved from a streambed in fractured rock terrain implied that volatile organic carbon (VOC) discharge from ground water to surface water substantially increased following installation of a contaminant recovery well using air rotary drilling. The air rotary technique forced air into the aquifer near the stream. The injection produced an upward hydraulic gradient that appears to have transported water and contaminants from deeper parts of the aquifer through fractures into shallow parts of the aquifer. Once in the shallow flow regime, the contamination was transported to the stream, where it discharged during the next several weeks following well installation. After the recovery well was activated and began continuously pumping contaminated ground water to a treatment facility, the VOC concentrations in the stream bottom passive vapor samplers decreased to below detectable concentrations, suggesting that the withdrawal had captured the contaminated ground water that previously had discharged to the stream.

  17. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  18. Nanofiltration of Mine Water: Impact of Feed pH and Membrane Charge on Resource Recovery and Water Discharge

    PubMed Central

    Mullett, Mark; Fornarelli, Roberta; Ralph, David

    2014-01-01

    Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met. PMID:24957170

  19. Characterisation of heavy metal discharge into the Ria of Huelva.

    PubMed

    Sainz, A; Grande, J A; de la Torre, M L

    2004-06-01

    The Ria of Huelva estuary, in SW Spain, is known to be one of the most heavy metal contaminated estuaries in the world. River contribution to the estuary of dissolved Cu, Zn, Mn, Cr, Ni, Cd, and As were analysed for the period 1988-2001. The obtained mean values show that this contribution, both because of the magnitude of total metals (895.1 kg/h), composition, toxicity (8.7 kg/h of As+Cd+Pb) and persistence, is an incomparable case in heavy metal contamination of estuaries. The amount and typology of heavy metal discharge to the Ria of Huelva are related to freshwater flow (and, consequently, to rainfall); as a result, two different types of heavy metal discharge can be distinguished in the estuary: during low water (50% of the days), with only 19.3 kg/h of heavy metals, and during high water or flood (17% of the days), where daily maximum discharge of 72,475 kg of heavy metals were recorded, from which 1481 kg were of As, 470 kg of Pb, and 170 kg of Cd. In the most frequent situation (77% of the days), the Odiel River discharges from 90% to 100% of the freshwater received by the estuary. Despite this, the high concentration of heavy metals in the Tinto River water causes this river to discharge into the Ria of Huelva 12.5% of fluvial total dissolved metal load received by the estuary.

  20. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability. The starting reliability, propellant and power savings offered by the high voltage pulse start should favorably impact performance of electron bombardment thrusters in missions requiring many on-off duty cycles.

  1. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  2. The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc

    NASA Astrophysics Data System (ADS)

    Xiong, Jia-ming; Li, Lee; Dai, Hong-yu; Wu, Hai-bo; Peng, Ming-yang; Lin, Fu-chang

    2018-03-01

    During the formation of a high current impulse discharge arc, objects near the discharge arc will be strongly impacted. In this paper, a high power, high current gas switch is used as the site of the impulse discharge arc. The explosion wave theory and the arc channel energy balance equation are introduced to analyze the development of the shock wave overpressure driven by the high current impulse discharge arc, and the demarcation point of the arc channel is given, from which the energy of the arc channel is no longer converted into shock waves. Through the analysis and calculation, it is found that the magnitude of the shock wave overpressure caused by impulse discharge arc expansion is closely related to the arc current rising rate. The arc shock wave overpressure will undergo a slow decay process and then decay rapidly. The study of this paper will perform the function of deepening the understanding of the physical nature of the impulse arc discharge, which can be used to explain the damage effect of the high current impulse discharge arc.

  3. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  4. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water

    NASA Astrophysics Data System (ADS)

    Lukes, Petr; Clupek, Martin; Babicky, Vaclav; Sisrova, Irena; Janda, Vaclav

    2011-06-01

    The effects of tungsten material used as a high-voltage needle electrode on the production of hydrogen peroxide and the degradation of dimethylsulfoxide (DMSO) caused by a pulsed corona discharge in water were investigated. A reactor of needle-plate electrode geometry was used. The erosion of the tungsten electrodes by the discharge was evaluated. The yields of H2O2 production and the decomposition of DMSO by the discharge, which were obtained using the tungsten electrodes, were compared with those determined for titanium electrodes. The electrode erosion increased significantly with an increase in the solution conductivity. A large fraction (50-70%) of the eroded tungsten electrode material was released into the solution in dissolved form as tungstate WO_4^{2-} ions. A correlation between the amount of eroded tungsten material released into the solution and the chemical effects induced by the discharge was determined. Lower yields of H2O2 and a higher degradation of DMSO by the discharge were obtained using the tungsten electrodes than were determined using titanium electrodes. Tungstate ions were shown to play a dominant role in the decomposition of H2O2, which was produced by the discharge using a tungsten electrode. The higher degradation of DMSO that was determined for tungsten was attributed to the tungstate-catalyzed oxidation of DMSO by H2O2, in addition to the oxidation of DMSO by OH radicals. Such a mechanism was supported by the detection of degradation by-products of DMSO (methanesulfonate, sulfate and dimethyl sulfone). The catalytic role of tungstate ions in the plasmachemical activity of the discharge generated using a tungsten electrode was also demonstrated on a pH-dependent decomposition of H2O2 and DMSO.

  5. Pilot-scale study on the treatment of basal aquifer water using ultrafiltration, reverse osmosis and evaporation/crystallization to achieve zero-liquid discharge.

    PubMed

    Loganathan, Kavithaa; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2016-01-01

    Basal aquifer water is deep groundwater found at the bottom of geological formations, underlying bitumen-saturated sands. Some of the concerns associated with basal aquifer water at the Athabasca oil sands are the high concentrations of hardness-causing compounds, alkalinity, and total dissolved solids. The objective of this pilot-scale study was to treat basal aquifer water to a quality suitable for its reuse in the production of synthetic oil. To achieve zero-liquid discharge (ZLD) conditions, the treatment train included chemical oxidation, polymeric ultrafiltration (UF), reverse osmosis (RO), and evaporation-crystallization technologies. The results indicated that the UF unit was effective in removing solids, with UF filtrate turbidity averaging 2.0 NTU and silt density index averaging 0.9. Membrane autopsies indicated that iron was the primary foulant on the UF and RO membranes. Laboratory and pilot-scale tests on RO reject were conducted to determine the feasibility of ZLD crystallization. Due to the high amounts of calcium, magnesium, and bicarbonate in the RO reject, softening of the feed was required to avoid scaling in the evaporator. Crystals produced throughout the testing were mainly sodium chloride. The results of this study indicated that the ZLD approach was effective in both producing freshwater and minimizing brine discharges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Changes in water clarity in response to river discharges on the Great Barrier Reef continental shelf: 2002-2013

    NASA Astrophysics Data System (ADS)

    Fabricius, K. E.; Logan, M.; Weeks, S. J.; Lewis, S. E.; Brodie, J.

    2016-05-01

    Water clarity is a key factor for the health of marine ecosystems. The Australian Great Barrier Reef (GBR) is located on a continental shelf, with >35 major seasonal rivers discharging into this 344,000 km2 tropical to subtropical ecosystem. This work investigates how river discharges affect water clarity in different zones along and across the GBR. For each day over 11 years (2002-2013) we calculated 'photic depth' as a proxy measure of water clarity (calibrated to be equivalent to Secchi depth), for each 1 km2 pixel from MODIS-Aqua remote sensing data. Long-term and seasonal changes in photic depth were related to the daily discharge volumes of the nearest rivers, after statistically removing the effects of waves and tides on photic depth. The relationships between photic depths and rivers differed across and along the GBR. They typically declined from the coastal to offshore zones, and were strongest in proximity to rivers in agriculturally modified catchments. In most southern inner zones, photic depth declined consistently throughout the 11-year observation period; such long-term trend was not observed offshore nor in the northern regions. Averaged across the GBR, photic depths declined to 47% of local maximum values soon after the onset of river floods, and recovery to 95% of maximum values took on average 6 months (range: 150-260 days). The river effects were strongest at latitude 14.5°-19.0°S, where river loads are high and the continental shelf is narrow. Here, even offshore zones showed a >40% seasonal decline in photic depth, and 17-24% reductions in annual mean photic depth in years with large river nutrients and sediment loads. Our methodology is based on freely available data and tools and may be applied to other shelf systems, providing valuable insights in support of ecosystem management.

  7. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  8. High voltage pulse ignition of mercury discharge hollow cathodes

    NASA Technical Reports Server (NTRS)

    Wintucky, E. G.

    1973-01-01

    A high voltage pulse generated by a capacitor discharge into a step-up transformer has been demonstrated capable of consistently igniting hollow cathode mercury discharges at propellant flows and heater power levels much below those required by conventional cathode starting. Results are presented for 3.2-mm diameter enclosed and open keeper cathodes. Starting characteristics are shown to depend on keeper voltage, mercury flow rate, heater power, keeper orifice size, emissive materials, and electrode to which the pulse is applied. This starting technique has been used to start a cathode over 10,000 times without any degradation of starting capability.

  9. Discharge characteristics of a high speed fuel injection system

    NASA Technical Reports Server (NTRS)

    Matthews, Robertson

    1925-01-01

    Discussed here are some discharge characteristics of a fuel injection system intended primarily for high speed service. The system consisted of a cam actuated fuel pump, a spring loaded automatic injection valve, and a connecting tube.

  10. Weekly variations of discharge and groundwater quality caused by intermittent water supply in an urbanized karst catchment

    NASA Astrophysics Data System (ADS)

    Grimmeisen, Felix; Zemann, Moritz; Goeppert, Nadine; Goldscheider, Nico

    2016-06-01

    Leaky sewerage and water distribution networks are an enormous problem throughout the world, specifically in developing countries and regions with water scarcity. Especially in many arid and semi-arid regions, intermittent water supply (IWS) is common practice to cope with water shortage. This study investigates the combined influence of urban activities, IWS and water losses on groundwater quality and discusses the implications for water management. In the city of As-Salt (Jordan), local water supply is mostly based on groundwater from the karst aquifer that underlies the city. Water is delivered to different supply zones for 24, 48 or 60 h each week with drinking water losses of around 50-60%. Fecal contamination in groundwater, mostly originating from the likewise leaky sewer system is a severe challenge for the local water supplier. In order to improve understanding of the local water cycle and contamination dynamics in the aquifer beneath the city, a down gradient spring and an observation well were chosen to identify contaminant occurrence and loads. Nitrate, Escherichia coli, spring discharge and the well water level were monitored for 2 years. Autocorrelation analyses of time series recorded during the dry season revealed weekly periodicity of spring discharge (45 ± 3.9 L s-1) and NO3-N concentrations (11.4 ± 0.8 mg L-1) along with weekly varying E. coli levels partly exceeding 2.420 MPN 100 mL-1. Cross-correlation analyses demonstrate a significant and inverse correlation of nitrate and discharge variations which points to a periodic dilution of contaminated groundwater by freshwater from the leaking IWS being the principal cause of the observed fluctuations. Contaminant inputs from leaking sewers appear to be rather constant. The results reveal the distinct impact of leaking clean IWS on the local groundwater and subsequently on the local water supply and therefore demonstrate the need for action regarding the mitigation of groundwater contamination and

  11. Electrolyte effects in a model of proton discharge on charged electrodes

    NASA Astrophysics Data System (ADS)

    Wiebe, Johannes; Kravchenko, Kateryna; Spohr, Eckhard

    2015-01-01

    We report results on the influence of NaCl electrolyte dissolved in water on proton discharge reactions from aqueous solution to charged platinum electrodes. We have extended a recently developed combined proton transfer/proton discharge model on the basis of empirical valence bond theory to include NaCl solutions with several different concentrations of cations and anions, both stoichiometric (1:1) compositions and non-stoichiometric ones with an excess of cations. The latter solutions partially screen the electrostatic potential from the surface charge of the negatively charged electrode. 500-1000 trajectories of a discharging proton were integrated by molecular dynamics simulations until discharge occurred, or for at most 1.5 ns. The results show a strong dependence on ionic strength, but only a weak dependence on the screening behavior, when comparing stoichiometric and non-stoichiometric solutions. Overall, the Na+ cations exert a more dominant effect on the discharge reaction, which we argue is likely due to the very rigid arrangements of the cations on the negatively polarized electrode surface. Thus, our model predicts, for the given and very high negative surface charge densities, the fastest discharge reaction for pure water, but obviously cannot take into account the fact that such high charge densities are even more out of reach experimentally than for higher electrolyte concentrations.

  12. Investigation on the mode of AC discharge in H2O affected by temperature

    NASA Astrophysics Data System (ADS)

    Siyuan, DONG; Shaomeng, GUO; Dan, WEN; Xiaoliang, TANG; Gao, QIU

    2018-04-01

    In this paper, some experimental equipment has been set up for kHz frequency AC liquid phase discharge, and the temperature of the deionized water was regulated during discharge. The electrical characteristics and spectra of liquid phase H2O discharge have been investigated. Two discharge modes, high temperature and low temperature, were both found. The results show that there are two mechanisms in liquid phase discharge: the field ionization mechanism and the breakdown mechanism of bubbles, and these two mechanisms are always developed simultaneously; the temperature is the key factor determining the discharge type. At high temperature, the breakdown of bubbles is the main discharge mechanism, and the field ionization mechanism occurs mainly at low temperature.

  13. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  14. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vapor lamp, incorporating a high-pressure arc discharge tube that has a fill consisting primarily of... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... operating time means the sum of the times during which electric current passes through the high-pressure arc...

  15. Estimated discharge of treated wastewater in Florida, 1990

    USGS Publications Warehouse

    Marella, R.L.

    1994-01-01

    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  16. High energy KrCl electric discharge laser

    DOEpatents

    Sze, Robert C.; Scott, Peter B.

    1981-01-01

    A high energy KrCl laser for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr.sub.M * to form KrCl.

  17. High energy KrCl electric discharge laser

    DOEpatents

    Sze, R.C.; Scott, P.B.

    A high energy KrCl laser is presented for producing coherent radiation at 222 nm. Output energies on the order of 100 mJ per pulse are produced utilizing a discharge excitation source to minimize formation of molecular ions, thereby minimizing absorption of laser radiation by the active medium. Additionally, HCl is used as a halogen donor which undergoes a harpooning reaction with metastable Kr/sub M/ to form KrCl.

  18. Review of research on impacts to biota of discharges of naturally occurring radionuclides in produced water to the marine environment.

    PubMed

    Hosseini, Ali; Brown, Justin E; Gwynn, Justin P; Dowdall, Mark

    2012-11-01

    Produced water has been described as the largest volume waste stream in the exploration and production process of oil and gas. It is accompanied by discharges of naturally occurring radionuclides raising concerns over the potential radiological impacts of produced water on marine biota. In the Northern European marine environment, radioactivity in produced water has received substantial attention owing to the OSPAR Radioactive Substances Strategy which aims at achieving 'concentrations in the environment near background values for naturally occurring radioactive substances'. This review provides an overview of published research on the impacts to biota from naturally occurring radionuclides discharged in produced water by the offshore oil and gas industry. In addition to summarising studies and data that deal directly with the issue of dose and effect, the review also considers studies related to the impact of added chemicals on the fate of discharged radionuclides. The review clearly illustrates that only a limited number of studies have investigated possible impacts on biota from naturally occurring radionuclides present in produced water. Hence, although these studies indicate that the risk to the environment from naturally occurring radionuclides discharged in produced water is negligible, the substantial uncertainties involved in the assessments of impact make it difficult to be conclusive. With regard to the complexity involved in the problem under consideration there is a pressing need to supplement existing data and acquire new knowledge. Finally, the present work identifies some knowledge gaps to indicate future research requirements. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Interactions between surface discharges induced by volume discharges in a dielectric barrier discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Yenan; Dong, Lifang, E-mail: donglfhbu@163.com; Zhao, Longhu

    2014-10-15

    The interaction between micro-discharges involved in surface discharges (SDs) is studied in dielectric barrier discharge system. Instantaneous images taken by high speed cameras show that the SDs are induced by volume discharges (VDs). They cannot cross the midperpendicular of two neighbouring volume charges at low voltage while they stretch along it at high voltage, indicating that there is interaction between SDs. The differences of plasma parameters between SD and VD are studied by optical emission spectroscopy. The simulation of the electric fields of the wall charges accumulated by VD further confirms the existence of the interaction.

  20. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  1. High discharge efficiency of (Sr, Pb, Bi) TiO3 relaxor ceramics for energy-storage application

    NASA Astrophysics Data System (ADS)

    Chao, Mingming; Liu, Jingsong; Zeng, Mengshi; Wang, Debin; Yu, Hongtao; Yuan, Ying; Zhang, Shuren

    2018-05-01

    We report herein on the energy storage and discharge properties of the relaxor ferroelectric ceramic Sr0.8Pb0.1Bi0.1TiO3 (SPBT). This material has a slanted hysteresis loop, and all samples show low remnant polarization and low coercive field, which leads to a high discharge efficiency. The maximum polarization is 10.1 μC/cm2, the minimum coercive field is 0.229 kV/cm, and the maximum efficiency is 94.2%. The discharge current waveforms are sinusoidal, the first discharge period is 140 ns, and the power density is approximately 4.2 × 107 W/kg. The high discharge speed and high discharge power density indicate that SPBT ceramics are very promising materials for energy storage applications.

  2. Investigation Of The High-Voltage Discharge On The Surface Of Gas-Liquid System

    NASA Astrophysics Data System (ADS)

    Nguyen-Kuok, Shi; Morgunov, Aleksandr; Malakhov, Yury; Korotkikh, Ivan

    2016-09-01

    This paper describes an experimental setup for study of physical processes in the high-voltage discharge on the surface of gas-liquid system at atmospheric pressure. Measurements of electrical and optical characteristics of the high-voltage discharge in gas, at the surface of the gas-liquid system and in the electrolyte are obtained. The parameters of the high-voltage discharge and the conditions for its stable operation are presented. Investigations with various electrolytes and cathode assemblies of various materials and sizes were carried out. The installation can be used for the processing and recycling of industrial and chemical liquid waste. Professor of Laboratory of Plasma Physics, National Research University MPEI, Krasnokazarmennya Str.14, 111250, Moscow, Russia.

  3. Assimilation of water temperature and discharge data for ensemble water temperature forecasting

    NASA Astrophysics Data System (ADS)

    Ouellet-Proulx, Sébastien; Chimi Chiadjeu, Olivier; Boucher, Marie-Amélie; St-Hilaire, André

    2017-11-01

    Recent work demonstrated the value of water temperature forecasts to improve water resources allocation and highlighted the importance of quantifying their uncertainty adequately. In this study, we perform a multisite cascading ensemble assimilation of discharge and water temperature on the Nechako River (Canada) using particle filters. Hydrological and thermal initial conditions were provided to a rainfall-runoff model, coupled to a thermal module, using ensemble meteorological forecasts as inputs to produce 5 day ensemble thermal forecasts. Results show good performances of the particle filters with improvements of the accuracy of initial conditions by more than 65% compared to simulations without data assimilation for both the hydrological and the thermal component. All thermal forecasts returned continuous ranked probability scores under 0.8 °C when using a set of 40 initial conditions and meteorological forecasts comprising 20 members. A greater contribution of the initial conditions to the total uncertainty of the system for 1-dayforecasts is observed (mean ensemble spread = 1.1 °C) compared to meteorological forcings (mean ensemble spread = 0.6 °C). The inclusion of meteorological uncertainty is critical to maintain reliable forecasts and proper ensemble spread for lead times of 2 days and more. This work demonstrates the ability of the particle filters to properly update the initial conditions of a coupled hydrological and thermal model and offers insights regarding the contribution of two major sources of uncertainty to the overall uncertainty in thermal forecasts.

  4. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J. C.; Visser, A.; Borren, W.; Winegram, M.; van der Velde, Y.; Klein, J.; Broers, H. P.

    2016-01-01

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates and the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007-2008) and after (2009-2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. However, this may be counteracted by the higher groundwater levels and the larger contribution of N- and P

  5. Characteristics of sediment discharge in the subarctic Yukon River, Alaska

    USGS Publications Warehouse

    Chikita, K.A.; Kemnitz, R.; Kumai, R.

    2002-01-01

    The characteristics of sediment discharge in the Yukon River, Alaska were investigated by monitoring water discharge, water turbidity and water temperature. The river-transported sediment, 90 wt.% or more, consists of silt and clay (grain size ??? 62.5 ??m), which probably originated in the glacier-covered mountains mostly in the Alaska Range. For early June to late August 1999, we continuously measured water turbidity and temperature near the estuary and in the middle of Yukon River by using self-recording turbidimeters and temperature data loggers. The water turbidity (ppm) was converted to suspended sediment concentration (SSC; mg/l) of river water, using a relation between simultaneous turbidity and SSC at each of the two sites, and then, the suspended sediment discharge, approximately equal to water discharge times SSC, was numerically obtained every 1 or 2 h. It should be noted that the sediment discharge in the Yukon River is controlled by SSC rather than water discharge. As a result, a peak sediment discharge occurred in mid or late August by local sediment runoffs due to glacier-melt (or glacier-melt plus rainfall), while a peak water discharge was produced by snowmelt in late June or early July. Application of the "extended Shields diagram" indicates that almost all the river-transported sediments are under complete suspension. ?? 2002 Elsevier Science B.V. All rights reserved.

  6. Does zero-water discharged technology enhance culture performance of pacific white shrimp (Litopenaeus vannamei Boone.)?

    NASA Astrophysics Data System (ADS)

    Suantika, Gede; Anggraeni, Jayanty; Hasby, Fahri Azhari; Yanuwiarti, Ni Putu Indah

    2014-03-01

    Litopenaeus vannamei or white leg shrimp is an introduced shrimp which has successfully cultured in Indonesia. In Indonesia, L. vannamei is commonly cultured on outdoor/earthen pond that requires renewal of water, less control in term of water quality and disease and attributed to unpredictable yield production. Based on the existing culture condition, a system that enable to minimize water consumption, improve the hygiene of the culture and at the same time maintain a more stable yield production is urgent to be developed by using a zero water discharge system. The system consists of: (a) culture tank - to retain and culture the shrimp; (b) CaCO3 grained - buffering agent and substrate of nitrifying bacteria; (c) aeration line - to provide O2 and homogenize the culture; (d) ancho (feeding) - to control an appropriate feed; (e) nitrifying bacteria adding - to consume ammonium and nitrite then convert it to nitrate, and also control pathogen Vibrio sp.; (f) diatom microalgae (Chaetoceros gracilis) - to uptake nitrate, bacteriostatic agent, feed source, provide O2 and shading. In this study, there were 2 treatments: the static culture (batch) system was set as control (K) (in 70 PL/m2), and culture system with zero-water discharge system which was inoculated by 0.02% v/v 106 CFU/ml of mixed culture nitrifying bacteria and diatom microalgae in 70 PL/m2 (P1). The white leg shrimp used in this experiment was at post larvae (PL) 10 and cultured in a batch system (1 × 1 × 0.5 m3 pond) during 2 months. Several parameters including survival rate, mean body weight, and water quality (salinity, temperature, pH, DO, ammonium, nitrite, and nitrate) were measured. Based on the results, biomass of P1 (237.12 ± 31.11) gram is significantly higher than control (K) (180.80 ± 12.26) gram (P< 0,05). Water quality during the culture period in all treatments were still in tolerance range of white leg shrimp post larvae, except ammonium concentration in control (K) (2.612 ± 0.56) mg

  7. B, As, and F contamination of river water due to wastewater discharge of the Yangbajing geothermal power plant, Tibet, China

    NASA Astrophysics Data System (ADS)

    Guo, Qinghai; Wang, Yanxin; Liu, Wei

    2008-11-01

    Thermal waters from the Yangbajing geothermal field, Tibet, contain high concentrations of B, As, and F, up to 119, 5.7 and 19.6 mg/L, respectively. In this paper, the distribution of B, As, and F in the aquatic environment at Yangbajing was surveyed. The results show that most river water samples collected downstream of the Zangbo River have comparatively higher concentrations of B, As, and F (up to 3.82, 0.27 and 1.85 mg/L, respectively), indicating that the wastewater discharge of the geothermal power plant at Yangbajing has resulted in B, As, and F contamination in the river. Although the concentrations of B, As, and F of the Zangbo river waters decline downstream of the wastewater discharge site due to dilution effect and sorption onto bottom sediments, the sample from the conjunction of the Zangbo River and the Yangbajing River has higher contents of B, As, and F as compared with their predicted values obtained using our regression analysis models. The differences between actual and calculated contents of B, As, and F can be attributed to the contribution from upstream of the Yangbajing River. Water quality deterioration of the river has induced health problems among dwellers living in and downstream of Yangbajing. Effective measures, such as decontamination of wastewater and reinjection into the geothermal field, should be taken to protect the environment at Yangbajing.

  8. Novel industrial wastewater treatment integrated with recovery of water and salt under a zero liquid discharge concept.

    PubMed

    Rajamani, Sengodagounder

    2016-03-01

    Conventional industrial effluent treatment systems are designed to reduce biochemical oxygen demand (BOD), chemical oxygen demand (COD) but not total dissolved solids (TDS), mainly contributed by chlorides. In addition to the removal of TDS, it is necessary to recover water for reuse to meet the challenges of shortage of quality water. To recover water, the wastewater needs to be further treated by adopting treatment systems including microfilters, low pressure membrane units such as ultrafiltration (UF), membrane bioreactors (MBR), etc., for the application of reverse osmosis (RO) systems. By adopting the RO system, 75%-80% of quality water with <500 mg/L of TDS is recovered from treated effluent. The management of 20%-25% of the saline water rejected from the RO system with high TDS concentration is being addressed by methods such as forced evaporation systems. The recovery of water from domestic and industrial waste for reuse has become a reality. The membrane system has been used for different applications. It has become mandatory to achieve zero liquid discharge (ZLD) in many states in India and other countries such as Spain, China, etc., and resulted in development of new treatment technologies to suit the local conditions.

  9. Station descriptions and availability of discharge and water-quality data through 1985 for eastern Montana stream sites not included in the National Water Data Exchange Program

    USGS Publications Warehouse

    Groskinsky Link, B. L.; Cary, L.E.

    1988-01-01

    Stations were selected to monitor water discharge and water quality of streams in eastern Montana. This report describes the stations and indicates the availability of hydrologic data through 1985. Included are stations that are operated by organizations that do not belong to the National Water Data Exchange (NAWDEX) program operated by the U.S. Geological Survey. Each station description contains a narration of the station 's history including location, drainage area, elevation, operator, period of record, type of equipment and instruments used at the station, and data availability. The data collected at each station have been identified according to type: water discharge, chemical quality, and suspended sediment. Descriptions are provided for 113 stations. These data have potential uses in characterizing small hydrologic basins, as well as other uses. A map of eastern Montana shows the location of the stations selected. (USGS)

  10. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  11. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities.

    PubMed

    Sawyer, Audrey H; David, Cédric H; Famiglietti, James S

    2016-08-12

    Submarine groundwater discharge (SGD) delivers water and dissolved chemicals from continents to oceans, and its spatial distribution affects coastal water quality. Unlike rivers, SGD is broadly distributed and relatively difficult to measure, especially at continental scales. We present spatially resolved estimates of fresh (land-derived) SGD for the contiguous United States based on historical climate records and high-resolution hydrographic data. Climate controls regional patterns in fresh SGD, while coastal drainage geometry imparts strong local variability. Because the recharge zones that contribute fresh SGD are densely populated, the quality and quantity of fresh SGD are both vulnerable to anthropogenic disturbance. Our analysis unveils hot spots for contaminant discharge to marine waters and saltwater intrusion into coastal aquifers. Copyright © 2016, American Association for the Advancement of Science.

  12. Discharge ratings at gaging stations

    USGS Publications Warehouse

    Kennedy, E.J.

    1984-01-01

    A discharge rating is the relation of the discharge at a gaging station to stage and sometimes also to other variables. This chapter of 'Techniques of Water-Resources Investigations' describes the procedures commonly used to develop simple ratings where discharge is related only to stage and the most frequently encountered types of complex ratings where additional factors such as rate of change in stage, water-surface slope, or index velocity are used. Fundamental techniques of logarithmic plotting and the applications of simple storage routing to rating development are demonstrated. Computer applications, especially for handheld programmable calculators, and data handling are stressed.

  13. Discharge, water-quality characteristics, and nutrient loads from McKay Bay, Delaney Creek, and East Bay, Tampa, Florida, 1991-1993

    USGS Publications Warehouse

    Stoker, Y.E.; Levesque, V.A.; Fritz, E.M.

    1996-01-01

    Nutrient enrichment in Tampa Bay has caused a decline in water quality in the estuary. Efforts to reduce the nutrient loading to Tampa Bay have resulted in improvement in water quality from 1981 to 1991. However, Tampa Bay still is onsidered enriched with nutrients. Water quality in East Bay (located at the northeastern part of Hillsborough Bay, which is an embayment in Tampa Bay) is not improving at the same rate as the rest of the bay. East Bay is the center of shipping activity in Tampa Bay and the seventh largest port in the United States. One of the primary cargoes is phosphate ore and related products such as fertilizer. The potential for nutrient loading to East Bay from shipping activities is high and has not previously been measured. Nitrogen and phosphorus loads from East Bay to Hillsborough Bay were measured during selected time periods during June 1992 through May 1993; these data were used to estimate seasonal and annual loads. These loads were evaluated to determine whether the loss of fertilizer products from shipping activities resulted in increased nutrient loading to Hillsborough Bay. Discharge was measured, and water-quality samples were collected at the head of East Bay (exiting McKay Bay), and at the mouth of East Bay. Discharge and nitrogen and phosphorus concentrations for the period June 1992 through May 1993 were used to compute loads. Discharges from McKay Bay, Delaney Creek, and East Bay are highly variable because of the effect of tide. Flow patterns during discharge measurements generally were unidirectional in McKay Bay and Delaney Creek, but more complex, bidirectional patterns were observed at the mouth of East Bay. Tidally affected discharge data were digitally filtered with the Godin filter to remove the effects of tide so that residual, or net, discharge could be determined. Daily mean discharge from McKay Bay ranged from -1,900 to 2,420 cubic feet per second; from Delaney Creek, -3.8 to 162 cubic feet per second; and from East

  14. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  15. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  16. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    PubMed

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  17. Submarine groundwater discharge into the coast revealed by water chemistry of man-made undersea liquefied petroleum gas cavern

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Yong; Cho, Byung Wook

    2008-10-01

    SummaryThe occurrence of submarine groundwater discharge (SGD) as well as its supply of many nutrients and metals to coastal seawaters is now generally known. However, previous studies have focused on the chemical and radiological analysis of groundwater, surface seawater, shallow marine sediments and their pore waters, as well as the measurement of upward flow through the marine sediments, as end members of the discharge process. In this study, chemical and isotopic analysis results of marine subsurface waters are reported. These were obtained from deep boreholes of an undersea liquefied petroleum gas (LPG) storage cavern, located about 8 km off the western coast of Korea. The cavern is about 130-150 m below the sea bottom, which is covered by a 4.8-19.5 m silty clay stratum. An isotopic composition (δ 2H and δ 18O) of the marine subsurface waters falls on a mixing line between terrestrial groundwater and seawater. Vertical EC profiling at the cavern boreholes revealed the existence of a fresh water zone. An increase in the contents of ferrous iron and manganese and a decrease in levels of nitrate, bicarbonate and cavern seepage were recorded in August 2006, indicating a decreased submarine groundwater flux originating from land, mainly caused by an elevated cavern gas pressure. It is suggested in this study that the main source of fresh waters in the man-made undersea cavern is the submarine groundwater discharge mainly originating from the land.

  18. Recent Progress in Development of SWOT River Discharge Algorithms

    NASA Astrophysics Data System (ADS)

    Pavelsky, Tamlin M.; Andreadis, Konstantinos; Biancamaria, Sylvian; Durand, Michael; Moller, Dewlyn; Rodriguez, Enersto; Smith, Laurence C.

    2013-09-01

    The Surface Water and Ocean Topography (SWOT) Mission is a satellite mission under joint development by NASA and CNES. The mission will use interferometric synthetic aperture radar technology to continuously map, for the first time, water surface elevations and water surface extents in rivers, lakes, and oceans at high spatial resolutions. Among the primary goals of SWOT is the accurate retrieval of river discharge directly from SWOT measurements. Although it is central to the SWOT mission, discharge retrieval represents a substantial challenge due to uncertainties in SWOT measurements and because traditional discharge algorithms are not optimized for SWOT-like measurements. However, recent work suggests that SWOT may also have unique strengths that can be exploited to yield accurate estimates of discharge. A NASA-sponsored workshop convened June 18-20, 2012 at the University of North Carolina focused on progress and challenges in developing SWOT-specific discharge algorithms. Workshop participants agreed that the only viable approach to discharge estimation will be based on a slope-area scaling method such as Manning's equation, but modified slightly to reflect the fact that SWOT will estimate reach-averaged rather than cross- sectional discharge. While SWOT will provide direct measurements of some key parameters such as width and slope, others such as baseflow depth and channel roughness must be estimated. Fortunately, recent progress has suggested several algorithms that may allow the simultaneous estimation of these quantities from SWOT observations by using multitemporal observations over several adjacent reaches. However, these algorithms will require validation, which will require the collection of new field measurements, airborne imagery from AirSWOT (a SWOT analogue), and compilation of global datasets of channel roughness, river width, and other relevant variables.

  19. Production of fullerenes and single-wall carbon nanotubes by high-temperature pulsed arc discharge

    NASA Astrophysics Data System (ADS)

    Sugai, Toshiki; Omote, Hideki; Bandow, Shunji; Tanaka, Nobuo; Shinohara, Hisanori

    2000-04-01

    Fullerenes and single-wall carbon nanotubes (SWNTs) have been produced for the first time by the high-temperature pulsed arc-discharge technique, which has developed in this laboratory. Fullerenes are identified quantitatively by high-performance liquid chromatography (HPLC), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations reveal a significant amount of production of bundles of SWNTs in soot. The pulse arc production of fullerenes and SWNTs favors the high-temperature (⩾1000 °C), long pulses (⩾1 ms) and a heavy rare gas such as Ar or Kr as a buffer gas. We have found that fullerenes and SWNTs have complementary relationships in their early stage of production. The details of the pulsed arc discharge have been obtained by observing the transition from the pulsed arc discharge to the steady arc discharge while increasing the pulse width.

  20. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  1. A Zero Dimensional Time-Dependent Model of High-Pressure Ablative Capillary Discharge (Preprint)

    DTIC Science & Technology

    2008-06-01

    comprehensive model of capillary discharge is important to understand the physics and engineering aspects of the capillary discharge thruster. A schematic...investigators since the mid-1980s see 1-11 and references therein, satisfy both of these conditions well. These studies investigated the dynamics of high...is a comprehensive description of the radiative heat transfer in the capillary discharge. It is worth noting that in other types of capillary

  2. Measurements of water molecule density by tunable diode laser absorption spectroscopy in dielectric barrier discharges with gas-water interface

    NASA Astrophysics Data System (ADS)

    Tachibana, Kunihide; Nakamura, Toshihiro; Kawasaki, Mitsuo; Morita, Tatsuo; Umekawa, Toyofumi; Kawasaki, Masahiro

    2018-01-01

    We measured water molecule (H2O) density by tunable diode-laser absorption spectroscopy (TDLAS) for applications in dielectric barrier discharges (DBDs) with a gas-water interface. First, the effects of water temperature and presence of gas flow were tested using a Petri dish filled with water and a gas injection nozzle. Second, the TDLAS system was applied to the measurements of H2O density in two types of DBDs; one was a normal (non-inverted) type with a dielectric-covered electrode above a water-filled counter electrode and the other was an inverted type with a water-suspending mesh electrode above a dielectric-covered counter electrode. The H2O density in the normal DBD was close to the density estimated from the saturated vapor pressure, whereas the density in the inverted DBD was about half of that in the former type. The difference is attributed to the upward gas flow in the latter type, that pushes the water molecules up towards the gas-water interface.

  3. Field strengths and dissipated powers in microwave-excited high-pressure sulphur discharges

    NASA Astrophysics Data System (ADS)

    van Dongen, Menno; Körber, Achim; van der Heijden, Harm; Jonkers, Jeroen; Scholl, Robert; van der Mullen, Joost

    1998-11-01

    A method which makes it is possible to measure the electric field strength in microwave discharges is presented. A condition for this method is that the plasma has such a low conductivity that the associated skin depth is larger than the discharge radius. It is found that the field strength in high-pressure sulphur lamps is around 400 V 0022-3727/31/21/015/img10. Furthermore, this method allows the determination of the power absorbed in the resonator's wall and in the plasma and the estimation of the effective electric conductivity in the discharge.

  4. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  5. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  6. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  7. 33 CFR 155.350 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel... mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of less than 400 gross... to a reception facility; or (2) Has approved oily-water separating equipment for processing oily...

  8. Inorganic, isotopic, and organic composition of high-chloride water from wells in a coastal southern California aquifer

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Newhouse, Mark W.; Aiken, George R.

    2005-01-01

    Chloride concentrations were as high as 230 mg/L in water from the surface discharge of long-screened production wells in Pleasant Valley, Calif., about 100 km NW of Los Angeles. Wells with the higher Cl− concentrations were near faults that bound the valley. Depending on well construction, high-Cl−water from different sources may enter a well at different depths. For example, Cl− concentration in the upper part of some wells completed in overlying aquifers influenced by irrigation return were as high as 220 mg/L, and Cl−concentrations in water sampled within wells at depths greater than 450 m were as high as 500 mg/L. These high-Cl− waters mix within the well during pumping and produce the water sampled at the surface discharge. Changes in the major ion, minor ion, trace element, and δ34S and δ13C isotopic composition of water in wells with depth were consistent with changes resulting from SO4 reduction, precipitation of calcite, and cation exchange. The chemical and isotopic composition of high-Cl− water from deep wells trends towards the composition of oil-field production water from the study area. Chloride concentrations in oil-field production water present at depths 150 m beneath freshwater aquifers were 2200 mg/L, and Cl− concentrations in underlying marine rock were as high as 4400 mg/L. High-Cl−concentrations in water from deeper parts of wells were associated with dissolved organic C composed primarily of hydrophobic neutral compounds believed to be similar to those associated with petroleum in underlying deposits. These compounds would not be apparent using traditional sampling techniques and would not be detected using analytical methods intended to measure contamination.

  9. Transport and transformation of pharmaceuticals and other contaminants of emerging concern from wastewater discharge through surface water to drinking water intake and treatment

    EPA Science Inventory

    The ubiquitous presence of pharmaceuticals, hormones, and other contaminants of emerging concern (CECs) in surface-water resources have necessitated research that better elucidates pathways of transport and transformation for these compounds from their discharged wastewater, thro...

  10. On-line Monitoring Device for High-voltage Switch Cabinet Partial Discharge Based on Pulse Current Method

    NASA Astrophysics Data System (ADS)

    Y Tao, S.; Zhang, X. Z.; Cai, H. W.; Li, P.; Feng, Y.; Zhang, T. C.; Li, J.; Wang, W. S.; Zhang, X. K.

    2017-12-01

    The pulse current method for partial discharge detection is generally applied in type testing and other off-line tests of electrical equipment at delivery. After intensive analysis of the present situation and existing problems of partial discharge detection in switch cabinets, this paper designed the circuit principle and signal extraction method for partial discharge on-line detection based on a high-voltage presence indicating systems (VPIS), established a high voltage switch cabinet partial discharge on-line detection circuit based on the pulse current method, developed background software integrated with real-time monitoring, judging and analyzing functions, carried out a real discharge simulation test on a real-type partial discharge defect simulation platform of a 10KV switch cabinet, and verified the sensitivity and validity of the high-voltage switch cabinet partial discharge on-line monitoring device based on the pulse current method. The study presented in this paper is of great significance for switch cabinet maintenance and theoretical study on pulse current method on-line detection, and has provided a good implementation method for partial discharge on-line monitoring devices for 10KV distribution network equipment.

  11. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    NASA Astrophysics Data System (ADS)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  12. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  13. Characterizing Microbial Water Quality of Extreme Tide Floodwaters Discharged from an Urbanized Subtropical Beach: Case Study of Miami Beach with Implications for Sea Level Rise and Public Health

    NASA Astrophysics Data System (ADS)

    Gidley, M. L.

    2016-02-01

    With the advent of rising sea levels and increasing incidents of extreme tidal flooding events and stormwater flooding events, there is increasing probability of mobilization of land-based sources of pollution (LBSP) from highly urbanized beach environments and potential transport of these contaminants to coastal waters where they may have negative impacts on ecosystems and public health. A case in point is the situation facing the City of Miami Beach, where urban tidal flooding has become routine for extreme tidal events such as King Tide. To deal with the increasing problem of tidal flooding and other potential sources of coastal inundation, the City of Miami Beach has installed a system of floodwater/stormwater pumping stations to collect and discharge such floodwaters. This system appears to control the extent and duration of coastal inundation, however, the floodwater is discharged directly into Biscayne Bay without any treatment , which may potentially carry a variety of pollutants acquired during inundation of this urbanized coast. We report a case study examining the microbial water quality of floodwaters discharged by this pumping system back into Biscayne Bay following the inundation by King Tide floodwaters from September 2014 and 2015. The presence and abundance of both general and host-specific fecal indicating bacteria (FIB), including enterococci and human-host Bacteriodales were measured by traditional culture methods and by molecular microbial source tracking (MST) qPCR methods. While the results from different locations did vary substantially, several discharge samples demonstrated high elevations of fecal indicator bacteria and high levels of human fecal marker by MST. This study suggests that while such flood control measures may improve resiliency of urbanized coastal communities to tidal flooding and/or stormwater, the water quality of such floodwater discharges need to be monitored and potentially treated to mediate the transport of LBSP

  14. Multi-scale analysis of the fluxes between terrestrial water storage, groundwater, and stream discharge in the Columbia River Basin

    EPA Science Inventory

    The temporal relationships between the measurements of terrestrial water storage (TWS), groundwater, and stream discharge were analyzed at three different scales in the Columbia River Basin (CRB) for water years 2004 - 2012. Our nested watershed approach examined the Snake River ...

  15. Discharge estimation for the Upper Brahmaputra River in the Tibetan Plateau using multi-source remote sensing data

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Long, D.; Du, M.; Hong, Y.

    2017-12-01

    River discharge is among the most important hydrological variables of hydrologists' concern, as it links drinking water supply, irrigation, and flood forecast together. Despite its importance, there are extremely limited gauging stations across most of alpine regions such as the Tibetan Plateau (TP) known as Asia's water towers. Use of remote sensing combined with partial in situ discharge measurements is a promising way of retrieving river discharge over ungauged or poorly gauged basins. Successful discharge estimation depends largely on accurate water width (area) and water level, but it is challenging to obtain these variables for alpine regions from a single satellite platform due to narrow river channels, complex terrain, and limited observations. Here, we used high-spatial-resolution images from Landsat series to derive water area, and satellite altimetry (Jason 2) to derive water level for the Upper Brahmaputra River (UBR) in the TP with narrow river width (less than 400 m in most occasions). We performed waveform retracking using a 50% Threshold and Ice-1 Combined algorithm (TIC) developed in this study to obtain accurate water level measurements. The discharge was estimated well using a range of derived formulas including the power function between water level and discharge, and that between water area and discharge suitable for the triangular cross-section around the Nuxia gauging station in the UBR. Results showed that the power function using Jason 2-derived water levels after performing waveform retracking performed best, showing an overall NSE value of 0.92. The proposed approach for remotely sensed river discharge is effective in the UBR and possibly other alpine rivers globally.

  16. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential.

  17. Reuse/disposal of agricultural drainage water with high levels of salinity and toxic trace elements in central California.

    USDA-ARS?s Scientific Manuscript database

    Agricultural drainage waters in the western San Joaquin Valley of Central California contain high levels of salts, boron (B) and selenium (Se). Discharge of the drainage water directly into the Kesterson Reservoir in 1980's was hazardous to plants and wildlife. To investigate the plausibility of usi...

  18. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudmundsson, J. T., E-mail: tumi@hi.is; Science Institute, University of Iceland, Dunhaga 3, IS-107 Reykjavik; Lundin, D.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization ismore » always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.« less

  19. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity

    NASA Astrophysics Data System (ADS)

    Yu, X. B.; Wu, Z.; Xia, B. J.; Xu, N. X.

    2004-07-01

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g-1 of the alloy powder were obtained at discharge current of 45-10 mA g-1 in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  20. A Ti-V-based bcc phase alloy for use as metal hydride electrode with high discharge capacity.

    PubMed

    Yu, X B; Wu, Z; Xia, B J; Xu, N X

    2004-07-08

    The electrochemical characteristics of single bcc phase Ti-30V-15Cr-15Mn alloy were investigated. It was demonstrated that the single bcc phase alloy has high electrochemical discharge performance at high temperature. Its discharge capacity is closely related with temperature and discharge current. The first discharge capacities of 580-814 mAh g(-1) of the alloy powder were obtained at discharge current of 45-10 mA g(-1) in 6 M KOH solution at 353 K. Although the electrochemical cycle life of the alloy is unsatisfactory at present, it opens up prospects for developing a new hydrogen storage alloy with high hydrogen capacity for use as high performance metal hydride electrodes in rechargeable Ni-MH battery.

  1. Dependence of recycling and edge profiles on lithium evaporation in high triangularity, high performance NSTX H-mode discharges.

    DOE PAGES

    Maingi, R.; Osborne, T. H.; Bell, M. G.; ...

    2014-11-04

    In this paper, the effects of a pre-discharge lithium evaporation variation on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning (‘dose’) was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, wemore » also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. As a result, this indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.« less

  2. Cold atmospheric plasma discharged in water and its potential use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Chen, Zhitong; Cheng, Xiaoqian; Lin, Li; Keidar, Michael

    2017-01-01

    Cold atmospheric plasma (CAP) has emerged as a novel technology for cancer treatment. CAP can directly treat cells and tissue but such direct application is limited to skin or can be invoked as a supplement during open surgery. In this study we report indirect plasma treatment using CAP discharged in deionized (DI) water using three gases as carriers (argon (Ar), helium (He), and nitrogen (N2)). Plasma stimulated water was applied to the human breast cancer cell line (MDA-MB-231). MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay tests showed that using Ar plasma had the strongest effect on inducing apoptosis in cultured human breast cancer cells. This result is attributed to the elevated production of reactive oxygen species and reactive nitrogen species in water.

  3. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    USGS Publications Warehouse

    Hladik, Michelle; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  4. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    PubMed

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged. © 2013.

  5. Water Resources Data, Kansas, Water Year 1999

    USGS Publications Warehouse

    Putnam, J.E.; Lacock, D.L.; Schneider, D.R.; Carlson, M.D.

    2000-01-01

    Water-resources data for the 1999 water year for Kansas consist of records of stage, discharge, and water quality of streams; elevation and contents of lakes and reservoirs; and water levels of ground-water wells. This report contains records for water discharge at 143 gaging stations; elevation and contents at 19 watershed lakes and reservoirs; and water-level data at 19 observation wells; and records of specific conductance, pH, water temperature, dissolved oxygen, and turbidity at 4 stations. Also included are data for 26 high-flow and 2 low-flow partial-record stations; and 2 chemical quality of precipitation stations. Miscellaneous onsite water-quality data were collected at 132 stations. These data represent that part of the National Water Information System collected by the U.S. Geological Survey in cooperation with State, local, and Federal agencies in Kansas.

  6. Dynamic generation of supercritical water fluid in a strong electrical discharge in a liquid

    NASA Astrophysics Data System (ADS)

    Antonov, V.; Kalinin, N.; Kovalenko, A.

    2016-11-01

    A new impetus for the development of electro physics is associated with using different types of electrical discharges in biology and medicine. These applications are based on their energetic and non-toxic factors affecting the medium on a cellular level. For the study of such processes, a mathematical model of a high-current low-temperature Z-discharge in a liquid, forming by the electrical explosion of a thin-walled metal shell, connected to a pulsed high-voltage generator, has been developed. High efficiency energy conversion, introduced into the plasma discharge to the energy of fluid motion, provides various bio chemical applications of such physical processes. The investigation is conducted through numerical solution of one-dimensional single-temperature non-stationary equations of radiation magneto hydrodynamics, one way describing the evolution of hydrodynamic, thermal and electrical characteristics of the medium throughout the area under consideration. The electrical approximation based on the assumption that the electric field in the discharge has a uniform distribution. The results are presented as a function of the electric current and the plasma channel length of time, as well as the temperature and pressure distributions at different time points along the radius of the cylindrical region in which the explosion occurs.

  7. Sustained diffusive alternating current gliding arc discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Zhu, Jiajian; Gao, Jinlong; Li, Zhongshan; Ehn, Andreas; Aldén, Marcus; Larsson, Anders; Kusano, Yukihiro

    2014-12-01

    Rapid transition from glow discharge to thermal arc has been a common problem in generating stable high-power non-thermal plasmas especially at ambient conditions. A sustained diffusive gliding arc discharge was generated in a large volume in atmospheric pressure air, driven by an alternating current (AC) power source. The plasma column extended beyond the water-cooled stainless steel electrodes and was stabilized by matching the flow speed of the turbulent air jet with the rated output power. Comprehensive investigations were performed using high-speed movies measured over the plasma column, synchronized with simultaneously recorded current and voltage waveforms. Dynamic details of the novel non-equilibrium discharge are revealed, which is characterized by a sinusoidal current waveform with amplitude stabilized at around 200 mA intermediate between thermal arc and glow discharge, shedding light to the governing mechanism of the sustained spark-suppressed AC gliding arc discharge.

  8. Magnetic dipole discharges. II. Cathode and anode spot discharges and probe diagnostics

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Ionita, C.; Schrittwieser, R.

    2013-08-01

    The high current regime of a magnetron-type discharge has been investigated. The discharge uses a permanent magnet as a cold cathode which emits secondary electrons while the chamber wall or a grounded electrode serves as the anode. As the discharge voltage is increased, the magnet develops cathode spots, which are short duration arcs that provide copious electrons to increase the discharge current dramatically. Short (1 μs), high current (200 A) and high voltage (750 V) discharge pulses are produced in a relaxation instability between the plasma and a charging capacitor. Spots are also observed on a negatively biased plane Langmuir probe. The probe current pulses are as large as those on the magnet, implying that the high discharge current does not depend on the cathode surface area but on the properties of the spots. The fast current pulses produce large inductive voltages, which can reverse the electrical polarity of the magnet and temporarily operate it as an anode. The discharge current may also oscillate at the frequency determined by the charging capacitor and the discharge circuit inductance. Each half cycle of high-current current pulses exhibits a fast (≃10 ns) current rise when a spot is formed. It induces high frequency (10-100 MHz) transients and ringing oscillations in probes and current circuits. Most probes behave like unmatched antennas for the electromagnetic pulses of spot discharges. Examples are shown to distinguish the source of oscillations and some rf characteristics of Langmuir probes.

  9. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  10. On the Development of an Integrated Hydrologic, Hydraulic, and Inverse Modeling Approach for Estimating Discharges and Water Depths for Ungauged Rivers from Space

    NASA Astrophysics Data System (ADS)

    LIU, G.; Schwartz, F. W.; Tseng, K. H.; Shum, C. K.

    2015-12-01

    The characterization of hydrologic processes in large river basins has been benefitting from a variety of remotely sensed data. These are useful in augmenting the conventional ground-surface and gage data that have long been available, or in providing what is often the only available information for ungauged river basins. The goal of this study is to demonstrate an innovative modeling approach that uses satellite data to enhance understanding of rivers, particularly ungauged rivers. The paper describes a prototype system - SWAT-XG, coupling SWAT and XSECT models in a Genetic Algorithm framework, for estimating discharge and depth for ungauged rivers from space. SWAT-XG was rigorously tested in the Red River of the North basin by validating discharge and depth products from 2006 to 2010 using in-situ observations across the basin. Results show that SWAT-XG, calibrated against remotely sensed data alone (i.e., water levels from ENVISAT altimetry and water extents from LANDSAT), was able to provide estimates of daily and monthly river discharge with mean R2 values of 0.822 and 0.924, respectively, against data from three gaging stations on the main stem. SWAT-XG also simulated the discharges of smaller tributaries well (yielding a mean R2 of 0.809 over seven gaging stations), suggesting that the SWAT-XG is a powerful estimator of river discharge at a basin scale. Results also show that the SWAT-XG simulated river's vertical dynamics quite well, providing water-depth estimates with an average R2 of 0.831. We conclude that the SWAT-XG advances the ability to estimate discharge and water depth from space for ungauged rivers. SWAT-XG would help to solve global big data problem for river studies and offer potential for understanding and quantifying the global water cycles. This study also implies that in-situ discharge data may not be necessary for a successful hydrologic model calibration.

  11. Spheres of discharge of springs

    NASA Astrophysics Data System (ADS)

    Springer, Abraham E.; Stevens, Lawrence E.

    2009-02-01

    Although springs have been recognized as important, rare, and globally threatened ecosystems, there is as yet no consistent and comprehensive classification system or common lexicon for springs. In this paper, 12 spheres of discharge of springs are defined, sketched, displayed with photographs, and described relative to their hydrogeology of occurrence, and the microhabitats and ecosystems they support. A few of the spheres of discharge have been previously recognized and used by hydrogeologists for over 80 years, but others have only recently been defined geomorphologically. A comparison of these spheres of discharge to classification systems for wetlands, groundwater dependent ecosystems, karst hydrogeology, running waters, and other systems is provided. With a common lexicon for springs, hydrogeologists can provide more consistent guidance for springs ecosystem conservation, management, and restoration. As additional comprehensive inventories of the physical, biological, and cultural characteristics are conducted and analyzed, it will eventually be possible to associate spheres of discharge with discrete vegetation and aquatic invertebrate assemblages, and better understand the habitat requirements of rare or unique springs species. Given the elevated productivity and biodiversity of springs, and their highly threatened status, identification of geomorphic similarities among spring types is essential for conservation of these important ecosystems.

  12. Development and demonstration of a water-window soft x-ray microscope using a Z-pinching capillary discharge source

    NASA Astrophysics Data System (ADS)

    Nawaz, M. F.; Jancarek, Alexandr; Nevrkla, Michal; Duda, Martin Jakub; Pina, Ladislav

    2017-05-01

    The development and demonstration of a soft X-ray (SXR) microscope, based on a Z-pinching capillary discharge source has been realized. The Z-pinching plasma acts as a source of SXR radiation. A ceramic capacitor bank is pulsed charged up to 80 kV, and discharged through a pre- ionized nitrogen filled ceramic capillary. The discharge current has an amplitude of 25 kA. Working within the water-window spectral region (λ = 2.88 nm), corresponding to the 1s2-1s2p quantum transition of helium-like nitrogen (N5+), the microscope has a potential in exploiting the natural contrast existing between the K-absorption edges of carbon and oxygen as the main constituents of biological materials, and hence imaging them with high spatial resolution. The SXR microscope uses the grazing incidence ellipsoidal condenser mirror for the illumination, and the Fresnel zone plate optics for the imaging of samples onto a BI-CCD camera. The half- pitch spatial resolution of 100 nm [1] was achieved, as demonstrated by the knife-edge test. In order to enhance the photon-flux at the sample plane, a new scheme for focusing the radiation, from multiple capillary sources has been investigated. Details about the source, and the construction of the microscope are presented and discussed.

  13. A method for extending stage-discharge relationships using a hydrodynamic model and quantifying the associated uncertainty

    NASA Astrophysics Data System (ADS)

    Shao, Quanxi; Dutta, Dushmanta; Karim, Fazlul; Petheram, Cuan

    2018-01-01

    Streamflow discharge is a fundamental dataset required to effectively manage water and land resources. However, developing robust stage - discharge relationships called rating curves, from which streamflow discharge is derived, is time consuming and costly, particularly in remote areas and especially at high stage levels. As a result stage - discharge relationships are often heavily extrapolated. Hydrodynamic (HD) models are physically based models used to simulate the flow of water along river channels and over adjacent floodplains. In this paper we demonstrate a method by which a HD model can be used to generate a 'synthetic' stage - discharge relationship at high stages. The method uses a both-side Box-Cox transformation to calibrate the synthetic rating curve such that the regression residuals are as close to the normal distribution as possible. By doing this both-side transformation, the statistical uncertainty in the synthetically derived stage - discharge relationship can be calculated. This enables people trying to make decisions to determine whether the uncertainty in the synthetically generated rating curve at high stage levels is acceptable for their decision. The proposed method is demonstrated in two streamflow gauging stations in north Queensland, Australia.

  14. 33 CFR 157.31 - Discharges: Chemical additives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Discharges: Chemical additives. 157.31 Section 157.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.31 Discharges: Chemical additives. No person may use a chemical...

  15. 33 CFR 157.31 - Discharges: Chemical additives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Discharges: Chemical additives. 157.31 Section 157.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.31 Discharges: Chemical additives. No person may use a chemical...

  16. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  17. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  18. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  19. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  20. 33 CFR 158.250 - Standard discharge connection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Reception Facilities: Oily Mixtures § 158.250 Standard discharge connection. Each reception facility that received bilge water containing oily mixtures must have a standard discharge connection that— (a) Meets § 155.430 of this subchapter; and (b) Attaches to each hose or pipe that removes bilge water containing...

  1. 33 CFR 157.31 - Discharges: Chemical additives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Discharges: Chemical additives. 157.31 Section 157.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.31 Discharges: Chemical additives. No person may use a chemical...

  2. 33 CFR 157.31 - Discharges: Chemical additives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Discharges: Chemical additives. 157.31 Section 157.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.31 Discharges: Chemical additives. No person may use a chemical...

  3. 33 CFR 157.31 - Discharges: Chemical additives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Discharges: Chemical additives. 157.31 Section 157.31 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... OIL IN BULK Vessel Operation § 157.31 Discharges: Chemical additives. No person may use a chemical...

  4. Discharge characteristics of four highway drainage systems in Ohio

    USGS Publications Warehouse

    Straub, D.E.

    1995-01-01

    Excessive water in the subbase of high-way combined with large traffic volumes and heavy loads is a major cause of road deterioration. Prompt removal of any excess water in a subbase will decrease the road deterioration and extend the effective life of a highway. This study presents discharge characteristics of four highway subbase drainage systems. These systems consisted of shallow, longitudal trenches with geocomposite drain materials (edge drains made from a polyethylene core surrounded by a geotextile filter fabric) that underline the joint between the shoulder and the traffic lane of State Route 16, approximately 1.0 mile southeast of Granville, Ohio. For selected rainfall-runoff events the maximum discharge, discharge characteristics from April 1991 through November 1993 were computed for three geocomposite products- a post type, an oblong-pipe type, and a cusp type-and a conventional perforated pipe edge drain. In general, the discharge characteristics of the conventional edge drain and that of the oblong-pipe edge drain were similar for most of the rainfall-runoff event characteristics. Both produced most of the highest maximum discharges and largest discharge volumes among the four longitudal edge drains. The post edge drain produced smaller maximum discharge and volumes than the conventional and oblong-pipe edge drains, but it had the shortest lag times for most of the event characteristics. The cusp edge drain produced small maximum discharges and small volumes similar to those from the post edge drain, but it had the longest lag times of all the edge drains for most of the event characteristics. The cusp edge drain may have also had some problems during installation which could have affected the discharge characteristics.

  5. Large discharge-volume, silent discharge spark plug

    DOEpatents

    Kang, Michael

    1995-01-01

    A large discharge-volume spark plug for providing self-limiting microdischarges. The apparatus includes a generally spark plug-shaped arrangement of a pair of electrodes, where either of the two coaxial electrodes is substantially shielded by a dielectric barrier from a direct discharge from the other electrode, the unshielded electrode and the dielectric barrier forming an annular volume in which self-terminating microdischarges occur when alternating high voltage is applied to the center electrode. The large area over which the discharges occur, and the large number of possible discharges within the period of an engine cycle, make the present silent discharge plasma spark plug suitable for use as an ignition source for engines. In the situation, where a single discharge is effective in causing ignition of the combustible gases, a conventional single-polarity, single-pulse, spark plug voltage supply may be used.

  6. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment

    NASA Astrophysics Data System (ADS)

    He, Yuchen; Satoshi, Uehara; Hidemasa, Takana; Hideya, Nishiyama

    2016-09-01

    A zero-dimensional model to simulate a nano-pulse-discharged bubble in water was developed. The model consists of gas and liquid phases corresponding to the inside and outside of the bubble, respectively. The diffusions of chemical species from the gas to the liquid phase through the bubble interface was also investigated. The initial gas is Ar, but includes a little H2O and O2 in the bubble. The time evolution of the OH concentration in the liquid phase was mainly investigated as an important species for water treatment. It was shown that OH was generated in the bubble and then diffused into the liquid. With the application of a continuous nano-pulse discharge, more OH radicals were generated as the frequency increased at a low voltage for a given power consumption. supported partially by Japan Society for the Promotion of Science (JSPS) KAKENHI (No. 26249015)

  7. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    NASA Astrophysics Data System (ADS)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  8. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, Douglas C.; Marcus, R. Kenneth; Donohue, David L.; Lewis, Trousdale A.

    1994-01-01

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components.

  9. Process Properties of Electronic High Voltage Discharges Triggered by Ultra-short Pulsed Laser Filaments

    NASA Astrophysics Data System (ADS)

    Cvecek, Kristian; Gröschel, Benjamin; Schmidt, Michael

    Remote processing of metallic workpieces by techniques based on electric arc discharge or laser irradiation for joining or cutting has a long tradition and is still being intensively investigated in present-day research. In applications that require high power processing, both approaches exhibit certain advantages and disadvantages that make them specific for a given task. While several hybrid approaches exist that try to combine the benefits of both techniques, none were as successful in providing a fixed electric discharge direction as discharges triggered by plasma filaments generated by ultra-short pulsed lasers. In this work we investigate spatial and temporal aspects of laser filament guided discharges and give an upper time delay between the filament creation and the electrical build-up of a dischargeable voltage for a successful filament triggered discharge.

  10. Industrial water resources management based on violation risk analysis of the total allowable target on wastewater discharge.

    PubMed

    Yue, Wencong; Cai, Yanpeng; Xu, Linyu; Yang, Zhifeng; Yin, Xin'An; Su, Meirong

    2017-07-11

    To improve the capabilities of conventional methodologies in facilitating industrial water allocation under uncertain conditions, an integrated approach was developed through the combination of operational research, uncertainty analysis, and violation risk analysis methods. The developed approach can (a) address complexities of industrial water resources management (IWRM) systems, (b) facilitate reflections of multiple uncertainties and risks of the system and incorporate them into a general optimization framework, and (c) manage robust actions for industrial productions in consideration of water supply capacity and wastewater discharging control. The developed method was then demonstrated in a water-stressed city (i.e., the City of Dalian), northeastern China. Three scenarios were proposed according to the city's industrial plans. The results indicated that in the planning year of 2020 (a) the production of civilian-used steel ships and machine-made paper & paperboard would reduce significantly, (b) violation risk of chemical oxygen demand (COD) discharge under scenario 1 would be the most prominent, compared with those under scenarios 2 and 3, (c) the maximal total economic benefit under scenario 2 would be higher than the benefit under scenario 3, and (d) the production of rolling contact bearing, rail vehicles, and commercial vehicles would be promoted.

  11. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozemeijer, J. C.; Visser, A.; Borren, W.

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  12. High-frequency monitoring of water fluxes and nutrient loads to assess the effects of controlled drainage on water storage and nutrient transport

    DOE PAGES

    Rozemeijer, J. C.; Visser, A.; Borren, W.; ...

    2016-01-19

    High nitrogen (N) and phosphorus (P) fluxes from upstream agriculture threaten aquatic ecosystems in surface waters and estuaries, especially in areas characterized by high agricultural N and P inputs and densely drained catchments like the Netherlands. Controlled drainage has been recognized as an effective option to optimize soil moisture conditions for agriculture and to reduce unnecessary losses of fresh water and nutrients. This is achieved by introducing control structures with adjustable overflow levels into subsurface tube drain systems. A small-scale (1 ha) field experiment was designed to investigate the hydrological and chemical changes after introducing controlled drainage. Precipitation rates andmore » the response of water tables and drain fluxes were measured in the periods before the introduction of controlled drainage (2007–2008) and after (2009–2011). For the N and P concentration measurements, auto-analyzers for continuous records were combined with passive samplers for time-averaged concentrations at individual drain outlets. The experimental setup enabled the quantification of changes in the water and solute balance after introducing controlled drainage. The results showed that introducing controlled drainage reduced the drain discharge and increased the groundwater storage in the field. To achieve this, the overflow levels have to be elevated in early spring, before the drain discharge stops due to dryer conditions and falling groundwater levels. The groundwater storage in the field would have been larger if the water levels in the adjacent ditch were controlled as well by an adjustable weir. The N concentrations and loads increased, which was largely related to elevated concentrations in one of the three monitored tube drains. The P loads via the tube drains reduced due to the reduction in discharge after introducing controlled drainage. Furthermore, this may be counteracted by the higher groundwater levels and the larger contribution

  13. Computations of total sediment discharge, Niobrara River near Cody, Nebraska

    USGS Publications Warehouse

    Colby, Bruce R.; Hembree, C.H.

    1955-01-01

    A natural chute in the Niobrara River near Cody, Nebr., constricts the flow of the river except at high stages to a narrow channel in which the turbulence is sufficient to suspend nearly the total sediment discharge. Because much of the flow originates in the sandhills area of Nebraska, the water discharge and sediment discharge are relatively uniform. Sediment discharges based on depth-integrated samples at a contracted section in the chute and on streamflow records at a recording gage about 1,900 feet upstream are available for the period from April 1948 to September 1953 but are not given directly as continuous records in this report. Sediment measurements have been made periodically near the gage and at other nearby relatively unconfined sections of the stream for comparison with measurements at the contracted section. Sediment discharge at these relatively unconfined sections was computed from formulas for comparison with measured sediment discharges at the contracted section. A form of the Du Boys formula gave computed tonnages of sediment that were unsatisfactory. Sediment discharges as computed from the Schoklitsch formula agreed well with measured sediment discharges that were low, but they were much too low at measured sediment discharges that were higher. The Straub formula gave computed discharges, presumably of bed material, that were several times larger than measured discharges of sediment coarser than 0.125 millimeter. All three of these formulas gave computed sediment discharges that increased with water discharges much less rapidly than the measured discharges of sediment coarser than 0.125 millimeter. The Einstein procedure when applied to a reach that included 10 defined cross sections gave much better agreement between computed sediment discharge and measured sediment discharge than did anyone of the three other formulas that were used. This procedure does not compute the discharge of sediment that is too small to be found in the stream bed in

  14. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  15. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalach, J.; Franke, St.; Schoepp, H.

    2011-03-15

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-upmore » of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.« less

  16. Late quaternary history and uranium isotopic compositions of ground water discharge deposits, Crater Flat, Nevada

    USGS Publications Warehouse

    Paces, James B.; Taylor, Emily M.; Bush, Charles

    1993-01-01

    Three carbonate-rich spring deposits are present near the southern end of Crater Flat, NV, approximately 18 km southwest of the potential high-level waste repository at Yucca Mountain. We have analyzed five samples of carbonate-rich material from two of the deposits for U and Th isotopic compositions. Resulting U-series disequilibrium ages indicate that springs were active at 18 ?? 1, 30 ?? 3, 45 ?? 4 and >70 ka. These ages are consistent with a crude internal stratigraphy at one site. Identical ages for two samples at two separate sites suggest that springs were contemporaneous, at least in part, and were most likely part of the same hydrodynamic system. In addition, initial U isotopic compositions range from 2.8 to 3.8 and strongly suggest that ground water from the regional Tertiary-volcanic aquifer provided the source for these hydrogenic deposits. This interpretation, along with water level data from near-by wells suggest that the water table rose approximately 80 to 115 m above present levels during the late Quaternary and may have fluctuated repeatedly. Current data are insufficient to allow reconstruction of a detailed depositional history, however geochronological data are in good agreement with other paleoclimatic proxy records preserved throughout the region. Since these deposits are down gradient from the potential repository site, the possibility of higher ground water levels in the future dramatically shortens both vertical and lateral ground water pathways and reduces travel times of transported radionuclides to potential discharge sites.

  17. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  18. Optimization of gas-filled quartz capillary discharge waveguide for high-energy laser wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.

  19. Estimation of Uncertainties in Stage-Discharge Curve for an Experimental Himalayan Watershed

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Sen, S.

    2016-12-01

    Various water resource projects developed on rivers originating from the Himalayan region, the "Water Tower of Asia", plays an important role on downstream development. Flow measurements at the desired river site are very critical for river engineers and hydrologists for water resources planning and management, flood forecasting, reservoir operation and flood inundation studies. However, an accurate discharge assessment of these mountainous rivers is costly, tedious and frequently dangerous to operators during flood events. Currently, in India, discharge estimation is linked to stage-discharge relationship known as rating curve. This relationship would be affected by a high degree of uncertainty. Estimating the uncertainty of rating curve remains a relevant challenge because it is not easy to parameterize. Main source of rating curve uncertainty are errors because of incorrect discharge measurement, variation in hydraulic conditions and depth measurement. In this study our objective is to obtain best parameters of rating curve that fit the limited record of observations and to estimate uncertainties at different depth obtained from rating curve. The rating curve parameters of standard power law are estimated for three different streams of Aglar watershed located in lesser Himalayas by maximum-likelihood estimator. Quantification of uncertainties in the developed rating curves is obtained from the estimate of variances and covariances of the rating curve parameters. Results showed that the uncertainties varied with catchment behavior with error varies between 0.006-1.831 m3/s. Discharge uncertainty in the Aglar watershed streams significantly depend on the extent of extrapolation outside the range of observed water levels. Extrapolation analysis confirmed that more than 15% for maximum discharges and 5% for minimum discharges are not strongly recommended for these mountainous gauging sites.

  20. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  1. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  2. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  3. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  4. 33 CFR 155.370 - Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Oily mixture (bilge slops)/fuel oil tank ballast water discharges on oceangoing ships of 10,000 gross tons and above and oceangoing ships of 400 gross tons and above that carry ballast water in their fuel oil tanks. 155.370 Section 155.370 Navigation and Navigable Waters COAST GUAR...

  5. Shallow Groundwater Discharge into Urban Drains: Identifying the Missing Link to Define Urban Typologies for Impact Assessment of Urbanization on Water and Nutrient Balances

    NASA Astrophysics Data System (ADS)

    Ocampo, C. J.; Oldham, C. E.

    2015-12-01

    Groundwater and surface water (GW-SW) interaction in drains of many sandy coastal plain areas displays an ephemeral hydrological regime, as often shifts occur in their hydraulic functioning from a losing to a gaining water conditions upon the position of the surrounding shallow water table (SWT). Urbanization in such areas and stormwater management strategies enhancing infiltration have the potential to alter the infiltration rates and the subsurface water storage dynamics with consequences for the residence time of the water and nutrient transformations prior their discharge into receiving SW drains. Identifying first order control on the above processes will assist the improvement of assessment tools for better urban development. This work presents findings on the hydrodynamics of the GW-SW water exchange in two drains of the Perth Coastal Plain area (Western Australia, Australia) impacted by a SWT developing on a layered variable texture soil: a peri-urban drain and a restored living stream drain in urban residential area. A multi-technique approach was used to investigate water mass balance and fluxes over a reach scale and involved continuous records of hydrometric data for GW-SW interactions, passive tracers for water pathway identification, pore water temperature for vertical water exchange, and differential SW discharge using an Acoustic Doppler Current Profiler. Results highlighted differences in the GW-SW interactions between both drains under stormflow and baseflow conditions. A substantial increase of GW discharge into the drain coincided with the full development of a SWT over a seasonal scale at the peri-urban drain, which suggests a more natural water infiltration and redistribution in the subsurface. In contrast, a large volume of infiltrated rain water was discharged into the living stream over a period of few weeks regardless of the development of the surrounding SWT, which suggests the influence of underground pipe system in water redistribution

  6. Has submarine groundwater discharge been overlooked as a source of mercury to coastal waters?

    PubMed

    Bone, Sharon E; Charette, Matthew A; Lamborg, Carl H; Gonneea, Meagan Eagle

    2007-05-01

    We measured the mercury (Hg) in groundwater, aquifer sediments, and surface water in Waquoit Bay (Massachusetts) and found that this toxic metal (range: <3.2-262 pM) was being released within the subterranean estuary, with similarly high levels (range: 18-256 pM) found in the surface waters of the bay. None of the dissolved species (DOC, chloride, and Fe) normally observed to influence Hg partitioning correlated well with the observed Hg concentrations. It was hypothesized that this was in part due to the variable loading in time and space of Hg onto the aquifer sands in combination with the seasonality of groundwater flow through the aquifer. Aquifer sediment samples from the study site ranged from <1 to 12.5 pmol of Hg/g of sediment, suggesting log Kd values on the order of 1. We hypothesize that this was due to the low organic carbon content typical of the aquifer sediments. Last, itwas estimated that submarine groundwater discharge supplied 0.47-1.9 nmol of Hg m(-2) day(-1) to the bay, which is an order of magnitude higher than the atmospheric deposition rate for the northeastern U.S.

  7. Inactivation of Escherichia coli in water by pulsed dielectric barrier discharge in coaxial reactor.

    PubMed

    Hernández-Arias, A N; Rodríguez-Méndez, B G; López-Callejas, R; Alcántara-Díaz, D; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Muñoz-Castro, A E; Barocio, S R; de la Piedad-Beneitez, A

    2012-09-01

    An experimental study of ATCC (American Type Culture Collection) 8739 Escherichia coli bacteria inactivation in water by means of pulsed dielectric barrier discharge (PDBD) atmospheric pressure plasmas is presented. Plasma is generated by an adjustable power source capable of supplying high voltage 25 kV pulses, ∼30 μs long and at a 500 Hz frequency. The process was conducted in a ∼152 cm(3) cylindrical stainless steel coaxial reactor, endowed with a straight central electrode and a gas inlet. The bacterial concentration in water was varied from 10(3) up to 10(8) E. coli cells per millilitre. The inactivation was achieved without gas flow in the order of 82% at 10(8) colony-forming units per millilitre (CFU mL(-1)) concentrations in 600 s. In addition, oxygen was added to the gas supply in order to increase the ozone content in the process, raising the inactivation percentage to the order of 90% in the same treatment time. In order to reach a higher efficiency however, oxygen injection modulation is applied, leading to inactivation percentages above 99.99%. These results are similarly valid for lower bacterial concentrations.

  8. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  9. Estimating the discharge for ordinary high water levels in Kansas.

    DOT National Transportation Integrated Search

    2014-09-01

    The water resource design community in Kansas, including the Kansas Department of Transportation : (KDOT), is required to obtain appropriate permits for construction projects. Projects that involve stream : modification, including drainage structures...

  10. Is groundwater discharge the dominant source of nutrients to Alabama estuaries and will it keep impacting these waters for the foreseeable future?

    NASA Astrophysics Data System (ADS)

    Mortazavi, B.; Domangue, R.; Kleinhuizen, A.; Tatariw, C.

    2017-12-01

    Land use change and population growth are dominant factors impacting coastal waters. Populations in Alabama coastal counties have increased by several folds since the 1950s and a large fraction of the farmed land are now being used for growing sod requiring large amounts of fertilizers. Concurrent with these changes, marshes bordering Mobile Bay have been disappearing such that they now only cover 50% of their areal extent compared to the 1780s. These changes in land use and coastal geomorphology, as well as the population growth ultimately result in larger delivery of nutrients either through runoff or groundwater discharge to the coastal waters. The Mobile Bay estuary in Alabama is bordered with several subestuaries and a coastal lagoon. Our investigations suggest that the large inputs of nutrients through river discharge in Weeks Bay (140 g N m-2 yr-1) and groundwater discharge in Little Lagoon (300 g N m-2 yr-1) by far dominate inputs of N to the water column and exceed N input, for example, from benthic regeneration, by an order of magnitude. Furthermore, the capacity for N removal through denitrification in these systems is low and instead nitrogen is retained through dissimilatory nitrate reduction to ammonium at a rate that exceed denitrification by an order of magnitude. Our measurements also suggest that once marshes are transformed to subtidal unvegetated sediments rates of nitrogen removal by denitrification decline four folds. Excessive inputs of nitrogen and the high efficiency with which nitrogen is retained in these systems is impacting the foodweb and harmful algal blooms and fish kills are reoccurring events. While changes in agricultural practices and reconstruction of marshes can potentially reduce the delivery of N or enhance N removal by denitrification, nutrient inputs through groundwater discharge are going to impact these estuaries for the foreseeable future. Our capacity to construct nutrient budgets and to predict the trajectory of

  11. Decomposition of atrazine traces in water by combination of non-thermal electrical discharge and adsorption on nanofiber membrane.

    PubMed

    Vanraes, Patrick; Willems, Gert; Daels, Nele; Van Hulle, Stijn W H; De Clerck, Karen; Surmont, Pieter; Lynen, Frederic; Vandamme, Jeroen; Van Durme, Jim; Nikiforov, Anton; Leys, Christophe

    2015-04-01

    In recent decades, several types of persistent substances are detected in the aquatic environment at very low concentrations. Unfortunately, conventional water treatment processes are not able to remove these micropollutants. As such, advanced treatment methods are required to meet both current and anticipated maximally allowed concentrations. Plasma discharge in contact with water is a promising new technology, since it produces a wide spectrum of oxidizing species. In this study, a new type of reactor is tested, in which decomposition by atmospheric pulsed direct barrier discharge (pDBD) plasma is combined with micropollutant adsorption on a nanofiber polyamide membrane. Atrazine is chosen as model micropollutant with an initial concentration of 30 μg/L. While the H2O2 and O3 production in the reactor is not influenced by the presence of the membrane, there is a significant increase in atrazine decomposition when the membrane is added. With membrane, 85% atrazine removal can be obtained in comparison to only 61% removal without membrane, at the same experimental parameters. The by-products of atrazine decomposition identified by HPLC-MS are deethylatrazine and ammelide. Formation of these by-products is more pronounced when the membrane is added. These results indicate the synergetic effect of plasma discharge and pollutant adsorption, which is attractive for future applications of water treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model

    PubMed Central

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-01-01

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something about water security of roughly one-third of China’s population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM (1,1) (DWSGM (1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of “r” by using particle swarm optimization (PSO) algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM (1,1) model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM (1,1) grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system. PMID:29295517

  13. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    PubMed

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  14. Tracking stormwater discharge plumes and water quality of the Tijuana River with multispectral aerial imagery

    NASA Astrophysics Data System (ADS)

    Svejkovsky, Jan; Nezlin, Nikolay P.; Mustain, Neomi M.; Kum, Jamie B.

    2010-04-01

    Spatial-temporal characteristics and environmental factors regulating the behavior of stormwater runoff from the Tijuana River in southern California were analyzed utilizing very high resolution aerial imagery, and time-coincident environmental and bacterial sampling data. Thirty nine multispectral aerial images with 2.1-m spatial resolution were collected after major rainstorms during 2003-2008. Utilizing differences in color reflectance characteristics, the ocean surface was classified into non-plume waters and three components of the runoff plume reflecting differences in age and suspended sediment concentrations. Tijuana River discharge rate was the primary factor regulating the size of the freshest plume component and its shorelong extensions to the north and south. Wave direction was found to affect the shorelong distribution of the shoreline-connected fresh plume components much more strongly than wind direction. Wave-driven sediment resuspension also significantly contributed to the size of the oldest plume component. Surf zone bacterial samples collected near the time of each image acquisition were used to evaluate the contamination characteristics of each plume component. The bacterial contamination of the freshest plume waters was very high (100% of surf zone samples exceeded California standards), but the oldest plume areas were heterogeneous, including both polluted and clean waters. The aerial imagery archive allowed study of river runoff characteristics on a plume component level, not previously done with coarser satellite images. Our findings suggest that high resolution imaging can quickly identify the spatial extents of the most polluted runoff but cannot be relied upon to always identify the entire polluted area. Our results also indicate that wave-driven transport is important in distributing the most contaminated plume areas along the shoreline.

  15. Radio-frequency powered glow discharge device and method with high voltage interface

    DOEpatents

    Duckworth, D.C.; Marcus, R.K.; Donohue, D.L.; Lewis, T.A.

    1994-06-28

    A high voltage accelerating potential, which is supplied by a high voltage direct current power supply, is applied to the electrically conducting interior wall of an RF powered glow discharge cell. The RF power supply desirably is electrically grounded, and the conductor carrying the RF power to the sample held by the probe is desirably shielded completely excepting only the conductor's terminal point of contact with the sample. The high voltage DC accelerating potential is not supplied to the sample. A high voltage capacitance is electrically connected in series between the sample on the one hand and the RF power supply and an impedance matching network on the other hand. The high voltage capacitance isolates the high DC voltage from the RF electronics, while the RF potential is passed across the high voltage capacitance to the plasma. An inductor protects at least the RF power supply, and desirably the impedance matching network as well, from a short that might occur across the high voltage capacitance. The discharge cell and the probe which holds the sample are configured and disposed to prevent the probe's components, which are maintained at ground potential, from bridging between the relatively low vacuum region in communication with the glow discharge maintained within the cell on the one hand, and the relatively high vacuum region surrounding the probe and cell on the other hand. The probe and cell also are configured and disposed to prevent the probe's components from electrically shorting the cell's components. 11 figures.

  16. Precipitation v. River Discharge Controls on Water Availability to Riparian Trees in the Rhône River Delta

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Sargeant, C. I.; Vallet-Coulomb, C.; Evans, C.; Bates, C. R.

    2014-12-01

    Water availability to riparian trees in lowlands is controlled through precipitation and its infiltration into floodplain soils, and through river discharge additions to the hyporheic water table. The relative contributions of both water sources to the root zone within river floodplains vary through time, depending on climatic fluctuations. There is currently limited understanding of how climatic fluctuations are expressed at local scales, especially in 'critical zone' hydrology, which is fundamental to the health and sustainability of riparian forest ecosystems. This knowledge is particularly important in water-stressed Mediterranean climate systems, considering climatic trends and projections toward hotter and drier growing seasons, which have the potential to dramatically reduce water availability to riparian forests. Our aim is to identify and quantify the relative contributions of hyporheic (discharge) water v. infiltrated precipitation to water uptake by riparian Mediterranean trees for several distinct hydrologic years, selected to isolate contrasts in water availability from these sources. Our approach includes isotopic analyses of water and tree-ring cellulose, mechanistic modeling of water uptake and wood production, and physically based modeling of subsurface hydrology. We utilize an extensive database of oxygen isotope (δ18O) measurements in surface water and precipitation alongside recent measurements of δ18O in groundwater and soil water and in tree-ring cellulose. We use a mechanistic model to back-calculate source water δ18O based on δ18O in cellulose and climate data. Finally, we test our results via 1-D hydrologic modeling of precipitation infiltration and water table rise and fall. These steps enable us to interpret hydrologic cycle variability within the 'critical zone' and their potential impact on riparian trees.

  17. Water Resources Data, Florida, Water Year 2003, Volume 3A: Southwest Florida Surface Water

    USGS Publications Warehouse

    Kane, R.L.; Fletcher, W.L.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharges for 385 streams, periodic discharge for 13 streams, continuous daily stage for 255 streams, periodic stage for 13 streams, peak stage for 36 streams and peak discharge for 36 streams, continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells, and quality-of-water data for 133 surface-water sites and 308 wells. The data for Southwest Florida include records of stage, discharge, and water quality of streams; stage, contents, water quality of lakes and reservoirs, and water levels and water quality of ground-water wells. Volume 3A contains continuous or daily discharge for 103 streams, periodic discharge for 7 streams, continuous or daily stage for 67 streams, periodic stage for 13 streams, peak stage and discharge for 8 streams, continuous or daily elevations for 2 lakes, periodic elevations for 26 lakes, and quality-of-water data for 62 surface-water sites. These data represent the national Water Data System records collected by the U.S. Geological Survey and cooperating local, state, and federal agencies in Florida.

  18. Biogeochemical transport in the Loxahatchee River estuary, FL: The role of submarine groundwater discharge

    NASA Astrophysics Data System (ADS)

    Swarzenski, P.; Orem, B.; McPherson, B.; Baskaran, M.; Wan, Y.

    2005-05-01

    The distributions of dissolved organic carbon (DOC), silica, select trace elements (Mn, Fe, Ba, Sr, Co, V,) and a suite of naturally-occurring radionuclides in the U/Th decay series (222Rn, 223,224,226,228Ra, 238U) were studied during high and low discharge conditions in the Loxahatchee River estuary, Florida. The zero-salinity endmember of this still relatively pristine estuary may reflect not only river-borne constituents, but also those advected during active groundwater/surface-water discharge. During low discharge conditions, with the notable exception of Co, trace metals indicate nearly conservative mixing from a salinity of ~12 through the estuary (This statement contracdicts with what is said in p. 7). In contrast, of the trace metals studied, only Sr, Fe, U and V exhibited conservative estuarine mixing during high discharge. Dissolved organic carbon and Si concentrations were highest at zero salinities, and generally decreased with an increase in salinity during both discharge regimes, indicating removal of land-derived dissolved organic matter and silica in the estuary. Suspended particulate matter (SPM) concentrations were generally lowest (< 5 mg L-1) close of zero salinity, and increased several-fold (~18 mg L-1; low discharge) towards the seaward endmember and this attributed dynamic resuspension the estuary. Surface water-column 222Rn activities were most elevated (> 28 dpm L-1) at the freshwater endmember of the estuary, and appear to identify regions of the river most influenced by active submarine groundwater discharge (where is the data that show this?). Activities of four naturally-occurring isotopes of Ra (223,224,226,228Ra) in this estuary and select adjacent shallow groundwater wells indicate mean estuarine water mass residence times of less than 1 day; values in close agreement to those calculated by tidal prism and tidal period. A radium-based model for estimating submarine groundwater discharge to the Loxahatchee River estuary yielded an

  19. Sediment and water discharge rates of Turkish Black Sea rivers before and after hydropower dam construction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, B.J.

    1994-06-01

    Presently, the water discharge rate to the Black Sea by Turkish rivers is approximately 41 km[sup 3]/yr. The sediment discharge rate of Turkish rivers to the Black Sea is 28 x 10[sup 6] t/yr. Before construction of the hydroelectric dams, the sediment discharge rate was approximately 70 x 10[sup 6] t/yr. The sharp reduction in sediment load is largely a result of the dams near the mouths of the Yesil Irmak and Kizil Irmak rivers. Before the construction of dams, Turkish rivers contributed approximately one third of the total amount of sediment received by the Black Sea from all surroundingmore » rivers. The life-span of the major reservoirs varies from approximately only one century (Yesil Irmak river reservoirs) to several thousand years (Sakarya river reservoirs). Life-span for the large Altinkaya Dam reservoir is estimated with approximately 500 yr.« less

  20. Evaluation of Geophysical and Thermal Methods for Detecting Submarine Groundwater Discharge (SGD) in the Suwannee River Estuary

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Kruse, S.; Burnett, W. C.; Chanton, J.; Greenwood, W.; Murray, M.; Peterson, R.; Swarzenski, P.

    2005-12-01

    In an effort to evaluate geophysical and thermal methods for detecting submarine groundwater discharge (SGD) on the Florida Gulf coast, a suite of water-borne surveys were run in conjunction with aerial thermal imagery over the lower Suwannee estuary in March 2005. Marine resistivity streaming data were collected alongside continuous radon and methane sampling from surface waters. Resistivity measurements were collected with dipole-dipole geometries. Readings were inverted for terrain resistivity assuming two-dimensional structure and constraining uppermost layers to conform to measured water depths and surface water conductivities. Thermal images were collected at the end of winter and at night to maximize temperatures between warmer discharging groundwater and colder surface waters. For the preliminary data analysis presented here, we assume high radon and methane concentrations coincide with zones of high SGD, and look at relationships between radon and methane concentrations and terrain resistivity and thermal imagery intensity values. For a limited set of coincident thermal intensity and radon readings, thermal intensities are higher at sites with the highest radon readings. These preliminary results suggest that in this environment, thermal imagery may be effective for identifying the "hottest" spots for SGD, but not for zones of diffuse discharge. The thermal imagery shows high intensity features at the heads of tidal streams, but shallow water depths precluded boat-based resistivity and sampling at these sites. Shallow terrain resistivities generally show a positive correlation with methane concentrations, as would be expected over zones of discharging groundwater that is fresher than Gulf surface water.

  1. Field tests of diffusion samplers for inorganic constituents in wells and at a ground-water discharge zone

    USGS Publications Warehouse

    Vroblesky, Don A.; Petkewich, Matthew D.; Campbell, Ted R.

    2002-01-01

    Field tests were performed on two types of diffusion samplers to collect representative samples of inorganic constituents from ground water in wells and at an arsenic-contaminated ground-water-discharge zone beneath a stream. Nylon-screen samplers and dialysis samplers were tested for the collection of arsenic, calcium, chloride, iron, manganese, sulfate, and dissolved oxygen. The investigations were conducted at the Naval Industrial Reserve Ordnance Plant (NIROP), Fridley, Minnesota, and at the Naval Air Station Fort Worth Joint Reserve Base (NAS Fort Worth JRB), Texas. Data indicate that, in general, nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water that correspond to concentrations obtained by low-flow sampling. Diffusion samplers offer a potentially time-saving approach to well sampling. Particular care must be taken, however, when sampling for iron and other metals, because of the potential for iron precipitation by oxygenation and when dealing with chemically stratified sampling intervals. Simple nylon-screen jar samplers buried beneath creekbed sediment appear to be effective tools for locating discharge zones of arsenic contaminated ground water. Although the LDPE samplers have proven to be inexpensive and simple to use in wells, they are limited by their inability to provide a representative sample of ionic solutes. The success of nylon-screen samplers in sediment studies suggests that these simple samplers may be useful for collecting water samples for inorganic constituents in wells. Results using dialysis bags deployed in wells suggest that these types of samplers have the potential to provide a representative sample of both VOCs and ionic solutes from ground water (Kaplan and others, 1991; Theodore A. Ehlke, U.S. Geological Survey, written commun., 2001). The purpose of this report is to provide results of field tests investigating the potential to use diffusion samplers to collect

  2. A thermal profile method to identify potential ground-water discharge areas and preferred salmonid habitats for long river reaches

    USGS Publications Warehouse

    Vaccaro, J.J.; Maloy, K.J.

    2006-01-01

    The thermal regime of riverine systems is a major control on aquatic ecosystems. Ground water discharge is an important abiotic driver of the aquatic ecosystem because it provides preferred thermal structure and habitat for different types of fish at different times in their life history. In large diverse river basins with an extensive riverine system, documenting the thermal regime and ground-water discharge is difficult and problematic. A method was developed to thermally profile long (5-25 kilometers) river reaches by towing in a Lagrangian framework one or two probes that measure temperature, depth, and conductivity. One probe is towed near the streambed and, if used, a second probe is towed near the surface. The probes continuously record data at 1-3-second intervals while a Global Positioning System logs spatial coordinates. The thermal profile provides valuable information about spatial and temporal variations in habitat, and, notably, indicates ground-water discharge areas. This method was developed and tested in the Yakima River Basin, Washington, in summer 2001 during low flows in an extreme drought year. The temperature profile comprehensively documents the longitudinal distribution of a river's temperature regime that cannot be captured by fixed station data. The example profile presented exhibits intra-reach diversity that reflects the many factors controlling the temperature of a parcel of water as it moves downstream. Thermal profiles provide a new perspective on riverine system temperature regimes that represent part of the aquatic habitat template for lotic community patterns.

  3. Comparing Growth Rates after Hospital Discharge of Preterm Infants Fed with Either Post-Discharge Formula or High-Protein, Medium-Chain Triglyceride Containing Formula.

    PubMed

    Ekcharoen, Chanikarn; Tantibhaedhyangkul, Ruangvith

    2015-12-01

    To evaluate whether a high energy, high-protein, MCT-containing formula (HPMCT) is as appropriate as a post-discharge formula (PDF) for feeding preterm infants after hospital discharge by comparing growth, adverse effects, and cost per gram of bodyweight gain. The present study was a randomized controlled trial. The calculated sample size was 20 infants for each intervention group. After the consent procedure, preterm infants who had postconceptional age (PCA) 35⁺¹ to 36⁺⁰ weeks and weight between 1,800 and 3,000 g at hospital discharge were randomly enrolled to receive either PDF or HPMCT starting from the discharge day. Intervention period lasted at least 28 days and until the infant's weight was at least 3,000 g or PCA was at least 40⁺⁰ weeks. Body weight, length, and head circumference were measured on days 0, 14, 28, 56, and 84 after hospital discharge. Formula intakes and adverse symptoms (abdominal distension, diarrhea, and constipation) were recorded by parents before each visit in diaries provided by the study group. Cost was calculated from estimated actual formula intakes. There were six and five infants enrolled into PDF and HPMCT group, respectively. Demographic data were not different between the two groups. There were no significant differences of growth rates in both groups at days 28, 56, and 84 after hospital discharge. Adverse effects and costs were not different either. PDF and HPMCT might be comparably appropriate for feeding catching-up preterm infants after hospital discharge, as noted from growth rates, adverse effects, and costs. However, further studies involving biochemical and neurodevelopmental evaluation, with long-term follow-up in larger populations are needed to clearly compare both formulas.

  4. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  5. Forecasting the Amount of Waste-Sewage Water Discharged into the Yangtze River Basin Based on the Optimal Fractional Order Grey Model.

    PubMed

    Li, Shuliang; Meng, Wei; Xie, Yufeng

    2017-12-23

    With the rapid development of the Yangtze River economic belt, the amount of waste-sewage water discharged into the Yangtze River basin increases sharply year by year, which has impeded the sustainable development of the Yangtze River basin. The water security along the Yangtze River basin is very important for China, It is something aboutwater security of roughly one-third of China's population and the sustainable development of the 19 provinces, municipalities and autonomous regions among the Yangtze River basin. Therefore, a scientific prediction of the amount of waste-sewage water discharged into Yangtze River basin has a positive significance on sustainable development of industry belt along with Yangtze River basin. This paper builds the fractional DWSGM(1,1)(DWSGM(1,1) model is short for Discharge amount of Waste Sewage Grey Model for one order equation and one variable) model based on the fractional accumulating generation operator and fractional reducing operator, and calculates the optimal order of "r" by using particle swarm optimization(PSO)algorithm for solving the minimum average relative simulation error. Meanwhile, the simulation performance of DWSGM(1,1)model with the optimal fractional order is tested by comparing the simulation results of grey prediction models with different orders. Finally, the optimal fractional order DWSGM(1,1)grey model is applied to predict the amount of waste-sewage water discharged into the Yangtze River basin, and corresponding countermeasures and suggestions are put forward through analyzing and comparing the prediction results. This paper has positive significance on enriching the fractional order modeling method of the grey system.

  6. Naphthenic acids removal from high TDS produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration.

    PubMed

    Aher, Ashish; Papp, Joseph; Colburn, Andrew; Wan, Hongyi; Hatakeyama, Evan; Prakash, Prakhar; Weaver, Ben; Bhattacharyya, Dibakar

    2017-11-01

    Oil industries generate large amounts of produced water containing organic contaminants, such as naphthenic acids (NA) and very high concentrations of inorganic salts. Recovery of potable water from produced water can be highly energy intensive is some cases due to its high salt concentration, and safe discharge is more suitable. Here, we explored catalytic properties of iron oxide (Fe x O y nanoparticles) functionalized membranes in oxidizing NA from water containing high concentrations of total dissolved solids (TDS) using persulfate as an oxidizing agent. Catalytic decomposition of persulfate by Fe x O y functionalized membranes followed pseudo-first order kinetics with an apparent activation energy of 18 Kcal/mol. Fe x O y functionalized membranes were capable of lowering the NA concentrations to less than discharge limits of 10 ppm at 40 °C. Oxidation state of iron during reaction was quantified. Membrane performance was investigated for extended period of time. A coupled process of advanced oxidation catalyzed by membrane and nanofiltration was also evaluated. Commercially available nanofiltration membranes were found capable of retaining NA from water containing high concentrations of dissolved salts. Commercial NF membranes, Dow NF270 (Dow), and NF8 (Nanostone) had NA rejection of 79% and 82%, respectively. Retentate for the nanofiltration was further treated with advanced oxidation catalyzed by Fe x O y functionalized membrane for removal of NA.

  7. [Mechanism of the organic pollutant degradation in water by hybrid gas-liquid electrical discharge].

    PubMed

    Zhu, Li-nan; Ma, Jun; Yang, Shi-dong

    2007-09-01

    The method of hybrid gas-liquid electrical discharge was investigated for the removal of phenol. The results indicate that this new method can remove phenol in water effectively. The removal rate increases with increasing voltage and air aeration. The production quantity of H2O2 and O3 is measured respectively in the discharge region and the production quantity increases with increasing of voltage and air aeration. The energy consumption analysis indicates that with increasing the voltage, the increase extent of the phenol removal rate is smaller than the energy's, so the increase of energy efficiency is very small. Air aeration increases the energy consumption. At the same time, a considerable part of energy in the overall input energy makes the temperature of the solution increase, and more energy is transformed into heat, which leads to the waste of energy.

  8. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  9. Synthesis of oxide and nitride ceramics in high-power gyrotron discharge

    NASA Astrophysics Data System (ADS)

    Akhmadullina, N. S.; Skvortsova, N. N.; Obraztsova, E. A.; Stepakhin, V. D.; Konchekov, E. M.; Kargin, Yu F.; Shishilov, O. N.

    2017-12-01

    Synthesis of oxides, nitrides, and oxynitrides of silicon and aluminium by a pulsed microwave discharge in the mixtures of metal and dielectric powders is described. The microwave pulses were generated by high-power gyrotron (frequency 75 GHz, power up to 550 kW, pulse duration from 0.1 to 15ms). SiO2 + β-Si3N4 (1:1 by molar) and α-Al2O3 + AlN (2:1 by molar) mixtures with Mg (1 and 5wt%) were treated in air with microwave pulses with power of 250÷400 kW and duration of 2÷8 ms. It was found that the discharge cannot be initiated for both mixtures in absence of Mg at any pulse power and duration. When 1% of Mg was added, the discharge was observed for both mixtures under 8 ms pulses of 400 kW; however, the amounts of materials produced were not enough for analysis. With 5% of Mg the discharge was observed for both mixtures under 8 ms pulses of 350 kW, and products of the plasma-chemical processes in the Al2O3 + AlN mixture were analyzed.

  10. Effective Discharge and Annual Sediment Yield on Brazos River

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  11. Effect of Topography on Subglacial Discharge and Submarine Melting During Tidewater Glacier Retreat

    NASA Astrophysics Data System (ADS)

    Amundson, J. M.; Carroll, D.

    2018-01-01

    To first order, subglacial discharge depends on climate, which determines precipitation fluxes and glacier mass balance, and the rate of glacier volume change. For tidewater glaciers, large and rapid changes in glacier volume can occur independent of climate change due to strong glacier dynamic feedbacks. Using an idealized tidewater glacier model, we show that these feedbacks produce secular variations in subglacial discharge that are influenced by subglacial topography. Retreat along retrograde bed slopes (into deep water) results in rapid surface lowering and coincident increases in subglacial discharge. Consequently, submarine melting of glacier termini, which depends on subglacial discharge and ocean thermal forcing, also increases during retreat into deep water. Both subglacial discharge and submarine melting subsequently decrease as glacier termini retreat out of deep water and approach new steady state equilibria. In our simulations, subglacial discharge reached peaks that were 6-17% higher than preretreat values, with the highest values occurring during retreat from narrow sills, and submarine melting increased by 14% for unstratified fjords and 51% for highly stratified fjords. Our results therefore indicate that submarine melting acts in concert with iceberg calving to cause tidewater glacier termini to be unstable on retrograde beds. The full impact of submarine melting on tidewater glacier stability remains uncertain, however, due to poor understanding of the coupling between submarine melting and iceberg calving.

  12. A multi-frequency investigation of the influences of groundwater discharge on hydrocarbon emission and transport in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Jakobsson, M.; Nycander, J.; Mayer, L. A.

    2017-12-01

    In nearshore coastal regions submarine groundwater discharge is a major component of the hydro-geological cycle: transporting nutrients and pollutants to the ocean, producing up-welling currents through buoyancy effects, and acting as an erosional force at discharge sites. In nearshore regions where biogenic gas production is high, groundwater discharge could potentially act as a control on hydrocarbon emission and transport from the seafloor though the water-column. In the southern Stockholm Archipelago of the Baltic Sea, terraces and semi-circular depressions on shallow (<20 meters) seafloor have been linked to the discharge of ground water, traveling along the permeable layers in glacial clay deposits (Söderberg and Flodén 1995; Jakobsson et al., 2016). Sub-bottom profiles over the same region have identified widespread areas of subsurface blanking, commonly attributed to gas, as well as water-column seep features, both in spatial proximity to the groundwater discharge sites. High-resolution multibeam bathymetry and chirp sub-bottom profiles were combined with water-column data sets collected at multiple frequencies (300 kHz, 45-90 kHz, 160-260 kHz) to map the spatial distribution of seeps and investigate their relationship to localized groundwater discharge as determined by seafloor and subsurface morphology. The spatial extent of seep sites appears closely tied to regions of suspected groundwater discharge, suggesting direct or indirect controls on gas emission pathways. Additionally, seep morphology in the broadband data hints at the possibility of groundwater and gas flow mixing.

  13. Hollow - cathode electrode for high-power, high-pressure discharge devices

    DOEpatents

    Chang, Jim J.; Alger, Terry W.

    1995-01-01

    Several different cold cathode configurations for a gas discharge device each having a plurality of grooves of selected spacing, depth and width to improve the emission of electrons in a gas discharge device. Each of the cold cathode configurations can be machined from a single piece of a selected material. Several of the configurations can be assembled with individual elements which is easily seen from the various figures.

  14. Water Resources Data, Florida, Water Year 2003, Volume 1A: Northeast Florida Surface Water

    USGS Publications Warehouse

    ,

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  15. Water Resources Data, Florida, Water Year 2003, Volume 1B: Northeast Florida Ground Water

    USGS Publications Warehouse

    George, H.G.; Nazarian, A.P.; Dickerson, S.M.

    2004-01-01

    Water resources data for the 2003 water year in Florida consist of continuous or daily discharge for 385 streams, periodic discharge for 13 streams, continuous or daily stage for 255 streams, periodic stage for 13 streams, peak stage and discharge for 36 streams; continuous or daily elevations for 13 lakes, periodic elevations for 46 lakes; continuous ground-water levels for 441 wells, periodic ground-water levels for 1,227 wells; quality-of-water data for 133 surface-water sites and 308 wells. The data for northeast Florida include continuous or daily discharge for 138 streams, periodic discharge for 3 streams, continuous or daily stage for 61 streams, periodic stage for 0 streams; peak stage and discharge for 0 streams; continuous or daily elevations for 9 lakes, periodic elevations for 20 lakes; continuous ground water levels for 73 wells, periodic groundwater levels for 543 wells; quality-of-water data for 43 surface-water sites and 115 wells. These data represent the National Water Data System records collected by the U.S. Geological Survey and cooperating local, State and Federal agencies in Florida.

  16. 33 CFR 323.4 - Discharges not requiring permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Discharges not requiring permits. 323.4 Section 323.4 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY... § 323.4 Discharges not requiring permits. (a) General. Except as specified in paragraphs (b) and (c) of...

  17. PRN 93-10: Effluent Discharge Labeling Statements

    EPA Pesticide Factsheets

    This notice describes revised effluent discharge labeling statements required on all manufacturing use products and end use products that may be discharged to waters of the United States ormunicipal sewer systems.

  18. Response of River Discharge to Changing Climate Over the Past Millennium in the Upper Mackenzie Basin: Implications for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Wolfe, B. B.; Hall, R. I.; Edwards, T. W.; Jarvis, S. R.; Sinnatamby, R. N.; Yi, Y.; Johnston, J. W.

    2009-05-01

    Runoff generated from high elevations is the primary source of freshwater for western North America, yet this critical resource is managed on the basis of short instrumental records that encompass an insufficient range of climatic conditions. Like other streams that drain this part of the continent and flow across the northern Great Plains, where seasonal and extended intervals of water deficit are a natural element of the landscape, the Peace and Athabasca rivers provide water that is crucial for societal needs. Climate variability and rapidly increasing industrial development are, however, raising concerns over the future availability of water resources for continued economic growth in these watersheds and to maintain the integrity of aquatic ecosystems, including the Peace-Athabasca Delta (PAD). This is particularly acute for the Athabasca River because the Alberta oil sands industry remains dependent on its water for bitumen extraction. Here we report the effects of climate change over the past 1000 years on river discharge in the upper Mackenzie River system based on paleoenvironmental information from the PAD and Lake Athabasca. The delta landscape responds to hydroclimatic changes with marked variability, capturing systematic changes in ice-jam flood frequency and perched basin water balance. Lake Athabasca level appears to directly monitor overall water availability with the highest levels occurring in concert with maximum glacier extent during the Little Ice Age, and the lowest during the 11th century prior to medieval glacier expansion. Recent climate-driven hydrological change appears to be on a trajectory to even lower levels as high-elevation snow and glacier meltwater contributions both continue to decline. The temporal perspective offered by these paleohydrological reconstructions indicates that climatic changes over the past millennium have led to characteristic responses in the quantity and seasonality of streamflow generated from the hydrographic

  19. GAS DISCHARGE DEVICES

    DOEpatents

    Arrol, W.J.; Jefferson, S.

    1957-08-27

    The construction of gas discharge devices where the object is to provide a gas discharge device having a high dark current and stabilized striking voltage is described. The inventors have discovered that the introduction of tritium gas into a discharge device with a subsequent electrical discharge in the device will deposit tritium on the inside of the chamber. The tritium acts to emit beta rays amd is an effective and non-hazardous way of improving the abovementioned discharge tube characteristics

  20. Quantifying discharge uncertainty from remotely sensed precipitation data products in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Weerasinghe, H.; Raoufi, R.; Yoon, Y.; Beighley, E., II; Alshawabkeh, A.

    2014-12-01

    Preterm birth is a serious health issue in the United States that contributes to over one-third of all infant deaths. Puerto Rico being one of the hot spots, preliminary research found that the high preterm birth rate can be associated with exposure to some contaminants in water used on daily basis. Puerto Rico has more than 200 contaminated sites including 16 active Superfund sites. Risk of exposure to contaminants is aggravated by unlined landfills lying over the karst regions, highly mobile and dynamic nature of the karst aquifers, and direct contact with surface water through sinkholes and springs. Much of the population in the island is getting water from natural springs or artesian wells that are connected with many of these potentially contaminated karst aquifers. Mobility of contaminants through surface water flows and reservoirs are largely known and are highly correlated with the variations in hydrologic events and conditions. In this study, we quantify the spatial and temporal distribution of Puerto Rico's surface water stores and fluxes to better understand potential impacts on the distribution of groundwater contamination. To quantify and characterize Puerto Rico's surface waters, hydrologic modeling, remote sensing and field measurements are combined. Streamflow measurements are available from 27 U.S. Geological Survey (USGS) gauging stations with drainage areas ranging from 2 to 510 km2. Hillslope River Routing (HRR) model is used to simulate hourly streamflow from watersheds larger than 1 km2 that discharge to ocean. HRR model simulates vertical water balance, lateral surface and subsurface runoff and river discharge. The model consists of 4418 sub-catchments with a mean model unit area (i.e., sub-catchment) of 1.8 km2. Using gauged streamflow measurements for validation, we first assess model results for simulated discharge using three precipitation products: TRMM-3B42 (3 hour temporal resolution, 0.25 degree spatial resolution); NWS stage